Sample records for analog-conjugated hollow gold

  1. Hollow Gold Cages and Their Topological Relationship to Dual Fullerenes.

    Trombach, Lukas; Rampino, Sergio; Wang, Lai-Sheng; Schwerdtfeger, Peter


    Golden fullerenes have recently been identified by photoelectron spectra by Bulusu et al. [S. Bulusu, X. Li, L.-S. Wang, X. C. Zeng, PNAS 2006, 103, 8326-8330]. These unique triangulations of a sphere are related to fullerene duals having exactly 12 vertices of degree five, and the icosahedral hollow gold cages previously postulated are related to the Goldberg-Coxeter transforms of C20 starting from a triangulated surface (hexagonal lattice, dual of a graphene sheet). This also relates topologically the (chiral) gold nanowires observed to the (chiral) carbon nanotubes. In fact, the Mackay icosahedra well known in gold cluster chemistry are related topologically to the dual halma transforms of the smallest possible fullerene C20 . The basic building block here is the (111) fcc sheet of bulk gold which is dual to graphene. Because of this interesting one-to-one relationship through Euler's polyhedral formula, there are as many golden fullerene isomers as there are fullerene isomers, with the number of isomers Niso increasing polynomially as O(Niso9 ). For the recently observed Au16- , Au17- , and Au18- we present simulated photoelectron spectra including all isomers. We also predict the photoelectron spectrum of Au32- . The stability of the golden fullerenes is discussed in relation with the more compact structures for the neutral and negatively charged Au12 to Au20 and Au32 clusters. As for the compact gold clusters we observe a clear trend in stability of the hollow gold cages towards the (111) fcc sheet. The high stability of the (111) fcc sheet of gold compared to the bulk 3D structure explains the unusual stability of these hollow gold cages. PMID:27244703

  2. Trapping Iron Oxide into Hollow Gold Nanoparticles

    Sun Xiankai


    Full Text Available Abstract Synthesis of the core/shell-structured Fe3O4/Au nanoparticles by trapping Fe3O4 inside hollow Au nanoparticles is described. The produced composite nanoparticles are strongly magnetic with their surface plasmon resonance peaks in the near infrared region (wavelength from 700 to 800 nm, combining desirable magnetic and plasmonic properties into one nanoparticle. They are particularly suitable for in vivo diagnostic and therapeutic applications. The intact Au surface provides convenient anchorage sites for attachment of targeting molecules, and the particles can be activated by both near infrared lights and magnetic fields. As more and more hollow nanoparticles become available, this synthetic method would find general applications in the fabrication of core–shell multifunctional nanostructures.

  3. Hollow gold nanorectangles: The roles of polarization and substrate

    Near, Rachel D.; El-Sayed, Mostafa A.


    Dimers of hollow gold nanorectangles ((197 ± 4) × (134 ± 6) nm outside and (109 ± 5) × (53 ± 3) nm inside) were fabricated via electron beam lithography with interparticle separations ranging from 27 ± 2 nm to 596 ± 8 nm. Spectroscopic investigation of these arrays showed multiple peaks under illumination polarized both parallel and perpendicular to the interparticle axis. Discrete dipole approximation theoretical calculations were used to investigate the nature of these multiple peaks. These calculations demonstrate that the multiple peaks arise due to a combination of multiple plasmon modes and interactions with the substrate. The substrate effects are more pronounced for the parallel polarization because parallel polarization (along the long axis) of the nanorectangles results in a much stronger dipole mode than for the perpendicular polarization (along the short axis). Next, we show how these peaks change, as the hollow nanorectangles are brought within coupling range of one another. In this endeavor, we make use of our previously reported method to directly convert scanning electron microscope images of the nanoparticles into the shape files for the theoretical calculations.

  4. Photothermally responsive gold nanoparticle conjugated polymer-grafted porous hollow silica nanocapsules.

    Paramelle, David; Gorelik, Sergey; Liu, Ye; Kumar, Jatin


    Polymer-grafted porous hollow silica nanoparticles prepared by reversible addition-fragmentation chain transfer polymerisation have an upper critical solution temperature of 45 °C. Conjugation of 5 nm gold nanoparticles onto polymer-grafted porous hollow silica nanoparticles enables remarkable specific photothermally-induced controlled release of encapsulated Rhodamine B by laser-stimulation at physiological temperature. PMID:27427407

  5. Controllable synthesis of hollow mesoporous silica spheres and application as support of nano-gold

    Wang, Tao; Ma, Weihua, E-mail:; Shangguan, Junnan; Jiang, Wei; Zhong, Qin


    Hollow silica spheres with mesoporous structure were synthesized by sol–gel/emulsion method. In the process, the surfactant, cetyltrimethylammonium bromide (CTAB) was used to stabilize the oil droplet and also used as structure direct agent. The diameter of the hollow silica spheres, ranging from 895 nm to 157 nm, can be controlled by changing the ratio of ethanol to water and the concentration of the surfactant as well. The shell thickness of the spheres decreased when the ratio of ethanol to water decreased. The proposed mechanism of the formation of silica spheres could elucidate the experimental results well. Furthermore, the resultant hollow mesoporous silica spheres were then employed as support of nano-gold which was used to catalyze the isomerization reaction of propylene oxide to produce allyl alcohol. - Graphical abstract: It is the schematic mechanism for the formation of hollow mesoporous silica spheres. - Highlights: • The formation mechanism of the hollow spheres is proposed. • The isomerization of propylene oxide can be catalyzed by the nano-gold/SiO{sub 2}. • The hollow silica spheres can be prepared controllably.

  6. Controllable synthesis of hollow mesoporous silica spheres and application as support of nano-gold

    Hollow silica spheres with mesoporous structure were synthesized by sol–gel/emulsion method. In the process, the surfactant, cetyltrimethylammonium bromide (CTAB) was used to stabilize the oil droplet and also used as structure direct agent. The diameter of the hollow silica spheres, ranging from 895 nm to 157 nm, can be controlled by changing the ratio of ethanol to water and the concentration of the surfactant as well. The shell thickness of the spheres decreased when the ratio of ethanol to water decreased. The proposed mechanism of the formation of silica spheres could elucidate the experimental results well. Furthermore, the resultant hollow mesoporous silica spheres were then employed as support of nano-gold which was used to catalyze the isomerization reaction of propylene oxide to produce allyl alcohol. - Graphical abstract: It is the schematic mechanism for the formation of hollow mesoporous silica spheres. - Highlights: • The formation mechanism of the hollow spheres is proposed. • The isomerization of propylene oxide can be catalyzed by the nano-gold/SiO2. • The hollow silica spheres can be prepared controllably

  7. Synthesis of mesoporous silica hollow nanospheres with multiple gold cores and catalytic activity.

    Chen, Junchen; Xue, Zhaoteng; Feng, Shanshan; Tu, Bo; Zhao, Dongyuan


    The core-shell Au@resorcinol-formaldehyde (RF) nanospheres with multiple cores have been successfully synthesized by a modified Stöber method. After coating mesoporous silica and the calcination, the Au@meso-SiO2 hollow nanospheres with multiple gold cores can be obtained, which have a high surface area (∼537 m(2)/g) and uniform pore size (∼2.5 nm). The Au@meso-SiO2 hollow nanospheres can be used as a catalyst for the reduction of 4-nitrophenol by NaBH4 into 4-aminophenol, and exhibit excellent catalytic performance. PMID:24935190

  8. Photothermal therapy of cancer cells using novel hollow gold nanoflowers

    Han J


    Full Text Available Jing Han,1 Jinru Li,1 Wenfeng Jia,1 Liangming Yao,2 Xiaoqin Li,1 Long Jiang,1 Yong Tian21Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, 2Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of ChinaAbstract: This article presents a new strategy for fabricating large gold nanoflowers (AuNFs that exhibit high biological safety under visible light and very strong photothermal cytotoxicity to HeLa cells under irradiation with near-infrared (NIR light. This particular type of AuNF was constructed using vesicles produced from a multiamine head surfactant as a template followed by depositing gold nanoparticles (AuNPs and growing their crystallites on the surface of vesicles. The localized surface plasmon-resonance spectrum of this type of AuNF can be easily modulated to the NIR region by controlling the size of the AuNFs. When the size of the AuNFs increased, biosafety under visible light improved and cytotoxicity increased under NIR irradiation. Experiments in vitro with HeLa cells and in vivo with small mice have been carried out, with promising results. The mechanism for this phenomenon is based on the hypothesis that it is difficult for larger AuNFs to enter the cell without NIR irradiation, but they enter the cell easily at the higher temperatures caused by NIR irradiation. We believe that these effects will exist in other types of noble metallic NPs and cancer cells. In addition, the affinity between AuNPs and functional biomolecules, such as aptamers and biomarkers, will make this type of AuNF a good recognition device in cancer diagnosis and therapy.Keywords: HeLa cells, endocytosis, cytotoxicity, AuNFs, NIR, cancer therapy

  9. Nonenzymatic amperometric sensor for ascorbic acid based on hollow gold/ruthenium nanoshells

    Jo, Ara; Kang, Minkyung; Cha, Areum; Jang, Hye Su [Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Shim, Jun Ho [Department of Chemistry, Daegu University, Gyeongsan 712-714 (Korea, Republic of); Lee, Nam-Suk [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Kim, Myung Hwa [Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Lee, Youngmi, E-mail: [Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Lee, Chongmok, E-mail: [Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea, Republic of)


    Highlights: • We synthesized hollow gold/ruthenium (hAu–Ru) nanoshells for ascorbic acid sensing. • The hAu–Ru nanoshells showed sensitivity of 426 μA mM⁻¹ cm⁻² for ascorbic acid. • Good selectivity against glucose, uric acid, dopamine, 4-acetamidophenol, and NADH. • The linear dynamic range appeared from zero to 2.0 mM (R = 0.9995). • Response time (1.6 s) and low detection limit (2.2 μM) were obtained at pH 7.40. Abstract: We report a new nonenzymatic amperometric detection of ascorbic acid (AA) using a glassy carbon (GC) disk electrode modified with hollow gold/ruthenium (hAu–Ru) nanoshells, which exhibited decent sensing characteristics. The hAu–Ru nanoshells were prepared by the incorporation of Ru on hollow gold (hAu) nanoshells from Co nanoparticle templates, which enabled AA selectivity against glucose without aid of enzyme or membrane. The structure and electrocatalytic activities of the hAu–Ru catalysts were characterized by spectroscopic and electrochemical techniques. The hAu–Ru loaded on GC electrode (hAu–Ru/GC) showed sensitivity of 426 μA mM⁻¹ cm⁻² (normalized to the GC disk area) for the linear dynamic range of <5 μM to 2 mM AA at physiological pH. The response time and detection limit were 1.6 s and 2.2 μM, respectively. Furthermore, the hAu–Ru/GC electrode displayed remarkable selectivity for ascorbic acid over all potential biological interferents, including glucose, uric acid (UA), dopamine (DA), 4-acetamidophenol (AP), and nicotinamide adenine dinucleotide (NADH), which could be especially good for biological sensing.

  10. Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles

    We describe the development of hollow-type gold nanoparticles (NPs) for the photonic-based imaging and therapy of macrophage cells. The strong light-absorption and light-scattering properties of gold NPs render them to be useful as molecular imaging agents as well as therapeutic moieties. By controlling the geometry of the gold NPs, the optical resonance peak was shifted to around the near-infrared (NIR) region, where light transmission through biological tissue is known to be fairly high. Hollow-type gold NPs modified with dextran were phagocytosed by macrophage cells. Using dark-field microscopy, it was possible to image macrophage cells targeted with NPs. After NIR irradiation, macrophages labeled with NPs were selectively destroyed by the photothermal effect. FACS analysis revealed that the photothermal effect caused principally late apoptosis-related cell death or secondary necrosis. The experimental results showed that hollow-type gold NPs conjugated with dextran could be used not only as optical imaging contrast agents but also as a component of a novel anti-macrophage therapeutic strategy

  11. Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy

    Bai, Ling-Yu; Yang, Xiao-Quan; An, Jie; Zhang, Lin; Zhao, Kai; Qin, Meng-Yao; Fang, Bi-Yun; Li, Cheng; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di; Ma, Zhi-Ya


    Multifunctional nanocomposites combining imaging and therapeutic functions have great potential for cancer diagnosis and therapy. In this work, we developed a novel theranostic agent based on hollow gold nanospheres (HGNs) and superparamagnetic iron oxide nanoparticles (SPIO). Taking advantage of the excellent magnetic properties of SPIO and strong near-infrared (NIR) absorption property of HGNs, such nanocomposites were applied to targeted magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) of cancer cells. In vitro results demonstrated they displayed significant contrast enhancement for T2-weighted MRI and strong PAI signal enhancement. Simultaneously, the nanocomposites exhibited a high photothermal effect under the irradiation of the near-infrared laser and can be used as efficient photothermal therapy (PTT) agents for selective killing of cancer cells. All these results indicated that such nanocomposites combined with MRI-PAI and PTT functionality can have great potential for effective cancer diagnosis and therapy.

  12. Simulation of nanosecond laser-induced thermal dynamics of hollow gold nanoshells for hyperthermia therapy

    Hatef, Ali, E-mail:; Fortin-Deschênes, Simon, E-mail:; Meunier, Michel, E-mail: [Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, École Polytechnique de Montréal, Montréal, Québec, H3C 3A7 (Canada)


    In this report, we investigate numerically the thermodynamics of hollow gold nanoshell (AuNS) irritated by near-infrared (NIR) light. Simulations are performed for the AuNS in aqueous medium. The nanostructure is illuminated by a nanosecond pulsed laser at plasmonic resonance. The spatiotemporal evolution of the temperature profile inside and outside the AuNS is computed using a numerical framework based on the finite element method (FEM). In particular, we show how the temperature varies with the laser fluence and pulse duration. The aim of this study is to provide a description of the physics of heat release of AuNSs and useful insights for the development of these nanostructures for biomedical applications such as drug delivery, photothermal cancer therapy and optoporation of cells.

  13. Simulation of nanosecond laser-induced thermal dynamics of hollow gold nanoshells for hyperthermia therapy

    In this report, we investigate numerically the thermodynamics of hollow gold nanoshell (AuNS) irritated by near-infrared (NIR) light. Simulations are performed for the AuNS in aqueous medium. The nanostructure is illuminated by a nanosecond pulsed laser at plasmonic resonance. The spatiotemporal evolution of the temperature profile inside and outside the AuNS is computed using a numerical framework based on the finite element method (FEM). In particular, we show how the temperature varies with the laser fluence and pulse duration. The aim of this study is to provide a description of the physics of heat release of AuNSs and useful insights for the development of these nanostructures for biomedical applications such as drug delivery, photothermal cancer therapy and optoporation of cells


    Wei Liu; Xin-lin Yang; Xu-gang He


    Poly(divinylbenzene-co-acrylic acid) (poly(DVB-co-AA)) hollow microspheres with gold nanoparticles on the interior surfaces were prepared from the gold nanoparticles-coated poly(methacrylic acid) (PMAA@Au@poly(DVB-co-AA)) core-shell microspheres by removal of the PMAA core in water.Au nanoparticles-coated PMAA microspheres were afforded by the in-situ reduction of gold trichloride with PMAA microsphere as stabilizer via the interaction between carboxylic acid groups and Au nanoparticles.Gold nanoparticles-coated (PMAA@Au@poly(DVB-co-AA)) microspheres were formed during the distillation precipitation copolymerization of divinylbenzene and acrylic acid in acetonitrile with Au-coated PMAA microspheres as seeds.The thickness of the poly(DVB-co-AA) shell-layer was controlled by the amount of the solvent distilled off the polymerization system.The PMAA microspheres,Au nanoparticles-coated PMAA microspberes,core-shell microspheres,and hollow microspheres with Au nanoparticles on the interior surfaces were studied by transmission electron microscopy and scanning electron microscopy.The stabilization to L-cysteine and the preliminary catalytic property of the Au nanoparticles on the inner surface of hollow poly(DVB-co-AA) microspheres were investigated.

  15. NIR fluorophore-hollow gold nanosphere complex for cancer enzyme-triggered detection and hyperthermia.

    Wang, Jianting; Wheeler, Damon; Zhang, Jin Z; Achilefu, Samuel; Kang, Kyung A


    Hollow gold nanospheres (HGN) may be delicately tuned to absorb near infrared light (NIR) by tailoring the diameter-to-shell ratio. This unique property can be utilized for enhancing the contrast for the NIR and X-ray/CT imaging, and also noninvasive and local, photothermal hyperthermia by conjugating cancer-targeting molecules on the particle surface. In addition, when an NIR fluorophore is placed on the surface of the NIR-tuned HGNs, the fluorescence can be significantly quenched due to the emitted light absorption by the HGNs. Combining the NIR fluorescence quenching property of HGNs and the enzyme secreting nature of cancer, we have developed a novel enzyme-triggered NIR contrast agent for cancer detection with high specificity. NIR fluorophore Cypate (Indocyanine Green based) was conjugated to HGN via a short spacer for fluorescence quenching. The spacer contains an enzyme-substrate-motif (G-G-R) that can be cleaved by urokinase-type plasminogen activator (uPA, a breast cancer enzyme). The nano-complex normally does not emit fluorescence but, in the presence of uPA, the fluorescence was restored, providing high specificity. The enzyme-specific emission allows us to characterize the nature of the cancer (e.g., invasive, metastatic, etc.). Once the cancer is detected, the same HGNs can be used to deliver heat to the cancer site for cancer-specific hyperthermia. PMID:22879051

  16. Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles

    Photoacoustic (PA) imaging attracts a great deal of attention as an innovative modality for longitudinal, non-invasive, functional and molecular imaging in oncology. Gold nanoparticles (AuNPs) are identified as superior, NIR-absorbing PA contrast agents for biomedical applications. Until now, no systematic comparison of the optical extinction and PA efficiency of water-soluble AuNPs of various geometries and small sizes has been performed. Here spherical AuNPs with core diameters of 1.0, 1.4 and 11.2 nm, nanorods with longitudinal/transversal elongation of 38/9 and 44/12 nm and hollow nanospheres with outer/inner diameters of 33/19, 57/30, 68/45 and 85/56 nm were synthesized. The diode laser set-up with excitations at 650, 808, 850 and 905 nm allowed us to correlate the molar PA signal intensity with the molar extinction of the respective AuNPs. Deviations were explained by differences in heat transfer from the particle to the medium and, for larger particles, by the scattering of light. The molar PA intensity of 1.0 nm AuNPs was comparable to the commonly used organic dye methylene blue, and rapidly increased with the lateral size of AuNPs. (paper)

  17. One-step detection of melamine in milk by hollow gold chip based on surface-enhanced Raman scattering.

    Guo, Zhinan; Cheng, Ziyi; Li, Ran; Chen, Lei; Lv, Haiming; Zhao, Bing; Choo, Jaebum


    A hollow gold (HG) chip with high surface-enhanced Raman scattering (SERS) capability was fabricated and used to monitor the adulteration of milk with melamine. This chip was fabricated with self-assembled hollow gold nanospheres (HGNs) on glass wafers through electrostatic interaction. There are two important advantages for the use of this HG chip as a detection platform. First, HGNs show a strong SERS enhancement from individual particles due to their capability to localize the electromagnetic fields around the pinholes in hollow shells. Second, the HG chip improves the limit of detection through the enrichment effect. The characteristic SERS peak of melamine was used to distinguish it from other kinds of proteins or amino acids, and its intensity was used to monitor the percentage of melamine in milk. With its simple detection procedure (no pretreatment or separation steps), decreased processing time and low detection limit, this HG chip shows a strong potential for broad applications in melamine detection from real samples. PMID:24720965

  18. Sandwich-format electrochemiluminescence assays for tumor marker based on PAMAM dendrimer-L-cysteine-hollow gold nanosphere nanocomposites.

