Sample records for amyloid beta toxicity

  1. The Protective Role of Carnosic Acid against Beta-Amyloid Toxicity in Rats

    H. Rasoolijazi


    Full Text Available Oxidative stress is one of the pathological mechanisms responsible for the beta- amyloid cascade associated with Alzheimer’s disease (AD. Previous studies have demonstrated the role of carnosic acid (CA, an effective antioxidant, in combating oxidative stress. A progressive cognitive decline is one of the hallmarks of AD. Thus, we attempted to determine whether the administration of CA protects against memory deficit caused by beta-amyloid toxicity in rats. Beta-amyloid (1–40 was injected by stereotaxic surgery into the Ca1 region of the hippocampus of rats in the Amyloid beta (Aβ groups. CA was delivered intraperitoneally, before and after surgery in animals in the CA groups. Passive avoidance learning and spontaneous alternation behavior were evaluated using the shuttle box and the Y-maze, respectively. The degenerating hippocampal neurons were detected by fluoro-jade b staining. We observed that beta-amyloid (1–40 can induce neurodegeneration in the Ca1 region of the hippocampus by using fluoro-jade b staining. Also, the behavioral tests revealed that CA may recover the passive avoidance learning and spontaneous alternation behavior scores in the Aβ + CA group, in comparison with the Aβ group. We found that CA may ameliorate the spatial and learning memory deficits induced by the toxicity of beta-amyloid in the rat hippocampus.

  2. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity

    Xu Wang; Yi Yang; Mingyue Jia; Chi Ma; Mingyu Wang; Lihe Che; Yu Yang; Jiang Wu


    Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.

  3. Amyloid Beta: Multiple Mechanisms of Toxicity and Only Some Protective Effects?

    Paul Carrillo-Mora


    Full Text Available Amyloid beta (Aβ is a peptide of 39–43 amino acids found in large amounts and forming deposits in the brain tissue of patients with Alzheimer’s disease (AD. For this reason, it has been implicated in the pathophysiology of damage observed in this type of dementia. However, the role of Aβ in the pathophysiology of AD is not yet precisely understood. Aβ has been experimentally shown to have a wide range of toxic mechanisms in vivo and in vitro, such as excitotoxicity, mitochondrial alterations, synaptic dysfunction, altered calcium homeostasis, oxidative stress, and so forth. In contrast, Aβ has also shown some interesting neuroprotective and physiological properties under certain experimental conditions, suggesting that both physiological and pathological roles of Aβ may depend on several factors. In this paper, we reviewed both toxic and protective mechanisms of Aβ to further explore what their potential roles could be in the pathophysiology of AD. The complete understanding of such apparently opposed effects will also be an important guide for the therapeutic efforts coming in the future.

  4. Protective effects of berberine against amyloid beta-induced toxicity in cultured rat cortical neurons

    Jing Wang; Yanjun Zhang; Shuai Du; Mixia Zhang


    Berberine, a major constituent of Coptidis rhizoma, exhibits neural protective effects. The present study analyzed the potential protective effect of berberine against amyloid G-induced cytotoxicity in rat cerebral cortical neurons. Alzheimer's disease cell models were treated with 0.5 and 2 μmol/Lberberine for 36 hours to inhibit amyloid G-induced toxicity. Methyl thiazolyl tetrazolium assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining results showed that berberine significantly increased cell viability and reduced cell apoptosis in primary cultured rat cortical neurons. In addition, western blot analysis revealed a protective effect of berberine against amyloid β-induced toxicity in cultured cortical neurons, which coincided with significantly decreased abnormal up-regulation of activated caspase-3. These results showed that berberine exhibited a protective effect against amyloid 13-induced cytotoxicity in cultured rat cortical neurons.

  5. Overexpression of estrogen receptor beta alleviates the toxic effects of beta-amyloid protein on PC12 cells via non-hormonal ligands

    Hui Wang; Lihui Si; Xiaoxi Li; Weiguo Deng; Haimiao Yang; Yuyan Yang; Yan Fu


    After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of breast carcinoma and endometrial cancer in post-menopausal women, so it is not suitable for clinical treatment of Alzheimer's disease. There is recent evidence that the estrogen receptor can exert its neuroprotective effects without estrogen dependence. Real-time quantitative PCR and flow cytometry results showed that, compared with non-transfected PC12 cells, adenovirus-mediated estrogen receptor β gene-transfected PC12 cells exhibited lower expression of tumor necrosis factor α and interleukin 1β under stimulation with beta-amyloid protein and stronger protection from apoptosis. The Akt-specific inhibitor Abi-2 decreased the anti-inflammatory and anti-apoptotic effects of estrogen receptor β gene-transfection. These findings suggest that overexpression of estrogen receptor β can alleviate the toxic effect of beta-amyloid protein on PC12 cells, without estrogen dependence. The Akt pathway is one of the potential means for the anti-inflammatory and anti-apoptotic effects of the estrogen receptor.

  6. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems.

    El-Khoury, Riyad; Kaulio, Eveliina; Lassila, Katariina A; Crowther, Damian C; Jacobs, Howard T; Rustin, Pierre


    Mitochondrial dysfunction has been widely associated with the pathology of Alzheimer's disease, but there is no consensus on whether it is a cause or consequence of disease, nor on the precise mechanism(s). We addressed these issues by testing the effects of expressing the alternative oxidase AOX from Ciona intestinalis, in different models of AD pathology. AOX can restore respiratory electron flow when the cytochrome segment of the mitochondrial respiratory chain is inhibited, supporting ATP synthesis, maintaining cellular redox homeostasis and mitigating excess superoxide production at respiratory complexes I and III. In human HEK293-derived cells, AOX expression decreased the production of beta-amyloid peptide resulting from antimycin inhibition of respiratory complex III. Because hydrogen peroxide was neither a direct product nor substrate of AOX, the ability of AOX to mimic antioxidants in this assay must be indirect. In addition, AOX expression was able to partially alleviate the short lifespan of Drosophila models neuronally expressing human beta-amyloid peptides, whilst abrogating the induction of markers of oxidative stress. Our findings support the idea of respiratory chain dysfunction and excess ROS production as both an early step and as a pathologically meaningful target in Alzheimer's disease pathogenesis, supporting the concept of a mitochondrial vicious cycle underlying the disease. PMID:27094492

  7. Protective Effects of Some Medicinal Plants from Lamiaceae Family Against Beta-Amyloid Induced Toxicity in PC12 Cell

    S Saeidnia


    Full Text Available Background: Excessive accumulation of beta-amyliod peptide (Aβ, the major component of senile plaques in Alzheimer's disease (AD, causes neuronal cell death through induction of oxidative stress. Therefore, antioxidants may be of use in the treatment of AD. The medicinal plants from the Lamiaceae family have been widely used in Iranian traditional medicine. These plants contain compounds with antioxidant activity and some species in this family have been reported to have neuroprotective properties. In the present study, methanolic extract of seven plants from salvia and satureja species were evaluated for their protective effects against beta-amyloid induced neurotoxicity.Methods: Aerial parts of the plants were extracted with ethyl acetate and methanol, respectively, by percolation at room temperature and subsequently, methanolic extracts of the plants were prepared. PC12 cells were incubated with different concentrations of the extracts in culture medium 1h prior to incubation with Aβ. Cell toxicity was assessed 24h after addition of Aβ by MTT assay.Results: Satureja bachtiarica, Salvia officinalis and Salvia macrosiphon methanolic extracts exhibited high protective effects against Aβ induced toxicity (P<0.001. Protective effects of Satureja bachtiarica and Salvia officinalis were dose-dependent.Conclusion: The main constituents of these extracts are polyphenolic and flavonoid compounds such as rosmarinic acid, naringenin, apigenin and luteolin which have antioxidant properties and may have a role in neuroprotection. Based on neuroprotective effect of these plants against Aβ induced toxicity, we recommend greater attention to their use in the treatment of Alzheimer disease.

  8. New Insights in the Amyloid-Beta Interaction with Mitochondria

    Carlos Spuch; Saida Ortolano; Carmen Navarro


    Biochemical and morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer’s disease (AD). Particularly, mitochondrial dysfunction is a hallmark of amyloid-beta-induced neuronal toxicity in Alzheimer’s disease. The recent emphasis on the intracellular biology of amyloid-beta and its precursor protein (APP) has led researchers to consider the possibility that mitochondria-associated and mitochondrial amyloid-beta may directly cause neurotoxicity. Both...

  9. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.

    Hu, Hongtao; Li, Mo


    Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD. PMID:27444386

  10. Antagonist of the amylin receptor blocks beta-amyloid toxicity in rat cholinergic basal forebrain neurons.

    Jhamandas, Jack H; MacTavish, David


    Salvage of cholinergic neurons in the brain through a blockade of the neurotoxic effects of amyloidbeta protein (Abeta) is one of the major, but still elusive, therapeutic goals of current research in Alzheimer's disease (AD). To date, no receptor has been unequivocally identified for Abeta. Human amylin, which acts via a receptor composed of the calcitonin receptor-like receptor and a receptor-associated membrane protein, possesses amyloidogenic properties and has a profile of neurotoxicity that is strikingly similar to Abeta. In this study, using primary cultures of rat cholinergic basal forebrain neurons, we show that acetyl-[Asn30, Tyr32] sCT(8-37) (AC187), an amylin receptor antagonist, blocks Abeta-induced neurotoxicity. Treatment of cultures with AC187 before exposure to Abeta results in significantly improved neuronal survival as judged by MTT and live-dead cell assays. Quantitative measures of Abeta-evoked apoptotic cell death, using Hoechst and phosphotidylserine staining, confirm neuroprotective effects of AC187. We also demonstrate that AC187 attenuates the activation of initiator and effector caspases that mediate Abeta-induced apoptotic cell death. These data are the first to show that expression of Abeta toxicity may occur through the amylin receptor and suggest a novel therapeutic target for the treatment of AD. PMID:15201330

  11. Cratoxylum formosum Extract Protects against Amyloid-Beta Toxicity in a Caenorhabditis elegans Model of Alzheimer's Disease.

    Keowkase, Roongpetch; Weerapreeyakul, Natthida


    Amyloid-β, one of the hallmarks of Alzheimer's disease, is toxic to neurons and causes cell death in the brain. Oxidative stress is known to play an important role in Alzheimer's disease, and there is strong evidence linking oxidative stress to amyloid-β. The herbal plant "Tiew kon" (Cratoxylum formosum ssp. pruniflorum) is an indigenous vegetable that is grown in Southeast Asia. Many reports suggested that the twig extract from C. formosum possesses an antioxidant property. The purpose of this study was to investigate the protective effect of the twig extract from C. formosum against amyloidtoxicity using the transgenic Caenorhabditis elegans model. This study demonstrated that the extract significantly delayed amyloid-β-induced paralysis in the C. elegans model of Alzheimer's disease. Using a genetic approach, we found that DAF-16/FOXO transcription factor, heat shock factor 1, and SKN-1 (Nrf2 in mammals) were required for the extract-mediated delayed paralysis. The extract ameliorated oxidative stress by reducing the level of H2O2, which appeared to account for the protective action of the extract. The extract possesses antioxidant activity against juglone-induced oxidative stress as it was shown to increase survival of the stressed worms. In addition, C. formosum decreased the expression of the heat shock protein-16.2 gene which was induced by thermal stress, indicating its ability to reduce cellular stress. The results from this study support the C. elegans model in the search for disease-modifying agents to treat Alzheimer's disease and indicate the potential of the extract from C. formosum ssp. pruniflorum as a source for the development of anti-Alzheimer's drugs. PMID:26845710

  12. Curcumin protects against intracellular amyloid toxicity in rat primary neurons

    Ye, Jelina; Zhang, Yan


    To investigate whether curcumin is protective against intracellular amyloid beta (A beta) toxicity, different concentrations of curcumin were applied to with intracellular A beta in rat primary hippocampal neurons in culture. We find that at low dosages, curcumin effectively inhibits intracellular A

  13. Atomic View of a Toxic Amyloid Small Oligomer

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela B.; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David (UCI); (UCLA)


    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein {alpha}{beta} crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: {beta}-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the {beta}-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.

  14. Control of Alzheimer's amyloid beta toxicity by the high molecular weight immunophilin FKBP52 and copper homeostasis in Drosophila.

    Reiko Sanokawa-Akakura

    Full Text Available FK506 binding proteins (FKBPs, also called immunophilins, are prolyl-isomerases (PPIases that participate in a wide variety of cellular functions including hormone signaling and protein folding. Recent studies indicate that proteins that contain PPIase activity can also alter the processing of Alzheimer's Amyloid Precursor Protein (APP. Originally identified in hematopoietic cells, FKBP52 is much more abundantly expressed in neurons, including the hippocampus, frontal cortex, and basal ganglia. Given the fact that the high molecular weight immunophilin FKBP52 is highly expressed in CNS regions susceptible to Alzheimer's, we investigated its role in Abeta toxicity. Towards this goal, we generated Abeta transgenic Drosophila that harbor gain of function or loss of function mutations of FKBP52. FKBP52 overexpression reduced the toxicity of Abeta and increased lifespan in Abeta flies, whereas loss of function of FKBP52 exacerbated these Abeta phenotypes. Interestingly, the Abeta pathology was enhanced by mutations in the copper transporters Atox1, which interacts with FKBP52, and Ctr1A and was suppressed in FKBP52 mutant flies raised on a copper chelator diet. Using mammalian cultures, we show that FKBP52 (-/- cells have increased intracellular copper and higher levels of Abeta. This effect is reversed by reconstitution of FKBP52. Finally, we also found that FKBP52 formed stable complexes with APP through its FK506 interacting domain. Taken together, these studies identify a novel role for FKBP52 in modulating toxicity of Abeta peptides.

  15. Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity.

    Ott, Stanislav; Vishnivetskaya, Anastasia; Malmendal, Anders; Crowther, Damian C


    Amyloid beta (Aβ) peptide aggregation is linked to the initiation of Alzheimer's disease; accordingly, aggregation-prone isoforms of Aβ, expressed in the brain, shorten the lifespan of Drosophila melanogaster. However, the lethal effects of Aβ are not apparent until after day 15. We used shibire(TS) flies that exhibit a temperature-sensitive paralysis phenotype as a reporter of proteostatic robustness. In this model, we found that increasing age but not Aβ expression lowered the flies' permissive temperature, suggesting that Aβ did not exert its lethal effects by proteostatic disruption. Instead, we observed that chemical challenges, in particular oxidative stressors, discriminated clearly between young (robust) and old (sensitive) flies. Using nuclear magnetic resonance spectroscopy in combination with multivariate analysis, we compared water-soluble metabolite profiles at various ages in flies expressing Aβ in their brains. We observed 2 genotype-linked metabolomic signals, the first reported the presence of any Aβ isoform and the second the effects of the lethal Arctic Aβ. Lethality was specifically associated with signs of oxidative respiration dysfunction and oxidative stress. PMID:27103517

  16. New Insights in the Amyloid-Beta Interaction with Mitochondria

    Carlos Spuch


    Full Text Available Biochemical and morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer’s disease (AD. Particularly, mitochondrial dysfunction is a hallmark of amyloid-beta-induced neuronal toxicity in Alzheimer’s disease. The recent emphasis on the intracellular biology of amyloid-beta and its precursor protein (APP has led researchers to consider the possibility that mitochondria-associated and mitochondrial amyloid-beta may directly cause neurotoxicity. Both proteins are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species production, cause mitochondrial damage, and prevent neurons from functioning normally. In this paper, we will outline current knowledge of the intracellular localization of amyloid-beta. Moreover, we summarize evidence from AD postmortem brain as well as animal AD models showing that amyloid-beta triggers mitochondrial dysfunction through a number of pathways such as impairment of oxidative phosphorylation, elevation of reactive oxygen species production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. Thus, this paper supports the Alzheimer cascade mitochondrial hypothesis such as the most important early events in this disease, and probably one of the future strategies on the therapy of this neurodegenerative disease.

  17. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25-35)

    Min Kong; Maowen Ba; Hui Liang; Peng Shao; Tianxia Yu; Ying Wang


    In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nω-nitro-L-arginine, also protected PC12 cells from intracellular reactive oxygen species levels. However, the H2O2-degrading enzyme catalase could that the increases in both mitochondrial membrane potential and reactive oxygen species levels adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid

  18. Protective Effects of Some Medicinal Plants from Lamiaceae Family Against Beta-Amyloid Induced Toxicity in PC12 Cell

    S. Saeidnia; M Soodi; P Balali


    Background: Excessive accumulation of beta-amyliod peptide (Aβ), the major component of senile plaques in Alzheimer's disease (AD), causes neuronal cell death through induction of oxidative stress. Therefore, antioxidants may be of use in the treatment of AD. The medicinal plants from the Lamiaceae family have been widely used in Iranian traditional medicine. These plants contain compounds with antioxidant activity and some species in this family have been reported to have neuroprotective pro...

  19. Beta-amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons.

    Good, T A; Smith, D. O.; Murphy, R M


    Deposition of beta-amyloid peptide (A beta) in senile plaques is a hallmark of Alzheimer disease neuropathology. Chronic exposure of neuronal cultures to synthetic A beta is directly toxic, or enhances neuronal susceptibility to excitotoxins. Exposure to A beta may cause a loss of cellular calcium homeostasis, but the mechanism by which this occurs is uncertain. In this work, the acute response of rat hippocampal neurons to applications of synthetic A beta was measured using whole-cell voltag...

  20. Molecular Dynamics Simulation of Amyloid Beta Dimer Formation

    Urbanc, B; Ding, F; Sammond, D; Khare, S; Buldyrev, S V; Stanley, H E; Dokholyan, N V


    Recent experiments with amyloid-beta (Abeta) peptide suggest that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation: (1) we use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations, and (2) we employ all-atom molecular mechanics simulations to estimate the thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts ten different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40...

  1. Amyloid-beta Alzheimer targets — protein processing, lipid rafts, and amyloid-beta pores

    Arbor, Sage C.; LaFontaine, Mike; Cumbay, Medhane


    Amyloid beta (Aβ), the hallmark of Alzheimer’s Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review.

  2. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores.

    Arbor, Sage C; LaFontaine, Mike; Cumbay, Medhane


    Amyloid beta (Aβ), the hallmark of Alzheimer's Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review. PMID:27505013

  3. Utility of an improved model of amyloid-beta (Aβ1-42 toxicity in Caenorhabditis elegans for drug screening for Alzheimer’s disease

    McColl Gawain


    Full Text Available Abstract Background The definitive indicator of Alzheimer’s disease (AD pathology is the profuse accumulation of amyloid-ß (Aß within the brain. Various in vitro and cell-based models have been proposed for high throughput drug screening for potential therapeutic benefit in diseases of protein misfolding. Caenorhabditis elegans offers a convenient in vivo system for examination of Aß accumulation and toxicity in a complex multicellular organism. Ease of culturing and a short life cycle make this animal model well suited to rapid screening of candidate compounds. Results We have generated a new transgenic strain of C. elegans that expresses full length Aß1-42. This strain differs from existing Aß models that predominantly express amino-truncated Aß3-42. The Aß1-42 is expressed in body wall muscle cells, where it oligomerizes, aggregates and results in severe, and fully penetrant, age progressive-paralysis. The in vivo accumulation of Aß1-42 also stains positive for amyloid dyes, consistent with in vivo fibril formation. The utility of this model for identification of potential protective compounds was examined using the investigational Alzheimer’s therapeutic PBT2, shown to be neuroprotective in mouse models of AD and significantly improve cognition in AD patients. We observed that treatment with PBT2 provided rapid and significant protection against the Aß-induced toxicity in C. elegans. Conclusion This C. elegans model of full length Aß1-42 expression can now be adopted for use in screens to rapidly identify and assist in development of potential therapeutics and to study underlying toxic mechanism(s of Aß.

