WorldWideScience

Sample records for anaerobic acid resistance

  1. Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli.

    Science.gov (United States)

    Noguchi, Ken; Riggins, Daniel P; Eldahan, Khalid C; Kitko, Ryan D; Slonczewski, Joan L

    2010-04-12

    Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H(2) production involves consumption of 2H(+), hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2-2.5) that are three pH units lower than the pH limit of growth (pH 5-6). Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms. We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H(2) to 2H(+). Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3) decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2) did not significantly affect acid survival. The pH-dependence of H(2) production and consumption was tested using a H(2)-specific Clark-type electrode. Hyd-3-dependent H(2) production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H(2) consumption was maximal at alkaline pH. H(2) production, was unaffected by a shift in external or internal pH. H(2) production was associated with hycE expression levels as a function of external pH. Anaerobic growing cultures of E. coli generate H(2) via Hyd-3 at low external pH, and

  2. Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ken Noguchi

    Full Text Available BACKGROUND: Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H(2 production involves consumption of 2H(+, hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2-2.5 that are three pH units lower than the pH limit of growth (pH 5-6. Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms. METHODS AND PRINCIPAL FINDINGS: We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H(2 to 2H(+. Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3 decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2 did not significantly affect acid survival. The pH-dependence of H(2 production and consumption was tested using a H(2-specific Clark-type electrode. Hyd-3-dependent H(2 production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H(2 consumption was maximal at alkaline pH. H(2 production, was unaffected by a shift in external or internal pH. H(2 production was associated with hycE expression levels as a function of external pH. CONCLUSIONS: Anaerobic growing

  3. Mechanism of quinolone resistance in anaerobic bacteria.

    Science.gov (United States)

    Oh, H; Edlund, C

    2003-06-01

    Several recently developed quinolones have excellent activity against a broad range of aerobic and anaerobic bacteria and are thus potential drugs for the treatment of serious anaerobic and mixed infections. Resistance to quinolones is increasing worldwide, but is still relatively infrequent among anaerobes. Two main mechanisms, alteration of target enzymes (gyrase and topoisomerase IV) caused by chromosomal mutations in encoding genes, or reduced intracellular accumulation due to increased efflux of the drug, are associated with quinolone resistance. These mechanisms have also been found in anaerobic species. High-level resistance to the newer broad-spectrum quinolones often requires stepwise mutations in target genes. The increasing emergence of resistance among anaerobes may be a consequence of previous widespread use of quinolones, which may have enriched first-step mutants in the intestinal tract. Quinolone resistance in the Bacteroides fragilis group strains is strongly correlated with amino acid substitutions at positions 82 and 86 in GyrA (equivalent to positions 83 and 87 of Escherichia coli). Several studies have indicated that B. fragilis group strains possess efflux pump systems that actively expel quinolones, leading to resistance. DNA gyrase seems also to be the primary target for quinolones in Clostridium difficile, since amino acid substitutions in GyrA and GyrB have been detected in resistant strains. To what extent other mechanisms, such as mutational events in other target genes or alterations in outer-membrane proteins, contribute to resistance among anaerobes needs to be further investigated.

  4. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures.

    Science.gov (United States)

    Oliver, Christy E; Beier, Ross C; Hume, Michael E; Horrocks, Shane M; Casey, Thomas A; Caton, Joel S; Nisbet, David J; Smith, David J; Krueger, Nathan A; Anderson, Robin C

    2010-04-01

    Experiments were conducted to determine factors that affect sensitivity of Salmonella enterica serovar Typhimurium to sodium chlorate (5mM). In our first experiment, cultures grown without chlorate grew more rapidly than those with chlorate. An extended lag before logarithmic growth was observed in anaerobic but not aerobic cultures containing chlorate. Chlorate inhibition of growth during aerobic culture began later than that observed in anaerobic cultures but persisted once inhibition was apparent. Conversely, anaerobic cultures appeared to adapt to chlorate after approximately 10h of incubation, exhibiting rapid compensatory growth. In anaerobic chlorate-containing cultures, 20% of total viable counts were resistant to chlorate by 6h and had propagated to 100% resistance (>10(9)CFU mL(-1)) by 24h. In the aerobic chlorate-containing cultures, 12.9% of colonies had detectable resistance to chlorate by 6h, but only 1% retained detectable resistance at 24h, likely because these cultures had opportunity to respire on oxygen and were thus not enriched via the selective pressure of chlorate. In another study, treatment with shikimic acid (0.34 mM), molybdate (1mM) or their combination had little effect on aerobic or anaerobic growth of Salmonella in the absence of added chlorate. As observed in our earlier study, chlorate resistance was not detected in any cultures without added chlorate. Chlorate resistant Salmonella were recovered at equivalent numbers regardless of treatment after 8h of aerobic or anaerobic culture with added chlorate; however, by 24h incubation chlorate sensitivity was completely restored to aerobic but not anaerobic cultures treated with shikimic acid or molybdate but not their combination. Results indicate that anaerobic adaptation of S. Typhimurium to sodium chlorate during pure culture is likely due to the selective propagation of low numbers of cells exhibiting spontaneous resistance to chlorate and this resistance is not reversible by

  5. Antimicrobial resistance and susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Schuetz, Audrey N

    2014-09-01

    Infections due to anaerobic bacteria can be severe and life-threatening. Susceptibility testing of anaerobes is not frequently performed in laboratories, but such testing is important to direct appropriate therapy. Anaerobic resistance is increasing globally, and resistance trends vary by geographic region. An overview of a variety of susceptibility testing methods for anaerobes is provided, and the advantages and disadvantages of each method are reviewed. Specific clinical situations warranting anaerobic susceptibility testing are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Transforming Anaerobic Adhesives into Highly Durable and Abrasion Resistant Superhydrophobic Organoclay Nanocomposite Films: A New Hybrid Spray Adhesive for Tough Superhydrophobicity

    Science.gov (United States)

    Bayer, Ilker S.; Brown, Andrea; Steele, Adam; Loth, Eric

    2009-12-01

    The authors report fabrication of tough nanostructured self-cleaning superhydrophobic polymer-organoclay films from anaerobic acrylic adhesives displaying strong adhesion to metal surfaces. Both industrial and bio-grade anaerobic adhesives such as bone cements could be used. Montmorillonite clay filled anaerobic adhesives were modified by blending with a water dispersed fluoro-methacrylic latex in solution to form abrasion resistant interpenetrating polymer network films upon spray casting. The adhesive films could cure by thermosetting in oxygen-rich environments. Very high contact angles with low hysteresis were also measured for acidic (pH 2) and basic (pH 11) aqueous buffer solutions indicating resistance to acidic and basic media.

  7. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    Science.gov (United States)

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P anaerobic digestion by 12.0% and 14.3%, respectively (P bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05).

  8. Antimicrobial resistance and prevalence of resistance genes of obligate anaerobes isolated from periodontal abscesses.

    Science.gov (United States)

    Xie, Yi; Chen, Jiazhen; He, Junlin; Miao, Xinyu; Xu, Meng; Wu, Xingwen; Xu, Beiyun; Yu, Liying; Zhang, Wenhong

    2014-02-01

    This study attempts to determine the antimicrobial resistance profiles of obligate anaerobic bacteria that were isolated from a periodontal abscess and to evaluate the prevalence of resistance genes in these bacteria. Forty-one periodontal abscess samples were cultivated on selective and non-selective culture media to isolate the oral anaerobes. Their antibiotic susceptibilities to clindamycin, doxycycline, amoxicillin, imipenem, cefradine, cefixime, roxithromycin, and metronidazole were determined using the agar dilution method, and polymerase chain reaction assays were performed to detect the presence of the ermF, tetQ, nim, and cfxA drug resistance genes. A total of 60 different bacterial colonies was isolated and identified. All of the isolates were sensitive to imipenem. Of the strains, 6.7%, 13.3%, 16.7%, and 25% were resistant to doxycycline, metronidazole, cefixime, and amoxicillin, respectively. The resistance rate for both clindamycin and roxithromycin was 31.7%. Approximately 60.7% of the strains had the ermF gene, and 53.3% of the amoxicillin-resistant strains were found to have the cfxA gene. Two nim genes that were found in eight metronidazole-resistant strains were identified as nimB. In the present study, the Prevotella species are the most frequently isolated obligate anaerobes from periodontal abscesses. The current results show their alarmingly high resistance rate against clindamycin and roxithromycin; thus, the use of these antibiotics is unacceptable for the empirical therapy of periodontal abscesses. A brief prevalence of four resistance genes in the anaerobic bacteria that were isolated was also demonstrated.

  9. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    Science.gov (United States)

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  10. [Distribution of anaerobes in periodontal abscess and its resistance to antibiotics].

    Science.gov (United States)

    He, Jun-lin; Yu, Li-ying; Chen, Jia-zhen

    2012-12-01

    To isolate and culture the predominant anaerobes from the periodontal abscesses, and to test the antibiotic susceptibility and drug resistant genes of the strains. The isolated strains were identified by both API20A biochemical method and polymerase chain reaction (PCR) method. The antibiotic susceptibility test was performed by agar dilution method. The resistant genes of the drug-resistant strains obtained were screened by PCR. The anaerobes were detected in 48% (28/58) of the samples and Prevotella melaninogenica (Pm) was mostly identified in 43% (12/28). API20A biochemical method had 82% (23/28) agreement with the 16SrRNA method in identification rate. Anaerobes were resistant to metronidazole, clindamycin and cefmetazole. The erythromycin-resistant methylase genes F (ermF) gene was detected in three of eight clindamycin resistant strains. None of them was found coded on bacterial plasmids. However, no metronidazole resistant gene was detected on drug resistant strains. Pm was the predominant species dectected in the periodontal abscess of the patients. The antibiotic agents should be used based on the genotypes and general condition of the patients.

  11. [Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment].

    Science.gov (United States)

    Yuan, Guang-Huan; Zhou, Xing-Qiu; Wu, Jian-Dong

    2012-06-01

    In order to enhance the efficiency of anaerobic digestion of excess sludge, acid-alkali pretreatment method was studied. Three different pretreatment methods (alkali alone,acid-alkali, alkali-acid) were compared to investigate their impacts on hydrolysis and acidification of activated sludge. In addition, their influences on methane-producing in subsequent anaerobic digestion process were also studied. The results showed that the soluble chemical oxygen demand (SCOD) of alkaline treatment alone was about 16% higher than the combining of acid and alkali treatment, SCOD concentration increased to 5406.1 mg x L(-1) after 8 d pretreatment. After treated by acid (pH 4.0, 4 d) and alkali (pH 10.0, 4 d), the acetic acid production and its content in short-chain fatty acids (SCFAs) were higher than other pretreatment methods. And the acetic acid production (as COD/VSS) could reach 74.4 mg x g(-1), accounting for 60.5% of SCFAs. After acid-alkali pretreatment, the C: N ratio of the sludge mixed liquor was about 25, and the C: P ratio was between 35-40, which was more favorable than C: N and C: P ratio of alkali alone and alkali-acid to subsequent anaerobic digestion. The control experiments showed that, after acid-alkali pretreatment, anaerobic digestion cumulative methane yield (CH4/VSS(in)) reached to 136.1 mL x g(-1) at 15 d, which was about 2.5-, 1.6-, and 1.7-fold of the blank (unpretreated), alkali alone pretreatment and alkali-acid pretreatment, respectively. After acid-alkali pretreatment for 8 d and anaerobic digestion for 15 d, the removal efficiency of VSS was about 60.9%, and the sludge reduction effect was better than other pretreatments. It is obvious that the acid-alkali pretreatment method was more favorable to anaerobic digestion and sludge reduction.

  12. Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa

    Science.gov (United States)

    Upcroft, Peter; Upcroft, Jacqueline A.

    2001-01-01

    The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently

  13. Antibiotic-resistant obligate anaerobes during exacerbations of cystic fibrosis patients.

    Science.gov (United States)

    Worlitzsch, D; Rintelen, C; Böhm, K; Wollschläger, B; Merkel, N; Borneff-Lipp, M; Döring, G

    2009-05-01

    Pseudomonas aeruginosa and Staphylococcus aureus are thought to cause the majority of lung infections in patients with cystic fibrosis (CF). However, other bacterial pathogens may contribute to the pathophysiology of lung disease. Here, obligate anaerobes were identified in a cross-sectional study, and cell numbers and antibiotic susceptibilities of facultative and obligate anaerobes from 114 sputum samples from nine children and 36 adults with CF were determined. Furthermore, in 12 CF patients, we investigated whether conventional intravenous antibiotic therapy, administered during acute exacerbations, would affect the numbers of obligate anaerobes. Fifteen genera of obligate anaerobes were identified in 91% of the CF patients. Cell numbers (mean: 2.2 x 10(7) +/- standard deviation 6.9 x 10(7) CFU/mL of sputum sample) were comparable to those of P. aeruginosa and S. aureus. Staphylococcus saccharolyticus and Peptostreptococcus prevotii were most prevalent. Infection with P. aeruginosa did not increase the likelihood that obligate anaerobes are present in sputum specimens. Single obligate anaerobic species persisted for up to 11 months in sputum plugs in vivo. Patients with and without obligate anaerobes in sputum specimens did not differ in lung function. Intravenous therapy directed against P. aeruginosa during acute exacerbations increased lung function, but did not reduce the numbers of obligate anaerobes. Obligate anaerobic species differed widely in their patterns of resistance against meropenem, piperacillin-tazobactam, clindamycin, metronidazole and ceftazidime. In 58% of patients with acute exacerbations, obligate anaerobes were detected that were resistant to the antibiotics used for treatment. Antibiotic therapy, optimized to target anaerobes in addition to P. aeruginosa, may improve the management of CF lung disease.

  14. Triclocarban Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure.

    Science.gov (United States)

    Carey, Daniel E; Zitomer, Daniel H; Hristova, Krassimira R; Kappell, Anthony D; McNamara, Patrick J

    2016-01-05

    Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg).

  15. Low antibiotic resistance among anaerobic Gram-negative bacteria in periodontitis 5 years following metronidazole therapy.

    Science.gov (United States)

    Dahlen, G; Preus, H R

    2017-02-01

    The objective of this study was to assess antibiotic susceptibility among predominant Gram-negative anaerobic bacteria isolated from periodontitis patients who 5 years prior had been subject to mechanical therapy with or without adjunctive metronidazole. One pooled sample was taken from the 5 deepest sites of each of 161 patients that completed the 5 year follow-up after therapy. The samples were analyzed by culture. A total number of 85 anaerobic strains were isolated from the predominant subgingival flora of 65/161 patient samples, identified, and tested for antibiotic susceptibility by MIC determination. E-tests against metronidazole, penicillin, amoxicillin, amoxicillin + clavulanic acid and clindamycin were employed. The 73/85 strains were Gram-negative rods (21 Porphyromonas spp., 22 Prevotella/Bacteroides spp., 23 Fusobacterium/Filifactor spp., 3 Campylobacter spp. and 4 Tannerella forsythia). These were all isolated from the treated patients irrespective of therapy procedures (+/-metronidazole) 5 years prior. Three strains (Bifidobacterium spp., Propionibacterium propionicum, Parvimonas micra) showed MIC values for metronidazole over the European Committee on Antimicrobial Susceptibility Testing break point of >4 μg/mL. All Porphyromonas and Tannerella strains were highly susceptible. Metronidazole resistant Gram-negative strains were not found, while a few showed resistance against beta-lactam antibiotics. In this population of 161 patients who had been subject to mechanical periodontal therapy with or without adjunct metronidazole 5 years prior, no cultivable antibiotic resistant anaerobes were found in the predominant subgingival microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Frequency of resistance in obligate anaerobic bacteria isolated from dogs, cats, and horses to antimicrobial agents.

    Science.gov (United States)

    Lawhon, S D; Taylor, A; Fajt, V R

    2013-11-01

    Clinical specimens from dogs, cats, and horses were examined for the presence of obligate anaerobic bacteria. Of 4,018 specimens cultured, 368 yielded 606 isolates of obligate anaerobic bacteria (248 from dogs, 50 from cats, and 308 from horses). There were 100 specimens from 94 animals from which only anaerobes were isolated (25 dogs, 8 cats, and 61 horses). The most common sites tested were abdominal fluid (dogs and cats) and intestinal contents (horses). The most common microorganism isolated from dogs, cats, and horses was Clostridium perfringens (75, 13, and101 isolates, respectively). The MICs of amoxicillin with clavulanate, ampicillin, chloramphenicol, metronidazole, and penicillin were determined using a gradient endpoint method for anaerobes. Isolates collected at necropsy were not tested for antimicrobial susceptibility unless so requested by the clinician. There were 1/145 isolates tested that were resistant to amoxicillin-clavulanate (resistance breakpoint ≥ 16/8 μg/ml), 7/77 isolates tested were resistant to ampicillin (resistance breakpoint ≥ 2 μg/ml), 4/242 isolates tested were resistant to chloramphenicol (resistance breakpoint ≥ 32 μg/ml), 12/158 isolates tested were resistant to clindamycin (resistance breakpoint ≥ 8 μg/ml), 10/247 isolates tested were resistant to metronidazole (resistance breakpoint ≥ 32 μg/ml), and 54/243 isolates tested were resistant to penicillin (resistance breakpoint ≥ 2 μg/ml). These data suggest that anaerobes are generally susceptible to antimicrobial drugs in vitro.

  17. Anaerobic degradation of linoleic oleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Lalman, J.A.; Bagley, D.M.

    1999-07-01

    The anaerobic degradation of linoleic (C18:2) and oleic (C18:1) acids was examined in batch experiments. By-product distribution depended on both the type of long chain fatty acid added and initial substrate concentration. Major by-products were palmitic (C16), myristic (C14) and acetic acids. Trace quantities of palmitoleic (C16:1) and lauric (C12) acids were observed together with larger amounts of palmitic (C16), myristic (C14) and hexanoic (C6) acids in cultures incubated with 100 mg/L linoleic (C18:2) acid. Bio-hydrogenation of C18 fatty acids was not necessary for the {beta}-oxidation mechanism to proceed. Aceticlastic methanogenic inhibition was observed in cultures inoculated with greater than 50 mg/L linoleic (C18:2) acid. In cultures incubated with greater than 50 mg/L oleic (C18:1) acid, aceticlastic methanogenic inhibition was observed for a short time period.

  18. PCR-based detection of resistance genes in anaerobic bacteria isolated from intra-abdominal infections.

    Science.gov (United States)

    Tran, Chau Minh; Tanaka, Kaori; Watanabe, Kunitomo

    2013-04-01

    Little information is available on the distribution of antimicrobial resistance genes in anaerobes in Japan. To understand the background of antimicrobial resistance in anaerobes involved in intra-abdominal infections, we investigated the distribution of eight antimicrobial resistance genes (cepA, cfiA, cfxA, ermF, ermB, mefA, tetQ, and nim) and a mutation in the gyrA gene in a total of 152 organisms (Bacteroides spp., Prevotella spp., Fusobacterium spp., Porphyromonas spp., Bilophila wadsworthia, Desulfovibrio desulfuricans, Veillonella spp., gram-positive cocci, and non-spore-forming gram-positive bacilli) isolated between 2003 and 2004 in Japan. The cepA gene was distributed primarily in Bacteroides fragilis. Gene cfxA was detected in about 9 % of the Bacteroides isolates and 75 % of the Prevotella spp. isolates and did not appear to contribute to cephamycin resistance. Two strains of B. fragilis contained the metallo-β-lactamase gene cfiA, but they did not produce the protein product. Gene tetQ was detected in about 81, 44, and 63 % of B. fragilis isolates, other Bacteroides spp., and Prevotella spp. isolates, respectively. The ermF gene was detected in 25, 13, 56, 64, and 16 % of Bacteroides spp., Prevotella spp., Fusobacterium spp., B. wadsworthia, and anaerobic cocci, respectively. Gene mefA was found in only 10 % of the B. fragilis strains and 3 % of the non-B. fragilis strains. Genes nim and ermB were not detected in any isolate. Substitution at position 82 (Ser to Phe) in gyrA was detected in B. fragilis isolates that were less susceptible or resistant to moxifloxacin. This study is the first report on the distribution of resistance genes in anaerobes isolated from intra-abdominal infections in Japan. We expect that the results might help in understanding the resistance mechanisms of specific anaerobes.

  19. Interaction of neptunium with humic acid and anaerobic bacteria

    International Nuclear Information System (INIS)

    Kubota, Takumi; Sasaki, Takayuki; Kudo, Akira

    2002-01-01

    Humic acid and bacteria play an important role in the migration of radionuclides in groundwaters. The interaction of neptunium with humic acid and anaerobic bacteria has been investigated by liquid/liquid and solid/liquid extraction systems. For liquid/liquid extraction, the apparent complex formation constant, β α was obtained from the distribution between two phases of neptunium. For solid/liquid extraction, the ratio of sorption to bacteria, K d , was measured. K d of humic acid can be evaluated from β α . The large value of β α and K d means strong interaction of neptunium with organisms. In order to examine the effect of the nature of organism on interaction, the interaction with humic acid was compared to that with non-sterilized or sterilized mixed anaerobic bacteria. The value of β α of humate depended on neptunium ion concentration as well as pH, which showed the effect of polyelectrolyte properties and heterogeneous composition of humic acid. The comparison of interaction with humic acid and bacteria indicated that the K d value of humic acid was larger than that of bacteria and more strongly depend on pH. (author)

  20. [Markers of antimicrobial drug resistance in the most common bacteria of normal facultative anaerobic intestinal flora].

    Science.gov (United States)

    Plavsić, Teodora

    2011-01-01

    Bacteria of normal intestinal flora are frequent carriers of markers of antimicrobial drug resistance. Resistance genes may be exchanged with other bacteria of normal flora as well as with pathogenic bacteria. The increase in the number of markers of resistance is one of the major global health problems, which induces the emergence of multi-resistant strains. The aim of this study is to confirm the presence of markers of resistance in bacteria of normal facultative anaerobic intestinal flora in our region. The experiment included a hundred fecal specimens obtained from a hundred healthy donors. A hundred bacterial strains were isolated (the most numerous representatives of the normal facultative-anaerobic intestinal flora) by standard bacteriological methods. The bacteria were cultivated on Endo agar and SS agar for 24 hours at 37 degrees C. Having been incubated, the selected characteristic colonies were submitted to the biochemical analysis. The susceptibility to antimicrobial drugs was tested by standard disc diffusion method, and the results were interpreted according to the Standard of Clinical and Laboratory Standards Institute 2010. The marker of resistance were found in 42% of the isolated bacteria. The resistance was the most common to ampicillin (42% of isolates), amoxicillin with clavulanic acid (14% of isolates), cephalexin (14%) and cotrimoxazole (8%). The finding of 12 multiresistant strains (12% of isolates) and resistance to ciprofloxacin were significant. The frequency of resistance markers was statistically higher in Klebsiella pneumoniae compared to Escherichia coli of normal flora. The finding of a large number of markers of antimicrobial drug resistance among bacteria of normal intestinal flora shows that it is necessary to begin with systematic monitoring of their antimicrobial resistance because it is an indicator of resistance in the population.

  1. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  2. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    International Nuclear Information System (INIS)

    Cervantes, Francisco J.; Mancilla, Ana Rosa; Toro, E. Emilia Rios-del; Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia

    2011-01-01

    Highlights: → Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. → Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. → Several species from classes β-, δ- and γ-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 μM of benzene were degraded, which corresponds to 279 ± 27 micro-electron equivalents (μEq) L -1 , linked to the reduction of 619 ± 81 μEq L -1 of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two γ-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes β-, δ- and γ-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  3. Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA

    Science.gov (United States)

    Isabella, Vincent M.; Clark, Virginia L.

    2011-01-01

    SUMMARY Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamiliy of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated fatty acid palmitate. Gonococcal fatty acid profiles confirmed that NGO1024 was involved in UFA synthesis anaerobically, but not aerobically, demonstrating that gonococci contain two distinct pathways for the production of UFAs, with a yet unidentified aerobic mechanism, and an anaerobic mechanism involving NGO1024. Expression of genes involved in classical anaerobic UFA synthesis, fabA, fabM, and fabB, was toxic in gonococci and unable to complement a NGO1024 mutation, suggesting that the chemistry involved in gonococcal anaerobic UFA synthesis is distinct from that of the classical pathway. NGO1024 homologs, which we suggest naming UfaA, form a distinct lineage within the 2-nitropropane dioxygenase-like superfamily, and are found in many facultative and obligate anaerobes that produce UFAs but lack fabA, suggesting that UfaA is part of a widespread pathway involved in UFA synthesis. PMID:21895795

  4. Anaerobic acidification of sugar-containing wastewater for biotechnological production of organic acids and ethanol.

    Science.gov (United States)

    Darwin; Charles, Wipa; Cord-Ruwisch, Ralf

    2018-05-03

    Anaerobic acidification of sugars can produce some useful end-products such as alcohol, volatile fatty acids (e.g. acetate, propionate, and butyrate) and lactic acid. The production of end-products is highly dependent on factors including pH, temperature, hydraulic retention time and the types of sugar being fermented. Results of this current study indicate that the pH and hydraulic retention time played significant roles in determining the end products from the anaerobic acidification of maltose and glucose. Under uncontrolled pH, the anaerobic acidification of maltose ceased when pH in the reactor dropped below 5 while anaerobic acidification of glucose continued and produced ethanol as the main end-product. Under controlled pH, lactic acid was found to be the dominant end-product produced from both maltose and glucose at pH 5. Acetate was the main end-product from both maltose and glucose fermented at neutral pH (6 and 7). Short hydraulic retention time (HRT) of 2 days could induce the production of ethanol from the anaerobic acidification of glucose. However, the anaerobic acidification of maltose could stop when short HRT of 2 days was applied in the reactor. This finding is significant for industrial fermentation and waste management systems, and selective production of different types of organic acids could be achieved by managing pH and HRT in the reactor.

  5. High prevalence and resistance rates to antibiotics in anaerobic bacteria in specimens from patients with chronic balanitis.

    Science.gov (United States)

    Boyanova, Lyudmila; Mitev, Angel; Gergova, Galina; Mateev, Grisha; Mitov, Ivan

    2012-08-01

    Aim of the study was to assess both prevalence and antibiotic resistance in anaerobic bacteria from glans penis skin of 70 adults. Strain susceptibility was determined by breakpoint susceptibility test or E test. In 9 asymptomatic, 48 untreated and 13 treated symptomatic patients, anaerobes were found in 22.2%, 70.8% and 53.3%, respectively. Gram-positive strains (GPAs) were 2.2-fold more common than Gram-negative ones. Prevalent Gram-negative (GNAs) and GPAs were Prevotella spp. and anaerobic cocci, respectively. Clostridium difficile strain was found in an untreated patient. In GNAs, resistance rates to amoxicillin, metronidazole, clindamycin, tetracycline, levofloxacin, and amoxicillin/clavulanate were 42.1, 0, 52.6, 53.3, 86.7 and 5.2%, respectively. In GPAs, the resistance rates to metronidazole, clindamycin, tetracycline, levofloxacin and amoxicillin/clavulanate were 18.2, 34.1, 52.6, 36.8 and 0%, respectively. In conclusion, anaerobes were 1.6-fold more frequent in untreated symptomatic patients compared with other patients, suggesting their participation in development of chronic balanitis. GPAs were more common than GNAs. The resistance rates to amoxicillin, clindamycin, tetracycline, and levofloxacin were high. Most active agents were metronidazole and amoxicillin/clavulanate. Resistance in anaerobes varies according to sites of specimens and years of study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Analytical study of fatty acids in bioreactor of an anaerobic treatment of distillery effluent

    International Nuclear Information System (INIS)

    Shah, F.A.; Pathan, M.I.

    2005-01-01

    An anaerobic digestion in bioreactors, offers a two-fold benefit: pollution potential reduction and biogas production. In this study, fatty acids in an anaerobic reactor are studied. The reactor exhibits a notable variation at different corks (1-6). The concentrations for both acetic acid and propionic acid are at maximum range at cork 2 and 5. For isobutyric acid; it is maximum at 1 and 2 corks. Butyric acid is maximum at 5; isovaleric acid is maximum at cork-2. This shows that cork-2 location has its maximum activity for fatty acids. Being nearest to the agitator this location has maximum agitation and resulted more formation of the fatty acids. This acidic effect will ultimately affect the reactor output for Biogas generation. (author)

  7. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach.

    Science.gov (United States)

    Zhang, Tong; Yang, Ying; Pruden, Amy

    2015-09-01

    As antibiotic resistance continues to spread globally, there is growing interest in the potential to limit the spread of antibiotic resistance genes (ARGs) from wastewater sources. In particular, operational conditions during sludge digestion may serve to discourage selection of resistant bacteria, reduce horizontal transfer of ARGs, and aid in hydrolysis of DNA. This study applied metagenomic analysis to examine the removal efficiency of ARGs through thermophilic and mesophilic anaerobic digestion using bench-scale reactors. Although the relative abundance of various ARGs shifted from influent to effluent sludge, there was no measureable change in the abundance of total ARGs or their diversity in either the thermophilic or mesophilic treatment. Among the 35 major ARG subtypes detected in feed sludge, substantial reductions (removal efficiency >90%) of 8 and 13 ARGs were achieved by thermophilic and mesophilic digestion, respectively. However, resistance genes of aadA, macB, and sul1 were enriched during the thermophilic anaerobic digestion, while resistance genes of erythromycin esterase type I, sul1, and tetM were enriched during the mesophilic anaerobic digestion. Efflux pump remained to be the major antibiotic resistance mechanism in sludge samples, but the portion of ARGs encoding resistance via target modification increased in the anaerobically digested sludge relative to the feed. Metagenomic analysis provided insight into the potential for anaerobic digestion to mitigate a broad array of ARGs.

  8. [Identification of anaerobic gram-negative bacilli isolated from various clinical specimens and determination of antibiotic resistance profiles with E-test methods].

    Science.gov (United States)

    Demir, Cengiz; Keşli, Recep

    2018-01-01

    The aim of this study was to identify gram-negative anaerobic bacilli isolated from various clinical specimens that were obtained from patients with suspected anaerobic infections and to determine the antibiotic resistance profiles by using the antibiotic concentration gradient method. The study was performed in Afyon Kocatepe University Ahmet Necdet Sezer Research and Practice Hospital, Medical Microbiology Laboratory between 1 November 2014 and 30 October 2015. Two hundred and seventyeight clinical specimens accepted for anaerobic culture were enrolled in the study. All the samples were cultivated anaerobically by using Schaedler agar with 5% defibrinated sheep blood and Schaedler broth. The isolated anaerobic gram-negative bacilli were identified by using both the conventional methods and automated identification system (VITEK 2, bioMerieux, France). Antibiotic susceptibility tests were performed with antibiotic concentration gradient method (E-test, bioMerieux, France); against penicillin G, clindamycin, cefoxitin, metronidazole, moxifloxacin, imipenem, meropenem, ertapenem and doripenem for each isolate. Of the 28 isolated anaerobic gram-negative bacilli; 14 were identified as Bacteroides fragilis group, 9 were Prevotella spp., and 5 were Fusobacterium spp. The highest resistance rate was found against penicillin (78.5%) and resistance rates against clindamycin and cefoxitin were found as 17.8% and 21.4%, respectively. No resistance was found against metronidazole, moxifloxacin, imipenem, meropenem, ertapenem and doripenem. As a result, isolation and identification of anaerobic bacteria are difficult, time-consuming and more expensive when compared with the cost of aerobic culture. The rate of anaerobic bacteria isolation may be increased by obtaining the appropriate clinical specimen and appropriate transportation of these specimens. We believe that the data obtained from the study in our center may offer benefits for the follow up and treatment of infections

  9. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer.

    Science.gov (United States)

    Huang, Haining; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Wan, Rui; Yang, Shouye

    2016-10-01

    Although pH value has been widely regarded as an important factor that affects resource recovery of waste sludge, the potential influence of diverse pHs on the distribution of tetracycline resistance genes (TRGs) during sludge anaerobic treatment is largely unknown. Here we reported that in the range of pH 4-10, 0.58-1.18 log unit increase of target TRGs was observed at pH 4, compared with that at pH 7, while 0.70-1.31 log unit further removal were obtained at pH 10. Mechanism study revealed that varied pHs not only altered the community structures of tetracycline resistant bacteria (TRB), but also changed their relative abundances, benefitting the propagation (acidic pHs) or attenuation (alkaline pHs) of TRB. Further investigation indicated that the amount and gene-possessing abilities of key genetic vectors for horizontal TRGs transfer were greatly promoted at acidic pHs but restricted under alkaline conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Anaerobic bacteria and antibiotics: What kind of unexpected resistance could I find in my laboratory tomorrow?

    Science.gov (United States)

    Dubreuil, L; Odou, M F

    2010-12-01

    The purpose of this article is to set out some important considerations on the main emerging antibiotic resistance patterns among anaerobic bacteria. The first point concerns the Bacteroides fragilis group and its resistance to the combination of β-lactam+β-lactamase inhibitor. When there is overproduction of cephalosporinase, it results in increased resistance to the β-lactams while maintaining susceptibility to β-lactams/β-lactamase inhibitor combinations. However, if another resistance mechanism is added, such as a loss of porin, resistances to β-lactam+β-lactamase inhibitor combinations may occur. The second point is resistance to metronidazole occurring due to nim genes. PCR detection of nim genes alone is not sufficient for predicting resistance to metronidazole; actual MIC determinations are required. Therefore, it can be assumed that other resistance mechanisms can also be involved. Although metronidazole resistance remains rare for the B. fragilis group, it has nevertheless been detected worldwide and also been observed spreading to other species. In some cases where there is only a decreased susceptibility, clinical failures may occur. The last point concerns resistance of Clostridium species to glycopeptides and lipopeptides. Low levels of resistance have been detected with these antibiotics. Van genes have been detected not only in clostridia but also in other species. In conclusion, antibiotic resistance involves different mechanisms and affects many anaerobic species and is spreading worldwide. This demonstrates the need to continue with antibiotic resistance testing and surveys in anaerobic bacteria. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Dynamics of the anaerobic process: Effects of volatile fatty acids

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    A complex and fast dynamic response of the anaerobic biogas system was observed when the system was subjected to pulses of volatile fatty acids (VFAs). It was shown that a pulse of specific VFAs into a well-functioning continuous stirred tank reactor (CSTR) system operating on cow manure affected...... and the history of the reactor process. It should be pointed out that the observed dynamics of VFA responses were based on hourly measurements, meaning that the response duration was much lower than the hydraulic retention time, which exceeds several days in anaerobic CSTR systems....

  12. Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion.

    Science.gov (United States)

    Resende, J A; Diniz, C G; Silva, V L; Otenio, M H; Bonnafous, A; Arcuri, P B; Godon, J-J

    2014-12-01

    This study was focused on evaluating the persistency of antimicrobial resistance (AR) genes and putative pathogenic bacteria in an anaerobic digesters operating at mesophilic ambient temperature, in two different year seasons: summer and winter. Abundance and dynamic of AR genes encoding resistance to macrolides (ermB), aminoglycosides (aphA2) and beta-lactams (blaTEM -1 ) and persistency of potentially pathogenic bacteria in pilot-scale anaerobic digesters were investigated. AR genes were determined in the influent and effluent in both conditions. Overall, after 60 days, reduction was observed for all evaluated genes. However, during the summer, anaerobic digestion was more related to the gene reduction as compared to winter. Persistency of potentially pathogenic bacteria was also evaluated by metagenomic analyses compared to an in-house created database. Clostridium, Acinetobacter and Stenotrophomonas were the most identified. Overall, considering the mesophilic ambient temperature during anaerobic digestion (summer and winter), a decrease in pathogenic bacteria detection through metagenomic analysis and AR genes is reported. Although the mesophilic anaerobic digestion has been efficient, the results may suggest medically important bacteria and AR genes persistency during the process. This is the first report to show AR gene dynamics and persistency of potentially pathogenic bacteria through metagenomic approach in cattle manure ambient temperature anaerobic digestion. © 2014 The Society for Applied Microbiology.

  13. The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance.

    Science.gov (United States)

    McNamara, Patrick J; LaPara, Timothy M; Novak, Paige J

    2014-07-01

    Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan.

  14. Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids

    Science.gov (United States)

    Cortinas, I.; Field, J.A.; Kopplin, M.; Garbarino, J.R.; Gandolfi, A.J.; Sierra-Alvarez, R.

    2006-01-01

    Large quantities of arsenic are introduced into the environment through land application of poultry litter containing the organoarsenical feed additive roxarsone (3-nitro-4-hydroxyphenylarsonic acid). The objective of this study was to evaluate the bioconversion of roxarsone and related N-substituted phenylarsonic acid derivatives under anaerobic conditions. The results demonstrate that roxarsone is rapidly transformed in the absence of oxygen to the corresponding aromatic amine, 4-hydroxy-3-aminophenylarsonic acid (HAPA). The formation of HAPA is attributable to the facile reduction of the nitro group. Electron-donating substrates, such as hydrogen gas, glucose, and lactate, stimulated the rate of nitro group reduction, indicating a microbial role. During long-term incubations, HAPA and the closely related 4-aminophenylarsonic acid (4-APA) were slowly biologically eliminated by up to 99% under methanogenic and sulfate-reducing conditions, whereas little or no removal occurred in heat-killed inoculum controls. Arsenite and, to a lesser extent, arsenate were observed as products of the degradation. Freely soluble forms of the inorganic arsenical species accounted for 19-28% of the amino-substituted phenylarsonic acids removed. This constitutes the first report of a biologically catalyzed rupture of the phenylarsonic group under anaerobic conditions. ?? 2006 American Chemical Society.

  15. Susceptibility of anaerobic bacteria in Auckland: 1991-1996.

    Science.gov (United States)

    Shore, K P; Pottumarthy, S; Morris, A J

    1999-11-12

    To determine the antimicrobial susceptibility of local anaerobic bacteria. The antimicrobial susceptibility of 357 obligate anaerobes collected between 1991 and 1997 was determined by a standard agar dilution method. Isolates tested included Bacteroides spp. 131, Fusobacterium spp. 12, Prevotella spp. 13, Veillonella spp. 5, Clostridium perfringens 27, other Clostridium spp. 29, Propionibacterium spp. 57, Actinomyces spp. 7, other non-sporing gram-positive bacilli 28 and Peptostreptococcus spp. 48. Ten antimicrobials were tested: penicillin, amoxycillin/ clavulanic acid, pipercillin/tazobactam, ceftriaxone, cefoxitin, cefotetan, imipenem, meropenem, clindamycin and metronidazole. Imipenem, pipercillin/tazobactam, meropenem and amoxycillin/clavulanic acid were active against virtually all anaerobes tested. Metronidazole was active against all anaerobic gram-negative bacteria and Clostridium spp., but had variable activity against other anaerobes. Cefoxitin was the most active cephalosporin against Bacteroides spp., with 76%, 64% and 15% of Bacteroides spp. being susceptible to cefoxitin, cefotetan and ceftriaxone, respectively. Penicillin had poor activity against anaerobic gram negative bacilli. Actinomyces and Propionibacterium spp. were susceptible to all antimicrobials tested except metronidazole. Variable results were obtained with other antimicrobial-organism combinations. Comparison of results with data from a previously published survey showed little change in susceptibility except for increased resistance of Bacteroides fragilis to ceftriaxone and Clostridium species (not C perfringens) to clindamycin. Our results update the local susceptibility profile of anaerobic bacteria and may be considered when choosing an antimicrobial agent for prophylaxis or treatment of anaerobic infections.

  16. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-05-01

    This study evaluated the link between anaerobic bacterial diversity and, the biodegradation of antibiotic combinations and assessed how amending antibiotic combination and increasing concentration of antibiotics in a stepwise fashion influences the development of resistance genes in anaerobic reactors. The biodegradation, sorption and occurrence of the known antibiotic resistance genes (ARGs) of erythromycin and tetracycline were investigated using the processes of UV-HPLC and qPCR analysis respectively. Ion Torrent sequencing was used to detect microbial community changes in response to the addition of antibiotics. The overall results indicated that changes in the structure of a microbial community lead to changes in biodegradation capacity, sorption of antibiotics combinations and occurrence of ARGs. The enhanced biodegradation efficiency appeared to generate variations in the structure of the bacterial community. The results suggested that controlling the ultimate Gram-negative bacterial community, especially Acinetobacter-related populations, may promote the successful biodegradation of antibiotic combinations and reduce the occurrence of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Abundance and distribution of Macrolide-Lincosamide-Streptogramin resistance genes in an anaerobic-aerobic system treating spiramycin production wastewater.

    Science.gov (United States)

    Liu, Miaomiao; Ding, Ran; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Zhang, Tong; Yang, Min

    2014-10-15

    The behaviors of the Macrolide-Lincosamide-Streptogramin (MLS) resistance genes were investigated in an anaerobic-aerobic pilot-scale system treating spiramycin (SPM) production wastewater. After screening fifteen typical MLS resistance genes with different mechanisms using conventional PCR, eight detected genes were determined by quantitative PCR, together with three mobile elements. Aerobic sludge in the pilot system exhibited a total relative abundance of MLS resistance genes (per 16S rRNA gene) 2.5 logs higher than those in control samples collected from sewage and inosine wastewater treatment systems (P resistance genes. However, the total relative gene abundance in anaerobic sludge (4.3 × 10(-1)) was lower than that in aerobic sludge (3.7 × 10(0)) despite of the higher SPM level in anaerobic reactor, showing the advantage of anaerobic treatment in reducing the production of MLS resistance genes. The rRNA methylase genes (erm(B), erm(F), erm(X)) were the most abundant in the aerobic sludge (5.3 × 10(-1)-1.7 × 10(0)), followed by esterase gene ere(A) (1.3 × 10(-1)) and phosphorylase gene mph(B) (5.7 × 10(-2)). In anaerobic sludge, erm(B), erm(F), ere(A), and msr(D) were the major ones (1.2 × 10(-2)-3.2 × 10(-1)). These MLS resistance genes (except for msr(D)) were positively correlated with Class 1 integron (r(2) = 0.74-0.93, P < 0.05), implying the significance of horizontal transfer in their proliferation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. [Activity of doripenem against anaerobic bacteria].

    Science.gov (United States)

    Dubreuil, L; Neut, C; Mahieux, S; Muller-Serieys, C; Jean-Pierre, H; Marchandin, H; Soussy, C J; Miara, A

    2011-04-01

    This study examines the activity of doripenem, a new carbapenem compound compared with amoxicillin-clavulanic acid, piperacillin+tazobactam, imipenem, clindamycin and metronidazole against 316 anaerobes. Inoculum preparation and agar dilution method were performed according to the CLSI method for anaerobes (M11A7). At a concentration of 4μg/ml doripenem and imipenem (IMP) inhibited 122 (96 %) and 126 (99 %) strains of the Bacteroides fragilis group, respectively. In contrast, doripenem appeared more potent than IMP against Gram-positive anaerobes inhibiting at the same concentration of 4μg/ml 145/145 strains (100 %) versus 115/145 for IMP (79.3 %). Against 316 anaerobic strains, the carbapenem doripenem had an MIC(50) of 0.25μg/ml and an MIC(90) of 2μg/ml. Results were similar to those for imipenem (MIC(50) of 0.125μg/ml and MIC(90) of 4μg/ml). If we consider the resistant breakpoints of the two carbapenems as defined by EUCAST, the resistance rate for doripenem (MIC>4μg/ml) 1.6 % is similar to that of imipenem (MIC>8μg/ml) 1.3 %. Thus independently of the PK/PD parameters the two carbapenems demonstrated very close activity; doripenem was more potent on Gram-positive anaerobes and slightly less potent against Gram-negative anaerobes mainly the B. fragilis group. Further clinical studies are needed to assess its usefulness in patients. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  19. Fast Startup of Semi-Pilot-Scale Anaerobic Digestion of Food Waste Acid Hydrolysate for Biogas Production.

    Science.gov (United States)

    Huang, Chao; Zhao, Cheng; Guo, Hai-Jun; Wang, Can; Luo, Mu-Tan; Xiong, Lian; Li, Hai-Long; Chen, Xue-Fang; Chen, Xin-De

    2017-12-27

    In this study, a fast startup of semi-pilot-scale anaerobic digestion of food waste acid hydrolysate for biogas production was carried out for the first time. During the period of fast startup, more than 85% of chemical oxygen demand (COD) can be degraded, and even more than 90% of COD can be degraded during the later stage of anaerobic digestion. During this anaerobic digestion process, the biogas yield, the methane yield, and the CH 4 content in biogas were 0.542 ± 0.056 m 3 /kg COD consumption , 0.442 ± 0.053 m 3 /kg COD consumption , and 81.52 ± 3.05%, respectively, and these values were high and stable. Besides, the fermentation pH was very stable, in which no acidification was observed during the anaerobic digestion process (outlet pH was 7.26 ± 0.05 for the whole anaerobic digestion). Overall, the startup of this anaerobic digestion can be completed in a short period (the system can be stable 2 days after the substrate was pumped into the bioreactor), and anaerobic digestion of food waste acid hydrolysate is feasible and attractive for industrial treatment of food waste and biogas production.

  20. Microbial electrochemical monitoring of volatile fatty acids during anaerobic digestion

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Angelidaki, Irini; Zhang, Yifeng

    2016-01-01

    Volatile fatty acid (VFA) concentration is known as an important indicator to control and optimize anaerobic digestion (AD) process. In this study, an innovative VFA biosensor was developed based on the principle of a microbial desalination cell. The correlation between current densities and VFA...

  1. Modeling the fate of antibiotic resistance genes and class 1 integrons during thermophilic anaerobic digestion of municipal wastewater solids.

    Science.gov (United States)

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2015-10-19

    This study investigated the use of thermophilic anaerobic digestion for removing antibiotic resistance genes (ARGs) from residual municipal wastewater solids. Four laboratory-scale anaerobic digesters were operated in 8-day batch cycles at temperatures of 40, 56, 60, and 63 °C. Two tetracycline resistance genes (tet(W) and tet(X)), a fluoroquinolone resistance gene (qnrA), the integrase gene of class 1 integrons (intI1), 16S rRNA genes of all Bacteria, and 16S rRNA genes of methanogens were quantified using real-time quantitative PCR. ARG and intI1 quantities decreased at all temperatures and were described well by a modified form of the Collins-Selleck disinfection kinetic model. The magnitudes of Collins-Selleck kinetic parameters were significantly greater at thermophilic temperatures compared to 40 °C, but few statistically significant differences were observed among these parameters for the thermophilic anaerobic digesters. This model allows for the direct comparison of different operating conditions (e.g., temperature) on anaerobic digestion performance in mitigating the quantity of ARGs in wastewater solids and could be used to design full-scale anaerobic digesters to specifically treat for ARGs as a "pollutant" of concern.

  2. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion.

    Science.gov (United States)

    Wang, Rui; Chen, Meixue; Feng, Feng; Zhang, Junya; Sui, Qianwen; Tong, Juan; Wei, Yuansong; Wei, Dongbin

    2017-08-01

    As antibiotic and heavy metals are over used in the livestock industry, animal manure is a reservoir of antibiotic resistance genes (ARGs). Anaerobic digestion has been reported to have the potential to reduce ARGs. However, few studies investigated whether reduction of ARGs would be affected by different external pressures including antibiotics and heavy metals during anaerobic digestion. The purpose of this study was thus to investigate effects of both chlortetracycline (CTC) and Cu on reduction of ARGs, heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) during the swine manure anaerobic digestion. The results showed that the predominant ARGs (tetO, tetW, tetX, tetL) could be effectively reduced (approximately 1.00 log copies/g TS) through mesophilic anaerobic digestion. Microbial community evolution was the main driver. It was interesting that Treponema might indicate the termination of anaerobic digestion and compete with ARGs host bacteria. Addition of CTC, Cu and CTC+Cu affected microbial community change and hindered removal of ARGs, especially, CTC+Cu seriously affected Treponema and ARGs during anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater.

    Science.gov (United States)

    Christgen, Beate; Yang, Ying; Ahammad, S Z; Li, Bing; Rodriquez, D Catalina; Zhang, Tong; Graham, David W

    2015-02-17

    Effective domestic wastewater treatment is among our primary defenses against the dissemination of infectious waterborne disease. However, reducing the amount of energy used in treatment processes has become essential for the future. One low-energy treatment option is anaerobic-aerobic sequence (AAS) bioreactors, which use an anaerobic pretreatment step (e.g., anaerobic hybrid reactors) to reduce carbon levels, followed by some form of aerobic treatment. Although AAS is common in warm climates, it is not known how its compares to other treatment options relative to disease transmission, including its influence on antibiotic resistance (AR) in treated effluents. Here, we used metagenomic approaches to contrast the fate of antibiotic-resistant genes (ARG) in anaerobic, aerobic, and AAS bioreactors treating domestic wastewater. Five reactor configurations were monitored for 6 months, and treatment performance, energy use, and ARG abundance and diversity were compared in influents and effluents. AAS and aerobic reactors were superior to anaerobic units in reducing ARG-like sequence abundances, with effluent ARG levels of 29, 34, and 74 ppm (198 ppm influent), respectively. AAS and aerobic systems especially reduced aminoglycoside, tetracycline, and β-lactam ARG levels relative to anaerobic units, although 63 persistent ARG subtypes were detected in effluents from all systems (of 234 assessed). Sulfonamide and chloramphenicol ARG levels were largely unaffected by treatment, whereas a broad shift from target-specific ARGs to ARGs associated with multi-drug resistance was seen across influents and effluents. AAS reactors show promise for future applications because they can reduce more ARGs for less energy (32% less energy here), but all three treatment options have limitations and need further study.

  4. Monitoring of volatile fatty acids during anaerobic digestion using a microbial electrochemical sensor

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Angelidaki, Irini; Zhang, Yifeng

    2016-01-01

    Volatile fatty acid (VFA) concentration is known as an important indicator to control and optimize anaerobic digestion (AD) process. In this study, an innovative VFA biosensor was developed based on the principle of a microbial desalination cell. The bulk substrate was dosed into the middle chamber...... and reliable measurement of VFA levels during AD and other anaerobic processes. The outcomes will expand the application of bio-electrochemical system application....

  5. Development of antimicrobial resistance in the normal anaerobic microbiota during one year after administration of clindamycin or ciprofloxacin.

    Science.gov (United States)

    Rashid, Mamun-Ur; Weintraub, Andrej; Nord, Carl Erik

    2015-02-01

    Thirty healthy subjects (15 males and 15 females) were randomly assigned in three groups and clindamycin (150 mg qid) or ciprofloxacin (500 mg bid) or placebo was given for a 10-day period. Skin, nasal, saliva, faeces samples were collected at day - 1, day 11, 1 month, 2 months, 4 months and 12 months post administration for microbiological analysis. Ciprofloxacin or clindamycin had no impact on the anaerobic skin microbiota and the proportions of antibiotic resistant anaerobic bacteria were similar as in the placebo group. Ciprofloxacin had impact on the Propionibacterium acnes in the nasal microbiota that normalized after 1 month, however, ciprofloxacin-resistant P. acnes strains increased at month 2 and month 12. Clindamycin had no impact on the nasal microbiota. In the oropharyngeal microbiota, a higher proportion of ciprofloxacin resistant Veillonella was found, it lasting up to 12 months post dosing. In the clindamycin group, clindamycin-resistant Prevotella spp. were found in increased proportions compared to placebo at various time points except month 4 in the saliva samples. The relative proportion of ciprofloxacin-resistant Bifidobacteria increased in the faecal samples on day 11, 1 month, 4 months and 12 months post dosing compared to placebo. The proportion of clindamycin-resistant Bacteroides spp. increased at 1, 2, 4 and 12 months post dosing compared to placebo in the faecal samples. No Clostridium difficile was recovered from any of the samples from any of the volunteers at any visit. The concentrations of ciprofloxacin or clindamycin in the faeces were higher than the MICs for most of the organisms present in the normal microbiota. No obvious correlation between the groups in resistant patterns for anaerobic bacteria was observed. In conclusion, based on the microbiological data of the microbiota as well as the results of the bioassays for ciprofloxacin and clindamycin concentrations in the faecal samples, oral administration of ciprofloxacin

  6. Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment.

    Science.gov (United States)

    Tong, Juan; Liu, Jibao; Zheng, Xiang; Zhang, Junya; Ni, Xiaotang; Chen, Meixue; Wei, Yuansong

    2016-10-01

    The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    Science.gov (United States)

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  8. Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen

    Science.gov (United States)

    Sundset, Monica A.; Kohn, Alexandra; Mathiesen, Svein D.; Præsteng, Kirsti E.

    2008-08-01

    Reindeer are able to eat and utilize lichens as an important source of energy and nutrients. In the current study, the activities of antibiotic secondary metabolites including usnic, antranoric, fumarprotocetraric, and lobaric acid commonly found in lichens were tested against a collection of 26 anaerobic rumen bacterial isolates from reindeer ( Rangifer tarandus tarandus) using the agar diffusion method. The isolates were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequences. Usnic acid had a potent antimicrobial effect against 25 of the isolates, belonging to Clostridiales, Enterococci, and Streptococci. Isolates of Clostridia and Streptococci were also susceptible to atranoric and lobaric acid. However, one isolate (R3_91_1) was found to be resistant to usnic, antranoric, fumarprotocetraric, and lobaric acid. R3_91_1 was also seen invading and adhering to lichen particles when grown in a liquid anaerobic culture as demonstrated by transmission electron microscopy. This was a Gram-negative, nonmotile rod (0.2-0.7 × 2.0-3.5 μm) with a deoxyribonucleic acid G + C content of 47.0 mol% and main cellular fatty acids including 15:0 anteiso-dimethyl acetal (DMA), 16:0 iso-fatty acid methyl ester (FAME), 13:0 iso-3OH FAME, and 17:0 anteiso-FAME, not matching any of the presently known profiles in the MIDI database. Combined, the phenotypic and genotypic traits including the 16S rRNA gene sequence show that R3_91_1 is a novel species inside the order Clostridiales within the family Lachnospiraceae, for which we propose the name Eubacterium rangiferina. This is the first record of a rumen bacterium able to tolerate and grow in the presence of usnic acid, indicating that the rumen microorganisms in these animals have adapted mechanisms to deal with lichen secondary metabolites, well known for their antimicrobial and toxic effects.

  9. Shock resistance characteristic of a spiral symmetry stream anaerobic bio-reactor.

    Science.gov (United States)

    Chen, Xiaoguang; Dai, Ruobin; Xiang, Xinyi; Li, Gang; Xu, Zhengqi; Hu, Tao; Abdelgadir, Awad

    2016-01-01

    The shock resistance characteristic (SRC) of an anaerobic bioreactor characterizes the ability of the anaerobic community in the reactor to withstand violent change in the living environment. In comparison with an upflow anaerobic sludge blanket reactor (UASBR), the SRC of a spiral symmetry stream anaerobic bio-reactor (SSSAB) was systematically investigated in terms of removal efficiency, adsorption property, settling ability, flocculability and fluctuations in these parameters. A quantitative assessment method for SRC was also developed. The results indicated that the SSSAB showed better SRC than the UASBR. The average value (m value) of chemical oxygen demand removal rates of the SSSAB was 86.0%. The contact angle of granules in the SSSAB present gradient distribution, that is the m value of contact angle increasing from bottom (84.5°) to top (93.9°). The m value of the density at the upper and lower sections of the SSSAB were 1.0611 g·cm(-3) and 1.0423 g·cm(-3), respectively. The surface mean diameter of granules in the SSSAB increased from 1.164 to 1.292 mm during operation. The absolute m value of zeta potential of granular sludge at the upper and lower sections of the SSSAB were 40.4 mV and 44.9 mV, respectively. The weighted mean coefficient variance (C̅V̅) value indicated SSSAB was more stable than the UASBR.

  10. Amino Acid Transport in the Thermophilic Anaerobe Clostridium fervidus Is Driven by an Electrochemical Sodium Gradient

    NARCIS (Netherlands)

    SPEELMANS, G; POOLMAN, B; KONINGS, WN

    Amino acid transport was studied in membranes of the peptidolytic, thermophitic, anaerobic bacterium Clostridium fervidus. Uptake of the negatively charged amino acid L-glutamate, the neutral amino acid L-serine, and the positively charged amino acid L-arginine was examined in membrane vesicles

  11. Antimicrobial resistance determinants among anaerobic bacteria isolated from footrot.

    Science.gov (United States)

    Lorenzo, María; García, Nuria; Ayala, Juan Alfonso; Vadillo, Santiago; Píriz, Segundo; Quesada, Alberto

    2012-05-25

    Antibiotic resistance has been evaluated among 36 Gram negative and anaerobic bacilli (10 Bacteroides, 11 Prevotella, 7 Porphyromonas and 8 Fusobacterium strains) isolated from clinical cases of caprine and ovine footrot (necrotic pododermatitis). The initial analysis on this bacterial consortium evaluates the relationships existing among antimicrobial resistance determinants, phenotype expression and mobilization potential. The Bacteroides strains were generally resistant to penicillins, first-generation cephalosporins, tetracycline and erythromycin, and expressed low level of β-lactamase activity. The main determinants found among the Bacteroides strains were cepA and tetQ genes, conferring resistance to β-lactams and tetracycline, respectively. A general susceptibility to β-lactams was shown for most Prevotella, Porphyromonas and Fusobacterium strains, where none of the β-lactamase genes described in Bacteroides was detected. Resistance to tetracycline and/or erythromycin was found among the three bacterial groups. Although tetQ genes were detected for several Prevotella and Porphyromonas strains, a unique ermF positive was revealed among Prevotella strains. The expression of resistance markers was not related with the polymorphism of their coding sequences. However, the finding of sequence signatures for conjugative transposons in the vicinities of tetQ and ermF suggests a mobilization potential that might have contributed to the spread of antimicrobial resistance genes. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M J [Univ. of Illinois, Urbana; Bryant, M P; Pfennig, N

    1979-01-01

    A new species of anaerobic bacterium that degrades the even-numbered carbon fatty acids, butyrate, caproate and caprylate, to acetate and H/sub 2/ and the odd-numbered carbon fatty acids, valerate and heptanoate, to acetate, propionate and H/sub 2/ was obtained in coculture with either an H/sub 2/-utilizing methanogen or H/sub 2/-utilizing desulfovibrio. The organism could be grown only in syntrophic association with the H/sub 2/-utilizer and no other energy sources or combination of electron donor and acceptors were utilized. It was a Gram-negative helical rod with 2 to 8 flagella, about 20 nm in diameter, inserted in a linear fashion about 130 nm or more apart along the concave side of the cell. It grew with a generation time of 84 h in co-culture with Methanospirillum hungatii and was present in numbers of at least 4.5 x 10/sup -6/ per g of anaerobic digest or sludge.

  13. Electrical resistivity tomography to quantify in situ liquid content in a full-scale dry anaerobic digestion reactor.

    Science.gov (United States)

    André, L; Lamy, E; Lutz, P; Pernier, M; Lespinard, O; Pauss, A; Ribeiro, T

    2016-02-01

    The electrical resistivity tomography (ERT) method is a non-intrusive method widely used in landfills to detect and locate liquid content. An experimental set-up was performed on a dry batch anaerobic digestion reactor to investigate liquid repartition in process and to map spatial distribution of inoculum. Two array electrodes were used: pole-dipole and gradient arrays. A technical adaptation of ERT method was necessary. Measured resistivity data were inverted and modeled by RES2DINV software to get resistivity sections. Continuous calibration along resistivity section was necessary to understand data involving sampling and physicochemical analysis. Samples were analyzed performing both biochemical methane potential and fiber quantification. Correlations were established between the protocol of reactor preparation, resistivity values, liquid content, methane potential and fiber content representing liquid repartition, high methane potential zones and degradations zones. ERT method showed a strong relevance to monitor and to optimize the dry batch anaerobic digestion process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Anaerobic digestion of tuna waste for the production of volatile fatty acids.