    Zhuo, Ying; Gui, Guofeng; Chai, Yaqin; Liao, Ni; Xiao, Kai; Yuan, Ruo


    In this work, a novel polyamidoamine (PAMAM) dendrimer-L-cysteine-hollow gold nanospheres nanocomposite was fabricated and used as the promoter for the peroxydisulfate/O2 ECL system to detect the concentration of the tumor marker carcinoembryonic antigen (CEA). Herein, the carboxyl-terminated PAMAM dendrimers were decorated with L-cysteine (L-Cys) by EDC/NHS coupling chemistry. Then, the hollow gold nanospheres (HGNPs) were employed as effective nano-carriers for the assembly of PAMAM-L-Cys via thiols-Au bonding, which was used for further loading of detection antibody (Ab2) to form the PAMAM-L-Cys-HGNPs-Ab2 bioconjugates. In the presence of target CEA, the sandwiched immuno-structure can be formed between the capture anti-CEA antibodies (Ab1), which self-assembled on deposited gold modified electrode, and the Ab2 on the PAMAM-L-Cys-HGNPs, thereby resulting in a proportional increase in ECL response, due to the significant enhancement of PAMAM-L-Cys-HGNPs toward peroxydisulfate/O2 ECL system. As a result, a sandwich ECL assay for CEA detection was developed with excellent sensitivity of a large concentration variation from 20 fg/mL to 1.0 ng/mL and a detection limit of 6.7 fg mL(-1). PMID:24211458

  19. An in-depth analysis of polymer-analogous conjugation using DMTMM.

    Pelet, Jeisa M; Putnam, David


    Combinatorial libraries have become increasingly popular in the field of functional biomaterials. One approach for creating diverse polymer libraries is polymer-analogous conjugation of functional groups to polymer scaffolds. In this study, we show that a water-soluble condensing agent, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM), can be employed to conjugate two disparate model ligands, d-(+)-galactosamine (Gal) and agmatine (Agm), to the side chains of either poly(methacrylic acid) (pMAA) or poly(acrylic acid) (pAA) at various substitution ratios. The degree of substitution was found to be directly influenced by media pH, polymer concentration, structure of ligands, and polymer precursor. A nearly 2-fold increase in conjugation efficiencies for both ligands to pAA was achieved as compared to pMAA under identical conditions reaching up to 56% and 78% of Gal and Agm of total content, respectively. These two structurally similar polymers showed remarkably different performances, which reveals that the selection of a polymer precursor is crucial for the optimal design of polymeric libraries, particularly when complex structural ligands are involved. The approach employed provides a basis from which larger and more diverse combinatorial libraries of functionalized polymers with multiple moieties can be generated. PMID:21309584

  20. Carbon supported trimetallic nickel-palladium-gold hollow nanoparticles with superior catalytic activity for methanol electrooxidation

    Shang, Changshuai; Hong, Wei; Wang, Jin; Wang, Erkang


    In this paper, Ni nanoparticles (NPs) are prepared in an aqueous solution by using sodium borohydride as reducing agent. With Ni NPs as the sacrificial template, hollow NiPdAu NPs are successfully prepared via partly galvanic displacement reaction between suitable metal precursors and Ni NPs. The as-synthesized hollow NiPdAu NPs can well dispersed on the carbon substrate. Transmission electron microscopy, X-ray diffraction and inductively coupled plasma mass spectrometry are taken to analyze the morphology, structure and composition of the as-synthesized catalysts. The prepared catalysts show superior catalytic activity and stability for methanol electrooxidation in alkaline media compared with commercial Pd/C and Pt/C. Catalysts prepared in this work show great potential to be anode catalysts in direct methanol fuel cells.

  1. One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity.

    Ye, Sunjie; Benz, Felix; Wheeler, May C; Oram, Joseph; Baumberg, Jeremy J; Cespedes, Oscar; Christenson, Hugo K; Coletta, Patricia Louise; Jeuken, Lars J C; Markham, Alexander F; Critchley, Kevin; Evans, Stephen D


    Hollow metallic nanostructures have shown potential in various applications including catalysis, drug delivery and phototherapy, owing to their large surface areas, reduced net density, and unique optical properties. In this study, novel hollow gold nanoflowers (HAuNFs) consisting of an open hollow channel in the center and multiple branches/tips on the outer surface are fabricated for the first time, via a facile one-step synthesis using an auto-degradable nanofiber as a bifunctional template. The one-dimensional (1D) nanofiber acts as both a threading template as well as a promoter of the anisotropic growth of the gold crystal, the combination of which leads to the formation of HAuNFs with a hollow channel and nanospikes. The synergy of favorable structural/surface features, including sharp edges, open cavity and high-index facets, provides our HAuNFs with excellent catalytic performance (activity and cycling stability) coupled with large single-particle SERS activity (including ∼30 times of activity in ethanol electro-oxidation and ∼40 times of single-particle SERS intensity, benchmarked against similar-sized solid gold nanospheres with smooth surfaces, as well as retaining 86.7% of the initial catalytic activity after 500 cycles in ethanol electro-oxidation). This innovative synthesis gives a nanostructure of the geometry distinct from the template and is extendable to fabricating other systems for example, hollow-channel silver nanoflowers (HAgNFs). It thus provides an insight into the design of hollow nanostructures via template methods, and offers a versatile synthetic strategy for diverse metal nanomaterials suited for a broad range of applications. PMID:27352044

  2. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma

    Lu, Wei; Melancon, Marites P.; Xiong, Chiyi; Huang, Qian; Elliott, Andrew; Song, Shaoli; Zhang, Rui; Flores, Leo G.; Gelovani, Juri G.; Wang, Lihong V.; Ku, Geng; Stafford, R. Jason; Li, Chun


    Advancements in nanotechnology have made it possible to create multifunctional nanostructures that can be used simultaneously to image and treat cancers. For example, hollow gold nanospheres (HAuNS) have been shown to generate intense photoacoustic signals and induce efficient photothermal ablation (PTA) therapy. In this study, we used photoacoustic tomography (PAT), a hybrid imaging modality, to assess the intravenous delivery of HAuNS targeted to integrins that are overexpressed in both gli...

  3. A novel strategy for synthesis of hollow gold nanosphere and its application in electrogenerated chemiluminescence glucose biosensor.

    Zhong, Xia; Chai, Ya-Qin; Yuan, Ruo


    Well-distributed hollow gold nanospheres (Aushell@GOD) (20 ± 5 nm) were synthesized using the glucose oxidase (GOD) cross-linked with glutaraldehyde as a template. A glucose biosensor was prepared based on Aushell@GOD nanospheres for catalyzing luminol electrogenerated chemiluminescence (ECL). Firstly, chitosan was modified in a glassy carbon electrode which offered an interface of abundant amino-groups to assemble Aushell@GOD nanospheres. Then, glucose oxidase was adsorbed on the surface of Aushell@GOD nanospheres via binding interactions between Aushell and amino groups of GOD to construct a glucose biosensor. The Aushell@GOD nanospheres were investigated with TEM and UV-vis. The ECL behaviors of the biosensor were also investigated. Results showed that, the obtained Aushell@GOD nanospheres exhibited excellent catalytic effect towards the ECL of luminol-H2O2 system. The response of the prepared biosensor to glucose was linear with the glucose concentration in the range of 1.0 μM to 4.3mM (R=0.9923) with a detection limit of 0.3 μM (signal to noise=3). This ECL biosensor exhibited short response time and excellent stability for glucose. At the same time the prepared ECL biosensor showed good reproducibility, sensitivity and selectivity. PMID:25059123

  4. Highly sensitive SERS-based immunoassay of aflatoxin B1 using silica-encapsulated hollow gold nanoparticles.

    Ko, Juhui; Lee, Chankil; Choo, Jaebum


    Aflatoxin B1 (AFB1) is a well-known carcinogenic contaminant in foods. It is classified as an extremely hazardous compound because of its potential toxicity to the human nervous system. AFB1 has also been extensively used as a biochemical marker to evaluate the degree of food spoilage. In this study, a novel surface-enhanced Raman scattering (SERS)-based immunoassay platform using silica-encapsulated hollow gold nanoparticles (SEHGNs) and magnetic beads was developed for highly sensitive detection of AFB1. SEHGNs were used as highly stable SERS-encoding nano tags, and magnetic beads were used as supporting substrates for the high-density loading of immunocomplexes. Quantitative analysis of AFB1 was performed by monitoring the intensity change of the characteristic peaks of Raman reporter molecules. The limit of detection (LOD) of AFB1, determined by this SERS-based immunoassay, was determined to be 0.1 ng/mL. This method has some advantages over other analytical methods with respect to rapid analysis (less than 30 min), good selectivity, and reproducibility. The proposed method is expected to be a new analytical tool for the trace analysis of various mycotoxins. PMID:25462866

  5. Poly(ionic liquids) hollow nanospheres with PDMAEMA as joint support of highly dispersed gold nanoparticles for thermally adjustable catalysis

    A smart hollow hybrid system was prepared by introducing poly(2-(1-methylimidazolium 3-yl)-ethyl methacrylate chloride) (PMIMC) network, the temperature-responsive PDMAEMA brushes, and Au nanoparticles into silica nanoparticles through two-step surface-initiated atom transfer radical polymerization. TEM, FTIR, EDX, XRD, XPS, and TGA were used to characterize the morphology and structure of air@PMIMC–PDMAEMA–Au hairy hollow nanospheres. The result showed that Au nanoparticles with an average diameter of 1.5 ± 0.2 nm were homogeneously embedded inside the PMIMC–PDMAEMA shell. Catalytic activity of the as-synthesized air@PMIMC–PDMAEMA–Au hairy hollow nanospheres were investigated using the reduction of 4-nitrophenol with NaBH4 as a model reaction. It was found that the joint structures of PMIMC hollow nanospheres and PDMAEMA brushes lead to production of the highly active and stable catalyst for reduction of 4-nitrophenol. Furthermore, the obtained air@PMIMC–PDMAEMA–Au hairy hollow nanospheres were found to have a thermally adjustable catalytic activity for the reduction of 4-nitrophenol

  6. Gold

    Present article is devoted to gold content in fluorite. In order to obtain the comprehensive view on gold distribution in fluorite the fluorite formations of various geologic deposits and ores of Kazakhstan, Uzbekistan, Tajikistan, Mongolia, Moldova and some geologic deposits of Russia were studied. The gold content in fluorite of geologic deposits of various mineralogical and genetic type was defined.

  7. Synthesis of Hollow Gold-Silver Alloyed Nanoparticles: A "Galvanic Replacement" Experiment for Chemistry and Engineering Students

    Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi


    The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…

  8. Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel.

    Hatami, M; Hatami, J; Ganji, D D


    In this paper, heat transfer and flow analysis for a non-Newtonian third grade nanofluid flow in porous medium of a hollow vessel in presence of magnetic field are simulated analytically and numerically. Blood is considered as the base third grade non-Newtonian fluid and gold (Au) as nanoparticles are added to it. The viscosity of nanofluid is considered a function of temperature as Vogel's model. Least Square Method (LSM), Galerkin method (GM) and fourth-order Runge-Kutta numerical method (NUM) are used to solve the present problem. The influences of the some physical parameters such as Brownian motion and thermophoresis parameters on non-dimensional velocity and temperature profiles are considered. The results show that increasing the thermophoresis parameter (N(t)) caused an increase in temperature values in whole domain and an increase in nanoparticles concentration just near the inner wall of vessel. Furthermore by increasing the MHD parameter, velocity profiles decreased due to magnetic field effect. PMID:24286727

  9. Colloidal Synthesis of Gold Semishells

    Rodríguez-Fernández, Denis; Rodríguez-Fernández, Denis; Pérez-Juste, Jorge; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Liz-Marzán, Luis M.; Liz-Marzán, Luis M.


    This work describes a novel and scalable colloid chemistry strategy to fabricate gold semishells based on the selective growth of gold on Janus silica particles (500 nm in diameter) partly functionalized with amino groups. The modulation of the geometry of the Janus silica particles allows us to tune the final morphology of the gold semishells. This method also provides a route to fabricating hollow gold semishells through etching of the silica cores with hydrofluoric acid. The optical proper...

  10. Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy

    Deng, Xiaoran; Chen, Yinyin; Cheng, Ziyong; Deng, Kerong; Ma, Ping'an; Hou, Zhiyao; Liu, Bei; Huang, Shanshan; Jin, Dayong; Lin, Jun


    Combining multi-model treatments within one single system has attracted great interest for the purpose of synergistic therapy. In this paper, hollow gold nanospheres (HAuNs) coated with a temperature-sensitive polymer, poly(oligo(ethylene oxide) methacrylate-co-2-(2-methoxyethoxy)ethyl methacrylate) (p(OEGMA-co-MEMA)), co-loaded with DOX and a photosensitizer Chlorin e6 (Ce6) were successfully synthesized. As high as 58% DOX and 6% Ce6 by weight could be loaded onto the HAuNs-p(OEGMA-co-MEMA) nanocomposites. The grafting polymer brushes outside the HAuNs play the role of ``gate molecules'' for controlled drug release by 650 nm laser radiation owing to the temperature-sensitive property of the polymer and the photothermal effect of HAuNs. The HAuNs-p(OEGMA-co-MEMA)-Ce6-DOX nanocomposites with 650 nm laser radiation show effective inhibition of cancer cells in vitro and enhanced anti-tumor efficacy in vivo. In contrast, control groups without laser radiation show little cytotoxicity. The nanocomposite demonstrates a way of ``killing three birds with one stone'', that is, chemotherapy, photothermal and photodynamic therapy are triggered simultaneously by the 650 nm laser stimulation. Therefore, the nanocomposites show the great advantages of multi-modal synergistic effects for cancer therapy by a remote-controlled laser stimulus.Combining multi-model treatments within one single system has attracted great interest for the purpose of synergistic therapy. In this paper, hollow gold nanospheres (HAuNs) coated with a temperature-sensitive polymer, poly(oligo(ethylene oxide) methacrylate-co-2-(2-methoxyethoxy)ethyl methacrylate) (p(OEGMA-co-MEMA)), co-loaded with DOX and a photosensitizer Chlorin e6 (Ce6) were successfully synthesized. As high as 58% DOX and 6% Ce6 by weight could be loaded onto the HAuNs-p(OEGMA-co-MEMA) nanocomposites. The grafting polymer brushes outside the HAuNs play the role of ``gate molecules'' for controlled drug release by 650 nm laser radiation

  11. Hollow MEMS

    Larsen, Peter Emil

    Miniaturization of electro mechanical sensor systems to the micro range and beyond has shown impressive sensitivities measuring sample properties like mass, viscosity, acceleration, pressure and force just to name a few applications. In order to enable these kinds of measurements on liquid samples...... a hollow MEMS sensor has been designed, fabricated and tested. Combined density, viscosity, buoyant mass spectrometry and IR absorption spectroscopy are possible on liquid samples and micron sized suspended particles (e.g. single cells). Measurements are based on changes in the resonant behavior of...... these sensors. Optimization of the microfabrication process has led to a process yield of almost 100% .This is achieved despite the fact, that the process still offers a high degree of flexibility. By simple modifications the Sensor shape can be optimized for different size ranges and sensitivities...

  12. Hollow dimension of modules


    In this paper, we are interested in the following general question: Given a module Mwhich has finite hollow dimension and which has a finite collection of submodules Ki (1≤i≤n) such that M=K1+... +Kn, can we find an expression for the hollow dimension of Min terms of hollow dimensions of modules built up in some way from K1 Kn? We prove the following theorem:Let Mbe an amply supplemented module having finite hollow dimension and let Ki (1≤i≤n) be a finite collection of submodules of Msuch that M=K1+...+Kn. Then the hollow dimension h(M) of Mis the sum of the hollow dimensions of Ki (1≤i≤n) ifand only if Ki is a supplement of K1+...+Ki-1+Ki+1+...+Kn in Mfor each 1≤i≤n.

  13. Hollow spherical supramolecular dendrimers.

    Percec, Virgil; Peterca, Mihai; Dulcey, Andrés E; Imam, Mohammad R; Hudson, Steven D; Nummelin, Sami; Adelman, Peter; Heiney, Paul A


    The synthesis of a library containing 12 conical dendrons that self-assemble into hollow spherical supramolecular dendrimers is reported. The design principles for this library were accessed by development of a method that allows the identification of hollow spheres, followed by structural and retrostructural analysis of their Pm3n cubic lattice. The first hollow spherical supramolecular dendrimer was made by replacing the tapered dendron, from the previously reported tapered dendritic dipeptide that self-assembled into helical pores, with its constitutional isomeric conical dendron. This strategy generated a conical dendritic dipeptide that self-assembled into a hollow spherical supramolecular dendrimer that self-organizes in a Pm3n cubic lattice. Other examples of hollow spheres were assembled from conical dendrons without a dipeptide at their apex. These are conical dendrons originated from tapered dendrons containing additional benzyl ether groups at their apex. The inner part of the hollow sphere assembled from the dipeptide resembles the path of a spherical helix or loxodrome and, therefore, is chiral. The spheres assembled from other conical dendrons are nonhelical, even when they contain stereocenters on the alkyl groups from their periphery. Functionalization of the apex of the conical dendrons with diethylene glycol allowed the encapsulation of LiOTf and RbOTf in the center of the hollow sphere. These experiments showed that hollow spheres function as supramolecular dendritic capsules and therefore are expected to display functions complementary to those of other related molecular and supramolecular structures. PMID:18771261

  14. Hollow nuclear matter

    Yong, Gao-Chan


    It is generally considered that an atomic nucleus is always compact. Based on the isospin-dependent Boltzmann nuclear transport model, here I show that large block nuclear matter or excited nuclear matter may both be hollow. And the size of inner bubble in these matter is affected by the charge number of nuclear matter. Existence of hollow nuclear matter may have many implications in nuclear or atomic physics or astrophysics as well as some practical applications.

  15. Hollow nuclear matter

    Yong, Gao-Chan


    It is generally considered that an atomic nucleus is always compact. Based on the isospin-dependent Boltzmann nuclear transport model, here I show that large block nuclear matter or excited nuclear matter may both be hollow. And the size of inner bubble in these matter is affected by the charge number of nuclear matter. Existence of hollow nuclear matter may have many implications in nuclear or atomic physics or astrophysics as well as some practical applications.

  16. Evidence of hollow golden cages

    Bulusu, Satya; Li, Xi; Wang, Lai-Sheng; Zeng, Xiao Cheng


    The fullerenes are the first “free-standing” elemental hollow cages identified by spectroscopy experiments and synthesized in the bulk. Here, we report experimental and theoretical evidence of hollow cages consisting of pure metal atoms, Aun− (n = 16–18); to our knowledge, free-standing metal hollow cages have not been previously detected in the laboratory. These hollow golden cages (“bucky gold”) have an average diameter >5.5 Å, which can easily accommodate one guest atom inside.