  4. Modeling Amyloid Beta Peptide Insertion into Lipid Bilayers

    Mobley, D L; Singh, R R P; Maddox, M W; Longo, M J; Mobley, David L.; Cox, Daniel L.; Singh, Rajiv R. P.; Maddox, Michael W.; Longo, Marjorie L.


    Inspired by recent suggestions that the Alzheimer's amyloid beta peptide (A-beta), can insert into cell membranes and form harmful ion channels, we model insertion of the peptide into cell membranes using a Monte Carlo code which is specific at the amino acid level. We examine insertion of the regular A-beta peptide as well as mutants causing familial Alzheimer's disease. We present our results and develop the hypothesis that partial insertion into the membrane, leaving the peptide in one leaflet, increases the probability of harmful channel formation. This hypothesis can partly explain why these mutations are neurotoxic simply due to peptide insertion behavior, and also explains why, normally, A-beta 42 is more toxic to some cultured cells than A-beta 40, but the E22Q mutation reverses this effect. We further apply this model to various artificial A-beta mutants which have been examined experimentally, and offer testable experimental predictions contrasting the roles of aggregation and insertion with regard ...

  5. BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis.

    Allen W Bryan


    Full Text Available Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s, there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid

  6. Mechanisms of beta-amyloid neurotoxicity : Perspectives of pharmacotherapy

    Harkany, T; Abraham, [No Value; Konya, C; Nyakas, C; Zarandi, M; Penke, B; Luiten, PGM


    One of the characteristic neuropathological hallmarks of Alzheimer's disease (AD) is the extracellular accumulation of beta -amyloid peptides (A beta) in neuritic plaques, Experimental data indicate that different molecular forms of A beta affect a wide array of neuronal and glial functions and ther

  7. Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis

    Zheng, Lin; Kågedal, Katarina; Dehvari, Nodi; Benedikz, Eirikur; Cowburn, Richard; Marcusson, Jan; Terman, Alexei


    There is increasing evidence for the toxicity of intracellular amyloid beta-protein (Abeta) to neurons and the involvement of lysosomes in this process in Alzheimer disease (AD). We have recently shown that oxidative stress, a recognized determinant of AD, enhances macroautophagy and leads to int...

  8. Tau/Amyloid Beta 42 Peptide Test (Alzheimer Biomarkers)

    ... helpful? Also known as: Alzheimer Biomarkers Formal name: Tau Protein and Amyloid Beta 42 Peptide Related tests: Phosporylated ... should know? How is it used? Tests for Tau protein and Aß42 may be used as supplemental tests ...

  9. The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-beta toxicity.

    Jia Meng

    Full Text Available With the trend of an increasing aged population worldwide, Alzheimer's disease (AD, an age-related neurodegenerative disorder, as one of the major causes of dementia in elderly people is of growing concern. Despite the many hard efforts attempted during the past several decades in trying to elucidate the pathological mechanisms underlying AD and putting forward potential therapeutic strategies, there is still a lack of effective treatments for AD. The efficacy of many potential therapeutic drugs for AD is of main concern in clinical practice. For example, large bodies of evidence show that the anti-tumor histone deacetylase (HDAC inhibitor, suberoylanilidehydroxamic acid (SAHA, may be of benefit for the treatment of AD; however, its extensive inhibition of HDACs makes it a poor therapeutic. Moreover, the natural flavonoid, curcumin, may also have a potential therapeutic benefit against AD; however, it is plagued by low bioavailability. Therefore, the integrative effects of SAHA and curcumin were investigated as a protection against amyloid-beta neurotoxicity in vitro. We hypothesized that at low doses their synergistic effect would improve therapeutic selectivity, based on experiments that showed that at low concentrations SAHA and curcumin could provide comprehensive protection against Aβ25-35-induced neuronal damage in PC12 cells, strongly implying potent synergism. Furthermore, network analysis suggested that the possible mechanism underlying their synergistic action might be derived from restoration of the damaged functional link between Akt and the CBP/p300 pathway, which plays a crucial role in the pathological development of AD. Thus, our findings provided a feasible avenue for the application of a synergistic drug combination, SAHA and curcumin, in the treatment of AD.

  10. Beta-Amyloid Deposition and Alzheimer's Type Changes Induced by Borrelia Spirochetes

    Miklossy,J.; Kis, A.; Radenovic, A.; Miller, L.; Forro, L.; Martins, R.; Reiss, K.; Darbinian, N.; Darekar, P.; et al.


    The pathological hallmarks of Alzheimer's disease (AD) consist of {beta}-amyloid plaques and neurofibrillary tangles in affected brain areas. The processes, which drive this host reaction are unknown. To determine whether an analogous host reaction to that occurring in AD could be induced by infectious agents, we exposed mammalian glial and neuronal cells in vitro to Borrelia burgdorferi spirochetes and to the inflammatory bacterial lipopolysaccharide (LPS). Morphological changes analogous to the amyloid deposits of AD brain were observed following 2-8 weeks of exposure to the spirochetes. Increased levels of {beta}-amyloid presursor protein (A{beta}PP) and hyperphosphorylated tau were also detected by Western blots of extracts of cultured cells that had been treated with spirochetes or LPS. These observations indicate that, by exposure to bacteria or to their toxic products, host responses similar in nature to those observed in AD may be induced.

  11. Oligomerization and toxicity of A{beta} fusion proteins

    Caine, Joanne M., E-mail: [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia); Bharadwaj, Prashant R. [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia); Centre for Excellence for Alzheimer' s Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Western Australia (Australia); Sankovich, Sonia E. [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia); Ciccotosto, Giuseppe D. [The Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010 (Australia); Streltsov, Victor A.; Varghese, Jose [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia)


    Highlights: {yields} We expressed amyloid-{beta} (A{beta}) peptide as a soluble maltose binding protein fusion (MBP-A{beta}42 and MBP-A{beta}16). {yields} The full length A{beta} peptide fusion, MBP-A{beta}42, forms oligomeric species as determined by SDS-PAGE gels, gel filtration and DLS. {yields} The MBP-A{beta}42, but not MBP-A{beta}16 or MBP alone, is toxic to both yeast and mammalian cells as determined by toxicity assays. -- Abstract: This study has found that the Maltose binding protein A{beta}42 fusion protein (MBP-A{beta}42) forms soluble oligomers while the shorter MBP-A{beta}16 fusion and control MBP did not. MBP-A{beta}42, but neither MBP-A{beta}16 nor control MBP, was toxic in a dose-dependent manner in both yeast and primary cortical neuronal cells. This study demonstrates the potential utility of MBP-A{beta}42 as a reagent for drug screening assays in yeast and neuronal cell cultures and as a candidate for further A{beta}42 characterization.

  12. Amyloid beta peptide immunotherapy in Alzheimer disease.

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B


    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. PMID:25459121

  13. Increased expression of ApoE and protection from amyloid-beta toxicity in transmitochondrial cybrids with haplogroup K mtDNA.

    Thaker, Kunal; Chwa, Marilyn; Atilano, Shari R; Coskun, Pinar; Cáceres-Del-Carpio, Javier; Udar, Nitin; Boyer, David S; Jazwinski, S Michal; Miceli, Michael V; Nesburn, Anthony B; Kuppermann, Baruch D; Kenney, M Cristina


    Mitochondrial (mt) DNA haplogroups, defined by specific single nucleotide polymorphism (SNP) patterns, represent populations of diverse geographic origins and have been associated with increased risk or protection of many diseases. The H haplogroup is the most common European haplogroup while the K haplogroup is highly associated with the Ashkenazi Jewish population. Transmitochondrial cybrids (cell lines with identical nuclei, but mtDNA from either H (n=8) or K (n=8) subjects) were analyzed by the Seahorse flux analyzer, quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC). Cybrids were treated with amyloid-β peptides and cell viabilities were measured. Other cybrids were demethylated with 5-aza-2'-deoxycytidine (5-aza-dC) and expression levels for APOE and NFkB2 were measured. Results show K cybrids have (a) significantly lower mtDNA copy numbers, (b) higher expression levels for MT-DNA encoded genes critical for oxidative phosphorylation, (c) lower Spare Respiratory Capacity, (d) increased expression of inhibitors of the complement pathway and important inflammasome-related genes; and (e) significantly higher levels of APOE transcription that were independent of methylation status. After exposure to amyloid-β1-42 peptides (active form), H haplogroup cybrids demonstrated decreased cell viability compared to those treated with amyloid-β42-1 (inactive form) (p<0.0001), while this was not observed in the K cybrids (p=0.2). K cybrids had significantly higher total global methylation levels and differences in expression levels for two acetylation genes and four methylation genes. Demethylation with 5-aza-dC altered expression levels for NFkB2, while APOE transcription patterns were unchanged. Our findings support the hypothesis that mtDNA-nuclear retrograde signaling may mediate expression levels of APOE, a key factor in many age-related diseases. Future studies will focus on identification of the mitochondrial-nuclear retrograde signaling

  14. Plasma amyloid beta peptides and oligomers antibodies in Alzheimer's disease

    Zhou, L.; Chu, LW; Kwan, JSC; Ho, JWM; Lam, KSL; Ho, PWL; Chan, KH


    INTRODUCTION: Various forms of amyloid beta (Aβ) including Aβ peptides, oligomers, protofibrils and fibrils are thought to be pathogenic in Alzheimer’s disease (AD). The exact pathophysiological role of endogenous Aβ autoantibodies (Ab) in healthy subjects and AD patients are uncertain. Potential protective role ...

  15. Beta-amyloid, cholinergní neurony a Alzheimerova choroba

    Kašparová, Jana; Doležal, Vladimír


    Roč. 51, č. 2 (2002), s. 82-94. ISSN 0009-0557 R&D Projects: GA MZd NF5183; GA ČR GA305/01/0283 Institutional research plan: CEZ:AV0Z5011922 Keywords : Alzheimer 's disease * beta-amyloid * cholinergic neurons Subject RIV: FR - Pharmacology ; Medidal Chemistry

  16. Engineering Metal Ion Coordination to Regulate Amyloid Fibril Assembly And Toxicity

    Dong, J.; Canfield, J.M.; Mehta, A.K.; Shokes, J.E.; Tian, B.; Childers, W.S.; Simmons, J.A.; Mao, Z.; Scott, R.A.; Warncke, K.; Lynn, D.G.


    Protein and peptide assembly into amyloid has been implicated in functions that range from beneficial epigenetic controls to pathological etiologies. However, the exact structures of the assemblies that regulate biological activity remain poorly defined. We have previously used Zn{sup 2+} to modulate the assembly kinetics and morphology of congeners of the amyloid {beta} peptide (A{beta}) associated with Alzheimer's disease. We now reveal a correlation among A{beta}-Cu{sup 2+} coordination, peptide self-assembly, and neuronal viability. By using the central segment of A{beta}, HHQKLVFFA or A{beta}(13-21), which contains residues H13 and H14 implicated in A{beta}-metal ion binding, we show that Cu{sup 2+} forms complexes with A{beta}(13-21) and its K16A mutant and that the complexes, which do not self-assemble into fibrils, have structures similar to those found for the human prion protein, PrP. N-terminal acetylation and H14A substitution, Ac-A{beta}(13-21)H14A, alters metal coordination, allowing Cu{sup 2+} to accelerate assembly into neurotoxic fibrils. These results establish that the N-terminal region of A{beta} can access different metal-ion-coordination environments and that different complexes can lead to profound changes in A{beta} self-assembly kinetics, morphology, and toxicity. Related metal-ion coordination may be critical to the etiology of other neurodegenerative diseases.

  17. Distribution of beta-amyloid in the canine brain.

    Hou, Y; White, R G; Bobik, M; Marks, J S; Russell, M J


    The distribution of amyloid-beta protein (A beta) in the canine brain was demonstrated by immunochemistry on serially sectioned tissues from 10 aged mixed breed dogs. Summation of quantitative data and relegation to anatomical sites for the 10 dogs showed A beta to be widely distributed in the cortex and hippocampus while completely absent in the brain stem and cerebellum. The highest density of A beta was in the dentate gyrus of the hippocampus. Cortical areas exhibiting the greatest A beta deposition were the posterior and medial suprasylvius gyrus and the proreus gyrus of the frontal lobe. Unlike humans the canine entorhinal cortex, amygdala, basal ganglia and olfactory bulbs were rarely affected. This suggested that the highly developed olfactory pathways of the canine are generally spared from A beta deposition. PMID:9141082

  18. Antiaggregation Potential of Padina gymnospora against the Toxic Alzheimer's Beta-Amyloid Peptide 25-35 and Cholinesterase Inhibitory Property of Its Bioactive Compounds.

    Balakrishnan Shanmuganathan

    Full Text Available Inhibition of β-amyloid (Aβ aggregation in the cerebral cortex of the brain is a promising therapeutic and defensive strategy in identification of disease modifying agents for Alzheimer's disease (AD. Since natural products are considered as the current alternative trend for the discovery of AD drugs, the present study aims at the evaluation of anti-amyloidogenic potential of the marine seaweed Padina gymnospora. Prevention of aggregation and disaggregation of the mature fibril formation of Aβ 25-35 by acetone extracts of P. gymnospora (ACTPG was evaluated in two phases by Thioflavin T assay. The results were further confirmed by confocal laser scanning microscopy (CLSM analysis and Fourier transform infrared (FTIR spectroscopic analysis. The results of antiaggregation and disaggregation assay showed that the increase in fluorescence intensity of aggregated Aβ and the co-treatment of ACTPG (250 μg/ml with Aβ 25-35, an extensive decrease in the fluorescence intensity was observed in both phases, which suggests that ACTPG prevents the oligomers formation and disaggregation of mature fibrils. In addition, ACTPG was subjected to column chromatography and the bioactivity was screened based on the cholinesterase inhibitory activity. Finally, the active fraction was subjected to LC-MS/MS analysis for the identification of bioactive compounds. Overall, the results suggest that the bioactive compound alpha bisabolol present in the alga might be responsible for the observed cholinesterase inhibition with the IC50 value < 10 μg/ml for both AChE and BuChE when compared to standard drug donepezil (IC50 value < 6 μg/ml and support its use for the treatment of neurological disorders.

  19. Amyloid-beta Positron Emission Tomography Imaging Probes : A Critical Review

    Kepe, Vladimir; Moghbel, Mateen C.; Langstrom, Bengt; Zaidi, Habib; Vinters, Harry V.; Huang, Sung-Cheng; Satyamurthy, Nagichettiar; Doudet, Doris; Mishani, Eyal; Cohen, Robert M.; Hoilund-Carlsen, Poul F.; Alavi, Abass; Barrio, Jorge R.


    The rapidly rising prevalence and cost of Alzheimer's disease in recent decades has made the imaging of amyloid-beta deposits the focus of intense research. Several amyloid imaging probes with purported specificity for amyloid-beta plaques are currently at various stages of FDA approval. However, a

  20. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.


    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  1. Reexamining Alzheimer's disease: evidence for a protective role for amyloid-beta protein precursor and amyloid-beta.

    Castellani, Rudy J; Lee, Hyoung-gon; Siedlak, Sandra L; Nunomura, Akihiko; Hayashi, Takaaki; Nakamura, Masao; Zhu, Xiongwei; Perry, George; Smith, Mark A


    Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized clinically by cognitive decline and pathologically by the accumulation of amyloid-beta-containing senile plaques and neurofibrillary tangles. A great deal of attention has focused, focused on amyloid-beta as the major pathogenic mechanism with the ultimate goal of using amyloid-beta lowering therapies as an avenue of treatment. Unfortunately, nearly a quarter century later, no tangible progress has been offered, whereas spectacular failure tends to be the most compelling. We have long contended, as has substantial literature, that proteinaceous accumulations are simply downstream and, often, endstage manifestations of disease. Their overall poor correlation with the level of dementia, and their presence in the cognitively intact is evidence that is often ignored as an inconvenient truth. Current research examining amyloid oligomers, therefore, will add copious details to what is, in essence, a reductionist distraction from upstream pleiotrophic processes such as oxidative stress, cell cycle dysfunction, and inflammation. It is now long overdue that the neuroscientists avoid the pitfall of perseverating on "proteinopathies'' and recognize that the continued targeting of end stage lesions in the face of repeated failure, or worse, is a losing proposition. PMID:19584435

  2. Curcumin protects against intracellular amyloid toxicity in rat primary neurons

    Ye, Jelina; Zhang, Yan


    To investigate whether curcumin is protective against intracellular amyloid β (Aβ) toxicity, different concentrations of curcumin were applied to with intracellular Aβ in rat primary hippocampal neurons in culture. We find that at low dosages, curcumin effectively inhibits intracellular Aβ toxicity. Reactive oxidative species (ROS) is involved in mediating intracellular Aβ toxicity and possibly curcumin protection. Our results indicate that oxidative stress may mediate cell death induced by i...

  3. Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity : Relevance to Alzheimer's disease

    Harkany, T; Hortobagyi, T; Sasvari, M; Konya, C; Penke, B; Luiten, PGM; Nyakas, C


    1. beta-Amyloid peptides (A beta s) accumulate abundantly in the Alzheimer's disease (AD) brain in areas subserving information acquisition arid processing, and memory formation. A beta fragments are producedin a process of abnormal proteolytic cleavage of their precursor, the amyloid precursor prot

  4. Time Until Neuron Death After Initial Puncture From an Amyloid-Beta Oligomer

    Horton, Tanner


    Hardy and Higgins first proposed the amyloid cascade hypothesis in 1992, stating that the decrease in neuronal function observed in Alzheimer's Disease (AD) is due to a process initiated by the oligomerization of amyloid-beta peptides. One hypothesis states that toxicity arises from the aggregation of amyloid-beta into a pore structure, which can then puncture the brain cell membrane; this allow toxic calcium ions to flood through the opening, causing eventual cell death. In 2007, neurobiologist Ruth Nussinov calculated the three pore sizes most likely to occur within the brain. Based on her findings, we constructed a method to determine the time it takes for a cell to die after the cell is punctured by the pore. Our findings have shown that cell death occurs within one second after the oligomer makes contact with the cell. We believe this is important because instant cell death has been one criticism of Nussinov's model, and we have calculated a concrete time value for that criticism. We identify two potenti...