    Science.gov (United States)

    Bermúdez-Penabad, Noela; Kennes, Christian; Veiga, Maria C

    2017-10-01

    Fish canning industries generate a significant amount of solid waste that can be digested anaerobically into volatile fatty acids (VFA). The aim of this research was to study the effect of various pHs, ranging from 5.0 to 10.0, and percentage of total solids on the anaerobic digestion of tuna waste into VFA, both in batch assays and continuous reactor. The production of VFA was affected by pH and was significantly higher under alkaline conditions. At pH 8.0, the VFA production reached 30,611mgCOD/L. The VFA mainly consisted of acetic, propionic, n-butyric and i-valeric acids. Acetic acid was the main product at all the pHs tested. In terms of total solids (TS) the best results were obtained with 2.5% total solids, reaching 0.73gCOD VFA /gCOD waste . At higher TS concentrations (5 and 8% TS) lower yields were reached probably due to inhibition at high VFA concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Performance and microbial community variations of anaerobic digesters under increasing tetracycline concentrations

    KAUST Repository

    Xiong, Yanghui; Harb, Moustapha; Hong, Pei-Ying

    2017-01-01

    The impact of different concentrations of tetracycline on the performance of anaerobic treatment was evaluated. Results revealed that for all of the tested tetracycline concentrations, no major sustained impact on methane production was observed. Instead, a significant increase in propionic acid was observed in the reactor subjected to the highest concentration of tetracycline (20 mg/L). Microbial community analyses suggest that an alternative methanogenic pathway, specifically that of methanol-utilizing methanogens, may be important for ensuring the stability of methane production in the presence of high tetracycline concentrations. In addition, the accumulation of propionate was due to an increase in volatile fatty acids (VFA)-producing bacteria coupled with a reduction in propionate utilizers. An increase in the abundance of tetracycline resistance genes associated with ribosomal protection proteins was observed after 30 days of exposure to high concentrations of tetracycline, while other targeted resistance genes showed no significant changes. These findings suggest that anaerobic treatment processes can robustly treat wastewater with varying concentrations of antibiotics while also deriving value-added products and minimizing the dissemination of associated antibiotic resistance genes.

  16. Performance and microbial community variations of anaerobic digesters under increasing tetracycline concentrations

    KAUST Repository

    Xiong, Yanghui

    2017-04-01

    The impact of different concentrations of tetracycline on the performance of anaerobic treatment was evaluated. Results revealed that for all of the tested tetracycline concentrations, no major sustained impact on methane production was observed. Instead, a significant increase in propionic acid was observed in the reactor subjected to the highest concentration of tetracycline (20 mg/L). Microbial community analyses suggest that an alternative methanogenic pathway, specifically that of methanol-utilizing methanogens, may be important for ensuring the stability of methane production in the presence of high tetracycline concentrations. In addition, the accumulation of propionate was due to an increase in volatile fatty acids (VFA)-producing bacteria coupled with a reduction in propionate utilizers. An increase in the abundance of tetracycline resistance genes associated with ribosomal protection proteins was observed after 30 days of exposure to high concentrations of tetracycline, while other targeted resistance genes showed no significant changes. These findings suggest that anaerobic treatment processes can robustly treat wastewater with varying concentrations of antibiotics while also deriving value-added products and minimizing the dissemination of associated antibiotic resistance genes.

  17. Performance and microbial community variations of anaerobic digesters under increasing tetracycline concentrations.

    Science.gov (United States)

    Xiong, Yanghui; Harb, Moustapha; Hong, Pei-Ying

    2017-07-01

    The impact of different concentrations of tetracycline on the performance of anaerobic treatment was evaluated. Results revealed that for all of the tested tetracycline concentrations, no major sustained impact on methane production was observed. Instead, a significant increase in propionic acid was observed in the reactor subjected to the highest concentration of tetracycline (20 mg/L). Microbial community analyses suggest that an alternative methanogenic pathway, specifically that of methanol-utilizing methanogens, may be important for ensuring the stability of methane production in the presence of high tetracycline concentrations. In addition, the accumulation of propionate was due to an increase in volatile fatty acids (VFA)-producing bacteria coupled with a reduction in propionate utilizers. An increase in the abundance of tetracycline resistance genes associated with ribosomal protection proteins was observed after 30 days of exposure to high concentrations of tetracycline, while other targeted resistance genes showed no significant changes. These findings suggest that anaerobic treatment processes can robustly treat wastewater with varying concentrations of antibiotics while also deriving value-added products and minimizing the dissemination of associated antibiotic resistance genes.

  18. Anaerobic biodegradation of halogenated and nonhalogenated N-, s-, and o-heterocyclic compounds in aquifer slurries

    Science.gov (United States)

    Adrian, Neal R.; Suflita, Joseph M.

    1994-01-01

    The fate of several halogenated and nonhalogenated heterocyclic compounds in anoxic aquifer slurries was investigated Substrate depletion and methane formation were monitored in serum bottle incubations by HPLC and GC, respectively Pyridine, pyrimidine, thiophene, and furan were not mineralized following an 11-month incubation, but the corresponding carboxylated or oxygenated compounds were That is, >74% of the theoretically expected amount of methane was recovered from nicotinic acid, uracil, or 2-furoic acid Chlorinated derivatives, like 2 chloro- or 6-chloronicotinic acid, as well as 4 chloro- and 5-chlorouracil resisted mineralization However, 5-bromouracil was reductively dehalogenated to stoichiometric amounts of uracil, whereas 2-chloropyrimidine was metabolized to a more polar unidentified compound that resisted further anaerobic biodegradation Microorganisms acclimated to 5-bromouracil were unable to transform 4 chloro or 5 chlorouracil These findings illustrate how the structure of heterocyclic contaminants influences their susceptibility to anaerobic decay

  19. Aerobic and Anaerobic Energy During Resistance Exercise at 80% 1RM.

    Science.gov (United States)

    Vianna, Jefferson M; Lima, Jorge P; Saavedra, Francisco J; Reis, Victor M

    2011-09-01

    The present study investigated the accumulated oxygen deficit (AOD) method to assess the energy cost in resistance exercises (RE). The aim of the study was to evaluate the aerobic and anaerobic energy release during resistance exercises performed at 80% 1-RM in four exercises (half squat, bench press, triceps extension and lat pull down), as well as the accuracy of its estimation. The sample comprised 14 men (age = 26.6 ± 4.9 years; height = 177.7 ± 0.1 cm; body mass = 79.0 ± 11.1 kg; and estimated fat mass = 10.5 ± 4.6%). Test and re-test of 1-RM were applied to every exercise. Low-intensity bouts at 12, 16, 20, and 24% of 1-RM were conducted. Energy cost was then extrapolated to 80% 1-RM exhaustive bout and relative energy contribution were assessed. By utilizing the AOD method, the results of the present study suggest a great proportion of anaerobic metabolism during exercise at 80% 1-RM in the four RE that were analyzed: Bench press = 77,66±6,95%; Half squat = 87,44±6,45%; Triceps extension = 63,91±9,22%; Lat pull down = 71,99±13,73 %. The results of the present study suggest that AOD during resistance exercises presents a pattern that does not match the reports in the literature for other types of exercise. The accuracy of the total energy demand estimation at 80% 1-RM was acceptable in the Bench press, in the Triceps extension and in the Lat pull down, but no in the Half squat. More studies are warranted to investigate the validity of this method in resistance exercise.

  20. Antibiotic susceptibility profiles of anaerobic pathogens in The Netherlands.

    Science.gov (United States)

    Veloo, A C M; van Winkelhoff, A J

    2015-02-01

    The antibiotic susceptibility profile of the Bacteroides fragilis group, Gram-positive anaerobic cocci (GPAC), Fusobacterium spp., Prevotella spp., Veillonella spp. and Bilophila wadsworthia for amoxicillin, amoxicillin-clavulanic acid, clindamycin and metronidazole was determined. Human clinical isolates were isolated between 2011 and 2013 at the Microbiological Diagnostic Laboratory of the University Medical Center Groningen, The Netherlands and subjected to MALDI-TOF MS identification and susceptibility testing using E-test for MIC determination. Differences in clindamycin susceptibility between species of the B. fragilis group and GPAC were observed, with Bacteroides ovatus and Peptoniphilus harei having the highest resistance rates. Compared to other European countries, in The Netherlands the MIC90 for clindamycin of fusobacteria is low. Metronidazole resistance was first encountered in the genus Prevotella in 2013, but not in species of GPAC as reported in Belgium and Bulgaria. The differences in clindamycin resistance between the different European countries and reports of metronidazole resistance within the genera Prevotella and GPAC warrant more extensive susceptibility studies on anaerobic pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effect of silver nanoparticles and antibiotics on antibiotic resistance genes in anaerobic digestion.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Young, Katherine; Hong, Yanjuan; Vikesland, Peter J; Hull, Matthew S; Pruden, Amy

    2013-05-01

    Water resource recovery facilities have been described as creating breeding ground conditions for the selection, transfer, and dissemination of antibiotic resistance genes (ARGs) among various bacteria. The objective of this study was to determine the effect of direct addition of antibiotic and silver nanoparticles (Ag NPs, or nanosilver) on the occurrence of ARGs in thermophilic anaerobic digesters. Test thermophilic digesters were amended with environmentally-relevant concentrations of Ag NP (0.01, 0.1, and 1.0 mg-Ag/L; corresponding to approximately 0.7, 7.0, and 70 mg-Ag/kg total solids) and sulfamethoxazole (SMX) that span susceptible to resistant classifications (1, 5, and 50 mg/L) as potential selection pressures for ARGs. Tetracycline (tet(O), tet(W)) and sulfonamide (sulI, sulII) ARGs and the integrase enzyme gene (intI1) associated with Class 1 integrons were measured in raw sludge, test thermophilic digesters, a control thermophilic digester, and a control mesophilic digester. There was no apparent effect of Ag NPs on thermophilic anaerobic digester performance. The maximum SMX addition (50 mg/L) resulted in accumulation of volatile fatty acids and low pH, alkalinity, and volatile solids reduction. There was no significant difference between ARG gene copy numbers (absolute or normalized to 16S rRNA genes) in amended thermophilic digesters and the control thermophilic digester. Antibiotic resistance gene copy numbers in digested sludge ranged from 10(3) to 10(6) copies per microL (approximately 8 x10(1) to 8 x 10(4) copies per microg) of sludge as result of a 1-log reduction of ARGs (2-log reduction for intI1). Quantities of the five ARGs in raw sludge ranged from 10(4) to 10(8) copies per microL (approximately 4 x 10(2) to 4 x 10(6) per microg) of sludge. Test and control thermophilic digesters (53 degrees C, 12-day solids retention time [SRT]) consistently reduced but did not eliminate levels of all analyzed genes. The mesophilic digester (37 degrees C

  2. Resistance development of cystic fibrosis respiratory pathogens when exposed to fosfomycin and tobramycin alone and in combination under aerobic and anaerobic conditions.

    Science.gov (United States)

    McCaughey, Gerard; Diamond, Paul; Elborn, J Stuart; McKevitt, Matt; Tunney, Michael M

    2013-01-01

    Although antibiotics from different classes are frequently prescribed in combination to prevent the development of resistance amongst Cystic Fibrosis (CF) respiratory pathogens, there is a lack of data as to the efficacy of this approach. We have previously shown that a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T) has excellent activity against CF pathogens with increased activity under physiologically relevant anaerobic conditions. Therefore, the aim of this study was to determine whether F:T could delay or prevent the onset of resistance compared to either fosfomycin or tobramycin alone under aerobic and anaerobic conditions. The frequency of spontaneous mutants arising following exposure to fosfomycin, tobramycin and F:T was determined for clinical Pseudomonas aeruginosa and MRSA isolates under aerobic and anaerobic conditions. The effect of sub-inhibitory concentrations of fosfomycin, tobramycin and F:T on the induction of resistance was also investigated, with the stability of resistance and fitness cost associated with resistance assessed if it developed. P. aeruginosa and MRSA isolates had a lower frequency of spontaneous mutants to F:T compared to fosfomycin and tobramycin under both aerobic and anaerobic conditions. There was a maximum two-fold increase in F:T MICs when P. aeruginosa and MRSA isolates were passaged in sub-inhibitory F:T for 12 days. In contrast, sequential resistance to fosfomycin and tobramycin developed quickly (n = 3 days for both) after passage in sub-inhibitory concentrations. Once developed, both fosfomycin and tobramycin resistance was stable and not associated with a biological fitness cost to either P. aeruginosa or MRSA isolates. The results of this study suggest that F:T may prevent the development of resistance compared to fosfomycin or tobramycin alone under aerobic and physiologically relevant anaerobic conditions. F:T may be a potential treatment option in CF patients chronically colonised by MRSA and/or P

  3. Decomposition of Alternative Chirality Amino Acids by Alkaliphilic Anaerobe from Owens Lake, California

    Science.gov (United States)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Hoover, Richard B.

    2009-01-01

    The study of alkaliphilic microbial communities from anaerobic sediments of Owens and Mono Lakes in California led to the isolation of a bacterial strain capable of metabolizing amino acids with alternative chirality. According to the phylogenetic analysis, the anaerobic strain BK1 belongs to the genus Tindallia; however, despite the characteristics of other described species of this genus, the strain BK1 was able to grow on D-arginine and Dlysine. Cell morphology of this strain showed straight, motile, non-spore-forming rods with sizes 0.45 x 1.2-3 microns. Physiological characteristics of the strain showed that it is catalase negative, obligately anaerobic, mesophilic, and obligately alkaliphilic. This isolate is unable to grow at pH 7 and requires CO3 (2-) ions for growth. The strain has chemo-heterotrophic metabolism and is able to ferment various proteolysis products and some sugars. It plays the role of a primary anaerobe within the trophic chain of an anaerobic microbial community by the degradation of complex protein molecules to smaller and less energetic molecules. The new isolate requires NaCl for growth, and can grow within the range of 0.5-13 %, with the optimum at 1 % NaCl (w/v). The temperature range for the growth of the new isolate is 12-40 C with optimum at 35 C. The pH range for the growth of strain BK1 occurs between 7.8 and 11.0 with optimum at 9.5. This paper presents detailed physiological characteristics of the novel isolate from Owens Lake, a unique relic ecosystem of Astrobiological significance, and makes an accent on the ability of this strain to utilize L-amino acids.

  4. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process

    Science.gov (United States)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki

    2017-10-01

    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  5. Effect of Linear and Non-linear Resistance Exercise on Anaerobic Performance among Young Women

    OpenAIRE

    Homa Esmaeili; Ali Reza Amani; Taher Afsharnezhad

    2015-01-01

    The main goals of strength training are improving muscle strength, power and muscle endurance. The objective of the current study is to compare two popular linear and nonlinear resistance exercises interventions on the anaerobic power.  Previous research has shown differences intervention by the linear and non-linear resistance exercise in performance and strength in male athletes. By the way there are not enough data regarding female subjects. Eighteen young women subjects participated in th...

  6. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    Science.gov (United States)

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  7. Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure.

    Science.gov (United States)

    Resende, Juliana Alves; Silva, Vânia Lúcia; de Oliveira, Tamara Lopes Rocha; de Oliveira Fortunato, Samuel; da Costa Carneiro, Jailton; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2014-02-01

    Anaerobic digestion figures as a sustainable alternative to avoid discharge of cattle manure in the environment, which results in biogas and biofertilizer. Persistence of potentially pathogenic and drug-resistant bacteria during anaerobic digestion of cattle manure was evaluated. Selective cultures were performed for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC). Antimicrobial susceptibility patterns were determined and a decay of all bacterial groups was observed after 60days. Multidrug-resistant bacteria were detected both the influent and effluent. GPC, the most prevalent group was highly resistant against penicillin and levofloxacin, whereas resistance to ampicillin, ampicillin-sulbactam and chloramphenicol was frequently observed in the ENT and NFR groups. The data point out the need of discussions to better address management of biodigesters and the implementation of sanitary and microbiological safe treatments of animal manures to avoid consequences to human, animal and environmental health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Analysis of short-chain acids from anaerobic bacteria by high-performance liquid chromatography.

    OpenAIRE

    Guerrant, G O; Lambert, M A; Moss, C W

    1982-01-01

    A standard mixture of 25 short-chain fatty acids was resolved by high-performance liquid chromatography, using an Aminex HPX-87 column. The acids produced in culture media by anaerobic bacteria were analyzed by high-performance liquid chromatography after extraction with ether and reextraction into a small volume of 0.1 N NaOH. The presence of fumaric acid in culture extracts of Peptostreptococcus anaerobius was confirmed by gas chromatography-mass spectrometry analysis of the trapped eluent ...

  9. The Role of Short-Chain Fatty Acids, Produced by Anaerobic Bacteria, in the Cystic Fibrosis Airway.

    Science.gov (United States)

    Mirković, Bojana; Murray, Michelle A; Lavelle, Gillian M; Molloy, Kevin; Azim, Ahmed Abdul; Gunaratnam, Cedric; Healy, Fiona; Slattery, Dubhfeasa; McNally, Paul; Hatch, Joe; Wolfgang, Matthew; Tunney, Michael M; Muhlebach, Marianne S; Devery, Rosaleen; Greene, Catherine M; McElvaney, Noel G

    2015-12-01

    Anaerobic bacteria are present in large numbers in the airways of people with cystic fibrosis (PWCF). In the gut, anaerobes produce short-chain fatty acids (SCFAs) that modulate immune and inflammatory processes. To investigate the capacity of anaerobes to contribute to cystic fibrosis (CF) airway pathogenesis via SCFAs. Samples of 109 PWCF were processed using anaerobic microbiological culture with bacteria present identified by 16S RNA sequencing. SCFA levels in anaerobic supernatants and bronchoalveolar lavage (BAL) were determined by gas chromatography. The mRNA and/or protein expression of two SCFA receptors, GPR41 and GPR43, in CF and non-CF bronchial brushings and 16HBE14o(-) and CFBE41o(-) cells were evaluated using reverse transcription polymerase chain reaction, Western blot analysis, laser scanning cytometry, and confocal microscopy. SCFA-induced IL-8 secretion was monitored by ELISA. Fifty-seven (52.3%) of 109 PWCF were anaerobe positive. Prevalence increased with age, from 33.3% to 57.7% in PWCF younger (n = 24) and older (n = 85) than 6 years of age. All evaluated anaerobes produced millimolar concentrations of SCFAs, including acetic, propionic, and butyric acids. SCFA levels were higher in BAL samples of adults than in those of children. GPR41 levels were elevated in CFBE41o(-) versus 16HBE14o(-) cells; CF versus non-CF bronchial brushings; and 16HBE14o(-) cells after treatment with cystic fibrosis transmembrane conductance regulator inhibitor CFTR(inh)-172, CF BAL, or inducers of endoplasmic reticulum stress. SCFAs induced a dose-dependent and pertussis toxin-sensitive IL-8 response in bronchial epithelial cells, with a higher production of IL-8 in CFBE41o(-) than in 16HBE14o(-) cells. This study illustrates that SCFAs contribute to excessive production of IL-8 in CF airways colonized with anaerobes via up-regulated GPR41.

  10. Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance.

    Science.gov (United States)

    Du, Huamao; Lo, Tat-Ming; Sitompul, Johnner; Chang, Matthew Wook

    2012-08-10

    Despite extensive use of silver nanoparticles for antimicrobial applications, cellular mechanisms underlying microbial response to silver nanoparticles remain to be further elucidated at the systems level. Here, we report systems-level response of Escherichia coli to silver nanoparticles using transcriptome-based biochemical and phenotype assays. Notably, we provided the evidence that anaerobic respiration is induced upon exposure to silver nanoparticles. Further we showed that anaerobic respiration-related regulators and enzymes play an important role in E. coli resistance to silver nanoparticles. In particular, our results suggest that arcA is essential for resistance against silver NPs and the deletion of fnr, fdnH and narH significantly increases the resistance. We envision that this study offers novel insights into modes of antimicrobial action of silver nanoparticles, and cellular mechanisms contributing to the development of microbial resistance to silver nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Elvert, M.; Boetius, A.; Knittel, K.

    2003-01-01

    Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon......-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content...

  12. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long chain fatty acids in co-culture with Methanobacterium formicicum

    NARCIS (Netherlands)

    Sousa, D.Z.; Smidt, H.; Alves, M.M.; Stams, A.J.M.

    2007-01-01

    An anaerobic, mesophilic, syntrophic fatty-acid-oxidizing bacterium, designated strain OL-4T, was isolated as a co-culture with Methanobacterium formicicum DSM 1535NT from an anaerobic expanded granular sludge bed reactor used to treat an oleate-based effluent. Strain OL-4T degraded oleate, a

  13. The pressure effects on two-phase anaerobic digestion

    International Nuclear Information System (INIS)

    Chen, Yuling; Rößler, Benjamin; Zielonka, Simon; Lemmer, Andreas; Wonneberger, Anna-Maria; Jungbluth, Thomas

    2014-01-01

    Highlights: • The pressure effect on anaerobic digestion up to 9 bar was examined. • Increasing pressure decreased pH value in the anaerobic filter. • Increasing pressure increased methane content. • Increasing pressure decreased specific methane yield slightly. • The pressurized methane reactor was very stable and performed well. - Abstract: Two-phase pressurized anaerobic digestion is a novel process aimed at facilitating injection of the produced biogas into the natural gas grid by integrating the fermentative biogas production and upgrading it to substitute natural gas. In order to understand the mechanisms, knowledge of pressure effects on anaerobic digestion is required. To examine the effects of pressure on the anaerobic digestion process, a two-phase anaerobic digestion system was built up in laboratory scale, including three acidogenesis-leach-bed-reactors and one pressure-resistant anaerobic filter. Four different pressure levels (the absolute pressure of 1 bar, 3 bar, 6 bar and 9 bar) were applied to the methane reactor in sequence, with the organic loading rate maintained at approximately 5.1 kgCOD m −3 d −1 . Gas production, gas quality, pH value, volatile fatty acids, alcohol, ammonium-nitrogen, chemical oxygen demand (COD) and alkaline buffer capacity were analyzed. No additional caustic chemicals were added for pH adjustment throughout the experiment. With the pressure increasing from 1.07 bar to 8.91 bar, the pH value decreased from 7.2 to 6.5, the methane content increased from 66% to 75%, and the specific methane yield was slightly reduced from 0.33 l N g −1 COD to 0.31 l N g −1 COD. There was almost no acid-accumulation during the entire experiment. The average COD-degradation grade was always more than 93%, and the average alkaline buffering capacity (VFA/TIC ratio) did not exceed 0.2 at any pressure level. The anaerobic filter showed a very stable performance, regardless of the pressure variation

  14. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria.

    OpenAIRE

    Chen, W; Supanwong, K; Ohmiya, K; Shimizu, S; Kawakami, H

    1985-01-01

    Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25...

  16. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    Science.gov (United States)

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Application of Methanobrevibacter acididurans in anaerobic digestion.

    Science.gov (United States)

    Savant, D V; Ranade, D R

    2004-01-01

    To operate anaerobic digesters successfully under acidic conditions, hydrogen utilizing methanogens which can grow efficiently at low pH and tolerate high volatile fatty acids (VFA) are desirable. An acid tolerant hydrogenotrophic methanogen viz. Methanobrevibacter acididurans isolated from slurry of an anaerobic digester running on alcohol distillery wastewater has been described earlier by this lab. This organism could grow optimally at pH 6.0. In the experiments reported herein, M. acididurans showed better methanogenesis under acidic conditions with high VFA, particularly acetate, than Methanobacterium bryantii, a common hydrogenotrophic inhabitant of anaerobic digesters. Addition of M. acididurans culture to digesting slurry of acidogenic as well as methanogenic digesters running on distillery wastewater showed increase in methane production and decrease in accumulation of volatile fatty acids. The results proved the feasibility of application of M. acididurans in anaerobic digesters.

  18. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  19. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    Directory of Open Access Journals (Sweden)

    Samet Azman

    2015-03-01

    Full Text Available Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  20. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    Science.gov (United States)

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded

  1. Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Li, Xiaohu; Zhao, Nannan

    2017-01-01

    This study presents an innovative biosensor that was developed on the basis of a microbial electrolysis cell for fast and reliable measurement of volatile fatty acids (VFA) during anaerobic digestion (AD) process. The bio-electrolytic sensor was first tested with synthetic wastewater containing...

  2. [Regulating acid stress resistance of lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  3. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  4. Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class I integrons in municipal wastewater sludge

    DEFF Research Database (Denmark)

    Wu, Ying; Cui, Erping; Zuo, Yiru

    2016-01-01

    The response of representative antibiotic resistance genes (ARGs) to lab-scale two-phase (acidogenic/methanogenic phase) anaerobic digestion processes under thermophilic and mesophilic conditions was explored. The associated microbial communities and bacterial pathogens were characterized by 16S ...... for ermB and blaTEM. ARGs patterns were correlated with Proteobacteria and Actinobacteria during the two-phase anaerobic digestion....

  5. Influence of carbon source and inoculum type on anaerobic biomass adhesion on polyurethane foam in reactors fed with acid mine drainage.

    Science.gov (United States)

    Rodriguez, Renata P; Zaiat, Marcelo

    2011-04-01

    This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  7. Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov. : a sporeforming, obligately syntrophic bacterium

    OpenAIRE

    Stieb, Marion; Schink, Bernhard

    1985-01-01

    From marine and freshwater mud samples strictly anaerobic, Gram-positive, sporeforming bacteria were isolated which oxidized fatty acids in obligately syntrophic association with H2-utilizing bacteria. Even-numbered fatty acids with up to 10 carbon atoms were degraded to acetate and Hz, odd-numbered fatty acids with up to 11 carbon atoms including 2-methylbutyrate were degraded to acetate, propionate and H2. Neither fumarate, sulfate, thiosulfate, sulfur, nor nitrate were reduced. A marine is...

  8. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  9. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation

    NARCIS (Netherlands)

    Khiewwijit, R.; Keesman, K.J.; Rijnaarts, H.H.M.; Temmink, B.G.

    2014-01-01

    This work aims at exploring the feasibility of a combined process bioflocculation to concentrate sewage organic matter and anaerobic fermentation to produce volatile fatty acids (VFA). Bioflocculation, using a high-loaded aerobic membrane bioreactor (HL-MBR), was operated at an HRT of 1 h and an SRT

  10. [First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans/ Anaerobic Subcommittee of the Asociación Argentina de Microbiología].

    Science.gov (United States)

    Legaria, María C; Bianchini, Hebe M; Castello, Liliana; Carloni, Graciela; Di Martino, Ana; Fernández Canigia, Liliana; Litterio, Mirta; Rollet, Raquel; Rossetti, Adelaida; Predari, Silvia C

    2011-01-01

    Through time, anaerobic bacteria have shown good susceptibility to clinically useful antianaerobic agents. Nevertheless, the antimicrobial resistance profile of most of the anaerobic species related to severe infections in humans has been modified in the last years and different kinds of resistance to the most active agents have emerged, making their effectiveness less predictable. With the aim of finding an answer and for the purpose of facilitating the detection of anaerobic antimicrobial resistance, the Anaerobic Subcommittee of the Asociación Argentina de Microbiología developed the First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans. This document resulted from the compatibilization of the Clinical and Laboratory Standards Institute recommendations, the international literature and the work and experience of the Subcommittee. The Consensus document provides a brief taxonomy review, and exposes why and when anaerobic antimicrobial susceptibility tests should be conducted, and which antimicrobial agents can be used according to the species involved. The recommendations on how to perform, read and interpret in vitro anaerobic antimicrobial susceptibility tests with each method are exposed. Finally, the antibiotic susceptibility profile, the classification of antibiotics according to their in vitro activities, the natural and acquired mechanisms of resistance, the emerging resistance and the regional antibiotic resistance profile of clinically relevant anaerobic species are shown.

  11. Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances.

    Science.gov (United States)

    Anjum, Reshma; Grohmann, Elisabeth; Krakat, Niclas

    2017-02-01

    Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment.

    Science.gov (United States)

    Wu, Liang; Zhang, Cheng; Hu, Hui; Liu, Jianyong; Duan, Tengfei; Luo, Jinghuan; Qian, Guangren

    2017-09-01

    Waste activated sludge (WAS) was pretreated by acid or alkali to enhance the anaerobic fermentation (AF) for phosphorus (P) and short-chain fatty acids (SCFAs) release into the liquid simultaneously. With acid pretreatment, the released total P concentration achieved 120mg/L, which was 71.4% higher than that with alkali pretreatment. In addition, alkali pretreatment enhanced organic P release with about 35.3% of organic P in the solid being converted to inorganic P, while little had changed with acid pretreatment. The results also showed that acid and alkali pretreatment enhanced SCFAs production by 15.3 and 12.5times, respectively. Acid pretreatment could be preferred for simultaneous recovery of P and SCFAs by AF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. In hydrofluoric acid corrosion-resistant materials

    International Nuclear Information System (INIS)

    Hauffe, K.

    1985-01-01

    Copper, red brass (Cu-15 Zn), special treated carbon steel and chromium-nickel-molybdenum steel represent materials of high resistivity against concentrated hydrofluoric acid ( 2 O 3 ) are employed for windows in the presence of hydrogen fluoride and/or hydrofluoric acid because of their superior optical properties and their excellent corrosion resistance. Polyethylen, polypropylene and polyvinyl chloride (PVC) belong to the cheapest corrosion resistant material for container and for coatings in the presence of hydrofluoric acid. Special polyester resins reinforced by glass or graphite fibers have been successfully employed as material for production units with hydrofluoric acid containing liquids up to 330 K. By carbon reinforced epoxy resin represents a corrosion resistant coating. Because of their excellent friction and corrosion resistance against concentrated hot hydrofluoric acid and HNO 3 -HF-solutions, PTFE and polyvinylidene fluoride are used as material for valves and axles in such environment. The expensive alloys, as for instance hastelloy and monel, are substituted more and more by fiber-reinfored polyolefins, PVC and fluorine containing polymers. (orig.) [de

  14. Multicenter study of antimicrobial susceptibility of anaerobic bacteria in Korea in 2012.

    Science.gov (United States)

    Lee, Yangsoon; Park, Yeon Joon; Kim, Mi Na; Uh, Young; Kim, Myung Sook; Lee, Kyungwon

    2015-09-01

    Periodic monitoring of regional or institutional resistance trends of clinically important anaerobic bacteria is recommended, because the resistance of anaerobic pathogens to antimicrobial drugs and inappropriate therapy are associated with poor clinical outcomes. There has been no multicenter study of clinical anaerobic isolates in Korea. We aimed to determine the antimicrobial resistance patterns of clinically important anaerobes at multiple centers in Korea. A total of 268 non-duplicated clinical isolates of anaerobic bacteria were collected from four large medical centers in Korea in 2012. Antimicrobial susceptibility was tested by the agar dilution method according to the CLSI guidelines. The following antimicrobials were tested: piperacillin, piperacillin-tazobactam, cefoxitin, cefotetan, imipenem, meropenem, clindamycin, moxifloxacin, chloramphenicol, metronidazole, and tigecycline. Organisms of the Bacteroides fragilis group were highly susceptible to piperacillin-tazobactam, imipenem, and meropenem, as their resistance rates to these three antimicrobials were lower than 6%. For B. fragilis group isolates and anaerobic gram-positive cocci, the resistance rates to moxifloxacin were 12-25% and 11-13%, respectively. Among B. fragilis group organisms, the resistance rates to tigecycline were 16-17%. Two isolates of Finegoldia magna were non-susceptible to chloramphenicol (minimum inhibitory concentrations of 16-32 mg/L). Resistance patterns were different among the different hospitals. Piperacillin-tazobactam, cefoxitin, and carbapemems are highly active beta-lactam agents against most of the anaerobes. The resistance rates to moxifloxacin and tigecycline are slightly higher than those in the previous study.

  15. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  16. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure.

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-22

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  17. Resistance to valproic acid as predictor of treatment resistance in genetic generalized epilepsies

    DEFF Research Database (Denmark)

    Gesche, Joanna; Khanevski, Marina; Solberg, Carl

    2017-01-01

    for refractory seizures. Resistance to valproic acid had a specificity of 100% to identify patients with drug resistance and correlated strongly with bad social outcome and seizure burden. Conversely, 21.2% of all patients with refractory seizures according to the ILAE definition later became seizure free...... (mainly with valproic acid). Our data suggest that "drug resistant GGE" must not be declared unless patients were adequately treated with valproic acid, and advocate resistance to valproic acid as a new clinical biomarker for drug-resistant GGE. A PowerPoint slide summarizing this article is available...

  18. Rapid startup of thermophilic anaerobic digester to remove tetracycline and sulfonamides resistance genes from sewage sludge.

    Science.gov (United States)

    Xu, Rui; Yang, Zhao-Hui; Wang, Qing-Peng; Bai, Yang; Liu, Jian-Bo; Zheng, Yue; Zhang, Yan-Ru; Xiong, Wei-Ping; Ahmad, Kito; Fan, Chang-Zheng

    2018-01-15

    Spread of antibiotic resistance genes (ARGs) originating from sewage sludge is highlighted as an eminent health threat. This study established a thermophilic anaerobic digester using one-step startup strategy to quickly remove tetracycline and sulfonamides resistance genes from sewage sludge. At least 20days were saved in the startup period from mesophilic to thermophilic condition. Based on the results of 16S rDNA amplicons sequencing and predicted metagenomic method, the successful startup largely relied on the fast colonization of core thermophilic microbial population (e.g. Firmicutes, Proteobacteria, Actinobacteria). Microbial metabolic gene pathways for substrate degradation and methane production was also increased by one-step mode. In addition, real-time quantitative PCR approach revealed that most targeted tetracycline and sulfonamides resistance genes ARGs (sulI, tetA, tetO, tetX) were substantially removed during thermophilic digestion (removal efficiency>80%). Network analysis showed that the elimination of ARGs was attributed to the decline of their horizontal (intI1 item) and vertical (potential hosts) transfer-related elements under high-temperature. This research demonstrated that rapid startup thermophilic anaerobic digestion of wastewater solids would be a suitable technology for reducing quantities of various ARGs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    John R. Gallagher

    2001-01-01

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  20. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    Speece, R.E.

    1990-01-01

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH 4 and CO 2 . Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  1. Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a University Hospital Centre Split, Croatia in 2013.

    Science.gov (United States)

    Novak, Anita; Rubic, Zana; Dogas, Varja; Goic-Barisic, Ivana; Radic, Marina; Tonkic, Marija

    2015-02-01

    Anaerobic bacteria play a significant role in many endogenous polymicrobial infections. Since antimicrobial resistance among anaerobes has increased worldwide, it is useful to provide local susceptibility data to guide empirical therapy. The present study reports recent data on the susceptibility of clinically relevant anaerobes in a University Hospital Centre (UHC) Split, Croatia. A total of 63 Gram-negative and 59 Gram-positive anaerobic clinical isolates from various body sites were consecutively collected from January to December 2013. Antimicrobial susceptibility testing was performed using standardized methods and interpreted using EUCAST criteria. Patient's clinical and demographic data were recorded by clinical microbiologist. Among 35 isolates of Bacteroides spp., 97.1% were resistant to penicillin (PCN), 5.7% to amoxicillin/clavulanic acid (AMC), 8.6% to piperacillin/tazobactam (TZP), 29.0% to clindamycin (CLI) and 2.9% to metronidazole (MZ). Percentages of susceptible strains to imipenem (IPM), meropenem (MEM) and ertapenem (ETP) were 94.3. Resistance of other Gram-negative bacilli was 76.0% to PCN, 8.0% to AMC, 12.0% to TZP, 28.0% to CLI and 8% to MZ. All other Gram-negative strains were fully susceptible to MEM and ETP, while 96.0% were susceptible to IPM. Clostridium spp. isolates were 100% susceptible to all tested antibiotics except to CLI (two of four tested isolates were resistant). Propionibacterium spp. showed resistance to CLI in 4.3%, while 100% were resistant to MZ. Among other Gram-positive bacilli, 18.2% were resistant to PCN, 9.1% to CLI and 54.5% to MZ, while 81.8% of isolates were susceptible to carbapenems. Gram-positive cocci were 100% susceptible to all tested antimicrobials except to MZ, where 28.6% of resistant strains were recorded. Abdomen was the most common source of isolates (82.5%). The most prevalent types of infection were abscess (22.1%), sepsis (14.8%), appendicitis (13.9%) and peritonitis (6.6%). Twenty four patients (19

  2. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-01-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure. PMID:27444518

  3. In vitro activity of mecillinam against anaerobic bacteria.

    OpenAIRE

    Steinkraus, G E; McCarthy, L R

    1980-01-01

    A microtiter broth dilution method was employed to determine the in vitro activity of mecillinam against 201 recent clinical isolates of anaerobic bacteria. Both the anerobic gram-positive and anaerobic gram-negative bacilli displayed a wide range of minimal inhibitory concentrations of mecillinam; most strains were resistant to the antibiotic. The anaerobic cocci exhibited a narrower range of minimal inhibitory concentrations than were observed with other anaerobes, but also exhibited mecill...

  4. Succinic acid production by escherichia coli under anaerobic fermentation

    International Nuclear Information System (INIS)

    El Shafey, H.M.; Meleigy, S.A.

    2009-01-01

    The effect of alteration of growth conditions, addition of different sodium salts, and irradiation by gamma rays on succinic acid production by E. coli was studied. Twenty one isolates were obtained from buffalo's rumen, and anaerobic screening of the isolated bacterial strains showed the abilities of seventeen strains to produce succinic acid. The two bacterial strains having highest succinic acid production were identified as escherichia coli SP9 and SP16, and were selected for further studies. Results showed that growth conditions yielded highest succinic acid production for the two isolates were: 72 hours incubation, 37 degree c incubation temperature, initial ph of the fermentation medium 6.0,and 3% (v/v)inoculum size. Addition of 5 mm of nine different sodium salts to the fermentation medium showed stimulating effect on succinic acid production of the nine tried sodium salts, sodium carbonate was found to have the highest enhancing effect, especially if used at 15 mm concentration. Gamma irradiation doses tried were in the range of (0.25-1.50 kGy). An enhancing effect on succinic acid production was shown in the range of 0.25-0.75 kGy with a maximal production at 0.75 kGy (giving 8.36% increase) for e.coli SP9, and in the range of 0.25-1.00 kGy with a maximal production at 1.0 kGy (7.60% increase) for e.coli SP16. higher gamma doses led to a decrease in the enhancing effect. An overall increase in the succinic acid yield of 79.45% and 94.26% for e. coli SP9 and SP16, respectively, was achieved in implicating all optimized factors for succinic acid production in one time

  5. Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium.

    Science.gov (United States)

    Li, Jiaojiao; Mandal, Goutam; Rosen, Barry P

    2016-06-01

    The response of the obligate anaerobe Bacteroides vulgatus ATCC 8482, a common human gut microbiota, to arsenic was determined. B. vulgatus ATCC 8482 is highly resistant to pentavalent As(V) and methylarsenate (MAs(V)). It is somewhat more sensitive to trivalent inorganic As(III) but 100-fold more sensitive to methylarsenite (MAs(III)) than to As(III). B. vulgatus ATCC 8482 has eight continuous genes in its genome that we demonstrate form an arsenical-inducible transcriptional unit. The first gene of this ars operon, arsR, encodes a putative ArsR As(III)-responsive transcriptional repressor. The next three genes encode proteins of unknown function. The remaining genes, arsDABC, have well-characterized roles in detoxification of inorganic arsenic, but there are no known genes for MAs(III) resistance. Expression of each gene after exposure to trivalent and pentavalent inorganic and methylarsenicals was analyzed. MAs(III) was the most effective inducer. The arsD gene was the most highly expressed of the ars operon genes. These results demonstrate that this anaerobic microbiome bacterium has arsenic-responsive genes that confer resistance to inorganic arsenic and may be responsible for the organism's ability to maintain its prevalence in the gut following dietary exposure to inorganic arsenic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Identification and antimicrobial susceptibility of obligate anaerobic bacteria from clinical samples of animal origin.

    Science.gov (United States)

    Mayorga, Melissa; Rodríguez-Cavallini, Evelyn; López-Ureña, Diana; Barquero-Calvo, Elías; Quesada-Gómez, Carlos

    2015-12-01

    The etiology of veterinary infectious diseases has been the focus of considerable research, yet relatively little is known about the causative agents of anaerobic infections. Susceptibility studies have documented the emergence of antimicrobial resistance and indicate distinct differences in resistance patterns related to veterinary hospitals, geographic regions, and antibiotic-prescribing regimens. The aim of the present study was to identify the obligate anaerobic bacteria from veterinary clinical samples and to determinate the in vitro susceptibility to eight antimicrobials and their resistance-associated genes. 81 clinical specimens obtained from food-producing animals, pets and wild animals were examined to determine the relative prevalence of obligate anaerobic bacteria, and the species represented. Bacteroides spp, Prevotella spp and Clostridium spp represented approximately 80% of all anaerobic isolates. Resistance to metronidazole, clindamycin, tetracycline and fluoroquinolones was found in strains isolated from food-producing animals. Ciprofloxacin, enrofloxacin and cephalotin showed the highest resistance in all isolates. In 17%, 4% and 14% of tetracycline-resistant isolates, the resistance genes tetL, tetM and tetW were respectively amplified by PCR whereas in 4% of clindamycin-resistant strains the ermG gene was detected. 26% of the isolates were positive for cepA, while only 6% harbored the cfxA (resistance-conferring genes to beta-lactams). In this study, the obligate anaerobic bacteria from Costa Rica showed a high degree of resistance to most antimicrobials tested. Nevertheless, in the majority of cases this resistance was not related to the resistance acquired genes usually described in anaerobes. It is important to address and regulate the use of antimicrobials in the agricultural industry and the empirical therapy in anaerobic bacterial infections in veterinary medicine, especially since antibiotics and resistant bacteria can persist in the

  7. Antimicrobial susceptibility of anaerobic bacteria in New Zealand: 1999-2003.

    Science.gov (United States)

    Roberts, Sally A; Shore, Keith P; Paviour, Susan D; Holland, David; Morris, Arthur J

    2006-05-01

    Routine susceptibility testing of all anaerobic organisms is not advocated, but it is useful for laboratories to test periodically for anaerobic organisms and provide local susceptibility data to guide therapy. This study reports the national trend of antibiotic susceptibility of clinically significant anaerobes in New Zealand. Clinical isolates were tested using standardized methods against a range of antibiotics commonly used to treat anaerobic infections. Susceptibility was determined using NCCLS criteria. The change in susceptibility trends between this study and earlier studies was measured by comparing the geometric mean of the MIC. A total of 364 anaerobes were tested. Penicillin had poor activity against Bacteroides spp., Prevotella spp., Eubacterium spp., Clostridium tertium and Veillonella spp. In general, Fusobacterium spp., Bacteroides ureolyticus, Propionibacterium spp., Clostridium perfringens and anaerobic streptococci isolates, with the exception of Peptostreptococcus anaerobius, were penicillin susceptible. Amoxicillin/clavulanate showed good activity against most anaerobes, but resistance was seen with Bacteroides fragilis group and P. anaerobius isolates. Cefoxitin was more active than cefotetan, particularly against non-B. fragilis species, Eubacterium spp. and P. anaerobius. Meropenem and imipenem showed good activity against all anaerobes, with only 2 and 4% of Bacteroides spp., respectively, showing resistance. With the exception of Propionibacterium acnes isolates, which are predictably resistant, metronidazole was active against all anaerobes tested. There has been little change in susceptibility since 1997. Metronidazole, cefoxitin, piperacillin/tazobactam and amoxicillin/clavulanate remain good empirical choices when anaerobes are expected in our setting. No clinically relevant changes in susceptibility over time were found.

  8. Assessment of the anaerobic degradation of six active pharmaceutical ingredients.

    Science.gov (United States)

    Musson, Stephen E; Campo, Pablo; Tolaymat, Thabet; Suidan, Makram; Townsend, Timothy G

    2010-04-01

    Research examined the anaerobic degradation of 17 alpha-ethynylestradiol, acetaminophen, acetylsalicylic acid, ibuprofen, metoprolol tartrate, and progesterone by methanogenic bacteria. Using direct sample analysis and respirometric testing, anaerobic degradation was examined with (a) each compound as the sole organic carbon source and (b) each compound at a lower concentration (250 microg/L) and cellulose serving as the primary organic carbon source. The change in pharmaceutical concentration was determined following 7, 28, 56, and 112 days of anaerobic incubation at 37 degrees C. Only acetylsalicylic acid demonstrated significant degradation; the remaining compounds showed a mixture of degradation and abiotic removal mechanisms. Experimental results were compared with BIOWIN, an anaerobic degradation prediction model of the US Environmental Protection Agency. The BIOWIN model predicted anaerobic biodegradability of the compounds in the order: acetylsalicylic acid > metoprolol tartrate > ibuprofen > acetaminophen > 17 alpha-ethinylestradiol >progesterone. This corresponded well with the experimental findings which found degradability in the order: acetylsalicylic acid > metoprolol tartrate > acetaminophen > ibuprofen. (c) 2010 Elsevier B.V. All rights reserved.

  9. A Simple Method for the Detection of Long-Chain Fatty Acids in an Anaerobic Digestate Using a Quartz Crystal Sensor

    Directory of Open Access Journals (Sweden)

    Takuro Kobayashi

    2016-12-01

    Full Text Available In anaerobic digestion (AD, long-chain fatty acids (LCFAs produced by hydrolysis of lipids, exhibit toxicity against microorganisms when their concentration exceeds several millimolar. An absorption detection system using a quartz crystal microbalance (QCM was developed to monitor the LCFA concentration during an anaerobic digester’s operation treating oily organic waste. The dissociation of the LCFAs considerably improved the sensor response and, moreover, enabled it to specifically detect LCFA from the mixture of LCFA and triglyceride. Under alkaline conditions, the frequency-shift rates of the QCM sensor linearly increased in accordance with palmitic acid concentration in the range of 0–100 mg/L. Frequency changes caused by anaerobic digestate samples were successfully measured after removing suspended solids and adjusting the pH to 10.7. Finally, the QCM measurements for digestate samples demonstrated that frequency-shift rates are highly correlated with LCFA concentrations, which confirmed that the newly developed QCM sensor is helpful for LCFA monitoring in terms of rapidness and usability.

  10. Fate of antibiotic and metal resistance genes during two-phase anaerobic digestion of residue sludge revealed by metagenomic approach.

    Science.gov (United States)

    Wu, Ying; Cui, Erping; Zuo, Yiru; Cheng, Weixiao; Chen, Hong

    2018-03-07

    The prevalence and persistence of antibiotic resistance genes in wastewater treatment plants (WWTPs) is of growing interest, and residual sludge is among the main sources for the release of antibiotic resistance genes (ARGs). Moreover, heavy metals concentrated in dense microbial communities of sludge could potentially favor co-selection of ARGs and metal resistance genes (MRGs). Residual sludge treatment is needed to limit the spread of resistance from WWTPs into the environment. This study aimed to explore the fate of ARGs and MRGs during thermophilic two-phase (acidogenic/methanogenic phase) anaerobic digestion by metagenomic analysis. The occurrence and abundance of mobile genetic elements were also determined based on the SEED database. Among the 27 major ARG subtypes detected in feed sludge, large reductions (> 50%) in 6 ARG subtypes were achieved by acidogenic phase (AP), while 63.0% of the ARG subtypes proliferated in the following methanogenic phase (MP). In contrast, a 2.8-fold increase in total MRG abundance was found in AP, while the total abundance during MP decreased to the same order of magnitude as in feed sludge. The distinct dynamics of ARGs and MRGs during the two-phase anaerobic digestion are noteworthy, and more specific treatments are required to limit their proliferation in the environment.

  11. A Resistance-Nodulation-Cell Division Family Xenobiotic Efflux Pump in an Obligate Anaerobe, Porphyromonas gingivalis

    OpenAIRE

    Ikeda, Takeshi; Yoshimura, Fuminobu

    2002-01-01

    Porphyromonas gingivalis, a gram-negative obligate anaerobe, contains two homologs of an Escherichia coli resistance-nodulation-cell division-type multidrug exporter gene, acrB, in putative operons, together with homologs of membrane fusion protein gene acrA and outer membrane channel gene tolC. MIC determination and accumulation assays with mutants with disruptions of one or more genes showed that one cluster, named xepCAB, pumped out multiple agents including rifampin, puromycin, and ethidi...

  12. Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids.

    Science.gov (United States)

    Diehl, David L; LaPara, Timothy M

    2010-12-01

    The objective of this research was to investigate the ability of anaerobic and aerobic digesters to reduce the quantity of antibiotic resistant bacteria in wastewater solids. Lab-scale digesters were operated at different temperatures (22 °C, 37 °C, 46 °C, and 55 °C) under both anaerobic and aerobic conditions and fed wastewater solids collected from a full-scale treatment facility. Quantitative PCR was used to track five genes encoding tetracycline resistance (tet(A), tet(L), tet(O), tet(W), and tet(X)) and the gene encoding the integrase (intI1) of class 1 integrons. Statistically significant reductions in the quantities of these genes occurred in the anaerobic reactors at 37 °C, 46 °C, and 55 °C, with the removal rates and removal efficiencies increasing as a function of temperature. The aerobic digesters, in contrast, were generally incapable of significantly decreasing gene quantities, although these digesters were operated at much shorter mean hydraulic residence times. This research suggests that high temperature anaerobic digestion of wastewater solids would be a suitable technology for eliminating various antibiotic resistance genes, an emerging pollutant of concern.

  13. Biologic treatment of wastewater from cassava flour production using vertical anaerobic baffled reactor (VABR

    Directory of Open Access Journals (Sweden)

    Gleyce T Correia

    2008-08-01

    Full Text Available The estimate cassava production in Brazil in 2007 was of 25 million tons (= 15% of the world production and most of it is used in the production of flour. During its processing, waste that can cause environmental inequality is generated, if discharged inappropriately. One of the liquid waste generated, manipueira, is characterized by its high level of organic matter. The anaerobic treatment that uses a vertical anaerobic baffled reactor (VABR inoculated with granulated sludge, is one of the ways of treating this effluent. The anaerobic biodigestion phases are separated in this kind of reactor, allowing greater stability and resistance to load shocks. The VABR was built with a width/height rate of 1:2. The pH, acidity, alkalinity, turbidity and COD removal were analyzed in 6 different regions of the reactor, which was operated with an increasing feeding from ? 2000 to ? 10000 mg COD L?¹ and HRT between 6.0 and 2.5 days. The VABR showed decreasing acidity and turbidity, an increase in alkalinity and pH, and 96% efficiency in COD removal with 3-day HRT and feeding of 3800 mg COD L?¹.

  14. Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the two-component system ArcBA through antagonizing the H-NS mediated repression.

    Science.gov (United States)

    Deng, Ziqing; Shan, Yue; Pan, Qing; Gao, Xiang; Yan, Aixin

    2013-01-01

    The gadE-mdtEF operon encodes a central acid resistance regulator GadE and two multidrug efflux proteins MdtEF. Although transcriptional regulation of gadE in the context of acid resistance under the aerobic growth environment of Escherichia coli has been extensively studied, regulation of the operon under the physiologically relevant environment of anaerobic growth and its effect on the expression of the multidrug efflux proteins MdtEF in the operon has not been disclosed. Our previous study revealed that anaerobic induction of the operon was dependent on ArcA, the response regulator of the ArcBA two-component system, in the M9 glucose minimal medium. However, the detailed regulatory mechanism remains unknown. In this study, we showed that anaerobic activation of mdtEF was driven by the 798 bp unusually long gadE promoter. Deletion of evgA, ydeO, rpoS, and gadX which has been shown to activate the gadE expression during acid stresses under aerobic condition did not have a significant effect on the anaerobic activation of the operon. Rather, anaerobic activation of the operon was largely dependent on the global regulator ArcA and a GTPase MnmE. Under aerobic condition, transcription of gadE was repressed by the global DNA silencer H-NS in M9 minimal medium. Interestingly, under anaerobic condition, while ΔarcA almost completely abolished transcription of gadE-mdtEF, further deletion of hns in ΔarcA mutant restored the transcription of the full-length PgadE-lacZ, and P1- and P3-lacZ fusions, suggesting an antagonistic effect of ArcA on the H-NS mediated repression. Taken together, we conclude that the anaerobic activation of the gadE-mdtEF was primarily mediated by the two-component system ArcBA through antagonizing the H-NS mediated repression.

  15. Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the two-component system ArcBA through antagonizing the H-NS mediated repression

    Directory of Open Access Journals (Sweden)

    Ziqing eDeng

    2013-07-01

    Full Text Available The gadE-mdtEF operon encodes a central acid resistance regulator GadE and two multidrug efflux proteins MdtEF. Although transcriptional regulation of gadE in the context of acid resistance under the aerobic growth environment of E. coli has been extensively studied, regulation of the operon under the physiologically relevant environment of anaerobic growth and its effect on the expression of the multidrug efflux proteins MdtEF has not been disclosed. Our previous study revealed that anaerobic induction of the operon was dependent on ArcA, the response regulator of the ArcBA two-component system, in the M9 glucose minimal medium. However, the detailed regulatory mechanism remains unknown. In this study, we showed that anaerobic activation of mdtEF was driven by the 798bp unusually long gadE promoter. Deletion of evgA, ydeO, rpoS, and gadX which has been shown to activate the gadE expression during acid stresses under aerobic condition did not have a significant effect on the anaerobic activation of the operon. Rather, anaerobic activation of the operon was largely dependent on the global regulator ArcA and a GTPase MnmE. Under aerobic condition, transcription of gadE was repressed by the global DNA silencer H-NS in M9 minimal medium. Interestingly, under anaerobic condition, while ΔarcA almost completely abolished transcription of gadE-mdtEF, further deletion of hns in ΔarcA mutant restored the transcription of the full length PgadE-lacZ, and P1- and P3-lacZ fusions, suggesting an antagonistic effect of ArcA on the H-NS mediated repression. Taken together, we conclude that the anaerobic activation of the gadE-mdtEF was primarily mediated by the two-component system ArcBA through antagonizing the H-NS mediated repression.

  16. Silver Sulfidation in Thermophilic Anaerobic Digesters and Effects on Antibiotic Resistance Genes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bojeong; Miller, Jennifer H.; Monsegue, Niven; Levard, Clément; Hong, Yanjuan; Hull, Matthew S.; Murayama, Mitsuhiro; Brown, Gordon E.; Vikesland, Peter J.; Knocke, William R.; Pruden, Amy; Hochella, Michael F.

    2015-12-15

    Physical and chemical transformations and biological responses of silver nanoparticles (AgNPs) in wastewater treatment systems are of particular interest because of the extensive existing and continually growing uses of AgNPs in consumer products. In this study, we investigated the transformation of AgNPs and AgNO3 during thermophilic anaerobic digestion and effects on selection or transfer of antibiotic resistance genes (ARGs). Ag2S-NPs, sulfidation products of both AgNPs and AgNO3, were recovered from raw and digested sludges and were analyzed by analytical transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS). TEM and XAS revealed rapid (≤20 min) Ag sulfidation for both Ag treatments. Once transformed, Ag2S-NPs (as individual NPs or an NP aggregate) persisted for the duration of the batch digestion. The digestion process produced Ag2S-NPs that were strongly associated with sludge organics and/or other inorganic precipitates. Ag treatments (up to 1,000 mg Ag/kg) did not have an impact on the performance of thermophilic anaerobic digesters or ARG response, as indicated by quantitative polymerase chain reaction measurements of sul1, tet(W), and tet(O) and also intI1, an indicator of horizontal gene transfer of ARGs. Thus, rapid Ag sulfidation and stabilization with organics effectively sequester Ag and prevent biological interactions with the digester microbial community that could induce horizontal gene transfer or adversely impact digester performance through antimicrobial activity. This finding suggests that sulfide-rich anaerobic environments, such as digesters, likely have a high buffer capacity to mitigate the biological effects of AgNPs.

  17. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...... increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  18. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Adaptation and Antibiotic Tolerance of Anaerobic Burkholderia pseudomallei ▿ †

    Science.gov (United States)

    Hamad, Mohamad A.; Austin, Chad R.; Stewart, Amanda L.; Higgins, Mike; Vázquez-Torres, Andrés; Voskuil, Martin I.

    2011-01-01

    The Gram-negative bacterium Burkholderia pseudomallei is the etiological agent of melioidosis and is remarkably resistant to most classes of antibacterials. Even after months of treatment with antibacterials that are relatively effective in vitro, there is a high rate of treatment failure, indicating that this pathogen alters its patterns of antibacterial susceptibility in response to cues encountered in the host. The pathology of melioidosis indicates that B. pseudomallei encounters host microenvironments that limit aerobic respiration, including the lack of oxygen found in abscesses and in the presence of nitric oxide produced by macrophages. We investigated whether B. pseudomallei could survive in a nonreplicating, oxygen-deprived state and determined if this physiological state was tolerant of conventional antibacterials. B. pseudomallei survived initial anaerobiosis, especially under moderately acidic conditions similar to those found in abscesses. Microarray expression profiling indicated a major shift in the physiological state of hypoxic B. pseudomallei, including induction of a variety of typical anaerobic-environment-responsive genes and genes that appear specific to anaerobic B. pseudomallei. Interestingly, anaerobic B. pseudomallei was unaffected by antibacterials typically used in therapy. However, it was exquisitely sensitive to drugs used against anaerobic pathogens. After several weeks of anaerobic culture, a significant loss of viability was observed. However, a stable subpopulation that maintained complete viability for at least 1 year was established. Thus, during the course of human infection, if a minor subpopulation of bacteria inhabited an oxygen-restricted environment, it might be indifferent to traditional therapy but susceptible to antibiotics frequently used to treat anaerobic infections. PMID:21537012

  20. Antimicrobial susceptibility of clinical isolates of anaerobic bacteria in Ontario, 2010-2011.

    Science.gov (United States)

    Marchand-Austin, Alex; Rawte, Prasad; Toye, Baldwin; Jamieson, Frances B; Farrell, David J; Patel, Samir N

    2014-08-01

    The local epidemiology of antimicrobial susceptibility patterns in anaerobic bacteria is important in guiding the empiric treatment of infections. However, susceptibility data are very limited on anaerobic organisms, particularly among non-Bacteroides organisms. To determine susceptibility profiles of clinically-significant anaerobic bacteria in Ontario Canada, anaerobic isolates from sterile sites submitted to Public Health Ontario Laboratory (PHOL) for identification and susceptibility testing were included in this study. Using the E-test method, isolates were tested for various antimicrobials including, penicillin, cefoxitin, clindamycin, meropenem, piperacillin-tazobactam and metronidazole. The MIC results were interpreted based on guidelines published by Clinical and Laboratory Standards Institute. Of 2527 anaerobic isolates submitted to PHOL, 1412 were either from sterile sites or bronchial lavage, and underwent susceptibility testing. Among Bacteroides fragilis, 98.2%, 24.7%, 1.6%, and 1.2% were resistant to penicillin, clindamycin, piperacillin-tazobactam, and metronidazole, respectively. Clostridium perfringens was universally susceptible to penicillin, piperacillin-tazobactam, and meropenem, whereas 14.2% of other Clostridium spp. were resistant to penicillin. Among Gram-positive anaerobes, Actinomyces spp., Parvimonas micra and Propionibacterium spp. were universally susceptible to β-lactams. Eggerthella spp., Collinsella spp., and Eubacterium spp. showed variable resistance to penicillin. Among Gram-negative anaerobes, Fusobacterium spp., Prevotella spp., and Veillonella spp. showed high resistance to penicillin but were universally susceptible to meropenem and piperacillin-tazobactam. The detection of metronidazole resistant B. fragilis is concerning as occurrence of these isolates is extremely rare. These data highlight the importance of ongoing surveillance to provide clinically relevant information to clinicians for empiric management of

  1. Conversion of Corn Stover Hydrolysates to Acids: Comparison Between Clostridium carboxidivorans P7 and Microbial Communities Developed from Lake Sediment and an Anaerobic Digester

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Xia, Chunjie [Southern Illinois University; Kumar, Aditi [Carbondale Community High School; Liang, Yanna [Southern Illinois University

    2017-01-18

    Anaerobic fermentation is an environmentally sustainable technology for converting a variety of feedstocks to biofuels and bioproducts. Considering the complex nature of lignocellulosic hydrolysates, we aimed to investigate product formation from corn stover hydrolysates by using microbial communities under anaerobic conditions. A community developed from lake sediment was able to produce lactic acid from only glucose in the raw or overlimed hydrolysates. Another community from an anaerobic digester, however, was capable of using all hexose and pentose sugars in the raw and undetoxified hydrolysates and released lactic acid at 26.76 g/L. A pure acetogen, Clostridium carboxidivorans P7, was able to grow on the raw and overlimed hydrolysates, too. But the consumption of sugars was minimal and the total released acid concentrations were less than 2 g/L. Next generation sequencing of the enriched community derived from the anaerobic digester revealed the presence of Lactobacillus strains. The predominant species were Lactobacillus parafarraginis (72.6%) and L. buchneri (13.4%). Product titer from using this enriched community can be further enhanced by cultivating at fed-batch or continuous fermentation modes. Results from this study widened the door for producing valuable products from lignocellulosic feedstocks through using mixed cultures.