  17. Gold prices

    Joseph G. Haubrich


    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  18. have a hollow leg



    英语对话 A:We must prevent our family members from getting involved with drugs, really. B:That’s a sure thing.We must make sure that they never involve them- selves with that. A:By the way,does your husband drink a lot? B:Yeah.That’s the only thing that keeps worrying me.And he often boasts that he has a hollow leg and nobody can drink him under the ta- ble.

  19. Hollow Maxillary Complete Denture

    Radke, Usha; Mundhe, Darshana


    Residual ridge resorption is the reduction in size of the bony ridge under the mucoperiosteum. The resorption occurs at a faster rate in mandibular arch as compared to the maxillary arch; but severely atrophic maxillae with large interridge distance often pose a clinical challenge during fabrication of a successful maxillary complete denture. This clinical report describes a simple technique of fabricating a hollow maxillary complete denture in a patient with resorbed maxillary and mandibular...

  20. Preparation of monolithic foamed Au/Ag alloy with hollow microspheres

    The polystyrene (PS) microspheres were coated by gold colloid with an average grain size of 4.6 nm by the electrostatic effect, and then electroless plated with gold silver consecutively. The deposited gold layer was 70 to 90 nm thick, almost coating the PS spheres completely. The silver particles deposited subsequently were compact, and larger than the previously de- posited gold particles, forming a 200 to 400 nm-thick layer on the surface of each Au/PS microsphere. The self-supported hollow-sphere Au40 Ag60 alloy was then obtained after the template being removed. Finally, the columniform foamed Au-Ag alloy, 5 mm in diameter, 1.2 g/cm3 in density, was obtained with the hollow spheres of 10 μm diameter after heat treatment. (authors)

  1. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    Hilke, Roland


    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  2. Hollow vortices and minimal surfaces

    Traizet, Martin


    We consider an overdetermined elliptic problem known as the hollow vortex problem. We prove that the solutions to this problem are in 1:1 correspondence with minimal graphs bounded by horizontal symmetry lines. We use this correspondence to give various examples of domains with hollow vortices.

  3. A general route to hollow mesoporous rare-earth silicate nanospheres as a catalyst support.

    Jin, Renxi; Yang, Yang; Zou, Yongcun; Liu, Xianchun; Xing, Yan


    Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare-earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as-prepared hollow rare-earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low-energy-consuming approach to synthesize highly stable and dispersive gold nanoparticle-yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4-nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare-earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk-shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica-coated nanocomposites. PMID:24449457

  4. Scalable routes to gold nanoshells with tunable sizes and their response to near infrared pulsed laser irradiation

    Prevo, Brian G.; Esakoff, Shelley A.; Mikhailovsky, Alexander; Zasadzinski, Joseph A.


    We present a simplified synthesis of hollow gold nanoshells 20-50 nm in diameter via the well-established templated galvanic replacement reaction of silver for gold. The surface plasmon resonance absorbance of nanoshells made in this fashion can be tuned using basic colloid chemistry to control the size of the silver templates. The gold nanoshells can be varied in size and shell thickness depending on silver/gold reagent ratios and have an aqueous core. The template replacement chemistry is r...

  5. Birefringent hollow core fibers

    Roberts, John


    applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations, but the......Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  6. 一种新型的基于普鲁士蓝/石墨烯/酪氨酸酶/空壳金修饰的双酚A传感器%A novel biosensor based on prussian blue/graphene/tyrosinase/hollow gold nanoparticles modified glassy carbon electrode for determination of bisphenol A

    高佩怡; 王炜褀; 黄杉生


    A novel multilayer biosensor based on prussian blue (PB), graphene, tyrosinase (Tyr) and hollow gold nanoparticles (HGNs) for the determination of bisphenol A (BPA) was prepared. The HGNs were characterized by transmission electron microscopy (TEM). Cyclic voltammetry and electrochemical impedance spectroscopy were used to investigate the electrochemical properties of the modified electrode. The sensor exhibited good amperometric response towards BPA due to the excellent biological conductivity and biocompatibility of graphene and HGNs. The method showed good linearly for 1.0×10-7~7.85×10-6 mol/L BPA with a detection limit of 5.2×10-8 mol/L (S/N=3) under the optimal conditions. The biosensor showed good performance in reproducibility, stability and interference experiments.%  制备了一种新型的多层修饰的基于普鲁士蓝(PB)、石墨烯、酪氨酸酶(Tyr)和空壳纳米金(HGNs)的生物传感器检测双酚A(BPA)。空壳纳米金通过透射电子显微镜(TEM)进行了表征。采用循环伏安法和电化学阻抗等方法研究修饰电极的电化学响应特性。由于石墨烯和空壳纳米金良好的生物导电性和生物兼容性,该传感器对双酚A有较好的电流响应。双酚A浓度在1.0×10-7 mol/L到7.85×10-6 mol/L的范围内与传感器响应电流呈线性关系,检测限为5.2×10-8 mol/L(S/N=3)。该生物传感器证明有很好的重现性、稳定性和抗干扰能力。

  7. Gold Returns

    Robert J. Barro; Sanjay P. Misra


    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  8. Gold Monetization and Gold Discipline


    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  9. Gold monetization and gold discipline

    Flood, Robert P.; Peter M. Garber


    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  10. Switching a Nanocluster Core from Hollow to Non-hollow

    Bootharaju, Megalamane Siddaramappa


    Modulating the structure-property relationship in atomically precise nanoclusters (NCs) is vital for developing novel NC materials and advancing their applications. While promising biphasic ligand-exchange (LE) strategies have been developed primarily to attain novel NCs, understanding the mechanistic aspects involved in tuning the core and the ligand-shell of NCs in such biphasic processes is challenging. Here, we design a single phase LE process that enabled us to elucidate the mechanism of how a hollow NC (e.g., [Ag44(SR)30]4-, -SR: thiolate) converts into a non-hollow NC (e.g., [Ag25(SR)18]-), and vice versa. Our study reveals that the complete LE of the hollow [Ag44(SPhF)30]4- NCs (–SPhF: 4-fluorobenzenethiolate) with incoming 2,4-dimethylbenzenethiol (HSPhMe2) induced distortions in the Ag44 structure forming the non-hollow [Ag25(SPhMe2)18]- by a disproportionation mechanism. While the reverse reaction of [Ag25(SPhMe2)18]- with HSPhF prompted an unusual dimerization of Ag25, followed by a rearrangement step that reproduces the original [Ag44(SPhF)30]4-. Remarkably, both the forward and the backward reactions proceed through similar size intermediates that seem to be governed by the boundary conditions set by the thermodynamic and electronic stability of the hollow and non-hollow metal cores. Furthermore, the resizing of NCs highlights the surprisingly long-range effect of the ligands which are felt by atoms far deep in the metal core, thus opening a new path for controlling the structural evolution of nanoparticles.

  11. Self-assembled microtubes and rhodamine 6G functionalized Raman-active gold microrods from 1-hydroxybenzotriazole

    Ravula Thirupathi; Erode N Prabhakaran


    1-Hydroxybenzotriazole spontaneously self-assembles to form hollow, linear microtubes initiated by controlled evaporation from water. The tube cavities act as thermo-labile micromoulds for the synthesis of linear gold microrods. Rhodamine 6G-labelled gold microrods, exhibiting surface enhanced resonance Raman activity, have been synthesized using the HOBT microtubes.

  12. Hollow nanotubular toroidal polymer microrings

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon


    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  13. Hollow sphere ceramic particles for abradable coatings

    A hollow sphere ceramic flame spray powder is disclosed. The desired constituents are first formed into agglomerated particles in a spray drier. Then the agglomerated particles are introduced into a plasma flame which is adjusted so that the particles collected are substantially hollow. The hollow sphere ceramic particles are suitable for flame spraying a porous and abradable coating. The hollow particles may be selected from the group consisting of zirconium oxide and magnesium zirconate

  14. World Gold Markets, Istanbul Gold Exchange and Gold Risk Management

    Serdar Citak


    The establishment of Istanbul Gold Exchange (IGE) is the most important stage in the Turkish gold sector restructuring process. IGE has provided a competitive formation in prices and the price differential between Turkey and international markets has been cut dramatically. Today, Turkish investors can buy and sell gold in international prices in the IGE Precious Metals Market. Gold is accepted as a hedge tool against inflation and as a safe haven in economic crisis, world-wide. Gold is the on...

  15. Hollow waveguide for urology treatment

    Jelínková, H.; Němec, M.; Koranda, P.; Pokorný, J.; Kőhler, O.; Drlík, P.; Miyagi, M.; Iwai, K.; Matsuura, Y.


    The aim of our work was the application of the special sealed hollow waveguide system for the urology treatment - In our experimental study we have compared the effects of Ho:YAG (wavelength 2100 nm) and Er:YAG (wavelength 2940 nm) laser radiation both on human urinary stones (or compressed plaster samples which serve as a model) fragmentation and soft ureter tissue incision in vitro. Cyclic Olefin Polymer - coated silver (COP/Ag) hollow glass waveguides with inner and outer diameters 700 and 850 μm, respectively, were used for the experiment. To prevent any liquid to diminish and stop the transmission, the waveguide termination was utilized.

  16. Green Gold

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  17. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    Song, HyonMin


    Hybrid alloys among gold, palladium and platinum become a new category of catalysts primarily due to their enhanced catalytic effects. Enhancement means not only their effectiveness, but also their uniqueness as catalysts for the reactions that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au compared to Ag, Pd, and Pt helps to produce hollow Au cores first, followed by Pd or Pt shell growth. Continuous and highly crystalline shell growth was observed in Au@Pd core-shell NPs, but the sporadic and porous-like structure was observed in Au@Pt core-shell NPs. Along with hollow core-shell NPs, hollow porous Pt and hollow Au NPs are also prepared from Ag seed NPs. Twin boundaries which are typically observed in large size (>20 nm) Au NPs were not observed in hollow Au NPs. This absence is believed to be due to the role of the hollows, which significantly reduce the strain energy of edges where the two lattice planes meet. In ethanol oxidation reactions in alkaline medium, hollow Au@Pd core-shell NPs show highest current density in forward scan. Hollow Au@Pt core-shell NPs maintain better catalytic activities than metallic Pt, which is thought to be due to the better crystallinity of Pt shells as well as the alloy effect of Au cores. © 2012 The Royal Society of Chemistry.

  18. Hollow waveguide cavity ringdown spectroscopy

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)


    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  19. Hollow cathode hydrogen ion source

    High current density ion sources have been used to heat plasmas in controlled thermonuclear reaction experiments. High beam currents imply relatively high emission currents from cathodes which have generally taken the form of tungsten filaments. This paper describes a hydrogen ion source which was primarily developed to assess the emission current capability and design requirements for hollow cathodes for application in neutral injection devices. The hydrogen source produced ions by electron bombardment via a single hollow cathode. Source design followed mercury ion thruster technology, using a weak magnetic field to enhance ionization efficiency. A 1.3-cm diameter hollow cathode using a low work function material dispenser performed satisfactorily over a discharge current range of 10 to 90 A. Cylindrical probe measurements taken without ion extraction indicate maximum ion number densities on the order of 1012 cm-3. Discharge durations ranged from 30 seconds to continuous operation. Tests with beam extraction at 2.5 keV and 30 A discharge current yield average ion beam current densities of 0.1 A cm-2 over a 5-cm extraction diameter. Results of this study can be used to supply the baseline information needed to scale hollow cathodes for operation at discharge currents of hundreds of amperes using distributed cathodes

  20. Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy

    Kessentini, Sameh; Barchiesi, Dominique


    The purpose of this study is to get more efficient gold nanoparticles, for necrosis of cancer cells, in photothermal therapy. Therefore a numerical maximization of the absorption efficiency of a set of nanoparticles (nanorod, nanoshell and hollow nanosphere) is proposed, assuming that all the absorbed light is converted to heat. Two therapeutic cases (shallow and deep cancer) are considered. The numerical tools used in this study are the full Mie theory, the discrete dipole approximation and ...

  1. Collimation with hollow electron beams

    Stancari, G; Annala, G; Kuznetsov, G; Shiltsev, V; Still, D A; Vorobiev, L G


    A novel concept of controlled halo removal for intense high-energy beams in storage rings and colliders is presented. It is based on the interaction of the circulating beam with a 5-keV, magnetically confined, pulsed hollow electron beam in a 2-m-long section of the ring. The electrons enclose the circulating beam, kicking halo particles transversely and leaving the beam core unperturbed. By acting as a tunable diffusion enhancer and not as a hard aperture limitation, the hollow electron beam collimator extends conventional collimation systems beyond the intensity limits imposed by tolerable losses. The concept was tested experimentally at the Fermilab Tevatron proton-antiproton collider. The first results on the collimation of 980-GeV antiprotons are presented.

  2. Micro-hollow cathode dischargers

    In order to develop a hollow cathode discharge (HCD) with its increased current over planar electrode glow discharges, the cathode fall, which is on the order of the mean free path for ionization, must be comparable in length to the hole diameter. This indicates that the discharge parameters vary with pressure, p, times hole diameter, D. The pD product for stable operation of a hollow cathosde discharge was quoted to be on the order of one to ten Torr cm for noble gases, less for molecular gases. White (1959) observed the hollow cathode effect in a neon discharge at a pressure of 100 Torr when the hole dimensions were less than 1 mm. The cathode hole in his experiments changed from a cylindrical into a spherical cavity due to sputtering. The anode consisted in White's experiment of a pin on the axis of the discharge geometry. We have studied micro-hollow (submillimeter) cathode discharges between two electrodes with aligned cylindrical holes by determining the current-voltage characteristics and the visual appearance of the discharge in argon over a wide range of pressure and voltage. The cross-section of the discharge geometry. The cathode is made of molybdenum or barium oxide inserted into a tungsten matrix (dispenser-cathode), the anode of molybdenum, and the dielectric spacer is mica. The discharge was operated under dc conditions, with half-wave rectified ac voltage applied, and pulsed with a 400 μs rectangular voltage pulse. The lower limit in pressure was determined by the maximum voltage which could be applied to the discharge geometry without breakdown along insulators. The upper limit, in this study, is determined by the transition from cathode electrode emission due to ion-impact to thermal emission of electrons, which causes a dramatic increase in current and a drop in forward voltage to values on the order of 20 V

  3. Hollow Spheres in Composite Materials and Metallic Hollow Sphere Composites (MHSC)

    Baumeister, Erika; Molitor, Martin

    The newly developed metallic hollow spheres are used in combination with a polymeric matrix for producing metallic hollow-sphere-composites (MSHC), which have been developed for mechanical engineering applications in the “InnoZellMet” project.

  4. Cascade decays of hollow ions

    A multiple-electron-emission process for atoms with one or more inner-shell vacancies is treated using the radiative- and Auger-electron-emission cascade model, in which inner-shell holes are assumed to decay by sequentially emitting radiations and/or Auger electrons. Such hollow ions are produced by synchrotron irradiation of atomic targets and in ion-surface interactions with multiple-electron transfers. The final charge-state distribution is determined by the Auger and radiative branching ratios at each stage of the decay sequence. At intermediate stages of cascade, hollow ions with more than one hole in different ionization stages are created. The Ne, Mg, and Fe14+ ions with the initial 1s, 2s, and 2p vacancies are considered in detail, and the core charge dependence of the maximum charge state is studied. The hollow Mg ion with double initial 1s holes is analyzed, and the result compared with that for the case of one 1s hole. The peak is shifted more than two units to a higher degree of ionization. The correlated shake-off and shake-up multiple-electron processes are not considered, but they are expected to cause further shifts

  5. Going for Gold


    While the international gold price in February hit the highest point in 25 years at $541.20 per ounce for futures delivery, a new gold rush is sweeping across China. According to the World Gold Council, the London-based gold marketing organization funded by leading global gold mining firms, the purchase of gold products in China grew by 9 percent in the first nine

  6. Purification of nanoparticles by hollow fiber diafiltration

    Hollow Fiber Diafiltration (Hollow Fiber Tangential Flow Filtration) is an efficient and rapid alternative to traditional methods of nanoparticle purification such as ultracentrifugation, stirred cell filtration, dialysis or chromatography. Hollow Fiber Diafiltration can be used to purify a wide range of nanoparticles including liposomes, colloids, magnetic particles and nanotubes. Hollow Fiber Diafiltration is a membrane based method where pore size determines the retention or transmission of solution components. It is a flow process where the sample is gently circulated through a tubular membrane. With controlled replacement of the permeate or (dialysate), pure nanoparticles can be attained. Hollow Fiber Diafiltration can be directly scaled up from R and D volumes to production. By adding more membrane fibers and maintaining the operating parameters, large volumes can be processed in the same time with the same pressure, and flow dynamics as bench-scale volumes. Keywords: hollow fiber, Diafiltration, filtration, purification, tangential flow filtration.

  7. Purification of nanoparticles by hollow fiber diafiltration

    Veeken, J.


    Hollow Fiber Diafiltration (Hollow Fiber Tangential Flow Filtration) is an efficient and rapid alternative to traditional methods of nanoparticle purification such as ultracentrifugation, stirred cell filtration, dialysis or chromatography. Hollow Fiber Diafiltration can be used to purify a wide range of nanoparticles including liposomes, colloids, magnetic particles and nanotubes. Hollow Fiber Diafiltration is a membrane based method where pore size determines the retention or transmission of solution components. It is a flow process where the sample is gently circulated through a tubular membrane. With controlled replacement of the permeate or (dialysate), pure nanoparticles can be attained. Hollow Fiber Diafiltration can be directly scaled up from R&D volumes to production. By adding more membrane fibers and maintaining the operating parameters, large volumes can be processed in the same time with the same pressure, and flow dynamics as bench-scale volumes. Keywords: hollow fiber, Diafiltration, filtration, purification, tangential flow filtration.

  8. Enhanced photoacoustic signal from DNA assembled gold nanoparticle networks

    We report an experimental finding of photoacoustic signal enhancement from finite sized DNA–gold nanoparticle networks. We synthesized DNA-functionalized hollow and solid gold nanospheres (AuNS) to form finite sized networks, which were characterized by means of optical extinction spectroscopy, dynamic light scattering, and scanning electron microscopy in transmission mode. It is shown that the signal amplification scales with network size for networks comprising either hollow or solid AuNS as well as networks consisting of both types of nanoparticles. The laser intensities applied in our multispectral setup (λ = 650 nm, 850 nm, 905 nm) were low enough to maintain the structural integrity of the networks. This reflects that the binding and recognition properties of the temperature-sensitive cross-linking DNA-molecules are retained. (paper)

  9. Synthesis and Characterization of Hollow and Non-Hollow Monodisperse Colloidal TiO2 Particles

    Eiden-Assmann, Stefanie; Widoniak, Johanna; Maret, Georg


    Monodisperse spherical hollow and non-hollow titania particles of variable sizes are produced in a sol–gel synthesis from Ti(EtO)4 in ethanol. Hollow spherical particles of rutile were obtained by coating colloidal polystyrene beads with a titanium oxide hydrate layer and subsequently calcination at elevated temperatures in oxygen atmosphere. The non-hollow titania particles were produced in the presence of salt or polymer solution. The influence of different salt ions or polymer molecules on...