  5. Formation of Toxic Amyloid Fibrils by Amyloid β-Protein on Ganglioside Clusters

    Katsumi Matsuzaki


    Full Text Available It is widely accepted that the conversion of the soluble, nontoxic amyloid β-protein (Aβ monomer to aggregated toxic Aβ rich in β-sheet structures is central to the development of Alzheimer’s disease. However, the mechanism of the abnormal aggregation of Aβ in vivo is not well understood. Accumulating evidence suggests that lipid rafts (microdomains in membranes mainly composed of sphingolipids (gangliosides and sphingomyelin and cholesterol play a pivotal role in this process. This paper summarizes the molecular mechanisms by which Aβ aggregates on membranes containing ganglioside clusters, forming amyloid fibrils. Notably, the toxicity and physicochemical properties of the fibrils are different from those of Aβ amyloids formed in solution. Furthermore, differences between Aβ-(1–40 and Aβ-(1–42 in membrane interaction and amyloidogenesis are also emphasized.

  6. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    Nussinov, Ruth


    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  7. Neuroinflammation and Complexes of 17 beta-Hydroxysteroid Dehydrogenase type 10-Amyloid beta in Alzheimer's Disease

    Krištofíková, Z.; Řípová, D.; Bartoš, A.; Bocková, Markéta; Hegnerová, Kateřina; Říčný, J.; Čechová, L.; Vrajová, M.; Homola, Jiří


    Roč. 10, č. 2 (2013), s. 165-173. ISSN 1567-2050 R&D Projects: GA MZd(CZ) NT11225 Institutional support: RVO:67985882 Keywords : Amyloid beta * mitochondrial enzyme * Alzheimer 's disease Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.796, year: 2013

  8. Imaging of dialysis-related amyloid (AB-amyloid) deposits with 131I-beta 2-microglobulin

    The diagnosis of dialysis-related amyloid (AB-amyloid) has been based usually on clinical and radiological criteria. Following the discovery that beta 2-microglobulin was the major protein of this amyloid, we isolated and radiolabelled uremic plasma beta 2-microglobulin. After intravenous injection, gamma-camera images of selected joint areas were obtained from 42 patients who were on regular hemodialysis therapy. Positive scans involving the shoulder, hip, knee and carpal regions were found in 13 of 14 patients treated for more than 10 years and 10 of 16 patients treated for 5 to 10 years. Patients treated for less time had negative scans. Specificity was indicated by negative scans in non-amyloid inflammatory lesions in control hemodialysis patients. Up to 48-fold tracer enrichment was detected in excised AB-amyloid containing tissue as compared to amyloid-free tissue. These findings suggest that circulating radiolabelled beta 2-microglobulin is taken up by the amyloid deposits. This method may non-invasively detect tissue infiltrates of amyloid. It may also permit prospective evaluation of the efficacy of prophylactic dialysis strategies which are designed to prevent or delay the onset of this complication of long-term dialysis

  9. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations.

    Payel Das

    Full Text Available Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.

  10. Inhibition of beta-amyloid aggregation by fluorescent dye labels

    Amaro, Mariana; Wellbrock, Thorben; Birch, David J. S.; Rolinski, Olaf J., E-mail: [Photophysics group, Centre for Molecular Nanometrology, Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)


    The fluorescence decay of beta-amyloid's (Aβ) intrinsic fluorophore tyrosine has been used for sensing the oligomer formation of dye-labelled Aβ monomers and the results compared with previously studied oligomerization of the non-labelled Aβ peptides. It has been demonstrated that two different sized, covalently bound probes 7-diethylaminocoumarin-3-carbonyl and Hilyte Fluor 488 (HLF), alter the rate and character of oligomerization to different extents. The ability of HLF to inhibit formation of highly ordered structures containing beta-sheets was also shown. The implications of our findings for using fluorescence methods in amyloidosis research are discussed and the advantages of this auto-fluorescence approach highlighted.

  11. Multiple mechanisms of iron-induced amyloid beta-peptide accumulation in SHSY5Y cells: protective action of negletein.

    Banerjee, Priyanjalee; Sahoo, Arghyadip; Anand, Shruti; Ganguly, Anirban; Righi, Giuliana; Bovicelli, Paolo; Saso, Luciano; Chakrabarti, Sasanka


    The increased accumulation of iron in the brain in Alzheimer's disease (AD) is well documented, and excess iron is strongly implicated in the pathogenesis of the disease. The adverse effects of accumulated iron in AD brain may include the oxidative stress, altered amyloid beta-metabolism and the augmented toxicity of metal-bound amyloid beta 42. In this study, we have shown that exogenously added iron in the form of ferric ammonium citrate (FAC) leads to considerable accumulation of amyloid precursor protein (APP) without a corresponding change in the concerned gene expression in cultured SHSY5Y cells during exposure up to 48 h. This phenomenon is also associated with increased β-secretase activity and augmented release of amyloid beta 42 in the medium. Further, the increase in β-secretase activity, in SHSY5Y cells, upon exposure to iron apparently involves reactive oxygen species (ROS) and NF-κB activation. The synthetic flavone negletein (5,6-dihydroxy-7-methoxyflavone), which is a known chelator for iron, can significantly prevent the effects of FAC on APP metabolism in SHSY5Y cells. Further, this compound inhibits the iron-dependent formation of ROS and also blocks the iron-induced oligomerization of amyloid beta 42 in vitro. In concentrations used in this study, negletein alone appears to have only marginal toxic effects on cell viability, but, on the other hand, the drug is capable of ameliorating the iron-induced loss of cell viability considerably. Our results provide the initial evidence of potential therapeutic effects of negletein, which should be explored in suitable animal models of AD. PMID:25249289

  12. Identification of a Novel Parallel beta-Strand Conformation within Molecular Monolayer of Amyloid Peptide

    Liu, Lei; Li, Qiang; Zhang, Shuai;


    . In this work, the early A beta(33-42) aggregates forming the molecular monolayer at hydrophobic interface are investigated. The molecular monolayer of amyloid peptide A beta(33-42) consisting of novel parallel beta-strand-like structure is further revealed by means of a quantitative nanomechanical...... spectroscopy technique with force controlled in pico-Newton range, combining with molecular dynamic simulation. The identified parallel beta-strand-like structure of molecular monolayer is distinct from the antiparallel beta-strand structure of A beta(33-42) amyloid fibril. This finding enriches the molecular...

  13. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    Armando I. Gutiérrez-Lerma


    Full Text Available Soluble amyloid beta peptide (Aβ is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM. We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.

  14. PARP-1 modulates amyloid beta peptide-induced neuronal damage.

    Sara Martire

    Full Text Available Amyloid beta peptide (Aβ causes neurodegeneration by several mechanisms including oxidative stress, which is known to induce DNA damage with the consequent activation of poly (ADP-ribose polymerase (PARP-1. To elucidate the role of PARP-1 in the neurodegenerative process, SH-SY5Y neuroblastoma cells were treated with Aβ25-35 fragment in the presence or absence of MC2050, a new PARP-1 inhibitor. Aβ25-35 induces an enhancement of PARP activity which is prevented by cell pre-treatment with MC2050. These data were confirmed by measuring PARP-1 activity in CHO cells transfected with amylod precursor protein and in vivo in brains specimens of TgCRND8 transgenic mice overproducing the amyloid peptide. Following Aβ25-35 exposure a significant increase in intracellular ROS was observed. These data were supported by the finding that Aβ25-35 induces DNA damage which in turn activates PARP-1. Challenge with Aβ25-35 is also able to activate NF-kB via PARP-1, as demonstrated by NF-kB impairment upon MC2050 treatment. Moreover, Aβ25-35 via PARP-1 induces a significant increase in the p53 protein level and a parallel decrease in the anti-apoptotic Bcl-2 protein. These overall data support the hypothesis of PARP-1 involvment in cellular responses induced by Aβ and hence a possible rationale for the implication of PARP-1 in neurodegeneration is discussed.

  15. Difference in aggregation between functional and toxic amyloids studied by atomistic simulations

    Carballo Pacheco, Martin; Ismail, Ahmed E.; Strodel, Birgit

    Amyloids are highly structured protein aggregates, normally associated with neurodegenerative diseases such as Alzheimer's disease. In recent years, a number of nontoxic amyloids with physiologically normal functions, called functional amyloids, have been found. It is known that soluble small oligomers are more toxic than large fibrils. Thus, we study with atomistic explicit-solvent molecular dynamics simulations the oligomer formation of the amyloid- β peptide Aβ25 - 35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Our simulations show that monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations. In addition, we observe faster aggregation by functional amyloids than toxic amyloids, which could explain their lack of toxicity.

  16. Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide

    Giacomelli, CE; Norde, W


    The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that dena

  17. Characterization of D-enantiomeric peptides binding to monomeric Amyloid beta (1-42) identified by a competitive mirror image phage display

    Rudolph, Stephan; Kutzsche, Janine; Klein, Antonia Nicole; Frenzel, Daniel; Willbold, Dieter


    Alzheimer's disease (AD) is the most prominent type of dementia in elderly people. Until now there is no curative therapy available.Amyloid beta (Aβ) is assumed to play a major role in the development and progression of the disease. Freely diffusible, toxic Aβ oligomers seem to have a major toxicological impact.

  18. Amyloid-linked cellular toxicity triggered by bacterial inclusion bodies

    The aggregation of proteins in the form of amyloid fibrils and plaques is the characteristic feature of some pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. The mechanisms by which the aggregation processes result in cell damage are under intense investigation but recent data indicate that prefibrillar aggregates are the most proximate mediators of toxicity rather than mature fibrils. Since it has been shown that prefibrillar forms of the nondisease-related misfolded proteins are highly toxic to cultured mammalian cells we have studied the cytoxicity associated to bacterial inclusion bodies that have been recently described as protein deposits presenting amyloid-like structures. We have proved that bacterial inclusion bodies composed by a misfolding-prone β-galactosidase fusion protein are clearly toxic for mammalian cells but the β-galactosidase wild type enzyme forming more structured thermal aggregates does not impair cell viability, despite it also binds and enter into the cells. These results are in the line that the most cytotoxic aggregates are early prefibrilar assemblies but discard the hypothesis that the membrane destabilization is Key event to subsequent disruption of cellular processes, such as ion balance, oxidative state and the eventually cell death

  19. Beta-secretase-cleaved amyloid precursor protein in Alzheimer brain: a morphologic study

    Sennvik, Kristina; Bogdanovic, N; Volkmann, Inga; Fastbom, J; Benedikz, Eirikur


    (beta-sAPP) in brain tissue sections from the frontal, temporal and occipital lobe. Strong granular beta-sAPP staining was found throughout the gray matter of all three areas, while white matter staining was considerably weaker. beta-sAPP was found to be localized in astrocytes and in axons. We found...... the beta-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal beta-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. beta-sAPP was also found surrounding senile plaques and......beta-amyloid (Abeta) is the main constituent of senile plaques seen in Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases beta- and gamma-secretase. In this study, we examined content and localization of beta-secretase-cleaved APP...

  20. Characteristics of Amyloid-Related Oligomers Revealed by Crystal Structures of Macrocyclic [beta]-Sheet Mimics

    Liu, Cong; Sawaya, Michael R.; Cheng, Pin-Nan; Zheng, Jing; Nowick, James S.; Eisenberg, David (UCI); (UCLA)


    Protein amyloid oligomers have been strongly linked to amyloid diseases and can be intermediates to amyloid fibers. {beta}-Sheets have been identified in amyloid oligomers. However, because of their transient and highly polymorphic properties, the details of their self-association remain elusive. Here we explore oligomer structure using a model system: macrocyclic peptides. Key amyloidogenic sequences from A{beta} and tau were incorporated into macrocycles, thereby restraining them to {beta}-strands, but limiting the growth of the oligomers so they may crystallize and cannot fibrillate. We determined the atomic structures for four such oligomers, and all four reveal tetrameric interfaces in which {beta}-sheet dimers pair together by highly complementary, dry interfaces, analogous to steric zippers found in fibers, suggesting a common structure for amyloid oligomers and fibers. In amyloid fibers, the axes of the paired sheets are either parallel or antiparallel, whereas the oligomeric interfaces display a variety of sheet-to-sheet pairing angles, offering a structural explanation for the heterogeneity of amyloid oligomers.

  1. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.

    Lisa Cadavez

    Full Text Available In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP. The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR, perturbing endoplasmic reticulum (ER homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP or protein disulfite isomerase (PDI, and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA or 4-phenylbutyrate (PBA, alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.

  2. Amyloid-beta: a crucial factor in Alzheimer's disease.

    Sadigh-Eteghad, Saeed; Sabermarouf, Babak; Majdi, Alireza; Talebi, Mahnaz; Farhoudi, Mehdi; Mahmoudi, Javad


    Alzheimer's disease (AD) is the most prevalent form of dementia which affects people older than 60 years of age. In AD, the dysregulation of the amyloid-beta (Aβ) level leads to the appearance of senile plaques which contain Aβ depositions. Aβ is a complex biological molecule which interacts with many types of receptors and/or forms insoluble assemblies and, eventually, its nonphysiological depositions alternate with the normal neuronal conditions. In this situation, AD signs appear and the patients experience marked cognitional disabilities. In general, intellect, social skills, personality, and memory are influenced by this disease and, in the long run, it leads to a reduction in quality of life and life expectancy. Due to the pivotal role of Aβ in the pathobiology of AD, a great deal of effort has been made to reveal its exact role in neuronal dysfunctions and to finding efficacious therapeutic strategies against its adverse neuronal outcomes. Hence, the determination of its different molecular assemblies and the mechanisms underlying its pathological effects are of interest. In the present paper, some of the well-established structural forms of Aβ, its interactions with various receptors and possible molecular and cellular mechanisms underlying its neurotoxicity are discussed. In addition, several Aβ-based rodent models of AD are reviewed. PMID:25471398

  3. ToF-SIMS analysis of amyloid beta aggregation on different lipid membranes.

    Yokoyama, Yuta; Aoyagi, Satoka; Shimanouchi, Toshinori; Iwamura, Miki; Iwai, Hideo


    Amyloid beta (Aβ) peptides are considered to be strongly related to Alzheimer's disease. Aβ peptides form a β-sheet structure on hard lipid membranes and it would aggregate to form amyloid fibrils, which are toxic to cells. However, the aggregation mechanism of Aβ is not fully understood. To evaluate the influence of the lipid membrane condition for Aβ aggregation, the adsorption forms of Aβ (1-40) on mixture membranes of lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol β-d-glucoside (β-CG) were investigated by time-of-flight secondary ion mass spectrometry. As a result, Aβ adsorbed along the localized DMPC lipid on the mixture lipid membranes, whereas it was adsorbed homogeneously on the pure DMPC and β-CG membranes. Moreover, amino acid fragments that mainly existed in the n-terminal of Aβ (1-40) peptide were strongly detected on the localized DMPC region. These results suggested that the Aβ was adsorbed along the localized DMPC lipid with a characteristic orientation. These findings suggest that the hardness of the membrane is very sensitive to coexisting materials and that surface hardness is important for aggregation of Aβ. PMID:26822505

  4. Beta-protein deposition: a pathogenetic link between Alzheimer's disease and cerebral amyloid angiopathies.

    Coria, F; Prelli, F; Castaño, E M; Larrondo-Lillo, M; Fernandez-Gonzalez, J; van Duinen, S G; Bots, G T; Luyendijk, W; Shelanski, M L; Frangione, B


    Cerebral amyloid angiopathy (CAA) refers to a group of hereditary (hereditary cerebral hemorrhage with amyloidosis, HCHWA and sporadic (SCAA) disorders characterized by amyloid fibril deposition restricted to the leptomeningeal and cortical vasculature leading to recurrent hemorrhagic and/or ischemic accidents. On clinical and biochemical grounds, two forms of HCHWA can be distinguished. The amyloid subunit of the HCHWA of Icelandic origin is related to Cystatin C, while amyloid from patients of Dutch origin (HCHWA-D) is related to the beta-protein (or A4), the main component of vascular and plaque core amyloid in Alzheimer's disease (AD) and Down's syndrome (DS) [corrected]. SCAA is an increasingly recognized cause of stroke in normotensive individual amounting to 5-10% of all cerebrovascular accidents. We now report the isolation and partial amino acid sequence of the amyloid subunit from a case of SCAA and a new case of HCHWA-D. The recognition that a heterogeneous group of diseases are linked by similar pathological and chemical features suggests that diversity of etiological factors may promote a common pathogenetic mechanism leading to amyloid-beta (A beta) deposition, and open new ways of research in AD and CAA as they are related to dementia and stroke. PMID:3058268

  5. Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer's disease.

    Michael, Ralph; Rosandić, Jurja; Montenegro, Gustavo A; Lobato, Elvira; Tresserra, Francisco; Barraquer, Rafael I; Vrensen, Gijs F J M


    Eye lenses from human donors with and without Alzheimer's disease (AD) were studied to evaluate the presence of amyloid in cortical cataract. We obtained 39 lenses from 21 postmortem donors with AD and 15 lenses from age-matched controls provided by the Banco de Ojos para Tratamientos de la Ceguera (Barcelona, Spain). For 17 donors, AD was clinically diagnosed by general physicians and for 4 donors the AD diagnosis was neuropathologically confirmed. Of the 21 donors with AD, 6 had pronounced bilateral cortical lens opacities and 15 only minor or no cortical opacities. As controls, 7 donors with pronounced cortical opacities and 8 donors with almost transparent lenses were selected. All lenses were photographed in a dark field stereomicroscope. Histological sections were analyzed using a standard and a more sensitive Congo red protocol, thioflavin staining and beta-amyloid immunohistochemistry. Brain tissue from two donors, one with cerebral amyloid angiopathy and another with advanced AD-related changes and one cornea with lattice dystrophy were used as positive controls for the staining techniques. Thioflavin, standard and modified Congo red staining were positive in the control brain tissues and in the dystrophic cornea. Beta-amyloid immunohistochemistry was positive in the brain tissues but not in the cornea sample. Lenses from control and AD donors were, without exception, negative after Congo red, thioflavin, and beta-amyloid immunohistochemical staining. The results of the positive control tissues correspond well with known observations in AD, amyloid angiopathy and corneas with lattice dystrophy. The absence of staining in AD and control lenses with the techniques employed lead us to conclude that there is no beta-amyloid in lenses from donors with AD or in control cortical cataracts. The inconsistency with previous studies of Goldstein et al. (2003) and Moncaster et al. (2010), both of which demonstrated positive Congo red, thioflavin, and beta-amyloid

  6. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan


    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  7. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice

    Shah, Shahid Ali; Yoon, Gwang Ho; Ahmad, Ashfaq; Ullah, Faheem; Amin, Faiz Ul; Kim, Myeong Ok


    The adverse effects of nanoscale-alumina (Al2O3-NPs) have been previously demonstrated in both in vitro and in vivo studies, whereas little is known about their mechanism of neurotoxicity. It is the goal of this research to determine the toxic effects of nano-alumina on human neuroblastoma SH-SY5Y and mouse hippocampal HT22 cells in vitro and on ICR female mice in vivo. Nano-alumina displayed toxic effects on SH-SY5Y cell lines in three different concentrations also increased aluminium abundance and induced oxidative stress in HT22 cells. Nano-alumina peripherally administered to ICR female mice for three weeks increased brain aluminium and ROS production, disturbing brain energy homeostasis, and led to the impairment of hippocampus-dependent memory. Most importantly, these nano-particles induced Alzheimer disease (AD) neuropathology by enhancing the amyloidogenic pathway of Amyloid Beta (Aβ) production, aggregation and implied the progression of neurodegeneration in the cortex and hippocampus of these mice. In conclusion, these data demonstrate that nano-alumina is toxic to both cells and female mice and that prolonged exposure may heighten the chances of developing a neurodegenerative disease, such as AD.