  2. Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters.

    Science.gov (United States)

    Carey, Daniel E; Zitomer, Daniel H; Kappell, Anthony D; Choi, Melinda J; Hristova, Krassimira R; McNamara, Patrick J

    2016-08-10

    Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg(-1) dry solids were amended into anaerobic digesters over 110 days and acclimated for >3 solid retention time values. Four steady state TCS concentrations were chosen (30-2500 mg kg(-1)). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg(-1) or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health.

  3. Anaerobic treatment of an industrial wastewater containing acetic acid, furfural and sulphite

    Energy Technology Data Exchange (ETDEWEB)

    Brune, G.; Schoberth, S.M.; Sahm, H.

    1982-05-01

    The continuous anaerobic digestion of an acid waste water from a cellulose factory was examined. This special effluent (vapour condensate) arises in the acidic sulphite cooking process: about 1000 cubic meters is produced per day by this factory during concentration of sulphite spent liquor. The vapour condensate (about 20,000 gCOD/cubic meters) contained acetic acid (100-400mM), furfural (up to 30mM) and sulphur acids (up to 40mM). Using carefully planned start-up procedures (running of digesters as pH-auxostats), a high COD reduction (85%) and stable methane production rates could be achieved both at 37 degrees and at 60 degrees. The Ks values for acetate were 5.9mM or 15.9mM respectively. Liquid retention times of 12 to 14 days could be considerably decreased to less than 3 days with organism recycle. The gas yields were 0.35-0.4 cubic meters methane/kg COD converted. The predominant organisms responsible for this conversion were methanogens absorbed into floc-like cell aggregates. (Refs. 25).

  4. Anaerobic bacteraemia revisited: species and susceptibilities.

    Science.gov (United States)

    Ng, Lily S Y; Kwang, Lee Ling; Rao, Suma; Tan, Thean Yen

    2015-01-01

    This retrospective study was performed to evaluate the frequency of anaerobic bacteraemia over a 10-year period, and to provide updated antibiotic susceptibilities for the more clinically relevant anaerobes causing blood stream infection. Data were retrieved from the laboratory information system for the period 2003 to 2012. During this time, blood cultures were inoculated in Bactec™ Plus vials (BD, USA) and continuously monitored in the Bactec™ 9000 blood culture system (BD, USA). Anaerobic organisms were identified using commercial identification kits, predominantly API 20 A (bioMérieux, France) supplemented with Vitek ANC cards (bioMérieux, France) and AN-Ident discs (Oxoid, United Kingdom). A representative subset of isolates were retrieved from 2009 to 2011 and antimicrobial susceptibilities to penicillin, amoxicillin-clavulanate, clindamycin, imipenem, moxifloxacin, piperacillin-tazobactam and metronidazole were determined using the Etest method. Anaerobes comprised 4.1% of all positive blood culture with 727 obligate anaerobes recovered over the 10-year period, representing a positivity rate of 0.35%. The only significant change in anaerobe positivity rates occurred between 2003 and 2004, with an increase of 0.2%. The Bacteroides fragilis group (45%) were the predominant anaerobic pathogens, followed by Clostridium species (12%), Propioniobacterium species (11%) and Fusobacterium species (6%). The most active in vitro antibiotics were imipenem, piperacillin-tazobactam, amoxicillin-clavulanate and metronidazole, with susceptibilities of 95.0%, 93.3%, 90.8% and 90.8% respectively. Resistance was high to penicillin, clindamycin and moxifl oxacin. However, there were apparent differences for antibiotic susceptibilities between species. This study indicates that the anaerobes comprise a small but constant proportion of bloodstream isolates. Antibiotic resistance was high to some antibiotics, but metronidazole, the beta-lactam/beta-lactamase inhibitors and

  5. The role of zero valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste.

    Science.gov (United States)

    Gao, Pin; Gu, Chaochao; Wei, Xin; Li, Xiang; Chen, Hong; Jia, Hanzhong; Liu, Zhenhong; Xue, Gang; Ma, Chunyan

    2017-03-15

    Activated sludge has been identified as a potential significant source of antibiotic resistance genes (ARGs) to the environment. Anaerobic digestion is extensively used for sludge stabilization and resource recovery, and represents a crucial process for controlling the dissemination of ARGs prior to land application of digested sludge. The objective of this study is to investigate the effect of zero valent iron (Fe 0 ) on the attenuation of seven representative tetracycline resistance genes (tet, tet(A), tet(C), tet(G), tet(M), tet(O), tet(W), and tet(X)), and the integrase gene intI1 during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. Significant decrease (P  0.05) were found for all gene targets between digesters with Fe 0 dosages of 5 and 60 g/L. A first-order kinetic model favorably described the trends in concentrations of tet and intI1 gene targets during thermophilic anaerobic digestion with or without Fe 0 . Notably, tet genes encoding different resistance mechanisms behaved distinctly in anaerobic digesters, although addition of Fe 0 could enhance their reduction. The overall results of this research suggest that thermophilic anaerobic digestion with Fe 0 can be a potential alternative technology for the attenuation of tet and intI1 genes in waste sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of oxytetracycline on archaeal community, and tetracycline resistance genes in anaerobic co-digestion of pig manure and wheat straw.

    Science.gov (United States)

    Wang, Xiaojuan; Pan, Hongjia; Gu, Jie; Qian, Xun; Gao, Hua; Qin, Qingjun

    2016-12-01

    In this study, the effects of different concentrations of oxytetracycline (OTC) on biogas production, archaeal community structure, and the levels of tetracycline resistance genes (TRGs) were investigated in the anaerobic co-digestion products of pig manure and wheat straw. PCR denaturing gradient gel electrophoresis analysis and real-time quantitative polymerase chain reaction (RT-qPCR) (PCR) were used to detect the archaeal community structure and the levels of four TRGs: tet(M), tet(Q), tet(W), and tet(C). The results showed that anaerobic co-digestion with OTC at concentrations of 60, 100, and 140 mg/kg (dry weight of pig manure) reduced the cumulative biogas production levels by 9.9%, 10.4%, and 14.1%, respectively, compared with that produced by the control, which lacked the antibiotic. The addition of OTC substantially modified the structure of the archaeal community. Two orders were identified by phylogenetic analysis, that is, Pseudomonadales and Methanomicrobiales, and the methanogen present during anaerobic co-digestion with OTC may have been resistant to OTC. The abundances of tet(Q) and tet(W) genes increased as the OTC concentration increased, whereas the abundances of tet(M) and tet(C) genes decreased as the OTC concentration increased.

  7. Increased anaerobic metabolism is a distinctive signature in a colorectal cancer cellular model of resistance to antiepidermal growth factor receptor antibody.

    Science.gov (United States)

    Monteleone, Francesca; Rosa, Roberta; Vitale, Monica; D'Ambrosio, Chiara; Succoio, Mariangela; Formisano, Luigi; Nappi, Lucia; Romano, Maria Fiammetta; Scaloni, Andrea; Tortora, Giampaolo; Bianco, Roberto; Zambrano, Nicola

    2013-03-01

    Cetuximab is a chimeric antibody approved for the treatment of metastatic colorectal cancer that selectively targets epidermal growth factor receptor (EGFR) signaling. Treatment efficacy with this drug is often impaired by acquired resistance and poor information has been accumulated on the mechanisms underlying such a phenomenon. By taking advantage of a syngenic cellular system of sensitivity and acquired resistance to anti-EGFR therapy in the colorectal carcinoma GEO cell line, we profiled protein expression differences between Cetuximab-sensitive and -resistant cells. Combined 2D DIGE and MS analyses revealed a main proteomic signature resulting from selective deregulation of various metabolic enzymes, including glucose-6-phosphate dehydrogenase, transketolase, lactate dehydrogenase B, and pyruvate dehydrogenase E1, which was also confirmed by Western blotting experiments. Lactate dehydrogenase B downregulation has been already related to an increased anaerobic utilization of glucose by tumor cells; accordingly, we verified that Cetuximab-resistant cells have a significantly higher production of lactate. Resistant cells also showed decreased nicotinamide adenine dinucleotide phosphate (NADPH) levels. Observed protein deregulations were not related to functional alterations of the hypoxia-inducible factor 1-associated pathways. Our data demonstrate that increased anaerobic metabolism is a prominent feature observed in the GEO syngenic model of acquired resistance to anti-EGFR therapy in colorectal cancer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A modified two-point titration method for the determination of volatile fatty acids in anaerobic systems.

    Science.gov (United States)

    Mu, Zhe-Xuan; He, Chuan-Shu; Jiang, Jian-Kai; Zhang, Jie; Yang, Hou-Yun; Mu, Yang

    2018-04-10

    The volatile fatty acids (VFA) concentration plays important roles in the rapid start-up and stable operation of anaerobic reactors. It's essential to develop a simple and accurate method to monitor the VFA concentration in the anaerobic systems. In present work, a modified two-point titration method was developed to determine the VFA concentration. The results show that VFA concentration in standard solutions estimated by the titration method coincided well with that measured by gas chromatograph, where all relative errors were lower than 5.5%. Compared with the phosphate, ammonium and sulfide subsystems, the effect of bicarbonate on the accuracy of the developed method was relatively significant. When the bicarbonate concentration varied from 0 to 8 mmol/L, the relative errors increased from 1.2% to 30% for VFA concentration at 1 mmol/L, but were within 2.0% for that at 5 mmol/L. In addition, the VFA composition affected the accuracy of the titration method to some extent. This developed titration method was further proved to be effective with practical effluents from a lab-scale anaerobic reactor under organic shock loadings and an unstable full-scale anaerobic reactor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium.

    Science.gov (United States)

    Lochmeyer, C; Koch, J; Fuchs, G

    1992-06-01

    The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes.

  10. Anaerobic biodegradability and toxicity of complex or toxicant wastewater

    International Nuclear Information System (INIS)

    Wills Betancur, B.A.

    1995-01-01

    As a first approximation to wastewater classification in susceptibility terms to treatment by anaerobic biological system, anaerobic biodegradability trials are accomplished to leached of sanitary landfill, to wastewater of coffee grain wet treatment plant and to wastewater of fumaric acid recuperation plant. In the last Plant, anaerobic toxicity trials and lethal toxicity on the Daphnia pulex micro-crustacean are made too. Anaerobic biological trials are made continuing the Wageningen University (Holland) Methodology (1.987). Lethal toxicity biological trials are made following the Standard Methods for the Examination of Water and Wastewater(18th edition, 1992). In development of this investigation project is found that fumaric acid recuperation plant leached it has a low anaerobic biodegradability, a high anaerobic toxicity and a high lethal toxicity over Daphnia pulex, for such reasons this leached is cataloged as complex and toxic wastewater. The other hand, wastewater of coffee grain wet treatment plant and wastewater of sanitary landfill they are both highly biodegradability and not-toxic, for such reasons these wastewaters are cataloged as susceptible to treatment by anaerobic biological system

  11. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    Science.gov (United States)

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  12. Epidemiology and antimicrobial susceptibilities of wound isolates of obligate anaerobes from combat casualties.

    Science.gov (United States)

    White, Brian K; Mende, Katrin; Weintrob, Amy C; Beckius, Miriam L; Zera, Wendy C; Lu, Dan; Bradley, William; Tribble, David R; Schnaubelt, Elizabeth R; Murray, Clinton K

    2016-02-01

    Data from recent conflicts related to war wounds and obligate anaerobes are limited. We define the epidemiology and antimicrobial susceptibility of obligate anaerobes from Iraq and Afghanistan casualties (6/2009-12/2013), as well as their association with clinical outcomes. Susceptibility against eleven antibiotics (7 classes) was tested. Overall, 59 patients had 119 obligate anaerobes identified (83 were first isolates). Obligate anaerobes were isolated 7-13 days post-injury, primarily from lower extremity wounds (43%), and were largely Bacteroides spp. (42%) and Clostridium spp. (19%). Patients with pelvic wounds were more likely to have Bacteroides spp. and concomitant resistant gram-negative aerobes. Seventy-three percent of isolates were resistant to ≥1 antimicrobials. Bacteroides spp. demonstrated the most resistance (16% of first isolates). Patients with resistant isolates had similar outcomes to those with susceptible strains. Serial recovery of isolates occurred in 15% of patients and was significantly associated with isolation of Bacteroides spp., along with resistant gram-negative aerobes. Published by Elsevier Inc.

  13. Sequential batch anaerobic composting (SEBAC sup TM ) of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chynoweth, D.P.; O' Keefe, D.M.; Barkdoll, A.W.; Owens, J.M. (Department of Agricultural Engineering, University of Florida, Gainesville, Florida (US)); Legrand, R. (Radian Corporation, Austin, Texas (US))

    1992-01-01

    Anaerobic high-solids digestion (anaerobic composting) is an attractive option for treatment of organic wastes. The main advantages of anaerobic composting are the lack of aeration requirements and production of methane. An anaerobic composting design, sequential batch anaerobic composting (SEBAC{sup TM}), has been developed and demonstrated at the pilot scale which has proven to be stable and effective for treatment of the non-yeard waste and yard waste organic fractions of municipal solid waste (MSW). The design employs leachate recycle for wetting, inoculation, and removal of volatile organic acids during startup. Performance is similar to that of other designs requiring heavy solids inoculation and mixing and which do not have a mechanism for volatile organic acid removal during imbalance. (au) (12 refs.).

  14. 30 CFR 7.48 - Acid resistance test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Acid resistance test. 7.48 Section 7.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a...

  15. [Specificity of the anaerobic bacterial infections in the surgical and orthopedic wards].

    Science.gov (United States)

    Kierzkowska, Marta; Majewska, Anna; Sawicka-Grzelak, Anna; Młynarczyk, Andrzej; Ładomirska-Pestkowska, Katarzvna; Młynarczyk, Grazyna

    2012-01-01

    The aim of this study was to estimate the contribution strictly anaerobic bacteria in the etiology of infections in patients on surgery and orthopedic wards. We examined 159 samples taken from patients hospitalized in surgical wards and 179 clinical specimens taken from orthopedic patients. Clinical strains of obligate anaerobes were identified by API 20A biochemical tests (ATB Expression, bioMerieux S.A., France). Susceptibility of the clinical strains was examined by ATB ANA (bioMerieux S.A., France) system. The MIC values were determined by the gradient diffusion method, Etest (AB BIODISK, Sweden i bioMerieux S.A., France). Gram-negative bacteria predominant in the samples taken from surgical patients, Most frequently we isolated rods of the genus Bacteroides (26%): B. fragilis, B. ovatus/B. thetaiotaomicron, and B. distasonis. In 44 samples (28%) we identified only anaerobic bacteria. Multibacterial isolations, with the participation of anaerobic and aerobic flora, dominated among patients in the study. Overall 238 strictly anaerobic bacteria were cultured from patients hospitalized in orthopedic wards. Gram-positive bacteria accounted for 78%. The most frequently were isolated Peptostreptococcus (56%), Propionibacterium (10%) species. In this study all Bacteroides strains were resistant to penicillin G. Some species were resistant to clindamycin, as well. Overall 40% of Bacteroides strains taken from surgical and 50% isolated from orthopedic wards showed no sensitivity to this antibiotic. A similar phenomenon was observed among bacteria of the genus Prevotella. In samples taken from orthopedic patients we observed the predominance of Gram-positive anaerobic bacteria. Some of them were part of the normal flora but they should not be excluded as an etiology agents of infection. The specimens taken from patients treated in surgical wards showed the presence of a mixed microflora, which included aerobic and anaerobic bacteria, primarily Gram-negative rods

  16. MINERALIZATION OF THE HERBICIDE 2,3,6-TRICHLOROBENZOIC ACID BY A COCULTURE OF ANAEROBIC AND AEROBIC-BACTERIA

    NARCIS (Netherlands)

    GERRITSE, J; GOTTSCHAL, JC

    1992-01-01

    Bacteria from an anaerobic enrichment reductively removed chlorine from the ortho- position of 2,3,6-trichlorobenzoic acid (2,3,6-TBA) producing 2,5-dichlorobenzoate (2,5-DBA). The strictly aerobic bacterium Pseudomonas aeruginosa JB2 subsequently used 2,5-DBA as a growth substrate in the presence

  17. Development of Acid Resistance Velocity Sensor for Analyzing Acidic Fluid Flow Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gyujin; Yoon, Jinwon; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-10-15

    This study presents the development of an acid resistance velocity sensor that is used for measuring velocity inside a copper sulfate plating bath. First, researchers investigated the acid resistance coating to confirm the suitability of the anti-acid sensor in a very corrosive environment. Then, researchers applied signal processing methods to reduce noise and amplify the signal. Next, researchers applied a pressure-resistive sensor with an operation amplifier (Op Amp) and low-pass filter with high impedance to match the output voltage of a commercial flowmeter. Lastly, this study compared three low-pass filters (Bessel, Butterworth and Chebyshev) to select the appropriate signal process circuit. The results show 0.0128, 0.0023, and 5.06% of the mean square error, respectively. The Butterworth filter yielded more precise results when compared to a commercial flowmeter. The acid resistive sensor is capable of measuring velocities ranging from 2 to 6 m/s with a 2.7% margin of error.

  18. Microbial dynamics in anaerobic enrichment cultures degrading di-n-butyl phthalic acid ester

    DEFF Research Database (Denmark)

    Trably, Eric; Batstone, Damien J.; Christensen, Nina

    2008-01-01

    losses were observed in the sterile controls (20-22%), substantial DBP biodegradation was found in the enrichment cultures (90-99%). In addition, significant population changes were observed. The dominant bacterial species in the DBP-degrading cultures was affiliated to Soehngenia saccharolytica...... in enrichment cultures degrading phthalic acid esters under methanogenic conditions. A selection pressure was applied by adding DBP at 10 and 200 mg L(-1) in semi-continuous anaerobic reactors. The microbial dynamics were monitored using single strand conformation polymorphism (SSCP). While only limited abiotic...

  19. The acid-base resistant zone in three dentin bonding systems.

    Science.gov (United States)

    Inoue, Go; Nikaido, Toru; Foxton, Richard M; Tagami, Junji

    2009-11-01

    An acid-base resistant zone has been found to exist after acid-base challenge adjacent to the hybrid layer using SEM. The aim of this study was to examine the acid-base resistant zone using three different bonding systems. Dentin disks were applied with three different bonding systems, and then a resin composite was light-cured to make dentin disk sandwiches. After acid-base challenge, the polished surfaces were observed using SEM. For both one- and two-step self-etching primer systems, an acid-base resistant zone was clearly observed adjacent to the hybrid layer - but with differing appearances. For the wet bonding system, the presence of an acid-base resistant zone was unclear. This was because the self-etching primer systems etched the dentin surface mildly, such that the remaining mineral phase of dentin and the bonding agent yielded clear acid-base resistant zones. In conclusion, the acid-base resistant zone was clearly observed when self-etching primer systems were used, but not so for the wet bonding system.

  20. Anaerobic bacteria colonizing the lower airways in lung cancer patients.

    Science.gov (United States)

    Rybojad, Pawel; Los, Renata; Sawicki, Marek; Tabarkiewicz, Jacek; Malm, Anna

    2011-01-01

    Anaerobes comprise most of the endogenous oropharyngeal microflora, and can cause infections of airways in lung cancer patients who are at high risk for respiratory tract infections. The aim of this study was to determine the frequency and species diversity of anaerobes in specimens from the lower airways of lung cancer patients. Sensitivity of the isolates to conventional antimicrobial agents used in anaerobe therapy was assessed. Respiratory secretions obtained by bronchoscopy from 30 lung cancer patients were cultured onto Wilkins-Chalgren agar in anaerobic conditions at 37°C for 72-96 hours. The isolates were identified using microtest Api 20A. The minimal inhibitory concentrations for penicillin G, amoxicillin/clavulanate, piperacillin/tazobactam, cefoxitin, imipenem, clindamycin, and metronidazole were determined by E-test. A total of 47 isolates of anaerobic bacteria were detected in 22 (73.3%) specimens. More than one species of anaerobe was found in 16 (53.3%) samples. The most frequently isolated were Actinomyces spp. and Peptostreptococcus spp., followed by Eubacterium lentum, Veillonella parvula, Prevotella spp., Bacteroides spp., Lactobacillus jensenii. Among antibiotics used in the study amoxicillin/clavulanate and imipenem were the most active in vitro (0% and 2% resistant strains, respectively). The highest resistance rate was found for penicillin G and metronidazole (36% and 38% resistant strains, respectively). The results obtained confirm the need to conduct analyses of anaerobic microflora colonizing the lower respiratory tract in patients with lung cancer to monitor potential etiologic factors of airways infections, as well as to propose efficient, empirical therapy.

  1. Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity

    International Nuclear Information System (INIS)

    Powell, Ashley A; Akare, Sandeep; Qi, Wenqing; Herzer, Pascal; Jean-Louis, Samira; Feldman, Rebecca A; Martinez, Jesse D

    2006-01-01

    There is a large body of evidence which suggests that bile acids increase the risk of colon cancer and act as tumor promoters, however, the mechanism(s) of bile acids mediated tumorigenesis is not clear. Previously we showed that deoxycholic acid (DCA), a tumorogenic bile acid, and ursodeoxycholic acid (UDCA), a putative chemopreventive agent, exhibited distinct biological effects, yet appeared to act on some of the same signaling molecules. The present study was carried out to determine whether there is overlap in signaling pathways activated by tumorogenic bile acid DCA and chemopreventive bile acid UDCA. To determine whether there was an overlap in activation of signaling pathways by DCA and UDCA, we mutagenized HCT116 cells and then isolated cell lines resistant to UDCA induced growth arrest. These lines were then tested for their response to DCA induced apoptosis. We found that a majority of the cell lines resistant to UDCA-induced growth arrest were also resistant to DCA-induced apoptosis, implying an overlap in DCA and UDCA mediated signaling. Moreover, the cell lines which were the most resistant to DCA-induced apoptosis also exhibited a greater capacity for anchorage independent growth. We conclude that UDCA and DCA have overlapping signaling activities and that disregulation of these pathways can lead to a more advanced neoplastic phenotype

  2. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.

    Science.gov (United States)

    Guadalupe Medina, Víctor; Almering, Marinka J H; van Maris, Antonius J A; Pronk, Jack T

    2010-01-01

    In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study investigates the possibility of completely eliminating glycerol production by engineering S. cerevisiae such that it can reoxidize NADH by the reduction of acetic acid to ethanol via NADH-dependent reactions. Acetic acid is available at significant amounts in lignocellulosic hydrolysates of agricultural residues. Consistent with earlier studies, deletion of the two genes encoding NAD-dependent glycerol-3-phosphate dehydrogenase (GPD1 and GPD2) led to elimination of glycerol production and an inability to grow anaerobically. However, when the E. coli mhpF gene, encoding the acetylating NAD-dependent acetaldehyde dehydrogenase (EC 1.2.1.10; acetaldehyde+NAD++coenzyme Aacetyl coenzyme A+NADH+H+), was expressed in the gpd1Delta gpd2Delta strain, anaerobic growth was restored by supplementation with 2.0 g liter(-1) acetic acid. The stoichiometry of acetate consumption and growth was consistent with the complete replacement of glycerol formation by acetate reduction to ethanol as the mechanism for NADH reoxidation. This study provides a proof of principle for the potential of this metabolic engineering strategy to improve ethanol yields, eliminate glycerol production, and partially convert acetate, which is a well-known inhibitor of yeast performance in lignocellulosic hydrolysates, to ethanol. Further research should address the kinetic aspects of acetate reduction and the effect of the elimination of glycerol production on cellular robustness (e.g., osmotolerance).

  3. Survival of Anaerobic Fe2+ Stress Requires the ClpXP Protease.

    Science.gov (United States)

    Bennett, Brittany D; Redford, Kaitlyn E; Gralnick, Jeffrey A

    2018-04-15

    Shewanella oneidensis strain MR-1 is a versatile bacterium capable of respiring extracellular, insoluble ferric oxide minerals under anaerobic conditions. The respiration of iron minerals results in the production of soluble ferrous ions, which at high concentrations are toxic to living organisms. It is not fully understood how Fe 2+ is toxic to cells anaerobically, nor is it fully understood how S. oneidensis is able to resist high levels of Fe 2+ Here we describe the results of a transposon mutant screen and subsequent deletion of the genes clpX and clpP in S. oneidensis , which demonstrate that the protease ClpXP is required for anaerobic Fe 2+ resistance. Many cellular processes are known to be regulated by ClpXP, including entry into stationary phase, envelope stress response, and turnover of stalled ribosomes. However, none of these processes appears to be responsible for mediating anaerobic Fe 2+ resistance in S. oneidensis Protein trapping studies were performed to identify ClpXP targets in S. oneidensis under Fe 2+ stress, implicating a wide variety of protein targets. Escherichia coli strains lacking clpX or clpP also display increased sensitivity to Fe 2+ anaerobically, indicating Fe 2+ resistance may be a conserved role for the ClpXP protease system. Hypotheses regarding the potential role(s) of ClpXP during periods of high Fe 2+ are discussed. We speculate that metal-containing proteins are misfolded under conditions of high Fe 2+ and that the ClpXP protease system is necessary for their turnover. IMPORTANCE Prior to the evolution of cyanobacteria and oxygenic photosynthesis, life arose and flourished in iron-rich oceans. Today, aqueous iron-rich environments are less common, constrained to low-pH conditions and anaerobic systems such as stratified lakes and seas, digestive tracts, subsurface environments, and sediments. The latter two ecosystems often favor dissimilatory metal reduction, a process that produces soluble Fe 2+ from iron oxide minerals

  4. The Effect of Acid Pre-Treatment using Acetic Acid and Nitric Acid in The Production of Biogas from Rice Husk during Solid State Anaerobic Digestion (SS-AD)

    Science.gov (United States)

    Nugraha, Winardi Dwi; Syafrudin; Keumala, Cut Fadhila; Matin, Hasfi Hawali Abdul; Budiyono

    2018-02-01

    Pretreatment during biogas production aims to assist in degradation of lignin contained in the rice husk. In this study, pretreatment which is used are acid and biological pretreatment. Acid pretreatment was performed using acetic acid and nitric acid with a variety levels of 3% and 5%. While biological pretreatment as a control variable. Acid pretreatment was conducted by soaking the rice straw for 24 hours with acid variation. The study was conducted using Solid State Anaerobic Digestion (SS-AD) with 21% TS. Biogas production was measured using water displacement method every two days for 60 days at room temperature conditions. The results showed that acid pretreatment gave an effect on the production of biogas yield. The yield of the biogas produced by pretreatment of acetic acid of 5% and 3% was 43.28 and 45.86 ml/gr.TS. While the results without pretreatment biogas yield was 29.51 ml/gr.TS. The results yield biogas produced by pretreatment using nitric acid of 5% and 3% was 12.14 ml/gr.TS and 21.85 ml/gr.TS. Results biogas yield with acetic acid pretreatment was better than the biogas yield results with nitric acid pretreatment.

  5. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    Science.gov (United States)

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum.

    Science.gov (United States)

    Sousa, Diana Z; Smidt, Hauke; Alves, M Madalena; Stams, Alfons J M

    2007-03-01

    An anaerobic, mesophilic, syntrophic fatty-acid-oxidizing bacterium, designated strain OL-4(T), was isolated as a co-culture with Methanobacterium formicicum DSM 1535(NT) from an anaerobic expanded granular sludge bed reactor used to treat an oleate-based effluent. Strain OL-4(T) degraded oleate, a mono-unsaturated fatty acid, and straight-chain fatty acids C(4 : 0)-C(18 : 0) in syntrophic association with Methanobacterium formicicum DSM 1535(NT). Even-numbered fatty acids were degraded to acetate and methane whereas odd-numbered fatty acids were degraded to acetate, propionate and methane. Branched-chain fatty acids were not degraded. The bacterium could not grow axenically with any other substrate tested and therefore is considered to be obligately syntrophic. Fumarate, sulfate, thiosulfate, sulfur and nitrate could not serve as electron acceptors for strain OL-4(T) to degrade oleate or butyrate. Cells of strain OL-4(T) were curved rods, formed spores and showed a variable response to Gram staining. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain OL-4(T) was most closely related to the fatty-acid-oxidizing, syntrophic bacterium Syntrophomonas sp. TB-6 (95 % similarity), Syntrophomonas wolfei subsp. wolfei DSM 2245(T) (94 % similarity) and Syntrophomonas erecta DSM 16215(T) (93 % similarity). In addition to this moderate similarity, phenotypic and physiological characteristics, such as obligate syntrophy, spore formation and utilization of a broader substrate range, differentiated strain OL-4(T) from these Syntrophomonas species. Therefore strain OL-4(T) represents a novel species, for which the name Syntrophomonas zehnderi sp. nov. is proposed. The type strain is OL-4(T) (=DSM 17840(T)=JCM 13948(T)).

  7. Anaerobic digestion of glucose with separated acid production and methane formation

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R J; Zoetemeyer, R J; Van Deursen, A; Van Andel, J G

    1979-01-01

    In a two-phase anaerobic-digestion system, with separate reactors for the acidification and methane fermentation phases, the glucose of a 1% glucose solution was almost completely converted into biomass and gases. The acid reactor was operated at 30/sup 0/C and a pH of 6.0, with a retention time of 10 h. The main products of the acid-forming phase were hydrogen, carbon dioxide, butyrate and acetate. On a molar base, these products represented over 96% of all products formed. On average, 12% of the COD content of the influent was evolved as hydrogen. The effluent of the first reactor was pumped to the methane reactor after passing through a storage vessel. The methane reactor was operated at 30/sup 0/C, pH 7.8 and a retention time of 100 h. Approximately 98% of the organic substances fed to this reactor were converted to methane, carbon dioxide and biomass. About 11% of the glucose fed to the digesting system was converted to bacterial mass.

  8. Fate of antibiotic resistance genes and its drivers during anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment.

    Science.gov (United States)

    Zhang, Junya; Chen, Meixue; Sui, Qianwen; Wang, Rui; Tong, Juan; Wei, Yuansong

    2016-10-01

    In this study, anaerobic digestion of mono-SS, MW-SS:FW and SS:MW-FW was investigated to understand the fate of ARGs and its drivers. Anaerobic digestion was effective for the reduction of metal resistance genes (MRGs), and could reduce the abundance of blaOXA-1, sulI and tetG, while sulII in co-digestion and blaTEM and ereA only in MW-SS. ARGs reduction could be partly attributed to the reduction of co-selective pressure from heavy metals reflected by MRGs. However, the abundance of mefA/E, ermB, ermF, tetM and tetX increased significantly. Anaerobic co-digestion, especially for MW-SS, could reduce total ARGs abundance compared with mono-SS, and evolution of bacterial community was the main driver for the fate of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J.Q.; Lo, K.V.; Liao, P.H.

    1989-01-01

    Anaerobic treatment of cheese whey using a 17.5-litre up-flow anaerobic sludge blanket reactor was investigated in the laboratory. The reactor was studied over a range of influent concentration from 4.5 to 38.1 g chemical oxygen demand per litre at a constant hydraulic retention time of 5 days. The reactor start-up and the sludge acclimatization were discussed. The reactor performance in terms of methane production, volatile fatty acids conversion, sludge net growth and chemical oxygen demand reduction were also presented in this paper. Over 97% chemical oxygen demand reduction was achieved in this experiment. At the influent concentration of 38.1 g chemical oxygen demand per litre, an instability of the reactor was observed. The results indicated that the up-flow anaerobic sludge blanket reactor process could treat cheese whey effectively.

  10. Volatile fatty acid degradation kinetics in anaerobic process; Cinetica de la degradacion de acidos grasos volatiles en procesos anaerobios

    Energy Technology Data Exchange (ETDEWEB)

    Riscado, S.; Osuna, B.; Iza, J.; Ruiz, E. [Universidad del Pais Vasco. Bilbao (Spain)

    1998-10-01

    While searching for the optimal substrate load for anaerobic toxicity assays, the inhibition caused by the propionic acid has been addressed. Lab scale experiments have been carried out to assess the effects of different loads and acid ratios. Results bad been subjected to kinetic analysis and show the degradation follows a first order kinetic, and acetic is easier to degrade than propionic acid. The optimal load for a 100 ml vial assay is composed of 158 mg COD of the 3:1:1 HAc:HPr:HBu mixture. (Author) 9 refs.

  11. Pre-cold stress increases acid stress resistance and induces amino ...

    African Journals Online (AJOL)

    Pre-cold stress increases acid stress resistance and induces amino acid homeostasis in Lactococcus lactis NZ9000. ... Purpose: To investigate the effects of pre-cold stress treatments on subsequent acid stress resistance ... from 32 Countries:.

  12. Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium

    OpenAIRE

    Li, Jiaojiao; Mandal, Goutam; Rosen, Barry P.

    2016-01-01

    The response of the obligate anaerobe Bacteroides vulgatus ATCC 8482, a common human gut microbiota, to arsenic was determined. B. vulgatus ATCC 8482 is highly resistant to pentavalent As(V) and methylarsenate (MAs(V)). It is somewhat more sensitive to trivalent inorganic As(III) but 100-fold more sensitive to methylarsenite (MAs(III)) than to As(III). B. vulgatus ATCC 8482 has eight continuous genes in its genome that we demonstrate form an arsenical-inducible transcriptional unit. The first...

  13. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  14. Clinical characteristics and antimicrobial susceptibilities of anaerobic bacteremia in an acute care hospital.

    Science.gov (United States)

    Tan, Thean Yen; Ng, Lily Siew Yong; Kwang, Lee Ling; Rao, Suma; Eng, Li Ching

    2017-02-01

    This study investigated the clinical features of anaerobic bacteraemia in an acute-care hospital, and evaluated the antimicrobial susceptibility of these isolates to commonly available antibiotics. Microbiological and epidemiological data from 2009 to 2011were extracted from the laboratory information system and electronic medical records. One hundred and eleven unique patient episodes consisting of 116 anaerobic isolates were selected for clinical review and antibiotic susceptibility testing. Susceptibilities to amoxicillin-clavulanate, clindamycin, imipenem, metronidazole, moxifloxacin, penicillin and piperacillin-tazobactam were performed using Etest strips with categorical interpretations according to current CLSI breakpoints. Metronidazole-resistant and carbapenem-resistant anaerobic Gram-negative bacilli were screened for the nim and cfiA genes. Clinical data was obtained retrospectively from electronic medical records. During the 3 year period, Bacteroides fragilis group (41%), Clostridium species (14%), Propionibacterium species (9%) and Fusobacterium species (6%) were the most commonly isolated anaerobes. Patients with anaerobic bacteraemia that were included in the study were predominantly above 60 years of age, with community-acquired infections. The most commonly used empiric antibiotic therapies were beta-lactam/beta-lactamase inhibitor combinations (44%) and metronidazole (10%). The crude mortality was 25%, and appropriate initial antibiotic therapy was not significantly associated with improved survival. Intra-abdominal infections (39%) and soft-tissue infections (33%) accounted for nearly three-quarters of all bacteraemia. Antibiotics with the best anaerobic activity were imipenem, piperacillin-tazobactam, amoxicillin-clavulanate and metronidazole, with in-vitro susceptibility rates of 95%, 95%, 94% and 92% respectively. Susceptibilities to penicillin (31%), clindamycin (60%) and moxifloxacin (84%) were more variable. Two multidrug-resistant

  15. Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation.

    Science.gov (United States)

    Ni, Bing-Jie; Batstone, Damien; Zhao, Bai-Hang; Yu, Han-Qing

    2015-08-04

    Microbial internal storage processes have been demonstrated to occur and play an important role in activated sludge systems under both aerobic and anoxic conditions when operating under dynamic conditions. High-rate anaerobic reactors are often operated at a high volumetric organic loading and a relatively dynamic profile, with large amounts of fermentable substrates. These dynamic operating conditions and high catabolic energy availability might also facilitate the formation of internal storage polymers by anaerobic microorganisms. However, so far information about storage under anaerobic conditions (e.g., anaerobic fermentation) as well as its consideration in anaerobic process modeling (e.g., IWA Anaerobic Digestion Model No. 1, ADM1) is still sparse. In this work, the accumulation of storage polymers during anaerobic fermentation was evaluated by batch experiments using anaerobic methanogenic sludge and based on mass balance analysis of carbon transformation. A new mathematical model was developed to describe microbial storage in anaerobic systems. The model was calibrated and validated by using independent data sets from two different anaerobic systems, with significant storage observed, and effectively simulated in both systems. The inclusion of the new anaerobic storage processes in the developed model allows for more successful simulation of transients due to lower accumulation of volatile fatty acids (correction for the overestimation of volatile fatty acids), which mitigates pH fluctuations. Current models such as the ADM1 cannot effectively simulate these dynamics due to a lack of anaerobic storage mechanisms.

  16. Analysis of anaerobic product properties in fluid and aggressive environments

    OpenAIRE

    Goncharov, A.; Tulinov, A.

    2008-01-01

    The article presents the results of experiments involved in investigation of properties of some domestic and foreign-made anaerobic materials in components and units operating in fluid and aggressive environments. These experiments determined the strength and swell values of anaerobic products in the sea water, fuel and oil, and confirmed their anticorrosion properties. The experiments demonstrated high resistance of anaerobic products to various fluids and aggressive environments, which make...

  17. Vitamin and Amino Acid Auxotrophy in Anaerobic Consortia Operating under Methanogenic Conditions.

    Science.gov (United States)

    Hubalek, Valerie; Buck, Moritz; Tan, BoonFei; Foght, Julia; Wendeberg, Annelie; Berry, David; Bertilsson, Stefan; Eiler, Alexander

    2017-01-01

    Syntrophy among Archaea and Bacteria facilitates the anaerobic degradation of organic compounds to CH 4 and CO 2 . Particularly during aliphatic and aromatic hydrocarbon mineralization, as in the case of crude oil reservoirs and petroleum-contaminated sediments, metabolic interactions between obligate mutualistic microbial partners are of central importance. Using micromanipulation combined with shotgun metagenomic approaches, we describe the genomes of complex consortia within short-chain alkane-degrading cultures operating under methanogenic conditions. Metabolic reconstruction revealed that only a small fraction of genes in the metagenome-assembled genomes encode the capacity for fermentation of alkanes facilitated by energy conservation linked to H 2 metabolism. Instead, the presence of inferred lifestyles based on scavenging anabolic products and intermediate fermentation products derived from detrital biomass was a common feature. Additionally, inferred auxotrophy for vitamins and amino acids suggests that the hydrocarbon-degrading microbial assemblages are structured and maintained by multiple interactions beyond the canonical H 2 -producing and syntrophic alkane degrader-methanogen partnership. Compared to previous work, our report points to a higher order of complexity in microbial consortia engaged in anaerobic hydrocarbon transformation. IMPORTANCE Microbial interactions between Archaea and Bacteria mediate many important chemical transformations in the biosphere from degrading abundant polymers to synthesis of toxic compounds. Two of the most pressing issues in microbial interactions are how consortia are established and how we can modulate these microbial communities to express desirable functions. Here, we propose that public goods (i.e., metabolites of high energy demand in biosynthesis) facilitate energy conservation for life under energy-limited conditions and determine the assembly and function of the consortia. Our report suggests that an

  18. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  19. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Wijetunga, Somasiri; Li Xiufen; Jian Chen

    2010-01-01

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels (∼1000 mg/L, ∼2000 mg/L, ∼3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  20. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  1. Anaerobic bacteria colonizing the lower airways in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Anna Malm

    2011-07-01

    Full Text Available Anaerobes comprise most of the endogenous oropharyngeal microflora, and can cause infections of airways in lung cancer patients who are at high risk for respiratory tract infections. The aim of this study was to determine the frequency and species diversity of anaerobes in specimens from the lower airways of lung cancer patients. Sensitivity of the isolates to conventional antimicrobial agents used in anaerobe therapy was assessed. Respiratory secretions obtained by bronchoscopy from 30 lung cancer patients were cultured onto Wilkins- -Chalgren agar in anaerobic conditions at 37°C for 72–96 hours. The isolates were identified using microtest Api 20A. The minimal inhibitory concentrations for penicillin G, amoxicillin/clavulanate, piperacillin/tazobactam, cefoxitin, imipenem, clindamycin, and metronidazole were determined by E-test. A total of 47 isolates of anaerobic bacteria were detected in 22 (73.3% specimens. More than one species of anaerobe was found in 16 (53.3% samples. The most frequently isolated were Actinomyces spp. and Peptostreptococcus spp., followed by Eubacterium lentum, Veillonella parvula, Prevotella spp., Bacteroides spp., Lactobacillus jensenii. Among antibiotics used in the study amoxicillin/clavulanate and imipenem were the most active in vitro (0% and 2% resistant strains, respectively. The highest resistance rate was found for penicillin G and metronidazole (36% and 38% resistant strains, respectively. The results obtained confirm the need to conduct analyses of anaerobic microflora colonizing the lower respiratory tract in patients with lung cancer to monitor potential etiologic factors of airways infections, as well as to propose efficient, empirical therapy. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 263–266

  2. Structural analysis of a fibrocement anaerobic bioreactor for finite elements method

    International Nuclear Information System (INIS)

    Guardia-Puebla, Yans; Pacheco-GamboaI, Raúl; Ramos-Botello, Yoan; Palma-Ramírez, Leonardo; Rodríguez-Pérez, Suyén

    2015-01-01

    The paper consist on asses the mechanical resistant of the fibrocement tanks as a proposal of an anaerobic system of low cost for biogas production. For the design was used the finite elements method (FEM), which it is fundamental tool to carried out the structural analysis of the resistant to the traction of the anaerobic bioreactor. With this new system, a suitable option to spread, of sustainable and economic means, the biogas production on rural zones. For the design was used fibrocement tanks of 1900 L, and pipes and accessories plastics, achieving a maximum volume of cumulative biogas of 1,12 m"3.The fibrocement tank was not accomplished with the necessary specifications to achieve the design aim; for that reason, a new dimensional design was developed to guarantee the traction resistant as anaerobic bioreactors. (author)

  3. Clinical characteristics associated with mortality of patients with anaerobic bacteremia.

    Science.gov (United States)

    Umemura, Takumi; Hamada, Yukihiro; Yamagishi, Yuka; Suematsu, Hiroyuki; Mikamo, Hiroshige

    2016-06-01

    The presence of anaerobes in the blood stream is known to be associated with a higher rate of mortality. However, few prognostic risk factor analyses examining whether a patient's background characteristics are associated with the prognosis have been reported. We performed a retrospective case-controlled study to assess the prognostic factors associated with death from anaerobic bacteremia. Seventy-four patients with anaerobic bacteremia were treated between January 2005 and December 2014 at Aichi Medical University Hospital. The clinical information included drug susceptibility was used for analysis of prognostic factors for 30-day mortality. Multivariate logistic analyses revealed an association between the 30-day mortality rate and malignancy (OR: 3.64, 95% CI: 1.08-12.31) and clindamycin resistance (OR: 7.93, 95% CI: 2.33-27.94). The result of Kaplan-Meier analysis of mortality showed that the 30-day survival rate was 83% in clindamycin susceptible and 38.1% in clindamycin resistant anaerobes causing bacteremia. The result of log-rank test also showed that susceptibility to clindamycin affected mortality (P anaerobic bacteremia with a higher risk of 30-day mortality. The results of this study are important for the early and appropriate management of patients with anaerobic bacteremia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Anaerobic accumulation of short-chain fatty acids from algae enhanced by damaging cell structure and promoting hydrolase activity.

    Science.gov (United States)

    Feng, Leiyu; Chen, Yunzhi; Chen, Xutao; Duan, Xu; Xie, Jing; Chen, Yinguang

    2018-02-01

    Short-chain fatty acid (SCFAs) produced from harvested algae by anaerobic fermentation with uncontrolled pH was limited due to the solid cell structure of algae. This study, therefore, was undertaken to enhance the generation of SCFAs from algae by controlling the fermentation pH. pH influenced not only the total SCFAs production, but the percentage of individual SCFA. The maximal yield of SCFAs occurred at pH 10.0 and fermentation time of 6 d (3161 mg COD/L), which mainly contained acetic and iso-valeric acids and was nearly eight times that at uncontrolled pH (392 mg COD/L). Mechanism exploration revealed at alkaline pH, especially at pH 10.0, not only the cell structure of algae was damaged effectively, but also activities and relative quantification of hydrolases as well as the abundance of microorganisms responsible for organics hydrolysis and SCFAs production were improved. Also, the released microcystins from algae were removed efficiently during alkaline anaerobic fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Distribution of antibiotic resistance genes (ARGs) in anaerobic digestion and land application of swine wastewater

    International Nuclear Information System (INIS)

    Sui, Qianwen; Zhang, Junya; Chen, Meixue; Tong, Juan; Wang, Rui; Wei, Yuansong

    2016-01-01

    Swine farm and the adjacent farmland are hot spots of ARGs. However, few studies have investigated the on-site occurrence of ARGs distributed in the process of anaerobic digestion (AD) followed by land application of swine wastewater. Two typical swine farms, in southern and northern China respectively, with AD along with land application were explored on ARG distributions. ARGs were highly abundant in raw swine wastewater, AD effectively reduced the copy number of all detected ARGs (0.21–1.34 logs removal), but the relative abundance with different resistance mechanisms showed distinctive variation trends. The reduction efficiency of ARGs was improved by stable operational temperature and longer solid retention time (SRT) of AD. ARGs in soil characterized the contamination from the irrigation of the digested liquor. The total ARGs quantity in soil fell down by 1.66 logs in idle period of winter compared to application period of summer in the northern region, whereas the total amount was steady with whole-year application in south. Some persistent (sul1 and sul2) and elevated ARGs (tetG and ereA) in AD and land application need more attention. - Highlights: • Swine farm and the adjacent farmland are hot spots of ARGs. • Mesophilic anaerobic digestion reduced the most detected ARGs quantities. • ARG levels in soils varied with different land application procedures. • Persistent and elevated ARGs in AD and land application need more attention. - Anaerobic digestion reduced the copy number of ARGs in swine wastewater, and winter idle dissipated their quantities in soil.

  6. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater.

    Science.gov (United States)

    Masse, L; Massé, D I; Kennedy, K J; Chou, S P

    2002-07-05

    Neutral fat hydrolysis and long-chain fatty acid (LCFA) oxidation rates were determined during the digestion of slaughterhouse wastewater in anaerobic sequencing batch reactors operated at 25 degrees C. The experimental substrate consisted of filtered slaughterhouse wastewater supplemented with pork fat particles at various average initial sizes (D(in)) ranging from 60 to 450 microm. At the D(in) tested, there was no significant particle size effect on the first-order hydrolysis rate. The neutral fat hydrolysis rate averaged 0.63 +/- 0.07 d(-1). LCFA oxidation rate was modelled using a Monod-type equation. The maximum substrate utilization rate (kmax) and the half-saturation concentration (Ks) averaged 164 +/- 37 mg LCFA/L/d and 35 +/- 31 mg LCFA/L, respectively. Pork fat particle degradation was mainly controlled by LCFA oxidation rate and, to a lesser extent, by neutral fat hydrolysis rate. Hydrolysis pretreatment of fat-containing wastewaters and sludges should not substantially accelerate their anaerobic treatment. At a D(in) of 450 microm, fat particles were found to inhibit methane production during the initial 20 h of digestion. Inhibition of methane production in the early phase of digestion was the only significant effect of fat particle size on anaerobic digestion of pork slaughterhouse wastewater. Soluble COD could not be used to determine the rate of lipid hydrolysis due to LCFA adsorption on the biomass.

  8. Accelerated anaerobic dechlorination of DDT in slurry with Hydragric Acrisols using citric acid and anthraquinone-2,6-disulfonate (AQDS).

    Science.gov (United States)

    Liu, Cuiying; Xu, Xianghua; Fan, Jianling

    2015-12-01

    The application of electron donor and electron shuttle substances has a vital influence on electron transfer, thus may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane (DDT) in anaerobic reaction systems. To evaluate the roles of citric acid and anthraquinone-2,6-disulfonate (AQDS) in accelerating the reductive dechlorination of DDT in Hydragric Acrisols that contain abundant iron oxide, a batch anaerobic incubation experiment was conducted in a slurry system with four treatments of (1) control, (2) citric acid, (3) AQDS, and (4) citric acid+AQDS. Results showed that DDT residues decreased by 78.93%-92.11% of the initial quantities after 20days of incubation, and 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane (DDD) was the dominant metabolite. The application of citric acid accelerated DDT dechlorination slightly in the first 8days, while the methanogenesis rate increased quickly, and then the acceleration effect improved after the 8th day while the methanogenesis rate decreased. The amendment by AQDS decreased the Eh value of the reaction system and accelerated microbial reduction of Fe(III) oxides to generate Fe(II), which was an efficient electron donor, thus enhancing the reductive dechlorination rate of DDT. The addition of citric acid+AQDS was most efficient in stimulating DDT dechlorination, but no significant interaction between citric acid and AQDS on DDT dechlorination was observed. The results will be of great significance for developing an efficient in situ remediation strategy for DDT-contaminated sites. Copyright © 2015. Published by Elsevier B.V.

  9. Energy production by anaerobic treatment of cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Peano, L.; Ciciarelli, R.; Comino, E.; Gard, P. A.

    2009-07-01

    Anaerobic treatment and methane generation potential of cheese whey, diluted with mud, were determined in the digester of an existing wastewater treatment plant in Switzerland. Lactose, main sugar in cheese whey, can be a useful indicator to evaluate serum anaerobic treatment. Conventional parameters of anaerobic digestion (Volatile Matter, Dry Matter, Fatty Volatile Acids, total Alkali metric Title) were measured after the introduction of different whey/sludge ratio demonstrating that, despite an overcharge of whey digester, its stability is never compromised. (Author)

  10. Energy production by anaerobic treatment of cheese whey

    International Nuclear Information System (INIS)

    Peano, L.; Ciciarelli, R.; Comino, E.; Gard, P. A.

    2009-01-01

    Anaerobic treatment and methane generation potential of cheese whey, diluted with mud, were determined in the digester of an existing wastewater treatment plant in Switzerland. Lactose, main sugar in cheese whey, can be a useful indicator to evaluate serum anaerobic treatment. Conventional parameters of anaerobic digestion (Volatile Matter, Dry Matter, Fatty Volatile Acids, total Alkali metric Title) were measured after the introduction of different whey/sludge ratio demonstrating that, despite an overcharge of whey digester, its stability is never compromised. (Author)

  11. Peritoneal dialysis peritonitis by anaerobic pathogens: a retrospective case series

    Science.gov (United States)

    2013-01-01

    Background Bacterial infections account for most peritoneal dialysis (PD)-associated peritonitis episodes. However, anaerobic PD peritonitis is extremely rare and intuitively associated with intra-abdominal lesions. In this study, we examined the clinical characteristics of PD patients who developed anaerobic peritonitis. Methods We retrospectively identified all anaerobic PD peritonitis episodes from a prospectively collected PD registry at a single center between 1990 and 2010. Only patients receiving more than 3 months of PD were enrolled. We analyzed clinical features as well as outcomes of anaerobic PD peritonitis patients. Results Among 6 patients, 10 episodes of PD-associated peritonitis were caused by anaerobic pathogens (1.59% of all peritonitis episodes during study the period), in which the cultures from 5 episodes had mixed growth. Bacteroides fragilis was the most common species identified (4 isolates). Only 3 episodes were associated with gastrointestinal lesions, and 4 episodes were related to a break in sterility during exchange procedures. All anaerobic pathogens were susceptible to clindamycin and metronidazole, but penicillin resistance was noted in 4 isolates. Ampicillin/sulbactam resistance was found in 2 isolates. In 5 episodes, a primary response was achieved using the first-generation cephalosporin and ceftazidime or aminoglycoside. In 3 episodes, the first-generation cephalosporin was replaced with aminoglycosides. Tenckhoff catheter removal was necessary in 2 episodes. Only one episode ended with mortality (due to a perforated bowel). Conclusion Anaerobic PD-associated peritonitis might be predominantly caused by contamination, rather than intra-abdominal events. Half of anaerobic PD-associated peritonitis episodes had polymicrobial growth. The overall outcome of anaerobic peritonitis is fair, with a high catheter survival rate. PMID:23705895

  12. Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ghaly, A.E.; Ramkumar, D.R.

    1999-07-01

    Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and pH control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg L (as acetic acid), with acetic (28 %), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L d (0.84m{sup 3}m{sup 3} d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3 % in the total solids, chemical oxygen demand and total Kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%). (author)

  13. Benznidazole induces in vitro anaerobic metabolism in Trypanosoma cruzi epimastigotes

    Directory of Open Access Journals (Sweden)

    Marina Clare Vinaud

    2017-11-01

    Full Text Available Objective: To determine the biochemical alterations of the energetic metabolism of Trypanosoma cruzi epimastigotes in vitro exposed to different concentrations of benzinidazole. Methods: Biochemical analyses were performed at 3, 6 (log phase, 9 and 12 (stationary phase days of culture. Parasites were exposed to five concentrations of benzinidazole. Glycolysis, tricarboxilic acid cycle and fatty acids oxidation pathways were quantified through chromatography. Glucose, urea and creatinine were quantified through spectrophotometric analysis. Results: Anaerobic fermentation and fatty acids oxidation were increased in the stationary phase of the culture. Benzinidazole at high concentrations induced anaerobic metabolism in the log phase of the culture while the parasites exposed to the lower concentrations preferred the citric acid cycle as energy production pathway. Benzinidazole did not influence on the proteins catabolism. Conclusions: It is possible to conclude that there are metabolic differences between evolutive forms of Trypanosoma cruzi and the main drug used for its treatment induces the anaerobic metabolism in the parasite, possibly impairing the mitochondrial pathways.

  14. Biochemical identification and determination of antimicrobial resistance in clinical isolates of anaerobic bacteria obtained from the Hospital San Juan de Dios in the period 2009 to 2011

    International Nuclear Information System (INIS)

    Meza Pena, Maria Daniela

    2014-01-01

    Clinical isolates of 81 anaerobic bacteria isolated are identified to patients of the Hospital San Juan de Dios, between 2009 to 2011; by algorithms that have employed biochemical methods of reference chemical samples. Antimicrobial resistance is determined. The miniaturized methods and biochemical algorithms proposed were compared to identify differences between methods. The minimum inhibitory concentration of metronidazole, clindamycin, amoxicillin, tetracycline and cefotaxime are determined to 81 anaerobic bacteria isolated from the Hospital mentioned [es

  15. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste.

    Science.gov (United States)

    Capson-Tojo, Gabriel; Moscoviz, Roman; Ruiz, Diane; Santa-Catalina, Gaëlle; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-07-01

    The effect of supplementing granular activated carbon and trace elements on the anaerobic digestion performance of consecutive batch reactors treating food waste was investigated. The results from the first batch suggest that addition of activated carbon favored biomass acclimation, improving acetic acid consumption and enhancing methane production. Adding trace elements allowed a faster consumption of propionic acid. A second batch proved that a synergy existed when activated carbon and trace elements were supplemented simultaneously. The degradation kinetics of propionate oxidation were particularly improved, reducing significantly the batch duration and improving the average methane productivities. Addition of activated carbon favored the growth of archaea and syntrophic bacteria, suggesting that interactions between these microorganisms were enhanced. Interestingly, microbial analyses showed that hydrogenotrophic methanogens were predominant. This study shows for the first time that addition of granular activated carbon and trace elements may be a feasible solution to stabilize food waste anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Anaerobic digestion of gucose with separated acid production and methane formation

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A; Zoetemeyer, R J; van Deursen, A; van Andel, J G

    1979-01-01

    In a two-phase anaerobic-digestion system, with separate reactors for the acidification phase and the methane fermentation phase, the Universiteit van Amsterdam found the glucose of a 1% glucose solution (sucrose/starch-containing wastewater from agricultural industries) to be almost completely converted into biomass and gases. The acid reactor was operated at 86/sup 0/F (30/sup 0/C) and pH 6.0, with a retention time of 10 hr. The main products of the acid-forming phase were hydrogen, carbon dioxide, butyrate, and acetate. On a molar base, these products represented over 96% of all products formed. On the average, 12% of the chemical-oxygen-demand content of the influent was evolved as hydrogen. The effluent of the first reactor went to the methane reactor after passing through a storage vessel. The methane reactor operated at 86/sup 0/F (30/sup 0/C), pH 7.8, and a retention time of 100 hr. Approximately 98% of the organic substances fed to this reactor was converted to methane, carbon dioxide, and biomass. About 11% of the glucose fed to the digesting system was converted to bacterial mass.

  17. A novel fusidic acid resistance determinant, fusF, in Staphylococcus cohnii.

    Science.gov (United States)

    Chen, Hsiao-Jan; Hung, Wei-Chun; Lin, Yu-Tzu; Tsai, Jui-Chang; Chiu, Hao-Chieh; Hsueh, Po-Ren; Teng, Lee-Jene

    2015-02-01

    To determine MICs of fusidic acid for and identify genetic determinants of resistance in Staphylococcus cohnii isolates. Susceptibility to fusidic acid was determined by the standard agar dilution method in 24 S. cohnii subsp. urealyticus clinical isolates, 7 S. cohnii subsp. cohnii clinical isolates and 2 reference strains. Sequencing of a novel resistance determinant, fusF, and its flanking regions was performed by long and accurate PCR and inverse PCR. To evaluate the function of fusF, the MIC of fusidic acid was determined for recombinant Staphylococcus aureus carrying a plasmid expressing fusF. A total of 25 S. cohnii subsp. urealyticus (24 clinical isolates and 1 reference strain) and 2 S. cohnii subsp. cohnii displayed low-level resistance to fusidic acid (MICs 2-16 mg/L). Sequencing of a 4259 bp fragment from S. cohnii subsp. urealyticus ATCC 49330 revealed a novel resistance gene, designated fusF, which displayed 70.5% nucleotide and 67.3% amino acid identity to fusD. Expression of fusF in S. aureus confers resistance to fusidic acid. A novel FusB-family gene, fusF, was identified as a major resistance determinant in S. cohnii clinical isolates resistant to fusidic acid. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Kajimura, H.; Morikawa, H.; Nagano, H.