  10. Gold in Modern Economy

    Boryshkevych Olena V.


    The article studies the role of gold in modern economy. It analyses dynamics and modern state of the gold market. It studies volumes of contracts in exchange and off-exchange markets. In order to reveal changes of key features of the gold market, it focuses on the study of gold demand volumes, studies volumes and geographical changes in the world gold mining, and analyses volumes of monetary gold of central banks and its share in gold and currency reserves. It analyses price fluctuations in t...

  11. Hollow sucker rod for PCP systems

    Villasante, J.A.; Ernst, H.A. [Tenaris Research and Development, Campana (Argentina)


    This paper described a new hollow sucker rod technology designed for use with progressive cavity pumps (PCPs). The technology provided a high torque load to yielding ratio, as well as high backspin resistance and pumping rates. The technology was also designed to allow for the injection of other fluids such as corrosion inhibitors or diluents via its hollow sucker rod. Torsion, axial, and bending load stress analyses were conducted to determine critical zones in a top hollow rod connection at the well head and a bottom hollow rod connection at the well bottom. The study showed that the ratio between the equivalent stress and ultimate tensile stress was a function of torsional load. Backspin analyses were conducted to determine the release of energy accumulated in the hollow rod and traditional pumping system. The evaluation showed that the elastic torsional deformation was lower in the hollow rod system, while backspin resistance was higher. Multiple make and break operations were conducted to determine torsional load values. Results from the study were used to optimize the hollow rod technology. It was concluded that the hollow sucker rod system is now being used in various configurations at sites around the world. 8 tabs., 14 figs.

  12. Hollow cathode lamp-construction aspects

    The hollow cathode discharge is a source used for absorption and fluorescence atomic spectrophotometry. In this paper various aspect like construction, cleanliness and operation have been described. The life time of the hollow cathode discharge for specific current is about 500 hs. The range of current for the non significant self-absorption of the recommended wavelenght has been determinated. (Author)

  13. Hollow nanocrystals and method of making

    Alivisatos, A. Paul; Yin, Yadong; Erdonmez, Can Kerem


    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.


    Sexton, W.


    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to &apos

  15. Fabrication of functional hollow carbon spheres with large hollow interior as active colloidal catalysts

    Qiang Sun; Guanghui Wang; Wencui Li; Xiangqian Zhang; Anhui Lu


    In this study,we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior,which can act as active colloidal catalysts.The method includes the following steps:first,hollow polymer spheres with large hollow interior were prepared using sodium oleate as the hollow core generator,and 2,4-dihydroxybenzoic acid and hexamethylene tetramine (HMT) as the polymer precursors under hydrothermal conditions; Fe3+ or Ag+ cations were then introduced into the as-prepared hollow polymer spheres through the carboxyl groups; finally,the hollow polymer spheres can be pseudomorphically converted to hollow carbon spheres during pyrolysis process,meanwhile iron or silver nanoparticles can also be formed in the carbon shell simultaneously.The structures of the obtained functional hollow carbon spheres were characterized by TEM,XRD,and TG.As an example,Ag-doped hollow carbon spheres were used as colloid catalysts which showed high catalytic activity in 4-nitrophenol reduction reaction.

  16. Hollow Micro-/Nanostructures: Synthesis and Applications

    Lou, Xiong Wen (David)


    Hollow micro-nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA,.

  17. Method for producing small hollow spheres

    A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 6000C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 103μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  18. Microring embedded hollow polymer fiber laser

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m

  19. Fabricating a hollow bulb obturator

    Fatih Sari


    Full Text Available

    Obturators are generally used in the rehabilitation of the maxillectomy defects. Ideally, obturators should be light, properly fit and construction should be made easily. By decreasing the weight of the prosthesis, the retention and stability may be optimized to allow the obturator for function comfortably during mastication, phonation, and deglutition. In this case, a 65-year-old male patient underwent surgical removal of left part of the maxilla due to the squamous cell carcinoma. In this technique fabrication of a hollow bulb obturator prosthesis as a single unit in heat-cured acrylic resin using a single-step flasking procedure was described. The patient’s functional and esthetic expectations were satisfied.

  20. Synthesis of Hollow Platinum-Palladium Nanospheres with a Dendritic Shell as Efficient Electrocatalysts for Methanol Oxidation.

    Lu, Qingqing; Wang, Hongjing; Eid, Kamel; Alothman, Zeid Abdullah; Malgras, Victor; Yamauchi, Yusuke; Wang, Liang


    Engineering the size, composition, and morphology of platinum-based nanomaterials can provide a great opportunity to improve the utilization efficiency of electrocatalysts and reinforce their electrochemical performances. Herein, three-dimensional platinum-palladium hollow nanospheres with a dendritic shell (PtPd-HNSs) are successfully fabricated through a facile and economic route, during which SiO2 microspheres act as the hard template for the globular cavity, whereas the triblock copolymer F127 contributes to the formation of the dendritic shell. In contrast with platinum hollow nanospheres (Pt-HNSs) and commercial platinum on carbon (Pt/C) catalyst, the novel architecture shows a remarkable activity and durability toward the methanol oxidation reaction (MOR) owing to the coupled merits of bimetallic nanodendrites and a hollow interior. As a proof of concept, this strategy is also extended to trimetallic gold-palladium-platinum hollow nanospheres (AuPdPt-HNSs), which paves the way towards the controlled synthesis of other bi- or multimetallic platinum-based hollow electrocatalysts. PMID:27283867

  1. Hollow-core tapered coupler for large inner diameter hollow-core optical fibers

    Guiyao Zhou(周桂耀); Zhiyun Hou(侯峙云); Lantian Hou(侯蓝田); Jigang Liu(刘继刚)


    A novel hollow-core tapered coupler has been theoretically designed and fabricated by fiber drawing machine. The coupler's inner wall is coated with a polycrystalline GeO2 film. The coupling loss of hollow-core tapered coupler is about 0.2 dB. Hollow-core tapered coupler reduces the transmission loss of hollow-core optical fiber (HCOF) by 0.5 dB/m, therefore the coupler is suitable for coupling high power CO2 laser in industrial application.

  2. How many gold atoms make gold metal?

    Häkkinen, Hannu; Malola, Sami


    It is well known that a piece of gold is an excellent metal: it conducts heat and electricity, it is malleable to work out for jewellery or thin coatings, and it has the characteristic golden colour. How do these everyday properties – familiar from our macroscopic world – change when a nanometre-size chunk of gold contains only 100, 200 or 300 atoms?

  3. Frontiers in Gold Chemistry

    Mohamed, Ahmed A.


    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  4. Hollow rhodoliths increase Svalbard's shelf biodiversity

    Teichert, Sebastian


    Rhodoliths are coralline red algal assemblages that commonly occur in marine habitats from the tropics to polar latitudes. They form rigid structures of high-magnesium calcite and have a good fossil record. Here I show that rhodoliths are ecosystem engineers in a high Arctic environment that increase local biodiversity by providing habitat. Gouged by boring mussels, originally solid rhodoliths become hollow ecospheres intensely colonised by benthic organisms. In the examined shelf areas, biodiversity in rhodolith-bearing habitats is significantly greater than in habitats without rhodoliths and hollow rhodoliths yield a greater biodiversity than solid ones. This biodiversity, however, is threatened because hollow rhodoliths take a long time to form and are susceptible to global change and anthropogenic impacts such as trawl net fisheries that can destroy hollow rhodoliths. Rhodoliths and other forms of coralline red algae play a key role in a plurality of environments and need improved management and protection plans.

  5. Collimation Studies with Hollow Electron Beams

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab


    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  6. Gold-Mining

    Raaballe, J.; Grundy, B.D.


    operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...... structure, objectives of the manager, and convenience yield)....

  7. Mode characteristics of hollow core Bragg fiber

    Minning Ji; Zhidong Shi; Qiang Guo


    Analytical expression to calculate propagation constant and mode field of the hollow core Bragg fiber is derived. Numerical results are presented. It is shown that the fundamental mode of the hollow core Bragg fiber is circularly symmetric TE01 mode with no polarization degeneracy, while the higher order mode may be HE11, TM01, or TE02 etc.. This property is different from conventional optical fiber that its fundamental mode is the linearly polarized HE11 mode and is polarization degeneracy.

  8. Vibration Analysis of Hollow Tapered Shaft Rotor

    P. M. G. Bashir Asdaque; Behera, R. K.


    Shafts or circular cross-section beams are important parts of rotating systems and their geometries play important role in rotor dynamics. Hollow tapered shaft rotors with uniform thickness and uniform bore are considered. Critical speeds or whirling frequency conditions are computed using transfer matrix method and then the results were compared using finite element method. For particular shaft lengths and rotating speeds, response of the hollow tapered shaft-rotor system is determined for t...

  9. Catalysis by gold

    Bond, Geoffrey C; Thompson, David T


    Gold has traditionally been regarded as inactive as a catalytic metal. However, the advent of nanoparticulate gold on high surface area oxide supports has demonstrated its high catalytic activity in many chemical reactions. Gold is active as a heterogeneous catalyst in both gas and liquid phases, and complexes catalyse reactions homogeneously in solution. Many of the reactions being studied will lead to new application areas for catalysis by gold in pollution control, chemical processing, sensors and fuel cell technology. This book describes the properties of gold, the methods for preparing g

  10. Identification of the Atomic Scale Structures of the Gold-Thiol Interfaces of Molecular Nanowires by Inelastic Tunneling Spectroscopy

    Demir, Firuz


    We examine theoretically the effects of the bonding geometries at the gold-thiol interfaces on the inelastic tunneling spectra of propanedithiolate (PDT) molecules bridging gold electrodes and show that inelastic tunneling spectroscopy combined with theory can be used to determine these bonding geometries experimentally. With the help of density functional theory, we calculate the relaxed geometries and vibrational modes of extended molecules each consisting of one or two PDT molecules connecting two gold nanoclusters. We formulate a perturbative theory of inelastic tunneling through molecules bridging metal contacts in terms of elastic transmission amplitudes, and use this theory to calculate the inelastic tunneling spectra of the gold-PDT-gold extended molecules. We consider PDT molecules with both trans and gauche conformations bound to the gold clusters at top, bridge and hollow bonding sites. Comparing our results with the experimental data of Hihath et al. [Nano Lett. 8, 1673 (2008)], we identify the mo...

  11. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core-shell structures via the Kirkendall effect.

    Zhou, Wenli; Zou, Rui; Yang, Xianfeng; Huang, Ningyu; Huang, Junjian; Liang, Hongbin; Wang, Jing


    Hollow micro-/nanostructures have been widely applied in the fields of lithium ion batteries, catalysis, biosensing, biomedicine, and so forth. The Kirkendall effect, which involves a non-equilibrium mutual diffusion process, is one of many important fabrication strategies for the formation of hollow nanomaterials. Accordingly, full understanding of the interdiffusion process at the nanoscale is very important for the development of novel multifunctional hollow materials. In this work, hollow Y2SiO5 nanowalnuts have been fabricated from the conversion of YOHCO3@SiO2 core-shell nanospheres via the Kirkendall effect. More importantly, it was found that in the conversion process, the decomposition of YOHCO3 core imposes on the formation of the Y2SiO5 interlayer by facilitating the initial nucleation of the Kirkendall nanovoids and accelerating the interfacial diffusion of Y2O3@SiO2 core@shell. The simple concept developed herein can be employed as a general Kirkendall effect strategy without the assistance of any catalytically active Pt nanocrystals or gold motion for future fabrication of novel hollow nanostructures. Moreover, the photoluminescence properties of rare-earth ion doped hollow Y2SiO5 nanoparticles are researched. PMID:26220051

  12. Preparation of hollow spherical carbon nanocages

    Tsai, C.-K.; Kang, H. Y.; Hong, C.-I; Huang, C.-H.; Chang, F.-C.; Wang, H. Paul, E-mail: [National Cheng Kung University, Department of Environmental Engineering, Taiwan (China)


    This study presents a new and simple method for the synthesis of hollow carbon spheres possessing nanocage sizes of 7.1, 14, and 20 nm in diameter. The core-shell (i.e., Cu-C) nanoparticles prepared by carbonization of the Cu{sup 2+}-cyclodextrin (CD) complexes at 573 K for 2 h was etched with HCl (6N) to yield the hollow carbon spheres. The carbon-shell of the hollow carbon nanospheres, which consisted of mainly diamond-like and graphite carbons, is not perturbed during etching. In addition to the nanocages, the hollow carbon nanospheres also possess micropores with an opening of 0.45 nm, allowing small molecules to diffuse in and out through the carbon-shell. Many elements (such as Zn{sup 2+} or Cu{sup 2+}) can therefore be filled into the nanocages of the hollow carbon nanospheres. With these unique properties, for instance, designable active species such as Cu and ZnO encapsulated in the carbon-shell can act as Cu-ZnO-C yolk-shell nanoreactors which are found very effective in the catalytic decomposition of methanol.

  13. Copper induced hollow carbon nanospheres by arc discharge method: controlled synthesis and formation mechanism.

    Hu, Rui; Ciolan, Mihai Alexandru; Wang, Xiangke; Nagatsu, Masaaki


    Hollow carbon nanospheres with controlled morphologies were synthesized via the copper-carbon direct current arc discharge method by alternating the concentrations of methane in the reactant gas mixture. A self-healing process to keep the structural integrity of encapsulated graphitic shells was evolved gradually by adding methane gas from 0% to 20%. The outer part of the coated layers expanded and hollow nanospheres grew to be large fluffy ones with high methane concentrations from 30% to 50%. A self-repairing function by the reattachment of broken graphitic layers initiated from near-electrode space to distance was also distinctly exhibited. By comparing several comparable metals (e.g. copper, silver, gold, zinc, iron and nickel)-carbon arc discharge products, a catalytic carbon-encapsulation mechanism combined with a core-escaping process has been proposed. Specifically, on the basis of the experimental results, copper could be applied as a unique model for both the catalysis of graphitic encapsulation and as an adequate template for the formation of hollow nanostructures. PMID:27377038

  14. Method for the production of fabricated hollow microspheroids

    Wickramanayake, Shan; Luebke, David R.


    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  15. Gold Thione Complexes

    Francesco Caddeo


    Full Text Available The reaction of the ligand Et4todit (4,5,6,7-Tetrathiocino-[1,2-b:3,4-b']-diimidazolyl-1,3,8,10-tetraethyl-2,9-dithione with gold complexes leads to the dinuclear gold(I complexes [{Au(C6F5}2(Et4todit] and [Au(Et4todit]2(OTf2, which do not contain any gold-gold interactions, or to the gold(III derivative [{Au(C6F53}2(Et4todit]. The crystal structures have been established by X-ray diffraction studies and show that the gold centers coordinate to the sulfur atoms of the imidazoline-2-thione groups.

  16. Gold Thione Complexes

    Francesco Caddeo; Vanesa Fernández-Moreira; Massimiliano Arca; Antonio Laguna; Vito Lippolis; M. Concepción Gimeno


    The reaction of the ligand Et4todit (4,5,6,7-Tetrathiocino-[1,2-b:3,4-b']-diimidazolyl-1,3,8,10-tetraethyl-2,9-dithione) with gold complexes leads to the dinuclear gold(I) complexes [{Au(C6F5)}2(Et4todit)] and [Au(Et4todit)]2(OTf)2, which do not contain any gold-gold interactions, or to the gold(III) derivative [{Au(C6F5)3}2(Et4todit)]. The crystal structures have been established by X-ray diffraction studies and show that the gold centers coordinate to the sulfur atoms of the imidazoline-2-t...

  17. Polymer Protected Gold Nanoparticles

    Shan, Jun


    Polymer protected gold nanoparticles have successfully been synthesized by both "grafting-from" and "grafting-to" techniques. The synthesis methods of the gold particles were systematically studied. Two chemically different homopolymers were used to protect gold particles: thermo-responsive poly(N-isopropylacrylamide), PNIPAM, and polystyrene, PS. Both polymers were synthesized by using a controlled/living radical polymerization process, reversible addition-fragmentation chain transfer (RAFT)...

  18. Magic Gold Nanotubes

    SENGER, R. Tuğrul; DAĞ, Sefa; ÇIRACI, Salim


    In recent ultra-high-vacuum transmission-electron-microscopy experiments evidence is found for the formation of suspended gold single-wall nanotubes (SWNTs) composed of five helical strands. Similar to carbon nanotubes, the (n,m) notation defines the structure of the gold SWNTs. Experimentally, only the (5,3) tube has been observed to form among several other possible alternatives. Using first-principles calculations we demonstrate that gold atoms can form both freestanding and tip-...

  19. Gold as an investment

    Zemánek, Adam


    Bachelor thesis was created to understand investments in gold, to analyse the develop-ment of its price, discussing the reasons why people should invest in gold. Moreover, it introduces different forms of availability and possible earnings from investing in gold. First part is focused on describing important properties of this valuable commodity. Second part of the thesis analyses specific possibilities of investments and compares them with each other from the point of view of an investor.

  20. A Gold Bubble?

    Dirk G Baur; Kristoffer Glover


    In this paper we use a test developed by Phillips et al. (2011) to identify a bubble in the gold market. We find that the price of gold followed an explosive price process between 2002 and 2012 interrupted only briefly by the subprime crisis in 2008. We also provide a theoretical foundation for such bubble tests based on a behavioural model of heterogeneous agents and demonstrate that periods of explosive price behaviour are consistent with increased chartist activity in the gold market. The ...

  1. Biologically formed hollow cuprous oxide microspheres

    Hollow cuprous oxide (Cu2O) microspheres with a diameter of ca. 1.8 μm are prepared by using yeast as template. The possible mechanism for the formation of the hollow Cu2O spheres is revealed. The biotemplated sample is investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible (UV-vis) absorption spectra. The sample consists of the crystalline Cu2O microspheres with diameters of about 59.5 nm and lattice parameter of 4.264 A. The observed optical band gap of the product indicates that the blue-shift effect occurs, which is attributed to the hollow Cu2O microspheres.

  2. Sheet Plasma Produced by Hollow Cathode Discharge

    张龙; 张厚先; 杨宣宗; 冯春华; 乔宾; 王龙


    A sheet plasma is produced by a hollow cathode discharge under an axial magnetic field.The plasma is about 40cm in length,4 cm in width and 1cm in thickness.The electron density is about 108cm-3.The hollow cathode is made to be shallow with a large opening,which is different from the ordinary deep hollow cathode.A Langmuir probe is used to detect the plasma.The electron density and the spatial distribution of the plasma change when voltage,pressure and the magnetic field vary.A peak and a data fluctuation at about 200 G-300 G are observed in the variation of electron density(or thickness of the sheet plasma)with the magnetic field.Our work will be helpful in characterizing the sheet plasma and will make the production of dense sheet plasma more controllable.