  8. Amyloid-Beta Related Angiitis of the Central Nervous System: Case Report and Topic Review



    Full Text Available Amyloid-beta related angiitis (ABRA of the central nervous system (CNS is a rare disorder with overlapping features of primary angiits of the CNS (PACNS and cerebral amyloid angiopathy (CAA. We evaluated a 74-year-old man with intermittent left sided weakness and MRI findings of leptomeningeal enhancement, vasogenic edema and subcortical white matter disease proven to have ABRA. We discuss clinicopathological features and review the topic of ABRA.

  9. In silico study of amyloid beta-protein folding relevant to Alzheimer's disease

    Lam Ng, Alfonso Ramon

    Amyloid beta-protein (Abeta) folding is the initial step in the formation of the early toxic Abeta assemblies that are critically linked to Alzheimer's disease (AD). Abeta exists in two main alloforms, Abeta40 and Abeta42, composed of 40 and 42 residues, respectively. Abeta42 aggregates faster, forms more toxic assemblies, and is linked more strongly to AD. Two amino acids of Abeta42, I41 and A42, profoundly affect the behavior of Abeta40 and Abeta42. To examine why this happens, I study Abeta40 and Abeta42 folding using discrete molecular dynamics and a four-bead protein model with backbone hydrogen bonding and residue-specific effective hydropathic and electrostatic interactions. In particular, I explore a range of values of the hydropathic (EHP) and electrostatic (ECH) potential energies. For each peptide, I create a hundred different initial conformations for each set of parameters (EHP,E CH). I investigate the Abeta40 and Abeta42 monomer folding in a wide temperature range and quantify the folded structures by calculating the secondary structure propensities and the intramolecular contact maps. For each set of parameters (EHP,ECH), I calculate an average beta-strand secondary structure propensity in the Abeta40 and Abeta42 monomers as a function of temperature. I compare these simulated results with experimental circular dichroism measurements and estimate the model physiological temperature and the model parameters (E HP,ECH) that best fit the experimental conditions. The results show that in the temperature range [278K,350K], the average beta-strand in Abeta42 is larger than that of Abeta40, which is in agreement with experiments. The model predicts that the average beta-strand propensity should decrease for T>350K. At low temperatures, both Abeta40 and Abeta42 adopt a predominantly collapsed-coil conformation with small amounts of an beta-helical secondary structure (<1%). At high temperatures, beta-strand rich structures are more prominent (19%). Also, the

  10. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease

    Reddy, P. Hemachandra; Beal, M. Flint


    Recent studies of postmortem brains from Alzheimer’s disease (AD) patients and transgenic AD mice suggest that oxidative damage, induced by amyloid beta, is associated with mitochondria early in AD progression. Amyloid beta and amyloid precursor protein are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species produ...

  11. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes

    Miklossy, J.; Miller, L.; Qing, H.; Radenovic, A.; Kis, A.; Vileno, B.; Laszlo, F.; Martins, R.N.; Waeber, G.; Mooser, V.; Bosman, F.; Khalili, K.; Darbinian, N.; McGeer, P.L.


    Strong epidemiologic evidence suggests an association between Alzheimer disease (AD) and type 2 diabetes. To determine if amyloid beta (A{beta}) and hyperphosphorylated tau occurs in type 2 diabetes, pancreas tissues from 21 autopsy cases (10 type 2 diabetes and 11 controls) were analyzed. APP and tau mRNAs were identified in human pancreas and in cultured insulinoma beta cells (INS-1) by RT-PCR. Prominent APP and tau bands were detected by Western blotting in pancreatic extracts. Aggregated A{beta}, hyperphosphorylated tau, ubiquitin, apolipoprotein E, apolipoprotein(a), IB1/JIP-1 and JNK1 were detected in Langerhans islets in type 2 diabetic patients. A{beta} was co-localized with amylin in islet amyloid deposits. In situ beta sheet formation of islet amyloid deposits was shown by infrared microspectroscopy (SIRMS). LPS increased APP in non-neuronal cells as well. We conclude that A{beta} deposits and hyperphosphorylated tau are also associated with type 2 diabetes, highlighting common pathogenetic features in neurodegenerative disorders, including AD and type 2 diabetes and suggesting that A{beta} deposits and hyperphosphorylated tau may also occur in other organs than the brain.

  12. How Ionic Strength Affects the Conformational Behavior of Human and Rat Beta Amyloids - A Computational Study

    Kriz Z.; Klusak J.; Kristofikova Z.; Koca J.


    Progressive cerebral deposition of amyloid beta occurs in Alzheimeŕs disease and during the aging of certain mammals (human, monkey, dog, bear, cow, cat) but not others (rat, mouse). It is possibly due to different amino acid sequences at positions 5, 10 and 13. To address this issue, we performed series of 100 ns long trajectories (each trajectory was run twice with different initial velocity distribution) on amyloid beta (1–42) with the human and rat amino acid sequence in three different e...

  13. Oligomer Formation of Toxic and Functional Amyloid Peptides Studied with Atomistic Simulations.

    Carballo-Pacheco, Martín; Ismail, Ahmed E; Strodel, Birgit


    Amyloids are associated with diseases, including Alzheimer's, as well as functional roles such as storage of peptide hormones. It is still unclear what differences exist between aberrant and functional amyloids. However, it is known that soluble oligomers formed during amyloid aggregation are more toxic than the final fibrils. Here, we perform molecular dynamics simulations to study the aggregation of the amyloid-β peptide Aβ25-35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Although the three peptides have similar primary sequences, tachykinin peptides, in contrast to Aβ25-35, form nontoxic amyloids. Our simulations reveal that the charge of the C-terminus is essential to controlling the aggregation process. In particular, when the kassinin C-terminus is not amidated, the aggregation kinetics decreases considerably. In addition, we observe that the monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations. PMID:26130191

  14. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants

    Tiwari, Manish Kumar; Kepp, Kasper Planeta


    contributes to our understanding of amyloid aggregation and suggests a method to predict aggregation propensity and toxicity of Aβ variants, and potentially to reduce aggregation propensities of amyloids by molecular intervention directed toward specific conformations of the peptides........ The present paper reports modeling of the aggregation propensities and cell toxicities of genetic variants of Aβ known to increase disease risk. From correlation to experimental data, and using four distinct experimental structures to test structural sensitivity, we find that the Spatial Aggregation...

  15. DNA polymerase-beta is expressed early in neurons of Alzheimer's disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid

    A. Copani; J.J.M. Hoozemans; F. Caraci; M. Calafiore; E.S. van Haastert; R. Veerhuis; A.J.M. Rozemuller; E. Aronica; M.A. Sortino; F. Nicoletti


    Cultured neurons exposed to synthetic beta-amyloid (A beta) fragments reenter the cell cycle and initiate a pathway of DNA replication that involves the repair enzyme DNA polymerase-beta (DNA pol-beta) before undergoing apoptotic death. In this study, by performing coimmunoprecipitation experiments

  16. The Effect of Glycosaminoglycans (GAGs on Amyloid Aggregation and Toxicity

    Clara Iannuzzi


    Full Text Available Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.

  17. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation

    Brambilla, Davide; Verpillot, Romain; Le Droumaguet, Benjamin;


    We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aß(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs on the...

  18. Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved beta(2)-microglobulin

    Heegaard, N.H.H.; Jørgensen, T.J.D.; Rozlosnik, N.;


    . Using amide hydrogen/deuterium exchange monitored by mass spectrometry, we show that Delta K58-beta(2)m has increased unfolding rates compared to wt-beta(2)m and that unfolding is highly temperature dependent. The unfolding rate is I order of magnitude faster in Delta K58-beta(2)M than in wt-beta(2)m...... fluorescence. After a few days at 37 degrees C, in contrast to wt-beta(2)M, Delta K-58-beta(2)M forms well-defined high molecular weight aggregates that are detected by size-exclusion chromatography. Atomic force microscopy after seeding with amyloid-beta(2)m fibrils under conditions that induce minimal...

  19. MMPBSA Decomposition of the Binding Energy throughout a Molecular Dynamics Simulation of Amyloid-Beta (Aß10−35 Aggregation

    Josep M. Campanera


    Full Text Available Recent experiments with amyloid-beta (Aβ peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer’s disease. The toxicity of Aβ oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Aβ10−35 monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  20. Detection of Alzheimer’s disease amyloid-beta plaque deposition by deep brain impedance profiling

    Béduer, Amélie; Joris, Pierre; Mosser, Sébastien; Fraering, Patrick C.; Renaud, Philippe


    Objective. Alzheimer disease (AD) is the most common form of neurodegenerative disease in elderly people. Toxic brain amyloid-beta (Aß) aggregates and ensuing cell death are believed to play a central role in the pathogenesis of the disease. In this study, we investigated if we could monitor the presence of these aggregates by performing in situ electrical impedance spectroscopy measurements in AD model mice brains. Approach. In this study, electrical impedance spectroscopy measurements were performed post-mortem in APPPS1 transgenic mice brains. This transgenic model is commonly used to study amyloidogenesis, a pathological hallmark of AD. We used flexible probes with embedded micrometric electrodes array to demonstrate the feasibility of detecting senile plaques composed of Aß peptides by localized impedance measurements. Main results. We particularly focused on deep brain structures, such as the hippocampus. Ex vivo experiments using brains from young and old APPPS1 mice lead us to show that impedance measurements clearly correlate with the percentage of Aβ plaque load in the brain tissues. We could monitor the effects of aging in the AD APPPS1 mice model. Significance. We demonstrated that a localized electrical impedance measurement constitutes a valuable technique to monitor the presence of Aβ-plaques, which is complementary with existing imaging techniques. This method does not require prior Aβ staining, precluding the risk of variations in tissue uptake of dyes or tracers, and consequently ensuring reproducible data collection.

  1. Bioassay-Guided Isolation of Neuroprotective Compounds from Uncaria rhynchophylla against Beta-Amyloid-Induced Neurotoxicity

    Yan-Fang Xian


    Full Text Available Uncaria rhynchophylla is a component herb of many Chinese herbal formulae for the treatment of neurodegenerative diseases. Previous study in our laboratory has demonstrated that an ethanol extract of Uncaria rhynchophylla ameliorated cognitive deficits in a mouse model of Alzheimer’s disease induced by D-galactose. However, the active ingredients of Uncaria rhynchophylla responsible for the anti-Alzheimer’s disease activity have not been identified. This study aims to identify the active ingredients of Uncaria rhynchophylla by a bioassay-guided fractionation approach and explore the acting mechanism of these active ingredients by using a well-established cellular model of Alzheimer’s disease, beta-amyloid- (Aβ- induced neurotoxicity in PC12 cells. The results showed that six alkaloids, namely, corynoxine, corynoxine B, corynoxeine, isorhynchophylline, isocorynoxeine, and rhynchophylline were isolated from the extract of Uncaria rhynchophylla. Among them, rhynchophylline and isorhynchophylline significantly decreased Aβ-induced cell death, intracellular calcium overloading, and tau protein hyperphosphorylation in PC12 cells. These results suggest that rhynchophylline and isorhynchophylline are the major active ingredients responsible for the protective action of Uncaria rhynchophylla against Aβ-induced neuronal toxicity, and their neuroprotective effect may be mediated, at least in part, by inhibiting intracellular calcium overloading and tau protein hyperphosphorylation.

  2. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Bastus Neus


    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  3. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Araya, Eyleen; Olmedo, Ivonne; Bastus, Neus G.; Guerrero, Simón; Puntes, Víctor F.; Giralt, Ernest; Kogan, Marcelo J.


    Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ) amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  4. Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes

    Lee, Jiyeon; Retamal, Claudio; Cuitino, Loreto; Caruano-Yzermans, Amy; Shin, Jung-Eun; van Kerkhof, Peter; Marzolo, Maria-Paz; Bu, Guojun


    Accumulation of extracellular amyloid beta peptide (A beta), generated from amyloid precursor protein (APP) processing by beta- and gamma-secretases, is toxic to neurons and is central to the pathogenesis of Alzheimer disease. Production of A beta from APP is greatly affected by the subcellular loca

  5. Molecular simulations of beta-amyloid protein near hydrated lipids (PECASE).

    Thompson, Aidan Patrick; Han, Kunwoo (Texas A& M University, College Station, TX); Ford, David M. (Texas A& M University, College Station, TX)


    We performed molecular dynamics simulations of beta-amyloid (A{beta}) protein and A{beta} fragment(31-42) in bulk water and near hydrated lipids to study the mechanism of neurotoxicity associated with the aggregation of the protein. We constructed full atomistic models using Cerius2 and ran simulations using LAMMPS. MD simulations with different conformations and positions of the protein fragment were performed. Thermodynamic properties were compared with previous literature and the results were analyzed. Longer simulations and data analyses based on the free energy profiles along the distance between the protein and the interface are ongoing.

  6. Atomic structure of the cross-[beta] spine of islet amyloid polypeptide (amylin)

    Wiltzius, J.J.; Sievers, S.A.; Sawaya, M.R.; Cascio, D.; Popov, D.; Riekel, C.; Eisenberg, D. (UCLA); (ESRF)


    Human islet amyloid polypeptide (IAPP or amylin) is a 37-residue hormone found as fibrillar deposits in pancreatic extracts of nearly all type II diabetics. Although the cellular toxicity of IAPP has been established, the structure of the fibrillar form found in these deposits is unknown. Here we have crystallized two segments from IAPP, which themselves form amyloid-like fibrils. The atomic structures of these two segments, NNFGAIL and SSTNVG, were determined, and form the basis of a model for the most commonly observed, full-length IAPP polymorph.

  7. [beta subsccript 2]-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages

    Liu, Cong; Sawaya, Michael R.; Eisenberg, David (UCLA)


    {beta}{sub 2}-microglobulin ({beta}{sub 2}-m) is the light chain of the type I major histocompatibility complex. It deposits as amyloid fibrils within joints during long-term hemodialysis treatment. Despite the devastating effects of dialysis-related amyloidosis, full understanding of how fibrils form from soluble {beta}{sub 2}-m remains elusive. Here we show that {beta}{sub 2}-m can oligomerize and fibrillize via three-dimensional domain swapping. Isolating a covalently bound, domain-swapped dimer from {beta}{sub 2}-m oligomers on the pathway to fibrils, we were able to determine its crystal structure. The hinge loop that connects the swapped domain to the core domain includes the fibrillizing segment LSFSKD, whose atomic structure we also determined. The LSFSKD structure reveals a class 5 steric zipper, akin to other amyloid spines. The structures of the dimer and the zipper spine fit well into an atomic model for this fibrillar form of {beta}{sub 2}-m, which assembles slowly under physiological conditions.

  8. Laser-Induced In-Source Decay Applied to the Determination of Amyloid-Beta in Alzheimer's Brains.

    Kelley, Andrea R; Perry, George; Castellani, Rudolph J; Bach, Stephan B H


    A method for the analysis of amyloid-beta peptides in isolated plaques and intact tissue sections affected by Alzheimer's disease (AD) is presented. This method employs matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry and the inherent laser-induced in-source decay (ISD) that occurs coupled with imaging mass spectrometry (IMS) to investigate the composition of these samples eliminating the need for other confirmational MS/MS techniques. These results demonstrate this technique's usefulness for the identification of amyloid-beta peptides in tissue and isolated senile plaques from AD patients using the reproducible fragmentation pattern demonstrated via the laser-induced ISD of synthetic amyloid-beta peptide clips (1-40, 1-42). Clear differences between the hippocampal AD tissue and the control hippocampal tissue regarding the presence of amyloid-beta have been identified. These are based on laser-induced ISD of standard amyloid-beta clips as controls as well as the analysis of isolated senile plaques as a confirmation before tissue analysis. Using the resulting observed peptide clip masses from the control data, we present mass spectrometry based identification of the amyloid-beta peptides in both isolated plaques and hippocampal regions of those patients diagnosed with AD. PMID:26720297

  9. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells

    Drews, Anna; Flint, Jennie; Shivji, Nadia; Jönsson, Peter; Wirthensohn, David; De Genst, Erwin; Vincke, Cécile; Muyldermans, Serge; Dobson, Chris; Klenerman, David


    Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations. PMID:27553885

  10. S14G-humanin restored cellular homeostasis disturbed by amyloid-beta protein***

    Xue Li; Wencong Zhao; Hongqi Yang; Junhong Zhang; Jianjun Ma


    Humanin is a potential therapeutic agent for Alzheimer’s disease, and its derivative, S14G-humanin, is 1 000-fold stronger in its neuroprotective effect against Alzheimer’s disease-relevant insults. Alt-hough effective, the detailed molecular mechanism through which S14G-humanin exerts its effects remains unclear. Data from this study showed that fibril ar amyloid-beta 40 disturbed cel ular ho-meostasis through the cel membrane, increasing intracel ular calcium, generating reactive oxygen species, and decreasing the mitochondrial membrane potential. S14G-humanin restored these re-sponses. The results suggested that S14G-humanin blocked the effects of amyloid-beta 40 on the neuronal cel membrane, and restored the disturbed cel ular homeostasis, thereby exerting a neuroprotective effect on hippocampal neurons.

  11. Sex-dependent actions of amyloid beta peptides on hippocampal choline carriers of postnatal rats

    Krištofíková, Z.; Říčný, Jan; Kozmiková, I.; Řípová, D.; Zach, P.; Klaschka, Jan


    Roč. 31, č. 3 (2006), s. 351-360. ISSN 0364-3190 R&D Projects: GA ČR(CZ) GA305/03/1547 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10300504 Keywords : amyloid beta peptide * high affinity choline transport * rat hippocampus Subject RIV: ED - Physiology Impact factor: 2.139, year: 2006

  12. The role of animal models in advancing amyloid-beta immunotherapy to the clinic

    Games, Dora; Seubert, Peter


    The amyloid-beta (Aβ) hypothesis of Alzheimer's disease (AD) causality is now well into its third decade and is finally entering a phase of rigorous clinical testing in numerous late stage clinical trials. The use of Aβ-based animal models of AD has been essential to the discovery and/or preclinical validation of many of these therapeutic approaches. While several neuropathologically based results from preclinical studies have translated nicely into AD patients, the full clinical value of Aβ-...

  13. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters

    Toneff, Thomas; Funkelstein, Lydiane; Mosier, Charles; Abagyan, Armen; Ziegler, Michael; Hook, Vivian


    Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1–40) and Aβ(1–42) with peptide neurotransmitters (galanin, enkephalin, an...


    András, Ibolya E.; Toborek, Michal


    In recent years we face an increase in the aging of the HIV-1-infected population, which is not only due to effective antiretroviral therapy but also to new infections among older people. Even with the use of the antiretroviral therapy, HIV-associated neurocognitive disorders represent an increasing problem as the HIV-1-infected population ages. Increased amyloid beta (Aβ) deposition is characteristic of HIV-1-infected brains, and it has been hypothesized that brain vascular dysfunction contr...