    1987-01-01

    Slow strain rate tests are effected on zirconium in boiling nitric acid to study the influence of nitric acid concentration, of oxidizing ions (Cr and Ce) and of electric potential. Corrosion resistance is excellent and stress corrosion cracking occurs only for severe conditions: 350 mV over electric potential for corrosion with nitric acid concentration of 40 % [fr

  19. Anaerobic growth of Bacillus subtilis alters the spectrum of spontaneous mutations in the rpoB gene leading to rifampicin resistance.

    Science.gov (United States)

    Nicholson, Wayne L; Park, Roy

    2015-12-01

    Spontaneous rifampicin-resistant (RFM(R)) mutants were isolated from Bacillus subtilis 168 cultivated in the presence or absence of oxygen. By DNA sequencing, the mutations were located within Cluster I of the rpoB gene encoding the β subunit of RNA polymerase. The spectrum of RFM(R) rpoB mutations isolated from B. subtilis cells grown anaerobically differed from aerobically grown cells, not only with respect to the location of mutations within Cluster I but also in the class of mutation observed (transition versus transversion). In the absence of RFM, RFM(R) mutants exhibited poorer growth under anaerobic conditions than did the wild-type strain, indicating their lower fitness in the absence of antibiotic selection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Isolation and Partial Characterization of Bacteria in an Anaerobic Consortium That Mineralizes 3-Chlorobenzoic Acid

    OpenAIRE

    Shelton, Daniel R.; Tiedje, James M.

    1984-01-01

    A methanogenic consortium able to use 3-chlorobenzoic acid as its sole energy and carbon source was enriched from anaerobic sewage sludge. Seven bacteria were isolated from the consortium in mono- or coculture. They included: one dechlorinating bacterium (strain DCB-1), one benzoate-oxidizing bacterium (strain BZ-2), two butyrate-oxidizing bacteria (strains SF-1 and NSF-2), two H2-consuming methanogens (Methanospirillum hungatei PM-1 and Methanobacterium sp. strain PM-2), and a sulfate-reduci...

  1. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  2. Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic Acid, jasmonic Acid and ethylene.

    Science.gov (United States)

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-09-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  3. Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

    Directory of Open Access Journals (Sweden)

    Young Hee Lee

    2014-09-01

    Full Text Available Two cultivars Buram-3-ho (susceptible and CR-Hagwang (moderate resistant of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum, black spot (Alternaria brassicicola and black rot (Xanthomonas campestris pv. campestris, Xcc diseases in our previous study. Defense-related hormones salicylic acid (SA, jasmonic acid (JA and ethylene led to different transcriptional regulation of pathogenesis-related (PR gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  4. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik's Cube of Clinical Microbiology?

    Science.gov (United States)

    Gajdács, Márió; Spengler, Gabriella; Urbán, Edit

    2017-11-07

    Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria.

  5. Abundance and distribution of antibiotic resistance genes in a full-scale anaerobic-aerobic system alternately treating ribostamycin, spiramycin and paromomycin production wastewater.

    Science.gov (United States)

    Tang, Mei; Dou, Xiaomin; Wang, Chunyan; Tian, Zhe; Yang, Min; Zhang, Yu

    2017-12-01

    The occurrence of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) has been intensively investigated for wastewater treatment systems treating single class of antibiotic in recent years. However, the impacts of alternately occurring antibiotics in antibiotic production wastewater on the behavior of ARGs in biological treatment systems were not well understood yet. Herein, techniques including high-capacity quantitative PCR and quantitative PCR (qPCR) were used to investigate the behavior of ARGs in an anaerobic-aerobic full-scale system. The system alternately treated three kinds of antibiotic production wastewater including ribostamycin, spiramycin and paromomycin, which referred to stages 1, 2 and 3. The aminoglycoside ARGs (52.1-79.3%) determined using high-capacity quantitative PCR were the most abundant species in all sludge samples of the three stages. The total relative abundances of macrolide-lincosamide-streptogramin (MLS) resistance genes and aminoglycoside resistance genes measured using qPCR were significantly higher (P  0.05) in both aerobic and anaerobic sludge samples. In aerobic sludge, one acetyltransferase gene (aacA4) and the other three nucleotidyltransferase genes (aadB, aadA and aadE) exhibited positive correlations with intI1 (r 2  = 0.83-0.94; P < 0.05), implying the significance of horizontal transfer in their proliferation. These results and facts will be helpful to understand the abundance and distribution of ARGs from antibiotic production wastewater treatment systems.

  6. Degradation of Dehydrodivanillin by Anaerobic Bacteria from Cow Rumen Fluid

    OpenAIRE

    Chen, Wei; Ohmiya, Kunio; Shimizu, Shoichi; Kawakami, Hidekuni

    1985-01-01

    Dehydrodivanillin (DDV; 0.15 g/liter) was biodegradable at 37°C under strictly anaerobic conditions by microflora from cow rumen fluid to the extent of 25% within 2 days in a yeast extract medium. The anaerobes were acclimated on DDV for 2 weeks, leading to DDV-degrading microflora with rates of degradation eight times higher than those initially. Dehydrodivanillic acid and vanillic acid were detected in an ethylacetate extract of a DDV-enriched culture broth by thin-layer, gas, and high-perf...

  7. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus.

    Science.gov (United States)

    Yin, Haisong; Zhang, Renkuan; Xia, Menglei; Bai, Xiaolei; Mou, Jun; Zheng, Yu; Wang, Min

    2017-06-15

    Acetic acid bacteria (AAB) are widely applied in food, bioengineering and medicine fields. However, the acid stress at low pH conditions limits acetic acid fermentation efficiency and high concentration of vinegar production with AAB. Therefore, how to enhance resistance ability of the AAB remains as the major challenge. Amino acids play an important role in cell growth and cell survival under severe environment. However, until now the effects of amino acids on acetic fermentation and acid stress resistance of AAB have not been fully studied. In the present work the effects of amino acids on metabolism and acid stress resistance of Acetobacter pasteurianus were investigated. Cell growth, culturable cell counts, acetic acid production, acetic acid production rate and specific production rate of acetic acid of A. pasteurianus revealed an increase of 1.04, 5.43, 1.45, 3.30 and 0.79-folds by adding aspartic acid (Asp), and cell growth, culturable cell counts, acetic acid production and acetic acid production rate revealed an increase of 0.51, 0.72, 0.60 and 0.94-folds by adding glutamate (Glu), respectively. For a fully understanding of the biological mechanism, proteomic technology was carried out. The results showed that the strengthening mechanism mainly came from the following four aspects: (1) Enhancing the generation of pentose phosphates and NADPH for the synthesis of nucleic acid, fatty acids and glutathione (GSH) throughout pentose phosphate pathway. And GSH could protect bacteria from low pH, halide, oxidative stress and osmotic stress by maintaining the viability of cells through intracellular redox equilibrium; (2) Reinforcing deamination of amino acids to increase intracellular ammonia concentration to maintain stability of intracellular pH; (3) Enhancing nucleic acid synthesis and reparation of impaired DNA caused by acid stress damage; (4) Promoting unsaturated fatty acids synthesis and lipid transport, which resulted in the improvement of cytomembrane

  8. [Anaerobic bacteria 150 years after their discovery by Pasteur].

    Science.gov (United States)

    García-Sánchez, José Elías; García-Sánchez, Enrique; Martín-Del-Rey, Ángel; García-Merino, Enrique

    2015-02-01

    In 2011 we celebrated the 150th anniversary of the discovery of anaerobic bacteria by Louis Pasteur. The interest of the biomedical community on such bacteria is still maintained, and is particularly focused on Clostridium difficile. In the past few years important advances in taxonomy have been made due to the genetic, technological and computing developments. Thus, a significant number of new species related to human infections have been characterised, and some already known have been reclassified. At pathogenic level some specimens of anaerobic microflora, that had not been isolated from human infections, have been now isolated in some clinical conditions. There was emergence (or re-emergence) of some species and clinical conditions. Certain anaerobic bacteria have been associated with established infectious syndromes. The virulence of certain strains has increased, and some hypotheses on their participation in certain diseases have been given. In terms of diagnosis, the routine use of MALDI-TOF has led to a shortening of time and a cost reduction in the identification, with an improvement directly related to the improvement of data bases. The application of real-time PCR has been another major progress, and the sequencing of 16srRNA gene and others is currently a reality for several laboratories. Anaerobes have increased their resistance to antimicrobial agents, and the emergence of resistance to carbapenems and metronidazole, and multi-resistance is a current reality. In this situation, linezolid could be an effective alternative for Bacteroides. Fidaxomicin is the only anti-anaerobic agent introduced in the recent years, specifically for the diarrhoea caused by C.difficile. Moreover, some mathematical models have also been proposed in relation with this species. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. Simultaneous isolation of anaerobic bacteria from udder abscesses and mastitic milk in lactating dairy cows.

    Science.gov (United States)

    Greeff, A S; du Preez, J H

    1985-12-01

    A variety of non-sporulating anaerobic bacterial species were isolated from udder abscesses in 10 lactating dairy cows. Fifty percent of the abscesses yielded multiple anaerobic species and the other 50% only 1 species. The anaerobic bacteria, however, were always accompanied by classical facultative anaerobic mastitogenic bacteria. In four of the five cows also afflicted with mastitis in the quarters with abscesses, the anaerobic and facultative anaerobic bacteria were identical. Peptococcus indolicus was the most commonly isolated organism followed by Eubacterium and Bacteroides spp. Bacteroides fragilis was resistant to penicillin, ampicillin and tetracycline.

  10. Biosynthethesis of dipicolinic acid in Clostridium roseum

    International Nuclear Information System (INIS)

    Prakasan, K.M.; Sharma, D.; Gollakota, K.G.; Lakechaura, B.D.

    1975-01-01

    Dipicolinic acid (DPA) is a major constituent of bacterial endospores and the thermal resistance of spores is closely correlated with their calcium dipicolinate content. The biosynthesis of DPA in anaerobes was studied in Cl. roseum using the technique of endotrophic sporulation. The cells from the complex medium were harvested at a stage when they were refractile and stainable, resuspended in nongrowth promoting mineral water supplemented with radioactive presumptive precursors of DPA and incubated. The incorporation in DPA of exogenously supplied individual metabolites was followed by radioactictivity (C 14 ) measurements. Glutamic acid, aspartic acid, alanine, serine, and acetate were found efficient precursors of DPA. (author)

  11. Combined Effects of Lignosus rhinocerotis Supplementation and Resistance Training on Isokinetic Muscular Strength and Power, Anaerobic and Aerobic Fitness Level, and Immune Parameters in Young Males.

    Science.gov (United States)

    Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida

    2016-01-01

    This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Isokinetic muscular strength and power were increased ( P anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases ( P anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits.

  12. Abscisic Acid-Cytokinin Antagonism Modulates Resistance Against Pseudomonas syringae in Tobacco.

    Science.gov (United States)

    Großkinsky, Dominik K; van der Graaff, Eric; Roitsch, Thomas

    2014-12-01

    Phytohormones are known as essential regulators of plant defenses, with ethylene, jasmonic acid, and salicylic acid as the central immunity backbone, while other phytohormones have been demonstrated to interact with this. Only recently, a function of the classic phytohormone cytokinin in plant immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco, antagonistic interaction of these phytohormones in plant immunity was identified. Kinetin reduced abscisic acid levels in tobacco, while increased abscisic acid levels by exogenous application or inhibition of abscisic acid catabolism by diniconazole neutralized kinetin-induced resistance. Based on these results, we conclude that reduction of abscisic acid levels by enhanced abscisic acid catabolism strongly contributes to cytokinin-mediated resistance effects. Thus, the identified cytokinin-abscisic acid antagonism is a novel regulatory mechanism in plant immunity.

  13. Pertechnetate immobilization in aqueous media with hydrogen sulfide under anaerobic and aerobic environments

    International Nuclear Information System (INIS)

    Liu, Y.; Jurisson, S.; Terry, J.

    2007-01-01

    The basic chemistry for the immobilization of pertechnetate (TcO 4 - ) by hydrogen sulfide was investigated in aqueous solution under both aerobic and anaerobic environments. Pertechnetate immobilization was acid dependent, with accelerated rates and increased immobilization yields as the acid concentration increased. Oxygen had no effect under acidic conditions. Under anaerobic alkaline conditions, the pH, and therefore the speciation of sulfide, was the determining factor on the immobilization of pertechnetate. Only 53% of the TcO 4 - was immobilized at pH 8, while the yield increased to 83% at pH 9 as HS - became the dominant sulfide species. The immobilization yield then decreased to 73% at pH 13. No reaction was observed between TcO 4 - and sulfide under aerobic alkaline conditions, indicating that oxygen suppressed this reaction. Pertechnetate immobilization was found to be first order with respect to both sulfide and pertechnetate in acidic solutions, and in alkaline solution under anaerobic conditions. The results of stoichiometry studies and product analysis under alkaline anaerobic environments indicated that Tc 2 S 7 was obtained at pH 9. EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure) studies suggested that the samples obtained from acidic, aerobic solution and alkaline anaerobic solution were both Tc 2 S 7 . The stability of Tc 2 S 7 is affected by O 2 with accelerated dissolution at high pH. (orig.)

  14. Investigation of the impact of trace elements on anaerobic volatile fatty acid degradation using a fractional factorial experimental design.

    Science.gov (United States)

    Jiang, Ying; Zhang, Yue; Banks, Charles; Heaven, Sonia; Longhurst, Philip

    2017-11-15

    The requirement of trace elements (TE) in anaerobic digestion process is widely documented. However, little is understood regarding the specific requirement of elements and their critical concentrations under different operating conditions such as substrate characterisation and temperature. In this study, a flask batch trial using fractional factorial design is conducted to investigate volatile fatty acids (VFA) anaerobic degradation rate under the influence of the individual and combined effect of six TEs (Co, Ni, Mo, Se, Fe and W). The experiment inoculated with food waste digestate, spiked with sodium acetate and sodium propionate both to 10 g/l. This is followed by the addition of a selection of the six elements in accordance with a 2 6-2 fractional factorial principle. The experiment is conducted in duplicate and the degradation of VFA is regularly monitored. Factorial effect analysis on the experimental results reveals that within these experimental conditions, Se has a key role in promoting the degradation rates of both acetic and propionic acids; Mo and Co are found to have a modest effect on increasing propionic acid degradation rate. It is also revealed that Ni shows some inhibitory effects on VFA degradation, possibly due to its toxicity. Additionally, regression coefficients for the main and second order effects are calculated to establish regression models for VFA degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Acidic Attack Resistance of Cement Mortar Treated with Alkaline

    Directory of Open Access Journals (Sweden)

    Nadia Nazhat Sabeeh

    2017-12-01

    Full Text Available The negative effect of acidic attack on the properties of concrete and cement mortar is a topic of increasing significance in the recent years. Many attempts has occurred to mitigate this negative impact by improving the properties of concrete and increase resistance to acids by using additives. The present study includes treatment of sand by alkaline material and examine the effect of treatment on cement mortar resistance towards hydrochloric and sulfuric acid. Results show that sand treatment by alkaline material significantly enhance mortar ability to resist acids. In terms of loss weight, the maximum weight rate gain was 25.54% for specimens immersed in Hydrochloric acid with water cement ratio 40%. For specimens immersed in HCl, the average gain in compressive strength is (20.15-19.433% for w/c (40-45% respectively. The average gain in modulus of rupture toward the influence of H2SO4 is (18.37–17.99% for w/c (40-45%, respectively.

  16. A bio-electrochemical system for removing inhibitors of anaerobic digestion processes from anaerobic reactors

    DEFF Research Database (Denmark)

    2014-01-01

    Inhibition of anaerobic digestion process by high level of ammonia (NH4 +/I\\IH3) is the most serious problem existing in biogas plants. No viable/applicable method to overcome this problem has been found up to now. This invention proposes an innovative submersible bio-electrochemical membrane...... reactor to recover ammonia from anaerobic digestion reactor, and thereby alleviate or counteract ammonia inhibition and enhance the conversion of ammonia-rich wastes to biogas. The invention may further reduce overall cost, giving synergistic advantages for both ammonia recycling and biogas plants...... by recovering acid (e.g., H2SO4, HCI), that can be used to treat the recovered ammonia....

  17. Anaerobic Cultures from Preserved Tissues of Baby Mammoth

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Fisher, Daniel

    2011-01-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 4 C. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that prevents other bacteria from over-dominating a system. Permafrost and lactic acid preserved the body of this one-month old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete such specimen ever recovered. The diversity of novel anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here we discuss the specifics of the isolation of new strains, differentiation from trivial contamination, and preliminary results for the characterization of cultures.

  18. Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater.

    Science.gov (United States)

    Sun, Wei; Gu, Jie; Wang, Xiaojuan; Qian, Xun; Tuo, Xiaxia

    2018-05-01

    Biochar has positive effects on nitrogen conservation during anaerobic digestion, but its impacts on antibiotic resistance genes (ARGs) are unclear. Therefore, the effect of biochar (0, 5, 20, and 50 g/L) on the environmental risk of ARGs during cattle manure wastewater anaerobic digestion were investigated. The results showed that 5 g/L biochar reduced the relative abundances (RAs) of 5/13 ARGs while 20 g/L biochar significantly reduced the total RAs of ARGs in the digestion products, where the RA of ISCR1 was 0.89 log lower than the control. Biochar mainly affected the distribution of ARGs by influencing the RAs of Firmicutes and Proteobacteria, and the influence of 20 g/L biochar was greater than that of 5 g/L. Mobile genetic elements also influenced the ARG profiles, especially intI2 and ISCR1. The addition of 20 g/L biochar to cattle farm wastewater anaerobic digestion systems could reduce the environmental risk of ARGs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes.

    Science.gov (United States)

    Zhang, Jingxin; Mao, Feijian; Loh, Kai-Chee; Gin, Karina Yew-Hoong; Dai, Yanjun; Tong, Yen Wah

    2018-02-01

    The effects of activated carbon (AC) on methane production and the fate of antibiotic resistance genes (ARGs) were evaluated through comparing the anaerobic digestion performance and transformation of ARGs among anaerobic mono-digestion of food waste, co-digestion of food waste and chicken manure, and co-digestion of food waste and waste activated sludge. Results showed that adding AC in anaerobic digesters improved methane yield by at least double through the enrichment of bacteria and archaea. Conventional digestion process showed ability in removing certain types of ARGs, such as tetA, tetX, sul1, sul2, cmlA, floR, and intl1. Supplementing AC in anaerobic digester enhanced the removal of most of the ARGs in mono-digestion of food waste. The effects tended to be minimal in co-digestion of co-substrates such as chicken manure and waste activated sludge, both of which contain a certain amount of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Influence Of Quinolone Lethality on Irradiated Anaerobic Growth of Escherichia Coli

    International Nuclear Information System (INIS)

    Ibrahim, I.M.; El-Kabbany, H.M.; El-Esseily, E.SH.

    2012-01-01

    Bacteriostatic and bactericidal activities were measured with wild type cells and isomerase mutants of Escherichia coli for ciprofloxacin, formation of quinolone-gyrase-DNA complexes, observed as a sodium dodecyl sulfate (SDS) dependent drop in cell lysate viscosity, occurred during aerobic and anaerobic growth and in the presence and in the absence of chloramphenicol. Quinolone activity against Escherichia coli was examined during aerobic growth, aerobic treatment with chloramphenicol, and anaerobic growth. Nalidixic acid, norfloxacin and ciprofloxacin were lethal for cultures growing aerobically, and the bacteriostatic activity of each quinolone was unaffected by anaerobic growth. However, lethal activity was distinct for each quinolone with cells treated aerobically with chloramphenicol or grown anaerobically. Nalidixic acid failed to kill cells under both conditions, norfloxacin killed cells when they were grown anaerobically but not when they were treated with chloramphenicol, ciprofloxacin killed cells under both conditions but required higher concentrations than those required with cells grown aerobically, C-methoxy fluoro quinolone was equally lethal under all conditions. However, lethal chromosome fragmentation, detected as a drop in viscosity in the absence of SDS, was occurred with nalidixic acid treatment only under aerobic conditions in the absence of chloramphenicol, thus, all quinolones tested appeared to form reversible bacteriostatic complexes containing broken DNA during aerobic growth, during anaerobic growth, and when protein synthesis is blocked. The ability to fragment chromosomes rapidly kill cells under these conditions depends on quinolone structure. The radiation of sublethal dose was 3 Gy at rate of 0.6 Gy/min was shown as non-significant result

  1. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology?

    Science.gov (United States)

    Gajdács, Márió; Spengler, Gabriella; Urbán, Edit

    2017-01-01

    Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria. PMID:29112122

  2. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N.S. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil); Zaiat, M. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil)], E-mail: zaiat@sc.usp.br

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m{sup 3} day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 {+-} 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  3. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    International Nuclear Information System (INIS)

    Pereira, N.S.; Zaiat, M.

    2009-01-01

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m 3 day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 ± 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms

  4. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  5. Energetic and biochemical valorization of cork boiling wastewater by anaerobic digestion.

    Science.gov (United States)

    Marques, Isabel Paula; Gil, Luís; La Cara, Francesco

    2014-01-01

    In addition to energy benefits, anaerobic digestion offers other interesting advantages. The cork industry is of great environmental, economic and social significance in the western Mediterranean region, with Portugal being the world-leading producer and exporter. Cork boiling wastewater (CBW) is a toxic and recalcitrant organic effluent produced by this sector, which constitutes a serious environmental hazard. However, there is no documented research on anaerobic treatment/valorization performed with this effluent. The work presented here was developed with the aim to use the anaerobic digestion process to convert the CBW polluting organic load into an energy carrier gas and valuable molecules for industry. No lag phases were observed and a methane yield of 0.126 to 0.142 m(3) kg(-1) chemical oxygen demand (COD)added was registered in the mesophilic consortium experiments carried out in batch flasks at 37 ± 1°C. Anaerobic digestion can be advantageously connected to ultrafiltration or electrochemical processes, due to the following: 1) reduction of ellagic acid content and consequent decrease of CBW viscosity; and 2) increase in conductivity after the anaerobic process, avoiding the electrolyte application of the electrochemical process. The improvement of several CBW biochemical features shows that anaerobic digestion may provide additionally useful molecules. The rise in concentration of some of these compounds, belonging to the benzoic acid family (gallic, protocatechuic, vanillic and syringic acids), is responsible for the increase of antiradical activity of the phenolic fraction. Additionally, some enzymatic activity was also observed and while the laccase activity increased in the digested effluent by anaerobiosis, xylanase was formed in the process. The multidisciplinary approach adopted allowed the valorization of CBW in terms of energy and valuable biomolecules. By exploiting the anaerobic digestion process potential, a novel methodology to toxic

  6. Problematic effects of antibiotics on anaerobic treatment of swine wastewater.

    Science.gov (United States)

    Cheng, D L; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Kumar, S Mathava; Du, B; Wei, Q; Wei, D

    2018-05-04

    Swine wastewaters with high levels of organic pollutants and antibiotics have become serious environmental concerns. Anaerobic technology is a feasible option for swine wastewater treatment due to its advantage in low costs and bioenergy production. However, antibiotics in swine wastewater have problematic effects on micro-organisms, and the stability and performance of anaerobic processes. Thus, this paper critically reviews impacts of antibiotics on pH, COD removal efficiencies, biogas and methane productions as well as the accumulation of volatile fatty acids (VFAs) in the anaerobic processes. Meanwhile, impacts on the structure of bacteria and methanogens in anaerobic processes are also discussed comprehensively. Furthermore, to better understand the effect of antibiotics on anaerobic processes, detailed information about antimicrobial mechanisms of antibiotics and microbial functions in anaerobic processes is also summarized. Future research on deeper knowledge of the effect of antibiotics on anaerobic processes are suggested to reduce their adverse environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Long chain fatty acids (LCFA) evolution for inhibition forecasting during anaerobic treatment of lipid-rich wastes: Case of milk-fed veal slaughterhouse waste.

    Science.gov (United States)

    Rodríguez-Méndez, R; Le Bihan, Y; Béline, F; Lessard, P

    2017-09-01

    A detailed study of a solid slaughterhouse waste (SHW) anaerobic treatment is presented. The waste used in this study is rich in lipids and proteins residue. Long chain fatty acids (LCFA), coming from the hydrolysis of lipids were inhibitory to anaerobic processes at different degrees. Acetogenesis and methanogenesis processes were mainly affected by inhibition whereas disintegration and hydrolysis processes did not seem to be affected by high LCFA concentrations. Nevertheless, because of the high energy content, this kind of waste is very suitable for anaerobic digestion but strict control of operating conditions is required to prevent inhibition. For that, two inhibition indicators were identified in this study. Those two indicators, LCFA dynamics and LCFA/VS biomass ratio proved to be useful to predict and to estimate the process inhibition degree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    International Nuclear Information System (INIS)

    Hosseini Koupaie, E.; Alavi Moghaddam, M.R.; Hashemi, S.H.

    2011-01-01

    Highlights: → Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. → More than 65% of the dye total metabolites was completely mineralized. → Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. → Inhibition of biofilm growth was increased with increasing the initial dye concentration. → Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  9. Nutritional optimization for anaerobic growth of Bacillus steaothermophilus LLD-16

    Directory of Open Access Journals (Sweden)

    Muhammad Javed

    2016-04-01

    Full Text Available In this study, a range of nutritional supplements including twenty amino acids, major vitamins and four nucleic acid bases were exploited as added-value supplements for the growth of a lactate-minus (ldh mutant Bacillus stearothermophilus LLD-16 under anaerobic environment. The chemostat studies revealed that five amino acids that includes aspartate, glutamate, isoleucine, methionine, and serine were essential for persuaded growth of B. stearothermophilus LLD-16. The anaerobic batch studies showed that a number of nutritional supplements, such as, p-aminobenzoic acid (PABA, folic acid, pantothenic acid, adenine, glycine, leucine, tryptophan, proline, alanine and α-ketoglutarate, when added individually, improved the biomass levels. In contrast, the higher concentrations of cyanocobalamine or biotin, guanine, uracil and isoleucine were found inhibitory. Furthermore, the study explains why the highest biomass formation cannot necessarily be achieved on the richest mixture of amino acids, and the inadequacy of the biosynthetic machinery is very much dependent on the growth conditions of the microorganism.

  10. Simulation of the anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Maia, C A.M.

    1981-01-01

    The dynamic model of anaerobic fermentation includes an inhibition function to relate volatile acid concentration to a specific growth rate for the methane bacteria and also includes the interactions between the liquid, gaseous, and biology phases of the digester.

  11. High rate of non-susceptibility to metronidazole and clindamycin in anaerobic isolates: Data from a clinical laboratory from Karachi, Pakistan.

    Science.gov (United States)

    Sheikh, Sadia Omer; Jabeen, Kauser; Qaiser, Saba; Ahsan, Syed Tanwir; Khan, Erum; Zafar, Afia

    2015-06-01

    Due to increasing resistance amongst anaerobic pathogens periodic surveillance of resistance has been recommended in regional/local settings. Anaerobic antimicrobial susceptibility testing is not routinely performed in many laboratories in Pakistan, hence absence of local data may lead to inappropriate empirical therapy in serious cases. 121 clinically significant anaerobic strains (26/121; 21% bacteremic isolates) were isolated and saved from 2010 to 2011. Susceptibility testing against metronidazole, clindamycin, co-amoxiclav, meropenem, piperacillin/tazobactam, linezolid and gatifloxacin was performed by determining minimum inhibitory concentrations (MICs). A high proportion of non-susceptible strains to metronidazole (10% of 121 isolates) and clindamycin (12% of 121 isolates) was seen, most noticeable in Bacteroides fragilis. Three Bacteroides species strains were non-susceptible to both metronidazole and clindamycin. One strain of Clostridium species was fully resistant to metronidazole and had intermediate resistance to clindamycin. No resistance to any of the other tested antibiotics was seen. Resistance to metronidazole was higher in bacteremic vs. non bacteremic isolates (p = value 0.07). In our setting where there is a high usage of empirical metronidazole and clindamycin for the treatment of serious anaerobic infections clinicians should be aware of increased resistance to these agents. Periodic surveillance of resistance to anti-anaerobic drugs especially metronidazole and clindamycin should be performed to generate antibiogram and guide appropriate empiric therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Alkaline fermentation of waste sludge causes a significant reduction of antibiotic resistance genes in anaerobic reactors.

    Science.gov (United States)

    Huang, Haining; Zheng, Xiong; Chen, Yinguang; Liu, Hui; Wan, Rui; Su, Yinglong

    2017-02-15

    Alkaline fermentation has been reported to be an effective method to recover valuable products from waste sludge. However, to date, the potential effect of alkaline pH on the fate of antibiotic resistance genes (ARGs) during anaerobic fermentation of sludge has never been documented. In this study, the target ARGs in sludge was observed to be removed effectively and stably when sludge was anaerobically fermented at pH10. Compared with the control (without pH adjustment), the abundances of target ARGs at pH10 were reduced by 0.87 (sulI), 1.36 (sulII), 0.42 (tet(O)), 1.11 (tet(Q)), 0.79 (tet(C)) and 1.04 (tet(X)) log units. Further investigations revealed that alkaline fermentation shifted the community structures of potential ARGs hosts. Moreover, alkaline fermentation remarkably decreased the quantities and the ARGs-possessing ability of genetic vectors (plasmid DNA, extracellular DNA and phage DNA), which might limit the transfer of ARGs via conjugation, transformation and transduction. These results suggest that the shifted compositions of gene hosts and restricted gene transfer potential might be the critical reasons for the attenuation of ARGs at pH10. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Electrochemical Corrosion Investigations on Anaerobic Treated Distillery Effluent

    Science.gov (United States)

    Ram, Chhotu; Sharma, Chhaya; Singh, A. K.

    2014-09-01

    Present study is focused on the corrosivity of anaerobic treated distillery effluent and corrosion performance of mild steel and stainless steels. Accordingly, electrochemical polarization tests were performed in both treated distillery and synthetic effluents. Polarization tests were also performed in synthetic solutions and it was observed that Cl- and K+ increase whereas SO4 -, PO4 -, NO3 -, and NO2 - decrease the corrosivity of effluent at alkaline pH. Further, comparison in corrosivity of distillery and synthetic effluents shows the former to be less corrosive and this is assigned due to the presence of amino acids and melanoidins. Mild steel experienced to have the highest corrosion rate followed by stainless steels—304L and 316L and lowest in case of SAF 2205. Relative corrosion resistance of stainless steels is observed to depend upon Cr, Mo, and N content.

  14. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    Science.gov (United States)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found

  15. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration.

    Science.gov (United States)

    Colon, G; Sager, J C

    2001-01-01

    The CELSS resource recovery system, which is a waste-processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass, by means of culture of rumen bacteria, generates organic compounds such as volatile fatty acids (VFA) (acetic, propionic, butyric) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure-driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments was carried out using a 10,000 molecular weight cutoff (MWCO) tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as: the permeate flux, VFA and nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicated that the permeate flux, VFA, and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 and 1.0 m/s, applied pressure when these are lower than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 and 34,880 mg/L. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrane surface. It was also found that the

  16. Modeling of anaerobic degradation of solid slaughterhouse waste: inhibition effects of long-chain fatty acids or ammonia.

    Science.gov (United States)

    Lokshina, L Y; Vavilin, V A; Salminen, E; Rintala, J

    2003-01-01

    The anaerobic bioconversion of solid poultry slaughterhouse wastes was kinetically investigated. The modified version of simulation model was applied for description of experimental data in mesophilic laboratory digester and assays. Additionally, stages of formation and consumption of long chain fatty acids (LCFA) were included in the model. Batch data on volatile solids, ammonium, acetate, butyrate, propionate, LCFA concentrations, pH level, cumulative volume, and methane partial pressure were used for model calibration. As a reference, the model was used to describe digestion of solid sorted household waste. Simulation results showed that an inhibition of polymer hydrolysis by volatile fatty acids and acetogenesis by NH3 or LCFA could be responsible for the complex system dynamics during degradation of lipid- and protein-rich wastes.

  17. Immobilization of metal-humic acid complexes in anaerobic granular sludge for their application as solid-phase redox mediators in the biotransformation of iopromide in UASB reactors.

    Science.gov (United States)

    Cruz-Zavala, Aracely S; Pat-Espadas, Aurora M; Rangel-Mendez, J Rene; Chazaro-Ruiz, Luis F; Ascacio-Valdes, Juan A; Aguilar, Cristobal N; Cervantes, Francisco J

    2016-05-01

    Metal-humic acid complexes were synthesized and immobilized by a granulation process in anaerobic sludge for their application as solid-phase redox mediators (RM) in the biotransformation of iopromide. Characterization of Ca- and Fe-humic acid complexes revealed electron accepting capacities of 0.472 and 0.556milli-equivalentsg(-1), respectively. Once immobilized, metal-humic acid complexes significantly increased the biotransformation of iopromide in upflow anaerobic sludge blanket (UASB) reactors. Control UASB reactor (without humic material) achieved 31.6% of iopromide removal, while 80% was removed in UASB reactors supplied with each metal-humic acid complex. Further analyses indicated multiple transformation reactions taking place in iopromide including deiodination, N-dealkylation, decarboxylation and deacetylation. This is the first successful application of immobilized RM, which does not require a supporting material to maintain the solid-phase RM in long term operation of bioreactors. The proposed redox catalyst could be suitable for enhancing the redox conversion of different recalcitrant pollutants present in industrial effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Induced resistance by cresotic acid (3-hydroxy-4-methyl methylbenzoic acid) against wilt disease of melon and cotton

    International Nuclear Information System (INIS)

    Dong, H.; Li, Z.; Zhang, D.; Li, W.; Tang, W.

    2004-01-01

    Cresotic acid (3-hydroxy-4-methylbenzoic acid) was proved be active in controlling wilt diseases of melon and cotton plants grown in the house. Soil drench with 200-1000 ppm cresotic acid induced 62-77 %, 69-79 % and 50-60 % protection against Fusarium oxysporum f.sp melonis (FOM) in melon, Fusarium oxysporum f.sp vasinfectum (FOV) and Verticillium dahliae in cotton, respectively. Since no inhibitory effect of cresotic acid on mycelial growth of these three fungual pathogens was observed in vitro, it is suggested that control of these wilt diseases with cresotic acid resulted from induced resistance. Cresotic acid induced resistance in melon plants not only against race 0, race 1, race 2 and race 1,2, but also against a mixture of these four races of FOM, suggesting a non-race- specific resistance. Level of induced resistance by cresotic acid against FOM depended on inoculum pressure applied to melon plants. At 25 day after inoculation with FOM, percentage protection induced by cresotic acid under low inoculum pressure retained a level of 51 %, while under high inoculum pressure percentage protection decreased to only 10 %. High concentrations of cresotic acid significantly reduced plant growth. Reduction in fresh weight of melon (36-51%) and cotton (42-71%) was obtained with 500-1000 ppm cresotic acid, while only less than 8% reduction occurred with 100-200 ppm. (author)

  19. Oral Gram-negative anaerobic bacilli as a reservoir of β-lactam resistance genes facilitating infections with multiresistant bacteria.

    Science.gov (United States)

    Dupin, Clarisse; Tamanai-Shacoori, Zohreh; Ehrmann, Elodie; Dupont, Anais; Barloy-Hubler, Frédérique; Bousarghin, Latifa; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne

    2015-02-01

    Many β-lactamases have been described in various Gram-negative bacilli (Capnocytophaga, Prevotella, Fusobacterium, etc.) of the oral cavity, belonging to class A of the Ambler classification (CepA, CblA, CfxA, CSP-1 and TEM), class B (CfiA) or class D in Fusobacterium nucleatum (FUS-1). The minimum inhibitory concentrations of β-lactams are variable and this variation is often related to the presence of plasmids or other mobile genetic elements (MGEs) that modulate the expression of resistance genes. DNA persistence and bacterial promiscuity in oral biofilms also contribute to genetic transformation and conjugation in this particular microcosm. Overexpression of efflux pumps is facilitated because the encoding genes are located on MGEs, in some multidrug-resistant clinical isolates, similar to conjugative transposons harbouring genes encoding β-lactamases. All these facts lead us to consider the oral cavity as an important reservoir of β-lactam resistance genes and a privileged place for genetic exchange, especially in commensal strictly anaerobic Gram-negative bacilli. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  20. Intrinsic kinetic parameters of substrate utilization by immobilized anaerobic sludge.

    Science.gov (United States)

    Zaiat, M; Vieira, L G; Foresti, E

    1997-01-20

    This article presents a method for evaluating the intrinsic kinetic parameters of the specific substrate utilization rate (r) equation and discusses the results obtained for anaerobic sludge-bed samples taken from a horizontal-flow anaerobic immobilized sludge (HAIS) reactor. This method utilizes a differential reactor filled with polyurethane foam matrices containing immobilized anaerobic sludge which is subjected to a range of feeding substrate flow rates. The range of liquid superficial velocities thus obtained are used for generating data of observed specific substrate utilization rates (r(obs)) under a diversity of external mass transfer resistance conditions. The r(obs) curves are then adjusted to permit their extrapolation for the condition of no external mass transfer resistance, and the values determined are used as a test for the condition of absence of limitation of internal mass transfer. The intrinsic parameters r(max), the maximum specific substrate utilization rate, and K(s), the half-velocity coefficient, are evaluated from the r values under no external mass transfer resistance and no internal mass transfer limitation. The application of such a method for anaerobic sludge immobilized in polyurethane foam particles treating a glucose substrate at 30 degrees C resulted in intrinsic r(max) and K(s), respectively, of 0.330 mg chemical oxygen demand (COD) . mg(-1) volatile suspended solids (VSS) . h(-1) and 72 mg COD . L(-1). In comparison with the values found in the literature, intrinsic r(max) is significantly high and intrinsic K(s) is relatively low. (c) 1997 John Wiley & Sons, Inc.

  1. ANAEROBIC BIODEGRADATION OF A BIODEGRADABLE MATERIAL UNDER ANAEROBIC - THERMOPHILIC DIGESTION

    Directory of Open Access Journals (Sweden)

    RICARDO CAMACHO-MUÑOZ

    2014-12-01

    Full Text Available This paper dertermined the anaerobic biodegradation of a polymer obtained by extrusion process of native cassava starch, polylactic acid and polycaprolactone. Initially a thermophilic - methanogenic inoculum was prepared from urban solid waste. The gas final methane concentration and medium’s pH reached values of 59,6% and 7,89 respectively. The assay assembly was carried out according ASTM D5511 standard. The biodegradation percent of used materials after 15 day of digestion were: 77,49%, 61,27%, 0,31% for cellulose, sample and polyethylene respectively. Due cellulose showed biodegradation levels higher than 70% it’s deduced that the inoculum conditions were appropriate. A biodegradation level of 61,27%, 59,35% of methane concentration in sample’s evolved gas and a medium’s finale pH of 7,71 in sample’s vessels, reveal the extruded polymer´s capacity to be anaerobically degraded under thermophilic- high solid concentration conditions.

  2. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    Full Text Available Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  3. Removal of antibiotic-resistant bacteria and antibiotic resistance genes affected by varying degrees of fouling on anaerobic microfiltration membranes

    KAUST Repository

    Cheng, Hong; Hong, Pei-Ying

    2017-01-01

    An anaerobic membrane bioreactor was retrofitted with polyvinylidene fluoride (PVDF) microfiltration membrane units, each of which was fouled to a different extent. The membranes with different degrees of fouling were evaluated for their efficiencies in removing three antibiotic-resistant bacteria (ARB), namely, blaNDM-1-positive Escherichia coli PI-7, blaCTX-M-15-positive Klebsiella pneumoniae L7, and blaOXA-48-positive E. coli UPEC-RIY-4, as well as their associated plasmid-borne antibiotic resistance genes (ARGs). The results showed that the log removal values (LRVs) of ARGs correlated positively with the extent of membrane fouling and ranged from 1.9 to 3.9. New membranes with a minimal foulant layer could remove more than 5 log units of ARB. However, as the membranes progressed to subcritical fouling, the LRVs of ARB decreased at increasing operating transmembrane pressures (TMPs). The LRV recovered back to 5 when the membrane was critically fouled, and the achieved LRV remained stable at different operating TMPs. Furthermore, characterization of the surface attributed the removal of both the ARB and ARGs to adsorption, which was facilitated by an increasing hydrophobicity and a decreasing surface ζ potential as the membranes fouled. Our results indicate that both the TMP and the foulant layer synergistically affected ARB removal, but the foulant layer was the main factor that contributed to ARG removal.

  4. Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes Affected by Varying Degrees of Fouling on Anaerobic Microfiltration Membranes.

    Science.gov (United States)

    Cheng, Hong; Hong, Pei-Ying

    2017-11-07

    An anaerobic membrane bioreactor was retrofitted with polyvinylidene fluoride (PVDF) microfiltration membrane units, each of which was fouled to a different extent. The membranes with different degrees of fouling were evaluated for their efficiencies in removing three antibiotic-resistant bacteria (ARB), namely, bla NDM-1 -positive Escherichia coli PI-7, bla CTX-M-15 -positive Klebsiella pneumoniae L7, and bla OXA-48 -positive E. coli UPEC-RIY-4, as well as their associated plasmid-borne antibiotic resistance genes (ARGs). The results showed that the log removal values (LRVs) of ARGs correlated positively with the extent of membrane fouling and ranged from 1.9 to 3.9. New membranes with a minimal foulant layer could remove more than 5 log units of ARB. However, as the membranes progressed to subcritical fouling, the LRVs of ARB decreased at increasing operating transmembrane pressures (TMPs). The LRV recovered back to 5 when the membrane was critically fouled, and the achieved LRV remained stable at different operating TMPs. Furthermore, characterization of the surface attributed the removal of both the ARB and ARGs to adsorption, which was facilitated by an increasing hydrophobicity and a decreasing surface ζ potential as the membranes fouled. Our results indicate that both the TMP and the foulant layer synergistically affected ARB removal, but the foulant layer was the main factor that contributed to ARG removal.

  5. Removal of antibiotic-resistant bacteria and antibiotic resistance genes affected by varying degrees of fouling on anaerobic microfiltration membranes

    KAUST Repository

    Cheng, Hong

    2017-09-28

    An anaerobic membrane bioreactor was retrofitted with polyvinylidene fluoride (PVDF) microfiltration membrane units, each of which was fouled to a different extent. The membranes with different degrees of fouling were evaluated for their efficiencies in removing three antibiotic-resistant bacteria (ARB), namely, blaNDM-1-positive Escherichia coli PI-7, blaCTX-M-15-positive Klebsiella pneumoniae L7, and blaOXA-48-positive E. coli UPEC-RIY-4, as well as their associated plasmid-borne antibiotic resistance genes (ARGs). The results showed that the log removal values (LRVs) of ARGs correlated positively with the extent of membrane fouling and ranged from 1.9 to 3.9. New membranes with a minimal foulant layer could remove more than 5 log units of ARB. However, as the membranes progressed to subcritical fouling, the LRVs of ARB decreased at increasing operating transmembrane pressures (TMPs). The LRV recovered back to 5 when the membrane was critically fouled, and the achieved LRV remained stable at different operating TMPs. Furthermore, characterization of the surface attributed the removal of both the ARB and ARGs to adsorption, which was facilitated by an increasing hydrophobicity and a decreasing surface ζ potential as the membranes fouled. Our results indicate that both the TMP and the foulant layer synergistically affected ARB removal, but the foulant layer was the main factor that contributed to ARG removal.

  6. Antibiotic resistance of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Bulajić Snežana

    2008-01-01

    Full Text Available Knowledge on the antibiotic resistance of lactic acid bacteria is still limited, possibly because of the large numbers of genera and species encountered in this group, as well as variances in their resistance spectra. The EFSA considers antibiotic resistances, especially transferable resistances, an important decision criterion for determining a strain's QPS status. There are no approved standards for the phenotypic or genotypic evaluation of antibiotic resistances in food isolates. Also, the choice of media is problematic, as well as the specification of MIC breakpoint values as a result of the large species variation and the possible resulting variation in MIC values between species and genera. The current investigations in this field showed that we might end up with a range of different species- or genus-specific breakpoint values that may further increase the current complexity. Another problem associated with safety determinations of starter strains is that once a resistance phenotype and an associated resistance determinant have been identified, it becomes difficult to show that this determinant is not transferable, especially if the resistance gene is not located on a plasmid and no standard protocols for showing genetic transfer are available. Encountering those problems, the QPS system should allow leeway for the interpretations of results, especially when these relate to the methodology for resistance phenotype determinations, determinations of MIC breakpoints for certain genera, species, or strains, the nondeterminability of a genetic basis of a resistance phenotype and the transferability of resistance genes.

  7. Effects of electron acceptors on removal of antibiotic resistant Escherichia coli, resistance genes and class 1 integrons under anaerobic conditions.

    Science.gov (United States)

    Yuan, Heyang; Miller, Jennifer H; Abu-Reesh, Ibrahim M; Pruden, Amy; He, Zhen

    2016-11-01

    Anaerobic biotechnologies can effectively remove antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), but there is a need to better understand the mechanisms. Here we employ bioelectrochemical systems (BES) as a platform to investigate the fate of a native tetracycline and sulfonamide-resistant Escherichia coli strain and its ARGs. The E. coli strain carrying intI1, sulI and tet(E) was isolated from domestic wastewater and dosed into a tubular BES. The BES was first operated as a microbial fuel cell (MFC), with aeration in the cathode, which resulted in enhanced removal of E. coli and ARGs by ~2 log (i.e., order of magnitude) when switched from high current to open circuit operation mode. The BES was then operated as a microbial electrolysis cell (MEC) to exclude the effects of oxygen diffusion, and the removal of E. coli and ARGs during the open circuit configuration was again 1-2 log higher than that at high current mode. Significant correlations of E. coli vs. current (R(2)=0.73) and ARGs vs. E. coli (R(2) ranged from 0.54 to 0.87), and the fact that the BES substrate contained no electron acceptors, implied that the persistence of the E. coli and its ARGs was determined by the availability of indigenous electron acceptors in the BES, i.e., the anode electrode or the electron shuttles generated by the exoelectrogens. Subsequent experiments with pure-culture tetracycline and sulfonamide-resistant E. coli being incubated in a two-chamber MEC and serum bottles demonstrated that the E. coli could survive by respiring anode electrode and/or electron shuttles released by exoelectrogens, and ARGs persisted with their host E. coli. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Development and validation of a simplified titration method for monitoring volatile fatty acids in anaerobic digestion.

    Science.gov (United States)

    Sun, Hao; Guo, Jianbin; Wu, Shubiao; Liu, Fang; Dong, Renjie

    2017-09-01

    The volatile fatty acids (VFAs) concentration has been considered as one of the most sensitive process performance indicators in anaerobic digestion (AD) process. However, the accurate determination of VFAs concentration in AD processes normally requires advanced equipment and complex pretreatment procedures. A simplified method with fewer sample pretreatment procedures and improved accuracy is greatly needed, particularly for on-site application. This report outlines improvements to the Nordmann method, one of the most popular titrations used for VFA monitoring. The influence of ion and solid interfering subsystems in titrated samples on results accuracy was discussed. The total solid content in titrated samples was the main factor affecting accuracy in VFA monitoring. Moreover, a high linear correlation was established between the total solids contents and VFA measurement differences between the traditional Nordmann equation and gas chromatography (GC). Accordingly, a simplified titration method was developed and validated using a semi-continuous experiment of chicken manure anaerobic digestion with various organic loading rates. The good fitting of the results obtained by this method in comparison with GC results strongly supported the potential application of this method to VFA monitoring. Copyright © 2017. Published by Elsevier Ltd.

  9. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor.

    Science.gov (United States)

    Xiao, Xiaolan; Huang, Zhenxing; Ruan, Wenquan; Yan, Lintao; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing

    2015-10-01

    The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Changes in the antibiotic susceptibility of anaerobic bacteria from 2007-2009 to 2010-2012 based on the CLSI methodology.

    Science.gov (United States)

    Hastey, Christine J; Boyd, Halsey; Schuetz, Audrey N; Anderson, Karen; Citron, Diane M; Dzink-Fox, Jody; Hackel, Meredith; Hecht, David W; Jacobus, Nilda V; Jenkins, Stephen G; Karlsson, Maria; Knapp, Cynthia C; Koeth, Laura M; Wexler, Hannah; Roe-Carpenter, Darcie E

    2016-12-01

    Antimicrobial susceptibility testing of anaerobic isolates was conducted at four independent sites from 2010 to 2012 and compared to results from three sites during the period of 2007-2009. This data comparison shows significant changes in antimicrobial resistance in some anaerobic groups. Therefore, we continue to recommend institutions regularly perform susceptibility testing when anaerobes are cultured from pertinent sites. Annual generation of an institutional-specific antibiogram is recommended for tracking of resistance trends over time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Growth and Survival of Acid-Resistant and Non-Acid-Resistant Shiga-Toxin-Producing Escherichia coli Strains during the Manufacture and Ripening of Camembert Cheese.

    Science.gov (United States)

    Montet, M P; Jamet, E; Ganet, S; Dizin, M; Miszczycha, S; Dunière, L; Thevenot, D; Vernozy-Rozand, C

    2009-01-01

    Growth and survival of acid-resistant (AR) and non-acid-resistant (NAR) Shiga-toxin-producing Escherichia coli (STEC) strains were investigated during the manufacture and ripening of microfiltered milk Camembert cheeses. The induction of acid resistance of the STEC strains in cheeses was also studied. Six different mixtures of AR and/or NAR STEC strains were inoculated separately into microfiltered milk at a level of 10(3) CFU mL(-1). The STEC counts (AR and NAR) initially increased by 1 to 2 log(10) CFU g(-1) during cheese-making. Thereafter, the populations stabilized during salting/drying and then decreased during the early stages of ripening. Exposing the STEC strains in artificially inoculated cheeses to simulated gastric fluid (SGF - pH: 2.0) reduced the number of NAR strains to undetectable levels within 40 minutes, versus 120 minutes for the AR STEC strains. AR and NAR STEC were able to survive during the manufacture and ripening of Camembert cheese prepared from microfiltered milk with no evidence of induced acid tolerance in NAR STEC strains.

  12. Growth and Survival of Acid-Resistant and Non-Acid-Resistant Shiga-Toxin-Producing Escherichia coli Strains during the Manufacture and Ripening of Camembert Cheese

    Directory of Open Access Journals (Sweden)

    M. P. Montet

    2009-01-01

    Full Text Available Growth and survival of acid-resistant (AR and non-acid-resistant (NAR Shiga-toxin-producing Escherichia coli (STEC strains were investigated during the manufacture and ripening of microfiltered milk Camembert cheeses. The induction of acid resistance of the STEC strains in cheeses was also studied. Six different mixtures of AR and/or NAR STEC strains were inoculated separately into microfiltered milk at a level of 103 CFU mL−1. The STEC counts (AR and NAR initially increased by 1 to 2 log⁡10 CFU g−1 during cheese-making. Thereafter, the populations stabilized during salting/drying and then decreased during the early stages of ripening. Exposing the STEC strains in artificially inoculated cheeses to simulated gastric fluid (SGF - pH: 2.0 reduced the number of NAR strains to undetectable levels within 40 minutes, versus 120 minutes for the AR STEC strains. AR and NAR STEC were able to survive during the manufacture and ripening of Camembert cheese prepared from microfiltered milk with no evidence of induced acid tolerance in NAR STEC strains.

  13. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.

    Science.gov (United States)

    Kochian, Leon V; Piñeros, Miguel A; Liu, Jiping; Magalhaes, Jurandir V

    2015-01-01

    Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.

  14. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-01-01

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to ∼ 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research highlights: → MCF-7/Adr cells showed decreases in cellular GSH

  15. Anaerobic digestion of citrus waste using two-stage membrane bioreactor

    Science.gov (United States)

    Millati, Ria; Lukitawesa; Dwi Permanasari, Ervina; Wulan Sari, Kartika; Nur Cahyanto, Muhammad; Niklasson, Claes; Taherzadeh, Mohammad J.

    2018-03-01

    Anaerobic digestion is a promising method to treat citrus waste. However, the presence of limonene in citrus waste inhibits anaerobic digestion process. Limonene is an antimicrobial compound and could inhibit methane forming bacteria that takes a longer time to recover than the injured acid forming bacteria. Hence, volatile fatty acids will be accumulated and methane production will be decreased. One way to solve this problem is by conducting anaerobic digestion process into two stages. The first step is aimed for hydrolysis, acidogenesis, and acetogenesis reactions and the second stage is aimed for methanogenesis reaction. The separation of the system would further allow each stage in their optimum conditions making the process more stable. In this research, anaerobic digestion was carried out in batch operations using 120 ml-glass bottle bioreactors in 2 stages. The first stage was performed in free-cells bioreactor, whereas the second stage was performed in both bioreactor of free cells and membrane bioreactor. In the first stage, the reactor was set into ‘anaerobic’ and ‘semi-aerobic’ conditions to examine the effect of oxygen on facultative anaerobic bacteria in acid production. In the second stage, the protection of membrane towards the cells against limonene was tested. For the first stage, the basal medium was prepared with 1.5 g VS of inoculum and 4.5 g VS of citrus waste. The digestion process was carried out at 55°C for four days. For the second stage, the membrane bioreactor was prepared with 3 g of cells that were encased and sealed in a 3×6 cm2 polyvinylidene fluoride membrane. The medium contained 40 ml basal medium and 10 ml liquid from the first stage. The bioreactors were incubated at 55°C for 2 days under anaerobic condition. The results from the first stage showed that the maximum total sugar under ‘anaerobic’ and ‘semi-aerobic’ conditions was 294.3 g/l and 244.7 g/l, respectively. The corresponding values for total volatile

  16. The Effect of Oxygen on Bile Resistance in Listeria monocytogenes

    Science.gov (United States)

    Wright, Morgan L; Pendarvis, Ken; Nanduri, Bindu; Edelmann, Mariola J; Jenkins, Haley N; Reddy, Joseph S; Wilson, Jessica G; Ding, Xuan; Broadway, Paul R; Ammari, Mais G; Paul, Oindrila; Roberts, Brandy; Donaldson, Janet R

    2016-01-01

    Listeria monocytogenes is a Gram-positive facultative anaerobe that is the causative agent of the disease listeriosis. The infectious ability of this bacterium is dependent upon resistance to stressors encountered within the gastrointestinal tract, including bile. Previous studies have indicated bile salt hydrolase activity increases under anaerobic conditions, suggesting anaerobic conditions influence stress responses. Therefore, the goal of this study was to determine if reduced oxygen availability increased bile resistance of L. monocytogenes. Four strains representing three serovars were evaluated for changes in viability and proteome expression following exposure to bile in aerobic or anaerobic conditions. Viability for F2365 (serovar 4b), EGD-e (serovar 1/2a), and 10403S (serovar 1/2a) increased following exposure to 10% porcine bile under anaerobic conditions (P 0.05) in bile resistance between aerobic and anaerobic conditions, indicating that oxygen availability does not influence resistance in this strain. The proteomic analysis indicated F2365 and EGD-e had an increased expression of proteins associated with cell envelope and membrane bioenergetics under anaerobic conditions, including thioredoxin-disulfide reductase and cell division proteins. Interestingly, HCC23 had an increase in several dehydrogenases following exposure to bile under aerobic conditions, suggesting that the NADH:NAD+ is altered and may impact bile resistance. Variations were observed in the expression of the cell shape proteins between strains, which corresponded to morphological differences observed by scanning electron microscopy. These data indicate that oxygen availability influences bile resistance. Further research is needed to decipher how these changes in metabolism impact pathogenicity in vivo and also the impact that this has on susceptibility of a host to listeriosis. PMID:27274623

  17. ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum.

    Science.gov (United States)

    Häffner, Eva; Karlovsky, Petr; Splivallo, Richard; Traczewska, Anna; Diederichsen, Elke

    2014-04-01

    Verticillium longisporum is a soil-borne vascular pathogen infecting cruciferous hosts such as oilseed rape. Quantitative disease resistance (QDR) is the major control means, but its molecular basis is poorly understood so far. Quantitative trait locus (QTL) mapping was performed using a new (Bur×Ler) recombinant inbred line (RIL) population of Arabidopsis thaliana. Phytohormone measurements and analyses in defined mutants and near-isogenic lines (NILs) were used to identify genes and signalling pathways that underlie different resistance QTL. QTL for resistance to V. longisporum-induced stunting, systemic colonization by the fungus and for V. longisporum-induced chlorosis were identified. Stunting resistance QTL were contributed by both parents. The strongest stunting resistance QTL was shown to be identical with Erecta. A functional Erecta pathway, which was present in Bur, conferred partial resistance to V. longisporum-induced stunting. Bur showed severe stunting susceptibility in winter. Three stunting resistance QTL of Ler origin, two co-localising with wall-associated kinase-like (Wakl)-genes, were detected in winter. Furthermore, Bur showed a much stronger induction of salicylic acid (SA) by V. longisporum than Ler. Systemic colonization was controlled independently of stunting. The vec1 QTL on chromosome 2 had the strongest effect on systemic colonization. The same chromosomal region controlled the level of abscisic acid (ABA) and jasmonic acid (JA) in response to V. longisporum: The level of ABA was higher in colonization-susceptible Ler than in colonization-resistant Bur after V. longisporum infection. JA was down-regulated in Bur after infection, but not in Ler. These differences were also demonstrated in NILs, varying only in the region containing vec1. All phytohormone responses were shown to be independent of Erecta. Signalling systems with a hitherto unknown role in the QDR of A. thaliana against V. longisporum were identified: Erecta mediated

  18. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... earlier by Vavilin and Angelidaki (2005) were used to modernize a kinetic scheme and to obtain the corresponding kinetic coefficients. In the new models, hydrolytic microorganisms were included using Contois kinetics for the hydrolysis/acidogenesis degradation of municipal solid waste (MSW). Monod...... kinetics was applied for description of methanogenesis. Both hydrolytic and methanogenic microorganisms were assumed to be inhibited by high volatile fatty acids (VFA) concentration. According to the new distributed models, the mixing level reduction expressed by increasing dimensionless Peclet number may...