  3. Hollow cathode ion source without magnetic field

    On the base of the IBM-4 ion source a hollow cathode source operating in the continuous regime is developed. The gas discharge chamber diameter equals 100 mm, chamber height - 50 mm. A hollow cathode represents a molybdenum tube with an internal diameter 13 mm and wall thickness 0,7-0,8 mm. An emitter is manufactured from zirconium carbide and lanthanum hexaboride. The investigations of the source operation have shown both cathodes operated efficiency. Electron emission density consitutes 25 A/cm2. At the 50 A discharge current ion current density in a center of plasma emitter constitutes 120 mA/cm2. As a result of the investigations carried out the compatibility of the hollow cathode and the IBM-type source is shown

  4. Sheet plasma produced by hollow cathode discharge

    A sheet plasma is produced by a hollow cathode discharge under an axial magnetic field. The plasma is about 40 cm in length, 4 cm in width and 1 cm in thickness. The electron density is about 108 cm-3. The hollow cathode is made to be shallow with a large opening, which is different from the ordinary deep hollow cathode. A Langmuir probe is used to detect the plasma. The electron density and the spatial distribution of the plasma change when voltage, pressure and the magnetic field vary. A peak and a data fluctuation at about 200 G - 300 G are observed in the variation of electron density (or thickness of the sheet plasma) with the magnetic field. Our work will be helpful in characterizing the sheet plasma and will make the production of dense sheet plasma more controllable

  5. Colloidal gold: Pt. 1

    Two basic approaches are used in the preparation of colloidal gold solutions. One is the disintegration of metallic gold rods by an electric arc operating in a liquid medium. The other more general approach is the synthesis of particles from gold salts using either appropriate reducing agents or radiation. X-rays with the results from electron microscopy were used for size determination. The growth, nucleation and coagulation of the particles were studied. The morphology and structure charateristics of colloidal gold particles were investigated by means of electron microscopy and are also described

  6. Adiabatic Rearrangement of Hollow PV Towers

    Eric A Hendricks


    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  7. Strong guiding of light in hollow nanowire Structures

    Liang Chen; James De Leon; Xiaomin Jin


    @@ We have theoretically investigated the guiding mode patterns of hollow nanowires. Two types of nanowires,round shape and hexagonal shape, are examined with different combination of outer and inner radii.Because of electric field discontinuity at hollow interfaces and evanescent modes overlap in low refractive index region, strong light guiding and confinement are achieved in both hollow wire structures.

  8. Generation of a hollow laser beam by a multimode fiber

    Hongyu Ma; Huadong Cheng; Wenzhuo Zhang; Liang Liu; Yuzhu Wang


    A simple method to generate a hollow laser beam by multimode fiber is reported. A dark hollow laser beam is generated from a multimode fiber and the dependence of the output beam profile on the incident angle of laser beam is analyzed. The results show that this hollow laser beam can be used to trap and guide cold atoms.

  9. Plastic Hollow Tubes As Waveguides For IR Radiation

    Croitoru, N.; Dror, J.; Mendlovic, D.


    A theoretical ray model was developed for energy distribution of IR radiation, transmitted through hollow straight and bent fibers. The theoretical results were compared with the experimental data obtained from measurements of our plastic hollow fibers. A satisfactory agreement between the experimental and theoretical data was achieved. Application of the plastic hollow fibers in surgery (on certain organic tissues) is described.

  10. Development of Magnetic Hollow Cold Cathode for Ion Source

    Djamel Boubetra; Bouafia, M.


    The research presented in this study focuses on the development of ion source with hollow cold cathodes which supplies low-power and high ion-current density applications. The theoretical and experimental results were used to design a second-generation laboratory model, low-current hollow cathode. Present experiment is to design a hollow cold cathode with two application possibilities.

  11. Scaffold Characteristics for Functional Hollow Organ Regeneration

    Daniel Eberli


    Full Text Available Many medical conditions require surgical reconstruction of hollow organs. Tissue engineering of organs and tissues is a promising new technique without harvest site morbidity. An ideal biomaterial should be biocompatible, support tissue formation and provide adequate structural support. It should degrade gradually and provide an environment allowing for cell-cell interaction, adhesion, proliferation, migration, and differentiation. Although tissue formation is feasible, functionality has never been demonstrated. Mainly the lack of proper innervation and vascularisation are hindering contractility and normal function. In this chapter we critically review the current state of engineering hollow organs with a special focus on innervation and vascularisation.

  12. Gastroretentive delivery systems: hollow beads.

    Talukder, R; Fassihi, R


    The objective of this study was to develop a floatable multiparticulate system with potential for intragastric sustained drug delivery. Cross-linked beads were made by using calcium and low methoxylated pectin (LMP), which is an anionic polysaccharide, and calcium, LMP, and sodium alginate. Beads were dried separately in an air convection type oven at 40 degrees C for 6 hours and in a freeze dryer to evaluate the changes in bead characteristics due to process variability. Riboflavin (B-2), tetracycline (TCN), and Methotrexate (MTX) were used as model drugs for encapsulation. Ionic and nonionic excipients were added to study their effects on the release profiles of the beads. The presence of noncross linking agents in low amounts (less than 2%) did not significantly interfere with release kinetics. For an amphoteric drug like TCN, which has pH dependent solubility, three different pHs (1.5, 5.0, and 8.0) of cross-linking media were used to evaluate the effects of pH on the drug entrapment capacity of the beads. As anticipated, highest entrapment was possible when cross-linking media pH coincided with least drug solubility. Evaluation of the drying process demonstrated that the freeze-dried beads remained buoyant over 12 hours in United States Pharmacopeia (USP) hydrochloride buffer at pH 1.5, whereas the air-dried beads remained submerged throughout the release study. Confocal laser microscopy revealed the presence of air-filled hollow spaces inside the freeze dried beads, which was responsible for the flotation property of the beads. However, the release kinetics from freeze dried beads was independent of hydrodynamic conditions. Calcium-pectinate-alginate beads released their contents at much faster rates than did calcium-pectinate beads (100% in 10 hours vs. 50% in 10 hours). It appears that the nature of cross-linking, drying method, drug solubility, and production approach are all important and provide the opportunity and potential for development of a

  13. Hollow circular-truncated cone resonator and its hollow variable biconical laser beam

    Liu, Jinglun; Chen, Mei; Wang, Qionghua; Sun, Nianchun


    To obtain a hollow variable biconical laser beam (HVBLB), a CO2 laser having a hollow circular-truncated cone resonator (HCTCR) is presented. This HCTCR comprises a rotationally symmetric total-reflecting concave mirror at the bottom, a rotationally symmetric part-reflecting convex mirror at the top, and a hollow circular-truncated cone discharge tube at the middle. The cross section of this generated biconical laser beam changes from annulus to circular to annulus and the size of this cross section from big to small to large as the propagation distance increases. So, a kind of laser beam with variable center intensity from zero to peak value to zero is obtained and is known as HVBLB. Due to the inclusion of part of the hollow laser beam (HLB) and solid laser beam, this HVBLB requires no additional beam-shaping element and has broad applications such as optical trapping and commercial manufacturing.

  14. Gold in the investment portfolio

    Demidova-Menzel, Nadeshda; Heidorn, Thomas


    The paper examines the key drivers of gold investment. Since 2000 the gold price has risen drastically, making gold an interesting add-on to a portfolio. As gold futures have negative roll returns, gold pool accounts are characterized by high credit risk and physical possession of gold means high transaction costs, Xetra-Gold might be the most efficient way to enter the market. Xetra-Gold is a product created by the Deutsche Börse in 2007, which is handled like a security but can be exchanged...

  15. BROOKHAVEN: High energy gold

    On April 24, Brookhaven's Alternating Gradient Synchrotron (AGS) started to deliver gold ions at 11.4 GeV per nucleon (2,000 GeV per ion) to experimenters who were delighted not only to receive the world's highest energy gold beam but also to receive it on schedule

  16. Gold in the Books



    In the present Chinese market, more and more businessmen turn to the profit-making trade. Even some counters in the bookstores are selling gold rings, necklaces, bracelets, etc. One day a school teacher asked a store assistant,“Why are you selling gold in your bookstore?”

  17. Gold in psoriatic arthopathy.

    Richter, M B; Kinsella, P; Corbett, M


    It has been suggested that gold is not effective in psoriatic arthropathy. We did not agree and therefore did a retrospective study of 98 patients. Gold had been given to 27 and was effective in 22, 14 of whom are still receiving it. The incidence of side effects was low and comparable to those in rheumatoid arthritis.

  18. Towards thiol functionalization of vanadium pentoxide nanotubes using gold nanoparticles

    Template-directed synthesis is a promising route to realize vanadate-based 1-D nanostructures, an example of which is the formation of vanadium pentoxide nanotubes and associated nanostructures. In this work, we report the interchange of long-chained alkyl amines with alkyl thiols. This reaction was followed using gold nanoparticles prepared by the Chemical Liquid Deposition (CLD) method with an average diameter of ∼0.9nm and a stability of ∼85 days. V2O5 nanotubes (VOx-NTs) with lengths of ∼2μm and internal hollow diameters of 20-100nm were synthesized and functionalized in a Au-acetone colloid with a nominal concentration of ∼4x10-3mol dm-3. The interchange reaction with dodecylamine is found only to occur in polar solvents and incorporation of the gold nanoparticles is not observed in the presence of n-decane

  19. Growth of hollow nickel fluoride whiskers

    Hollow nickel fluoride whiskers have been obtained by condensation from the vapor phase onto a platinum substrate in a flow of hydrogen fluoride. Crystals up to 5 mm in length have a square cross section with a 300 ± 30-μm side. The wall thickness is 85 ± 20 μm.

  20. High temperature instability of hollow nanoparticles

    Fischer, F. D.; Svoboda, Jiří


    Roč. 10, č. 2 (2008), s. 255-261. ISSN 1388-0764 R&D Projects: GA AV ČR IAA200410601 Institutional research plan: CEZ:AV0Z20410507 Keywords : hollow nanoparticle * instability * modelling Subject RIV: BJ - Thermodynamics Impact factor: 2.299, year: 2008

  1. Method for preparing hollow metal oxide microsphere

    Schmitt, C.R.


    Hollow refractory metal oxide microspheres are prepared by impregnating resinous microspheres with a metallic compound, drying the impregnated microspheres, heating the microspheres slowly to carbonize the resin, and igniting the microspheres to remove the carbon and to produce the metal oxide. Zirconium oxide is given as an example. (Official Gazette)

  2. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors.

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F; Su, Wu


    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality. PMID:25437262

  3. Hunan Gold Corporation Visiting South America to Develop Gold Resources


    <正>On November 2nd,Hunan Gold Corporation signed a cooperation agreement to collaboratively exploit gold resources in South America.Gold Corporation has made its first"Step Out",initiating its overseas landscape layout of resources.Gold Corporation is a leading enterprise of nonferrous metals in Hunan Province,the

  4. Gold Spiky Nanodumbbells: Anisotropy in Gold Nanostars

    Novikov, Sergey M.; Sánchez-Iglesias, Ana; Schmidt, Mikołaj K.; Chuvilin, Andrey; Aizpurua, Javier; Grzelczak, Marek; Liz-Marzán, Luis M.


    A new type of gold nanoparticle—called “spiky nanodumbbells”—is introduced. These particles combine the anisotropy of nanorods with sharp nanoscale features of nanostars, which are important for SERS applications. Both the morphology and the optical response of the particles are characterized in detail, and the experimental results are compared with FDTD simulations, showing good agreement.

  5. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light.

    Lu, Biao; Liu, Aiping; Wu, Huaping; Shen, Qiuping; Zhao, Tingyu; Wang, Jianshan


    Hollow Au-Cu2O core-shell nanoparticles were synthesized by using hollow gold nanoparticles (HGNs) as the plasmon-tailorable cores to direct epitaxial growth of Cu2O nanoshells. The effective geometry control of hollow Au-Cu2O core-shell nanoparticles was achieved through adjusting the HGN core sizes, Cu2O shell thicknesses, and morphologies related to structure-directing agents. The morphology-dependent plasmonic band red-shifts across the visible and near-infrared spectral regions were observed from experimental extinction spectra and theoretical simulation based on the finite-difference time-domain method. Moreover, the hollow Au-Cu2O core-shell nanoparticles with synergistic optical properties exhibited higher photocatalytic performance in the photodegradation of methyl orange when compared to pristine Cu2O and solid Au-Cu2O core-shell nanoparticles under visible-light irradiation due to the efficient photoinduced charge separation, which could mainly be attributed to the Schottky barrier and plasmon-induced resonant energy transfer. Such optical tunability achieved through the hollow cores and structure-directed shells is of benefit to the performance optimization of metal-semiconductor nanoparticles for photonic, electronic, and photocatalytic applications. PMID:26954100

  6. Why is Gold Forbidden for Men in Islam? An original study

    gholamreza ataei


    Full Text Available Background and Objectives According to Islamic doctrines, the use of gold for men has been banned. In general, any advised subject in Islam is useful for the body and what has definitely forbidden for a man is definitely harmful for him although its reasons have not been exactly specified. However, Muslims believe that there is certainly a sound reason behind this prohibition. This issue was studied in vitro on fertile men in the city of Babol by means of gold Nano particles. Materials and Methods: A total seminal fluid from 20 healthy individual volunteers from the city of Babol whose fertility had been approved was examined for the gold content through atomic absorption at the wavelength of 242.8nm with Hollow gold cathode lamp. Prior to analyzing all the collected samples, they were put into a mixture of thick citrate and per chloric acids at a ratio of 1 to 6. Findings: In the samples studied, the amount of gold in the semen was found to be in the range of 0.32 to 1.92 µg/ml with a mean value 0.89 µg/ml and the standard deviation of 0.61µg/ml. Conclusion: In the present study, the existing gold in the full seminal fluid was estimated after complete digestion. (oxidation of organic materials; so the amount of  identified gold and the  plasma levels of semen were separated like  sperm. Therefore, the hypothesis of the presence of gold in sperm seems to be true. Due to the scarcity of articles in this regard and the previous studies, it seems that more studies are needed in order to shed light on the role of the gold on men's fertility. From the viewpoint of Islam, this study proved the presence of gold in seminal fluid. In addition, the decrease in sperm movement after the influx of gold shows the forbiddance of old for men.

  7. Gold und Peanuts

    Hashmi, Stephen


    Die bisherigen Kenntnisse zur Gold-Katalyse lassen sich wie folgt zusammenfassen: 1. Gold-Katalysatoren reagieren rasch mit Kohlenstoff-Kohlenstoff-Mehrfachbindungen und sind somit besonders für einen Einsatz in der Organischen Chemie,der Chemie des Kohlenstoffs, geeignet. Dies lässt sich damit erklären, dass Gold und Kohlenstoff gemäß des Prinzips der harten und weichen Säuren und Basen („hard and soft acids and bases“, HSABPrinzip)beide als „weich“ klassifiziert werden und dieses Prinzi...

  8. Two gold return puzzles

    Kolev, Gueorgui I.


    Since the dismantling of the Bretton Woods system, gold has delivered average return comparable to the average return delivered by the aggregate US stock market. This suggests that none of the growth and technological improvement gains accrued to the financiers. In the context of modern asset pricing models, say the CAPM model or the Fama-French three factor model, gold is a risk free asset, as it has no covariation with the risk factors. The large average gold return is a Jensen's alpha not ...

  9. Characteristics of Left-Right Spiral Hollow Cylindrical Roller

    Liming Lu; Qiping Chen; Yujiang Qin


    Based on new rolling⁃sliding compound bearings, the wear between the one⁃way spiral hollow cylindrical roller and the ribs of the inner and outer ring of rolling⁃sliding compound bearings is reduced by innovational structural design. A new left⁃right spiral hollow cylindrical roller is proposed to replace the one⁃way spiral hollow cylindrical roller. The finite element analysis models of ordinary cylindrical rollers, one⁃way spiral hollow cylindrical rollers and left⁃right spiral hollow cylindrical rollers are respectively established by ABAQUS. The axial displacement of their center mass and the stress distribution of left⁃right spiral hollow cylindrical rollers are compared and analyzed. Theoretical study results show that this new left⁃right spiral hollow cylindrical roller not only inherits the advantages of one⁃way spiral hollow cylindrical rollers, but also avoids the axial offset and the serious wear of the one⁃way spiral hollow cylindrical roller. And the theory research conclusion is verified by the experiment. The left⁃right spiral hollow cylindrical roller has the advantages to overcome boundary stress concentration like logarithmic convex roller. The rolling⁃sliding compound bearings equipped with the new rollers can be better to adapt to the impact of vibration load.

  10. Chiseled Gold Ornament


    According to some archaeological discoveries, people began to use gold to make ornaments during the Shang Dynasty, more than 3,000 years ago. This partfcular piece of chiseled gold ornament was unearthed in 1957 from the Ming Dynasty tomb of Wang Gui at You’anmen, Beijing. Wang Gui was a head of the Imperial Bodyguard in the Ming Dynasty. His eldest daughter was an imperial concubine of the Emperor Cheng Hua. Consequently, his family held a prominent position at the time. The gold ornament, 50.5 centimeters in length and 295 grams in weight, is composed of two parts. The upper part is shaped like lotus leaves, with fine double lines as the vein. To indicate auspiciousness, a pair of mandarin ducks with lotus flowers in their months sit on either side of the thick leaves. Seven long gold chains measuring 21 centimeters in length link the

  11. Paying twice for Gold

    Ayris, P.


    EU governments seem to prefer gold in the debate on Open Access. The problem with ‘gold’ is that often subscription fees for universities persist while authors now pay too. The League of European Research Universities raises critical questions.

  12. Electrolytic refining of gold

    Wohlwill, Emil


    At the request of the editor of ELECTROCHEMICAL INDUSTRY, I herewith give some notes on the electrolytic method of gold refining, to supplement the article of Dr. Tuttle (Vol. I, page 157, January, 1903).

  13. The Gold Standard Programme

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin;


    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  14. Joining the Gold Rush

    LIU BO


    @@ Flush with advanced technology and large amounts of capital, overseas mining firms are carving a place in the Chinese gold industry Dozens of Western mining companies, particularly those from Canada, are making the journey into the kind of remote corners in China that other overseas investors shy away from. What are they looking for? The answer is one of the most precious substances on the planet: gold.

  15. Gold induced enterocolitis.

    Jackson, C W; Haboubi, N Y; Whorwell, P.J.; Schofield, P. F.


    A case of gold associated enterocolitis is described. A review of all 27 previously reported cases revealed that the syndrome induced has common characteristics. The reaction occurs within three months of instituting gold therapy, is characterised by profuse diarrhoea and vomiting with abdominal pain, fever, and sometimes eosinophilia. Petechial changes are prominent on endoscopy and the endoscopic and histological features of the gut lesion do not resemble inflammatory bowel disease. The ove...

  16. Gold prices and inflation

    Tkacz, Greg


    Using data for 14 countries over the 1994 to 2005 period, we assess the leading indicator properties of gold at horizons ranging from 6 to 24 months. We find that gold contains significant information for future inflation for several countries, especially for those that have adopted formal inflation targets. This finding may arise from the manner in which inflation expectations are formed in these countries, which may result in more rapidly mean-reverting inflation rates. Compared to other in...

  17. Gold or Penicillamine?

    Offer, R. C.


    The recent approval of penicillamine (Cupramine) for use in rheumatoid arthritis has given the physician another remission-inducing drug for this disease. A thorough understanding of penicillamine's administration and toxicity is necessary before the physician begins to use it. Although its efficacy is similar to gold, side effects are considerably more diverse, and longterm side effects require further assessment. This article reviews the clinical use of gold and penicillamine and the factor...