  15. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae

    Hansson Petersen, Camilla A; Alikhani, Nyosha; Behbahani, Homira;


    The amyloid beta-peptide (Abeta) has been suggested to exert its toxicity intracellularly. Mitochondrial functions can be negatively affected by Abeta and accumulation of Abeta has been detected in mitochondria. Because Abeta is not likely to be produced locally in mitochondria, we decided to...... investigate the mechanisms for mitochondrial Abeta uptake. Our results from rat mitochondria show that Abeta is transported into mitochondria via the translocase of the outer membrane (TOM) machinery. The import was insensitive to valinomycin, indicating that it is independent of the mitochondrial membrane...... potential. Subfractionation studies following the import experiments revealed Abeta association with the inner membrane fraction, and immunoelectron microscopy after import showed localization of Abeta to mitochondrial cristae. A similar distribution pattern of Abeta in mitochondria was shown by...

  16. Preferential Transport Theory for Beta-Amyloid Clearance from the Brain

    Coloma, Mikhail; Schaffer, David; Chiarot, Paul; Huang, Peter


    The failure to clear beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. However, the transport mechanism for beta-amyloid clearance is not well understood. In this study, we propose a preferential transport theory for flow within the vascular walls in the cerebral arterial basement membrane. The flow conduit within the arterial basement membrane is modeled as an annulus between deformable concentric cylinders filled with an incompressible, single-phase Newtonian fluid. The transport is driven by arterial lumen deformation induced by heart pulsations superimposed with reflected boundary waves. Our theory predicts that while the overall arterial wave propagation is in the same direction as the blood flow toward the capillaries, a reverse flow in the basement membrane can be preferentially induced toward larger arteries. This has been suggested as a potential clearance pathway for beta-amyloid. We estimate the magnitude of the reverse transport through a control volume analysis which is corroborated by numerical solutions of the Navier-Stokes equations. Bench-top experiments to validate our computational models are presented.

  17. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide

    de Melo, Joana Barbosa; Agostinho, Paula; Oliveira, Catarina Resende


    Acetylcholinesterase (AChE) activity is increased within and around amyloid plaques, which are present in Alzheimer's disease (AD) patient's brain. In this study, using cultured retinal cells as a neuronal model, we analyzed the effect of the synthetic peptide A[beta]25-35 on the activity of AChE, the degradation enzyme of acetylcholine, as well as the involvement of oxidative stress in this process. The activity of AChE was increased when retinal cells were incubated with A[beta]25-35 (25 [m...

  18. Neuroprotective effects of Triticum aestivum L. against beta-amyloid-induced cell death and memory impairments.

    Jang, Jung-Hee; Kim, Chang-Yul; Lim, Sun Ha; Yang, Chae Ha; Song, Kyung-Sik; Han, Hyung Soo; Lee, Hyeong-Kyu; Lee, Jongwon


    beta-Amyloid (A beta) is a key component of senile plaques, neuropathological hallmarks of Alzheimer's disease (AD) and has been reported to induce cell death via oxidative stress. This study investigated the protective effects of Triticum aestivum L. (TAL) on A beta-induced apoptosis in SH-SY5Y cells and cognitive dysfunctions in Sprague-Dawley (SD) rats. Cells treated with A beta exhibited decreased viability and apoptotic features, such as DNA fragmentation, alterations in mitochondria and an increased Bax/Bcl-2 ratio, which were attenuated by TAL extract (TALE) pretreatment. To elucidate the neuroprotective mechanisms of TALE, the study examined A beta-induced oxidative stress and cellular defense. TALE pretreatment suppressed A beta-increased intracellular accumulation of reactive oxygen species (ROS) via up-regulation of glutathione, an essential endogenous antioxidant. To further verify the effect of TALE on memory impairments, A beta or scopolamine was injected in SD rats and a water maze task conducted as a spatial memory test. A beta or scopolamine treatment increased the time taken to find the platform during training trials, which was decreased by TALE pretreatment. Furthermore, one of the active components of TALE, total dietary fiber also effectively inhibited A beta-induced cytotoxicity and scopolamine-caused memory deficits. These results suggest that TALE may have preventive and/or therapeutic potential in the management of AD. PMID:19441012

  19. Effect of copper (II) ion against elongation behavior of amyloid {beta} fibrils on liposome membranes

    Shimanouchi, T.; Onishi, R.; Kitaura, N.; Umakoshi, H.; Kuboi, R. [Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka (Japan)


    The fibril growth behavior of amyloid {beta} protein (A{beta}) on cell membranes is relating to the progression of Alzheimer's disease. This growth behavior of A{beta} fibrils is sensitively affected by the metal ions, neurotransmitters, or bioreactive substrate. The inhibitory effect of those materials was quantitatively estimated from the viewpoints of ''crystal growth''. In a bulk aqueous solution, copper (II) ion showed the strong inhibitory effect on the growth of A{beta} fibrils. Meanwhile, the addition of a closed-phospholipid bilayer membrane (liposome) could reduce the above inhibitory effect of copper (II) ion. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Copper Exposure Perturbs Brain Inflammatory Responses and Impairs Clearance of Amyloid-Beta.

    Kitazawa, Masashi; Hsu, Heng-Wei; Medeiros, Rodrigo


    Copper promotes a toxic buildup of amyloid-beta (Aβ) and neurofibrillary tangle pathology in the brain, and its exposure may increase the risk for Alzheimer's disease (AD). However, underlying molecular mechanisms by which copper triggers such pathological changes remain largely unknown. We hypothesized that the copper exposure perturbs brain inflammatory responses, leading to impairment of Aβ clearance from the brain parenchyma. Here, we investigated whether copper attenuated Aβ clearance by microglial phagocytosis or by low-density lipoprotein-related receptor protein-1 (LRP1) dependent transcytosis in both in vitro and in vivo When murine monocyte BV2 cells were exposed to copper, their phagocytic activation induced by fibrillar Aβ or LPS was significantly reduced, while the secretion of pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, were increased. Interestingly, not only copper itself but also IL-1β, IL-6, or TNF-α were capable of markedly reducing the expression of LRP1 in human microvascular endothelial cells (MVECs) in a concentration-dependent manner. While copper-mediated downregulation of LRP1 was proteasome-dependent, the cytokine-induced loss of LRP1 was proteasome- or lysosome-independent. In the mouse model, copper exposure also significantly elevated neuroinflammation and downregulated LRP1 in the brain, consistent with our in vitro results. Taken together, our findings support the pathological impact of copper on inflammatory responses and Aβ clearance in the brain, which could serve as key mechanisms to explain, in part, the copper exposure as an environmental risk factor for AD. PMID:27122238

  1. The polyphenol Oleuropein aglycone hinders the growth of toxic transthyretin amyloid assemblies.

    Leri, Manuela; Nosi, Daniele; Natalello, Antonino; Porcari, Riccardo; Ramazzotti, Matteo; Chiti, Fabrizio; Bellotti, Vittorio; Doglia, Silvia Maria; Stefani, Massimo; Bucciantini, Monica


    Transthyretin (TTR) is involved in a subset of familial or sporadic amyloid diseases including senile systemic amyloidosis (SSA), familial amyloid polyneuropathy and cardiomyopathy (FAP/FAC) for which no effective therapy has been found yet. These conditions are characterized by extracellular deposits primarily found in the heart parenchyma and in peripheral nerves whose main component are amyloid fibrils, presently considered the main culprits of cell sufferance. The latter are polymeric assemblies grown from misfolded TTR, either wt or carrying one out of many identified mutations. The recent introduction in the clinical practice of synthetic TTR-stabilizing molecules that reduce protein aggregation provides the rationale to search natural effective molecules able to interfere with TTR amyloid aggregation by hindering the appearance of toxic species or by favoring the growth of harmless aggregates. Here we carried out an in depth biophysical and morphological study on the molecular features of the aggregation of wt- and L55P-TTR involved in SSA or FAP/FAC, respectively, and on the interference with fibril aggregation, stability and toxicity to cardiac HL-1 cells to demonstrate the ability of Oleuropein aglycone (OleA), the main phenolic component of the extra virgin olive oil. We describe the molecular basis of such interference and the resulting reduction of TTR amyloid aggregate cytotoxicity. Our data offer the possibility to validate and optimize the use of OleA or its molecular scaffold to rationally design promising drugs against TTR-related pathologies that could enter a clinical experimental phase. PMID:27012632

  2. Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients

    Sennvik, K; Fastbom, J; Blomberg, M;


    Alternative cleavage of the amyloid precursor protein (APP) results in generation and secretion of both soluble APP (sAPP) and beta-amyloid (Abeta). Abeta is the main component of the amyloid depositions in the brains of Alzheimer's disease (AD) patients. Using Western blotting, we compared the...... levels of alpha-secretase cleaved sAPP, beta-secretase cleaved sAPP and total sAPP, in cerebrospinal fluid (CSF) from 13 sporadic AD patients and 13 healthy controls. Our findings show significant amounts of beta-secretase cleaved sAPP in CSF. There was no statistically significant difference in the...... levels of beta-secretase cleaved sAPP between AD patients and controls. The levels of alpha-secretase cleaved sAPP and total sAPP were, however, found to be significantly lower in the AD patients than in the controls....

  3. Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease

    Portelius, Erik; Andreasson, Ulf; Ringman, John M.; Buerger, Katharina; Daborg, Jonny; Buchhave, Peder; Hansson, Oskar; Harmsen, Andreas; Gustavsson, Mikael K; Hanse, Eric; Galasko, Douglas; Hampel, Harald; Blennow, Kaj; Zetterberg, Henrik


    Background: Alzheimer's disease (AD) is associated with deposition of amyloid beta (A beta) in the brain, which is reflected by low concentration of the A beta 1-42 peptide in the cerebrospinal fluid (CSF). There are at least 15 additional A beta peptides in human CSF and their relative abundance pattern is thought to reflect the production and degradation of A beta. Here, we test the hypothesis that AD is characterized by a specific CSF A beta isoform pattern that is distinct when comparing ...

  4. An imidazoline compound completely counteracts interleukin-1[beta] toxic effects to rat pancreatic islet [beta] cells

    Papaccio, Gianpaolo; Nicoletti, Ferdinando; Pisanti, Francesco A; Galdieri, Michela; Bendtzen, Klaus


    In vitro studies have demonstrated that interleukin (IL)-1beta decreases insulin and DNA contents in pancreatic islet beta cells, causing structural damage, that it is toxic to cultured human islet beta cells and that it is able to induce apoptosis in these cells....

  5. αB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by κ-casein and the amyloid-β peptide

    Dehle, Francis C.; Ecroyd, Heath; Musgrave, Ian F.; Carver, John A.


    Amyloid fibril formation is associated with diseases such as Alzheimer’s, Parkinson’s, and prion diseases. Inhibition of amyloid fibril formation by molecular chaperone proteins, such as the small heat-shock protein αB-crystallin, may play a protective role in preventing the toxicity associated with this form of protein misfolding. Reduced and carboxymethylated κ-casein (RCMκ-CN), a protein derived from milk, readily and reproducibly forms fibrils at physiological temperature and pH. We inves...

  6. Development of magnetic resonance imaging based detection methods for beta amyloids via sialic acid-functionalized magnetic nanoparticles

    Kouyoumdjian, Hovig

    The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.

  7. Alzheimer's disease amyloid-beta links lens and brain pathology in Down syndrome.

    Juliet A Moncaster

    Full Text Available Down syndrome (DS, trisomy 21 is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans. In DS, triplication of chromosome 21 invariably includes the APP gene (21q21 encoding the Alzheimer's disease (AD amyloid precursor protein (APP. Triplication of the APP gene accelerates APP expression leading to cerebral accumulation of APP-derived amyloid-beta peptides (Abeta, early-onset AD neuropathology, and age-dependent cognitive sequelae. The DS phenotype complex also includes distinctive early-onset cerulean cataracts of unknown etiology. Previously, we reported increased Abeta accumulation, co-localizing amyloid pathology, and disease-linked supranuclear cataracts in the ocular lenses of subjects with AD. Here, we investigate the hypothesis that related AD-linked Abeta pathology underlies the distinctive lens phenotype associated with DS. Ophthalmological examinations of DS subjects were correlated with phenotypic, histochemical, and biochemical analyses of lenses obtained from DS, AD, and normal control subjects. Evaluation of DS lenses revealed a characteristic pattern of supranuclear opacification accompanied by accelerated supranuclear Abeta accumulation, co-localizing amyloid pathology, and fiber cell cytoplasmic Abeta aggregates (approximately 5 to 50 nm identical to the lens pathology identified in AD. Peptide sequencing, immunoblot analysis, and ELISA confirmed the identity and increased accumulation of Abeta in DS lenses. Incubation of synthetic Abeta with human lens protein promoted protein aggregation, amyloid formation, and light scattering that recapitulated the molecular pathology and clinical features observed in DS lenses. These results establish the genetic etiology of the distinctive lens phenotype in DS and identify the molecular origin and pathogenic mechanism by which lens pathology is expressed in this common chromosomal disorder. Moreover, these findings confirm increased Abeta

  8. The mechanism of the low-density lipoprotein receptor- related protein (LRP) in the production of amyloid-[Beta] peptide

    Chen, Eunice Chungyu


    Alzheimer's disease (AD) is the most common form of neurodegenerative disorder affecting the elderly, presenting symptoms such as memory impairment and dementia. AD is pathologically characterized by the development of extracellular senile plaques and intracellular neurofibrillary tangles (NFT). The plaques are composed of amyloid-[Beta] peptide (A[Beta]) and the NFTs are composed of a hyperphosphorylated form of the tau protein. A[Beta] is formed by sequential proteolytic processing of the a...

  9. Cross-beta order and diversity in nanocrystals of an amyloid-forming peptide.

    Diaz-Avalos, Ruben; Long, Chris; Fontano, Eric; Balbirnie, Melinda; Grothe, Robert; Eisenberg, David; Caspar, Donald L D


    The seven-residue peptide GNNQQNY from the N-terminal region of the yeast prion protein Sup35, which forms amyloid fibers, colloidal aggregates and highly ordered nanocrystals, provides a model system for characterizing the elusively protean cross-beta conformation. Depending on preparative conditions, orthorhombic and monoclinic crystals with similar lath-shaped morphology have been obtained. Ultra high-resolution (frames, have been mapped in reciprocal space. However, reliable integrated intensities cannot be obtained from these series, and dynamical electron diffraction effects present problems in data analysis. The diversity of ordered structures formed under similar conditions has made it difficult to obtain reproducible X-ray diffraction data from powder specimens; and overlapping Bragg reflections in the powder patterns preclude separated structure factor measurements for these data. Model protofilaments, consisting of tightly paired, half-staggered beta strands related by a screw axis, can be fit in the crystal lattices, but model refinement will require accurate structure factor measurements. Nearly anhydrous packing of this hydrophilic peptide can account for the insolubility of the crystals, since the activation energy for rehydration may be extremely high. Water-excluding packing of paired cross-beta peptide segments in thin protofilaments may be characteristic of the wide variety of anomalously stable amyloid aggregates. PMID:12860136

  10. Seeding-dependent maturation of beta2-microglobulin amyloid fibrils at neutral pH.

    Kihara, Miho; Chatani, Eri; Sakai, Miyo; Hasegawa, Kazuhiro; Naiki, Hironobu; Goto, Yuji


    Beta2-microglobulin (beta2-m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Recent studies have focused on the mechanism by which amyloid fibrils are formed under physiological conditions, which had been difficult to reproduce quantitatively. Yamamoto et al. (Yamamoto, S., Hasegawa, K., Yamaguchi, I., Tsutsumi, S., Kardos, J., Goto, Y., Gejyo, F. & Naiki, H. (2004) Biochemistry 43, 11075-11082) showed that a combination of seed fibrils prepared under acidic conditions and a low concentration of sodium dodecyl sulfate below its critical micelle concentration enabled extensive fibril formation at pH 7.0. Here, we found that repeated self-seeding at pH 7.0 with fibrils formed at the same pH causes a marked acceleration of growth, indicating the maturation of fibrils. The observed maturation can be simulated by assuming the existence of two types of fibrils with different growth rates. Importantly, some mutations of beta2-m or the addition of a low concentration of urea, both destabilizing the native conformation, were not enough to extend the fibrils at pH 7.0, and a low concentration of sodium dodecyl sulfate (i.e. 0.5 mM) was essential. Thus, even though the first stage fibrils in patients are unstable and require stabilizing factors to remain at neutral pH, they can adapt to a neutral pH with repeated self-seeding, implying a mechanism of development of amyloid deposition after a long latent period in patients. PMID:15659393

  11. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1–40-induced toxicity

    Yongjie Li


    Full Text Available Amyloid beta-peptides (Aβ are known to undergo active transport across the blood-brain barrier, and cerebral amyloid angiopathy has been shown to be a prominent feature in the majority of Alzheimer׳s disease. Quercetin is a natural flavonoid molecule and has been demonstrated to have potent neuroprotective effects, but its protective effect on endothelial cells under Aβ-damaged condition is unclear. In the present study, the protective effects of quercetin on brain microvascular endothelial cells injured by fibrillar Aβ1–40 (fAβ1–40 were observed. The results show that fAβ1–40-induced cytotoxicity in human brain microvascular endothelial cells (hBMECs can be relieved by quercetin treatment. Quercetin increases cell viability, reduces the release of lactate dehydrogenase, and relieves nuclear condensation. Quercetin also alleviates intracellular reactive oxygen species generation and increases superoxide dismutase activity. Moreover, it strengthens the barrier integrity through the preservation of the transendothelial electrical resistance value, the relief of aggravated permeability, and the increase of characteristic enzyme levels after being exposed to fAβ1–40. In conclusion, quercetin protects hBMECs from fAβ1–40-induced toxicity.

  12. Clearance of amyloid-beta in Alzheimer's disease: shifting the action site from center to periphery.

    Liu, Yu-Hui; Wang, Ye-Ran; Xiang, Yang; Zhou, Hua-Dong; Giunta, Brian; Mañucat-Tan, Noralyn B; Tan, Jun; Zhou, Xin-Fu; Wang, Yan-Jiang


    Amyloid-beta (Aβ) is suggested to play a causal role in the pathogenesis of Alzheimer's disease (AD). Immunotherapies are among the most promising Aβ-targeting therapeutic strategies for AD. But, to date, all clinical trials of this modality have not been successful including Aβ vaccination (AN1792), anti-Aβ antibodies (bapineuzumab, solanezumab and ponezumab), and intravenous immunoglobulin (IVIG). We propose that one reason for the failures of these clinical trials may be the adverse effects of targeting the central clearance of amyloid plaques. The potential adverse effects include enhanced neurotoxicity related to Aβ oligomerization from plaques, neuroinflammation related to opsonized Aβ phagocytosis, autoimmunity related to cross-binding of antibodies to amyloid precursor protein (APP) on the neuron membrane, and antibody-mediated vascular and neuroskeletal damage. Overall, the majority of the adverse effects seen in clinical trials were associated with the entry of antibodies into the brain. Finally, we propose that peripheral Aβ clearance would be effective and safe for future Aβ-targeting therapies. PMID:24733588

  13. Functional Amyloid Formation within Mammalian Tissue.


    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  14. A 'danse macabre': tau and Fyn in STEP with amyloid beta to facilitate induction of synaptic depression and excitotoxicity.