  19. ANAEROBIC DEGRADATION OF HALOGENATED BENZOIC-ACIDS BY PHOTOHETEROTROPHIC BACTERIA

    NARCIS (Netherlands)

    VANDERWOUDE, BJ; DEBOER, M; VANDERPUT, NMJ; VANDERGELD, FM; PRINS, RA; GOTTSCHAL, JC

    1994-01-01

    From light-exposed enrichment cultures containing benzoate and a mixture of chlorobenzoates, a pure culture was obtained able to grow with 3-chlorobenzoate (3-CBA) or 3-bromobenzoate (3-BrBA) as the sole growth substrate anaerobically in the light. The thus isolated organism is a photoheterotroph,

  20. Fate and persistence of a pathogenic NDM-1-positive Escherichia coli strain in anaerobic and aerobic sludge microcosms

    KAUST Repository

    Mantilla-Calderon, David

    2017-04-15

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly slower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable but no further decay was observed. Instead, 1 in every 10000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 were detected to have transferred to other native microorganisms in the sludge, or are released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24 h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater.IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study points at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the antibiotic

  1. Fate and Persistence of a Pathogenic NDM-1-Positive Escherichia coli Strain in Anaerobic and Aerobic Sludge Microcosms.

    Science.gov (United States)

    Mantilla-Calderon, David; Hong, Pei-Ying

    2017-07-01

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the

  2. Renewable methane from anaerobic digestion of biomass

    International Nuclear Information System (INIS)

    Chynoweth, D.P.; Owens, J.M.

    2001-01-01

    Production of methane via anaerobic digestion of energy crops and organic wastes would benefit society by providing a clean fuel from renewable feedstocks. This would replace fossil fuel-derived energy and reduce environmental impacts including global warming and acid rain. Although biomass energy is more costly than fossil fuel-derived energy, trends to limit carbon dioxide and other emissions through emission regulations, carbon taxes, and subsidies of biomass energy would make it cost competitive. Methane derived from anaerobic digestion is competitive in efficiencies and costs to other biomass energy forms including heat, synthesis gases, and ethanol. (author)

  3. Optimization of the integrated citric acid-methane fermentation process by air stripping and glucoamylase addition.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Wang, Ke; Tang, Lei; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-03-01

    To solve the problem of extraction wastewater in citric acid industry, an integrated citric acid-methane fermentation process was proposed. In the integrated process, extraction wastewater was treated by mesophilic anaerobic digestion and then reused to make mash for the next batch of citric acid fermentation. In this study, an Aspergillus niger mutant strain exhibiting resistance to high metal ions concentration was used to eliminate the inhibition of 200 mg/L Na(+) and 300 mg/L K(+) in anaerobic digestion effluent (ADE) and citric acid production increased by 25.0 %. Air stripping was used to remove ammonium, alkalinity, and part of metal ions in ADE before making mash. In consequence, citric acid production was significantly improved but still lower by 6.1 % than the control. Results indicated that metal ions in ADE synergistically inhibited the activity of glucoamylase, thus reducing citric acid production. When 130 U/g glucoamylase was added before fermentation, citric acid production was 141.5 g/L, which was even higher than the control (140.4 g/L). This process could completely eliminate extraction wastewater discharge and reduce water resource consumption.

  4. Associations of erythrocyte fatty acid patterns with insulin resistance

    Science.gov (United States)

    Background: Synergistic and/or additive effects on cardiometabolic risk may be missed by examining individual fatty acids (FA). A pattern analysis may be a more useful approach. As well, it remains unclear whether erythrocyte fatty acid composition relates to insulin resistance among Hispanic/Latino...

  5. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    Science.gov (United States)

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P fatty acid (100, 250, or 500 microM for neurons, whereas they did in control muscle and endothelial cell lines. Despite the lack of evidence of inflammatory signaling, saturated fatty acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.

  6. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients.

    Science.gov (United States)

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-07-01

    Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics.

  7. Making lignin accessible for anaerobic digestion by wet-explosion pretreatment

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Biswas, Rajib; Ahamed, Aftab

    2015-01-01

    of lignin during anaerobic digestion processes. The pretreatment of feedlot manure was performed in a 10 L reactor at 170 C for 25 min using 4 bars oxygen and the material was fed to a continuous stirred tank reactor operated at 55 C for anaerobic digestion. Methane yield of untreated and pretreated...... material was 70 ± 27 and 320 ± 36 L/kg-VS/day, respectively, or 4.5 times higher yield as a result of the pretreatment. Aliphatic acids formed during the pretreatment were utilized by microbes. 44.4% lignin in pretreated material was actually converted in the anaerobic digestion process compared to 12...

  8. [Anaerobic bacteria isolated from patients with suspected anaerobic infections].

    Science.gov (United States)

    Ercis, Serpil; Tunçkanat, Ferda; Hasçelik, Gülşen

    2005-10-01

    The study involved 394 clinical samples sent to the Clinical Microbiology Laboratory of Hacettepe University Adult Hospital between January 1997 and May 2004 for anaerobic cultivation. Since multiple cultures from the same clinical samples of the same patient were excluded, the study was carried on 367 samples. The anaerobic cultures were performed in anaerobic jar using AnaeroGen kits (Oxoid, Basingstoke, U.K.) or GENbox (bioMérieux, Lyon, France). The isolates were identified by both classical methods and "BBL Crystal System" (Becton Dickinson, U.S.A.). While no growth was detected in 120 (32.7%) of the clinical samples studied, in 144 samples (39.2%) only aerobes, in 28 (7.6%) only anaerobes and in 75 (20.5%) of the samples both aerobes and anaerobes were isolated. The number of the anaerobic isolates was 217 from 103 samples with anaerobic growth. Of these 103 samples 15 showed single bacterial growth whereas in 88 samples multiple bacterial isolates were detected. Anaerobic isolates consisted of 92 Gram negative bacilli (Bacteroides spp. 50, Prevotella spp. 14, Porphyromonas spp. 10, Fusobacterium spp. 7, Tisierella spp. 2, unidentified 9), 57 Gram positive bacilli (Clostridium spp.17, Propionibacterium spp. 16, Lactobacillus spp. 8, Actinomyces spp. 5, Eubacterium spp. 2, Bifidobacterium adolescentis 1, Mobiluncus mulieris 1, unidentified nonspore forming rods 7), 61 Gram positive cocci (anaerobic cocci 44, microaerophilic cocci 17), and 7 Gram negative cocci (Veillonella spp.). In conclusion, in the samples studied with prediagnosis of anaerobic infection, Bacteroides spp. (23%) were the most common bacteria followed by anaerobic Gram positive cocci (20.3%) and Clostridium spp (7.8%).

  9. Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes.

    Science.gov (United States)

    Pei, Jin; Yao, Hong; Wang, Hui; Ren, Jia; Yu, Xiaohua

    2016-08-01

    Biosolids from wastewater treatment plant (WWTP) are environmental reservoirs of antibiotic resistance genes, which attract great concerns on their efficient treatments. Anaerobic digestion (AD) is widely used for sewage sludge treatment but its effectiveness is limited due to the slow hydrolysis. Ozone and thermal hydrolysis pre-treatment were employed to improve AD efficiency and reduce antibiotic-resistant genes in municipal and pharmaceutical waste sludge (MWS and PWS, respectively) in this study. Sludge solubilization achieved 15.75-25.09% and 14.85-33.92% after ozone and thermal hydrolysis, respectively. Both pre-treatments improved cumulative methane production and the enhancements were greater on PWS than MWS. Five tetracycline-resistant genes (tet(A), tet(G), tet(Q), tet(W), tet(X)) and one mobile element (intI1) were qPCR to assess pre-treatments. AD of pre-treated sludge reduced more tet genes than raw sludge for both ozonation and thermal hydrolysis in PWS and MWS. Thermal hydrolysis pre-treatment was more efficient than ozone for reduction after AD. Results of this study help support management options for reducing the spread of antibiotic resistance from biosolids. Copyright © 2016. Published by Elsevier Ltd.

  10. Sulfate and acid resistant concrete and mortar

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  11. Occurrence of antibiotic resistance genes and mobile genetic elements in enterococci and genomic DNA during anaerobic digestion of pharmaceutical waste sludge with different pretreatments.

    Science.gov (United States)

    Tong, Juan; Lu, XueTing; Zhang, JunYa; Sui, Qianwen; Wang, Rui; Chen, Meixue; Wei, Yuansong

    2017-07-01

    Pharmaceutical waste sludge harbors large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and it is necessary to study the reduction of ARGs and MGEs during sludge treatment. Therefore, the antibiotic resistance phenotypes and genotypes of enterococci, and the ARGs and MGEs in genomic DNA were investigated during anaerobic digestion (AD) with microwave (MW), thermal hydrolysis (TH) and ozone pretreatment. Results showed that sludge pretreatment increased the occurrence of the resistance phenotypes and genotypes of enterococci. During AD, the resistance of enterococci to macrolides decreased, except for in the MW-pretreated sludge. Horizontal gene transfer and co-occurrence of ermB and tetM in enterococci resulted in increased tetracycline resistance of enterococci throughout the sludge treatment. MGEs such as intI1, ISCR1 and Tn916/1545 had a significant effect on the distribution of ARGs. AD with pretreatment, especially TH pretreatment, resulted in greater ARGs and MGEs reduction and improved methane production. Copyright © 2017. Published by Elsevier Ltd.

  12. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    International Nuclear Information System (INIS)

    Mendes, Carlos; Esquerre, Karla; Matos Queiroz, Luciano

    2015-01-01

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m 3 day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m 3 day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge

  13. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Carlos, E-mail: carllosmendez@gmail.com; Esquerre, Karla, E-mail: karlaesquerre@ufba.br; Matos Queiroz, Luciano, E-mail: lmqueiroz@ufba.br

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.

  14. Prevalence and antimicrobial susceptibilities of anaerobic bacteria isolated from perforated corneal ulcers by culture and multiplex PCR: an evaluation in cases with keratitis and endophthalmitis.

    Science.gov (United States)

    Tokman, Hrisi Bahar; İskeleli, Güzin; Dalar, Zeynep Güngördü; Kangaba, Achille Aime; Demirci, Mehmet; Akay, Hatice K; Borsa, Bariş Ata; Algingil, Reyhan Çalişkan; Kocazeybek, Bekir S; Torun, Müzeyyen Mamal; Kiraz, Nuri

    2014-01-01

    Anaerobic bacteria play an important role in eye infections; however, there is limited epidemiologic data based on the the role of these bacteria in the etiology of keratitis and endophthalmitis. The aim of this re- search is to determine the prevalence of anaerobic bacteria in perforated corneal ulcers of patients with keratitis and endophthalmitis and to evaluate their antimicrobial susceptibilities. Corneal scrapings were taken by the ophthalmologist using sterile needles. For the isolation of anaerobic bacteria, samples were inoculated on specific media and were incubated under anaerobic conditions obtained with Anaero-Gen (Oxoid & Mitsubishi Gas Company) in anaerobic jars (Oxoid USA, Inc. Columbia, MD, USA). The molecular identification of anaerobic bacteria was performed by multiplex PCR and the susceptibilities of an- aerobic bacteria to penicillin, chloramphenicol, and clindamycin were determined with the E test (bioMerieux). 51 strains of anaerobic bacteria belonging to four different genuses were detected by multiplex PCR and only 46 strains were isolated by culture. All of them were found susceptible to chloramphenicol whereas penicillin resistance was found in 13.3% of P.anaerobius strains, clindamycin resistance was found in 34.8% of P.acnes and 13.3% of P. anaerobius strains. Additionnaly, one strain of P. granulosum was found resistant to clindamycin, one strain of B. fragilis and one strain of P.melaninogenica were found resistant to penicillin and clindamycin. Routine analyses of anaerobes in perforated corneal ulcers is inevitable and usage of appropriate molecular methods, for the detection of bacteria responsible from severe infections which might not be deter- mined by cultivation, may serve for the early decision of the appropriate treatment. Taking into account the in- creasing antimicrobial resistance of anaerobic bacteria, alternative eye specific antibiotics effective against anaer- obes are needed to achieve a successful treatment.

  15. Intrinsic Anaerobic Bioremediation of Hydrocarbons in Contaminated Subsurface Plumes and Marine Sediments

    Science.gov (United States)

    Nanny, M. A.; Nanny, M. A.; Suflita, J. M.; Suflita, J. M.; Davidova, I.; Kropp, K.; Caldwell, M.; Philp, R.; Gieg, L.; Rios-Hernandez, L. A.

    2001-05-01

    In recent years, several classes of petroleum hydrocarbons contaminating subsurface and marine environments have been found susceptible to anaerobic biodegradation using novel mechanisms entirely distinct from aerobic metabolic pathways. For example, the anaerobic decay of toluene can be initiated by the addition of the aryl methyl group to the double bond of fumarate, resulting in a benzylsuccinic acid metabolite. Our work has shown that an analogous mechanism also occurs with ethylbenzene and the xylene isomers, yielding 3-phenyl-1,2-butane dicarboxylic acid and methylbenzylsuccinic acid, respectively. Moreover, these metabolites have been detected in contaminated environments. Most recently, we have identified metabolites resulting from the initial attack of H26- or D26-n-dodecane during degradation by a sulfate-reducing bacterial culture. Using GC-MS, these metabolites were identified as fatty acids that result from C-H or C-D addition across the double bond of fumarate to give dodecylsuccinic acids in which all 26 protons or deuteriums of the parent alkane were retained. Further, when this enrichment culture was challenged with hexane or decane, hexylsuccinic acid or decylsuccinic acid were identified as resulting metabolites. Similarly, the study of an ethylcyclopentane-degrading sulfate-reducing enrichment produced a metabolite, which is consistent with the addition of fumarate to the parent substrate. These novel anaerobic addition products are characterized by similar, distinctive mass spectral (MS) features (ions specific to the succinic acid portion of the molecule) that can potentially be used to probe contaminated environments for evidence of intrinsic remediation of hydrocarbons. Indeed, analyses of water extracts from two gas condensate-contaminated sites resulted in the tentative detection of alkyl- and cycloalkylsuccinic acids ranging from C3 to C9, including ethylcyclopentyl-succinic acid. In water extracts collected from an area underlying a

  16. Uric acid concentrations are associated with insulin resistance and birthweight in normotensive pregnant women.

    Science.gov (United States)

    Laughon, S Katherine; Catov, Janet; Roberts, James M

    2009-12-01

    We sought to investigate whether uric acid concentrations are increased in pregnant women with insulin resistance and to correlate both with fetal growth. Uric acid, glucose, and insulin were measured in plasma at 20.4 (+/-2.0) weeks' gestation in 263 women. The association between uric acid and insulin resistance, as estimated using the homeostasis model assessment (HOMA), was analyzed and related to birthweights. In 212 (80.6%) women who remained normotensive throughout pregnancy, HOMA increased 1.23 U per 1-mg/dL increase in uric acid (95% confidence interval, 1.07-1.42; P=.003). Infants born to normotensive women in the upper quartile of uric acid and lowest HOMA quartile weighed 435.6 g less than infants of women with highest uric acid and HOMA quartiles (Pinsulin resistance in midpregnancy. Hyperuricemia was associated with lower birthweight in normotensive women, and this effect was attenuated by insulin resistance.

  17. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    International Nuclear Information System (INIS)

    Zaitseva, L.V.; Romaniv, V.I.

    1984-01-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid

  18. Using contaminated plants involved in phytoremediation for anaerobic digestion.

    Science.gov (United States)

    Cao, Zewei; Wang, Shengxiao; Wang, Ting; Chang, Zhizhou; Shen, Zhenguo; Chen, Yahua

    2015-01-01

    This study investigated the anaerobic digestion capability of five plants and the effects of copper (Cu) and S,S'-ethylenediaminedisuccinic acid (EDDS, a chelator widely used in chelant-assisted phytoremediation) on biogas production to determine a feasible disposal method for plants used in remediation. The results showed that in addition to Phytolacca americana L., plants such as Zea mays L., Brassica napus L., Elsholtzia splendens Nakai ex F. Maekawa, and Oenothera biennis L. performed well in biogas production. Among these, O. biennis required the shortest period to finish anaerobic digestion. Compared to normal plants with low Cu content, the plants used in remediation with increased Cu levels (100 mg kg(-1)) not only promoted anaerobic digestion and required a shorter anaerobic digestion time, but also increased the methane content in biogas. When the Cu content in plants increased to 500, 1000, and 5000 mg kg(-1), the cumulative biogas production decreased by 12.3%, 14.6%, and 41.2%, respectively. Studies also found that EDDS conspicuously restrained biogas production from anaerobic digestion. The results suggest that anaerobic digestion has great potential for the disposal of contaminated plants and may provide a solution for the resource utilization of plants used in remediation.

  19. Targeting solid tumors with non-pathogenic obligate anaerobic bacteria.

    Science.gov (United States)

    Taniguchi, Shun'ichiro; Fujimori, Minoru; Sasaki, Takayuki; Tsutsui, Hiroko; Shimatani, Yuko; Seki, Keiichi; Amano, Jun

    2010-09-01

    Molecular-targeting drugs with fewer severe adverse effects are attracting great attention as the next wave of cancer treatment. There exist, however, populations of cancer cells resistant to these drugs that stem from the instability of tumor cells and/or the existence of cancer stem cells, and thus specific toxicity is required to destroy them. If such selectivity is not available, these targets may be sought out not by the cancer cell types themselves, but rather in their adjacent cancer microenvironments by means of hypoxia, low pH, and so on. The anaerobic conditions present in malignant tumor tissues have previously been regarded as a source of resistance in cancer cells against conventional therapy. However, there now appears to be a way to make use of these limiting factors as a selective target. In this review, we will refer to several trials, including our own, to direct attention to the utilizable anaerobic conditions present in malignant tumor tissues and the use of bacteria as carriers to target them. Specifically, we have been developing a method to attack solid cancers using the non-pathogenic obligate anaerobic bacterium Bifidobacterium longum as a vehicle to selectively recognize and target the anaerobic conditions in solid cancer tissues. We will also discuss the existence of low oxygen pressure in tumor masses in spite of generally enhanced angiogenesis, overview current cancer therapies, especially the history and present situation of bacterial utility to treat solid tumors, and discuss the rationality and future possibilities of this novel mode of cancer treatment. © 2010 Japanese Cancer Association.

  20. The dynamics of acetic acid in the anaerobic treatment of abattoir sewage; Dinamica del acido acetico en la depuracion anaerobia de aguas residuales de mataderos

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Borges, E.; Acosta Viana, K. [Universidad Autonoma de Yucatan. Mexico (Mexico)

    1999-05-01

    The purpose of this experiment was to examine the production and consumption of acetic acid during the anaerobic treatment of sewage from a municipal abattoir. The experiment studied a 20-litre UASB reactor under three hydraulic retention time (HRT) conditions-4 days, 2.5 days and 1.6 days-measuring the acetic acid concentration in the reactor in fluent and effluent. The results obtained during the experiment with the three different HRTs are reported. The highest percentages of acetic acid removed ( an average of 44%) were obtained with an HRT of 4 days. The amount of acetic acid removed with and HRT of 2.5 days was 27%. (Author) 18 refs.

  1. Effects of electron acceptors on removal of antibiotic resistant Escherichia coli, resistance genes and class 1 integrons under anaerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Heyang; Miller, Jennifer H. [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Abu-Reesh, Ibrahim M. [Department of Chemical Engineering, Qatar University, P.O. Box 2713, Doha (Qatar); Pruden, Amy [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); He, Zhen, E-mail: zhenhe@vt.edu [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2016-11-01

    Anaerobic biotechnologies can effectively remove antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), but there is a need to better understand the mechanisms. Here we employ bioelectrochemical systems (BES) as a platform to investigate the fate of a native tetracycline and sulfonamide-resistant Escherichia coli strain and its ARGs. The E. coli strain carrying intI1, sulI and tet(E) was isolated from domestic wastewater and dosed into a tubular BES. The BES was first operated as a microbial fuel cell (MFC), with aeration in the cathode, which resulted in enhanced removal of E. coli and ARGs by ~ 2 log (i.e., order of magnitude) when switched from high current to open circuit operation mode. The BES was then operated as a microbial electrolysis cell (MEC) to exclude the effects of oxygen diffusion, and the removal of E. coli and ARGs during the open circuit configuration was again 1–2 log higher than that at high current mode. Significant correlations of E. coli vs. current (R{sup 2} = 0.73) and ARGs vs. E. coli (R{sup 2} ranged from 0.54 to 0.87), and the fact that the BES substrate contained no electron acceptors, implied that the persistence of the E. coli and its ARGs was determined by the availability of indigenous electron acceptors in the BES, i.e., the anode electrode or the electron shuttles generated by the exoelectrogens. Subsequent experiments with pure-culture tetracycline and sulfonamide-resistant E. coli being incubated in a two-chamber MEC and serum bottles demonstrated that the E. coli could survive by respiring anode electrode and/or electron shuttles released by exoelectrogens, and ARGs persisted with their host E. coli. - Highlights: • The fate of an antibiotic resistant E. coli stain and its ARGs in BES is studied. • The removal of the E. coli and its ARGs is enhanced with decreased current. • The ARGs are removed when the host E. coli dies and persist when the host survives. • The survival of the E. coli depends

  2. Effects of electron acceptors on removal of antibiotic resistant Escherichia coli, resistance genes and class 1 integrons under anaerobic conditions

    International Nuclear Information System (INIS)

    Yuan, Heyang; Miller, Jennifer H.; Abu-Reesh, Ibrahim M.; Pruden, Amy; He, Zhen

    2016-01-01

    Anaerobic biotechnologies can effectively remove antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), but there is a need to better understand the mechanisms. Here we employ bioelectrochemical systems (BES) as a platform to investigate the fate of a native tetracycline and sulfonamide-resistant Escherichia coli strain and its ARGs. The E. coli strain carrying intI1, sulI and tet(E) was isolated from domestic wastewater and dosed into a tubular BES. The BES was first operated as a microbial fuel cell (MFC), with aeration in the cathode, which resulted in enhanced removal of E. coli and ARGs by ~ 2 log (i.e., order of magnitude) when switched from high current to open circuit operation mode. The BES was then operated as a microbial electrolysis cell (MEC) to exclude the effects of oxygen diffusion, and the removal of E. coli and ARGs during the open circuit configuration was again 1–2 log higher than that at high current mode. Significant correlations of E. coli vs. current (R"2 = 0.73) and ARGs vs. E. coli (R"2 ranged from 0.54 to 0.87), and the fact that the BES substrate contained no electron acceptors, implied that the persistence of the E. coli and its ARGs was determined by the availability of indigenous electron acceptors in the BES, i.e., the anode electrode or the electron shuttles generated by the exoelectrogens. Subsequent experiments with pure-culture tetracycline and sulfonamide-resistant E. coli being incubated in a two-chamber MEC and serum bottles demonstrated that the E. coli could survive by respiring anode electrode and/or electron shuttles released by exoelectrogens, and ARGs persisted with their host E. coli. - Highlights: • The fate of an antibiotic resistant E. coli stain and its ARGs in BES is studied. • The removal of the E. coli and its ARGs is enhanced with decreased current. • The ARGs are removed when the host E. coli dies and persist when the host survives. • The survival of the E. coli depends on the

  3. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    International Nuclear Information System (INIS)

    Yang, Shiguan; Zheng, Zheng; Meng, Zhuo; Li, Jihong

    2009-01-01

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg -1 , respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg -1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K + and Mg 2+ , with the maximum concentration of 1.35 and 0.43 g L -1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  4. Biodegradation of poly(lactic acid, poly(hydroxybutyrate-co-hydroxyvalerate, poly(butylene succinate and poly(butylene adipate-co-terephthalate under anaerobic and oxygen limited thermophilic conditions

    Directory of Open Access Journals (Sweden)

    Jutakan Boonmee

    2016-01-01

    Full Text Available In order to study the biodegradation behavior of biodegradable plastics in landfill conditions, four types of biodegradable plastics including poly(lactic acid (PLA, poly(hydroxybutyrate-co-hydroxyvalerate (PHBV, poly(butylene succinate (PBS, and poly(butylene adipate-co-terephthalate (PBAT were tested by burying in sludge mixed soil medium under anaerobic and oxygen limited conditions. The experiments were operated at 52 ± 2ºC in dark conditions according to ISO15985. The degree of biodegradation after 75 days was investigated by weight loss determination, visual examination, and surface appearance by scanning electronic microscopy (SEM. Under both anaerobic and oxygen limited conditions, the complete degradation (100% weight loss was found only in PHBV after 75 days. The plastic degradations were ranked in the order of PHBV> PLA> PBS> PBAT. The percentage of weight losses were significantly different at p ≤ 0.05. However, for all studied plastics, the degradation under anaerobic and oxygen limited conditions did not significantly different at 95% confidence.

  5. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Wang, Dongbo; Liu, Xuran; Zeng, Guangming; Zhao, Jianwei; Liu, Yiwen; Wang, Qilin; Chen, Fei; Li, Xiaoming; Yang, Qi

    2018-03-01

    Previous investigations showed that cationic polyacrylamide (cPAM), a flocculant widely used in wastewater pretreatment and waste activated sludge dewatering, deteriorated methane production during anaerobic digestion of sludge. However, details of how cPAM affects methane production are poorly understood, hindering deep control of sludge anaerobic digestion systems. In this study, the mechanisms of cPAM affecting sludge anaerobic digestion were investigated in batch and long-term tests using either real sludge or synthetic wastewaters as the digestion substrates. Experimental results showed that the presence of cPAM not only slowed the process of anaerobic digestion but also decreased methane yield. The maximal methane yield decreased from 139.1 to 86.7 mL/g of volatile suspended solids (i.e., 1861.5 to 1187.0 mL/L) with the cPAM level increasing from 0 to 12 g/kg of total suspended solids (i.e., 0-236.7 mg/L), whereas the corresponding digestion time increased from 22 to 26 d. Mechanism explorations revealed that the addition of cPAM significantly restrained the sludge solubilization, hydrolysis, acidogenesis, and methanogenesis processes. It was found that ∼46% of cAPM was degraded in the anaerobic digestion, and the degradation products significantly affected methane production. Although the theoretically biochemical methane potential of cPAM is higher than that of protein and carbohydrate, only 6.7% of the degraded cPAM was transformed to the final product, methane. Acrylamide, acrylic acid, and polyacrylic acid were found to be the main degradation metabolites, and their amount accounted for ∼50% of the degraded cPAM. Further investigations showed that polyacrylic acid inhibited all the solubilization, hydrolysis, acidogenesis, and methanogenesis processes while acrylamide and acrylic acid inhibited the methanogenesis significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evaluation of the routine antimicrobial susceptibility testing results of clinically significant anaerobic bacteria in a Slovenian tertiary-care hospital in 2015.

    Science.gov (United States)

    Jeverica, Samo; Kolenc, Urša; Mueller-Premru, Manica; Papst, Lea

    2017-10-01

    The aim of our study was to determined antimicrobial susceptibility profiles of 2673 clinically significant anaerobic bacteria belonging to the major genera, isolated in 2015 in a large tertiary-care hospital in Slovenia. The species identification was performed by MALDI-TOF mass spectrometry. Antimicrobial susceptibility was determined immediately at the isolation of the strains against: penicillin, co-amoxiclav, imipenem, clindamycin and metronidazole, using gradient diffusion methodology and EUCAST breakpoints. The most frequent anaerobes were Bacteroides fragilis group with 31% (n = 817), Gram positive anaerobic cocci (GPACs) with 22% (n = 589), Prevotella with 14% (n = 313) and Propionibacterium with 8% (n = 225). Metronidazole has retained full activity (100%) against all groups of anaerobic bacteria intrinsically susceptible to it. Co-amoxiclav and imipenem were active against most tested anaerobes with zero or low resistance rates. However, observed resistance to co-amoxiclav (8%) and imipenem (1%) is worrying especially among B. fragilis group isolates. High overall resistance (23%) to clindamycin was detected in our study and was highest among the genera Prevotella, Bacteroides, Parabacteroides, GPACs and Clostridium. Routine testing of antimicrobial susceptibility of clinically relevant anaerobic bacteria is feasible and provides good surveillance data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Anaerobic fluidized bed treatment of a tannery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.J.; Li, C.T.; Shieh, W.K.

    1988-11-01

    The anaerobic fluidized bed system, in conjunction with neutralization and chemical coagulation/flocculation, was evaluated for treatment of a tannery wastewater produced from a chrome tanning operation. Neutralization with 1 N sulphuric acid was effective for removal of chromate, with complete removal achieved at pH=8.0. Chemical coagulation/flocculation with alum at a dosage of 200 mg/L was able to remove 97% of feed SS and 65% of feed grease. Evaluation of the performance of the anaerobic fluidized bed system indicated more than 75% of feed COD could be removed up to an F/M ratio of approximately 0.4 g COD/g TVS center dot day. The observed methane production rate was 0.221 of CH/sub 4/ produced per gram COD removed. The anaerobic fluidized bed system could provide an effective treatment of a pretreated tannery wastewater.

  8. Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings.

    Science.gov (United States)

    Maltman, Chris; Piercey-Normore, Michele D; Yurkov, Vladimir

    2015-09-01

    The newly discovered strain CM-3, a Gram-negative, rod-shaped bacterium from gold mine tailings of the Central Mine in Nopiming Provincial Park, Canada, is capable of dissimilatory anaerobic reduction of tellurite, tellurate, and selenite. CM-3 possesses very high level resistance to these oxides, both aerobically and anaerobically. During aerobic growth, tellurite and tellurate resistance was up to 1500 and 1000 µg/ml, respectively. In the presence of selenite, growth occurred at the highest concentration tested, 7000 µg/ml. Under anaerobic conditions, resistance was decreased to 800 µg/ml for the Te oxides; however, much like under aerobic conditions, growth with selenite still took place at 7000 µg/ml. In the absence of oxygen, CM-3 couples oxide reduction to an increase in biomass. Following an initial drop in viable cells, due to switching from aerobic to anaerobic conditions, there was an increase in CFU/ml greater than one order of magnitude in the presence of tellurite (6.6 × 10(3)-8.6 × 10(4) CFU/ml), tellurate (4.6 × 10(3)-1.4 × 10(5) CFU/ml), and selenite (2.7 × 10(5)-5.6 × 10(6) CFU/ml). A control culture without metalloid oxides showed a steady decrease in CFU/ml with no recovery. ATP production was also increased in the presence of each oxide, further indicating anaerobic respiration. Partial 16S rRNA gene sequencing revealed a 99.0 % similarity of CM-3 to Pseudomonas reactans.

  9. RELATIONSHIP BETWEEN URIC ACID METABOLISM AND INSULIN RESISTANCE

    OpenAIRE

    辻本, 伸宏; 金内, 雅夫; 尾崎, 博基; 藤田, 泰三; 中嶋, 民夫; 土肥, 和紘

    1998-01-01

    To investigate the relationship between uric acid (UA) metabolism and insulin resistance, serum creatinine concentration (Scr), serum UA concentration (SuA) and the urinary excretion of creatinine and UA were determined in 25 non-diabetic patients. Creatinine clearance (Ccr) and UA clearance/creatinine clearance ratio (CuA/Ccr) were also calculated. Insulin resistance was evaluated by the euglycemic glucose clamp tech- nique and expressed as the mean value of the glucose infusion rate (M-valu...

  10. Antibiotic susceptibility profiles of anaerobic pathogens in The Netherlands

    NARCIS (Netherlands)

    Veloo, A. C. M.; van Winkelhoff, A. J.

    The antibiotic susceptibility profile of the Bacteroides fragilis group, Gram-positive anaerobic cocci (GPAC), Fusobacterium spp., Prevotella spp., Veillonella spp. and Bilophila wadsworthia for amoxicillin, amoxicillin-clavulanic acid, clindamycin and metronidazole was determined. Human clinical

  11. Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class I integrons in municipal wastewater sludge.

    Science.gov (United States)

    Wu, Ying; Cui, Erping; Zuo, Yiru; Cheng, Weixiao; Rensing, Christopher; Chen, Hong

    2016-07-01

    The response of representative antibiotic resistance genes (ARGs) to lab-scale two-phase (acidogenic/methanogenic phase) anaerobic digestion processes under thermophilic and mesophilic conditions was explored. The associated microbial communities and bacterial pathogens were characterized by 16S rRNA gene sequencing. A two-phase thermophilic digestion reduced the presence of tetA, tetG, tetX, sul1, ermB, dfrA1, dfrA12 and intI1 exhibiting 0.1-0.72 log unit removal; in contrast, tetO, tetW, sul3, ermF and blaTEM even increased relative to the feed, and sul2 showed no significant decrease. The acidogenic phase of thermophilic digestion was primarily responsible for reducing the quantity of these genes, while the subsequent methanogenic phase caused a rebound in their quantity. In contrast, a two-phase mesophilic digestion process did not result in reducing the quantity of all ARGs and intI1 except for ermB and blaTEM. ARGs patterns were correlated with Proteobacteria and Actinobacteria during the two-phase anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Studying titanium-molybdenum-zirconium alloys of increased corrosion resistance in acid solutions

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Kazarin, V.I.; Mikheev, V.S.; Goncharenko, B.A.; Sigalovskaya, T.M.; Kalyanova, M.P.

    1977-01-01

    New promising Ti-Mo-Nb-Zr system alloys, possessing good workability and a high corrosion resistance in non-oxidizing solutions of acids, have been developed. The alloys may be recommended as structural materials for equipment operating in severely agressive acid media, such as hydrochloric, sulphuric and phosphoric acids. The corrosion resistance of alloys of the above system in solutions of H 2 SO 4 , HCl and H 3 PO 4 acids may be maximized by increasing the overall alloying to 42% (keeping the ratio of the alloying components Mo/Nb/Zr=4/1/1 unchanged), while retaining sufficiently good plasticity and workability

  13. Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Yaobin; Chen, Shuo; Quan, Xie; Yu, Qilin

    2014-10-17

    A coupling process of anaerobic methanogenesis and electromethanogenesis was proposed to treat high organic load rate (OLR) wastewater. During the start-up stage, acetate removal efficiency of the electric-biological reactor (R1) reached the maximization about 19 percentage points higher than that of the control anaerobic reactor without electrodes (R2), and CH4 production rate of R1 also increased about 24.9% at the same time, while additional electric input was 1/1.17 of the extra obtained energy from methane. Coulombic efficiency and current recorded showed that anodic oxidation contributed a dominant part in degrading acetate when the metabolism of methanogens was low during the start-up stage. Along with prolonging operating time, aceticlastic methanogenesis gradually replaced anodic oxidation to become the main pathway of degrading acetate. When the methanogens were inhibited under the acidic conditions, anodic oxidation began to become the main pathway of acetate decomposition again, which ensured the reactor to maintain a stable performance. FISH analysis confirmed that the electric field imposed could enrich the H2/H(+)-utilizing methanogens around the cathode to help for reducing the acidity. This study demonstrated that an anaerobic digester with a pair of electrodes inserted to form a coupling system could enhance methanogenesis and reduce adverse impacts.

  14. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    Science.gov (United States)

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal

  15. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    Directory of Open Access Journals (Sweden)

    Florence Braun

    Full Text Available Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH. Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR, in community structure (SSCP fingerprinting and in dominant microbial species (454-pyrosequencing. The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm

  16. Anaerobic treatment of sulfate-containing wastewater from distilleries

    International Nuclear Information System (INIS)

    Stadlbauer, E.A.; Oey, L.N.; Weber, B.

    1994-01-01

    Bioprocess evaluation of a staged arrangement of a Pulse Driven Loop Reaktor (PDLR) and a Pulsed Anaerobic Filter (PAF) using highly polluted cherry slops as industrial wastewater shows a COD removal efficiency of 80-90% at loading rates of 8-4 kg COD/(M 3 .d). Contamination of cherry slops by sulfate (2 g/l) and copper (150-200 mg/l) reduces COD degradation to 40-50 percent. A pulsed anaerobic baffled reactor was envisaged as a corrective tool to improve mineralisation in the presence of sulfate-rich substrates by confining sulfate reducing bacteria to the first 4 chambers of the reactor. Phasing slightly improves COD degradation yield, but is not sufficient for stable process performance. Consequently, the use of lactic acid in stead of sulfuric acid in cherry-fermentation was suggested as a preventive method to avoid sulphide-induced digester failure. (orig.) [de

  17. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  18. Abscisic acid-cytokinin antagonism modulates resistance against pseudomonas syringae in Tobacco

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2014-01-01

    Phytohormones are known as essential regulators of plant defenses, with ethylene, jasmonic acid, and salicylic acid as the central immunity backbone, while other phytohormones have been demonstrated to interact with this. Only recently, a function of the classic phytohormone cytokinin in plant...... immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction...... of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco...

  19. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry waste water.

    Science.gov (United States)

    Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti

    2015-12-01

    Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50% of the total volume and 50-60% of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ≥350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.

  20. Laser Surface Alloying of Aluminum for Improving Acid Corrosion Resistance

    Science.gov (United States)

    Jiru, Woldetinsay Gutu; Sankar, Mamilla Ravi; Dixit, Uday Shanker

    2018-04-01

    In the present study, laser surface alloying of aluminum with magnesium, manganese, titanium and zinc, respectively, was carried out to improve acid corrosion resistance. Laser surface alloying was conducted using 1600 and 1800 W power source using CO2 laser. Acid corrosion resistance was tested by dipping the samples in a solution of 2.5% H2SO4 for 200 h. The weight loss due to acid corrosion was reduced by 55% for AlTi, 41% for AlMg alloy, 36% for AlZn and 22% for AlMn alloy. Laser surface alloyed samples offered greater corrosion resistance than the aluminum substrate. It was observed that localized pitting corrosion was the major factor to damage the surface when exposed for a long time. The hardness after laser surface alloying was increased by a factor of 8.7, 3.4, 2.7 and 2 by alloying with Mn, Mg, Ti and Zn, respectively. After corrosion test, hardness was reduced by 51% for AlTi sample, 40% for AlMg sample, 41.4% for AlMn sample and 33% for AlZn sample.

  1. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  2. Differential recognition of obligate anaerobic bacteria by human mannose-binding lectin.

    Science.gov (United States)

    Townsend, R; Read, R C; Turner, M W; Klein, N J; Jack, D L

    2001-05-01

    Deficiency of the innate, humoral immune component mannose-binding lectin (MBL) predisposes individuals to a variety of infections, but the importance of MBL in infection by anaerobes has not been addressed. The attachment of MBL to a wide range of anaerobic bacteria associated with human disease and colonization was surveyed. The results suggest that for the species we examined, resistance to MBL binding may be associated with organisms that are more commonly pathogenic and that MBL binding to some bacteria may be phase variable.

  3. Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste.

    Science.gov (United States)

    Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco; Pontoni, Ludovico

    2014-10-01

    This work investigates the role of the moisture content on anaerobic digestion of food waste, as representative of rapidly biodegradable substrates, analysing the role of volatile fatty acid production on process kinetics. A range of total solids from 4.5% to 19.2% is considered in order to compare methane yields and kinetics of reactors operated under wet to dry conditions. The experimental results show a reduction of the specific final methane yield of 4.3% and 40.8% in semi-dry and dry conditions compared with wet conditions. A decreasing trend of the specific initial methane production rate is observed when increasing the total solids concentration. Because of lack of water, volatile fatty acids accumulation occurs during the first step of the process at semi-dry and dry conditions, which is considered to be responsible for the reduction of process kinetic rates. The total volatile fatty acids concentration and speciation are proposed as indicators of process development at different total solids content. © The Author(s) 2014.

  4. In vitro metabolism of radiolabeled carbohydrates by protective cecal anaerobic bacteria.

    Science.gov (United States)

    Hume, M E; Beier, R C; Hinton, A; Scanlan, C M; Corrier, D E; Peterson, D V; DeLoach, J R

    1993-12-01

    Cecal anaerobic bacteria from adult broilers were cultured in media containing .25% glucose or .25% lactose. Media also contained either [14C]-labeled lactose, glucose, galactose, or lactic acid as metabolic tracers. Cultures were analyzed at 4, 8, and 12 h for pH, radiolabeled and unlabeled volatile fatty acids, and lactic acid. The pH values of cultures containing .25% lactose were significantly (P galactose, lactose > glucose. The volatile fatty acids in which radiolabel was most concentrated were acetic acid, propionic acid, or butyric acid.

  5. Mid-gestational serum uric acid concentration effect on neonate birth weight and insulin resistance in pregnant women.

    Science.gov (United States)

    Nasri, Khadijeh; Razavi, Maryamsadat; Rezvanfar, Mohammad Reza; Mashhadi, Esmat; Chehrei, Ali; Mohammadbeigi, Abolfazl

    2015-01-01

    To investigate the relationship between mid-gestational serum uric acid and birth weight in diabetic pregnant women with or without insulin resistance. In a prospective cohort study, fasting uric acid, blood glucose, and serum insulin were measured in 247 pregnant women between 20-22 weeks of gestational period. Insulin resistance was estimated using the homeostasis model assessment-insulin resistance (HOMA-IR). Stratification analysis and independent t-test was used to assess the association between uric acid and birth weights regarding to insulin resistance. The means of the mid-gestational serum uric acid concentrations were not significantly different in women with and without insulin resistance. But stratification analysis showed that there was a significant difference between uric acid concentration and macrosomic birth in diabetic women without insulin resistance. Higher mid - gestation serum uric acid concentration, even if it does not exceed the normal range, is accompanied by lower birth weight only in non-insulin resistance women. Insulin resistance could have a negative confounding effect on hyperuriemia and birth weight.

  6. Acid resistance of quaternary blended recycled aggregate concrete

    Directory of Open Access Journals (Sweden)

    K Jagannadha Rao

    2018-06-01

    Full Text Available The possibility of reusing the aggregate from demolished structures in fresh concrete, in order to reduce the CO2 impact on the environment [23] and to preserve natural resources, was explored worldwide and it is established that recycled aggregates can be used as a partial replacement of natural aggregates. Due to its potential to be used in eco-friendly structures and shortage of supply of natural aggregates in some parts of the world, there is an increasing interest in using the recycled aggregate. The durability aspects are also of equal concern along with the strength and economy of any material to be used in the construction. Studies reveal that the behaviour of ternary and quaternary blended concretes is superior from durability point of view compared to conventional concrete. Therefore a study is conducted to assess the acid resistance of recycled aggregate based Quaternary Blended Cement Concrete (QBCC of two grades M40 and M60. Fly ash and silica fume are fixed at 20% and 10% respectively from the previous studies while two percentages of Nano silica (2 and 3% were used along with the cement to obtain QBCC. Three percentages of recycled aggregates as partial replacement of conventional aggregate (0%, 50% and 75% were used in this study. Two different acids (HCL and H2SO4 with different concentrations (3 and 5% were used in this study. Acid resistance of QBCC with Recycled Concrete Aggregate (RCA is assessed in terms of visual appearance, weight loss, and compressive strength loss by destructive and non-destructive tests at regular intervals for a period of 56 days. The test results showed marginal weight loss and strength loss in both M40 and M60 grades of concretes. The Ultrasonic Pulse Velocity (UPV results show that the quality of QBCC is good even after being subjected to acid exposure. Keywords: Recycled concrete aggregate (RCA, Quaternary blended cement concrete (QBCC, Acid resistance, Ultrasonic pulse velocity (UPV, Mineral

  7. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide

    International Nuclear Information System (INIS)

    Jiang, Guangming; Yuan, Zhiguo

    2013-01-01

    Highlights: ► H 2 O 2 greatly enhances the inactivation of microorganisms in biofilms by FNA. ► About 2-log of inactivation of biofilm microbes was achieved by FNA + H 2 O 2 . ► FNA + H 2 O 2 reduced sulfide production and detached biofilm in reactors. -- Abstract: Free nitrous acid (FNA) was recently revealed to be a strong biocide for microbes in anaerobic biofilm, achieving approximately 1-log (90%) inactivation at a concentration of 0.2–0.3 mgHNO 2 -N/L with an exposure time longer than 6 h. The combined biocidal effects of FNA and hydrogen peroxide (H 2 O 2 ) on anaerobic wastewater biofilm are investigated in this study. H 2 O 2 greatly enhances the inactivation of microorganisms by FNA. About 2-log (99%) of microbial inactivation was achieved when biofilms were exposed to FNA at 0.2 mgN/L or above and H 2 O 2 at 30 mg/L or above for 6 h or longer. It was found, through response surface methodology and ridge analysis, that FNA is the primary inactivation agent and H 2 O 2 enhances its efficiency. The loss and the subsequent slow recovery of biological activity in biofilm reactors subjected to FNA and H 2 O 2 dosing confirmed that the chemical combination could achieve higher microbial inactivation than with FNA alone. Reaction simulation shows that intermediates of reactions between FNA and H 2 O 2 , like peroxynitrite and nitrogen dioxide, would be produced at elevated levels and are likely responsible for the synergism between FNA and H 2 O 2 . The combination of FNA and H 2 O 2 could potentially provide an effective solution to sewer biofilm control

  8. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Guangming, E-mail: gjiang@awmc.uq.edu.au [Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072 (Australia); Yuan, Zhiguo, E-mail: zhiguo@awmc.uq.edu.au [Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072 (Australia)

    2013-04-15

    Highlights: ► H{sub 2}O{sub 2} greatly enhances the inactivation of microorganisms in biofilms by FNA. ► About 2-log of inactivation of biofilm microbes was achieved by FNA + H{sub 2}O{sub 2}. ► FNA + H{sub 2}O{sub 2} reduced sulfide production and detached biofilm in reactors. -- Abstract: Free nitrous acid (FNA) was recently revealed to be a strong biocide for microbes in anaerobic biofilm, achieving approximately 1-log (90%) inactivation at a concentration of 0.2–0.3 mgHNO{sub 2}-N/L with an exposure time longer than 6 h. The combined biocidal effects of FNA and hydrogen peroxide (H{sub 2}O{sub 2}) on anaerobic wastewater biofilm are investigated in this study. H{sub 2}O{sub 2} greatly enhances the inactivation of microorganisms by FNA. About 2-log (99%) of microbial inactivation was achieved when biofilms were exposed to FNA at 0.2 mgN/L or above and H{sub 2}O{sub 2} at 30 mg/L or above for 6 h or longer. It was found, through response surface methodology and ridge analysis, that FNA is the primary inactivation agent and H{sub 2}O{sub 2} enhances its efficiency. The loss and the subsequent slow recovery of biological activity in biofilm reactors subjected to FNA and H{sub 2}O{sub 2} dosing confirmed that the chemical combination could achieve higher microbial inactivation than with FNA alone. Reaction simulation shows that intermediates of reactions between FNA and H{sub 2}O{sub 2}, like peroxynitrite and nitrogen dioxide, would be produced at elevated levels and are likely responsible for the synergism between FNA and H{sub 2}O{sub 2}. The combination of FNA and H{sub 2}O{sub 2} could potentially provide an effective solution to sewer biofilm control.

  9. Ultra-sensitive EUV resists based on acid-catalyzed polymer backbone breaking

    Science.gov (United States)

    Manouras, Theodoros; Kazazis, Dimitrios; Koufakis, Eleftherios; Ekinci, Yasin; Vamvakaki, Maria; Argitis, Panagiotis

    2018-03-01

    The main target of the current work was to develop new sensitive polymeric materials for lithographic applications, focusing in particular to EUV lithography, the main chain of which is cleaved under the influence of photogenerated acid. Resist materials based on the cleavage of polymer main chain are in principle capable to create very small structures, to the dimensions of the monomers that they consist of. Nevertheless, in the case of the commonly used nonchemically amplified materials of this type issues like sensitivity and poor etch resistance limit their areas of application, whereas inadequate etch resistance and non- satisfactory process reliability are the usual problems encountered in acid catalysed materials based on main chain scission. In our material design the acid catalyzed chain cleavable polymers contain very sensitive moieties in their backbone while they remain intact in alkaline ambient. These newly synthesized polymers bear in addition suitable functional groups for the achievement of desirable lithographic characteristics (thermal stability, acceptable glass transition temperature, etch resistance, proper dissolution behavior, adhesion to the substrate). Our approach for achieving acceptable etch resistance, a main drawback in other main chain cleavable resists, is based on the introduction of polyaromatic hydrocarbons in the polymeric backbone, whereas the incorporation of an inorganic component further enhances the etch resistance. Single component systems can also be designed following the proposed approach by the incorporation of suitable PAGs and base quencher molecules in the main chain. Resist formulations based on a random copolymer designed according to the described rules evaluated in EUV exhibit ultrahigh sensitivity, capability for high resolution patterning and overall processing characteristics that make them strong candidates for industrial use upon further optimization.

  10. Operating conditions influence microbial community structures, elimination of the antibiotic resistance genes and metabolites during anaerobic digestion of cow manure in the presence of oxytetracycline.

    Science.gov (United States)

    Turker, Gokhan; Akyol, Çağrı; Ince, Orhan; Aydin, Sevcan; Ince, Bahar

    2018-01-01

    The way that antibiotic residues in manure follow is one of the greatest concerns due to its potential negative impacts on microbial communities, the release of metabolites and antibiotic resistant genes (ARGs) into the nature and the loss of energy recovery in anaerobic digestion (AD) systems. This study evaluated the link between different operating conditions, the biodegradation of oxytetracycline (OTC) and the formation of its metabolites and ARGs in anaerobic digesters treating cow manure. Microbial communities and ARGs were determined through the use of quantitative real-time PCR. The biodegradation of OTC and occurrence of metabolites were determined using UV-HPLC and LC/MS/MS respectively. The maximum quantity of resistance genes was also examined at the beginning of AD tests and concentration was in the order of: tetM >tetO. The numbers of ARGs were always higher at high volatile solids (VS) content and high mixing rate. The results of the investigation revealed that relationship between mixing rate and VS content plays a crucial role for elimination of ARGs, OTC and metabolites. This can be attributed to high abundance of microorganisms due to high VS content and their increased contact with elevated mixing rate. An increased interaction between microorganisms triggers the promotion of ARGs. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid...... with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9...

  12. Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: Role and significance of Tea saponin.

    Science.gov (United States)

    Xu, Qiuxiang; Liu, Xuran; Zhao, Jianwei; Wang, Dongbo; Wang, Qilin; Li, Xiaoming; Yang, Qi; Zeng, Guangming

    2018-04-01

    Short-chain fatty acids (SCFA), raw substrates for biodegradable plastic production and preferred carbon source for biological nutrients removal, can be produced from anaerobic fermentation of waste activated sludge (WAS). This paper reports a new, high-efficient and eco-friendly strategy, i.e., using free nitrous acid (FNA) pretreatment combined with Tea saponin (TS), to enhance SCFA production. Experimental results showed 0.90 mg/L FNA pretreatment and 0.05 g/g total suspended solids TS addition (FNA + TS) not only significantly increased SCFA production to 315.3 ± 8.8 mg COD/g VSS (5.52, 1.76 and 1.93 times higher than that from blank, solo FNA and solo TS, respectively) but also shortened fermentation time to 4 days. Mechanism investigations revealed that FNA pretreatment combined with TS cause a positive synergetic effect on sludge solubilization, resulting in more release of organics. It was also found that the combination benefited hydrolysis and acidogenesis processes but inhibited the methanogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.

    Science.gov (United States)

    Tsuge, Yota; Hori, Yoshimi; Kudou, Motonori; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2014-10-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD(+) and NADPH/NADP(+) ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.

  14. The aerobic activity of metronidazole against anaerobic bacteria.

    Science.gov (United States)

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  15. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    Science.gov (United States)

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. USE OF A GRIFFITH TUBE TO EVALUATE THE ANAEROBIC SLUDGE SEDIMENTATION IN A UASB REACTOR TREATING AN EFFLUENT WITH LONG-CHAIN FATTY ACIDS

    Directory of Open Access Journals (Sweden)

    L. A. S. Miranda

    Full Text Available Abstract This paper proposes to study the sedimentation characteristics of anaerobic sludge, by determining the settling velocity of sludge granules with the Griffith Tube. This is a simple, low-cost method, suitable for use in full-scale treatment plants. The settling characteristics of sludge from two laboratory-scale UASB reactors fed with saccharose and different concentrations of sodium oleate and sodium stereate were evaluated. Addition of fatty acids caused a gradual destabilization of the system, affecting overall performance. The sedimentation profile changed after addition of fatty acids to the synthetic substrate, decreased sedimentation velocity and increased granule diameter. This behaviour was attributed to the adsorption of fatty acids onto the granules, modifying the diameter, shape and density of these bioparticles.

  17. Toxic effect evaluation of the lead acetate and chromium chloride on anaerobic bacterial metabolism

    International Nuclear Information System (INIS)

    Wills, Beatriz; Naranjo, Fernando

    2004-01-01

    The toxicity of trivalent chromium and lead to anaerobic sludge system was studied. Performed assay was tested in 60 mL serum vials, the toxicity test to succeed in two steps, first with formic acid and then whey powder as a substrate. Anaerobic toxicity assays were performed taking into account, methane gas production and oxidation-reduction potential (ORP) rate, these tests were considered a useful indicator for monitoring a anaerobic sludge suffering from toxicants, over 72 hours with metals dosage against the control. First of all, exploratory assays in order to know different chromium and lead concentrations were carried out. The assays degradation activity reduced methane by 50% that came into contact with 3.322 mg Cr 3 +/L and 1.415 mg Pb/L and 2.291 mg Cr 3 +/Land 1.982 mg Pb/L with formic acid and whey powder as a substrate respectively. Heavy metal concentrations that caused 50% inhibition of methanogenesis during whey and formic acid methanation indicated that toxicity decreased in order Pb>>Cr

  18. PENGOLAHAN LIMBAH CAIR INDUSTRI FARMASI FORMULASI DENGAN METODE ANAEROB-AEROB DAN ANAEROB-KOAGULASI

    OpenAIRE

    Farida Crisnaningtyas; Hanny Vistanty

    2016-01-01

    Studi ini membahas mengenai pengolahan limbah cair industri farmasi dalam skala laboratorium dengan menggunakan konsep anaerob-kimia-fisika dan anaerob-aerob. Proses anaerob dilakukan dengan menggunakan reaktor Upflow Anaerobic Sludge Bed reactor (UASBr) pada kisaran OLR (Organic Loading Rate) 0,5 – 2 kg COD/m3hari, yang didahului dengan proses aklimatisasi menggunakan substrat gula. Proses anaerob mampu memberikan efisiensi penurunan COD hingga 74%. Keluaran dari proses anaerob diolah lebih ...

  19. Anaerobes in pleuropulmonary infections

    Directory of Open Access Journals (Sweden)

    De A

    2002-01-01

    Full Text Available A total of 76 anaerobes and 122 aerobes were isolated from 100 patients with pleuropulmonary infections, e.g. empyema (64, pleural effusion (19 and lung abscess (13. In 14% of the patients, only anaerobes were recovered, while a mixture of aerobes and anaerobes was encountered in 58%. From all cases of lung abscess, anaerobic bacteria were isolated, alone (04 or along with aerobic bacteria (13. From empyema and pleural effusion cases, 65.6% and 68.4% anaerobes were recovered respectively. Amongst anaerobes, gram negative anaerobic bacilli predominated (Prevotella melaninogenicus 16, Fusobacterium spp. 10, Bacteroides spp. 9, followed by gram positive anaerobic cocci (Peptostreptococcus spp. 31. Coliform bacteria (45 and Pseudomonas aeruginosa (42 were the predominant aerobic isolates.

  20. Fatty Acids, Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Peter Arner

    2015-04-01

    Full Text Available Objective: Although elevated free fatty acid (FFA levels in obesity have been considered to be of importance for insulin resistance, a recent meta-analysis suggested normal FFA levels in obese subjects. We investigated fasting circulating FFA and glycerol levels in a large cohort of non-obese and obese subjects. Methods: Subjects recruited for a study on obesity genetics were investigated in the morning after an overnight fast (n = 3,888. Serum FFA (n = 3,306, plasma glycerol (n = 3,776, and insulin sensitivity index (HOMA-IR,n = 3,469 were determined. Obesity was defined as BMI ≥ 30 kg/m2 and insulin resistance as HOMA-IR ≥ 2.21. Results: In obese subjects, circulating FFA and glycerol levels were higher than in non-obese individuals (by 26% and 47%, respectively; both p Conclusion: Circulating FFA and glycerol levels are markedly elevated in obesity but only marginally influenced by insulin resistance and type 2 diabetes. Whether these differences persist during diurnal variations in circulating FFA/glycerol, remains to be established.

  1. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    International Nuclear Information System (INIS)

    Salhanick, A.I.; Amatruda, J.M.

    1988-01-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5'-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable [ 14 C]sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus

  2. Improvement of acid and base resistance of nickel phosphate pigment by the addition of lanthanum cation

    International Nuclear Information System (INIS)

    Onoda, Hiroaki; Matsui, Hironori; Tanaka, Isao

    2007-01-01

    Transition metal phosphates are used as inorganic pigments, however these materials had a weak point for acid and base resistance. Because lanthanum phosphate is insoluble in acidic and basic solution, the addition of lanthanum cation was tried for the improvement of the acid and base resistance of nickel phosphate pigment. The lanthanum-doped nickel phosphates were prepared from phosphoric acid, nickel nitrate, and lanthanum nitrate solution. The additional effects of lanthanum cation were studied on the chemical composition, particle shape and size distribution, specific surface area, color, acid and base resistance of the precipitations and their thermal products

  3. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance

    Science.gov (United States)

    Aluminum (Al) toxicity on acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world’s potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to ...

  4. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression

    KAUST Repository

    Harb, Moustapha

    2016-07-09

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.

  5. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression

    KAUST Repository

    Harb, Moustapha; Wei, Chunhai; Wang, Nan; Amy, Gary L.; Hong, Pei-Ying

    2016-01-01

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.

  6. Simultaneous Cr(VI) bio-reduction and methane production by anaerobic granular sludge.

    Science.gov (United States)

    Hu, Qian; Sun, Jiaji; Sun, Dezhi; Tian, Lan; Ji, Yanan; Qiu, Bin

    2018-08-01

    Wastewater containing toxic hexavalent chromium (Cr(VI)) were treated with well-organized anaerobic granular sludge in this study. Results showed that the anaerobic granular sludge rapidly removed Cr(VI), and 2000 µg·L -1 Cr(VI) was completely eliminated within 6 min, which was much faster than the reported duration of removal by reported artificial materials. Sucrose added as a carbon source acted as an initial electron donor to reduce Cr(VI) to Cr(III). This process was considered as the main mechanism of Cr(VI) removal. Methane production by anaerobic granular sludge was improved by the addition of Cr(VI) at a concentration lower than 500 µg·L -1 . Anaerobic granular sludge had a well-organized structure, which presented good resistance against toxic Cr(VI). Trichoccus accelerated the degradation of organic substances to generate acetates with a low Cr(VI) concentration, thereby enhancing methane production by acetotrophic methanogens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The utility of anaerobic blood culture in detecting facultative anaerobic bacteremia in children.

    Science.gov (United States)

    Shoji, Kensuke; Komuro, Hisako; Watanabe, Yasushi; Miyairi, Isao

    2013-08-01

    Routine anaerobic blood culture is not recommended in children because obligate anaerobic bacteremia is rare in the pediatric population. However, a number of facultative anaerobic bacteria can cause community and hospital acquired infections in children and the utility of anaerobic blood culture for detection of these organisms is still unclear. We conducted a retrospective analysis of all blood culture samples (n = 24,356) at a children's hospital in Japan from October 2009 to June 2012. Among the samples that had paired aerobic and anaerobic blood cultures, 717 samples were considered clinically significant with 418 (58%) organisms detected from both aerobic and anaerobic cultures, 167 (23%) detected only from aerobic culture and 132 (18%) detected only from anaerobic culture. While most facultative anaerobes were detectable by aerobic culture, over 25% of Enterobacteriaceae and 15% of Staphylococcus sp. were detected from anaerobic cultures bottles only, suggesting its potential role in selected settings. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jin Ye

    2009-04-01

    Full Text Available Abstract Background The low pH environment of the human stomach is lethal for most microorganisms; but not Escherichia coli, which can tolerate extreme acid stress. Acid resistance in E. coli is hierarchically controlled by numerous regulators among which are small noncoding RNAs (sncRNA. Results In this study, we individually deleted seventy-nine sncRNA genes from the E. coli K12-MG1655 chromosome, and established a single-sncRNA gene knockout library. By systematically screening the sncRNA mutant library, we show that the sncRNA GcvB is a novel regulator of acid resistance in E. coli. We demonstrate that GcvB enhances the ability of E. coli to survive low pH by upregulating the levels of the alternate sigma factor RpoS. Conclusion GcvB positively regulates acid resistance by affecting RpoS expression. These data advance our understanding of the sncRNA regulatory network involved in modulating acid resistance in E. coli.