  18. Space Charge Mitigation by Hollow Bunches

    Oeftiger, AO


    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  19. Characterizing the elasticity of hollow metal nanowires

    Ji Changjiang; Park, Harold S [Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235 (United States)


    We have performed atomistic simulations on solid and hollow copper nanowires to quantify the elastic properties of hollow nanowires (nanoboxes). We analyse variations in the modulus, yield stress and strain for <100> and <110> nanoboxes by varying the amount of bulk material that is removed to create the nanoboxes. We find that, while <100> nanoboxes show no improvement in elastic properties as compared to solid <100>nanowires, <110> nanoboxes can show enhanced elastic properties as compared to solid <110> nanowires. The simulations reveal that the elastic properties of the nanoboxes are strongly dependent on the relative strength of the bulk material that has been removed, as well as the total surface area of the nanoboxes, and indicate the potential of ultralight, high-strength nanomaterials such as nanoboxes.

  20. Hollow Sucker Rod Applied in Production Engineering

    Wang Tongbin; Liu Liandong; Hu Daoming; Jia Yanshan


    @@ Working Principle A positive cycle system or a working channel can be formed by means of hollow sucker rod and its mating parts in the oil tube ofa well, through which heat carriers (such as hot water,hot oil and steam), chemicals and heating cable can be pumped or put into the well so as to lower the viscosity of crude, dissolve the paraffin building-up and open the conduit, thus leading to the smooth oil flow out of well.

  1. Hollow Cathode With Multiple Radial Orifices

    Brophy, John R.


    Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.

  2. Trapping of intense light in hollow shell

    A small hollow shell for trapping laser light is proposed. Two-dimensional particle-in-cell simulation shows that under appropriate laser and plasma conditions a part of the radiation fields of an intense short laser pulse can enter the cavity of a small shell through an over-critical density plasma in an adjacent guide channel and become trapped. The trapped light evolves into a circulating radial wave pattern until its energy is dissipated

  3. Hollow cathode startup using a microplasma discharge

    Aston, G.


    Attention is given to a microplasma discharge to initiate a hollow cathode discharge for such applications as plasma flow experiments, the electric propulsion of space vehicles, and as a replacement for filament cathodes in neutral beam injector ion sources. The technique results in a cathode that is easy to start, simple in design, and which does not require external RF exciters, inserts or heating elements. Future applications may include ion beam milling and ion implantation.

  4. Wedge - rolls rolling of hollowed parts

    Z. Pater


    Full Text Available Purpose: Presentation of the possibilities of application of a new manufacturing method, called wedge rollsrolling (WRR in forming of axi – symmetrical hollowed parts.Design/methodology/approach: The research work was done in a specially designed laboratory rolling millLUW-2. During the research, hollowed parts from steel were rolled in hot forming conditions. Basic kinematicaland force parameters of the process were noticed during rolling.Findings: On the basis of the conducted research it was stated that the WRR method could be used for formingof hollowed parts with the precision compared with the precision obtained in the typical cross wedge rollingprocesses (CWR. At the same time, it was proved that this method could be used for rolling from billets withthe wall thinner than the wall given in the CWR.Research limitations/implications: The research were limited to the wedges with spreading angles withinrange of β = (5° ÷ 9°, with the constant values of forming angle α = 30° and relative reduction ratio δ = 1.45.In the future, it is planned to analyse the influence of changes of angle α and relative reduction ratio δ on theWRR process.Practical implications: The conducted research can be used for designing of a new industrial method of metalforming of hollowed parts.Originality/value: The innovation of this solution is based on the application of only one wedge for forming.Because of that, the WRR method is cheaper for implementation than used so far CWR processes. This methodcan be applied mainly in automotive and aviation industries.

  5. Hollow vortices and wakes past Chaplygin cusps

    Lasagna, Davide; Zannetti, Luca


    By using analytic tools for 2D rotational inviscid flow, the stagnation points of Pocklington hollow vortices are replaced by Chaplygin cusps, that is, by regions of fluid at rest. By solidifying the bounding free streamlines, solid bodies are obtained along whose walls adverse pressure gradients are avoided. These results are relevant to the theory and practice of control of separated flow at high Reynolds number. Examples are presented pertinent to single bodies and cascade of bodies which ...

  6. Synthesis of hollow polymer microspheres by dynamic swelling method

    Hollow polymer microspheres about 5 μm in diameter were synthesized by dynamic swelling method using micron- sized polystyrene spheres with positive charges on surfaces as seeds. The synthesis process included swelling by organic solvents such as toluene and divinylbenzene, polymerizing and coating. The influences of variety and dosage of organic solvents on diameter, size distribution and hole structure of hollow microspheres were investigated, and the formation mechanism of hollow microspheres was discussed. It is indicated that some volatile organic solvents, such as toluene and dimethylbenzene, are crucial to hollow structure formation. Experimental results show that, more toluene leads to larger hollow structure after swelling, and dimethylbenzene is good for hollow structure formation, owing to its low solubility. (authors)

  7. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo


    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  8. Review of Synthetic Methods to Form Hollow Polymer Nanocapsules

    Barker, Madeline T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Syntactic foams have grown in interest due to the widened range of applications because of their mechanical strength and high damage tolerance. In the past, hollow glass or ceramic particles were used to create the pores. This paper reviews literature focused on the controlled synthesis of hollow polymer spheres with diameters ranging from 100 –200 nm. By using hollow polymer spheres, syntactic foams could reach ultra-low densities.

  9. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material

    Bidhan Shrestha; E. Richard Hughes; Raj Kumar Singh; Pramita Suwal; Prakash Kumar Parajuli; Pragya Shrestha; Arati Sharma; Galav Adhikari


    Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part ...

  10. Preparation and Characterization of Hollow Spheres of Rutile

    Eiden, Stefanie; Maret, Georg


    Hollow spherical particles of rutile were obtained by coating colloidal polystyrene beads with a titanium oxide hydrate layer and subsequently calcining at elevated temperatures under an oxygen atmosphere. In order to investigate the optimum conditions for the preparation of these hollow beads the maximum temperature and heating rate were systematically varied. The dimensions of the voids and the shell thickness of the hollow beads can be tailored by the size of the polystyrene beads and the ...

  11. Improving solid to hollow core transmission for integrated ARROW waveguides

    Lunt, Evan J.; Measor, Philip; Phillips, Brian S.; Kühn, Sergei; Schmidt, Holger; Hawkins, Aaron R.


    Optical sensing platforms based on anti-resonant reflecting optical waveguides (ARROWs) with hollow cores have been used for bioanalysis and atomic spectroscopy. These integrated platforms require that hollow waveguides interface with standard solid waveguides on the substrate to couple light into and out of test media. Previous designs required light at these interfaces to pass through the anti-resonant layers. We present a new ARROW design which coats the top and sides of the hollow core wi...

  12. Hollow sphere, a flexible multimode Gravitational Wave antenna

    Lobo, J. Alberto


    Hollow spheres have the same theoretical capabilities as the usual solid ones, since they share identical symmetries. The hollow sphere is however more flexible, as thickness is an additional parameter one can vary to approach given specifications. I will briefly discuss the more relevant properties of the hollow sphere as a GW detector (frequencies, cross sections), and suggest some scenarios where it can generate significant astrophysical information.

  13. Manufacturing hollow obturator with resilient denture liner on post hemimaxillectomy

    Michael Josef Kridanto Kamadjaja


    Full Text Available A resilient denture liner is placed in the part of the hollow obturator base that contacts to post hemimaxillectomy mucosa. Replacing the resilient denture liner can makes the hollow obturator has an intimate contact with the mucosa, so it can prevents the mouth liquid enter to the cavum nasi and sinus, also eliminates painful because of using the hollow obturator. Resilient denture liner is a soft and resilient material that applied to the fitting surface of a denture in order to allow a more distribution of load. A case was reported about using the hollow obturator with resilient denture liner on post hemimaxillectomy to overcome these problems.

  14. Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template

    TiO2 hollow fibers were successfully prepared by using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. The preparation procedure includes repeated impregnation of the TiO2 precursor in the pores of the polymeric membrane, and calcination to burn off the template, producing the TiO2 hollow fibers. The TiO2 hollow fibers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). TiO2 hollow fibers with other structures, such as honeycomb monolith and spring, were also prepared by preshaping the polymeric membranes into the honeycomb structure and spring, respectively. The phase structure of the TiO2 hollow fibers could be readily adjusted by changing the calcination temperature

  15. Cage Clusters of Gold and Tin: Golden Buckyballs and Stannaspherene

    Wang, Lai-Sheng


    Photoelectron spectroscopy (PES) yields direct electronic structure information for size-selected clusters. Combining PES with theoretical calculations has become an effective approach to obtain structural information for small and medium-sized clusters. We present recent discoveries of two classes of cage clusters in gold and tin. Negatively charged gold clusters (Aun^-) have been shown to exhibit a remarkable structural diversity from 2D structures for n = 4-12 and the pyramidal structure for n = 20. Using PES and DFT calculations, we have found that gold clusters with n = 16-18 possess unprecedented hollow cage structures. We have been able to successfully dope a variety of transition-metal atoms into the empty spaces in the golden cages, confirming their structural robustness, as well as demonstrating chemical tuning of their electronic, magnetic, and catalytic properties. Unlike carbon, the heavier congeners of the group 14 elements are not known to form hollow cage structures similar to the fullerenes. In PES studies of tin clusters, we noted that the spectrum of Sn12^- is distinctly different from that of its neighbors or its Si/Ge counterpart. This observation led to our discovery of a highly symmetric and stable icosahedral Sn12^2- cage, for which we coined a name ``stannaspherene'' to describe its high symmetry and spherical pi bonding. We have also shown that all transition metals including the f-block elements can be doped inside Sn12^2- to form a whole class of endohedral stannaspherenes, which may be used as potential building blocks for new cluster-assembled materials. In a preliminary experiment to synthesize stannaspherene in the bulk, a new cluster, Pd2@Sn18^4-, was crystallized and characterized, suggesting all stannaspherene and endohedral stannasphernes may be fabricated in the bulk under suitable conditions.

  16. Facile Fabrication of Ultrafine Hollow Silica and Magnetic Hollow Silica Nanoparticles by a Dual-Templating Approach

    Xiao Xiangheng; Zhang Shaofeng; Peng Tangchao; Ren Feng; Fan Lixia; Wu Wei; Jiang Changzhong


    Abstract The development of synthetic process for hollow silica materials is an issue of considerable topical interest. While a number of chemical routes are available and are extensively used, the diameter of hollow silica often large than 50 nm. Here, we report on a facial route to synthesis ultrafine hollow silica nanoparticles (the diameter of ca. 24 nm) with high surface area by using cetyltrimethylammmonium bromide (CTAB) and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as co-templates...

  17. A visible-near infrared tunable waveguide based on plasmonic gold nanoshell

    A tunable plasmonic waveguide via gold nanoshells immerged in a silica base is proposed and simulated by using the finite difference time-domain (FDTD) method. For waveguides based on near-field coupling, transmission frequencies can be tuned in a wide region from 660 to 900 nm in wavelength by varying shell thicknesses. After exploring the steady distributions of electric fields in these waveguides, we find that their decay lengths are about 5.948–12.83 dB/1000 nm, which is superior to the decay length (8.947 dB/1000 nm) of a gold nanosphere plasmonic waveguide. These excellent tunability and transmittability are mainly due to the unique hollow structure. These gold nanoshell waveguides should be fabricated in laboratory. (classical areas of phenomenology)

  18. Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing.

    Wilk, Andreas; Carter, J Chance; Chrisp, Michael; Manuel, Anastacia M; Mirkarimi, Paul; Alameda, Jennifer B; Mizaikoff, Boris


    A new generation of hollow waveguide (HWG) gas cells of unprecedented compact dimensions facilitating low sample volumes suitable for broad- and narrow-band mid-infrared (MIR; 2.5-20 μm) sensing applications is reported: the substrate-integrated hollow waveguide (iHWG). iHWGs are layered structures providing light guiding channels integrated into a solid-state substrate material, which are competitive if not superior in performance to conventional leaky-mode fiber optic silica HWGs having similar optical pathlengths. In particular, the provided flexibility in device and optical design and the wide variety of manufacturing strategies, substrate materials, access to the optical channel, and optical coating options highlight the advantages of iHWGs in terms of robustness, compactness, and cost-effectiveness. Finally, the unmatched modularity of this novel waveguide approach facilitates tailoring iHWGs to almost any kind of gas sensor technology providing adaptability to the specific demands of a wide range of sensing scenarios. Device fabrication is demonstrated for the example of a yin-yang-shaped gold-coated iHWG fabricated within an aluminum substrate with a footprint of only 75 mm × 50 mm × 12 mm (L × W × H), yet providing a nominal optical absorption path length of more than 22 cm. The analytical utility of this device for advanced MIR gas sensing applications is demonstrated for the gaseous constituents butane, carbon dioxide, cyclopropane, isobutylene, and methane. PMID:24059493

  19. Nucleation engineered growth/formation of core-shell and hollow metal nanostructures

    Nehra, Kamalesh; Verma, Manoj; Kumar, P. Senthil


    Herein, we present a simple yet versatile single step aqueous synthesis procedure for precisely controlling the formation of hollow as well as core-shell metal nanostructures. Modern refined Turkevich protocol has been effectively utilized so as to mechanistically understand the step-by-step autocatalytic process in the monodisperse synthesis of such exotic shaped metal nanostructures. Au core with Ag shell nanoparticles were optimized by the careful addition of Ag+ ions to the pristine gold nanoparticles, the negative charge on which efficiently attracts the Ag+-cations towards their surface and simultaneously reducing them, thereby consolidating the thin shell formation with ease. The shell thickness could as well be tuned by either changing the metal seed or cation concentration. Hollow Au nanostructures were obtained by the inverse addition of Au3+-anions to the as-prepared Ag nanoparticles, thus initiating the galvanic replacement process, wherein the concurrent oxidation of Ag0 and reduction of Au3+ takes place in a cohesive manner, resulting in the final etched nanoring / porous like morphology. The structure-property functional relationship of these artificial metal nanostructures were systematically studied utilizing optical absorption and microscopy techniques.


    Arti Chandani


    Full Text Available Gold has been used extensively for savings, investments and consumption since ages; however the importance of the gold as an investment instruments has been much talked in the recent times. This research paper intends to find various applications of gold portfolios as an alternate asset class: the benefits of including gold to an investment portfolio have been analyzed. The results indicate that gold has performed significantly better than other assets like debt and equity in both emerging and US markets. It was noted that addition of gold to portfolios helped reduce the volatility and increase overall returns during the period 2009-12. For example, in 2008, when the U.S. equity market plunged to 36.99%, gold in fact showed returns of 5.8%. It is also observed that the inverse correlation exists between the dollar index and the gold prices helped reduce the portfolio risk as a result of diversification.

  1. Activated carbons and gold

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  2. Co-Flow Hollow Cathode Technology

    Hofer, Richard R.; Goebel, Dan M.


    Hall thrusters utilize identical hollow cathode technology as ion thrusters, yet must operate at much higher mass flow rates in order to efficiently couple to the bulk plasma discharge. Higher flow rates are necessary in order to provide enough neutral collisions to transport electrons across magnetic fields so that they can reach the discharge. This higher flow rate, however, has potential life-limiting implications for the operation of the cathode. A solution to the problem involves splitting the mass flow into the hollow cathode into two streams, the internal and external flows. The internal flow is fixed and set such that the neutral pressure in the cathode allows for a high utilization of the emitter surface area. The external flow is variable depending on the flow rate through the anode of the Hall thruster, but also has a minimum in order to suppress high-energy ion generation. In the co-flow hollow cathode, the cathode assembly is mounted on thruster centerline, inside the inner magnetic core of the thruster. An annular gas plenum is placed at the base of the cathode and propellant is fed throughout to produce an azimuthally symmetric flow of gas that evenly expands around the cathode keeper. This configuration maximizes propellant utilization and is not subject to erosion processes. External gas feeds have been considered in the past for ion thruster applications, but usually in the context of eliminating high energy ion production. This approach is adapted specifically for the Hall thruster and exploits the geometry of a Hall thruster to feed and focus the external flow without introducing significant new complexity to the thruster design.

  3. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph


    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  4. Nanocomposite gold-silk nanofibers

    Cohen-Karni, Tzahi; Jeong, Kyung Jae; Tsui, Jonathan H.; Reznor, Gally; Mustata, Mirela; Wanunu, Meni; Graham, Adam; Marks, Carolyn; Bell, David C.; Langer, Robert S; Kohane, Daniel S.


    Cell-biomaterial interactions can be controlled by modifying the surface chemistry or nanotopography of the material, to induce cell proliferation and differentiation if desired. Here we combine both approaches in forming silk nanofibers (SNFs) containing gold nanoparticles (AuNPs) and subsequently chemically modifying the fibers. Silk fibroin mixed with gold seed nanoparticles was electrospun to form SNFs doped with gold seed nanoparticles (SNFseed). Following gold reduction, there was a two...

  5. Hollow-Cathode Source Generates Plasma

    Deininger, W. D.; Aston, G.; Pless, L. C.


    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  6. Preparation of spherical hollow alumina particles by thermal plasma

    Spherical hollow particles were prepared from solid alumina powders using DC arc thermal plasma, and then spray coating was performed with the as-prepared particles. Operating variables for the hollow particle preparation process were additional plasma gas, input power, and carrier gas flow rate. The spherical hollow alumina particles were produced in the case of using additive gas of H2 or N2, while alumina surface was hardly molten in the pure argon thermal plasma. In addition, the hollow particles were well produced in high power and low carrier gas conditions due to high melting point of alumina. Hollow structure was confirmed by focused ion beam-scanning electron microscopy analysis. Morphology and size distribution of the prepared particles that were examined by field emission-scanning electron microscopy and phase composition of the particles was characterized by X-ray diffraction. In the spray coating process, the as-prepared hollow particles showed higher deposition rate. - Highlights: ► Spherical hollow alumina powder was prepared by non-transferred DC arc plasma. ► Diatomic gasses were added in Ar plasma for high power. ► Prepared hollow alumina powder was efficient for the plasma spray coating

  7. Aluminium multi-planar hollow section traffic sign structures

    Soetens, F.


    Currently, overhead highway traffic sign structures in The Netherlands are triangular space frame girders composed of circular hollow steel sections supported by two X-shaped columns consisting of rectangular hollow steel sections. However. the Dutch Ministry of Transport has initiated the developme

  8. Americium transfer studies using hollow fiber/extractant membranes

    Americium can be removed from low acid/high nitrate feeds using hollow fiber membrane modules. Americium can be concentrated in the stripping solution. (Maximum observed concentration was a factor of 3.1). Accurel hollow fibers are less prone to leakage problems

  9. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material

    Bidhan Shrestha


    Full Text Available Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration.

  10. Study of Torsional Impact Problem of Orthotropic Hollow Cylinder

    杨华凯; 郝文华; 王熙


    A simple integral transform method was presented to solve the torsional impact problem of orthotropic hollow cylinder with mixed boundary condition. The analytical solution for the torsional impact problem of the orthotropic hollow cylinder was got. Some examples were calculated and discussed.

  11. ['Gold standard', not 'golden standard'

    Claassen, J.A.H.R.


    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same w

  12. Processing Gold Quarry refractory ores

    Hausen, D. M.