    Boehm, Jannic


    Alzheimer's disease, with its two most prominent pathological factors amyloid beta and tau protein, can be described as a disease of the synapse. It therefore comes as little surprise that NMDA receptor-related synaptic dysfunction had been thought for several years to underlie the synaptic pathophysiology seen in Alzheimer's disease. In this review I will summarise recent evidence showing that the NMDA receptor links the effects of extracellular amyloid beta with intracellular tau protein. Furthermore, the antagonistic roles of Fyn and STEP in NMDA receptor regulation, synaptic plasticity and induction of synaptic depression will be discussed. PMID:23773061

  15. Thermodynamic description of Beta amyloid formation using physicochemical scales and fractal bioinformatic scales.

    Phillips, J C


    Protein function depends on both protein structure and amino acid (aa) sequence. Here we show that modular features of both structure and function can be quantified economically from the aa sequences alone for the small (40,42 aa) plaque-forming (aggregative) amyloid beta fragments. Some edge and center features of the fragments are predicted. Bioinformatic scales based on β strand formation propensities and the thermodynamically second order fractal hydropathicity scale based on evolutionary optimization (self-organized criticality) are contrasted with the standard first order physicochemical scale based on complete protein (water-air) unfolding. The results are consistent with previous studies of these physicochemical factors that show that aggregative properties, even of beta fragments, are driven primarily by near-equilibrium hydropathic forces. PMID:25702750

  16. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity.

    Viet, Man Hoang; Ngo, Son Tung; Lam, Nguyen Sy; Li, Mai Suan


    The effects of beta-sheet breaker peptides KLVFF and LPFFD on the oligomerization of amyloid peptides were studied by all-atom simulations. It was found that LPFFD interferes the aggregation of Aβ(16-22) peptides to a greater extent than does KLVFF. Using the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method, we found that the former binds more strongly to Aβ(16-22). Therefore, by simulations, we have clarified the relationship between aggregation rates and binding affinity: the stronger the ligand binding, the slower the oligomerization process. The binding affinity of pentapeptides to full-length peptide Aβ(1-40) and its mature fibrils has been considered using the Autodock and MM-PBSA methods. The hydrophobic interaction between ligands and receptors plays a more important role for association than does hydrogen bonding. The influence of beta-sheet breaker peptides on the secondary structures of monomer Aβ(1-40) was studied in detail, and it turns out that, in their presence, the total beta-sheet content can be enhanced. However, the aggregation can be slowed because the beta-content is reduced in fibril-prone regions. Both pentapeptides strongly bind to monomer Aβ(1-40), as well as to mature fibrils, but KLVFF displays a lower binding affinity than LPFFD. Our findings are in accord with earlier experiments that both of these peptides can serve as prominent inhibitors. In addition, we predict that LPFFD inhibits/degrades the fibrillogenesis of full-length amyloid peptides better than KLVFF. This is probably related to a difference in their total hydrophobicities in that the higher the hydrophobicity, the lower the inhibitory capacity. The GROMOS96 43a1 force field with explicit water and the force field proposed by Morris et al. (Morris et al. J. Comput. Chem. 1998, 19, 1639 ) were employed for all-atom molecular dynamics simulations and Autodock experiments, respectively. PMID:21563780

  17. Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells

    Zhu Feiqi


    Full Text Available Abstract Background Berberine (BER, the major alkaloidal component of Rhizoma coptidis, has multiple pharmacological effects including inhibition of acetylcholinesterase, reduction of cholesterol and glucose levels, anti-inflammatory, neuroprotective and neurotrophic effects. It has also been demonstrated that BER can reduce the production of beta-amyloid40/42, which plays a critical and primary role in the pathogenesis of Alzheimer's disease. However, the mechanism by which it accomplishes this remains unclear. Results Here, we report that BER could not only significantly decrease the production of beta-amyloid40/42 and the expression of beta-secretase (BACE, but was also able to activate the extracellular signal-regulated kinase1/2 (ERK1/2 pathway in a dose- and time-dependent manner in HEK293 cells stably transfected with APP695 containing the Swedish mutation. We also find that U0126, an antagonist of the ERK1/2 pathway, could abolish (1 the activation activity of BER on the ERK1/2 pathway and (2 the inhibition activity of BER on the production of beta-amyloid40/42 and the expression of BACE. Conclusion Our data indicate that BER decreases the production of beta-amyloid40/42 by inhibiting the expression of BACE via activation of the ERK1/2 pathway.

  18. Multiscale Molecular Dynamics Simulations of Beta-Amyloid Interactions with Neurons

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin


    Early events of human beta-amyloid protein interactions with cholesterol-containing membranes are critical to understanding the pathogenesis of Alzheimer's disease (AD) and to exploring new therapeutic interventions of AD. Atomistic molecular dynamics (AMD) simulations have been extensively used to study the protein-lipid interaction at high atomic resolutions. However, traditional MD simulations are not efficient in sampling the phase space of complex lipid/protein systems with rugged free energy landscapes. Meanwhile, coarse-grained MD (CGD) simulations are efficient in the phase space sampling but suffered from low spatial resolutions and from the fact that the energy landscapes are not identical to those of the AMD. Here, a multiscale approach was employed to simulate the protein-lipid interactions of beta-amyloid upon its release from proteolysis residing in the neuronal membranes. We utilized a forward (AMD to CGD) and reverse (CGD-AMD) strategy to explore new transmembrane and surface protein configuration and evaluate the stabilization mechanisms by measuring the residue-specific protein-lipid or protein conformations. The detailed molecular interactions revealed in this multiscale MD approach will provide new insights into understanding the early molecular events leading to the pathogenesis of AD.

  19. Synthesis, Molecular Modelling and Biological Evaluation of Novel Heterodimeric, Multiple Ligands Targeting Cholinesterases and Amyloid Beta

    Michalina Hebda


    Full Text Available Cholinesterases and amyloid beta are one of the major biological targets in the search for a new and efficacious treatment of Alzheimer’s disease. The study describes synthesis and pharmacological evaluation of new compounds designed as dual binding site acetylcholinesterase inhibitors. Among the synthesized compounds, two deserve special attention—compounds 42 and 13. The former is a saccharin derivative and the most potent and selective acetylcholinesterase inhibitor (EeAChE IC50 = 70 nM. Isoindoline-1,3-dione derivative 13 displays balanced inhibitory potency against acetyl- and butyrylcholinesterase (BuChE (EeAChE IC50 = 0.76 μM, EqBuChE IC50 = 0.618 μM, and it inhibits amyloid beta aggregation (35.8% at 10 μM. Kinetic studies show that the developed compounds act as mixed or non-competitive acetylcholinesterase inhibitors. According to molecular modelling studies, they are able to interact with both catalytic and peripheral active sites of the acetylcholinesterase. Their ability to cross the blood-brain barrier (BBB was confirmed in vitro in the parallel artificial membrane permeability BBB assay. These compounds can be used as a solid starting point for further development of novel multifunctional ligands as potential anti-Alzheimer’s agents.

  20. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes.

    Wang, Hong-Mei; Zhao, Yan-Xin; Zhang, Shi; Liu, Gui-Dong; Kang, Wen-Yan; Tang, Hui-Dong; Ding, Jian-Qing; Chen, Sheng-Di


    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Accumulating data indicate that astrocytes play an important role in the neuroinflammation related to the pathogenesis of AD. It has been shown that microglia and astrocytes are activated in AD brain and amyloid-beta (Abeta) can increase the expression of cyclooxygenase 2 (COX-2), interleukin-1, and interleukin-6. Suppressing the inflammatory response caused by activated astrocytes may help to inhibit the development of AD. Curcumin is a major constituent of the yellow curry spice turmeric and proved to be a potential anti-inflammatory drug in arthritis and colitis. There is a low age-adjusted prevalence of AD in India, a country where turmeric powder is commonly used as a culinary compound. Curcumin has been shown to suppress activated astroglia in amyloid-beta protein precursor transgenic mice. The real mechanism by which curcumin inhibits activated astroglia is poorly understood. Here we report that the expression of COX-2 and glial fibrillary acidic protein were enhanced and that of peroxisome proliferator-activated receptor gamma (PPARgamma) was decreased in Abeta(25-35)-treated astrocytes. In line with these results, nuclear factor-kappaB translocation was increased in the presence of Abeta. All these can be reversed by the pretreatment of curcumin. Furthermore, GW9662, a PPARgamma antagonist, can abolish the anti-inflammatory effect of curcumin. These results show that curcumin might act as a PPARgamma agonist to inhibit the inflammation in Abeta-treated astrocytes. PMID:20413894

  1. The role of mutated amyloid beta 1-42 stimulating dendritic cells in a PDAPP transgenic mouse

    LI Jia-lin


    Full Text Available Background Amyloid plaque is one of the pathological hallmarks of Alzheimer's disease (AD. Anti-beta-amyloid (Aβ immunotherapy is effective in removing brain Aβ, but has shown to be associated with detrimental effects. To avoid severe adverse effects such as meningoencephalitis induced by amyloid beta vaccine with adjuvant, and take advantage of amyloid beta antibody's therapeutic effect on Alzheimer's disease sufficiently, our group has developed a new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating dendritic cells (DC. Our previous work has confirmed that DC vaccine can induce adequate anti-amyloid beta antibody in PDAPP Tg mice safely and efficiently. The DC vaccine can improve impaired learning and memory in the Alzheimer's animal model, and did not cause microvasculitis, microhemorrhage or meningoencephalitis in the animal model. However, the exact mechanism of immunotherapy which reduces Aβ deposition remains unknown. In this report, we studied the mechanism of the vaccine, thinking that this may have implications for better understanding of the pathogenesis of Alzheimer's disease. Methods A new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating DC which were obtained from C57/B6 mouse bone marrow was developed. Amyloid beta with Freund's adjuvant was inoculated at the same time to act as positive control. After the treatment was done, the samples of brains were collected, fixed, cut. Immunohistochemical staining was performed to observe the expression of the nuclear hormone liver X receptor (LXR, membrane-bound protein tyrosine phosphatase (CD45, the ATP-binding cassette family of active transporters (ABCA1, receptor for advanced glycation end products (RAGE, β-site APP-cleaving enzyme (BACE and Aβ in mouse brain tissue. Semi-quantitative analysis was used to defect CA1, CA2, CA3, DG, Rad in hippocampus region and positive neuron in cortex region. Results Aβ was significantly reduced in the

  2. Chronic exposure of NG108-15 cells to amyloid beta peptide (A beta(1-42)) abolishes calcium influx via N-type calcium channels

    Kašparová, Jana; Lisá, Věra; Tuček, Stanislav; Doležal, Vladimír


    Roč. 26, 8-9 (2001), s. 1079-1084. ISSN 0364-3190 R&D Projects: GA MZd NF5183 Institutional research plan: CEZ:AV0Z5011922 Keywords : amyloid beta peptide * Alzheimer's disease * calcium Subject RIV: FH - Neurology Impact factor: 1.638, year: 2001

  3. Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation

    Koistinaho, M.; Kettunen, M. I.; Goldsteins, G.; Keinänen, R.; Salminen, A.; Ort, Michael; Bureš, Jan; Liu, D.; Kauppinen, R. A.; Higgins, L. S.; Koistinaho, J.


    Roč. 99, č. 3 (2002), s. 1610-1615. ISSN 0027-8424 R&D Projects: GA ČR GA309/00/1656 Institutional research plan: CEZ:AV0Z5011922 Keywords : Beta-amyloid * Alzheimer disease * brain ischemia Subject RIV: FH - Neurology Impact factor: 10.701, year: 2002

  4. Recent progress in the study of intracellular toxicity of amyloid β peptide in Alzheimer's disease

    ZHANG Yan; YU Longchuan


    Amyloid β (Aβ) deposition is one of the major pathological markers of Alzheimer's disease (AD). Extracellular Aβ toxicity has been studied for a long time in AD research field. However, controversial data show that extracellular Aβ load does not correlate with the dementia levels of AD patients and extracellular Aβ only induces significant cell death at non-physiological high concentrations.With the evolvement of Aβ hypothesis, considerable attention has been devoted to the study of intracellular Aβ toxicity recently. Intracellular Aβ induces dramatic cell loss in AD transgenic models and in human primary neurons (at pM concentrations) through p53, Bax and caspase-6 pathways. Here, we review the generation, toxicity and possible pathways of intracellular Aβ toxicity, and discuss the implication and current knowledge of intracellular Aβ in neuronal cell loss in neurodegenerative diseases.

  5. Amyloid beta protein and tau in cerebrospinal fluid and plasma as biomarkers for dementia: a review of recent literature.

    Frankfort, S.V.; Tulner, L.R.; Campen, J.P. van; Verbeek, M.M.; Jansen, R.W.; Beijnen, J.H.


    This review addresses recent developments in amyloid beta (Abeta), total tau (t-tau), and phosporylated tau (p-tau) protein analysis, in cerebrospinal fluid (CSF) and plasma as biomarkers for dementia. Recent research focused on the protection of patients with mild cognitive impairment (MCI) into de

  6. The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element.

    Collin, R.W.J.; Martens, G.J.M.


    The amyloid-beta precursor protein APP is generally accepted to be involved in the pathology of Alzheimer's disease. Since its physiological role is still unclear, we decided to study the function of APP via stable transgenesis in the amphibian Xenopus laevis. However, the application of constructs

  7. Mitochondrial Toxicity of Depleted Uranium: Protection by Beta-Glucan

    Shaki, Fatemeh; Pourahmad, Jalal


    Considerable evidence suggests that mitochondrial dysfunction contributes to the toxicity of uranyl acetate (UA), a soluble salt of depleted uranium (DU). We examined the ability of the two antioxidants, beta-glucan and butylated hydroxyl toluene (BHT), to prevent UA-induced mitochondrial dysfunction using rat-isolated kidney mitochondria. Beta-glucan (150 nM) and BHT (20 nM) attenuated UA-induced mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation and glutathione oxidat...

  8. Is pathological aging a successful resistance against amyloid-beta or preclinical Alzheimer's disease?

    Murray, Melissa E; Dickson, Dennis W


    Individuals with pathological aging, a form of cerebral amyloidosis in older people, have widespread extracellular amyloid-beta (Aβ) senile plaque deposits in the setting of limited neurofibrillary tau pathology. Unlike the characteristic finding of antemortem cognitive impairment in Alzheimer's disease patients, individuals with pathological aging usually lack cognitive impairment despite similar Aβ senile plaque burdens. It has been hypothesized that protective or resistance factors may underlie pathological aging, thus minimizing or preventing deleterious effects on cognition. Despite increasing interest and recognition, a review of the literature remains challenging given the range of terms used to describe pathological aging. This debate briefly reviews neuropathologic and biochemical evidence that pathological aging individuals have resistance factors to Aβ plaque pathology. Additionally, we will discuss evidence of pathological aging as an intermediate between normal individuals and Alzheimer's disease patients, and discuss protective or resistance factors against vascular disease and neurofibrillary pathology. Lastly, we will emphasize the need for longitudinal biomarker evidence using amyloid positron emission tomography, which will provide a better understanding of the kinetics of Aβ deposition in pathological aging. PMID:25031637

  9. Alzheimer's disease cybrids replicate beta-amyloid abnormalities through cell death pathways.

    Khan, S M; Cassarino, D S; Abramova, N N; Keeney, P M; Borland, M K; Trimmer, P A; Krebs, C T; Bennett, J C; Parks, J K; Swerdlow, R H; Parker, W D; Bennett, J P


    Alzheimer's disease (AD) is characterized by the deposition in brain of beta-amyloid (Abeta) peptides, elevated brain caspase-3, and systemic deficiency of cytochrome c oxidase. Although increased Abeta deposition can result from mutations in amyloid precursor protein or presenilin genes, the cause of increased Abeta deposition in sporadic AD is unknown. Cytoplasmic hybrid ("cybrid") cells made from mitochondrial DNA of nonfamilial AD subjects show antioxidant-reversible lowering of mitochondrial membrane potential (delta(gYm), secrete twice as much Abeta(1-40) and Abeta(1-42), have increased intracellular Abeta(1-40) (1.7-fold), and develop Congo red-positive Abeta deposits. Also elevated are cytoplasmic cytochrome c (threefold) and caspase-3 activity (twofold). Increased AD cybrid Abeta(1-40) secretion was normalized by inhibition of caspase-3 or secretase and reduced by treatment with the antioxidant S(-)pramipexole. Expression of AD mitochondrial genes in cybrid cells depresses cytochrome c oxidase activity and increases oxidative stress, which, in turn, lowers delta(psi)m. Under stress, cells with AD mitochondrial genes are more likely to activate cell death pathways, which drive caspase 3-mediated Abeta peptide secretion and may account for increased Abeta deposition in the AD brain. Therapeutic strategies for reducing neurodegeneration in sporadic AD can address restoration of delta(psi)m and reduction of elevated Abeta secretion. PMID:10939564

  10. Polarization properties of amyloid-beta plaques in Alzheimer's disease (Conference Presentation)

    Baumann, Bernhard; Wöhrer, Adelheid; Ricken, Gerda; Pircher, Michael; Kovacs, Gabor G.; Hitzenberger, Christoph K.


    In histopathological practice, birefringence is used for the identification of amyloidosis in numerous tissues. Amyloid birefringence is caused by the parallel arrangement of fibrous protein aggregates. Since neurodegenerative processes in Alzheimer's disease (AD) are also linked to the formation of amyloid-beta (Aβ) plaques, optical methods sensitive to birefringence may act as non-invasive tools for Aβ identification. At last year's Photonics West, we demonstrated polarization-sensitive optical coherence tomography (PS-OCT) imaging of ex vivo cerebral tissue of advanced stage AD patients. PS-OCT provides volumetric, structural imaging based on both backscatter contrast and tissue polarization properties. In this presentation, we report on polarization-sensitive neuroimaging along with numerical simulations of three-dimensional Aβ plaques. High speed PS-OCT imaging was performed using a spectral domain approach based on polarization maintaining fiber optics. The sample beam was interfaced to a confocal scanning microscope arrangement. Formalin-fixed tissue samples as well as thin histological sections were imaged. For comparison to the PS-OCT results, ray propagation through plaques was modeled using Jones analysis and various illumination geometries and plaque sizes. Characteristic polarization patterns were found. The results of this study may not only help to understand PS-OCT imaging of neuritic Aβ plaques but may also have implications for polarization-sensitive imaging of other fibrillary structures.