  9. Investigation and Treatment of Fusidic Acid Resistance Among Methicillin-Resistant Staphylococcal Isolates from Egypt.

    Science.gov (United States)

    Abouelfetouh, Alaa; Kassem, Mervat; Naguib, Marwa; El-Nakeeb, Moustafa

    2017-01-01

    Methicillin resistance among staphylococci isolated from patients in northern Egypt has escalated alarmingly in the past decade. Data about the prevalence of fusidic acid (FA) resistance in Egyptian clinical isolates are limited. This work investigates the prevalence and mechanism of FA resistance among 81 methicillin-resistant staphylococcal isolates from major hospitals of Alexandria, Egypt. Some combinations for treating infections due to resistant isolates were studied. Twenty-six isolates (32.1%) were FA resistant (minimum inhibitory concentrations [MICs] = 2-1,024 μg/ml), and fusB and fusC genes coding for FA resistance were detected in 30.77% and 34.62% of the FA-resistant strains, respectively. One highly resistant isolate, S502 (MIC = 1,024 μg/ml), possessed both genes. Plasmid curing resulted in fusB loss and MIC decrease by 16-64 folds. Conjugation caused acquisition of FA resistance among susceptible isolates. Serial passages in subinhibitory FA concentrations produced mutants with increased MIC by 4-32 folds. The combination of FA with rifampin, gentamicin, or ampicillin/sulbactam, in a subinhibitory concentration, was synergistic against the isolates, including serial passage mutants, decreasing number of survivors by an average of 2-4 logs. A relatively moderate rate of FA resistance was detected in Alexandria hospitals. Combination therapy with gentamicin, rifampin, or ampicillin/sulbactam is crucial to preserve the effectiveness of FA.

  10. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  11. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities

    Energy Technology Data Exchange (ETDEWEB)

    Franke-Whittle, Ingrid H., E-mail: ingrid.whittle@uibk.ac.at [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria); Walter, Andreas [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria); Ebner, Christian [Abwasserverband Zirl und Umgebung, Meilbrunnen 5, 6170 Zirl (Austria); Insam, Heribert [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria)

    2014-11-15

    Highlights: • Different methanogenic communities in mesophilic and thermophilic reactors. • High VFA levels do not cause major changes in archaeal communities. • Real-time PCR indicated greater diversity than ANAEROCHIP microarray. - Abstract: A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array.

  12. Optimal Test Characteristics for Maximal Anaerobic Work on the Bicycle Ergometer

    Science.gov (United States)

    Katch, Victor; And Others

    1977-01-01

    Data from two separate experiments conducted to ascertain the optimum protocol for a maximum anaerobic work output test on the bicycle ergometer indicated that the test duration needs to be approximately forty seconds and the optimal frictional resistance five to six kilograms. (MB)

  13. Association between insulin resistance and plasma amino acid profile in non-diabetic Japanese subjects

    OpenAIRE

    Yamada, Chizumi; Kondo, Masumi; Kishimoto, Noriaki; Shibata, Takeo; Nagai, Yoko; Imanishi, Tadashi; Oroguchi, Takashige; Ishii, Naoaki; Nishizaki, Yasuhiro

    2015-01-01

    Aims/Introduction Elevation of the branched-chain amino acids (BCAAs), valine, leucine and isoleucine; and the aromatic amino acids, tyrosine and phenylalanine, has been observed in obesity-related insulin resistance. However, there have been few studies on Asians, who are generally less obese and less insulin-resistant than Caucasian or African-Americans. In the present study, we investigated the relationship between homeostasis model assessment of insulin resistance (HOMA-IR) and plasma ami...

  14. Treatment of acid mine drainage with anaerobic solid-substrate reactors

    Energy Technology Data Exchange (ETDEWEB)

    Drury, W.J.

    1999-10-01

    Anaerobic solid-substrate reactors were used in a laboratory study of acid mine drainage treatment. Parallel systems were run continuously for 23 months, both containing a solid substrate of 2:1 (weight) cow manure and sawdust. One system had cheese whey added with the mine drainage to provide an additional electron donor source to simulate sulfate-reducing bacteria activity. Effluent pH from the reactor with whey addition was relatively constant at 6.5. Effluent pH from the reactor without whey addition dropped over time from 6.7 to approximately 5.5. Whey addition increased effluent alkalinity [550 to 700 mg/L as calcium carbonate (CaCO{sub 3}) versus 50 to 300 mg/L as CaCO{sub 3}] and sulfate removal (98 to 80% versus 60 to 40%). Sulfate removal rate with whey addition decreased over time from 250 to 120 mmol/m{sup 3}{center{underscore}dot}d, whereas it decreased from 250 to 40 mmol/m{sup 3}{center{underscore}dot}d without whey addition. Whey addition increased removal of dissolved iron, dissolved manganese, and dissolved zinc in the second part of the experiment. Copper and cadmium removals were greater than 99%, and arsenic removal was 84% without whey addition and 89% with whey addition. Effluent sulfide concentrations were approximately 1 order of magnitude greater with whey addition. A 63-day period of excessive loading permanently decreased treatment efficiency without whey addition.

  15. Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity.

    Science.gov (United States)

    Lin, Lin; Wan, Chunli; Liu, Xiang; Lei, Zhongfang; Lee, Duu-Jong; Zhang, Yi; Tay, Joo Hwa; Zhang, Zhenya

    2013-12-01

    Batch experiments were carried out on anaerobic digestion of swine manure under 10 % of total solids and 60 g/L of zeolite addition at 35 °C. Four distinctive volatile fatty acid (VFAs) evolution stages were observed during the anaerobic process, i.e., VFA accumulation, acetic acid (HAc) and butyric acid (HBu) utilization, propionic acid (HPr) and valeric acid (HVa) degradation, and VFA depletion. Large decreases in HAc/HBu and HPr/HVa occurred respectively at the first and second biogas peaks. Biogas yield increased by 20 % after zeolite addition, about 356 mL/g VSadded with accelerated soluble chemical oxygen demand degradation and VFA (especially HPr and HBu) consumption in addition to a shortened lag phase between the two biogas peaks. Compared with Ca(2+) and Mg(2+) (100-300 mg/L) released from zeolite, simultaneous K(+) and NH4 (+) (580-600 mg/L) adsorptions onto zeolite particles contributed more to the enhanced biogasification, resulting in alleviated inhibition effects of ammonium on acidogenesis and methanogenesis, respectively. All the identified anaerobes could be grouped into Bacteroidetes and Firmicutes, and zeolite addition had no significant influence on the microbial biodiversity in this study.

  16. Aspects of anaerobic metabolism in Anodonta cygnea L.

    NARCIS (Netherlands)

    Holwerda, Dirk A.; Veenhof, P.R.

    1984-01-01

    1. After 6 days of anoxia A. cygnea had produced 1.0 µmole succinate, 2.7 µmole propionate and 1.7 µmole acetate/g of total soft tissue (wet). In addition, 0.35 µmole glutamate had disappeared. No other changes were detectable. 2. Concentrations of anaerobic end products and of amino acids

  17. Amoxicillin / Clavulanic Acid and Cefotaxime Resistance in Salmonella Minnesota and Salmonella Heidelberg from Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Rodrigues IBBE

    2017-10-01

    Full Text Available This study investigated the resistance of various Salmonella strains to beta-lactam antibiotics. Salmonella Minnesota (36 strains and Salmonella Heidelberg (24 strains were isolated from broiler chickens and carcasses by the Disk Diffusion Test and resistance genes blaCTX-M-8, blaACC-1 and blaCMY-2 were detected by PCR. Of the 60 strains tested, 80% were resistant to at least one antibiotic. Specifically, 66.7% were resistant to amoxicillin/clavulanic acid and 75% were resistant to cefotaxime. Among the amoxicillin/clavulanic acid resistant strains, the blaCMY-2 gene was detected in 40%, blaACC-1 in 37.5% and blaCTX-M-8 in 7.5%. Among the cefotaxime resistant strains, we detected the genes blaCTX-M-8 in 13.3%, blaACC-1 in 33.3%, and blaCMY-2 in 31.1%. The presence of cefotaxime- and amoxicillin/clavulanic acid-resistant Salmonella in poultry, and the prevalence of extended spectrum betalactamases and AmpC-betalactamases in these strains are of huge concern to public health and economy.

  18. PENGOLAHAN LIMBAH CAIR INDUSTRI FARMASI FORMULASI DENGAN METODE ANAEROB-AEROB DAN ANAEROB-KOAGULASI

    Directory of Open Access Journals (Sweden)

    Farida Crisnaningtyas

    2016-05-01

    Full Text Available Studi ini membahas mengenai pengolahan limbah cair industri farmasi dalam skala laboratorium dengan menggunakan konsep anaerob-kimia-fisika dan anaerob-aerob. Proses anaerob dilakukan dengan menggunakan reaktor Upflow Anaerobic Sludge Bed reactor (UASBr pada kisaran OLR (Organic Loading Rate 0,5 – 2 kg COD/m3hari, yang didahului dengan proses aklimatisasi menggunakan substrat gula. Proses anaerob mampu memberikan efisiensi penurunan COD hingga 74%. Keluaran dari proses anaerob diolah lebih lanjut dengan menggunakan dua opsi proses: (1 fisika-kimia, dan (2 aerob. Koagulan alumunium sulfat dan flokulan kationik memberikan efisiensi penurunan COD tertinggi (73% pada kecepatan putaran masing-masing 100 rpm dan 40 rpm. Uji coba aerob dilakukan pada kisaran MLSS antara 4000-5000 mg/L dan mampu memberikan efisiensi penurunan COD hingga 97%. Hasil uji coba menunjukkan bahwa efisiensi penurunan COD total yang dapat dicapai dengan menggunakan teknologi anaerob-aerob adalah 97%, sedangkan kombinasi anaerob-koagulasi-flokulasi hanya mampu menurunkan COD total sebesar 72,53%. Berdasarkan hasil tersebut, kombinasi proses anaerob-aerob merupakan teknologi yang potensial untuk diaplikasikan dalam sistem pengolahan limbah cair industri farmasi. 

  19. Anaerobic Digestion Analysis. Training Module 5.120.2.77.

    Science.gov (United States)

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with alkalinity, volatile acids and carbon dioxide determinations for an anaerobic sludge digester. Included are objectives, instructor guides, student handouts and transparency masters. This module considers total and bicarbonate…

  20. Intrinsic gas production kinetics of selected intermediates in anaerobic filters for demand-orientated energy supply.

    Science.gov (United States)

    Krümpel, Johannes Hagen; Illi, Lukas; Lemmer, Andreas

    2018-03-01

    As a consequence of a growing share of solar and wind power, recent research on biogas production highlighted a need for demand-orientated, flexible gas production to provide grid services and enable a decentralized stabilization of the electricity infrastructure. Two-staged anaerobic digestion is particularly suitable for shifting the methane production into times of higher demand due to the spatio-temporal separation of hydrolysis and methanogenesis. To provide a basis for predicting gas production in an anaerobic filter, kinetic parameters of gas production have been determined experimentally in this study. A new methodology is used, enabling their determination during continuous operation. An order in methane production rate could be established by comparing the half lives of methane production. The order was beginning with the fastest: acetic acid>ethanol>butyric acid>iso-butyric acid>valeric acid>propionic acid>1,2propanediol>lactic acid. However, the mixture of a natural hydrolysate from the acidification tank appeared to produce methane faster than all single components tested.

  1. Acid resistance, bile tolerance and antimicrobial properties of ...

    African Journals Online (AJOL)

    Maari is a fermented food condiment obtained by spontaneous fermentation of seeds from the baobab tree (Adansonia digitata). Nine dominant lactic acid bacteria (LAB) strains, isolated from traditional maari fermentation were examined for their resistance to pH 2.5, their tolerance to 0.3% bile and their antimicrobial ...

  2. Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture.

    Science.gov (United States)

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R

    2015-11-01

    Lactic acid (LA) is a necessary industrial feedstock for producing the bioplastic, polylactic acid (PLA), which is currently produced by pure culture fermentation of food carbohydrates. This work presents an alternative to produce LA from potato peel waste (PPW) by anaerobic fermentation in a sequencing batch reactor (SBR) inoculated with undefined mixed culture from a municipal wastewater treatment plant. A statistical design of experiments approach was employed using set of 0.8L SBRs using gelatinized PPW at a solids content range from 30 to 50 g L(-1), solids retention time of 2-4 days for yield and productivity optimization. The maximum LA production yield of 0.25 g g(-1) PPW and highest productivity of 125 mg g(-1) d(-1) were achieved. A scale-up SBR trial using neat gelatinized PPW (at 80 g L(-1) solids content) at the 3 L scale was employed and the highest LA yield of 0.14 g g(-1) PPW and a productivity of 138 mg g(-1) d(-1) were achieved with a 1 d SRT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Aged refuse enhances anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi

    2017-10-15

    In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Start-up strategies for thermophilic anaerobic digestion of pig manure

    International Nuclear Information System (INIS)

    Moset, V.; Bertolini, E.; Cerisuelo, A.; Cambra, M.; Olmos, A.; Cambra-López, M.

    2014-01-01

    Sludge physicochemical composition, methane (CH 4 ) yield, and methanogenic community structure and dynamics using quantitative real-time polymerase chain reaction were determined after start-up of anaerobic digestion of pig manure. Eight thermophilic continuous stirred anaerobic digesters were used during 126 days. Four management strategies were investigated: a feedless and a non-feedless period followed by a gradual or an abrupt addition of pig manure (two digesters per strategy). During the first 43 days, VFA (volatile fatty acids) accumulations and low CH 4 yield were observed in all digesters. After this period, digesters recovered their initial status being propionic acid the last parameter to be re-established. Non-feedless digesters with an abrupt addition of pig manure showed the best performances (lower VFA accumulation and higher CH 4 yield). Differences in microbial orders and dynamics, however, were less evident among treatments. Hydrogenotrophic methanogenesis, Methanomicrobiales first and Methanobacteriales second, was the dominant metabolic pathway in all digesters. Further research is needed to clarify the role and activity of hydrogenotrophic methanogens during the recovery start-up period and to identify the best molecular tools and methodologies to monitor microbial populations and dynamics reliably and accurately in anaerobic digesters. - Highlights: • Four start-up strategies for thermophilic anaerobic digestion of pig manure were tested. • Physicochemical composition, methane yield and methanogenic community were determined. • During the first 43 days, a decline in reactor's performance occurred. • The best start-up strategy was non-feedless with an abrupt addition of pig slurry. • Hydrogenotrophic methanogenesis was the dominant metabolic pathway

  5. [Development and Evaluation of a New Selective Culture Medium, KBM Anaero RS-GNR, for Detection of Anaerobic Gram Negative Rods].

    Science.gov (United States)

    Narita, Taeko; Kato, Kyohei; Hanaiwa, Hiroki; Harada, Tetsuhiro; Funashima, Yumiko; Akiwa, Makoto; Sekiguchi, Jun-Ichiro; Nagasawa, Zenzo; Umemura, Tsukuru

    2017-03-22

    The laboratory culture methods for isolating drug-resistant pathogens has been the gold standard in medical microbiology, and play pivotal roles in the overall management of infectious diseases. Recently, several reports have emphasized the development of antibiotics-resistance among anaerobic gram-negative rods, especially Genus Bacteroides and Prevotella . Therefore, a selective culture method to detect these pathogens is needed. We developed here the new selective culture medium, termed "KBM Anaero RS-GNR," for detecting anaerobic Gram-negative rods. Growth capability and selectivity of the agar medium were assessed by using the pure culture suspensions of more than 100 bacterial strains as well as the 13 samples experimentally contaminated with these bacterial strains. This new medium, "KBM Anaero RS-GNR," successfully showed the selective isolation of anaerobic Gram-negative rods. Compared with commercially available medium, "PV Brucella HK Agar, " which is also designed to detect anaerobic Gram-negative rods, there was no significant difference of the overall detection efficiency between two media. However, "KBM Anaero RS-GNR" showed superior to selectivity for anaerobic Gram-negative rods, especially from the samples contaminated with Candida species. Thus, the culture method using KBM Anaero RS-GNR is relevant for isolation of anaerobic Gram-negative rods especially from clinical specimens.

  6. The influence of incorporating leachate on anaerobic biodegradability of domestic sewage

    Directory of Open Access Journals (Sweden)

    Luz Edith Barba

    2010-01-01

    Full Text Available Treating leachate is one of the most important challenges in designing and operating a sanitary landfill. Anaerobic treatment u- sing a mixture of leachate and domestic sewage represents a suitable treatment option having good potential applicability in developing countries. The influence of adding leachate from a domestic sanitary landfill on the anaerobic biodegradability of domestic sewage has been evaluated in this paper. Five samples were evaluated for the study: 100% domestic sewage (DS, 100% leachate (L and three leachate mixtures (L with domestic sewage (DS as follows: 10%(L:90%(DS, 20%(L:80%(DS and 30%(L:70%(DS. The samples’ anaerobic biodegradability was monitored for 30 days using methane production accumulation and variation in volatile fatty acid (VFA concentration and composition. A detailed analysis of chemical oxygen demand (COD composition was performed at the end of the monitoring period. The results of the study showed that a 10%(L:90%(DS mixture provided the maximum leachate (L domestic sewage (DS combination mixture which could be anaerobically biodegradable with no significantly inhibitory effects. Mixtures using a higher percentage of leachate showed significantly potential inhibition effects on the anaerobic biodegradation of domestic sewage.

  7. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    for anaerobic growth and biosurfactant production in DNA-supplemented Medium E. In addition to DNA or deoxyribonucleosides, nitrate, amino acids and vitamins were all required for anaerobic growth of JF-2. Bacillus mojavensisT (ABO21191), Bacillus mojavensis, strain ROB2 also required DNA or deoxyribonucleosides for anaerobic growth. The improved anaerobic growth of Bacillus mojavensis JF-2 was a prerequisite for studies that will lead to improved anaerobic biosurfactant production.

  8. In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria.

    Science.gov (United States)

    Citron, D M; Merriam, C V; Tyrrell, K L; Warren, Y A; Fernandez, H; Goldstein, E J C

    2003-07-01

    By using an agar dilution method, the in vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, and five other agents were determined against 300 gram-positive and 54 gram-negative strains of intestinal anaerobes. Ramoplanin was active at Eubacterium, Actinomyces, Propionibacterium, and Peptostreptococcus spp. were inhibited by spp. were >or=256 microg/ml. Ramoplanin displays excellent activity against C. difficile and other gram-positive enteric anaerobes, including vancomycin-resistant strains; however, it has poor activity against most gram-negative anaerobes and thus potentially has a lesser effect on the ecological balance of normal fecal flora.

  9. Anaerobic Pseudomonas aeruginosa and other obligately anaerobic bacterial biofilms growing in the thick airway mucus of chronically infected cystic fibrosis patients: an emerging paradigm or "Old Hat"?

    Science.gov (United States)

    Su, Shengchang; Hassett, Daniel J

    2012-09-01

    The cystic fibrosis (CF) airway mucus is an ideal niche in which many bacteria can develop antibiotic- and phagocyte-resistance in unique structures known as "mode II biofilms" where bacteria are embedded within the mucus, yet unattached to airway epithelial cells. Pseudomonas aeruginosa is the dominant CF pathogen, yet herein the authors provide burgeoning evidence that obligate anaerobic bacteria (e.g., Prevotella) actually thrive within the CF mucus, a paradigmatic shift that chronic CF is an "aerobic" disease. Interestingly, CF organisms repress virulence factor production (e.g., P. aeruginosa) while others (e.g., S. aureus) increase them under anaerobic conditions. The authors shed additional light on (i) the anoxic nature of the CF airway mucus, (ii) the relative commonality of anaerobic bacteria isolated from CF sputum, (iii) virulence factor production and cross-talk between obligate anaerobes and P. aeruginosa relative to disease progression/remission, (iv) the role of mucoidy in CF, and (v) the role of nitrosative stress in activation of bacteriophage and pyocins within biofilms. The authors conclude with insight as to how we might treat some CF bacteria during mode II biofilm infections that utilizes a metabolite of bacterial anaerobic respiration and an aerobic oxidation product of airway-generated NO, acidified NO(2)(-).

  10. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    International Nuclear Information System (INIS)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

    2014-01-01

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH 4 –N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production

  11. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping, E-mail: jpzhuhust@163.com; Liao, Li, E-mail: liaoli2003@126.com

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  12. Negative resists for i-line lithography utilizing acid-catalyzed intramolecular dehydration reaction

    Science.gov (United States)

    Ueno, Takumi; Uchino, Shou-ichi; Hattori, Keiko T.; Onozuka, Toshihiko; Shirai, Seiichiro; Moriuchi, Noboru; Hashimoto, Michiaki; Koibuchi, S.

    1994-05-01

    Chemical amplification negative resist system composed of a novolak resin, a carbinol and an acid generator is investigated for i-line phase-shift lithography. The reaction in this resist is based on an acid-catalyzed intramolecular dehydration reaction. The dehydration products act as aqueous-base dissolution inhibitors, and carbinol compounds in unexposed areas work as dissolution promoters. The resist composed of a novolak resin, 1,4-bis((alpha) -hydroxyisopropyl) benzene (DIOL-1) and 2- naphthoylmethyltetramethylenesulfonium triflate (PAG-2) gives the best lithographic performance in terms of sensitivity and resolution. Line-and-space patterns of 0.275 micrometers are obtained using an i-line stepper (NA:0.45) in conjunction with a phase shifting mask.

  13. Emerging nalidixic acid and ciprofloxacin resistance in non-typhoidal Salmonella isolated from patients having acute diarrhoeal disease

    International Nuclear Information System (INIS)

    Panhotra, B.R.; Saxena, A.K.; Al-Arabi, Ali M.

    2004-01-01

    Non-typhoidal Salmonella are one of the key etiological agents of diarrhoeal disease. The appearence of multiple drung resistance along with resistance to quinolones in this bacterium poses a serious therapeutic problem. We determined the prevalence of nalidixic acid and ciprofloxacin resistance in non-typhodial Salmonella isolated from faecal samples of patients with acute diarroheal disease attending the outpatient and inpatient department of a hospital in Saudi Arabia during the years 1999 to 2002. Non-typhodial Salmonella were isolated from faecal samples. Antimicrobial susceptibility was tested by the disc diffusion test. MICs to nalidixic acid and ciprofloxacinwere determined by the agar dilution method. During the study period , 524 strains of non-typhoidal Salmonella were isolated. Strains belonging to serogroup C1were the commonest (41.4%) followed by serogroups B and D (15.6% and 14.5%, respectively). Resistance to ampicillin was observed in 22.9% and to trimethoprim/sulphamethoxazole in 18.5%of the strains. Nalidixic acid resistance was encounterd in 9.9% and ciprofloxacin esistance in 2.3% of the strains. Resistance to nalidixic acid significantly increased from 0.1% in 1999 to 5.51% in 2002 ( p=0.0007)and ciprofloxacin resistance increased significantly from 0.1% in 1999 to 0.9% in 2002( p=0.0001). MICs to nalidixic acid and ciprofloxacin were determined among 29 nalidixic acid-resistant strains of non-typhoidal salmonella isolated during 2002. The MIC was >256 ug /ml to nalidixic acid and 8 to 16 ug/ml to ciprofloxacin. The increasing rate of antimicrobial resistance encountered among non-tyophoidal Salmonella necessiate the judicious use of these drugs in humans. Moreover, these findings support the concern that the use of quinolones in animal feed may lead to an increasein resistance and should should be restricted. (author)

  14. Cefoperazone and cefoperazone-sulbactam susceptibility tests with anaerobic bacteria by the thioglycolate disk elution method.

    OpenAIRE

    Barry, A L; Packer, R R; Jones, R N

    1985-01-01

    Tests were performed with 104 anaerobic microorganisms to evaluate the thioglycolate disk elution technique for the detection of resistance to cefoperazone and cefoperazone-sulbactam. An unacceptably high false-resistance rate and a poor reproducibility record make the disk elution procedure unsatisfactory for routine testing of this drug or combination of drugs.

  15. Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance

    OpenAIRE

    Newgard, Christopher B.

    2012-01-01

    Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin resistance and type 2 diabetes. Surprisingly, application of metabolomics technologies has revealed that branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin resistance than many common lipid species. Moreover, the BCAA-related signature is predictive of incident diabetes and intervention outcomes, and uniquely responsive to therapeutic interventio...

  16. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E.

    NARCIS (Netherlands)

    Boxma, B.; Voncken, F.L.M.; Jannink, S.A.; Alen, T.A. van; Akhmanova, A.S.; Weelden, S.W. van; Hellemond, J.J. van; Ricard, G.N.S.; Huynen, M.A.; Tielens, A.G.; Hackstein, J.H.P.

    2004-01-01

    Anaerobic chytridiomycete fungi possess hydrogenosomes, which generate hydrogen and ATP, but also acetate and formate as end-products of a prokaryotic-type mixed-acid fermentation. Notably, the anaerobic chytrids Piromyces and Neocallimastix use pyruvate:formate lyase (PFL) for the catabolism of

  17. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  18. Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge.

    Science.gov (United States)

    Jang, Hyun Min; Shin, Jingyeong; Choi, Sangki; Shin, Seung Gu; Park, Ki Young; Cho, Jinwoo; Kim, Young Mo

    2017-11-01

    Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH 4 /g VS removed in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Acid-resistant organic coatings for the chemical industry: a review

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry...

  20. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana.

    Science.gov (United States)

    Zhu, Feng; Xi, De-Hui; Yuan, Shu; Xu, Fei; Zhang, Da-Wei; Lin, Hong-Hui

    2014-06-01

    Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.

  1. Plasma fatty acid profile in depressive disorder resembles insulin resistance state.

    Science.gov (United States)

    Vareka, Tomas; Vecka, Marek; Jirak, Roman; Tvrzicka, Eva; Macasek, Jaroslav; Zak, Ales; Zeman, Miroslav

    2012-01-01

    Depressive disorder is related to an increased risk of type 2 diabetes mellitus (DM2) and cardiovascular disease (CVD). Insulin resistance (IR), connected with altered fatty acid (FA) composition, namely with decreased proportion of polyunsaturated FA could participate in these associations. The aim of the study was to investigate the composition of FA in plasma cholesterol esters (CE) and phosphatidylcholine (PC) as well as indices of insulin resistance and oxidative stress in the patients with depressive disorder. Parameters of lipid and glucose homeostasis, concentrations of FA in plasma cholesteryl esters (CE) and phosphatidylcholine (PC) and conjugated dienes in LDL were investigated in a group of 47 patients (9M/38F) with depression and compared with 47 control persons (16M/31F). Delta-9 desaturase (D9D) and D6D desaturase were estimated as product to precursor fatty acid ratios. In depressive patients increased concentrations of palmitoleic acid and total monounsaturated FA with decreased proportion of total polyunsaturated FA n-6 (PUFA n-6) (all pinsulin resistance. Dysregulation of FA could participate in the pathogenesis of depression and be associated with an increased risk of CVD and DM2.

  2. Fusidic acid resistance among staphylococci strains isolated from clinical specimens

    Directory of Open Access Journals (Sweden)

    Özcan Deveci

    2012-03-01

    Full Text Available Objectives: The aim of this study was to investigate in vitrosusceptibility of fusidic acid to clinic isolates of staphylococci.Materials and methods: The forty-one coagulase negativestaphylococci (CNS and 18 Staphylococcus aureusstrains isolated from various clinical specimens were includedin this study. Staphylococci isolates were identifiedby conventional methods such as colony morphologyonto medium, gram staining, catalase and coagulasetests. According to “Clinical and Laboratory Standards Institute(CLSI” criteria, antimicrobial susceptibility testingof isolates was performed by Kirby-Bauer’s disk diffusionmethod.Results: The seventy-two percent of the isolated S.aureuswere defined as methicillin sensitive-S.aureus (MSSA,28% of the isolated S.aureus were defined as methicillinresistant-S.aureus (MRSA. The difference among fusidicacid susceptibility rates of MSSA and MRSA strains wasnot statistically significant (p=0.305. The twenty-nine percentof the isolated CNS were defined as methicillin sensitive-CNS (MS-CNS, 71% of the isolated CNS were definedas methicillin resistant-CNS (MR-CNS. There wasno statistically significant difference between MS-CNSand MR-CNS strains for fusidic acid susceptibility rates(p=0.490. But the difference among fusidic acid susceptibilityrates of CNS and S.aureus strains was statisticallysignificant (p<0.001. CNS strains were found more resistancethan S.aureus strains for fusidic acid.Conclusion: In this study, the resistance rates weredetected to increase for fusidic acid along with methicillinresistance. Among CNS isolates, fusidic acid resistancerates were significantly more elevated than that forS.aureus. Fusidic acid remains as an alternative in thetreatment of infections due to staphylococci.

  3. Removing volatile fatty acids during the anaerobic treatment of pig sewage; Remocion de acidos grasos volatiles durante el tratamiento anaerobio de aguas residuales porcicolas

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Borges, E.; Mendez Novelo, R.; Magana Pietra, A.; Partinez Pereda, P.; Fernandez Villagomez, G. [Facultad de Ingenieria, Universidad Atuonoma de Yucatan. Mexico (Mexico)

    1997-06-01

    This study examined the behaviour of a hybrid anaerobic digester in treating pig farm sewage. The experimental model consisted of a 208-litre UASB reactor at the bottom and a 195-litre high-rate sedimentator at the top. The digester was installed on a pig farm and its efficiency in removing volatile (acetic and propionic) fatty acids (VFA) was determined with hydraulic retention time (HTR) as the critical parameter for evaluating the anaerobic system`s performance. The results obtained with the five different HRTs used during the experiment are reported. The highest removal rates were obtained with an HRT of 2.8 days: 98% in the UASB, 28% in the sedimentator and 98% in the digester as a whole. An HRT of 1 day gave VFA removal rates of 40%, 12% and 50% in the UASB reactor sedimentator and digest respectively. (Author) 16 refs.

  4. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    OpenAIRE

    Yoon, Mee-Sup

    2016-01-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or...

  5. [The role of uric acid in the insulin resistance in children and adolescents with obesity].

    Science.gov (United States)

    de Miranda, Josiane Aparecida; Almeida, Guilherme Gomide; Martins, Raissa Isabelle Leão; Cunha, Mariana Botrel; Belo, Vanessa Almeida; dos Santos, José Eduardo Tanus; Mourão-Júnior, Carlos Alberto; Lanna, Carla Márcia Moreira

    2015-12-01

    To investigate the association between serum uric acid levels and insulin resistance in children and adolescents with obesity. Cross-sectional study with 245 children and adolescents (134 obese and 111 controls), aged 8 to 18 years. The anthropometric variables (weight, height and waist circumference), blood pressure and biochemical parameters were collected. The clinical characteristics of the groups were analyzed by t-test or chi-square test. To evaluate the association between uric acid levels and insulin resistance the Pearson's test and logistic regression were applied. The prevalence of insulin resistance was 26.9%. The anthropometric variables, systolic and diastolic blood pressure and biochemical variables were significantly higher in the obese group (p<0.001), except for the high-density-lipoprotein cholesterol. There was a positive and significant correlation between anthropometric variables and uric acid with HOMA-IR in the obese and in the control groups, which was higher in the obese group and in the total sample. The logistic regression model that included age, gender and obesity, showed an odds ratio of uric acid as a variable associated with insulin resistance of 1.91 (95%CI 1.40 to 2.62; p<-0.001). The increase in serum uric acid showed a positive statistical correlation with insulin resistance and it is associated with and increased risk of insulin resistance in obese children and adolescents. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  6. Anaerobic Bacteria in Clinical Specimens - Frequent, But a Neglected Lot: A Five Year Experience at a Tertiary Care Hospital.

    Science.gov (United States)

    Shenoy, Padmaja Ananth; Vishwanath, Shashidhar; Gawda, Ashwini; Shetty, Seema; Anegundi, Renuka; Varma, Muralidhar; Mukhopadhyay, Chiranjay; Chawla, Kiran

    2017-07-01

    Anaerobic bacteria which constitute a significant proportion of the normal microbiota also cause variety of infections involving various anatomic sites. Considering the tedious culture techniques with longer turnaround time, anaerobic cultures are usually neglected by clinicians and microbiologists. To study the frequency of isolation of different anaerobic bacteria from various clinical specimens. A retrospective study to analyse the frequency of isolation of different anaerobic bacteria, was conducted over a period of five years from 2011 to 2015 including various clinical specimens submitted to anaerobic division of Microbiology laboratory. Anaerobic bacteria were isolated and identified following standard bacteriological techniques. Pathogenic anaerobes (n=336) were isolated from 278 (12.48%) of overall 2227 specimens processed with an average yield of 1.2 isolates. Anaerobes were isolated as polymicrobial flora with or without aerobic bacterial pathogens in 159 (57.2%) patients. Anaerobic Gram-negative bacilli (140, 41.7%) were the predominant isolates. B. fragilis group (67, 19.9%) were the most commonly isolated anaerobic pathogens. Anaerobes were predominantly isolated from deep seated abscess (23.9%). Pathogenic anaerobes were isolated from various infection sites. Unless culture and susceptibility tests are performed as a routine, true magnitude of antimicrobial resistance among anaerobic pathogens will not be known. Knowledge of the distribution of these organisms may assist in the selection of appropriate empirical therapy for anaerobic infections.

  7. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions.

    Science.gov (United States)

    Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y

    2014-02-01

    Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

  8. Production of hemicellulose-degrading enzymes by Bacillus macerans in anaerobic culture

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.G.; Withers, S.E.

    1985-09-01

    The cell-associated and exocellular hemicellulolytic polysaccharide depolymerase and glycoside hydrolase activity of Bacillus macerans NCDO 1764 was monitored over a range of anaerobic growth conditions in batch and continuous culture. The enzymes were detectable throughout the complete growth cycle in batch culture reaching and maintaining maximum levels in the stationary phase. In continuous culture enzyme activity was largely independent of growth rate (D=0.025-0.1 h/sup -1/) although the activity was reduced at higher dilution rates (0.125-0.15 h/sup -1/). Although activity was detectable over a wide pH range (pH 5.5-7.5) it was pH dependent, and maximum activities of both the cell-associated and exocellular enzymes were measured in cultures maintained at pH 6.5-7.0 +- 0.1. The principal metabolites formed anaerobically from xylose by B. macerans in batch and continuous culture were acetic acid, formic acid and ethanol which represented 95-99% of the products formed. Smaller amounts of acetone, D,L-lactic acid and succinic acid were formed together with traces of butyric acid (<5 nmol/ml) and isovaleric acid (<25 nmol/ml). The proportions of the metabolites produced varied with growth conditions and were influenced by the pH of the culture and the rate and stage of growth of the microorganism.

  9. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system

    International Nuclear Information System (INIS)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2009-01-01

    A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m 3 day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91-94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m 3 day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m 3 day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6 l/day and 59%, respectively, at a NB loading rate of 30.00 g/m 3 day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m 3 day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2 mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m 3 day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from the influent, anaerobic and to

  10. Effect of γ irradiation on the fatty acid composition of soybean and soybean oil.

    Science.gov (United States)

    Minami, Ikuko; Nakamura, Yoshimasa; Todoriki, Setsuko; Murata, Yoshiyuki

    2012-01-01

    Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.

  11. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels.

    Science.gov (United States)

    Kondaveeti, Sanath; Min, Booki

    2015-12-15

    This study proves for the first time the feasibility of biofuel production from anaerobic digestion effluent via bioelectrochemical cell operation at various applied cell voltages (1.0, 1.5 and 2.0 V). An increase in cell voltage from 1 to 2 V resulted in more reduction current generation (-0.48 to -0.78 mA) at a lowered cathode potential (-0.45 to -0.84 mV vs Ag/AgCl). Various alcohols were produced depending on applied cell voltages, and the main products were butanol, ethanol, and propanol. Hydrogen and methane production were also observed in the headspace of the cell. A large amount of lactic acid was unexpectedly formed at all conditions, which might be the primary cause of the limited biofuel production. The addition of neutral red (NR) to the system could increase the cathodic reduction current, and thus more biofuels were produced with an enhanced alcohol formation compared to without a mediator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A human model of dietary saturated fatty acid induced insulin resistance.

    Science.gov (United States)

    Koska, Juraj; Ozias, Marlies K; Deer, James; Kurtz, Julie; Salbe, Arline D; Harman, S Mitchell; Reaven, Peter D

    2016-11-01

    Increased consumption of high-fat diets is associated with the development of insulin resistance and type 2 diabetes. Current models to study the mechanisms of high-fat diet-induced IR in humans are limited by their long duration or low efficacy. In the present study we developed and characterized an acute dietary model of saturated fatty acid-enriched diet induced insulin resistance. High caloric diets enriched with saturated fatty acids (SFA) or carbohydrates (CARB) were evaluated in subjects with normal and impaired glucose tolerance (NGT or IGT). Both diets were compared to a standard eucaloric American Heart Association (AHA) control diet in a series of crossover studies. Whole body insulin resistance was estimated as steady state plasma glucose (SSPG) concentrations during the last 30min of a 3-h insulin suppression test. SSPG was increased after a 24-h SFA diet (by 83±74% vs. control, n=38) in the entire cohort, which was comprised of participants with NGT (92±82%, n=22) or IGT (65±55%, n=16) (all pinsulin resistance in both NGT and IGT subjects. Insulin resistance persisted overnight after the last SFA meal and was attenuated by one day of a healthy diet. This model offers opportunities for identifying early mechanisms and potential treatments of dietary saturated fat induced insulin resistance. Published by Elsevier Inc.

  13. Interplay between lipids and branched-chain amino acids in development of insulin resistance

    Science.gov (United States)

    Newgard, Christopher B.

    2013-01-01

    Summary Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin resistance and type 2 diabetes. Surprisingly, application of metabolomics technologies has revealed that branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin resistance than many common lipid species. Moreover, the BCAA-related signature is predictive of incident diabetes and intervention outcomes, and uniquely responsive to therapeutic interventions. Nevertheless, in animal feeding studies, BCAA supplementation requires the background of a high-fat diet to promote insulin resistance. This article develops a model to explain how lipids and BCAA may synergize to promote metabolic diseases. PMID:22560213

  14. Accelerated anaerobic hydrolysis rates under a combination of intermittent aeration and anaerobic conditions

    DEFF Research Database (Denmark)

    Jensen, T. R.; Lastra Milone, T.; Petersen, G.

    2017-01-01

    Anaerobic hydrolysis in activated return sludge was investigated in laboratory scale experiments to find if intermittent aeration would accelerate anaerobic hydrolysis rates compared to anaerobic hydrolysis rates under strict anaerobic conditions. The intermittent reactors were set up in a 240 h...... for calculating hydrolysis rates based on soluble COD were compared. Two-way ANOVA with the Bonferroni post-test was performed in order to register any significant difference between reactors with intermittent aeration and strictly anaerobic conditions respectively. The experiment demonstrated a statistically...... significant difference in favor of the reactors with intermittent aeration showing a tendency towards accelerated anaerobic hydrolysis rates due to application of intermittent aeration. The conclusion of the work is thus that intermittent aeration applied in the activated return sludge process (ARP) can...

  15. Anaerobic degradation of phthalates in unsorted household wastes; Anaerob nedbrytning av ftalater med ymp fraan anaerobt behandlat hushaallsavfall

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, H.

    1993-10-01

    Phthalic acid and diethyl phthalate were tested for their biodegradability in anaerobic, unsorted household wastes. The compounds were analyzed by measuring absorbance after centrifugation of a water suspension. This cheap and rapid method was proven to be applicable. Both phthalic acid and diethyl phthalate disappeared almost completely in 1-3 months, using initial concentrations from 50 to 250 mg/l. The same methodology was used for diethylhexyl phthalate, but did not work. The stoichiometrically expected amounts of methane were not found for any of the compounds, and in case of diethyl phthalate an inhibition of the methane production was observed. (36 refs., 17 figs.)

  16. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Directory of Open Access Journals (Sweden)

    A. Bannert

    2012-10-01

    Full Text Available While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006 after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.

  17. Degradation of a mono sulfonated azo dye by an integrated bio sorption and anaerobic system

    International Nuclear Information System (INIS)

    Goncalves, L. C.; Campos, R.; Pinheiro, H. M.; Lopes, A.; Ferra, M. I.

    2009-01-01

    A simulated textile effluent containing a mono sulphonated azo dye was fed to an anaerobic bioreactor in which a natural adsorbent, spent brewery grains (SBG), was incorporated. SABG is a by-product of the brewing industry and could act as adsorbent as well an electron shuttle (lignin fraction) in the dye degradation mechanism. Furthermore, it can also work as a conditioner for the anaerobic biomass. The influence of the dye (Acid Orange 7, AO7) concentration (60 and 150 mg/L) and the presence of SBG in the performance of upflow anaerobic sludge blanket reactor (UASB) was evaluated. (Author)

  18. Degradation of a mono sulfonated azo dye by an integrated bio sorption and anaerobic system

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, L. C.; Campos, R.; Pinheiro, H. M.; Lopes, A.; Ferra, M. I.

    2009-07-01

    A simulated textile effluent containing a mono sulphonated azo dye was fed to an anaerobic bioreactor in which a natural adsorbent, spent brewery grains (SBG), was incorporated. SABG is a by-product of the brewing industry and could act as adsorbent as well an electron shuttle (lignin fraction) in the dye degradation mechanism. Furthermore, it can also work as a conditioner for the anaerobic biomass. The influence of the dye (Acid Orange 7, AO7) concentration (60 and 150 mg/L) and the presence of SBG in the performance of upflow anaerobic sludge blanket reactor (UASB) was evaluated. (Author)

  19. Influence of zinc on biogas production and antibiotic resistance gene profiles during anaerobic digestion of swine manure.

    Science.gov (United States)

    Zhang, Ranran; Wang, Xiaojuan; Gu, Jie; Zhang, Yajun

    2017-11-01

    This study determined the accumulated biogas, methane content, and absolute abundances (AAs) of 14 common antibiotic resistance genes (ARGs) and two integrons during the anaerobic digestion of swine manure for 52days with different amounts of added zinc. The accumulated biogas increased by 51.2% and 56.0% with 125mgL -1 (L) and 1250mgL -1 (H) zinc, respectively, compared with the control with no added zinc (CK), but there was no significant difference between L and H. Compared with CK, excluding tetW and tetC, all the other ARGs detected in this study increased in the L and H reactors. However, the low concentration of zinc (L reactor) caused greater increases in the AAs of ARGs in the AD products. Redundancy analysis showed that NO 3 -N and bio-zinc significantly explained the changes in genes, where they accounted for 60.9% and 20.3% of the total variation in the environmental factors, respectively. Copyright © 2017. Published by Elsevier Ltd.

  20. Electron donation characteristics and interplays of major volatile fatty acids from anaerobically fermented organic matters in bioelectrochemical systems.

    Science.gov (United States)

    Zhang, Zhiqiang; Li, Jiamiao; Hao, Xiaoxuan; Gu, Zaoli; Xia, Siqing

    2018-02-23

    Anaerobic fermentation liquid of waste organic matters (WOMs) is rich in volatile fatty acids (VFAs), which can be treated with bioelectrochemical systems for both electrical energy recovery and organics removal. In this work, four major VFAs in the fermented WOMs supernatant were selected to examine their electron donation characteristics for power output and their complicated interplays in microbial fuel cells (MFCs). Results indicated a priority sequence of acetate, propionate, n-butyrate and i-valerate when served as the sole electron donor for electricity generation. The MFC solely fed with acetate showed the highest coulombic efficiency and power density, and the longest period for electricity production. When two of the VFAs were added with equal proportion, both acids contributed positively to electricity generation, while the selective or competitive use of substrates by diverse microorganisms behaved as an antagonism effect to prolong the degradation time of each VFA. When acetate and propionate, the preferable substrates for electricity generation, were mixed in various proportions, their large concentration difference led to improved electrical performance but decreased organic removal rate.

  1. On the value of electrical resistivity tomography for monitoring leachate injection in solid state anaerobic digestion plants at farm scale.

    Science.gov (United States)

    Degueurce, Axelle; Clément, Rémi; Moreau, Sylvain; Peu, Pascal

    2016-10-01

    Agricultural waste is a valuable resource for solid state anaerobic digestion (SSAD) thanks to its high solid content (>15%). Batch mode SSAD with leachate recirculation is particularly appropriate for such substrates. However, for successful degradation, the leachate must be evenly distributed through the substrate to improve its moisture content. To study the distribution of leachate in agricultural waste, electrical resistivity tomography (ERT) was performed. First, laboratory-scale experiments were conducted to check the reliability of this method to monitor infiltration of the leachate throughout the solid. Two representative mixtures of agricultural wastes were prepared: a "winter" mixture, with cattle manure, and a "summer" mixture, with cattle manure, wheat straw and hay. The influence of density and water content on electrical resistivity variations was assessed in the two mixtures. An increase in density was found to lead to a decrease in electrical resistivity: at the initial water content, resistivity decreased from 109.7 to 19.5Ω·m in the summer mixture and from 9.8 to 2.7Ω·m in the "winter" mixture with a respective increased in density of 0.134-0.269, and 0.311-0.577. Similarly, resistivity decreased with an increase in water content: for low densities, resistivity dropped from 109.7 to 7.1Ω·m and 9.8 to 4.0Ω·m with an increase in water content from 64 to 90w% and 74 to 93w% for "summer" and "winter" mixtures respectively. Second, a time-lapse ERT was performed in a farm-scale SSAD plant to monitor leachate infiltration. Results revealed very heterogeneous distribution of the leachate in the waste, with two particularly moist areas around the leachate injection holes. However, ERT was successfully applied in the SSAD plant, and produced a reliable 3D map of leachate infiltration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The Effect of Anaerobic and Aerobic Fish Sludge Supernatant on Hydroponic Lettuce

    Directory of Open Access Journals (Sweden)

    Simon Goddek

    2016-06-01

    Full Text Available The mobilization of nutrients from fish sludge (i.e., feces and uneaten feed plays a key role in optimizing the resource utilization and thus in improving the sustainability of aquaponic systems. While several studies have documented the aerobic and anaerobic digestion performance of aquaculture sludge, the impact of the digestate on plant growth has yet to be understood. The present study examines the impact of either an aerobic or an anaerobic digestion effluent on lettuce plant growth, by enriching a mixture of aquaculture and tap water with supernatants from both aerobic and anaerobic batch reactors. The lettuce plants grown in the hydroponic system supplied with supernatant from an anaerobic reactor had significantly better performance with respect to weight gain than both, those in the system where supernatant from the aerobic reactor was added, as well as the control system. It can be hypothesized that this effect was caused by the presence of NH4+ as well as dissolved organic matter, plant growth promoting rhizobacteria and fungi, and humic acid, which are predominantly present in anaerobic effluents. This study should therefore be of value to researchers and practitioners wishing to further develop sludge remineralization in aquaponic systems.

  3. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge.

    Science.gov (United States)

    Steinberg, Lisa M; Regan, John M

    2008-11-01

    Methanogens play a critical role in the decomposition of organics under anaerobic conditions. The methanogenic consortia in saturated wetland soils are often subjected to large temperature fluctuations and acidic conditions, imposing a selective pressure for psychro- and acidotolerant community members; however, methanogenic communities in engineered digesters are frequently maintained within a narrow range of mesophilic and circumneutral conditions to retain system stability. To investigate the hypothesis that these two disparate environments have distinct methanogenic communities, the methanogens in an oligotrophic acidic fen and a mesophilic anaerobic digester treating municipal wastewater sludge were characterized by creating clone libraries for the 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes. A quantitative framework was developed to assess the differences between these two communities by calculating the average sequence similarity for 16S rRNA genes and mcrA within a genus and family using sequences of isolated and characterized methanogens within the approved methanogen taxonomy. The average sequence similarities for 16S rRNA genes within a genus and family were 96.0 and 93.5%, respectively, and the average sequence similarities for mcrA within a genus and family were 88.9 and 79%, respectively. The clone libraries of the bog and digester environments showed no overlap at the species level and almost no overlap at the family level. Both libraries were dominated by clones related to uncultured methanogen groups within the Methanomicrobiales, although members of the Methanosarcinales and Methanobacteriales were also found in both libraries. Diversity indices for the 16S rRNA gene library of the bog and both mcrA libraries were similar, but these indices indicated much lower diversity in the 16S digester library than in the other three libraries.

  4. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  5. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH

    International Nuclear Information System (INIS)

    Jimenez-Rodriguez, A.M.; Duran-Barrantes, M.M.; Borja, R.; Sanchez, E.; Colmenarejo, M.F.; Raposo, F.

    2009-01-01

    Four alternatives (runs A, B, C and D) for heavy metals removal (Fe, Cu, Zn and Al) from acid mine drainage water (AMDW) produced in the mining areas of the Huelva Province, Spain, were evaluated. In run A, the anaerobic effluent from the treatment of acid mine drainage water (cheese whey added as a source of carbon) was mixed with the raw AMDW. The pH increased to 3.5 with the addition of KOH. In run B, biogas with around 30% of hydrogen sulphide obtained in the anaerobic reactor was sparged to the mixture obtained in run A, but in this case at a pH of 5.5. In run C, the pH of the raw AMDW was increased to 3.5 by the addition of KOH solution. Finally, in run D, the pH of the raw AMDW was increased to 5.5 by the addition of KOH solution and further biogas was sparged under the same conditions as in run A. It was found that heavy metal removal was a function of pH. At a pH of 3.5 most of the iron was removed while Zn and Cu were partially removed. At a pH of 5.5 the removal of all metals increased considerably. The best results were obtained in run B where the percentages of removal of Fe, Cu, Zn and Al achieved values of 91.3, 96.1, 79.0 and 99.0%, respectively. According to the experimental results obtained tentative schemas of the flow diagram of the processes were proposed.

  6. Long-term anaerobic digestion of food waste stabilized by trace elements

    International Nuclear Information System (INIS)

    Zhang Lei; Jahng, Deokjin

    2012-01-01

    Highlights: ► Korean food waste was found to contain low level of trace elements. ► Stable anaerobic digestion of food waste was achieved by adding trace elements. ► Iron played an important role in anaerobic digestion of food waste. ► Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19–6.64 g VS (volatile solid)/L day and 20–30 days of HRT (hydraulic retention time), a high methane yield (352–450 mL CH 4 /g VS added ) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

  7. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Jong, T.; Parry, D.L. [Charles Darwin University, Darwin, NT (Australia). Faculty for Educational Health & Science

    2006-07-15

    The aim of this study was to operate an upflow anaerobic packed bed reactor (UAPB) containing sulfate reducing bacteria (SRB) under acidic conditions similar to those found in acid mine drainage (AMD). The UAPB was filled with sand and operated under continuous flow at progressively lower pH and was shown to be capable of supporting sulfate reduction at pH values of 6.0, 5.0, 4.5, 4.0 and 3.5 in a synthetic medium containing 53.5 mmol l{sup -1} lactate. Sulfate reduction rates of 553-1052 mmol m{sup -3} d{sup -1} were obtained when the influent solution pH was progressively lowered from pH 6.0 to 4.0, under an optimal flow rate of 2.61 ml min{sup -1}. When the influent pH was further lowered to pH 3.5, sulfate reduction was substantially reduced with only about 1% sulfate removed at a rate of 3.35 mmol m{sup -3} d{sup -1} after 20 days of operation. However, viable SRB were recovered from the column, indicating that the SRB population was capable of surviving and metabolizing at low levels even at pH 3.5 conditions for at least 20 days. The changes in conductivity in the SRB column did not always occur with changes in pH and redox potential, suggesting that conductivity measurements may be more sensitive to SRB activity and could be used as an additional tool for monitoring SRB activity. The bioreactor containing SRB was able to reduce sulfate and generate alkalinity even when challenged with influent as low as pH 3.5, indicating that such treatment systems have potential for bioremediating highly acidic, sulfate contaminated waste waters.

  8. Anaerobic Bacteria in Clinical Specimens – Frequent, But a Neglected Lot: A Five Year Experience at a Tertiary Care Hospital

    Science.gov (United States)

    Shenoy, Padmaja Ananth; Gawda, Ashwini; Shetty, Seema; Anegundi, Renuka; Varma, Muralidhar; Mukhopadhyay, Chiranjay; Chawla, Kiran

    2017-01-01

    Introduction Anaerobic bacteria which constitute a significant proportion of the normal microbiota also cause variety of infections involving various anatomic sites. Considering the tedious culture techniques with longer turnaround time, anaerobic cultures are usually neglected by clinicians and microbiologists. Aim To study the frequency of isolation of different anaerobic bacteria from various clinical specimens. Materials and Methods A retrospective study to analyse the frequency of isolation of different anaerobic bacteria, was conducted over a period of five years from 2011 to 2015 including various clinical specimens submitted to anaerobic division of Microbiology laboratory. Anaerobic bacteria were isolated and identified following standard bacteriological techniques. Results Pathogenic anaerobes (n=336) were isolated from 278 (12.48%) of overall 2227 specimens processed with an average yield of 1.2 isolates. Anaerobes were isolated as polymicrobial flora with or without aerobic bacterial pathogens in 159 (57.2%) patients. Anaerobic Gram-negative bacilli (140, 41.7%) were the predominant isolates. B. fragilis group (67, 19.9%) were the most commonly isolated anaerobic pathogens. Anaerobes were predominantly isolated from deep seated abscess (23.9%). Conclusion Pathogenic anaerobes were isolated from various infection sites. Unless culture and susceptibility tests are performed as a routine, true magnitude of antimicrobial resistance among anaerobic pathogens will not be known. Knowledge of the distribution of these organisms may assist in the selection of appropriate empirical therapy for anaerobic infections. PMID:28892897

  9. Biogeochemistry of anaerobic crude oil biodegradation

    Science.gov (United States)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.

  10. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    In the oil and gas industry, selection of CRAs for downhole tubulars is generally based on resistance to corrosive species in the production environment containing CO{sub 2}, H{sub 2}S, chloride and in some case elemental sulphur. However, there are non-production environments to which these materials must also be resistant for either short term or prolonged duration; these environments include stimulation acids, brine and completion fluids. This paper reports the main results of a laboratory study performed to evaluate the corrosion and stress corrosion behaviour to the acidizing treatments of the most used CRAs for production tubing and casing. Laboratory tests were performed to simulate both 'active' and 'spent' acids operative phases, selecting various environmental conditions. The selected steel pipes were a low alloyed steel, martensitic, super-martensitic, duplex 22 Cr, superduplex 25 Cr and super-austenitic stainless steels (25 Cr 35 Ni). Results obtained in the 'active' acid environments over the temperature range of 100-140 deg. C, showed that the blend acids with HCl at high concentration and HCl + HF represented too much severe conditions, where preventing high general corrosion and heavy localised corrosion by inhibition package becomes very difficult, especially for duplex steel pipe, where, in some case, the specimens were completely dissolved into the solution. On the contrary, all steels pipes were successfully protected by inhibitor when organic acid solution (HCOOH + CH{sub 3}COOH) were used. Furthermore, different effectiveness on corrosion protection was showed by the tested inhibitors packages: e.g. in the 90% HCl at 12% + 10 CH{sub 3}COOH acid blend. In 'spent' acid environments, all steel pipes showed to be less susceptible to the localised and general corrosion attack. Moreover, no Sulphide Stress Corrosion Cracking (SSC) was observed. Only one super-austenitic stainless steel U-bend specimen showed

  11. Distribution of antibiotic resistance genes (ARGs) in anaerobic digestion and land application of swine wastewater.

    Science.gov (United States)

    Sui, Qianwen; Zhang, Junya; Chen, Meixue; Tong, Juan; Wang, Rui; Wei, Yuansong

    2016-06-01

    Swine farm and the adjacent farmland are hot spots of ARGs. However, few studies have investigated the on-site occurrence of ARGs distributed in the process of anaerobic digestion (AD) followed by land application of swine wastewater. Two typical swine farms, in southern and northern China respectively, with AD along with land application were explored on ARG distributions. ARGs were highly abundant in raw swine wastewater, AD effectively reduced the copy number of all detected ARGs (0.21-1.34 logs removal), but the relative abundance with different resistance mechanisms showed distinctive variation trends. The reduction efficiency of ARGs was improved by stable operational temperature and longer solid retention time (SRT) of AD. ARGs in soil characterized the contamination from the irrigation of the digested liquor. The total ARGs quantity in soil fell down by 1.66 logs in idle period of winter compared to application period of summer in the northern region, whereas the total amount was steady with whole-year application in south. Some persistent (sul1 and sul2) and elevated ARGs (tetG and ereA) in AD and land application need more attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  13. Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates.

    Science.gov (United States)

    Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas

    2015-01-01

    In many publications, primary fermentation is described as a limiting step in the anaerobic digestion of fibre-rich biomass [Eastman JA, Ferguson JF. Solubilization of particulacte carbon during the anaerobic digeston. J WPCF. 1981;53:352-366; Noike T, Endo G, Chang J, Yaguchi J, Matsumoto J. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng. 1985;27:1482-1489; Arntz HJ, Stoppok E, Buchholz K. Anaerobic hydroysis of beet pulp-discontiniuous experiments. Biotechnol Lett. 1985;7:113-118]. The microorganisms of the primary fermentation process differ widely from the methanogenic microorganisms [Pohland FG, Ghosh S. Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environ Lett. 1971;1:255-266]. To optimize the biogas process, a separation in two phases is suggested by many authors [Fox P, Pohland GK. Anaerobic treatment applications and fundamentals: substrate specificity during phase separation. Water Environ Res. 1994;66:716-724; Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580]. To carry out the examination, a two-phase laboratory-scale biogas plant was established, with a physical phase separation. In previous studies, the regulation of the pH-value during the acid formation was usually carried out by the addition of sodium hydroxide [Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580; Ueno Y, Tatara M, Fukui H, Makiuchi T, Goto M, Sode K. Production of hydrogen and methane from organic solid wastes by phase separation of anaerobic process. Bioresour Technol. 2007;98:1861-1865; Zoetemeyer RJ, van den Heuvel JC, Cohen A. pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res. 1982;16:303-311]. A new technology

  14. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  15. Effects of graphene oxide on the performance, microbial community dynamics and antibiotic resistance genes reduction during anaerobic digestion of swine manure.