    The Gold Quarry deposit is the largest sediment-hosted gold deposit yet discovered on the Carlin trend in northern Nevada. However, despite the locale's vast reserves, the gold is difficult to extract from portions of the deposit. Detailed, ongoing mineralogical analyses assure proper treatment of the ore.

  13. Gold extraction from flotation tailings

    The results of studies on cyanide leaching of gold comprising flotation tailings of antimony ore are given. The possibility to extract 50% of gold by cyanide leaching is shown. The dependence of gold extraction on leaching duration is studied. Influence of kerosine on cyanide leaching of flotation tailings is studied as well.

  14. Self-templated chemically stable hollow spherical covalent organic framework

    Kandambeth, Sharath; Venkatesh, V.; Shinde, Digambar B.; Kumari, Sushma; Halder, Arjun; Verma, Sandeep; Banerjee, Rahul


    Covalent organic frameworks are a family of crystalline porous materials with promising applications. Although active research on the design and synthesis of covalent organic frameworks has been ongoing for almost a decade, the mechanisms of formation of covalent organic frameworks crystallites remain poorly understood. Here we report the synthesis of a hollow spherical covalent organic framework with mesoporous walls in a single-step template-free method. A detailed time-dependent study of hollow sphere formation reveals that an inside-out Ostwald ripening process is responsible for the hollow sphere formation. The synthesized covalent organic framework hollow spheres are highly porous (surface area ~1,500 m2 g-1), crystalline and chemically stable, due to the presence of strong intramolecular hydrogen bonding. These mesoporous hollow sphere covalent organic frameworks are used for a trypsin immobilization study, which shows an uptake of 15.5 μmol g-1 of trypsin.

  15. An Atomic Lens Using a Focusing Hollow Beam

    夏勇; 印建平; 王育竹


    We propose a new method to generate a focused hollow laser beam by using an azimuthally distributed 2π-phase plate and a convergent thin lens, and calculate the intensity distribution of the focused hollow beam in free propagation space. The relationship between the waist w0 of the incident collimated Gaussian beam and the dark spot size of the focused hollow beam at the focal point, and the relationship between the focal length f of the thin lens and the dark spot size are studied respectively. The optical potential of the blue-detuned focused hollow beam for 85Rb atoms is calculated. Our study shows that when the larger waist w of the incident Gaussian beam and the shorter focal length f of the lens are chosen, we can obtain an extremely small dark spot size of the focused hollow beam, which can be used to form an atomic lens with a resolution of several angstroms.

  16. Hollow Casein-Based Polymeric Nanospheres for Opaque Coatings.

    Zhang, Fan; Ma, Jianzhong; Xu, Qunna; Zhou, Jianhua; Simion, Demetra; Carmen, Gaidău; Wang, John; Li, Yunqi


    Casein-based hollow polymeric sphere were fabricated through emulsifier-free polymerization coupled with alkali swelling approach. Hollow structure and nanoscale size of casein-based polymeric spheres were verified by TEM, AFM, SEM, and UV-vis spectra. The as-obtained hollow spheres were proved exhibiting superior opaque characteristic. Through adjusting the structural parameters, for example, MAA usages and MAA content in seed to core, sphere film showed tunable visible-light transmittance and antiultraviolet property. The formation mechanism of casein-based hollow sphere has been discussed in depth. Worth mentioning, the resultant hollow polymeric sphere can easily form films itself at room temperature, which would open a new possibility of designing opaque coatings in several fields, such as leather, packaging, paper making, biomedical, and special indoor coating applications. PMID:27090208

  17. Back-washing method for hollow fiber membrane filter

    For processing condensates in a nuclear reactor, when the amount of the suspended matters contained in the condensates is increased upon filtering them through hollow fiber membrane, the hollow fiber membranes per se can no more be generated and have to be discarded. In view of the above, filtering operation is interrupted and air scrubbing is applied immediately for back-washing the hollow fiber membrane filters. Then, after filling water below a pipe plate and applying dome draining and dome pressurization, bumping is applied to the hollow fiber membranes. In this way, the scrubbing step is applied preferentially to the bumping step and a combination of the scrubbing and bumping step is repeated at least twice. This enables to conduct efficient back-washing and, accordingly, extend the life time of the hollow fiber membranes so that they can withstand long time use. (T.M.)


    郝冬梅; 王新灵; 朱卫华; 唐小真; 刘成岑; 施凯


    Hollow polymer latex particles were prepared by seeded emulsion polymerization. A seed latex consisting of styrene (St), butyl acrylate(BA) copolymer was first prepared, and seeded terpolymerization of St-BA-MA(methacrylic acid) were then carried out in the absence of surfactant. Final latex was treated by a two-step treatment under alkaline and acidic conditions, thus, the particles with hollow structure were obtained. We discussed the effects of pH value, temperature and time in alkali and acid treatment processes on hollow structure within the polymer latex particles and amount of carboxylic group on particle surface. The results show that the hollow polymer latex particles with the largest hollow size can be obtained under a certain condition (pH12.5, 90°C, 3 h in alkali treatment stage and pH2.5, 85°C, 3 h in acid treatment stage).

  19. Turning lead into gold

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals, the...

  20. Gold Nanoparticle Microwave Synthesis

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, a reduction in reaction time from 10 minutes to 1 minute, maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  1. Digging for Gold

    Waters, John K.


    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  2. Aiming for Gold


    Twenty-three years ago he claimed China’s first Olympic gold medal,with a win in the 50-meter pistol shooting competition.Now Xu Haifeng is leading the country’s modern pentathlon team in its bid for success at the Beijing Games

  3. Gold Nanoslit Lenses

    Ishii, Satoshi; Kildishev, Alexander V.; Shalaev, Vladimir M.; Chen, Kuo-Ping; Drachev, Vladimir P.


    We experimentally demonstrate the focusing properties of arrays of parallel subwavelength-wide nanoslits in a gold film. The lenses are designed to focus either TM- or TE-polarized light and diverge the light of the orthogonal polarization. (C) 2010 Optical Society of America

  4. Gold in Ophiolites

    Castroviejo Bolibar, Ricardo


    Ophiolites, as a class, have been currently under-estimated as potential gold targets, although they have been the subject of major scientific research. Their resources have also attracted investors producing Cr, Cu (massive sulphides), Co, Ni (laterites), industrial rocks and minerals (serpentinites, emeralds), etc. They are also potential PGE sources.

  5. Gold trifluoromethyl complexes.

    Gil-Rubio, Juan; Vicente, José


    This article reviews the synthesis, reactivity and applications of gold trifluoromethyl complexes, which are the only isolated perfluoroalkyl complexes of gold. The most reported examples are neutral Au(i) complexes of the type [Au(CF3)L], whereas only two Au(ii) trifluoromethyl complexes have been reported, both being diamagnetic and containing a strong Au-Au bond. A number of Au(iii) trifluoromethyl complexes have been prepared by oxidative addition of halogens or iodotrifluoromethane to Au(i) complexes or, in a few cases, by transmetallation reactions. Owing to the limitations of the available synthetic methods, a lower number of examples is known, particularly for the oxidation states (ii) and (iii). Gold trifluoromethyl complexes present singular characteristics, such as thermal stability, strong Au-C bonds and, in some cases, reactive α-C-F bonds. Some of the Au(iii) complexes reported, show unusually easy reductive elimination reactions of trifluoromethylated products which could be applied in the development of gold-catalyzed processes for the trifluoromethylation of organic compounds. PMID:26169553

  6. Long-term evaluation of hollow screw and hollow cylinder dental implants : Clinical and radiographic results after 10 years

    Telleman, Gerdien; Meijer, Henny J. A.; Raghoebar, Gerry M.


    Background: In 1988, an implant manufacturer offered a new dental implant system, with a wide choice of hollow cylinder (HC) and hollow screw (HS) implants. The purpose of this retrospective study of HS and HC implants was to evaluate clinical and radiographic parameters of peri-implant tissue and t

  7. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    Baker, Dean M.


    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  8. Air Separation Using Hollow Fiber Membranes

    Huang, Stephen E.


    The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over

  9. Energy efficient engine shroudless, hollow fan blade technology report

    Michael, C. J.


    The Shroudless, Hollow Fan Blade Technology program was structured to support the design, fabrication, and subsequent evaluation of advanced hollow and shroudless blades for the Energy Efficient Engine fan component. Rockwell International was initially selected to produce hollow airfoil specimens employing the superplastic forming/diffusion bonding (SPF/DB) fabrication technique. Rockwell demonstrated that a titanium hollow structure could be fabricated utilizing SPF/DB manufacturing methods. However, some problems such as sharp internal cavity radii and unsatisfactory secondary bonding of the edge and root details prevented production of the required quantity of fatigue test specimens. Subsequently, TRW was selected to (1) produce hollow airfoil test specimens utilizing a laminate-core/hot isostatic press/diffusion bond approach, and (2) manufacture full-size hollow prototype fan blades utilizing the technology that evolved from the specimen fabrication effort. TRW established elements of blade design and defined laminate-core/hot isostatic press/diffusion bonding fabrication techniques to produce test specimens. This fabrication technology was utilized to produce full size hollow fan blades in which the HIP'ed parts were cambered/twisted/isothermally forged, finish machined, and delivered to Pratt & Whitney Aircraft and NASA for further evaluation.

  10. Experimental study on hollow structural component by explosive welding

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property

  11. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH3BH3) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes

  12. The Financial Economics of Gold - a survey

    O'Connor, Fergal; Lucey, Brian; Batten, Jonathan; Baur, Dirk


    We review the literature on gold as an investment. We summarize a wide variety of literature. We begin with a review of how the gold markets operate, including the under researched leasing market; we proceed to examine research on physical gold demand and supply, gold mine economics and move onto analyses of gold as an investment. Additional sections provide context on gold market efficiency, the issue of gold market bubbles, gold’s relation to inflation and interest rates, and the very na...

  13. Improved Rare-Earth Emitter Hollow Cathode

    Goebel, Dan M.


    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  14. Synthesis, purification and assembly of gold and iron oxide nanoparticles

    Qiu, Penghe

    , 6 & 7), nanoparticles were assembled into three different hierachical structures through both template-assisted and template-free approaches. In the template-assisted assembly, gold nanorods were aligned into ordered 1D linear pattern by using soft biological filamentous, namely bacteria flagella, as templates. Two different ways of assembling nanorods onto flagella were investigated. In another study, a highly commercialized polymer, polyvinylpyrrolidone (PVP), was discovered for the first time to be able to self-assemble into branched hollow fibers. Based on this discovery, two approaches (one through direct deposition of silica onto the PVP aggregate and the other through co-assembly of PVP covered gold nanoparticles with free PVP molecules) by which the self-assembly behavior of PVP could be exploited to template the formation of branched hollow inorganic fibers were demonstrated. In the template-free assembly, a general method for assembling nanoparticle into clusters (NPCs) in an oil-in-water emulsion system was investigated. Detailed studies on the mechanism of formation of NPCs structure, optimized conditions, scalable production and surface chemistry manipulation were carried out. Besides, comparison of the properties of individual and clustered iron oxide nanoparticles was conducted. It was discovered that due to their collective properties, NPCs are more responsive to an external magnetic field and can potentially serve as better contrast enhancement agents than individually dispersed magnetic NPs in Magnetic Resonance Imaging (MRI).

  15. Near-field second-harmonic generation from gold nanoellipsoids

    Celebrano, M.; Zavelani-Rossi, M.; Polli, D.; Cerullo, G. [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Biagioni, P.; Finazzi, M.; Duo, L. [LNESS - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Labardi, M.; Allegrini, M. [CNR-INFM, polyLab, Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Grand, J.; Adam, P.M.; Royer, P. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060 10010 Troyes cedex (France)


    Second-harmonic generation from single gold nanofabricated particles is experimentally investigated by a nonlinear scanning near-field optical microscope (SNOM). High peak power femtosecond polarized light pulses at the output of a hollow pyramid aperture allow for efficient second-harmonic imaging, with sub-100-nm spatial resolution and high contrast. The near-field nonlinear response is found to be directly related to both local surface plasmon resonances and particle morphology. The combined analysis of linear and second-harmonic SNOM images allows one to discriminate among near-field scattering, absorption and re-emission processes, which would not be possible with linear techniques alone. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. The RHIC gold rush

    Schäfer, T


    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  17. Gold ore sorting

    Apparatus for sorting lumps of gold-bearing ore according to their gold content is described. It includes means for irradiating the lumps of ore with neutrons, e.g. a neutron tube adapted to produce at least 1010 neutrons per second with an energy of less than 4.5 MeV. The resulting intensity of 297 keV gamma rays arising from the nuclear reaction 197Au(n,n'#betta#) 197Au is measured. The measured gamma ray intensity from a given lump of ore is used to sort that lump of ore from other lumps. The apparatus includes various cylinders and a vibrator for presenting the lumps of ore to the neutrons in a geometrical configuration such as to enable the lumps to be irradiated uniformly. (author)

  18. Gold' 82 - technical sessions

    Sulphur-isotope studies had been applied by Dr. I. Lambert to a number of deposits in Western Australia and also to certain samples from Vubachickwe and other deposits in Zimbabwe. A study of the sulphur isotopes at the Dickenson Mine, revealed a wide spread of values in the mineralised zones. Metamorphic processes were likely to be significant in the concentration of gold. The iron formations at the Old Jardine Mine had been unfolded by Dr. W.S. Hallager and the pattern of sedimentation was unraveled. A gold-rich zone was separated by a barren gap from the other part of the mineralised zone. Research was also done on the effects of the metamorphic processes, and the ages of mineralisation

  19. Gold induced apoptsis study

    Laustsen, Christoffer


    Introduction   Cancer cells are highly thermo sensitive. On the basis of an article in Nature the idea arose, for a new non-invasive thermotherapy technique, based on radio frequency inductive heating of nano gold particles in an MR-scanner. Thermotherapy is getting considerably attention at the...... moment, especially in the fields of lasers, they though have some problems concerning the placement of the tumor in the human body. Local heating by MR has tremendous advance in comparison too lasers. The first step is to validate the hypothesis of the inductive heating of the gold nano particles trough...... a macrophage cell lines and automated image processing.   Results   Cell apoptosis study Three successful CSLM counters were constructed and one unsuccessful AMG counter were constructed for automated processing and counting. One successful sorting macro were also constructed for easy directory...

  20. Rushing for gold

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy


    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sit...... more affluent than the others, suggesting that movement can be rewarding for those willing to 'try their luck' with the hard work and social networking demands of mining another site.......African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...

  1. Development of hollow electron beams for proton and ion collimation

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.


    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  2. Formation of hollow nanocrystals through the nanoscale kirkendall effect

    Yin, Yadong; Rioux, Robert M.; Erdonmez, Can K.; Hughes, Steven; Somorjai, Gabor A.; Alivisatos, A. Paul


    We demonstrate that hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form due to the difference in diffusion rates between two components in a diffusion couple. Cobalt nanocrystals are chosen as a primary example to show that their reaction in solution with oxygen, sulfur or selenium leads to the formation of hollow nanocrystals of the resulting oxide and chalcogenides. This process provides a general route to the synthesis of hollow nanostructures of large numbers of compounds. A simple extension of this process yields platinum-cobalt oxide yolk-shell nanostructures which may serve as nanoscale reactors in catalytic applications.

  3. Hollow Electron Beam Collimator: R&D Status Report

    Stancari, G; Kuznetsov, G; Shiltsev, V; Valishev, A; Kabantsev, A; Vorobiev, L


    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  4. Development of hollow electron beams for proton and ion collimation

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A


    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  5. Hollow fiber membranes and methods for forming same

    Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward; Narang, Kristi Jean; Koros, William


    The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer which includes the polysiloxane of the second composition.

  6. Development of hollow electron beams for proton and ion collimation

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; /Fermilab; Assmann, R.; /CERN; Kabantsev, A.; /UC, San Diego


    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.



    A novel method to prepare crosslinked polyethyleneimine (CPEI) hollow nanospheres was reported.Uniform silica nanospheres were used as templates,3-aminopropyl trimethoxysilane (APS) was immobilized on the surface of silica nanospheres as couple agent.Aziridine was initiated ring-opening polymerization with the amino groups in APS to form polyethyleneimine (PEI) shell layer.1,4-Butanediol diacrylate was utilized to crosslink PEI polymeric shell.The silica nanospheres in core were etched by hydrofluoric acid to obtain hollow CPEI nanospheres.The hollow nanospheres were characterized by X-ray photoelectron spectroscopy (XPS),transmission electron microscopy (TEM),and thermogravimetric analysis (TGA).

  8. Method and apparatus for producing small hollow spheres

    A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 6000C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 103 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  9. Film Ace Takes Gold


    "Really, I never, never expected to win this," said Chinese director Jia Zhangke on hearing he had taken the top award for his movie Still Life (Sanxia Haoren) at the Venice Film Festival, on September 9. A surprise late entry, Still Life quickly emerged as the favorite and the Gold Lion was again hugged by Chinese. The well-known Chinese director Zhang Yimou won the same award back in 1999, for Not One Less-also a

  10. Multishelled Gold Nanowires

    Bilalbegovic, G.


    The current miniaturization of electronic devices raises many questions about the properties of various materials at nanometre-scales. Recent molecular dynamics computer simulations have shown that small finite nanowires of gold exist as multishelled structures of lasting stability. These classical simulations are based on a well-tested embedded atom potential. Molecular dynamics simulation studies of metallic nanowires should help in developing methods for their fabrication, such as electron...

  11. Gold, Oil, and Stocks

    Baruník, Jozef; Kočenda, Evžen; Vácha, Lukáš


    We employ a wavelet approach and conduct a time-frequency analysis of dynamic correlations between pairs of key traded assets (gold, oil, and stocks) covering the period from 1987 to 2012. The analysis is performed on both intra-day and daily data. We show that heterogeneity in correlations across a number of investment horizons between pairs of assets is a dominant feature during times of economic downturn and financial turbulence for all three pairs of the assets under research. Heterogenei...

  12. Assemblies of gold icosahedra

    Bilalbegovic, G.


    Low-dimensional free-standing aggregates of bare gold clusters are studied by the molecular dynamics simulation. Icosahedra of 55 and 147 atoms are equilibrated at T=300 K. Then, their one- and two-dimensional assemblies are investigated. It is found that icosahedra do not coalescence into large drops, but stable amorphous nanostructures are formed: nanowires for one-dimensional and nanofilms for two-dimensional assemblies. The high-temperature stability of these nanostructures is also invest...

  13. Gold based electro catalysts

    Sivasubramaniam, Prabalini


    Gold electrocatalysts have been of growing interest in recent years owing to their reactivity for a variety of important reactions such as the oxygen reduction reaction. This activity has been shown to be dependent on the size of the supported electrocatalyst nanoparticles. In this thesis the effects of Au nanoparticle size are explored for the oxygen reduction, ethanol oxidation and carbon monoxide oxidation reactions (Chapter four). The results show the oxygen reduction and ethanol oxidatio...