  11. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    Zhang, Heng; Wu, Shengnan


    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  12. The Aqueous Extract of Rhizome of Gastrodia elata Protected Drosophila and PC12 Cells against Beta-Amyloid-Induced Neurotoxicity

    Chun-Fai Ng


    Full Text Available This study aims to investigate the neuroprotective effect of the rhizome of Gastrodia elata (GE aqueous extract on beta-amyloid(Aβ-induced toxicity in vivo and in vitro. Transgenic Drosophila mutants with Aβ-induced neurodegeneration in pan-neuron and ommatidia were used to determine the efficacy of GE. The antiapoptotic and antioxidative mechanisms of GE were also studied in Aβ-treated pheochromocytoma (PC12 cells. In vivo studies demonstrated that GE (5 mg/g Drosophila media-treated Drosophila possessed a longer lifespan, better locomotor function, and less-degenerated ommatidia when compared with the Aβ-expressing control (all P<0.05. In vitro studies illustrated that GE increased the cell viability of Aβ-treated PC12 cells in dose-dependent manner, probably through attenuation of Aβ-induced oxidative and apoptotic stress. GE also significantly upregulated the enzymatic activities of catalase, superoxide dismutase, and glutathione peroxidase, leading to the decrease of reactive oxidation species production and apoptotic marker caspase-3 activity. In conclusion, our current data presented the first evidence that the aqueous extract of GE was capable of reducing the Aβ-induced neurodegeneration in Drosophila, possibly through inhibition of apoptosis and reduction of oxidative stress. GE aqueous extract could be developed as a promising herbal agent for neuroprotection and novel adjuvant therapies for Alzheimer’s disease.

  13. Lower levels of cerebrospinal fluid amyloid beta (Abeta) in non-demented Indian controls.

    Subramanian, Sarada; Sandhyarani, Boya; Shree, A N Divya; Murthy, K Krishna; Kalyani, K; Kumar, S Praveen; Pradeep; Noone, Mohin Jeslie; Taly, A B


    Prevalence of Alzheimer's disease in Indian population is lower than in developed countries. To determine whether limitation of amyloid beta (Abeta) concentration may be responsible for lower rate of incidence, we measured the levels of Abeta in cerebrospinal fluid (CSF) collected from 72 non-demented individuals ranging in the age from 20 years to 65 years. These samples were segregated into three groups ranging from 20-35 years, 36-50 years and 51-65 years of age. Levels of Abeta could be detected in all the age groups and they were much lower than the values reported in literature from the developed countries. No significant difference in the average level of Ass was observed with increase in age. PMID:16978775

  14. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury.

    Cho, Dong-Hyung; Nakamura, Tomohiro; Fang, Jianguo; Cieplak, Piotr; Godzik, Adam; Gu, Zezong; Lipton, Stuart A


    Mitochondria continuously undergo two opposing processes, fission and fusion. The disruption of this dynamic equilibrium may herald cell injury or death and may contribute to developmental and neurodegenerative disorders. Nitric oxide functions as a signaling molecule, but in excess it mediates neuronal injury, in part via mitochondrial fission or fragmentation. However, the underlying mechanism for nitric oxide-induced pathological fission remains unclear. We found that nitric oxide produced in response to beta-amyloid protein, thought to be a key mediator of Alzheimer's disease, triggered mitochondrial fission, synaptic loss, and neuronal damage, in part via S-nitrosylation of dynamin-related protein 1 (forming SNO-Drp1). Preventing nitrosylation of Drp1 by cysteine mutation abrogated these neurotoxic events. SNO-Drp1 is increased in brains of human Alzheimer's disease patients and may thus contribute to the pathogenesis of neurodegeneration. PMID:19342591

  15. Designed amyloid beta peptide fibril - a tool for high-throughput screening of fibril inhibitors.

    Dolphin, Gunnar T; Ouberai, Myriam; Dumy, Pascal; Garcia, Julian


    Amyloid beta peptide (Abeta) fibril formation is widely believed to be the causative event of Alzheimer's disease pathogenesis. Therapeutic approaches are therefore in development that target various sites in the production and aggregation of Abeta. Herein we present a high-throughput screening tool to generate novel hit compounds that block Abeta fibril formation. This tool is an application for our fibril model (Abeta(16-37)Y(20)K(22)K(24))(4), which is a covalent assembly of four Abeta fragments. With this tool, screening studies are complete within one hour, as opposed to days with native Abeta(1-40). A Z' factor of 0.84+/-0.03 was determined for fibril formation and inhibition, followed by the reporter molecule thioflavin T. Herein we also describe the analysis of a broad range of reported inhibitors and non-inhibitors of Abeta fibril formation to test the validity of the system. PMID:17876751

  16. Indirubin-3′-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation

    Shu-gang Zhang; Xiao-shan Wang; Ying-dong Zhang; Qing Di; Jing-ping Shi; Min Qian; Li-gang Xu; Xing-jian Lin; Jie Lu


    Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apopto-sis in Alzheimer’s disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SH-SY5Y cells exposed to amyloid-beta 25–35 (Aβ25–35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that in-dirubin-3′-monoxime reduced Aβ25–35-induced apoptosis by suppressing tau hyperphosphorylationvia a GSK-3β-mediated mechanism. Indirubin-3′-monoxime is a promising drug candidate for Alzheimer’s disease.

  17. AG10 inhibits amyloidogenesis and cellular toxicity of the familial amyloid cardiomyopathy-associated V122I transthyretin

    Penchala, Sravan C; Connelly, Stephen; Wang, Yu; Park, Miki S; Zhao, Lei; Baranczak, Aleksandra; Rappley, Irit; Vogel, Hannes; Liedtke, Michaela; Witteles, Ronald M.; Powers, Evan T.; Reixach, Natàlia; Chan, William K.; Wilson, Ian A.; Kelly, Jeffery W.


    The misassembly of soluble proteins into toxic aggregates, including amyloid fibrils, underlies a large number of human degenerative diseases. Cardiac amyloidoses, which are most commonly caused by aggregation of Ig light chains or transthyretin (TTR) in the cardiac interstitium and conducting system, represent an important and often underdiagnosed cause of heart failure. Two types of TTR-associated amyloid cardiomyopathies are clinically important. The Val122Ile (V122I) mutation, which alter...

  18. Reactive oxidative species enhance amyloid toxicity in APP/PS1 mouse neurons

    Bin Yang; Xiaqin Sun; Hilal Lashuel; Yan Zhang


    [Objective] To investigate whether intracellular amyloid β (iAβ) induces toxicity in wild type (WT) and APP/PS1 mice,a mouse model of Alzheimer's disease.[Methods] Different forms of Aβ aggregates were microinjected into cultured WT or APP/PS1 mouse hippocampal neurons.TUNEL staining was performed to examine neuronal cell death.Reactive oxidative species (ROS) were measured by MitoSOXTM Red mitochondrial superoxide indicator.[Results]Crude,monomer and protofibril Aβ induced more toxicity in APP/PS1 neurons than in WT neurons.ROS are involved in mediating the vulnerability of APP/PS1 neurons to iAβ toxicity.[[Conclusion

  19. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy

    Sengupta, Urmi; Nilson, Ashley N.; Kayed, Rakez


    The incidence of Alzheimer's disease (AD) is growing every day and finding an effective treatment is becoming more vital. Amyloid-β (Aβ) has been the focus of research for several decades. The recent shift in the Aβ cascade hypothesis from all Aβ to small soluble oligomeric intermediates is directing the search for therapeutics towards the toxic mediators of the disease. Targeting the most toxic oligomers may prove to be an effective treatment by preventing their spread. Specific targeting of oligomers has been shown to protect cognition in rodent models. Additionally, the heterogeneity of research on Aβ oligomers may seem contradictory until size and conformation are taken into account. In this review, we will discuss Aβ oligomers and their toxicity in relation to size and conformation as well as their influence on inflammation and the potential of Aβ oligomer immunotherapy.

  20. Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-beta peptide.

    Gomez-Brouchet, Anne; Pchejetski, Dimitri; Brizuela, Leyre; Garcia, Virginie; Altié, Marie-Françoise; Maddelein, Marie-Lise; Delisle, Marie-Bernadette; Cuvillier, Olivier


    We examined the role of sphingosine kinase-1 (SphK1), a critical regulator of the ceramide/sphingosine 1-phosphate (S1P) biostat, in the regulation of death and survival of SH-SY5Y neuroblastoma cells in response to amyloid beta (Abeta) peptide (25-35). Upon incubation with Abeta, SH-SY5Y cells displayed a marked down-regulation of SphK1 activity coupled with an increase in the ceramide/S1P ratio followed by cell death. This mechanism was redox-sensitive; N-acetylcysteine totally abrogated the down-regulation of SphK1 activity and strongly inhibited Abeta-induced cell death. SphK1 overexpression impaired the cytotoxicity of Abeta, whereas SphK1 silencing by RNA interference mimicked Abeta-induced cell death, thereby establishing a critical role for SphK1. We further demonstrated that SphK1 could mediate the well established cytoprotective action of insulin-like growth factor (IGF-I) against Abeta toxicity. A dominant-negative form of SphK1 or its pharmacological inhibition not only abrogated IGF-I-triggered stimulation of SphK1 but also hampered IGF-I protective effect. Similarly to IGF-I, the neuroprotective action of TGF-beta1 was also dependent on SphK1 activity; activation of SphK1 as well as cell survival were impeded by a dominant-negative form of SphK1. Taken together, these results provide the first illustration of SphK1 role as a critical regulator of death and survival of Abeta-treated cells. PMID:17522181

  1. Noopept efficiency in experimental Alzheimer disease (cognitive deficiency caused by beta-amyloid25-35 injection into Meynert basal nuclei of rats).

    Ostrovskaya, R U; Belnik, A P; Storozheva, Z I


    Experiments on adult Wistar rats showed that injection of beta-amyloid25-35 (2 microg) into Meynert basal nuclei caused long-term memory deficiency which was detected 24 days after this injection by the memory trace retrieval in conditioned passive avoidance reflex (CPAR). The effects of noopept, an original nootropic and neuroprotective dipeptide, on the severity of this cognitive deficiency were studied. Preventive (for 7 days before the injury) intraperitoneal injections of noopept in a dose of 0.5 mg/kg completely prevented mnestic disorders under conditions of this model. Noopept exhibited a significant normalizing effect, if the treatment was started 15 days after the injury, when neurodegenerative changes in the basal nuclei, cortex, and hippocampus were still acutely pronounced. The mechanisms of this effect of the drug are studied, including, in addition to the choline-positive effect, its multicomponent neuroprotective effect and stimulation of production of antibodies to beta-amyloid25-35. Noopept efficiency in many models of Alzheimer disease, its high bioavailability and low toxicity suggest this dipeptide for further studies as a potential agent for the treatment of this condition (initial and moderate phases). PMID:19145356

  2. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    Hampel, Harald


    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  3. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    Hampel, Harald


    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  4. Evaluation of the amyloid beta-GFP fusion protein as a model of amyloid beta peptides-mediated aggregation: A study of DNAJB6 chaperone

    Rasha Mohamed Hussein; Rashed, Laila A


    Alzheimer’s disease is a progressive neurodegenerative disease characterized by the accumulation and aggregation of extracellular amyloid β (Aβ) peptides and intracellular aggregation of hyper-phosphorylated tau protein. Recent evidence indicates that accumulation and aggregation of intracellular amyloid β peptides may also play a role in disease pathogenesis. This would suggest that intracellular Heat Shock Proteins (HSP) that maintain cellular protein homeostasis might be candidates for dis...

  5. The Luminescent Oligothiophene p-FTAA Converts Toxic Aβ1-42 Species into Nontoxic Amyloid Fibers with Altered Properties.

    Civitelli, Livia; Sandin, Linnea; Nelson, Erin; Khattak, Sikander Iqbal; Brorsson, Ann-Christin; Kågedal, Katarina


    Aggregation of the amyloid-β peptide (Aβ) in the brain leads to the formation of extracellular amyloid plaques, which is one of the pathological hallmarks of Alzheimer disease (AD). It is a general hypothesis that soluble prefibrillar assemblies of the Aβ peptide, rather than mature amyloid fibrils, cause neuronal dysfunction and memory impairment in AD. Thus, reducing the level of these prefibrillar species by using molecules that can interfere with the Aβ fibrillation pathway may be a valid approach to reduce Aβ cytotoxicity. Luminescent-conjugated oligothiophenes (LCOs) have amyloid binding properties and spectral properties that differ when they bind to protein aggregates with different morphologies and can therefore be used to visualize protein aggregates. In this study, cell toxicity experiments and biophysical studies demonstrated that the LCO p-FTAA was able to reduce the pool of soluble toxic Aβ species in favor of the formation of larger insoluble nontoxic amyloid fibrils, there by counteracting Aβ-mediated cytotoxicity. Moreover, p-FTAA bound to early formed Aβ species and induced a rapid formation of β-sheet structures. These p-FTAA generated amyloid fibrils were less hydrophobic and more resistant to proteolysis by proteinase K. In summary, our data show that p-FTAA promoted the formation of insoluble and stable Aβ species that were nontoxic which indicates that p-FTAA might have therapeutic potential. PMID:26907684

  6. The Luminescent Oligothiophene p-FTAA Converts Toxic Aβ1–42 Species into Nontoxic Amyloid Fibers with Altered Properties*

    Civitelli, Livia; Sandin, Linnea; Nelson, Erin; Khattak, Sikander Iqbal; Kågedal, Katarina


    Aggregation of the amyloid-β peptide (Aβ) in the brain leads to the formation of extracellular amyloid plaques, which is one of the pathological hallmarks of Alzheimer disease (AD). It is a general hypothesis that soluble prefibrillar assemblies of the Aβ peptide, rather than mature amyloid fibrils, cause neuronal dysfunction and memory impairment in AD. Thus, reducing the level of these prefibrillar species by using molecules that can interfere with the Aβ fibrillation pathway may be a valid approach to reduce Aβ cytotoxicity. Luminescent-conjugated oligothiophenes (LCOs) have amyloid binding properties and spectral properties that differ when they bind to protein aggregates with different morphologies and can therefore be used to visualize protein aggregates. In this study, cell toxicity experiments and biophysical studies demonstrated that the LCO p-FTAA was able to reduce the pool of soluble toxic Aβ species in favor of the formation of larger insoluble nontoxic amyloid fibrils, there by counteracting Aβ-mediated cytotoxicity. Moreover, p-FTAA bound to early formed Aβ species and induced a rapid formation of β-sheet structures. These p-FTAA generated amyloid fibrils were less hydrophobic and more resistant to proteolysis by proteinase K. In summary, our data show that p-FTAA promoted the formation of insoluble and stable Aβ species that were nontoxic which indicates that p-FTAA might have therapeutic potential. PMID:26907684

  7. Histidine-Rich Oligopeptides To Lessen Copper-Mediated AmyloidToxicity.

    Caballero, Ana B; Terol-Ordaz, Laia; Espargaró, Alba; Vázquez, Guillem; Nicolás, Ernesto; Sabaté, Raimon; Gamez, Patrick


    Brain copper imbalance plays an important role in amyloid-β aggregation, tau hyperphosphorylation, and neurotoxicity observed in Alzheimer's disease (AD). Therefore, the administration of biocompatible metal-binding agents may offer a potential therapeutic solution to target mislocalized copper ions and restore metallostasis. Histidine-containing peptides and proteins are excellent metal binders and are found in many natural systems. The design of short peptides showing optimal binding properties represents a promising approach to capture and redistribute mislocalized metal ions, mainly due to their biocompatibility, ease of synthesis, and the possibility of fine-tuning their metal-binding affinities in order to suppress unwanted competitive binding with copper-containing proteins. In the present study, three peptides, namely HWH, HK(C) H, and HAH, have been designed with the objective of reducing copper toxicity in AD. These tripeptides form highly stable albumin-like complexes, showing higher affinity for Cu(II) than that of Aβ(1-40). Furthermore, HWH, HK(C) H, and HAH act as very efficient inhibitors of copper-mediated reactive oxygen species (ROS) generation and prevent the copper-induced overproduction of toxic oligomers in the initial steps of amyloid aggregation in the presence of Cu(II) ions. These tripeptides, and more generally small peptides including the sequence His-Xaa-His at the N-terminus, may therefore be considered as promising motifs for the future development of new and efficient anti-Alzheimer drugs. PMID:27071336

  8. The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain.

    Fossati, Silvia; Giannoni, Patrizia; Solesio, Maria E; Cocklin, Sarah L; Cabrera, Erwin; Ghiso, Jorge; Rostagno, Agueda


    Mitochondrial dysfunction has been recognized as an early event in Alzheimer's disease (AD) pathology, preceding and inducing neurodegeneration and memory loss. The presence of cytochrome c (CytC) released from the mitochondria into the cytoplasm is often detected after acute or chronic neurodegenerative insults, including AD. The carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) was identified among a library of drugs as an inhibitor of CytC release and proved to be neuroprotective in Huntington's disease and stroke models. Here, using neuronal and glial cell cultures, in addition to an acute model of amyloid beta (Aβ) toxicity, which replicates by intra-hippocampal injection the consequences of interstitial and cellular accumulation of Aβ, we analyzed the effects of MTZ on neuronal and glial degeneration induced by the Alzheimer's amyloid. MTZ prevented DNA fragmentation, CytC release and activation of caspase 9 and caspase 3 induced by Aβ in neuronal and glial cells in culture through the inhibition of mitochondrial hydrogen peroxide production. Moreover, intraperitoneal administration of MTZ prevented neurodegeneration induced by intra-hippocampal Aβ injection in the mouse brain and was effective at reducing caspase 3 activation in neurons and microglia in the area surrounding the injection site. Our results, delineating the molecular mechanism of action of MTZ against Aβ-mediated mitochondrial dysfunction and caspase activation, and demonstrating its efficiency in a model of acute amyloid-mediated toxicity, provide the first combined in vitro and in vivo evidence supporting the potential of a new therapy employing FDA-approved CAIs in AD. PMID:26581638

  9. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ

  10. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation

    Oh Ki


    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by extensive loss of neurons in the brain of AD patients. Intracellular accumulation of beta-amyloid peptide (Aβ has also shown to occur in AD. Neuro-inflammation has been known to play a role in the pathogenesis of AD. Methods In this study, we investigated neuro-inflammation and amyloidogenesis and memory impairment following the systemic inflammation generated by lipopolysaccharide (LPS using immunohistochemistry, ELISA, behavioral tests and Western blotting. Results Intraperitoneal injection of LPS, (250 μg/kg induced memory impairment determined by passive avoidance and water maze tests in mice. Repeated injection of LPS (250 μg/kg, 3 or 7 times resulted in an accumulation of Aβ1–42 in the hippocampus and cerebralcortex of mice brains through increased β- and γ-secretase activities accompanied with the increased expression of amyloid precursor protein (APP, 99-residue carboxy-terminal fragment of APP (C99 and generation of Aβ1–42 as well as activation of astrocytes in vivo. 3 weeks of pretreatment of sulindac sulfide (3.75 and 7.5 mg/kg, orally, an anti-inflammatory agent, suppressed the LPS-induced amyloidogenesis, memory dysfunction as well as neuronal cell death in vivo. Sulindac sulfide (12.5–50 μM also suppressed LPS (1 μg/ml-induced amyloidogenesis in cultured neurons and astrocytes in vitro. Conclusion This study suggests that neuro-inflammatory reaction could contribute to AD pathology, and anti-inflammatory agent could be useful for the prevention of AD.