    Science.gov (United States)

    Zhang, Junya; Wang, Ziyue; Wang, Yawei; Zhong, Hui; Sui, Qianwen; Zhang, Changping; Wei, Yuansong

    2017-12-01

    The role of graphene oxide (GO) on anaerobic digestion (AD) of swine manure concerning the performance, microbial community and antibiotic resistance genes (ARGs) reduction was investigated. Results showed that methane production was reduced by 13.1%, 10.6%, 2.7% and 17.1% at GO concentration of 5mg/L, 50mg/L, 100mg/L and 500mg/L, respectively, but propionate degradation was enhanced along with GO addition. Both bacterial and archaeal community changed little after GO addition. AD could well reduce ARGs abundance, but it was deteriorated at the GO concentration of 50mg/L and 100mg/L and enhanced at 500mg/L, while no obvious changes at 5mg/L. Network and SEM analysis indicated that changes of each ARG was closely associated with variation of microbial community composition, environmental variables contributed most to the dynamics of ARGs indirectly, GO influenced the ARGs dynamics negatively and (heavy metal resistance genes (MRGs)) influenced the most directly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle.

    Science.gov (United States)

    Detman, Anna; Mielecki, Damian; Pleśniak, Łukasz; Bucha, Michał; Janiga, Marek; Matyasik, Irena; Chojnacka, Aleksandra; Jędrysek, Mariusz-Orion; Błaszczyk, Mieczysław K; Sikora, Anna

    2018-01-01

    Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaerobic digestion of biomass in the environment and biogas plants. Effective utilization of lactate has been observed in many experimental approaches used to study anaerobic digestion. Interestingly, anaerobic lactate oxidation and lactate oxidizers as a physiological group in methane-yielding microbial communities have not received enough attention in the context of the acetogenic step of anaerobic digestion. This study focuses on metabolic transformation of lactate during the acetogenic and methanogenic steps of anaerobic digestion in methane-yielding bioreactors. Methane-yielding microbial communities instead of pure cultures of acetate producers were used to process artificial lactate-rich media to methane and carbon dioxide in up-flow anaerobic sludge blanket reactors. The media imitated the mixture of acidic products found in anaerobic environments/digesters where lactate fermentation dominates in acidogenesis. Effective utilization of lactate and biogas production was observed. 16S rRNA profiling was used to examine the selected methane-yielding communities. Among Archaea present in the bioreactors, the order Methanosarcinales predominated. The acetoclastic pathway of methane formation was further confirmed by analysis of the stable carbon isotope composition of methane and carbon dioxide. The domain Bacteria was represented by Bacteroidetes , Firmicutes , Proteobacteria , Synergistetes , Actinobacteria , Spirochaetes , Tenericutes , Caldithrix , Verrucomicrobia , Thermotogae , Chloroflexi , Nitrospirae, and Cyanobacteria. Available genome sequences of species and/or genera identified in the microbial communities were searched for genes encoding the lactate

  17. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis.

    Science.gov (United States)

    Xia, Kai; Zang, Ning; Zhang, Junmei; Zhang, Hong; Li, Yudong; Liu, Ye; Feng, Wei; Liang, Xinle

    2016-12-05

    Acetobacter pasteurianus is the main starter in rice vinegar manufacturing due to its remarkable abilities to resist and produce acetic acid. Although several mechanisms of acetic acid resistance have been proposed and only a few effector proteins have been identified, a comprehensive depiction of the biological processes involved in acetic acid resistance is needed. In this study, iTRAQ-based quantitative proteomic analysis was adopted to investigate the whole proteome of different acidic titers (3.6, 7.1 and 9.3%, w/v) of Acetobacter pasteurianus Ab3 during the vinegar fermentation process. Consequently, 1386 proteins, including 318 differentially expressed proteins (p150 proteins were differentially expressed. Specifically, proteins involved in amino acid metabolic processes and fatty acid biosynthesis were differentially expressed, which may contribute to the acetic acid resistance of Acetobacter. Transcription factors, two component systems and toxin-antitoxin systems were implicated in the modulatory network at multiple levels. In addition, the identification of proteins involved in redox homeostasis, protein metabolism, and the cell envelope suggested that the whole cellular system is mobilized in response to acid stress. These findings provide a differential proteomic profile of acetic acid resistance in Acetobacter pasteurianus and have potential application to highly acidic rice vinegar manufacturing. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    International Nuclear Information System (INIS)

    Sun, Yifei; Wang, Dian; Yan, Jiao; Qiao, Wei; Wang, Wei; Zhu, Tianle

    2014-01-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion

  19. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yifei, E-mail: sunif@buaa.edu.cn [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang, Dian; Yan, Jiao [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Qiao, Wei [College of Chemical Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Wei [School of Environment, Tsinghua University, Beijing 100084 (China); Zhu, Tianle [School of Chemistry and Environment, Beihang University, Beijing 100191 (China)

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.

  20. In-vitro activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota.

    Science.gov (United States)

    Weintraub, Andrej; Rashid, Mamun-Ur; Nord, Carl Erik

    2016-12-01

    Solithromycin is a novel fluoroketolide with high activity against bacteria associated with community-acquired respiratory tract infections as well as gonorrhea. However, data on the activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota are scarce. In this study, 1024 Gram-positive and Gram-negative anaerobic isolates from the normal intestinal microbiota were analyzed for in-vitro susceptibility against solithromycin and compared to azithromycin, amoxicillin/clavulanic acid, ceftriaxone, metronidazole and levofloxacin by determining the minimum inhibitory concentration (MIC). Solithromycin was active against Bifidobacteria (MIC 50 , 0.008 mg/L) and Lactobacilli (MIC 50 , 0.008 mg/L). The MIC 50 for Clostridia, Bacteroides, Prevotella and Veillonella were 0.5, 0.5, 0.125 and 0.016 mg/L, respectively. Gram-positive anaerobes were more susceptible to solithromycin as compared to the other antimicrobials tested. The activity of solithromycin against Gram-negative anaerobes was equal or higher as compared to other tested agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Microbial examination of anaerobic sludge adaptation to animal slurry.

    Science.gov (United States)

    Moset, V; Cerisuelo, A; Ferrer, P; Jimenez, A; Bertolini, E; Cambra-López, M

    2014-01-01

    The objective of this study was to evaluate changes in the microbial population of anaerobic sludge digesters during the adaptation to pig slurry (PS) using quantitative real-time polymerase chain reaction (qPCR) and qualitative scanning electron microscopy (SEM). Additionally, the relationship between microbial parameters and sludge physicochemical composition and methane yield was examined. Results showed that the addition of PS to an unadapted thermophilic anaerobic digester caused an increase in volatile fatty acids (VFA) concentration, a decrease in removal efficiency and CH4 yield. Additionally, increases in total bacteria and total archaea were observed using qPCR. Scanning electron micrographs provided a general overview of the sludge's cell morphology, morphological diversity and degree of organic matter degradation. A change in microbial morphotypes from homogeneous cell morphologies to a higher morphological diversity, similar to that observed in PS, was observed with the addition of PS by SEM. Therefore, the combination of qPCR and SEM allowed expanding the knowledge about the microbial adaptation to animal slurry in thermophilic anaerobic digesters.

  2. The pitting resistance of AISI 316 stainless steel passivated in diluted nitric acid

    International Nuclear Information System (INIS)

    Barbosa, M.A.

    1983-01-01

    The pitting resistance of AISI 316 stainless steel after passivation in diluted nitric acid was studied in comparison with that of non-passivated specimens. The passivation treatment increased the pitting potential but decreased the resistance to crevice corrosion under open circuit conditions in aerated sea water. Immersion in the nitric acid solution was found to remove the sulphide inclusions from the metal surface, thus eliminating the most susceptible sites for attack. In the absence of sulphide particles pitting nucleated at aluminium-rich oxides. (author)

  3. The fate of methanol in anaerobic bioreactors

    OpenAIRE

    Florencio, L.

    1994-01-01

    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical oxygen demand (COD) removal, whereas with the formation of volatile fatty acids (VFA) little COD removal is achieved. Moreover, the accumulation of VFA can lead to reactor instability due to pH drops...

  4. An anaerobic bioreactor system for biobutanol production

    Energy Technology Data Exchange (ETDEWEB)

    Paekkilae, J.; Hillukkala, T.; Myllykoski, L.; Keiski, R.L. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: johanna.pakkila@oulu.fi

    2009-07-01

    Concerns about the greenhouse effect, as well as legislation to reduce CO{sub 2} emissions and to increase the use of renewable energy have been the main reasons for the increased production and use of biofuels. In addition to bioethanol and biodiesel production, the research on biobutanol production has also increased during the past years. Butanol can be produced by chemical or biochemical routes. Fuel properties of butanol are considered to be superior to ethanol because of higher energy content, and better air-to-fuel ratio. Butanol is also less volatile and explosive than ethanol, has higher flash point and lower vapour pressure which makes it safer to handle. Biobutanol production is an anaerobic two-stage fermentation process where acetic and butyric acids, carbon dioxide and hydrogen are first produced in the acidogenic phase. Then the culture undergoes metabolic shift to solventogenic phase and acids are converted into acetone, ethanol and butanol. At the end of the fermentation, products are recovered from the cell mass, other suspended solids, and by-products. Several species of Clostridium bacteria are capable to metabolize different sugars, amino and organic acids, polyalcohols and other organic compounds to butanol and other solvents. Feedstock materials for biobutanol are diverse, including different kind of by-products, wastes and residues of agriculture and industry. Optimal fermentation conditions (pH, temperature, nutrients), products and their ratio vary with strains and substrates used. Biobutanol production has still some limitations including butanol toxicity to culture leading to low butanol yields. The product inhibition hinders the yield of butanol and acids, making integrated product separation process highly favorable. Butanol recovery from fermentation broth is expensive because of the low butanol concentration and high boiling point (118 degC). Several different recovery methods are available. Membrane-based methods such as membrane

  5. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.

    Science.gov (United States)

    Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian

    2013-10-01

    VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid and salicylic acid in groundnut, Arachis hypogaea.

    Science.gov (United States)

    War, Abdul Rashid; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Sharma, Hari Chand

    2015-01-01

    Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid (JA) and salicylic acid (SA) was studied in groundnut genotypes (ICGV 86699, ICGV 86031, ICG 2271 and ICG 1697) with different levels of resistance to insects and the susceptible check JL 24 under greenhouse conditions. Activities of oxidative enzymes and the amounts of secondary metabolites and proteins were quantified at 6 days after JA and SA application/insect infestation. Data were also recorded on plant damage and H. armigera larval weights and survival. Higher levels of enzymatic activities and amounts of secondary metabolites were observed in the insect-resistant genotypes pretreated with JA and then infested with H. armigera than in JL 24. The insect-resistant genotypes suffered lower insect damage and resulted in poor survival and lower weights of H. armigera larvae than JL 24. In some cases, JA and SA showed similar effects. JA and SA induced the activity of antioxidative enzymes in groundnut plants against H. armigera, and reduced its growth and development. However, induced response to application of JA was greater than to SA, and resulted in reduced plant damage, and larval weights and survival, suggesting that induced resistance can be used as a component of pest management in groundnut. © 2014 Society of Chemical Industry.

  7. Development of acid-resistant HEPA filter components

    International Nuclear Information System (INIS)

    Terada, K.; Woodard, R.W.; Buttedahl, O.I.

    1981-01-01

    Laboratory and in-service tests of various HEPA filter media and separators were conducted to establish their relative resistances to HNO 3 -HF vapors. Filter medium of glass fiber with Nomex additive and aluminum separators with an epoxy-vinyl coating have performed quite well in the acid environment in the laboratory, and in prototype-filters placed in service in a plenum at Rocky Flats. Proprietary filters with new design and/or components were also tested in service with generally good results

  8. Ultraviolet action spectra for aerobic and anaerobic inactivation of Escherichia coli strains specifically sensitive and resistant to near ultraviolet radiations

    International Nuclear Information System (INIS)

    Peak, J.G.; Peak, M.J.; Tuveson, R.W.

    1983-01-01

    Action spectra for the lethal effects of ultraviolet light (254-434 nm) irradiation delivered under aerobic or anaerobic conditions to Escherichia coli RT2 (specifically sensitive to near-UV radiation; > 320 nm) and E. coli RT4 (near-UV resistant) were prepared. Negligible oxygen dependence was observed for both strains below about 315 nm. The oxygen enhancement ratio (OER) for RT4 increased above this wavelength to the longest wavelength used, whereas for RT2 there was a greater increase in the OER to a large peak at 365 nm, then a progressive decrease at longer wavelengths. The results are consistent with the possibility that the sensitivity of strain RT2 to near-UV radiation may be due to hyperproduction of photosensitizer, operating via photodynamic type reactions involving excited species of oxygen. (author)

  9. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs and mobile genetic elements (MGEs in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP. Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  10. [Current clinical significance of anaerobic bacteremia].

    Science.gov (United States)

    Jirsa, Roman; Marešová, Veronika; Brož, Zdeněk

    2010-10-01

    to estimate tje current clinical significance of anaerobic bacteremia in a group of Czech hospitals. this retrospective analysis comprised 8 444 anaerobic blood cultures in patients admitted to four Czech hospitals between 2004 and 2007. in 16 patients, blood cultures yielded significant anaerobic bacteria. Thus, anaerobic bacteremia accounted for less than 2 % of clinically significant bacteremia. Four patients (18 %) died but none of the deaths could be clearly attributable to anaerobic bacteria in the bloodstream. The most common comorbidities predisposing to anaerobic bacteremia and the most frequent sources of infection were similar to those reported by other authors. The majority of anaerobic bacteremia cases were due to gram-negative bacteria, followed by Clostridium perfringens and, surprisingly, Eubacterium spp. (particularly Eubacterium lentum). anaerobic bacteremia remains rare. The comparison of our data with those by other authors suggests that (despite the reported high mortality) the actual clinical significance of anaerobic bacteremia is rather controversial and that the anaerobic bacteremia might not correspond to more serious pathogenic role of the anaerobic bacteria as the source of infection.

  11. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang, E-mail: felix79cn@hotmail.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China); Jin, Jie [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Lin, Haizhuan [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Wenzhou Environmental Protection Design Scientific Institute, Wenzhou 325000 (China); Gao, Kaituo [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Xu, Xiangyang, E-mail: xuxy@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China)

    2015-03-21

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m{sup −3} d{sup −1} and 6.0–70.0 g m{sup −3} d{sup −1}, and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H{sub 2}/CH{sub 4} production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion.

  12. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    International Nuclear Information System (INIS)

    Zhu, Liang; Jin, Jie; Lin, Haizhuan; Gao, Kaituo; Xu, Xiangyang

    2015-01-01

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m −3 d −1 and 6.0–70.0 g m −3 d −1 , and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H 2 /CH 4 production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion

  13. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  14. Resistance Training in Type 2 Diabetic Patients Improves Uric Acid Levels

    Directory of Open Access Journals (Sweden)

    R. Sousa Moisés S.S.

    2014-12-01

    Full Text Available Resistance training (RT can provide several benefits for individuals with Type 2 diabetes. The aim of this study was to investigate the effects of resistance training on the strength levels and uric acid (UA concentration in individuals with Type 2 diabetes. The study included 68 patients (57.7±9.0 years that participated in an organized program of RT for 12 weeks. The volunteers were divided into two groups: an experimental group (EG; n=34 that performed the resistance training program consisting of seven exercises executed in an alternating order based on segments; and a control group (CG; n=34 that maintained their normal daily life activities. Muscle strength and uric acid were measured both pre- and post-experiment. The results showed a significant increase in strength of the subjects in the EG for all exercises included in the study (p<0.001. Comparing the strength levels of the post-test, intergroup differences were found in supine sitting (p<0.001, leg extension (p<0.001, shoulder press (p<0.001, leg curl (p=0.001, seated row (p<0.001, leg press (p=0.001 and high pulley (p<0.001. The measured uric acid was significantly increased in both experimental and control groups (p<0.001 and p=0.001, respectively. The intergroup comparison showed a significant increase for the EG (p=0.024. We conclude that the training program was effective for strength gains despite an increase in uric acid in Type 2 diabetics.

  15. Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products.

    Science.gov (United States)

    Erginkaya, Z; Turhan, E U; Tatlı, D

    2018-01-01

    In this study, the antibiotic resistance (AR) of lactic acid bacteria (LAB) isolated from traditional Turkish fermented dairy products was investigated. Yogurt, white cheese, tulum cheese, cokelek, camız cream and kefir as dairy products were collected from various supermarkets. Lactic acid bacteria such as Lactobacillus spp., Streptococcus spp., Bifidobacterium spp., and Enterecoccus spp. were isolated from these dairy products. Lactobacillus spp. were resistant to vancomycin (58%), erythromycin (10.8%), tetracycline (4.3%), gentamicin (28%), and ciprofloxacin (26%). Streptococcus spp. were resistant to vancomycin (40%), erythromycin (10%), chloramphenicol (10%), gentamicin (20%), and ciprofloxacin (30%). Bifidobacterium spp. were resistant to vancomycin (60%), E 15 (6.6%), gentamicin (20%), and ciprofloxacin (33%). Enterococcus spp. were resistant to vancomycin (100%), erythromycin (100%), rifampin (100%), and ciprofloxacin (100%). As a result, LAB islated from dairy products in this study showed mostly resistance to vancomycin.

  16. Anaerobic treatment techniques

    International Nuclear Information System (INIS)

    Boehnke, B.; Bischofsberger, W.; Seyfried, C.F.

    1993-01-01

    This practical and theoretical guide presents the current state of knowledge in anaerobic treatment of industrial effluents with a high organic pollutant load and sewage sludges resulting from the treatment of municipal and industrial waste water. Starting from the microbiological bases of anaerobic degradation processes including a description and critical evaluation of executed plants, the book evolves the process-technical bases of anaerobic treatment techniques, derives relative applications, and discusses these with reference to excuted examples. (orig./UWA). 232 figs [de

  17. Method for rapid detection and identification of chaetomium and evaluation of resistance to peracetic acid.

    Science.gov (United States)

    Nakayama, Motokazu; Hosoya, Kouichi; Tomiyama, Daisuke; Tsugukuni, Takashi; Matsuzawa, Tetsuhiro; Imanishi, Yumi; Yaguchi, Takashi

    2013-06-01

    In the beverage industry, peracetic acid has been increasingly used as a disinfectant for the filling machinery and environment due to merits of leaving no residue, it is safe for humans, and its antiseptic effect against fungi and endospores of bacteria. Recently, Chaetomium globosum and Chaetomium funicola were reported resistant to peracetic acid; however, little is known concerning the detail of peracetic acid resistance. Therefore, we assessed the peracetic acid resistance of the species of Chaetomium and related genera under identical conditions and made a thorough observation of the microstructure of their ascospores by transmission electron microscopy. The results of analyses revealed that C. globosum and C. funicola showed the high resistance to peracetic acid (a 1-D antiseptic effect after 900 s and 3-D antiseptic effect after 900 s) and had thick cell walls of ascospores that can impede the action mechanism of peracetic acid. We also developed specific primers to detect the C. globosum clade and identify C. funicola by using PCR to amplify the β-tubulin gene. PCR with the primer sets designed for C. globosum (Chae 4F/4R) and C. funicola (Cfu 2F/2R) amplified PCR products specific for the C. globosum clade and C. funicola, respectively. PCR with these two primer sets did not detect other fungi involved in food spoilage and environmental contamination. This detection and identification method is rapid and simple, with extremely high specificity.

  18. Acidic Barren Slope Profiling using Electrical Resistivity Imaging (ERI) at Ayer Hitam area Johor, Malaysia

    Science.gov (United States)

    Azhar, A. T. S.; Hazreek, Z. A. M.; Aziman, M.; Haimi, D. S.; Hafiz, Z. M.

    2016-04-01

    Recently, non-destructive method such as the electrical resistivity technique has become increasingly popular in engineering, environmental, mining and archeological studies nowadays. This method was popular in subsurface profiling due to its ability to replicate the images of the subsurface indirectly. The soil slope found in Batu Pahat, specifically in Ayer Hitam, is known to be problematic due to its barren condition. This location is believed to contain futile soil due to its difficulty in supporting the growth of vegetations. In the past, acidic barren slope assessment using non-destructive method was rarely being used due to several reasons related to the equipment and knowledge constraints. Hence, this study performed an electrical resistivity imaging using ABEM Terrameter LS in order to investigate the acidic barren slope conditions. Field data acquisition was based on Schlumberger and Wenner arrays while RES2DINV software was used to analyze and generate a 2-D model of the problematic subsurface profile. Based on electrical resistivity results, it was found that the acidic barren slope studied consists of two main zones representing residual soil (electrical resistivity value = 10 - 600 Ωm) and shale (electrical resistivity value = 20 - 2000 Ωm). The results of resistivity value were correlated with the physical mapping and the in situ mackintosh probe test for verification purposes. It was found that the maximum depth of the mackintosh probe test was 1.8 m due to its ground penetration limitation. However, the results of the resistivity section managed to achieve greater depth up to 40 m. Hence, the correlation between electrical resistivity and mackintosh probe results can only be performed at certain depth of the acidic barren slope profile in contrast with the physical mapping which able to define the whole section of the barren soil slope structure. Finally, a good match of electrical resistivity results calibrated with mackintosh and physical

  19. Fate of acid-resistant and non-acid resistant Shiga toxin-producing Escherichia coli strains in experimentally contaminated French fermented raw meat sausages.

    Science.gov (United States)

    Montet, M P; Christieans, S; Thevenot, D; Coppet, V; Ganet, S; Muller, M L Delignette; Dunière, L; Miszczycha, S; Vernozy-Rozand, C

    2009-02-28

    Both pathogenic and nonpathogenic E. coli exhibit a stress response to sublethal environmental stresses. Several studies have reported acid tolerance and survival characteristics of E. coli O157:H7 in foodstuffs, but there are few reports about the tolerance of non-O157 serogroups (STEC) to organic acids in foods. The purpose of this study was to examine the effect of the manufacturing process of French fermented raw meat sausages on the growth and survival of acid-resistant (AR) and non-acid resistant (NAR) STEC strains. The six strains, 3 AR and 3 NAR, were inoculated separately into raw sausage mixture at a level of 10(4)-10(5) CFU/g. A total of 19 batches of sausages were manufactured. A rapid and similar decrease in the number of both AR and NAR STEC strains, from less than 1 to 1.5 log(10) CFU/g, was observed during the first 5 days of fermentation at 20-24 degrees C. This rapid decrease was followed by a more gradual but continuous decrease in STEC counts after drying at 13-14 degrees C, up to day 35. The STEC counts were <10 CFU/g after 35 days for the NAR strains and the same concentration for the AR strains on the best before date (day 60). It was not possible to detect any NAR STEC after 60 days. The present study shows that the process used in the manufacture of French sausages results in a complete destruction of NAR STEC strains after 60 days, but it does not have the same effect on the AR STEC strains.

  20. Effects of multibuffer supplementation on acid-base balance and 2,3-diphosphoglycerate following repetitive anaerobic exercise.

    Science.gov (United States)

    Kraemer, W J; Gordon, S E; Lynch, J M; Pop, M E; Clark, K L

    1995-12-01

    The purpose of this investigation was to determine the effects of a 3.5-day dietary multibuffer supplement (containing predominantly inorganic phosphate, or Pi, along with bicarbonate and carnosine, i.e., PhosFuel) on repetitive (four trials separated by 2 min rest) Wingate test (WT) performances and whole blood 2,3-diphosphoglycerate (2,3-DPG) concentrations in 10 recreationally trained road cyclists (T) and 10 normally active but untrained (UT) men. A 2-week washout period was utilized between experimental sessions. Venous blood samples were obtained via cannula once before exercise (baseline), immediately post each WT, and 3 min after the final WT (recovery). The data indicate that this supplement does not affect acid-base status with following intense anaerobic exercise and does not improve repetitive WT performance. However, the supplement does enhance post-exercise levels of 2,3-DPG and the 2,3-DPG/Hb ratio in recreationally trained cyclists while improving acute recovery of peak power in these men.

  1. Innovative microbial fuel cell for electricity production from anaerobic reactors

    DEFF Research Database (Denmark)

    Min, Booki; Angelidaki, Irini

    2008-01-01

    A submersible microbial fuel cell (SMFC) was developed by immersing an anode electrode and a cathode chamber in an anaerobic reactor. Domestic wastewater was used as the medium and the inoculum in the experiments. The SMFC could successfully generate a stable voltage of 0.428 ± 0.003 V with a fixed......, a large portion of voltage drop was caused by the ohmic (electrolyte) resistance of the medium present between two electrodes, although the two electrodes were closely positioned (about 3 cm distance; internal resistance = 35 ± 2 Ω). The open circuit potential (0.393 V vs. a standard hydrogen electrode...

  2. Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria.

    Science.gov (United States)

    Bhupathiraju, V K; Hernandez, M; Landfear, D; Alvarez-Cohen, L

    1999-09-01

    The use of the redox dye 5-cyano-2,3,-ditolyl tetrazolium chloride (CTC) for evaluating the metabolic activity of aerobic bacteria has gained wide application in recent years. In this study, we examined the utility of CTC in capturing the metabolic activity of anaerobic bacteria. In addition, the factors contributing to abiotic reduction of CTC were also examined. CTC was used in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF), that targets bacterial cell wall proteins, to quantitate the active fraction of total bacterial numbers. Facultative anaerobic bacteria, including Escherichia coli grown fermentatively, and Pseudomonas chlorophis, P. fluorescens, P. stutzeri, and P. pseudoalcalegenes subsp. pseudoalcalegenes grown under nitrate-reducing conditions, actively reduced CTC during all phases of growth. Greater than 95% of these cells accumulated intracellular CTC-formazan crystals during the exponential phase. Obligate anaerobic bacteria, including Syntrophus aciditrophicus grown fermentatively, Geobacter sulfurreducens grown with fumarate as the electron acceptor, Desulfovibrio desulfuricans subsp. desulfuricans and D. halophilus grown under sulfate-reducing conditions, Methanobacterium formicicum grown on formate, H2 and CO2, and Methanobacterium thermoautotrophicum grown autotrophically on H2 and CO2 all reduced CTC to intracellular CTC-formazan crystals. The optimal CTC concentration for all organisms examined was 5 mM. Anaerobic CTC incubations were not required for quantification of anaerobically grown cells. CTC-formazan production by all cultures examined was proportional to biomass production, and CTC reduction was observed even in the absence of added nutrients. CTC was reduced by culture fluids containing ferric citrate as electron acceptor following growth of either G. metallireducens or G. sulfurreducens. Abiotic reduction of CTC was observed in the presence of ascorbic acid, cysteine hydrochloride, dithiothreitol

  3. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    Science.gov (United States)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  4. Nonproteinogenic D-amino acids at millimolar concentrations are a toxin for anaerobic microorganisms relevant to early Earth and other anoxic planets.

    Science.gov (United States)

    Nixon, Sophie L; Cockell, Charles S

    2015-03-01

    The delivery of extraterrestrial organics to early Earth provided a potentially important source of carbon and energy for microbial life. Optically active organic compounds of extraterrestrial origin exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. Although D-enantiomers of proteinogenic amino acids are known to inhibit aerobic microorganisms, the role of concentrated nonproteinogenic meteoritic D-amino acids on anaerobic metabolisms relevant to early Earth and other anoxic planets such as Mars is unknown. Here, we test the inhibitory effect of D-enantiomers of two nonproteinogenic amino acids common to carbonaceous chondrites, norvaline and α-aminobutyric acid, on microbial iron reduction. Three pure strains (Geobacter bemidjiensis, Geobacter metallireducens, Geopsychrobacter electrodiphilus) and an iron-reducing enrichment culture were grown in the presence of 10 mM D-enantiomers of both amino acids. Further tests were conducted to assess the inhibitory effect of these D-amino acids at 1 and 0.1 mM. The presence of 10 mM D-norvaline and D-α-aminobutyric acid inhibited microbial iron reduction by all pure strains and the enrichment. G. bemidjiensis was not inhibited by either amino acid at 0.1 mM, but D-α-aminobutyric acid still inhibited at 1 mM. Calculations using published meteorite accumulation rates to the martian surface indicate D-α-aminobutyric acid may have reached inhibitory concentrations in little over 1000 years during peak infall. These data show that, on a young anoxic planet, the use of one enantiomer over another may render the nonbiological enantiomer an environmental toxin. Processes that generate racemic amino acids in the environment, such as meteoritic infall or impact synthesis, would have been toxic processes and could have been a selection pressure for the evolution of early racemases.

  5. Glutamic acid and folic acid production in aerobic and anaerobic probiotics

    Directory of Open Access Journals (Sweden)

    Zohre Taghi Abadi

    2018-03-01

    Full Text Available Introduction:From an industrial application or commercial point of view, glutamic acid is one of the most important amino acids and its microbial production has been reported from some bacteria. Regarding the role of probiotics to modulate human health and the ever-increasing demand of prebiotics in the food industry, in the current study, production of glutamic acid and folic acid from three probiotic bacteria (Bifidobacterium, Bifidobacterium bifidum, Sporolactobacillus was evaluated for the first time. Materials and methods: MRS broth and exclusive media was used for probiotic culture. The glutamic acid was identified using thin-layer chromatography and folic acid production was measured by folate kit. Each bacterium in terms of quality and quantity were measured by high pressure liquid chromatography. Results: Production of glutamic acid confirmed is based on the thin layer chromatography analysis and high pressure liquid chromatography results. In addition, it was observed that all three probiotics produce folic acid. The prevalence of folate in Bifidobacterium was measured as 315 mg/ml that was more than two other bacteria. Discussion and conclusion: To the best of our knowledge, this is the first report of microbial production of glutamic acid and folate from the probiotic bacteria. These beneficial bacteria can be used as a good source for mass production of these valuable compounds.

  6. Improvement of anaerobic digestion of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Dohanyos, Michael; Zabranska, Jana; Kutil, Josef; Jenicek, Pavel

    2003-07-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of process conditions is frequently used pretreatment of input sludge and increase of process temperature. Thermophilic process brings a higher solids reduction and biogas production, the high resistance to foaming, no problems with odour, the higher effect of destroying pathogens and the improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in lysate centrifuge was proved in full-scale conditions causing increase of biogas production. The rapid thermal conditioning of digested sludge is acceptable method of particulate matter disintegration and solubilization. (author)

  7. MALDI-TOF MS identification of anaerobic bacteria: assessment of pre-analytical variables and specimen preparation techniques.

    Science.gov (United States)

    Hsu, Yen-Michael S; Burnham, Carey-Ann D

    2014-06-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a tool for identifying clinically relevant anaerobes. We evaluated the analytical performance characteristics of the Bruker Microflex with Biotyper 3.0 software system for identification of anaerobes and examined the impact of direct formic acid (FA) treatment and other pre-analytical factors on MALDI-TOF MS performance. A collection of 101 anaerobic bacteria were evaluated, including Clostridium spp., Propionibacterium spp., Fusobacterium spp., Bacteroides spp., and other anaerobic bacterial of clinical relevance. The results of our study indicate that an on-target extraction with 100% FA improves the rate of accurate identification without introducing misidentification (Panaerobes grown in suboptimal conditions, such as on selective culture media and following oxygen exposure. In conclusion, we report on a number of simple and cost-effective pre- and post-analytical modifications could enhance MALDI-TOF MS identification for anaerobic bacteria. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Where to from here? The treatment of impetigo in children as resistance to fusidic acid emerges.

    Science.gov (United States)

    Vogel, Alison; Lennon, Diana; Best, Emma; Leversha, Alison

    2016-10-14

    Admissions for skin and soft-tissue infections have been increasing steadily in children and in the general population. Concerns have been raised recently about the increasing widespread use of topical fusidic acid and concurrent increase of fusidic acid-resistant Staphylococcus aureus. Fusidic acid resistance and methicillin resistant Staphylococcus aureus (MRSA) are both more prevalent in youngest age group (<5 year-olds) and particularly in the North island. In New Zealand, fusidic acid is recommended for treatment of minor impetigo and is the only fully-funded topical antibiotic. The evidence base for alternative treatment strategies for mild impetigo is limited. Most children with impetigo in the current Counties Manukau skin and sore throat schools programme received care with wound management with only a few requiring escalation. An upcoming randomised controlled trial comparing topical hydrogen peroxide cream, topical fusidic acid and wound management only (clean and cover) will help provide evidence about the effectiveness of alternative treatments in the New Zealand setting.

  9. Antibiotic Resistant Microbiota in the Swine Intestinal Tract

    Science.gov (United States)

    The healthy swine intestine is populated by upwards of 500 bacterial species, mainly obligate anaerobes. Our research focuses on the roles of these commensal bacteria in antimicrobial resistance and on interventions to reduce the prevalence of antibiotic resistant bacteria. In comparisons of intes...

  10. Amino Acid Substitution in Trichophyton rubrum Squalene Epoxidase Associated with Resistance to Terbinafine

    Science.gov (United States)

    Osborne, Colin S.; Leitner, Ingrid; Favre, Bertrand; Ryder, Neil S.

    2005-01-01

    There has only been one clinically confirmed case of terbinafine resistance in dermatophytes, where six sequential Trichophyton rubrum isolates from the same patient were found to be resistant to terbinafine and cross-resistant to other squalene epoxidase (SE) inhibitors. Microsomal SE activity from these resistant isolates was insensitive to terbinafine, suggesting a target-based mechanism of resistance (B. Favre, M. Ghannoum, and N. S. Ryder, Med. Mycol. 42:525-529, 2004). In this study, we have characterized at the molecular level the cause of the resistant phenotype of these clinical isolates. Cloning and sequencing of the SE gene and cDNA from T. rubrum revealed the presence of an intron in the gene and an open reading frame encoding a protein of 489 residues, with an equivalent similarity (57%) to both yeast and mammalian SEs. The nucleotide sequences of SE from two terbinafine-susceptible strains were identical whereas those of terbinafine-resistant strains, serially isolated from the same patient, each contained the same single missense introducing the amino acid substitution L393F. Introduction of the corresponding substitution in the Candida albicans SE gene (L398F) and expression of this gene in Saccharomyces cerevisiae conferred a resistant phenotype to the transformants when compared to those expressing the wild-type sequence. Terbinafine resistance in these T. rubrum clinical isolates appears to be due to a single amino acid substitution in SE. PMID:15980358

  11. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac, E-mail: jaehacko@pkusz.edu.cn

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.

  12. EFFECTS OF MINERAL ADMIXTURE ON THE CARBONIC ACID LEACHING RESISTANCE OF CEMENT-BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Yun Dong

    2017-07-01

    Full Text Available In order to reveal the degradation process and deterioration mechanism of cement-based materials, this paper analyzes the effects of carbonic acid leaching on the mechanical strength of mortars, as well as relative mass loss, microstructure, and composition of various cement pastes. The results indicate that cement pastes containing less than 20 % fly ash have higher carbonic acid leaching resistance than cement pastes without fly ash. However, after carbonic acid leaching, the compressive strength of the samples with fly ash is lower than that of the cement pastes without fly ash. The leaching resistance is good for samples cured at an early age before leaching. Carbonic acid leaching proceeds from the paste surface to the interior. The incorporation of an appropriate amount of slag powder helps to increase the density of the paste. Due to the pozzolanic activity of fly ash at late-stage leaching, a mixture of fly ash (≤ 20 % and slag powder (≤ 20 % effectively improves carbonic acid leaching resistance. The products of early-stage leaching were mainly CaCO₃ and small amounts of SiO₂ and Fe₂O₃. The C-S-H phase at the paste surface suffered serious damage after long periods of leaching, and the main products of leaching were SiO₂ and Fe₂O₃.

  13. Application of anaerobic digestion products of municipal solid food wastes in treating wastewaters

    Directory of Open Access Journals (Sweden)

    G. Fazeli

    2016-01-01

    Full Text Available Anaerobic digestion is the breakdown of biodegradable organic material by microorganisms in the absence of oxygen or in an oxygen-starved environment.This technology is superior to the landfilling and also the aerobic composting. The aim of the present study was to examine whether the effluent Volatile Fatty Acids from the anaerobic acidogenesis of the food waste can be used du to its high value in organic elements, as an external carbon source for the denitrificationin in waste water treatment plants . The results showed that Volatile Fatty Acids concentration in mg COD/L in the fermentation was in the range between 3,300 mg COD/L and 6,560 mgCOD/L.The n-butiric acid had the highest concentration in mgCOD/L followed by the propionic and acetic acid, while the valeric acid had the lowest concentration. As well as the concentration of the acetic and valeric acid were stable over the time. Opposite to these, the propionic and n-butyric acid showed high variability in the concentration, especially the n-butyric acid. The specific denitrification rate tests tests showed that the ethanol cultivated biomass was more successful in using the effluent of the food waste digestion as carbon source than methanol cultivated biomass.The specific denitrification reta tests results of our experiment, showed that the average of 0.15 an 0.51 mg N/mg for methanol and ethanol cultivated biomass respectively.

  14. A steady state model for anaerobic digestion of sewage sludges ...

    African Journals Online (AJOL)

    A steady state model for anaerobic digestion of sewage sludge is developed that comprises three sequential parts – a kinetic part from which the % COD removal and ... and a carbonate system weak acid/base chemistry part from which the digester pH is calculated from the partial pressure of CO2 and alkalinity generated.

  15. Characterization and anaerobic treatment of the sanitary landfill leachate in Istanbul.

    Science.gov (United States)

    Inanc, B; Calli, B; Saatci, A

    2000-01-01

    In this study, characterization and anaerobic treatability of leachate from Komurcuoda Sanitary Landfill located on the Asian part of Istanbul were investigated. Time based fluctuations in characteristics of leachate were monitored for an 8 month period. Samples were taken from a 200 m3 holding tank located at the lowest elevation of the landfill. COD concentrations have ranged between 18,800 and 47,800 mg/l while BOD5 between 6820 and 38,500 mg/L. COD and BOD5 values were higher in summer and lower in winter due to dilution by precipitation. On the other hand, it was quite interesting that such a dilution effect was not observed for ammonia. The highest ammonia concentration, 2690 mg/L was in November 1998. BOD5/COD ratio was larger than 0.7 for most samples indicating high biodegradability, and acidic phase of decomposition in the landfill. For anaerobic treatability, three different reactors, namely an upflow anaerobic sludge bed reactor, an anaerobic upflow filter and a hybrid bed reactor, were used. The anaerobic reactors were operated for more than 230 days and were continuing operation when this paper was prepared. Organic loading was increased gradually from 1.3 kg COD/m3.day to 8.2 kg COD/m3.day while hydraulic retention time was reduced from 2.4 days to 2.0 days. All the reactors showed similar performances against organic loadings with efficiencies between 80% and 90%. However the reactors have experienced high ammonia concentrations several times throughout the experimental period, and showed different inhibition levels. Anaerobic filter was the least affected reactor while UASB was the most. Hybrid bed reactor has exhibited a similar performance to anaerobic filter although not to the same degree.

  16. Interconnection between tricarboxylic acid cycle and energy generation in microbial fuel cell performed by desulfuromonas acetoxidans IMV B-7384

    Science.gov (United States)

    Vasyliv, Oresta M.; Maslovska, Olga D.; Ferensovych, Yaroslav P.; Bilyy, Oleksandr I.; Hnatush, Svitlana O.

    2015-05-01

    Desulfuromonas acetoxidans IMV B-7384 is exoelectrogenic obligate anaerobic sulfur-reducing bacterium. Its one of the first described electrogenic bacterium that performs complete oxidation of an organic substrate with electron transfer directly to the electrode in microbial fuel cell (MFC). This bacterium is very promising for MFC development because of inexpensive cultivation medium, high survival rate and selective resistance to various heavy metal ions. The size of D. acetoxidans IMV B-7384 cells is comparatively small (0.4-0.8×1-2 μm) that is highly beneficial while application of porous anode material because of complete bacterial cover of an electrode area with further significant improvement of the effectiveness of its usage. The interconnection between functioning of reductive stage of tricarboxylic acid (TCA) cycle under anaerobic conditions, and MFC performance was established. Malic, pyruvic, fumaric and succinic acids in concentration 42 mM were separately added into the anode chamber of MFC as the redox agents. Application of malic acid caused the most stabile and the highest power generation in comparison with other investigated organic acids. Its maximum equaled 10.07±0.17mW/m2 on 136 hour of bacterial cultivation. Under addition of pyruvic, succinic and fumaric acids into the anode chamber of MFC the maximal power values equaled 5.80±0.25 mW/m2; 3.2±0.11 mW/m2, and 2.14±0.19 mW/m2 respectively on 40, 56 and 32 hour of bacterial cultivation. Hence the malic acid conversion via reductive stage of TCA cycle is shown to be the most efficient process in terms of electricity generation by D. acetoxidans IMV B-7384 in MFC under anaerobic conditions.

  17. Effects of household detergent on anaerobic fermentation of kitchen wastewater from food waste disposer.

    Science.gov (United States)

    Lee, K H; Park, K Y; Khanal, S K; Lee, J W

    2013-01-15

    This study examines the effects of household detergent on anaerobic methane fermentation of wastewater from food waste disposers (FWDs). Anaerobic toxicity assay (ATA) demonstrated that methane production substantially decreased at a higher detergent concentration. The Gompertz three-parameter model fitted well with the ATA results, and both the extent of methane production (M) and methane production rate (R(m)) obtained from the model were strongly affected by the concentration of the detergent. The 50% inhibitory concentration (IC(50)) of the detergent was 603 mg/L based on R(m). Results from fatty acid methyl esters (FAMEs) analysis of microbial culture revealed that deterioration of methane fermentation was attributed to impaired structure of anaerobic microbial membrane due to detergent. This study suggests that wastewater from FWD could be used for methane production, but it is necessary to reduce the concentration of detergent prior to anaerobic fermentation. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Clinical features of anaerobic orthopaedic infections.

    Science.gov (United States)

    Lebowitz, Dan; Kressmann, Benjamin; Gjoni, Shpresa; Zenelaj, Besa; Grosgurin, Olivier; Marti, Christophe; Zingg, Matthieu; Uçkay, Ilker

    2017-02-01

    Some patient populations and types of orthopaedic surgery could be at particular risk for anaerobic infections. In this retrospective cohort study of operated adult patients with infections from 2004 to 2014, we assessed obligate anaerobes and considered first clinical infection episodes. Anaerobes, isolated from intra-operative samples, were identified in 2.4% of 2740 surgical procedures, of which half (33/65; 51%) were anaerobic monomicrobial infections. Propionibacterium acnes, a penicillin and vancomycin susceptible pathogen, was the predominantly isolated anaerobe. By multivariate analysis, the presence of fracture fixation plates was the variable most strongly associated with anaerobic infection (odds ratio: 2.1, 95% CI: 1.3-3.5). Anaerobes were also associated with spondylodesis and polymicrobial infections. In contrast, it revealed less likely in native bone or prosthetic joint infections and was not related to prior antibiotic use. In conclusion, obligate anaerobes in our case series of orthopaedic infections were rare, and mostly encountered in infections related to trauma with open-fracture fixation devices rather than clean surgical site infection. Anaerobes were often co-pathogens, and cultures most frequently recovered P. acnes. These observations thus do not support changes in current practices such as broader anaerobe coverage for perioperative prophylaxis.

  19. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  20. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  1. Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools.

    Science.gov (United States)

    Mamo, Gashaw

    Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these

  2. Evaluation of support matrices for immobilization of anaerobic consortia for efficient carbon cycling in waste regeneration.

    Science.gov (United States)

    Chauhan, Ashvini; Ogram, Andrew

    2005-02-18

    Efficient metabolism of fatty acids during anaerobic waste digestion requires development of consortia that include "fatty acid consuming H(2) producing bacteria" and methanogenic bacteria. The objective of this research was to optimize methanogenesis from fatty acids by evaluating a variety of support matrices for use in maintaining efficient syntrophic-methanogenic consortia. Tested matrices included clays (montmorillonite and bentonite), glass beads (106 and 425-600mum), microcarriers (cytopore, cytodex, cytoline, and cultispher; conventionally employed for cultivation of mammalian cell lines), BioSep beads (powdered activated carbon), and membranes (hydrophilic; nylon, polysulfone, and hydrophobic; teflon, polypropylene). Data obtained from headspace methane (CH(4)) analyses as an indicator of anaerobic carbon cycling efficiency indicated that material surface properties were important in maintenance and functioning of the anaerobic consortia. Cytoline yielded significantly higher CH(4) than other matrices as early as in the first week of incubation. 16S rRNA gene sequence analysis from crushed cytoline matrix showed the presence of Syntrophomonas spp. (butyrate oxidizing syntrophs) and Syntrophobacter spp. (propionate oxidizing syntrophs), with Methanosaeta spp. (acetate utilizing methanogen), and Methanospirillum spp. (hydrogen utilizing methanogen) cells. It is likely that the more hydrophobic surfaces provided a suitable surface for adherence of cells of syntrophic-methanogenic consortia. Cytoline also appeared to protect entrapped consortia from air, resulting in rapid methanogenesis after aerial exposure. Our study suggests that support matrices can be used in anaerobic digestors, pre-seeded with immobilized or entrapped consortia on support matrices, and may be of value as inoculant-adsorbents to rapidly initiate or recover proper system functioning following perturbation.

  3. Linoleic acid metabolite leads to steroid resistant asthma features partially through NF-?B

    OpenAIRE

    Panda, Lipsa; Gheware, Atish; Rehman, Rakhshinda; Yadav, Manish K.; Jayaraj, B. S.; Madhunapantula, SubbaRao V.; Mahesh, Padukudru Anand; Ghosh, Balaram; Agrawal, Anurag; Mabalirajan, Ulaganathan

    2017-01-01

    Studies have highlighted the role of nutritional and metabolic modulators in asthma pathobiology. Steroid resistance is an important clinical problem in asthma but lacks good experimental models. Linoleic acid, a polyunsaturated fatty acid, has been linked to asthma and glucocorticoid sensitivity. Its 12/15?lipoxygenase metabolite, 13-S-hydroxyoctadecadienoic acid (HODE) induces mitochondrial dysfunction, with severe airway obstruction and neutrophilic airway inflammation. Here we show that H...

  4. Resistance to and killing by the sporicidal microbicide peracetic acid.

    Science.gov (United States)

    Leggett, Mark J; Schwarz, J Spencer; Burke, Peter A; Mcdonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves

    2015-03-01

    To elucidate the mechanisms of spore resistance to and killing by the oxidizing microbicide peracetic acid (PAA). Mutants of Bacillus subtilis lacking specific spore structures were used to identify resistance properties in spores and to understand the mechanism of action of PAA. We also assessed the effect of PAA treatment on a number of spore properties including heat tolerance, membrane integrity and germination. The spore coat is essential for spore PAA resistance as spores with defective coats were greatly sensitized to PAA treatment. Small acid-soluble spore proteins apparently provide no protection against PAA. Defects in spore germination, specifically in germination via the GerB and GerK but not the GerA germination receptors, as well as leakage of internal components suggest that PAA is active at the spore inner membrane. It is therefore likely that the inner membrane is the major site of PAA's sporicidal activity. PAA treatment targets the spore membrane, with some of its activity directed specifically against the GerB and GerK germination receptors. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Relationships between sulfachloropyridazine sodium, zinc, and sulfonamide resistance genes during the anaerobic digestion of swine manure.

    Science.gov (United States)

    Zhang, Ranran; Gu, Jie; Wang, Xiaojuan; Qian, Xun; Duan, Manli; Sun, Wei; Zhang, Yajun; Li, Haichao; Li, Yang

    2017-02-01

    In this study, swine manure containing sulfachloropyridazine sodium (SCPS) and zinc was subjected to mesophilic (37°C) anaerobic digestion (AD). The absolute abundances (AAs) of antibiotic resistance genes (ARGs) were evaluated, as well as intI1 and intI2, and the degradation of SCPS according to variation in the amount of bio-available zinc (bio-Zn). In digester that only contained SCPS, the concentrations of SCPS were lower than that digesters both contain SCPS and Zn. Compared with the control digester, the addition of SCPS increased the AAs of sul1, sul3, drfA1, and drfA7 by 1.3-13.1 times. However, compared with the digester with SCPS but no added Zn, the AAs of sul3, drfA1, and drfA7 were decreased by 21.4-70.3% in the presence of SCPS and Zn, whereas sul1 and sul2 increased 1.3-10.7 times. There were significant positive correlations (P<0.05) between the concentrations of SCPS with several ARGs and bio-Zn. Copyright © 2016. Published by Elsevier Ltd.

  6. Anaerobic soil disinfestation and Brassica seed meal amendment alter soil microbiology and system resistance

    Science.gov (United States)

    Brassica seed meal amendments and anaerobic soil disinfestation control a spectrum of soil-borne plant pathogens via a diversity of mechanisms. Transformations in microbial community structure and function in certain instances were determinants of disease control and enhanced plant performance. Fo...

  7. [Analysis on the antimicrobial resistance of lactic acid bacteria isolated from the yogurt sold in China].

    Science.gov (United States)

    Fan, Qin; Liu, Shuliang; Li, Juan; Huang, Tingting

    2012-05-01

    To analyze the antimicrobial susceptibility of lactic acid bacteria (LAB) from yogurt, and to provide references for evaluating the safety of LAB and screening safe strains. The sensitivity of 43 LAB strains, including 14 strains of Streptococcus thermophilus, 12 strains of Lactobacillus acidophilus, 9 strains of Lactobacillus bulgaricus and 8 strains of Bifidobacterium, to 22 antibiotics were tested by agar plate dilution method. All 43 LAB strains were resistant to trimethoprim, nalidixic acid, ciprofloxacin, lomefloxacin, danofloxacin and polymyxin E. Their resistances to kanamycin, tetracycline, clindamycin, doxycycline and cephalothin were varied. The sensitivity to other antibiotics were sensitive or moderate. All isolates were multidrug-resistant. The antimicrobial resistance of tested LAB strains was comparatively serious, and continuously monitoring their antimicrobial resistance and evaluating their safety should be strengthened.

  8. Alpha-momorcharin enhances Tobacco mosaic virus resistance in tobaccoNN by manipulating jasmonic acid-salicylic acid crosstalk.

    Science.gov (United States)

    Yang, Ting; Zhu, Li-Sha; Meng, Yao; Lv, Rui; Zhou, Zhuo; Zhu, Lin; Lin, Hong-Hui; Xi, De-Hui

    2018-04-01

    Alpha-momorcharin (α-MMC) is a type-I ribosome inactivating protein (RIP) with a molecular weight of 29 kDa found in plants. This protein has been shown to be effective against a broad range of human viruses and also has anti-tumor activities. However, the mechanism by which α-MMC induces plant defense responses and regulates the N gene to promote resistance to the Tobacco mosaic virus (TMV) is still not clear. By using pharmacological and infection experiments, we found that α-MMC enhances TMV resistance of tobacco plants containing the N gene (tobacco NN ). Our results showed that plants pretreated with 0.5 mg/ml α-MMC could relieve TMV-induced oxidative damage, had enhanced the expression of the N gene and increased biosynthesis of jasmonic acid (JA) and salicylic acid (SA). Moreover, transcription of JA and SA signaling pathway genes were increased, and their expression persisted for a longer period of time in plants pretreated with α-MMC compared with those pretreated with water. Importantly, exogenous application of 1-Aminobenzotriazole (ABT, SA inhibitor) and ibuprofen (JA inhibitor) reduced α-MMC induced plant resistance under viral infection. Thus, our results revealed that α-MMC enhances TMV resistance of tobacco NN plants by manipulating JA-SA crosstalk. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Mid-gestational serum uric acid concentration effect on neonate birth weight and insulin resistance in pregnant women

    OpenAIRE

    Nasri, Khadijeh; Razavi, Maryamsadat; Rezvanfar, Mohammad Reza; Mashhadi, Esmat; Chehrei, Ali; Mohammadbeigi, Abolfazl

    2015-01-01

    Objective To investigate the relationship between mid-gestational serum uric acid and birth weight in diabetic pregnant women with or without insulin resistance. Methods: In a prospective cohort study, fasting uric acid, blood glucose, and serum insulin were measured in 247 pregnant women between 20-22 weeks of gestational period. Insulin resistance was estimated using the homeostasis model assessment-insulin resistance (HOMA-IR). Stratification analysis and independent t-test was used to ass...

  10. Orthopedic infections caused by obligatory anaerobic Gram-negative rods: report of two cases.

    Science.gov (United States)

    Kierzkowska, Marta; Pedzisz, Piotr; Babiak, Ireneusz; Janowicz, Jakub; Kulig, Mateusz; Majewska, Anna; Sawicka-Grzelak, Anna; Mlynarczyk, Grazyna

    2017-10-01

    Anaerobic bone and joint infections are uncommon, although the number of anaerobic infections is presumably underestimated because of difficulties with isolation and identification of obligate anaerobes. This study describes two cases of complicated Bacteroides fragilis peri-implant infection of the lumbar spine, infection of the hip and osteomyelitis. Bacteria were identified with the use of a mass spectrometer, VITEK MS system. Drug susceptibility was performed with the use of E-test. The EUCAST breakpoints were used for interpretation with B. fragilis ATCC 25285 as a control. In the two described cases clinical samples were collected for microbiological examination intraoperatively and simultaneously empirical treatment was applied. B. fragilis was isolated in monoculture or in a combination with other bacteria. The treatment was continued according to the susceptibility tests. In a case one clindamycin failure was observed and clindamycin resistance of the isolate was likely due to inadequate time of therapy. Difficulties in collecting an adequate samples and culturing anaerobic bacteria cause that not all infections are properly recognized. In a successful therapy, identification and determination of the susceptibility of the pathogen are essential as well as an appropriate surgical debridement.

  11. Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of beta-lactam antibiotics: mapping of chromosomal genes.

    Science.gov (United States)

    Rella, M; Haas, D

    1982-01-01

    Resistance to high concentrations of nalidixic acid in Pseudomonas aeruginosa PAO was due to mutations in one locus designated nalA, which was mapped by transduction between hex-9001 and leu-10. The nalA mutants were cross-resistant to pipemidic acid, a nalidixic acid analog, at relatively low concentrations. Replicative DNA synthesis was resistant to both drugs in permeabilized cells of nalA mutants. A locus coding for low-level resistance to nalidixic acid, nalB, was cotransducible with pyrB, proC, and met-28. The nalB mutants were also resistant to low levels of pipemidic acid, novobiocin, and beta-lactam antibiotics (e.g., carbenicillin, azlocillin, and cefsulodin), but not to other drugs, such as gentamicin, rifampin, kanamycin, or tetracycline. In nalB mutants, DNA replication showed wild-type sensitivity to nalidixic acid, whereas carbenicillin-induced filamentation required higher drug levels than in the wild-type strain. Thus, nalB mutations appear to decrease cell permeability to some antibiotics. The sensitivity of replicative DNA synthesis to nalidixic acid and novobiocin was very similar in P. aeruginosa and Escherichia coli; by contrast, the concentrations of these drugs needed to inhibit growth of P. aeruginosa were higher than those reported for E. coli by one or two orders of magnitude. PMID:6821455

  12. Anaerobic digestion of molasses by means of a vibrating and non-vibrating submerged anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    De Vrieze, Jo; Hennebel, Tom; Van den Brande, Jens; Bilad, Ro'il M.; Bruton, Thomas A.; Vankelecom, Ivo F.J.; Verstraete, Willy; Boon, Nico

    2014-01-01

    Bio-refineries produce large volumes of waste streams with high organic content, which are potentially interesting for further processing. Anaerobic digestion (AD) can be a key technology for treatment of these sidestreams, such as molasses. However, the high concentration of salts in molasses can cause inhibition of methanogenesis. In this research, concentrated and diluted molasses were subjected to biomethanation in two types of submerged anaerobic membrane bioreactors (AnMBRs): one with biogas recirculation and one with a vibrating membrane. Both reactors were compared in terms of methane production and membrane fouling. Biogas recirculation seemed to be a good way to avoid membrane fouling, while the trans membrane pressures in the vibrating MBR increased over time, due to cake layer formation and the absence of a mixing system. Stable methane production, up to 2.05 L L −1  d −1 and a concomitant COD removal of 94.4%, was obtained only when diluted molasses were used, since concentrated molasses caused a decrease in methane production and an increase in volatile fatty acids (VFA), indicating an inhibiting effect of concentrated molasses on AD. Real-time PCR results revealed a clear dominance of Methanosaetaceae over Methanosarcinaceae as the main acetoclastic methanogens in both AnMBRs. - Highlights: • An anaerobic membrane bioreactor (AnMBR) can be used to digest diluted molasses. • Biogas recirculation is a good way to avoid fouling in an AnMBR. • Trans membrane pressures in AnMBR with vibrating membrane increased over time. • Methanosaeta sp. were the dominant acetoclastic methanogens

  13. Methane production by anaerobic digestion of algae. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nyns, E.J.; Naveau, H.P.

    Methane is produced experimentally by anaerobic fermentation of algae, principally of species Hydrodictyon and Cladophora, grown in cooling water from nuclear power plants. The accumulation of fatty acids, by-products of fermentation, is found to have an inhibitory effect on methane production. Methods to remove fatty acids and stabilise the reaction are investigated. An economic analysis is presented using a financial model processor based on data from experimental digesters. The experimental work is described and the results are presented in an Appendix (in French). Seven relevant papers, of which two are in French are also annexed.

  14. Treatment of melanoidin wastewater by anaerobic digestion and coagulation.

    Science.gov (United States)

    Arimi, Milton M; Zhang, Yongjun; Götz, Gesine; Geißen, Sven-Uwe

    2015-01-01

    Melanoidins are dark-coloured recalcitrant pollutants found in many industrial wastewaters including coffee-manufacturing effluent, molasses distillery wastewater (MDWW) and other wastewater with molasses as the raw material. The wastewaters are mostly treated with anaerobic digestion after some dilution to minimize the inhibition effect. However, the dark colour and recalcitrant dissolved organic carbon (DOC) mainly caused by melanoidin are not effectively removed. The aim of this study was to investigate the removal of colour and remnant DOC by different coagulants from anaerobically digested MDWW. From the six coagulants tested, ferric chloride had the highest melanoidin (48%), colour (92.7%) and DOC (63.3%) removal at pH 5 and a dosage of 1.6 g/l. Both polymer and inorganic salt coagulants tested had optimal colour, melanoidin and DOC removal at acidic pH. The molecular size distribution of synthetic melanoidins by liquid chromatography-organic carbon detection indicated a preferential removal of high-molecular-weight melanoidins over low weight melanoidins by the coagulation. Further studies should focus on how to improve biodegradability of the treated effluent for it to be reused as dilution water for anaerobic digestion.

  15. Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion.

    Science.gov (United States)

    Wei, Wei; Wang, Qilin; Zhang, Liguo; Laloo, Andrew; Duan, Haoran; Batstone, Damien J; Yuan, Zhiguo

    2018-03-01

    Previous work has demonstrated that pre-treatment of waste activated sludge (WAS) with free nitrous acid (FNA i.e. HNO 2 ) enhances the biodegradability of WAS, identified by a 20-50% increase in specific methane production in biochemical methane potential (BMP) tests. This suggests that FNA pre-treatment would enhance the destruction of volatile solids (VS) in an anaerobic sludge digester, and reduce overall sludge disposal costs, provided that the dewaterability of the digested sludge is not negatively affected. This study experimentally evaluates the impact of FNA pre-treatment on the VS destruction in anaerobic sludge digestion and on the dewaterability of digested sludge, using continuously operated bench-scale anaerobic digesters. Pre-treatment of full-scale WAS for 24 h at an FNA concentration of 1.8 mg NN/L enhanced VS destruction by 17 ± 1% (from 29.2 ± 0.9% to 34.2 ± 1.1%) and increased dewaterability (centrifuge test) from 12.4 ± 0.4% to 14.1 ± 0.4%. Supporting the VS destruction data, methane production increased by 16 ± 1%. Biochemical methane potential tests indicated that the final digestate stability was also improved with a lower potential from FNA treated digestate. Further, a 2.1 ± 0.2 log improvement in pathogen reduction was also achieved. With inorganic solids representing 15-22% of the full-scale WAS used, FNA pre-treatment resulted in a 16-17% reduction in the volume of dewatered sludge for final disposal. This results in significantly reduced costs as assessed by economic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Stainless steel welding method with excellent nitric acid corrosion resistance

    International Nuclear Information System (INIS)

    Matsushita, Yukinobu; Inazumi, Toru; Hyakubo, Tamako; Masamura, Katsumi.