  14. Hollow micro string based calorimeter device


    The present invention relates to a micron-scale calorimeter and a calorimetry method utilizing the micron-scale calorimeter. In accordance with the invention, there is provided a micron-scale calorimeter comprising a micro-channel string, being restrained at at least two longitudinally distanced...... positions so as to form a free released double clamped string in-between said two longitudinally distanced positions said micro-channel string comprising a microfluidic channel having a closed cross section and extending in the longitudinal direction of the hollow string, acoustical means adapted to...... oscillate the string at different frequencies by emitting sound waves towards the string, optical means adapted to detect oscillating frequencies of the string, and controlling means controlling the strength and frequency of the sound wave emitted by the acoustical means and receiving a signal from the...

  15. Two-piece hollow bulb obturator

    Subramaniam Elangovan


    Full Text Available There are various types of obturator fabrication achievable by prosthodontist. Maxillectomy, which is a term used by head and neck surgeons and prosthodontists to describe the partial or total removal of the maxilla in patients suffering from benign or malignant neoplasms is a defect for which to provide an effective obturator is a difficult task for the maxillofacial prosthodontist. Multidisciplinary treatment planning is essential to achieve adequate retention and function for the prosthesis. Speech is often unintelligible as a result of the marked defects in articulation and nasal resonance. This paper describes how to achieve the goal for esthetics and phonetics and also describes the fabrication of a hollow obturator by two piece method, which is simple and maybe used as definitive obturator for maximum comfort of the patient.

  16. Nonparaxial Dark-Hollow Gaussian Beams

    GAO Zeng-Hui; L(U) Bai-Da


    The concept of nonparaxial dark-hollow Gaussian beams (DHGBs) is introduced. By using the Rayleigh-Sommerfeld diffraction integral, the analytical propagation equation of DHGBs in free space is derived. The on-axis intensity, far-field equation and, in particular, paraxial expressions are given and treated as special cases of our result. It is shown that the parameter f = 1/kw0 with k being the wave number and w0 being the waist width determines the nonparaxiality of DHGBs. However, the parameter range, within which the paraxial approach is valid, depends on the propagation distance. The beam order affects the beam profile and position of maximum on-axis intensity.

  17. Hollow-duct radiation delivery system investigation

    Fibrich, Martin; Rus, Bedřich; Kramer, Daniel

    Praha : IPP AS CR - TOPTEC, 2012 - (Vít, T.; Kovačičinová, J.; Lédl, V.), 13-16 ISBN 978-80-87026-02-1. [OaM 2012 International Conference on Optics and Measurement. Liberec (CZ), 16.10.2012-18.10.2012] R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE. Grant ostatní: ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 1 LaserSys(XE) CZ.1.07/2.3.00/20.0091 Institutional support: RVO:68378271 Keywords : laser * diode-array-radiation * hollow -duct radiation Subject RIV: BH - Optics, Masers, Lasers

  18. Dual-core antiresonant hollow core fibers.

    Liu, Xuesong; Fan, Zhongwei; Shi, Zhaohui; Ma, Yunfeng; Yu, Jin; Zhang, Jing


    In this work, dual-core antiresonant hollow core fibers (AR-HCFs) are numerically demonstrated, based on our knowledge, for the first time. Two fiber structures are proposed. One is a composite of two single-core nested nodeless AR-HCFs, exhibiting low confinement loss and a circular mode profile in each core. The other has a relatively simple structure, with a whole elliptical outer jacket, presenting a uniform and wide transmission band. The modal couplings of the dual-core AR-HCFs rely on a unique mechanism that transfers power through the air. The core separation and the gap between the two cores influence the modal coupling strength. With proper designs, both of the dual-core fibers can have low phase birefringence and short modal coupling lengths of several centimeters. PMID:27464191

  19. Permeability of Hollow Microspherical Membranes to Helium

    Zinoviev, V. N.; Kazanin, I. V.; Pak, A. Yu.; Vereshchagin, A. S.; Lebiga, V. A.; Fomin, V. M.


    This work is devoted to the study of the sorption characteristics of various hollow microspherical membranes to reveal particles most suitable for application in the membrane-sorption technologies of helium extraction from a natural gas. The permeability of the investigated sorbents to helium and their impermeability to air and methane are shown experimentally. The sorption-desorption dependences of the studied sorbents have been obtained, from which the parameters of their specific permeability to helium are calculated. It has been established that the physicochemical modification of the original particles exerts a great influence on the coefficient of the permeability of a sorbent to helium. Specially treated cenospheres have displayed high efficiency as membranes for selective extraction of helium.

  20. Biomimetic Branched Hollow Fibers Templated by Self-assembled Fibrous Polyvinylpyrrolidone (PVP) Structures in Aqueous Solution

    Qiu, Penghe; Mao, Chuanbin


    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fi...

  1. Electrocrystallization and characterization of nanostructured gold and gold alloys

    Yevtushenko, Oleksandra


    The kinetics of electrocrystallization of nanostructured gold is investigated and the physical proper-ties of nanostructured materials such as thermal stability, surface roughness and hardness are improved. A new stable non-toxic electrolyte for the electrodeposition of gold and gold alloys is presented. Nanoscaling is achieved by pulse techniques. The possibility of controlling the crystallite size depending on physical and chemical process parameters such as pulse duration, current d...

  2. Barium Depletion in Hollow Cathode Emitters

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira


    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  3. Synthesis and Characterization of Gold Nanoparticles

    Hedkvist, Olof


    This thesis is focused on the synthesis of three different shapes of gold nanoparticles; the gold nanosphere, the gold nanorod and the gold nanocube. These will be synthesized using wet chemistry methods and characterized using UV-Vis- NIR spectroscopy and dynamic light scattering. The results will be used to draw some conclusions as to what factors influence the growth of gold nanoparticles.

  4. Green Synthesis of Gold Nanoparticles

    Hamid Reza Ghorbani


    There is an increased interest in understanding the toxicity and rational design of gold nanoparticles for biomedical applications in recent years. In this study gold nanoparticles were synthesized using dextrose as a reducing agent. The gold nanoparticles displayed characteristic Surface Plasmon Resonance peak at around 550 nm having a mean particle size of 75±30 nm. In order to identify and analyze nanoparticles, UV–Vis spectroscopy, Scanning electron microscopy (SEM), and dynamic light sca...

  5. Biomimetic synthesis of calcium-strontium apatite hollow nanospheres


    In this work,calcium-strontium apatite (Sr-HA) hollow nanospheres were synthesized by a facile biomimetic method.The structure and property of Sr-HA were characterized by FESEM,TEM,HRTEM,XRD and FT-IR spectroscopy.The influences of different ratios of calcium and strontium on the morphologies of the Sr-HA products were investigated.The experimental results revealed that the hollow spherical Sr-HA,with a size of 30-120 nm in diameter,could be synthesized when the molar ratio of Ca/Sr was 1:1.The possible formation mechanism of the hollow Sr-HA was proposed.The drug release experiments indicated that the hollow spherical Sr-HA had the property of sustained release.




    We propose a dark gravito-optical dipole trap, for alkali atoms, consisting of a blue-detuned, pyramidal-hollow laser beam propagating upward and the gravity field. When cold atoms from a magneto-optical trap are loaded into the pyramidal-hollow beam and bounce inside the pyramidal-hollow beam, they experience efficient Sisyphus cooling and geometric cooling induced by the pyramidal-hollow beam and the weak repumping beam propagating downward. Our study shows that an ultracold and dense atomic sample with an equilibrium 3D momentum of ~ 3hk and an atomic density above the point of Bose-Einstein condensation may be obtained in this pure optical trap.

  7. Polyazole hollow fiber membranes for direct contact membrane distillation

    Maab, Husnul


    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  8. Preparation of Polyvinylidene Fluoride (PVDF Hollow Fiber Hemodialysis Membranes

    Qinglei Zhang


    Full Text Available In this study, the polyvinylidene fluoride (PVDF hollow fiber hemodialysis membranes were prepared by non-solvent induced phase separation (NIPS. The influences of PVDF membrane thickness and polyethylene glycol (PEG content on membrane morphologies, pore size, mechanical and permeable performance were investigated. It was found that membrane thickness and PEG content affected both the structure and performance of hollow fiber membranes. The tensile strength and rejection of bovine serum albumin (BSA increased with increasing membrane thickness, while the Ultrafiltration flux (UF flux of pure water was the opposite. The tensile strength, porosity and rejection of BSA increased with increasing PEG content within a certain range. Compared with commercial F60S membrane, the PVDF hollow fiber membrane showed higher mechanical and permeable performance. It was proven that PVDF material had better hydrophilicity and lower BSA adsorption, which was more suitable for hemodialysis. All the results indicate that PVDF hollow fiber membrane is promising as a hemodialysis membrane.

  9. Preparation of Polyvinylidene Fluoride (PVDF) Hollow Fiber Hemodialysis Membranes.

    Zhang, Qinglei; Lu, Xiaolong; Zhao, Lihua


    In this study, the polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were prepared by non-solvent induced phase separation (NIPS). The influences of PVDF membrane thickness and polyethylene glycol (PEG) content on membrane morphologies, pore size, mechanical and permeable performance were investigated. It was found that membrane thickness and PEG content affected both the structure and performance of hollow fiber membranes. The tensile strength and rejection of bovine serum albumin (BSA) increased with increasing membrane thickness, while the Ultrafiltration flux (UF) flux of pure water was the opposite. The tensile strength, porosity and rejection of BSA increased with increasing PEG content within a certain range. Compared with commercial F60S membrane, the PVDF hollow fiber membrane showed higher mechanical and permeable performance. It was proven that PVDF material had better hydrophilicity and lower BSA adsorption, which was more suitable for hemodialysis. All the results indicate that PVDF hollow fiber membrane is promising as a hemodialysis membrane. PMID:24957122

  10. Manufacture of hollow ingots using centrifugal casting machines

    Pomeshchikov, A. G.; Greneva, T. S.; Baidachenko, V. I.; Berezin, V. I.


    Centrifugal machines are proposed for the foundry created at the Almalyk Mining and Smelting Factory in order to produce hollow ingots of a liquid metal made by remelting of consumable electrodes in a refractory accumulating crucible.

  11. Synthesis, characterization and properties of hollow nickel phosphide nanospheres

    Ni Yonghong; Tao Ali; Hu Guangzhi; Cao Xiaofeng; Wei Xianwen; Yang Zhousheng [College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000 (China)


    Nickel phosphide (Ni{sub 12}P{sub 5}) hollow nanospheres with a mean diameter of 100 nm and a shell thickness of 15-20 nm have been successfully prepared by a hydrothermal-microemulsion route, using NaH{sub 2}PO{sub 2} as a phosphorus source. XRD, EDS (HR)TEM, SEM and the SAED pattern were used to characterize the final product. Experiments showed that the as-prepared nickel phosphide hollow nanospheres could selectively catalytically degrade some organic dyes such as methyl red and Safranine T under 254 nm UV light irradiation. At the same time, the nickel phosphide hollow nanospheres showed a stronger ability to promote electron transfer between the glass-carbon electrode and adrenalin than nickel phosphide honeycomb-like particles prepared by a simple hydrothermal route. A possible formation process for nickel phosphide hollow nanospheres was suggested based on the experimental results.

  12. Self-Assemblies of Acicular Hollow Fe/C Nanostructures.

    Li, Wangchang; Qiao, Xiaojing; Li, Mingyu; Zheng, Qiuyu; Ren, Qingguo; Zhu, Y Q; Peng, H X


    Self-assemblies of acicular hollow Fe/C structures were synthesized using D-glucose monohydrate and ferric chloride as precursors by a simple hydrothermal process followed by carbonization at 800 °C. The self-assembled structures with an overall diameter of 15~20 µm composed of radially formed hollow needles from a central core with an average diameter of ca. 1 µm and a length up to 10 µm. The end of the needles was revealed to be a awl shape with a hollow structure formed during the self-assembly process and the subsequent heat treatment. The hollow structure was probably caused by the Kirkendall effect at 800 °C. The materials exhibit ferromagnetic characteristic with saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) of 22.2 emu/g, 3 emu/g, and 151.22 Oe, respectively, with Ms much lower than that of Fe3O4. PMID:26369160

  13. Guided flux motion and Faraday induction in hollow superconducting cylinders

    Guided flux motion and Faraday induction effects were observed in two hollow cylinders of superconducting niobium in an effort to understand the origin of flux flow voltages in superconductors. Calculations are in excellent agreement with experimental results

  14. 31 CFR 100.4 - Gold coin and gold certificates in general.


    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as...

  15. New Trends in Gold Catalysts

    Leonarda F. Liotta


    Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growin...

  16. Facile synthesis of ZnO hollow fibres

    B T Su; K Wang; X W Zuo; H M Mu; N Dong; Y C Tong; J Bai; Z Q Lei


    In this paper, cotton fibres were used as bio-template to successfully synthesize new ceramic materials, ZnO hollow fibres and in an effort to explore the synthesis condition, and simplify the synthesis procedure. In this synthesis, a direct thermal decomposition of zinc acetate dihydrate coated on the surface of cotton fibres was explored. The wall porosity of the ZnO hollow fibres was controlled by changing the concentration of zinc acetate aqueous solution.

  17. Flat Bunches with a Hollow Distribution for Space Charge Mitigation

    Oeftiger, Adrian; Findlay, Alan James; Hancock, Steven; Rumolo, Giovanni


    Longitudinally hollow bunches provide one means to mitigate the impact of transverse space charge. The hollow distributions are created via dipolar parametric excitation during acceleration in CERN's Proton Synchrotron Booster. We present simulation work and beam measurements. Particular emphasis is given to the alleviation of space charge effects on the long injection plateau of the downstream Proton Synchrotron machine, which is the main goal of this study.

  18. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  19. Laser-plasma-based linear collider using hollow plasma channels

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.


    A linear electron-positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  20. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    Smolka, Stephan; Barth, Michael; Benson, Oliver


    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  1. 3D hollow nanostructures as building blocks for multifunctional plasmonics

    De Angelis, Francesco De


    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications. © 2013 American Chemical Society.

  2. Hollow fiber membrane systems for advanced life support systems

    Roebelen, G. J., Jr.; Lysaght, M. J.


    The practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications is described. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing; breadboard hardware was manufactured and tested, and the physical properties of the hollow fiber membrane assemblies are characterized.

  3. Preparation of Polyvinylidene Fluoride (PVDF) Hollow Fiber Hemodialysis Membranes

    Qinglei Zhang; Xiaolong Lu; Lihua Zhao


    In this study, the polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were prepared by non-solvent induced phase separation (NIPS). The influences of PVDF membrane thickness and polyethylene glycol (PEG) content on membrane morphologies, pore size, mechanical and permeable performance were investigated. It was found that membrane thickness and PEG content affected both the structure and performance of hollow fiber membranes. The tensile strength and rejection of bovine serum a...

  4. Scanning optical pyrometer for measuring temperatures in hollow cathodes

    Polk, J. E.; Marrese-Reading, C. M.; Thornber, B.; Dang, L.; Johnson, L. K.; Katz, I


    Life-limiting processes in hollow cathodes are determined largely by the temperature of the electron emitter. To support cathode life assessment, a noncontact temperature measurement technique which employs a stepper motor-driven fiber optic probe was developed. The probe is driven inside the hollow cathode and collects light radiated by the hot interior surface of the emitter. Ratio pyrometry is used to determine the axial temperature profile. Thermocouples on the orifice plate provide measu...

  5. Evidence of fire resistance of hollow-core slabs

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    predominant and in Denmark they are applied where fire resistances of 60- and 120 minutes are required. In 2007 hollow-core deck elements with in-situ cast top concrete de-laminated during a fire in a car-park floor of a building in Rotterdam, where the bottom flanges of some decks fell down. A debate is...... therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the...

  6. Preparation of Hollow Porous HAP Microspheres as Drug Delivery Vehicles

    WANG Qing; HUANG Wenhai; WANG Deping


    Hollow HAP microspheres in sub-millimeter size were prepared and investigated as a drug delivery vehicle. The LCB (lithium-calcium borate) glass microspheres, which were made through flame spray process, were chosen as precursor for hollow HAP microspheres. The LCB glass microspheres reacted with phosphate buffer (K2HPO4) solution for 5 days at 37 ℃. During the reaction the Ca-P-OH compound precipitated on the surface of LCB glass microspheres and formed porous shells. Then the microspheres turned to be hollow ones with the same diameter as the glass microspheres after LCB glass run out in the chemical reaction. After heat-treated at 600 ℃ for 4 h, the Ca-P-OH compound became HAP, thus the hollow HAP microspheres were produced. The mechanism of forming hollow HAP microspheres through the chemical reaction between phosphate buffer and LCB glass was confirmed by the XRD analysis. The microstructure characteristics of the hollow, porous microspheres were observed by SEM.

  7. Gold phosphide complexes


    The vast majority of gold complexes with five group-element donor ligands contain tertiary phosphines, although compounds with amine, arsine or stibine ligands are also known. Although phosphide ligands, which are formed by deprotonation of non-tertiary phosphines, are closely related to the former, they have been employed to a lesser extent, mainly due to their lower stability. Thus, the chemistry of phosphido-bridged derivatives of the main group elements1-3 or transition metals4-6 has been...

  8. Determining gold content

    A method for determining the gold content of a material, comprises irradiating a body of the material with neutrons and determining the intensity of γ-rays having an energy of 279 keV arising from the reaction 179Au(nn') 179Au → 279 keV. The apparatus has means for conveying the materials past an assembly, which has a neutron source, which does not produce neutrons having sufficient energy to excite fast neutron reactions in non-auriferous constituents. (author)

  9. Paper or Gold

    Mukund Raj


    In our society today, money's value is measured by what it can buy—its purchasing power—not by its material worth, but it hasn't always been so. · My previous papers Impact of agriculture output on exchange rates and Currency competition-Survival of the fittest dealt with issues surrounding exchange rate and currency competitions. This paper- Paper or Gold discusses the validity of human society giving importance to paper money. · We all know that the human race always believes in experimenti...

  10. Experimental study of the expansion dynamic of 9 mm Parabellum hollow point projectiles in ballistic gelatin.

    Bresson, F; Ducouret, J; Peyré, J; Maréchal, C; Delille, R; Colard, T; Demondion, X


    We study in this paper the expanding behaviour of hollow point 9 mm Parabellum projectiles (Hornady XTP(®) and Speer Gold Dot(®)). We defined a deformation rate that takes into account both the diameter increase and the length reduction. We plotted the behaviour of this parameter versus impact velocity (we refer to this curve as the expanding law). This expanding law has been plotted for different gelatin weight ratios and different gelatin block lengths. We completed our experiments with a set of high speed movies in order to correlate the deceleration to the state of expansion and size of the temporary cavity. Our results pointed out that full expansion is reached shortly after the projectile fully penetrates the gelatin. This result shows that the key point to accurately simulate human body interaction with a hollow point projectile is to accurately simulate the interface (skin, skull, clothes thoracic walls). Simulating accurately organs is only an issue if a quantitative comparison between penetration depths is required, but not if we only focus on the state of expansion of the projectile. By varying the gelatin parameters, we discovered that the expanding law exhibits a velocity threshold below which no expansion occurs, followed by a rather linear curve. The parameters of that expanding law (velocity threshold and line slope) vary with the gelatin parameters, but our quantitative results demonstrate that these parameters are not extremely critical. Finally, our experiments demonstrate that the knowledge of the expansion law can be a useful tool to investigate a gunshot in a human body with a semi-jacketed projectile, giving an estimation of the impact velocity and thus the shooting distance. PMID:22269130