    1996-01-01

    The present invention concerns a welding method for a stainless steel used in a circumstance being in contact with a highly oxidizing nitric acid solution such as nuclear fuel reprocessing facilities, upon welding 316 type austenite steel containing Mo while giving excellent nitric acid resistance. A method of TIG welding using a filler metal having a composition of C, Si, Mn, P, S, Ni, Cr, Mo and Cu somewhat different from a stainless steel mother material in which C, Si, Mn, P, S, Ni, Cr and Mo are specified comprises a step of TIG-welding the surface of the mother material and a step of TIG-welding the rear face of the mother material, in which the welding conditions for the rear face of the mother material are such that the distance between the surface of the outermost welding metal layer on the side of the surface of the mother material and the bottom of the groove is not less than 5mm, and an amount of welding heat is made constant. As a result, even if the method is used in a circumstance being in contact with a highly corrosive solution such as nitric acid, corrosion resistance is not degraded. (N.H.)

  17. Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor.

    Science.gov (United States)

    Lauterböck, B; Ortner, M; Haider, R; Fuchs, W

    2012-10-01

    The aim of the current study was to investigate the feasibility of membrane contactors for continuous ammonia (NH₃-N) removal in an anaerobic digestion process and to counteract ammonia inhibition. Two laboratory anaerobic digesters were fed slaughterhouse wastes with ammonium (NH₄⁺) concentrations ranging from 6 to 7.4 g/L. One reactor was used as reference reactor without any ammonia removal. In the second reactor, a hollow fiber membrane contactor module was used for continuous ammonia removal. The hollow fiber membranes were directly submerged into the digestate of the anaerobic reactor. Sulfuric acid was circulated in the lumen as an adsorbent solution. Using this set up, the NH₄⁺-N concentration in the membrane reactor was significantly reduced. Moreover the extraction of ammonia lowered the pH by 0.2 units. In combination that led to a lowering of the free NH₃-N concentration by about 70%. Ammonia inhibition in the reference reactor was observed when the concentration exceeded 6 g/L NH₄⁺-N or 1-1.2 g/L NH₃-N. In contrast, in the membrane reactor the volatile fatty acid concentration, an indicator for process stability, was much lower and a higher gas yield and better degradation was observed. The chosen approach offers an appealing technology to remove ammonia directly from media having high concentrations of solids and it can help to improve process efficiency in anaerobic digestion of ammonia rich substrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Dietary intervention with green dwarf banana flour (Musa sp AAA) prevents intestinal inflammation in a trinitrobenzenesulfonic acid model of rat colitis

    OpenAIRE

    Scarminio, Viviane [UNESP; Fruet, Andrea C. [UNESP; Witaicenis, Aline [UNESP; Rall, Vera L. M. [UNESP; Di Stasi, Luiz C. [UNESP

    2012-01-01

    Dietary products are among the therapeutic approaches used to modify intestinal microflora and to promote protective effects during the intestinal inflammatory process. Because the banana plant is rich in resistant starch, which is used by colonic microbiota for the anaerobic production of the short-chain fatty acids that serve as a major fuel source for colonocytes: first, green dwarf banana flour produces protective effects on the intestinal inflammation acting as a prebiotic and, second, c...

  19. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new possibility for the identification and typing of anaerobic bacteria.

    Science.gov (United States)

    Nagy, Elizabeth

    2014-01-01

    Anaerobic bacteria predominate in the normal flora of humans and are important, often life-threatening pathogens in mixed infections originating from the indigenous microbiota. The isolation and identification of anaerobes by phenotypic and DNA-based molecular methods at a species level is time-consuming and laborious. Following the successful adaptation of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the routine laboratory identification of bacteria, the extensive development of a database has been initiated to use this method for the identification of anaerobic bacteria. Not only frequently isolated anaerobic species, but also newly recognized and taxonomically rearranged genera and species can be identified using direct smear samples or whole-cell protein extraction, and even phylogenetically closely related species can be identified correctly by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Typing of anaerobic bacteria on a subspecies level, determination of antibiotic resistance and direct identification of blood culture isolates will revolutionize anaerobe bacteriology in the near future.

  20. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bekmezci, Ozan K.; Ucar, Deniz [Harran University, Environmental Engineering Department, Osmanbey Campus, 63000 Sanliurfa (Turkey); Kaksonen, Anna H. [CSIRO Land and Water, Underwood Avenue, Floreat, WA 6014 (Australia); Sahinkaya, Erkan, E-mail: erkansahinkaya@yahoo.com [Harran University, Environmental Engineering Department, Osmanbey Campus, 63000 Sanliurfa (Turkey)

    2011-05-30

    The treatment of synthetic acid mine drainage (AMD) water (pH 3.0-6.5) containing sulfate (3.0-3.5 g L{sup -1}) and various metals (Co, Cu, Fe, Mn, Ni, and Zn) was studied in an ethanol-fed sulfate-reducing 4-compartment anaerobic baffled reactor (ABR) at 32 {sup o}C. The reactor was operated for 160 days at different chemical oxygen demand (COD)/sulfate ratios, hydraulic retention times (HRT), pH, and metal concentrations to study the robustness of the process. The last compartment of the reactor was aerated at different rates to study the bio-oxidation of sulfide to elemental sulfur. The highest sulfate reduction efficiency (88%) was obtained with a feed sulfate concentration of 3.5 g L{sup -1}, COD/sulfate mass ratio of 0.737, feed pH of 3.0 and HRT of 2 days without aeration in the 4th compartment. The corresponding COD removal efficiency was about 92%. The alkalinity produced in the sulfidogenic ethanol oxidation neutralized the acidic mine water from pH 3.0-4.5 to pH 7.0-8.0. Effluent soluble and total heavy metal concentrations were substantially reduced with removal efficiencies generally higher than 99%, except for Mn (25-77%). Limited aeration in the 4th compartment of ABR promoted incomplete oxidation of sulfide to elemental sulfur rather than complete oxidation to sulfate. Depending on the aeration rate and HRT, 32-74% of produced sulfide was oxidized to elemental sulfur. This study demonstrates that by optimizing operating conditions, sulfate reduction, metal removal, alkalinity generation, and excess sulfide oxidation can be achieved in a single ABR treating AMD.

  1. Anaerobic biodigestion of sugarcane vinasse under mesophilic conditions using manure as inoculum

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Farias Silva

    2016-11-01

    Full Text Available Sugarcane vinasse is one of the most polluting residues produced by Brazilian ethanol industries, mainly because of its harmful effects on the environmental, such as high organic matter load and acidity. Anaerobic digestion is a highly efficient wastewater treatment method that could potentially be used to treat sugarcane vinasse. This study examined the anaerobic biodigestion of sugarcane vinasse in mesophilic conditions (30 - 45°C by varying the inoculum concentration (0.5 to 5.5% and pH (6 - 8. Changes of Chemical Oxygen Demand (COD, total solids content, and yield and composition of biogas after the biodigestion of the vinasse were assessed. The vinasse was efficiently digested under mesophilic anaerobic conditions over a 23-day Hydraulic Retention Time (HRT and a 5-day acidogenic phase with a consequent reduction of COD (54 - 83% and total solids (52 - 87%. Statistical analyses at a confidence level of 95% suggested that temperature, pH and inoculum concentration did not influence on the anaerobic biodigestion of the vinasse. The optimal operating parameters were found to be temperatures of 30 - 35°C, inoculum concentration of 0.5% and pH of 6 - 7. The results emphasize the promising use of the treated sugarcane vinasse as a biofertilizer for agriculture, indicating that the anaerobic digestion process is an excellent alternative for Brazilian ethanol industries.

  2. Assessment of the ability of sludge to degrade PCP under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    R. M. L. Bolaños

    2005-12-01

    Full Text Available The capacity of sludge from different sources to degrade pentachlorophenol (PCP was evaluated. Three 2.5 liter reactors (R1, R2, and R3 were inoculated with different anaerobic sludges, semi continuously fed and maintained in orbital motion at 30±1°C. R1 was inoculated with aerobic sludge and river sediment collected downstream from a pulp and paper plant. R2 received sludge from an anaerobic reactor treating effluents from a paper recycling plant and R3 received anaerobic sludge from a biodigestor treating industrial and domestic effluents. The sludges were first acclimatized to a culture medium generally recommended for organochloride anaerobic degradation studies. The reactors were then subjected to increasing concentrations of PCP from 0.05 to 10.0 mg.l-1. PCP degradation and metabolite formation were monitored using gas chromatography, and the effects of PCP on the anaerobic process were verified by monitoring pH, volatile fatty acids, alkalinity, total suspended solids, and chemical oxygen demand. It was found that PCP did not affect reactor performance. All the sludges displayed the best PCP degradation capacity at a concentration of 0.2 mg.l-1, producing fewer chlorinated metabolites than when higher PCP concentrations were applied. R1 consistently produced fewer chlorinated metabolites, confirming the hypothesis that pre exposure to chlorinated compounds improves the sludge's capacity to degrade PCP.

  3. Spread of the epidemic European fusidic acid-resistant impetigo clone (EEFIC) in general practice patients in the south of The Netherlands.

    Science.gov (United States)

    Rijnders, M I A; Wolffs, P F G; Hopstaken, R M; den Heyer, M; Bruggeman, C A; Stobberingh, E E

    2012-05-01

    We evaluated the susceptibility to fusidic acid, mupirocin and retapamulin of Staphylococcus aureus isolated from nasal and wound swabs. The susceptibility to the three agents of S. aureus isolated from general patients in the south of The Netherlands with a skin or soft tissue infection was determined between January 2007 and December 2008. Fusidic acid-resistant isolates were tested for the presence of fusidic acid-resistant genes and compared with the epidemic European fusidic acid-resistant impetigo clone (EEFIC). Fusidic acid resistance was found in 23% of the nasal and 35% of the wound isolates, the majority (~90%) being fusB positive. Most of the isolates belonged to spa type t171 and were isolated from younger patients. One isolate was retapamulin resistant (MIC 8 mg/L) and two were mupirocin resistant. The EEFIC clone was relatively highly prevalent among the isolated S. aureus. The usefulness of fusidic acid as first-line agent for the treatment of impetigo is questionable. As mupirocin is used in The Netherlands for eradication of methicillin-resistant S. aureus, it is not an alternative; retapamulin might be useful, but further in vivo studies are warranted.

  4. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway.

    Science.gov (United States)

    Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng

    2016-05-18

    Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway.

  5. Salicylic acid regulates basal resistance to Fusarium head blight in wheat.

    Science.gov (United States)

    Makandar, Ragiba; Nalam, Vamsi J; Lee, Hyeonju; Trick, Harold N; Dong, Yanhong; Shah, Jyoti

    2012-03-01

    Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.

  6. The ABC-Type Multidrug Resistance Transporter LmrCD Is Responsible for an Extrusion-Based Mechanism of Bile Acid Resistance in Lactococcus lactis

    NARCIS (Netherlands)

    Zaidi, Arsalan Haseeb; Bakkes, Patrick J.; Lubelski, Jacek; Agustiandari, Herfita; Kuipers, Oscar P.; Driessen, Arnold J. M.

    2008-01-01

    Upon prolonged exposure to cholate and other toxic compounds, Lactococcus lactis develops a multidrug resistance phenotype that has been attributed to an elevated expression of the heterodimeric ABC-type multidrug transporter LmrCD. To investigate the molecular basis of bile acid resistance in L.

  7. Influence of Nutrient Impregnated into Zeolite Addition on Anaerobic Digestion of Palm Oil Mill Effluent (POME)

    Science.gov (United States)

    Mellyanawaty, M.; Chusna, F. M. A.; Sudibyo, H.; Nurjanah, N.; Budhijanto, W.

    2018-03-01

    Palm oil mill effluent (POME) was wastewater generated from palm oil milling activities which was brownish liquid, acidic with pH 3-4, and contained soluble materials which were hazardous to the environment. It was characterized by high organic loading (COD 40,000–60,000 mg/L). According to its characteristics, POME was identified as a potential source to generate renewable energy through anaerobic digestion. In other words, a combination of wastewater treatment and renewable energy production would be an additional advantage to the palm oil industries. Methanogenesis was the rate limiting step in anaerobic digestion. In the conventional anaerobic digester, it required large reactors and long retention time. The addition of microbial immobilization media was to improve anaerobic reactor performance in term of higher organic removal and methane production. Additionally, better performance could lead to reduction of reactor volume and shorter retention time in high rate anaerobic digester. The loading of essential microorganism nutrient into the media might increase the affinity of bacteria to attach and grow on the media surface. Activating or inhibition effects of natural and modified zeolite addition in anaerobic digestion of POME was studied in batch reactors using erlenmeyer of 1,000 mL at COD concentrations of about 8,000 mg/L. Zeolite was impregnated with nickel and magnesium at concentrations of 0.0561 mg Ni/g zeolite and 0.0108 mg Mg/g zeolite. The effect of the different zeolite addition was determined by the measurement of soluble COD (sCOD), Volatile Fatty Acids (VFAs) and biogas production. Greater effect of modified zeolite was observed in zeolite impregnated with nickel with a 54% increase of biogas production. Meanwhile, the modified zeolite impregnated with magnesium had no positive impact to the methanogenic bacteria activities.

  8. Corrosion resistance of nickel alloys with chromium and silicon to the red fuming nitric acid

    International Nuclear Information System (INIS)

    Gurvich, L.Ya.; Zhirnov, A.D.

    1994-01-01

    Corrosion and electrochemical behaviour of binary Ni-Cr, Ni-Si nickel and ternary Ni-Cr-Si alloys in the red fuming nitric acid (RFNA) (8-% of HNO 3 +20% of N 2 O 4 ) is studied. It is shown that nickel alloying with chromium improves its corrosion resistance to the red fuming nitric acid. Nickel alloying with silicon in quantities of up to 5 % reduces, and up to 10%-increases abruptly the corrosion resistance with subsequent decrease of the latter after the further increase of concentration. Ni-15% of Cr alloy alloying with silicon increases monotonously the corrosion resistance. 10 refs., 7 figs., 3 tabs

  9. Thioredoxin system in obligate anaerobe Desulfovibrio desulfuricans: Identification and characterization of a novel thioredoxin 2.

    Science.gov (United States)

    Sarin, Ritu; Sharma, Yagya D

    2006-07-05

    Metal corroding sulfate reducing bacteria have been poorly characterized at molecular level due to difficulties pertaining to isolation and handling of anaerobes. We report here for the first time the presence and characterization of thioredoxin 2 in an obligate anaerobic dissimilatory sulfate reducing bacterium Desulfovibrio desulfuricans. In silico analysis of the D. desulfuricans genome revealed the presence of thioredoxin 1 (dstrx1), thioredoxin 2 (dstrx2) and thioredoxin reductase (dstrxR) genes. These genes were found to be actively expressed by the bacteria under the anaerobic growth conditions. We have overexpressed the anaerobic thioredoxin genes in E. coli to produce functionally active recombinant proteins. Recombinant DsTrxR recognized both DsTrx1 and DsTrx2 as its substrate. Mutation studies revealed that the activity of DsTrx2 can be completely abolished with a single amino acid mutation (C69A) in the signature motif 'WCGPC'. Furthermore, the N-terminal domain of DsTrx2 containing two extra CXXC motifs was found to have a negative regulation on its biochemical activity. In conclusion, we have shown the presence of thioredoxin 2 for the first time in an obligate anaerobe which in this anaerobe may be required for its survival under either oxidative stress conditions or metal ion hemostasis.

  10. [Identification and susceptibility to antimicrobial agents of strictly anaerobic bacteria isolated from hospitalized patients].

    Science.gov (United States)

    Kot, Katarzyna; Rokosz, Alicja; Sawicka-Grzelak, Anna; łuczak, MirosŁaw

    2002-01-01

    The aim of this study was to identify anaerobic strains isolated in 2001 from clinical specimens obtained from patients of Warsaw hospital and to evaluate a susceptibility of these strains to antimicrobial agents. In 2001 two hundred and twenty five clinical strains of obligate anaerobes were cultured, which were identified in the automatic ATB system (bioMérieux, France) using biochemical tests API 20 A. Drug-susceptibility of strains was determined also in ATB system with the use of ATB ANA strips. C. difficile strains were isolated on selective CCCA medium. Toxins A/B of C. difficile directly in stool specimens were detected by means of ELISA test (TechLab, USA). Fifty four strains of Gram-negative anaerobes (B. fragilis strains dominated) and 171 strains of Gram-positive anaerobes (the greatest number of strains belonged to genus Peptostreptococcus) were cultured from clinical specimens. In the cases of antibiotic-associated diarrhea 28 C. difficile strains were isolated and C. difficile toxins A/B were detected in 39 stool samples. The most active in vitro antimicrobials against Gram-negative anaerobes were metronidazole, imipenem, ticarcillin combined with clavulanic acid and piperacillin with tazobactam. Gram-positive, clinical strains of anaerobes were the most susceptible in vitro to beta-lactam antibiotics combined with beta-lactamase inhibitors (amoxicillin/clavulanate, piperacillin/tazobactam, ticarcillin/clavulanate) and imipenem.

  11. Effect of fluoride on ion exchange, remineralization and acid resistance of surface enamel

    Energy Technology Data Exchange (ETDEWEB)

    Aponte-Merced, L A; Feagin, F F [Alabama Univ., Birmingham (USA)

    1979-01-01

    In a system of constant ion activities the rates of F/sup -/ exchange in enamel, under conditions of exchange alone and remineralization, depended on the concentration of F/sup -/ in solutions. Acid resistance of surface minerals resulted from exchange of F/sup -/ for OH/sup -/ in the enamel at pH 7.0 and 4.5. The level of 0.5 mM NaF, compared to 0.05 and 5.0 mM, caused maximum rates of isotopic exchange of /sup 45/Ca and maximum acid resistance of enamel. Similarly low levels of F/sup -/ may be feasible for use in caries prevention in the absence and presence of remineralization.

  12. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions.

    Science.gov (United States)

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W; Browne, Tristan; Cox, Kevin; Paul, Andrew T; Ko, Seung-Hyun B; Mortensen, Joel E; Lam, Joseph S; Muruve, Daniel A; Hassett, Daniel J

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite ([Formula: see text], pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to [Formula: see text]. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to [Formula: see text], but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with [Formula: see text] plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM [Formula: see text], and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to [Formula: see text] in biofilms. [Formula: see text] sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, [Formula: see text] as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains.

  13. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium

    NARCIS (Netherlands)

    Paganelli, Fernanda L.; van de Kamer, Tim; Brouwer, Ellen C.; Leavis, Helen L.; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A

    Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA)

  14. Influence of two high-intensity intermittent training programmes on anaerobic capacity in humans

    Directory of Open Access Journals (Sweden)

    K Buśko

    2011-03-01

    Full Text Available The aim of this work was to determine the influence of a maximal effort training programme with variation of the pedalling rate on the anaerobic capacity, post-exercise maximal concentration of lactic acid (LA and acid-alkali balance changes in the capillary blood. Identification of the dependence between the lactic acid concentration and the anaerobic capacity produced in the Wingate test was also the goal. The hypothesis that cycloergometer training consisting of maximal efforts with a load equal to 10% of body weight (BW will elicit bigger changes of measured values in comparison to training with a load of 5% BW was verified. Twenty non-athletes, students of UPE took part in the study. They were divided into 2 groups. The first group (M10; n=9 performed maximal efforts with a load equal to 10% of body weight (BW. The second group (M5; n=11 performed maximal efforts with a load of 5% BW. Control measurements of anaerobic capacity (Wingate test were taken every Monday: before the test (0, during 4 weeks of training (1-4 and for 2 weeks after the test (5-6. Blood for the determination of lactic acid concentration and acid-alkali balance was taken from the fingertip before performing the Wingate test – in the 5th, 7th, 9th and 30th resting minute. Changes of maximal power (Pmax were not statistically significant in either group. Significant differences were found between the two groups after the second week of rest. For mean power (Pm the most important changes were noted in the first week from training (M10 – 6.5%; M5 – 11.0% No significant differences were found between groups. Average values of the individual LA concentration peak (the highest LA concentration occurring after the Wingate test for each individual changed significantly in group M10 from 15.233±2.367 mmol/l in the measurement made before training to 12.340±2.353 mmol/l in the measurement taken 2 weeks after training. Group M5 is characterised by a change of this factor

  15. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    International Nuclear Information System (INIS)

    Ariunbaatar, Javkhlan; Scotto Di Perta, Ester; Panico, Antonio; Frunzo, Luigi; Esposito, Giovanni; Lens, Piet N.L.; Pirozzi, Francesco

    2015-01-01

    Highlights: • Almost 100% of the biomethane potential of food waste was recovered during AD in a two-stage CSTR. • Recirculation of the liquid fraction of the digestate provided the necessary buffer in the AD reactors. • A higher OLR (0.9 gVS/L·d) led to higher accumulation of TAN, which caused more toxicity. • A two-stage reactor is more sensitive to elevated concentrations of ammonia. • The IC 50 of TAN for the AD of food waste amounts to 3.8 g/L. - Abstract: This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid

  16. Low-level quinolone-resistance in multi-drug resistant typhoid

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S H; Khan, M A [Armed Forces Inst. of Pathology, Rawalpindi (Pakistan). Dept. of Microbiolgy

    2008-01-15

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  17. Low-level quinolone-resistance in multi-drug resistant typhoid

    International Nuclear Information System (INIS)

    Mirza, S.H.; Khan, M.A.

    2008-01-01

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  18. Biodegradation of Methylene Blue Dye by Sequential Treatment Using Anaerobic Hybrid Reactor and Submerged Aerobic Fixed Film Bioreactor

    Science.gov (United States)

    Farooqi, Izharul H.; Basheer, Farrukh; Tiwari, Pradeepika

    2017-12-01

    Laboratory scale experiments were carried out to access the feasibility of sequential anaerobic/aerobic biological treatment for the biodegradation of Methylene Blue (MB) dye. Anaerobic studies were performed using anaerobic hybrid reactor (consisting of UASB and Anaerobic filter) whereas submerged aerobic fixed film reactor was used as aerobic reactor. Degradation of MB dye was attempted using neutralized acetic acid (1000 mg/L) as co-substrate. MB dye concentration was stepwise increased from 10 to 70 mg/L after reaching steady state in each dye concentration. Such a gradual increase in the dye concentration helps in the proper acclimatization of the sludge to dyes thereby avoiding the possible inhibitory effects to biological activities at high dye concentrations. The overall treatment efficiency of MB through sequential anaerobic-aerobic reactor operation was 90% at maximum attempted dye concentration of 70 mg/L. The effluent from anaerobic reactor was analysed for intermediate biodegradation products through HPLC. It was observed that catechol, quinone, amino pyrine, 1,4 diamino benzene were present. However they were absent in final effluent.

  19. Selected Topics in Anaerobic Bacteriology.

    Science.gov (United States)

    Church, Deirdre L

    2016-08-01

    Alteration in the host microbiome at skin and mucosal surfaces plays a role in the function of the immune system, and may predispose immunocompromised patients to infection. Because obligate anaerobes are the predominant type of bacteria present in humans at skin and mucosal surfaces, immunocompromised patients are at increased risk for serious invasive infection due to anaerobes. Laboratory approaches to the diagnosis of anaerobe infections that occur due to pyogenic, polymicrobial, or toxin-producing organisms are described. The clinical interpretation and limitations of anaerobe recovery from specimens, anaerobe-identification procedures, and antibiotic-susceptibility testing are outlined. Bacteriotherapy following analysis of disruption of the host microbiome has been effective for treatment of refractory or recurrent Clostridium difficile infection, and may become feasible for other conditions in the future.

  20. Processes of malate catabolism during the anaerobic metabolism of grape berries

    International Nuclear Information System (INIS)

    Flanzy, C.; Andre, P.; Buret, M.; Chambroy, Y.; Garcia, P.

    1976-01-01

    In order to precise malate fate during the anaerobic metabolism of grape, malate- 3 - 14 C was injected into Carignan berries kept in darkness at 35 0 C under carbon dioxide atmosphere. The injection of labelled malate was effected in presence or not of non-labelled oxalate which inhibits malic enzyme (EC I.I.I.40). The analyses of the samples fixed after 3 and 7 days anaerobiosis concerned the titration of various substrates, organic acids, amino-acids and glycolysis products, and the measuring of the NADP + -malic enzyme (EC I.I.I.40) and malate dehydrogenase (EC I.I.I.40). Radioactivity is mainly observed in ethanol, amino-butyrate the non-separated group glycerate-shikimate and succinate. Malic enzyme acts in the first sequence of a process leading from malate to ethanol. Alanin synthesis seems to be stimulated in presence of oxalate. The results obtained and some hypotheses presented in the literature induce to suggest a utilization scheme for malate in the anaerobic metabolism of grape [fr

  1. Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus.

    Science.gov (United States)

    Xiao, Xiang; Cheng, Xi; Yin, Kangquan; Li, Huali; Qiu, Jin-Long

    2017-08-01

    Pytohormone abscisic acid (ABA) plays important roles in defense responses. Nonetheless, how ABA regulates plant resistance to biotrophic fungi remains largely unknown. Arabidopsis ABA-deficient mutants, aba2-1 and aba3-1, displayed enhanced resistance to the biotrophic powdery mildew fungus Golovinomyces cichoracearum. Moreover, exogenously administered ABA increased the susceptibility of Arabidopsis to G. cichoracearum. Arabidopsis ABA perception components mutants, abi1-1 and abi2-1, also displayed similar phenotypes to ABA-deficient mutants in resistance to G. cichoracearum. However, the resistance to G. cichoracearum is not changed in downstream ABA signaling transduction mutants, abi3-1, abi4-1, and abi5-1. Microscopic examination revealed that hyphal growth and conidiophore production of G. cichoracearum were compromised in the ABA deficient mutants, even though pre-penetration and penetration growth of the fungus were not affected. In addition, salicylic acid (SA) and MPK3 are found to be involved in ABA-regulated resistance to G. cichoracearum. Our work demonstrates that ABA negatively regulates post-penetration resistance of Arabidopsis to powdery mildew fungus G. cichoracearum, probably through antagonizing the function of SA.

  2. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise

    DEFF Research Database (Denmark)

    Moberg, Marcus; Apró, William; Ekblom, Björn

    2016-01-01

    Protein synthesis is stimulated by resistance exercise and intake of amino acids, in particular leucine. Moreover, activation of mammalian target of rapamycin complex 1 (mTORC1) signaling by leucine is potentiated by the presence of other essential amino acids (EAA). However, the contribution...... of the branched-chain amino acids (BCAA) to this effect is yet unknown. Here we compare the stimulatory role of leucine, BCAA, and EAA ingestion on anabolic signaling following exercise. Accordingly, eight trained volunteers completed four sessions of resistance exercise during which they ingested either placebo...

  3. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær

    2001-01-01

    The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...... requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader...

  4. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  5. Livestock Anaerobic Digester Database

    Science.gov (United States)

    The Anaerobic Digester Database provides basic information about anaerobic digesters on livestock farms in the United States, organized in Excel spreadsheets. It includes projects that are under construction, operating, or shut down.

  6. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  7. Vitamin and amino acid auxotrophy in anaerobic consortia operating under methanogenic condition

    OpenAIRE

    Eiler, Alexander; Bertilsson, Stefan; Berry, David; Wendeberg, Anneli; Foght, Julia; Tan, Boonfei; Buck, Moritz; Hubalek, Valeria

    2017-01-01

    Syntrophy among Archaea and Bacteria facilitates the anaerobic degradation of organic compounds to CH4 and CO2. Particularly during aliphatic and aromatic hydrocarbon mineralization, as in crude oil reservoirs and petroleum contaminated sediments, metabolic interactions between obligate mutualistic microbial partners are of central importance1. Using micromanipulation combined with shotgun metagenomic approaches, we disentangled the genomes of complex consortia inside a short chain alkane deg...

  8. Vitamin and Amino Acid Auxotrophy in Anaerobic Consortia Operating under Methanogenic Conditions

    OpenAIRE

    Valerie Hubalek; Moritz Buck; BoonFei Tan; Julia Foght; Annelie Wendeberg; David Berry; Stefan Bertilsson; Alexander Eiler; Karen G. Lloyd

    2017-01-01

    ABSTRACT Syntrophy among Archaea and Bacteria facilitates the anaerobic degradation of organic compounds to CH4 and CO2. Particularly during aliphatic and aromatic hydrocarbon mineralization, as in the case of crude oil reservoirs and petroleum-contaminated sediments, metabolic interactions between obligate mutualistic microbial partners are of central importance. Using micromanipulation combined with shotgun metagenomic approaches, we describe the genomes of complex consortia within short-ch...

  9. Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling.

    Science.gov (United States)

    Trusov, Yuri; Sewelam, Nasser; Rookes, James Edward; Kunkel, Matt; Nowak, Ekaterina; Schenk, Peer Martin; Botella, José Ramón

    2009-04-01

    Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gβ (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gβ-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gβ- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gβ-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gβ acts upstream of COI1 and ATMYC2 in JA signaling. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  10. Leachate properties as indicators of methane production process in MSW anaerobic digestion bioreactor landfill

    Science.gov (United States)

    Zeng, Yunmin; Wang, Li'ao; Xu, Tengtun; Li, Jiaxiang; Song, Xue; Hu, Chaochao

    2018-03-01

    In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion, which provides the support for real-time adjustment of technological parameters of MSW anaerobic digestion system and ensures the efficient operation of bioreactor landfill. The results showed that MSW digestion gas production rate constant is 0.0259 1/d, biogas production potential is 61.93 L/kg. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. "Ammonia poisoning" was an important factor inhibiting waste anaerobic digestion gas production. In the anaerobic digestion system, although pH values of leachate can indicate methane production process to some degree, there are obvious lagging behind, so it cannot be used as indicator alone. The TOC/TN value of leachate has a certain indication on the stability of the methane production system. When TOC/TN value was larger than12, anaerobic digestion system was stable along with normal production of biogas. However, when TOC/TN value was lower than 12, the digestive system is unstable and the gas production is small. In the process of anaerobic digestion, the synthesis and transformation of valeric acid is more active. HAc/HVa changed greatly and had obvious inflection points, from which methane production period can be predicted.

  11. Bile Salt and Acid Tolerant of Lactic Acid Bacteria Isolated from Proventriculus of Broiler Chicken

    Directory of Open Access Journals (Sweden)

    E. Damayanti

    2014-08-01

    Full Text Available The aim of this research was to obtain the lactic acid bacteria (LAB as probiotic candidates which have resistance to bile salt and acid condition. LAB was obtained using isolation method from proventriculus of broiler chicken. Selective MRS media with 0.2% CaCO3 addition were used for LAB isolation using pour plate sampling method under anaerobic condition. The result showed that four selected isolates had morphological and biochemical characteristics as LAB. The selected LAB was characterized as follow: antibacterial activities, antibiotic sensitivity, resistance on bile salt, gastric juice and acid condition, and biochemical identification. Antibacterial activities assay of cell free supernatant was confirmed using disc paper diffusion method which was arranged on factorial design and each treatment consisted of three replications. The cell free supernatant of LAB isolates had antibacterial activities against Escherichia coli, Pseudomonas aerugenosa, and Salmonella pullorum. Molecular identification procedure using 16S rRNA sequence analysis showed that R01 and R02 as Pediococcus acidilactici. The viability of the two isolates were tested by acid pH (pH 1, 2, and 3, gastric juice pH 2, and bile salt condition for digestives tract simulation. The result showed that R01 and R02 had a high viability percentages at pH 1, 2, and 3 (95.45%, 99.49%, 104.01%, and 67.17%, 120.74%, 103.4%, respectively and at bile salt simulation for 1-2 hours (100.35%-102.71% and 100.02%-102.65%, respectively, but at gastric juice simulation for 1-2 hours, the P. acidilactici R01 had higher viability than P. acidilactici R02 (59.69%-76.53% versus 43.57%-40.69%, respectively. In the antibiotic sensitivity test for three antibiotics (i.e. erythromicin 15 µg, penicillin G 10 µg, and streptomycin 10 µg, the P. acidilactici R02 showed resistance to Streptomycin and Penicillin. It is concluded that P. acidilactici R01 and P. acidilactici R02 isolated from proventriculus

  12. Simulation of anaerobic digestion processes using stochastic algorithm.

    Science.gov (United States)

    Palanichamy, Jegathambal; Palani, Sundarambal

    2014-01-01

    The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.

  13. Acute response of high-intensity and traditional resistance exercise on anaerobic power.

    Science.gov (United States)

    Austad, Mark A; Gay, Chip R; Murray, Steven R; Pettitt, Robert W

    2013-09-01

    Quantifying the maximal work capacity (W') above the aerobic critical power (CP) has emerged as a method for estimating anaerobic work capacity. Slower cadence, lower-load resistance training (RT), colloquially referred to as high-intensity training (HIT), is purported to be a better metabolic stressor than faster cadence higher-load RT, but to date, this belief has not been supported by research. We compared the acute effects of HIT and traditional RT bouts on average power within a 150-second time period (P(150 s)), CP, and W', as measured from a 3-minute all-out exercise test using cycling ergometry (3 MT). Eight recreationally active male subjects (mean ± SD: age 22 ± 2 years, body mass 85 ± 14 kg, and height 18 ± 9 cm) completed a baseline 3 MT 10 repetition maximum testing on leg press and leg extension machines, and post-bout 3 MTs after an HIT (4:2 second cadence) or a traditional RT bout (1:1 second cadence). Measurements of CP from the 3 MTs were similar between the baseline, post-HIT (α = 0.96), and post-traditional RT bouts (α = 0.98). Neither HIT (269.2 ± 51.3 W) nor traditional RT (275.1 ± 51.3 W) evoked depreciations (p > 0.05) in P(150 s) from the baseline (275.1 ± 45.4 W). Moreover, estimates of W' at the baseline (8.3 ± 3.2 kJ) were unaffected (p > 0.05) either by the HIT (7.6 ± 2.3 kJ) or by the traditional RT (8.3 ± 1.3 kJ) bouts. These data indicate that the 4:2 cadence is insufficient to exhaust a person's capacity for high-intensity work. Longer RT durations, either by slower cadences or by multiple sets, are necessary to evoke substantive declines on W' and should be investigated.

  14. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion

    Directory of Open Access Journals (Sweden)

    Christopher Neil Lyles

    2014-04-01

    Full Text Available The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11 or a methanogen (M. hungatei. The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

  15. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion.

    Science.gov (United States)

    Lyles, Christopher N; Le, Huynh M; Beasley, William Howard; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

  16. Pretreatment and Anaerobic Co-digestion of Selected PHB and PLA Bioplastics

    Directory of Open Access Journals (Sweden)

    Nicholas Benn

    2018-01-01

    Full Text Available Conventional petroleum-derived plastics are recalcitrant to biodegradation and can be problematic as they accumulate in the environment. In contrast, it may be possible to add novel, biodegradable bioplastics to anaerobic digesters at municipal water resource recovery facilities along with primary sludge to produce more biomethane. In this study, thermal and chemical bioplastic pretreatments were first investigated to increase the rate and extent of anaerobic digestion. Subsequently, replicate, bench-scale anaerobic co-digesters fed synthetic primary sludge with and without PHB bioplastic were maintained for over 170 days. Two polyhydroxybutyrate (PHB, one poly(3-hydroxybutyrate-co-4-hydroxybutyrate and one polylactic acid (PLA bioplastic were investigated. Biochemical methane potential (BMP assays were performed using both untreated bioplastic as well as bioplastic pretreated at elevated temperature (35–90°C under alkaline conditions (8anaerobic co-digesters fed synthetic primary sludge with PHB bioplastic resulted in 80–98% conversion of two PHB bioplastics to biomethane and a 5% biomethane production increase at the organic loadings employed (sludge OLR = 3.6 g COD per L of reactor volume per day [g COD/LR-d]; bioplastic OLR = 0.75 g theoretical oxygen demand per L of reactor volume per day [ThOD/LR-d] compared to digesters not fed bioplastics. Anaerobic digestion or co-digestion is a feasible management option for biodegradable plastics.

  17. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    Full Text Available Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1/ PYRL (PYR-Like/ RCAR (Regulatory Component of ABA Receptor (PYR/PYL/RCAR ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa (PtPYRLs function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  18. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro.

    Science.gov (United States)

    Goh, Shan; Loeffler, Anette; Lloyd, David H; Nair, Sean P; Good, Liam

    2015-11-11

    Antibiotic resistance genes can be targeted by antisense agents, which can reduce their expression and thus restore cellular susceptibility to existing antibiotics. Antisense inhibitors can be gene and pathogen specific, or designed to inhibit a group of bacteria having conserved sequences within resistance genes. Here, we aimed to develop antisense peptide nucleic acids (PNAs) that could be used to effectively restore susceptibility to β-lactams in methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP). Antisense PNAs specific for conserved regions of the mobilisable gene mecA, and the growth essential gene, ftsZ, were designed. Clinical MRSA and MRSP strains of high oxacillin resistance were treated with PNAs and assayed for reduction in colony forming units on oxacillin plates, reduction in target gene mRNA levels, and cell size. Anti-mecA PNA at 7.5 and 2.5 μM reduced mecA mRNA in MRSA and MRSP (p resistance in staphylococci. Further studies are warranted as clinical treatment alternatives are needed.

  19. Corrosion resistance of Ultra-Low-Carbon 19% Cr-11% Ni stainless steel for nuclear fuel reprocessing plants in nitric acid

    International Nuclear Information System (INIS)

    Ariga, Tamako; Takagi, Yoshio; Inazumi, Toru; Masamura, Katsumi; Sukekawa, M.

    1995-01-01

    An Ultra-Low-Carbon 19% Cr-11% Ni Stainless Steels used in nuclear fuel reprocessing plants where highly corrosion resistance in nitric acid is required has been developed. This steel has optimized the chemistry composition to decrease inclusions and deformation-induced martensitic transformation. The formation of deformation-induced martensite has the potential danger of accelerating corrosion in nitric acid. In this paper, effects of cold reduction and martensitic transformation on corrosion resistance of Ultra-Low-Carbon Stainless Steels in nitric acid are discussed. The developed steel showed excellent corrosion resistance during long-term exposure to nitric acid. (author)

  20. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  1. Determination of proteins induced in response to jasmonic acid and salicylic acid in resistant and susceptible cultivars of tomato.

    Science.gov (United States)

    Afroz, Amber; Khan, Muhammad Rashid; Komatsu, Setsuko

    2010-07-01

    Jasmonic acid (JA) and salicylic acid (SA) are signaling molecules that play key roles in the regulation of metabolic processes, reproduction, and defense against pathogens. The proteomics approach was used to identify proteins that are induced by JA and SA in the tomato cultivars Roma and Pant Bahr, which are susceptible and resistant to bacterial wilt, respectively. Threonine deaminase and leucine amino peptidase were upregulated, and ribulose-1,5-bisphosphate carboxylase/oxygenase small chain was downregulated by time-course application of JA. Translationally controlled tumor protein was upregulated by time-course application of SA. Protein disulfide isomerase was upregulated by application of either JA or SA. Proteins related to defense, energy, and protein destination/storage are suspected to be responsible for the susceptibility or resistance of the cultivars. Furthermore, in Roma, iron ABC transporter was upregulated by JA and down-regulated by SA. Iron ABC transporter plays a part in the signal transduction of both JA and SA in cultivars of tomato that are resistant to bacterial wilt.

  2. Comparison of solutol HS 15, Cremophor EL and novel ethoxylated fatty acid surfactants as multidrug resistance modification agents.

    Science.gov (United States)

    Buckingham, L E; Balasubramanian, M; Emanuele, R M; Clodfelter, K E; Coon, J S

    1995-08-09

    Some well-known fatty acid ester surfactants, e.g., Cremophor EL and Solutol HS 15, are modulators of multidrug resistance in vitro and in vivo. Because they are polydisperse, and their active component(s) have not been identified, the therapeutic potential of such surfactants is unclear. To better define the active components of Solutol HS 15 and to make more potent surfactant multidrug resistance modulators, highly purified C-18 fatty acids were esterified with ethylene oxide at 5-200 molar ratios. Unexpectedly, ethylene oxide esters of pure 12-hydroxy stearic acid, the major components of Solutol HS 15, displayed negligible resistance modification activity compared with Solutol HS 15 itself or to stearic and oleic acid esters synthesized under identical conditions. Since oleic acid esters appeared to have good activity, a series of these compounds was prepared to determine the optimal ethylene oxide/fatty acid ratio. The optimal ratio was found to be 20 mole ethylene oxide: I mole fatty acid, with a steep decline in activity for products made with ratios above and below the optimum. The most active oleic acid ester, designated CRL 1337, was 8.4-fold as potent as Solutol HS 15 and over 19-fold as potent as Cremophor EL in promoting rhodamine 123 accumulation in multidrug-resistant KB 8-5-11 cells in vitro. Our results show that the structure of the hydrophobic domain (fatty acid) of surfactants as well as its hydrophile-lipophile balance are critical in determining the potency of surfactants as reversing agents.

  3. Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole.

    Science.gov (United States)

    Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying

    2015-01-01

    A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.

  4. The role of acid incubation in rapid immobilization of hydrogen-producing culture in anaerobic upflow column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Peng; Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University (Singapore); Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Show, Kuan-Yeow [Faculty of Science, Engineering and Technology, University Tunku Abdul Rahman, 31900 Kampar, Perak (Malaysia); Liang, David Tee [Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Su, Ay [Department of Mechanical Engineering, Fuel Cell Center, Yuan-Ze University, Taoyuan 320 (China)

    2008-10-15

    An approach of acidification was examined on formation of hydrogen-producing granules and biofilms in upflow column-shaped reactors. The reactors were fed with synthetic glucose wastewater and operated at 37 C and pH 5.5. The acclimated anaerobic culture was inoculated in four reactors designated R1, R2, R3 and R4, with R3 and R4 filled with granular activated carbon as support medium. To unveil the roles of acidification, microbial culture in R2 and R3 was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The experimental results suggested that the acidification substantially accelerated microbial granulation, but not biofilm formation. Microbial activities were inhibited by the acid incubation for about 78 h, resulting in the retarded formation of biofilms of the acidified culture. Reducing culture pH resulted in improvement in cell surface physicochemical properties favoring microbial adhesion and immobilization. Zeta potential increased from -25.3 mV to 11.9 mV, hydrophobicity in terms of contact angle improved from 31 to 38 and production of extracellular polymers increased from 66 mg/g-VSS to 136 mg/g-VSS. As a result of the formation of granules and biofilms, high hydrogen production rates of 6.98 and 7.49 L/L h were achieved in granule-based and biofilm-based reactors, respectively. It is concluded that acid incubation is an efficient means to initiate the rapid formation of granules by regulating the surface characteristics of microbial culture. The use of support media as starting nuclei may result in rapid formation of biofilms without the acidification. (author)

  5. The role of acid incubation in rapid immobilization of hydrogen-producing culture in anaerobic upflow column reactors

    International Nuclear Information System (INIS)

    Zhang, Zhen-Peng; Tay, Joo-Hwa; Show, Kuan-Yeow; Liang, David Tee; Lee, Duu-Jong; Su, Ay

    2008-01-01

    An approach of acidification was examined on formation of hydrogen-producing granules and biofilms in upflow column-shaped reactors. The reactors were fed with synthetic glucose wastewater and operated at 37 C and pH 5.5. The acclimated anaerobic culture was inoculated in four reactors designated R1, R2, R3 and R4, with R3 and R4 filled with granular activated carbon as support medium. To unveil the roles of acidification, microbial culture in R2 and R3 was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The experimental results suggested that the acidification substantially accelerated microbial granulation, but not biofilm formation. Microbial activities were inhibited by the acid incubation for about 78 h, resulting in the retarded formation of biofilms of the acidified culture. Reducing culture pH resulted in improvement in cell surface physicochemical properties favoring microbial adhesion and immobilization. Zeta potential increased from -25.3 mV to 11.9 mV, hydrophobicity in terms of contact angle improved from 31 to 38 and production of extracellular polymers increased from 66 mg/g-VSS to 136 mg/g-VSS. As a result of the formation of granules and biofilms, high hydrogen production rates of 6.98 and 7.49 L/L h were achieved in granule-based and biofilm-based reactors, respectively. It is concluded that acid incubation is an efficient means to initiate the rapid formation of granules by regulating the surface characteristics of microbial culture. The use of support media as starting nuclei may result in rapid formation of biofilms without the acidification. (author)

  6. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils.

    Science.gov (United States)

    Ryan, P R; Tyerman, S D; Sasaki, T; Furuichi, T; Yamamoto, Y; Zhang, W H; Delhaize, E

    2011-01-01

    Acid soils restrict plant production around the world. One of the major limitations to plant growth on acid soils is the prevalence of soluble aluminium (Al(3+)) ions which can inhibit root growth at micromolar concentrations. Species that show a natural resistance to Al(3+) toxicity perform better on acid soils. Our understanding of the physiology of Al(3+) resistance in important crop plants has increased greatly over the past 20 years, largely due to the application of genetics and molecular biology. Fourteen genes from seven different species are known to contribute to Al(3+) tolerance and resistance and several additional candidates have been identified. Some of these genes account for genotypic variation within species and others do not. One mechanism of resistance which has now been identified in a range of species relies on the efflux of organic anions such as malate and citrate from roots. The genes controlling this trait are members of the ALMT and MATE families which encode membrane proteins that facilitate organic anion efflux across the plasma membrane. Identification of these and other resistance genes provides opportunities for enhancing the Al(3+) resistance of plants by marker-assisted breeding and through biotechnology. Most attempts to enhance Al(3+) resistance in plants with genetic engineering have targeted genes that are induced by Al(3+) stress or that are likely to increase organic anion efflux. In the latter case, studies have either enhanced organic anion synthesis or increased organic anion transport across the plasma membrane. Recent developments in this area are summarized and the structure-function of the TaALMT1 protein from wheat is discussed.

  7. Gastric-resistant isoniazid pellets reduced degradation of rifampicin in acidic medium

    Directory of Open Access Journals (Sweden)

    Fátima Duarte Freire

    2014-12-01

    Full Text Available Isoniazid and rifampicin are considered the first-line medication for preventing and treating tuberculosis. Rifampicin is degraded in the stomach acidic environment, especially when combined with isoniazid, factor contributing to treatment failure. In this study, gastric-resistant isoniazid pellets were obtained to physical contact of this drug with rifampicin and to bypass the stomach´s acidic environment. The pellets were fabricated using the extrusion-spheronization technique. The coating process was conducted in a fluid spray coater using Acrycoat L 100(r solution as the coating agent. The pellets obtained were submitted to a dissolution test in HCl 0.1 N and phosphate buffer media. The results indicated that optimum gastric-resistance was only attained with the highest amount of coating material, with isoniazid almost fully released in phosphate buffer. The amount of rifampicin released from its mixture with non-coated isoniazid pellets in HCl 0.1 N was less than that released from its mixture with the enteric-coated pellets. Acrycoat L 100(r was shown to be an effective enteric/gastric-resistant coating since the stability of rifampicin appeared to be enhanced when physical contact of this drug with isoniazid was prevented at low pH.

  8. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling

    DEFF Research Database (Denmark)

    Paltsi, Jordi; Illa, J.; Prenafeta-Boldu, F.X.

    2010-01-01

    Biomass samples taken during the continuous operation of thermophilic anaerobic digestors fed with manure and exposed to successive inhibitory pulses of long-chain fatty acids (LCFA) were characterized in terms of specific metabolic activities and 16S rDNA DGGE profiling of the microbial community....... Population profiles of eubacterial and archaeal 16S rDNA genes revealed that no significant shift on microbial community composition took place upon biomass exposure to LCFA. DNA sequencing of predominant DGGE bands showed close phylogenetic affinity to ribotypes characteristic from specific beta...... kinetics considering the relation between LCFA inhibitory substrate concentration and specific biomass content, as an approximation to the adsorption process, improved the model fitting and provided a better insight on the physical nature of the LCFA inhibition process. (C) 2009 Elsevier Ltd. All rights...

  9. Organic acids enhance bioavailability of tetracycline in water to Escherichia coli for uptake and expression of antibiotic resistance.

    Science.gov (United States)

    Zhang, Yingjie; Boyd, Stephen A; Teppen, Brian J; Tiedje, James M; Li, Hui

    2014-11-15

    Tetracyclines are a large class of antimicrobials used most extensively in livestock feeding operations. A large portion of tetracyclines administered to livestock is excreted in manure and urine which is collected in waste lagoons. Subsequent land application of these wastes introduces tetracyclines into the soil environment, where they could exert selective pressure for the development of antibiotic resistance genes in bacteria. Tetracyclines form metal-complexes in natural waters, which could reduce their bioavailability for bacterial uptake. We hypothesized that many naturally-occurring organic acids could effectively compete with tetracyclines as ligands for metal cations, hence altering the bioavailability of tetracyclines to bacteria in a manner that could enhance the selective pressure. In this study, we investigated the influence of acetic acid, succinic acid, malonic acid, oxalic acid and citric acid on tetracycline uptake from water by Escherichia coli bioreporter construct containing a tetracycline resistance gene which induces the emission of green fluorescence when activated. The presence of the added organic acid ligands altered tetracycline speciation in a manner that enhanced tetracycline uptake by E. coli. Increased bacterial uptake of tetracycline and concomitant enhanced antibiotic resistance response were quantified, and shown to be positively related to the degree of organic acid ligand complexation of metal cations in the order of citric acid > oxalic acid > malonic acid > succinic acid > acetic acid. The magnitude of the bioresponse increased with increasing aqueous organic acid concentration. Apparent positive relation between intracellular tetracycline concentration and zwitterionic tetracycline species in aqueous solution indicates that (net) neutral tetracycline is the species which most readily enters E. coli cells. Understanding how naturally-occurring organic acid ligands affect tetracycline speciation in solution, and how speciation

  10. Increased number of anaerobic bacteria in the infected root canal in type 2 diabetic rats.

    Science.gov (United States)

    Iwama, Akihiro; Morimoto, Taisuke; Tsuji, Masahito; Nakamura, Koki; Higuchi, Naoya; Imaizumi, Ichiro; Shibata, Naoki; Yamasaki, Masahiro; Nakamura, Hiroshi

    2006-05-01

    The purpose of this study was to investigate the relationship between type 2 diabetes mellitus and anaerobic bacteria detected in infected root canals. Normal Wistar rats (control) received a standard laboratory diet with water (group A), and GK rats (type 2 diabetes mellitus rats) a normal laboratory diet with water (group B) or a 30% sucrose solution (group C). Chemotaxis assay was conducted on polymorphonuclear leukocytes from the 3 groups, and the numbers of anaerobic bacteria in infected root canals were determined. In the chemotaxis assay on the polymorphonuclear leukocytes, the chemotactic response of cells in group C was lower than that for groups A and B (P obligate anaerobic bacteria which stained gram negative, were significantly more numerous in group C (P < .01) than in groups A and B. The metabolic condition produced by type 2 diabetes mellitus in rats might lower the general host resistance against bacterial infection.

  11. Comparison of the effectivities of two-phase and single-phase anaerobic sequencing batch reactors during dairy wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Goebloes, Sz.; Portoero, P.; Bordas, D.; Kalman, M.; Kiss, I. [Institute for Biotechnology, Bay Zoltan Foundation for Applied Research, H-6726 Szeged (Hungary)

    2008-05-15

    The performances of anaerobic sequencing batch reactors fed with two different substrates were studied. The substrates were raw acid whey and acid whey fermented with Kluyveromyces lactis in order to investigate the suitability of ethanol for biogas production. The organic loading rates (OLRs) during the experiment ranged from 1.6 to 12.8 g COD dm{sup -3} d{sup -1} and the corresponding decreasing hydraulic retention times from 40 to 5 days for both reactor systems. The efficiency of each system depended on the OLR: the highest COD removal rate was observed at the lowest OLR applied (about 100% in both systems), and at maximum OLR the COD removal efficiency was 68% for the reactors fed with the raw whey and 80% for those fed with the pre-fermented whey. Under the same high OLR conditions the methane yield was 0.122 dm{sup -3} CH{sub 4} g{sup -1} COD{sub degraded} for the anaerobic digesters fed with the untreated whey, and 0.197 dm{sup -3} CH{sub 4} g{sup -1} COD{sub degraded} for those fed with the pre-fermented whey. The digesters functioned without pH control. At the maximum OLR the pH in the reactors fed with the raw acid whey was 5.1, while in those fed with the pre-fermented whey it was 7.15. The results demonstrate that the use of the pre-fermented acid whey as substrate for anaerobic digestion without pH control is feasible, especially at high OLR levels. This substrate is preferable to the raw acid whey, because of the ethanol formed as a non-acidic fermentation product of the yeast. (author)

  12. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  13. Anaerobic bacteria as producers of antibiotics.

    Science.gov (United States)

    Behnken, Swantje; Hertweck, Christian

    2012-10-01

    Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a high prevalence of putative biosynthesis genes (PKS and NRPS), and only recently the first antibiotic from the anaerobic world, closthioamide, has been isolated from the cellulose degrading bacterium Clostridium cellulolyticum. The successful genetic induction of antibiotic biosynthesis in an anaerobe encourages further investigations of obligate anaerobes to tap their hidden biosynthetic potential.

  14. The effect of theobromine 200 mg/l topical gel exposure duration against surface enamel hardness resistance from 1% citric acid

    Science.gov (United States)

    Herisa, H. M.; Noerdin, A.; Eriwati, Y. K.

    2017-08-01

    Theobromine can be used to prevent the demineralization of enamel and can stimulate the growth of new enamels. This study analyzes the effect of theobromine’s gel duration exposure on enamel hardness resistance from 1% citric acid. Twenty-eight specimens were divided into three experimental groups; were exposed to theobromine gel 200 mg/l for 16, 48, and 96 minutes; and were then immersed in 1% citric acid. The control group was only immersed in 1% citric acid. Results: A Wilcoxon test showed a significant increase and decrease in enamel microhardness after exposure to theobromine gel and citric acid (p enamel microhardness between different durations of exposure to theobromine gel and immersion in citric acid (p enamel microhardness but did not contribute to the enamel’s hardness resistance after immersion in 1% citric acid. The duration of theobromine gel application affected enamel microhardness and acid resistance.

  15. The presence of bromuconazole fungicide pollutant in organic waste anaerobic fermentation

    Science.gov (United States)

    Hariyadi, H. R.

    2017-03-01

    The presence of bromuconazole fungicide pollutant in organic waste anaerobic fermentation was carried out as well as the influence phenol and benzoate, and biodegradation of bromuconazole. Bromuconazole is a fungicide effective against Ascomycetes, Basidiomycetes and fungi imperfecti in cereals, grapes, top fruits and vegetables. It is also effective against Alternaria and Fusarium sp. The remaining fungicide in leaves might contaminates landfill. One month of organic waste added with bromuconazole was anaerobically incubated in 500 mL bottles at 30°C without shaking in dark room. High-Performance Liquid Chromatography (HPLC) with UV detector and a 100 RP 185μm Lichrosphere column was used to determine bromuconazole concentration. Methane content was determined by Gas Chromatography (GC) method equipped with a flame ionization detector and a metal column packed with 5% neopentyl glycol sebacate and 1% H3PO4 on Chromosorb W-AW (mesh 80-100). After incubation for 225 days, bromuconazole of 200 mg/L inhibited the production of methane (99.5 mM) significantly, but did not inhibit the production of volatile fatty acids. The addition of 100 mg/L phenol or 146 mg/L benzoate increased the production of methane, 143 mM and 135.2 mM, respectively compared with control (121.8 mM). In anaerobic conditions, the presence of toxic pollutants such as fungicide bromuconazole in landfills sites may cause further problems with the accumulation of volatile fatty acids in leachate. Further study to determine the threshold, the presence of bromconazole in low concentration (less than 200 mg/L) on the methane production is recommended.

  16. Degradation rates and mechanisms of acid-resistant coatings in copper-leaching tanks

    DEFF Research Database (Denmark)

    Møller, Victor Buhl

    coating where the lifetime was estimated to 1:6 ± 0:2 and 1:4 ± 0:1 years, respectively. Part IV A series of newly designed and constructed diffusion cells were used to measure sulfuric acid diffusion rates through the coatings. A mathematical model was developed to simulate the experimental data...... potential in the mineral industry has not yet been thoroughly investigated. This particular industry poses unique challenges, with high operational temperatures (around 75 °C) and combined acidicerosive environments. The use of organic coatings to protect tanks, pipes, and secondary exposure areas, may....... Part I An in-depth literature study was performed to uncover and review uses and limitations ofacid-resistant coatings in the chemical industry, with a comparison to alternative resistant materialsbased on metals and ceramics. In addition, coating degradation phenomena caused by acid exposure, were...

  17. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

    Directory of Open Access Journals (Sweden)

    Yeong Chae Kim

    2013-09-01

    Full Text Available Non-protein amino acid, β-amino-n-butyric acid (BABA, has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM. BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.

  18. Evaluation of the effects of low energetic microwave irradiation on anaerobic digestion.

    Science.gov (United States)

    Bastiaens, Bert; Van den Broeck, Rob; Appels, Lise; Dewil, Raf

    2017-11-01

    The present study investigates the effects of microwave irradiation on the performance of anaerobic digestion processes. A first set of experiments is performed to distinguish the upper limit of the applied energy levels. Secondly, the effects of these treatments on the performance of the digestion process are evaluated in 3 experimental setups: (i) monitoring the acetic acid degradation, (ii) performing a biological methane potential (BMP) assay and (iii) conducting a specific methanogenic activity (SMA) test. The solubilisation experiment reveals a limited degree of disintegration of anaerobic biomass up to a microwave treatment of 10000 kJ/kg TS. Above this threshold value the soluble COD level started to rise, with up to 350% at 30000 kJ/kg TS regardless of the microwave output power. Because solubilisation of the biomass increases the easily degradable content, this would lead to false observations regarding increased activity. Therefore, solubilisation is minimized by limiting the microwave treatment to a maximum of 6000 kJ/kg TS during the second part of the experiments. Monitoring the degradation of acetic acid after a low intensity microwave treatment, reveals that microwave irradiation shortens the lag phase, e.g., from 21 to 3 h after a microwave treatment of 1000 kJ/kg TS at 100 W. However most treatments also result in a decrease of the maximum degradation and of the degradation rate of acetic acid. BMP assays are performed to evaluate the activity and performance of the entire anaerobic community. Every treatment results in a decreased biogas production potential and decreased biogas production rate. Moreover, each treatment induced an increase of the lag phase. The SMA experiments show no influence of the microwave irradiation in terms of biogas or methane production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Priming of plant resistance by natural compounds. Hexanoic acid as a model

    Directory of Open Access Journals (Sweden)

    Paz eAranega Bou

    2014-10-01

    Full Text Available Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx, proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the SA and JA pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-induced resistance (Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound.

  20. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a device intended for medical purposes to maintain an anaerobic (oxygen...