  11. A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice.

    Takako Niikura

    Full Text Available Humanin (HN, a 24-residue peptide, was identified as a novel neuroprotective factor and shows anti-cell death activity against a wide spectrum of Alzheimer's disease (AD-related cytotoxicities, including exposure to amyloid beta (Abeta, in vitro. We previously demonstrated that the injection of S14G-HN, a highly potent HN derivative, into brain ameliorated memory loss in an Abeta-injection mouse model. To fully understand HN's functions under AD-associated pathological conditions, we examined the effect of S14G-HN on triple transgenic mice harboring APP(swe, tau(P310L, and PS-1(M146V that show the age-dependent development of multiple pathologies relating to AD. After 3 months of intranasal treatment, behavioral analyses showed that S14G-HN ameliorated cognitive impairment in male mice. Moreover, ELISA and immunohistochemical analyses showed that Abeta levels in brains were markedly lower in S14G-HN-treated male and female mice than in vehicle control mice. We also found the expression level of neprilysin, an Abeta degrading enzyme, in the outer molecular layer of hippocampal formation was increased in S14G-HN-treated mouse brains. NEP activity was also elevated by S14G-HN treatment in vitro. These findings suggest that decreased Abeta level in these mice is at least partly attributed to S14G-HN-induced increase of neprilysin level. Although HN was identified as an anti-neuronal death factor, these results indicate that HN may also have a therapeutic effect on amyloid accumulation in AD.

  12. Anti-amyloid-beta to tau-based immunization: developments in immunotherapy for Alzheimer's disease

    Lambracht-Washington D


    Full Text Available Doris Lambracht-Washington, Roger N Rosenberg Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, TX, USA Abstract: Immunotherapy might provide an effective treatment for Alzheimer's disease (AD. A unique feature of AD immunotherapies is that an immune response against a self-antigen needs to be elicited without causing adverse autoimmune reactions. Current research is focused on two possible targets in this regard. One is the inhibition of accumulation and deposition of amyloid beta 1–42 (Aβ42, which is one of the major peptides found in senile plaques, and the second target is hyperphosphorylated tau, which forms neurofibrillary tangles inside the nerve cell and shows association with the progression of dementia. Mouse models have shown that immunotherapy targeting Aβ42 as well as tau with the respective anti-Aβ or anti-tau antibodies can provide significant improvements in these mice. While anti-Aβ immunotherapy (active and passive immunizations is already in several stages of clinical trials, tau-based immunizations have been analyzed only in mouse models. Recently, as a significant correlation of progression of dementia and levels of phosphorylated tau have been found, high interest has again focused on further development of tau-based therapies. While Aβ immunotherapy might delay the onset of AD, immunotherapy targeting tau might provide benefits in later stages of this disease. Last but not least, targeting Aβ and tau simultaneously with immunotherapy might provide additional therapeutic effects, as these two pathologies are likely synergistic; this is an approach that has not been tested yet. In this review, we will summarize animal models used to test possible therapies for AD, some of the facts about Aβ42 and tau biology, and present an overview on halted, ongoing, and upcoming clinical trials together with ongoing preclinical studies targeting tau

  13. Interaction of lobed kudzuvine root, rhizoma chuanxiong with both acetylcholinesterase and beta-amyloid (Aβ1-42

    Li Shuai


    Full Text Available Background: Lobed kudzuvine root and rhizoma chuanxiong are effective drugs in traditional Chinese medicine. Objective: Extracts of the two medicines were investigated for their in vitro of beta-amyloid (Aβ1-42-aggregation-and acetylcholinesterase (AChE-inhibitory activities. Materials and Methods: The interaction of lobed kudzuvine root, rhizoma chuanxiong with both acetylcholinesterase and beta-amyloid (Aβ1-42 were studied by Michaelis-Menten equations, Thioflavin T (ThT fluorescence analysis and transmission electron microscope (TEM. Results: Inhibition of acetylcholinesterase showed that 1-butanol fraction of the two medicines were noncompetitive inhibition, apparent inhibition constants were 9.947 and 7.1523. ThT fluorescence analysis and TEM results indicated that inhibition of the water fraction and 1-butanol fraction (both lobed kudzuvine root and rhizoma chuanxiong was better. Conclusion: The result supported further research on chemical constituents and pharmacological mechanisms.

  14. Inhibitory Effect of Curcumin-Cu(II) and Curcumin-Zn(II) Complexes on Amyloid-Beta Peptide Fibrillation

    Rona Banerjee


    Mononuclear complexes of Curcumin with Cu(II) and Zn(II) have been synthesized and, characterized and their effects on the fibrillization and aggregation of amyloid-beta (Aβ) peptide have been studied. FTIR spectroscopy and atomic force microscopy (AFM) observations demonstrate that the complexes can inhibit the transition from less structured oligomers to β-sheet rich protofibrils which act as seeding factors for further fibrillization. The metal complexes also impart more improved inhibitor...

  15. [Noopept improves the spatial memory and stimulates prefibrillar beta-amyloid(25-35) antibody production in mice].

    Bobkova, N V; Gruden', M A; Samokhin, A N; Medvinskaia, N I; Morozova-Roch, L; Uudasheva, T A; Ostrovskaia, R U; Seredinin, S B


    The effects of the novel proline-containing nootropic and neuroprotective dipeptide noopept (GVS-111, N-phenylacetyl-L-prolylglycine ethyl ester) were studied on NMRI mice upon olfactory bulbectomy, which had been previously shown to imitate the main morphological and biochemical signs of Alzheimer's disease (AD). The spatial memory was assessed using the Morris (water maze) test; the immunological status was characterized by ELISA with antibodies to prefibrillar beta-amyloid(25-35), S100b protein, and protofilaments of equine lysozyme, which are the molecular factors involved in the pathogenesis of AD. The control (sham-operated) animals during the Morris test preferred a sector where the safety platform was placed during the learning session. Bulbectomized animals treated with saline failed to recognize this sector, while bulbectomized animals treated with noopept (0.01 mg/kg for 21 days) restored this predominance, thus demonstrating the improvement of the spatial memory. These animals also demonstrated an increase in the level of antibodies to beta-amyloid(25-35)--the effect, which was more pronounced in the sham-operated than in bulbectomized mice. The latter demonstrated a profound decrease of immunological reactivity in a large number of tests. Noopept, stimulating the production of antibodies to beta-amyloid(25-35), can attenuate the well-known neurotoxic effects of beta-amyloid. The obtained data on the mnemotropic and immunostimulant effects noopept are indicative of good prospects for the clinical usage of this drug in the therapy of patients with neurodegenerative diseases. PMID:16277202

  16. Mitochondrial toxicity of depleted uranium: protection by Beta-glucan.

    Shaki, Fatemeh; Pourahmad, Jalal


    Considerable evidence suggests that mitochondrial dysfunction contributes to the toxicity of uranyl acetate (UA), a soluble salt of depleted uranium (DU). We examined the ability of the two antioxidants, beta-glucan and butylated hydroxyl toluene (BHT), to prevent UA-induced mitochondrial dysfunction using rat-isolated kidney mitochondria. Beta-glucan (150 nM) and BHT (20 nM) attenuated UA-induced mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation and glutathione oxidation. Beta-glucan and BHT also prevented the loss of mitochondrial membrane potential (MMP) and mitochondrial swelling following the UA treatment in isolated mitochondria. Our results show that beta-glucan and BHT prevented UA-induced mitochondrial outer membrane damage as well as release of cytochrome c from mitochondria. UA also decreased the ATP production in isolated mitochondria significantly inhibited with beta-glucan and BHT pre-treatment. Our results showed that beta-glucan may be mitochondria-targeted antioxidant and suggested this compound as a possible drug candidate for prophylaxis and treatment against DU-induced nephrotoxicity. PMID:24250581

  17. Determining the Effect of Aluminum Oxide Nanoparticles on the Aggregation of Amyloid-Beta in Transgenic Caenorhabditis elegans

    Patel, Suhag; Matticks, John; Howell, Carina


    The cause of Alzheimer's disease has been linked partially to genetic factors but the predicted environmental components have yet to be determined. In Alzheimer's, accumulation of amyloid-beta protein in the brain forms plaques resulting in neurodegeneration and loss of mental functions. It has been postulated that aluminum influences the aggregation of amyloid-beta. To test this hypothesis, transgenic Caenorhabditis elegans, CL2120, was used as a model organism to observe neurodegeneration in nematodes exposed to aluminum oxide nanoparticles. Behavioral testing, fluorescent staining, and fluorescence microscopy were used to test the effects of aggregation of amyloid-beta in the nervous systems of effected nematodes exposed to aluminum oxide nanoparticles. Energy-dispersive x-ray spectroscopy was used to quantify the total concentration of aluminum oxide that the worms were exposed to during the experiment. Exposure of transgenic and wild type worms to a concentration of 4 mg mL-1 aluminum oxide showed a decrease in the sinusoidal motion, as well as an infirmity of transgenic worms when compared to control worms. These results support the hypothesis that aluminum may play a role in neurodegeneration in C. elegans, and may influence and increase the progression of Alzheimer's disease. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047 DUE-0806660 and Lock Haven FPDC grants.

  18. 670 nm laser light and EGCG complementarily reduce amyloid-{beta} aggregates in human neuroblastoma cells: basis for treatment of Alzheimer's disease?

    Sommer, A.P.; Bieschke, J.; Friedrich, R.P.; Zhu, D.; Wanker, E. E.; Fecht, H.J.; Mereles, D; Hunstein, W


    Objective: The aim of the present study is to present the results of in vitro experiments with possible relevance in the treatment of Alzheimer's disease (AD). Background Data: Despite intensive research efforts, there is no treatment for AD. One root cause of AD is the extra- and intracellular deposition of amyloid-beta (A{beta}) fibrils in the brain. Recently, it was shown that extracellular A{beta} can enter brain cells, resulting in neurotoxicity. Methods: After internalization of A{beta}...

  19. Seeded growth of beta-amyloid fibrils from Alzheimer's brain-derived fibrils produces a distinct fibril structure.

    Paravastu, Anant K; Qahwash, Isam; Leapman, Richard D; Meredith, Stephen C; Tycko, Robert


    Studies by solid-state nuclear magnetic resonance (NMR) of amyloid fibrils prepared in vitro from synthetic 40-residue beta-amyloid (Abeta(1-40)) peptides have shown that the molecular structure of Abeta(1-40) fibrils is not uniquely determined by amino acid sequence. Instead, the fibril structure depends on the precise details of growth conditions. The molecular structures of beta-amyloid fibrils that develop in Alzheimer's disease (AD) are therefore uncertain. We demonstrate through thioflavin T fluorescence and electron microscopy that fibrils extracted from brain tissue of deceased AD patients can be used to seed the growth of synthetic Abeta(1-40) fibrils, allowing preparation of fibrils with isotopic labeling and in sufficient quantities for solid-state NMR and other measurements. Because amyloid structures propagate themselves in seeded growth, as shown in previous studies, the molecular structures of brain-seeded synthetic Abeta(1-40) fibrils most likely reflect structures that are present in AD brain. Solid-state (13)C NMR spectra of fibril samples seeded with brain material from two AD patients were found to be nearly identical, indicating the same molecular structures. Spectra of an unseeded control sample indicate greater structural heterogeneity. (13)C chemical shifts and other NMR data indicate that the predominant molecular structure in brain-seeded fibrils differs from the structures of purely synthetic Abeta(1-40) fibrils that have been characterized in detail previously. These results demonstrate a new approach to detailed structural characterization of amyloid fibrils that develop in human tissue, and to investigations of possible correlations between fibril structure and the degree of cognitive impairment and neurodegeneration in AD. PMID:19376973

  20. Nano-biosensors to detect beta-amyloid for Alzheimer's disease management.

    Kaushik, Ajeet; Jayant, Rahul Dev; Tiwari, Sneham; Vashist, Arti; Nair, Madhavan


    Beta-amyloid (β-A) peptides are potential biomarkers to monitor Alzheimer's diseases (AD) for diagnostic purposes. Increased β-A level is neurotoxic and induces oxidative stress in brain resulting in neurodegeneration and causes dementia. As of now, no sensitive and inexpensive method is available for β-A detection under physiological and pathological conditions. Although, available methods such as neuroimaging, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) detect β-A, but they are not yet extended at point-of-care (POC) due to sophisticated equipments, need of high expertize, complicated operations, and challenge of low detection limit. Recently, β-A antibody based electrochemical immuno-sensing approach has been explored to detect β-A at pM levels within 30-40min compared to 6-8h of ELISA test. The introduction of nano-enabling electrochemical sensing technology could enable rapid detection of β-A at POC and may facilitate fast personalized health care delivery. This review explores recent advancements in nano-enabling electrochemical β-A sensing technologies towards POC application to AD management. These analytical tools can serve as an analytical tool for AD management program to obtain bio-informatics needed to optimize therapeutics for neurodegenerative diseases diagnosis management. PMID:26851586

  1. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering

    Zhang-Haagen, Bo; Biehl, Ralf; Nagel-Steger, Luitgard; Radulescu, Aurel; Richter, Dieter; Willbold, Dieter


    Small proteins like amyloid beta (Aβ) monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS) is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP) by using SANS and dynamic light scattering (DLS). We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1–40 and 1.6±0.1 nm for Aβ1–42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1–40 and 3.2±0.4 nm for Aβ1–42 including a surface layer of dHFIP solvent molecules. PMID:26919121

  2. Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses

    Armando Romani


    Full Text Available The role of amyloid-beta (Aβ in brain function and in the pathogenesis of Alzheimer’s disease remains elusive. Recent publications reported that an increase in Aβ concentration perturbs pre-synaptic release in hippocampal neurons. In particular, it was shown in vitro that Aβ is an endogenous regulator of synaptic transmission at the CA3-CA1 synapse, enhancing its release probability. How this synaptic modulator influences neuronal output during physiological stimulation patterns, such as those elicited in vivo, is still unknown. Using a realistic model of hippocampal CA1 pyramidal neurons, we first implemented this Aβ-induced enhancement of release probability and validated the model by reproducing the experimental findings. We then demonstrated that this synaptic modification can significantly alter synaptic integration properties in a wide range of physiologically relevant input frequencies (from 5 to 200 Hz. Finally, we used natural input patterns, obtained from CA3 pyramidal neurons in vivo during free exploration of rats in an open field, to investigate the effects of enhanced Aβ on synaptic release under physiological conditions. The model shows that the CA1 neuronal response to these natural patterns is altered in the increased-Aβ condition, especially for frequencies in the theta and gamma ranges. These results suggest that the perturbation of release probability induced by increased Aβ can significantly alter the spike probability of CA1 pyramidal neurons and thus contribute to abnormal hippocampal function during Alzheimer’s disease.

  3. Multifunctional cholinesterase and amyloid Beta fibrillization modulators. Synthesis and biological investigation.

    Butini, Stefania; Brindisi, Margherita; Brogi, Simone; Maramai, Samuele; Guarino, Egeria; Panico, Alessandro; Saxena, Ashima; Chauhan, Ved; Colombo, Raffaella; Verga, Laura; De Lorenzi, Ersilia; Bartolini, Manuela; Andrisano, Vincenza; Novellino, Ettore; Campiani, Giuseppe; Gemma, Sandra


    In order to identify novel Alzheimer's modifying pharmacological tools, we developed bis-tacrines bearing a peptide moiety for specific interference with surface sites of human acetylcholinesterase (hAChE) binding amyloid-beta (Aβ). Accordingly, compounds 2a-c proved to be inhibitors of hAChE catalytic and noncatalytic functions, binding the catalytic and peripheral sites, interfering with Aβ aggregation and with the Aβ self-oligomerization process (2a). Compounds 2a-c in complex with TcAChE span the gorge with the bis-tacrine system, and the peptide moieties bulge outside the gorge in proximity of the peripheral site. These moieties are likely responsible for the observed reduction of hAChE-induced Aβ aggregation since they physically hamper Aβ binding to the enzyme surface. Moreover, 2a was able to significantly interfere with Aβ self-oligomerization, while 2b,c showed improved inhibition of hAChE-induced Aβ aggregation. PMID:24900626

  4. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering.

    Bo Zhang-Haagen

    Full Text Available Small proteins like amyloid beta (Aβ monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP by using SANS and dynamic light scattering (DLS. We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1-40 and 1.6±0.1 nm for Aβ1-42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1-40 and 3.2±0.4 nm for Aβ1-42 including a surface layer of dHFIP solvent molecules.

  5. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease

    Ling-na KONG; Ping-ping ZUO; Liang MU; Yan-yong LIU; Nan YANG


    Aim: To investigate the gene expression profile changes in the cerebral cortex of mice injected icv with amyloid beta-protein (Aβ) fragment 25-35 using cDNA microarray. Methods: Balb/c mice were randomly divided into a control group and Aβ-treated group. The Morris water maze test was performed to detect the effect of Aβ-injection on the learning and memory of mice. Atlas Mouse 1.2 Expression Arrays containing 1176 genes were used to investigate the gene expression pattern of each group. Results: The gene expression profiles showed that 19 genes including TBX1, NF-κB, AP-1/c-Jun, cadherin, integrin, erb-B2, and FGFR1 were up-regulated after 2 weeks oficv administration of Aβ; while 12 genes were downregulated, including NGF, glucose phosphate isomerase 1, AT motif binding factor 1, Na+/K+-ATPase, and Akt. Conclusions: The results provide important leads for pursuing a more complete understanding of the molecular events of Aβ-injection into mice with Alzheimer disease.

  6. Low Cerebrospinal Fluid Amyloid-Beta Concentration Is Associated with Poorer Delayed Memory Recall in Women

    Fanni Haapalinna


    Full Text Available Background: Data on the association of memory performance with cerebrospinal fluid (CSF biomarkers of Alzheimer's disease (AD are inconsistent. The Consortium to Establish a Registry for Alzheimer's Disease neuropsychological battery (CERAD-NB is a commonly used validated cognitive tool; however, only few studies have examined its relationship with CSF biomarkers for AD. We studied the correlation of pathological changes in CSF biomarkers with various CERAD-NB subtests and total scores. Methods: Out of 79 subjects (36 men, mean age 70.5 years, 63 had undergone an assessment of cognitive status with CERAD-NB and a CSF biomarker analysis due to a suspected memory disorder, and 16 were controls with no memory complaint.Results: In women we found a significant correlation between CSF amyloid-beta (Aβ1-42 and several subtests measuring delayed recall. Word List Recall correlated with all markers: Aβ1-42 (r = 0.323, p = 0.035, tau (r = -0.304, p = 0.050 and hyperphosphorylated tau (r = -0.331, p = 0.046. No such correlations were found in men. Conclusions: CSF biomarkers correlate with delayed memory scores in CERAD-NB in women, and women may have more actual AD pathology at the time of the investigations than men.

  7. In vitro detection of beta amyloid exploiting surface enhanced Raman scattering (SERS) using a nanofluidic biosensor

    Benford, Melodie E.; Chou, I.-Hsien; Beier, Hope T.; Wang, Miao; Kameoka, Jun; Good, Theresa A.; Coté, Gerard L.


    Alzheimer's disease (AD), a neurodegenerative disease and the most common cause of dementia, affects 4.5 million people according to the 2000 US census and is expected to triple to 13.2 million by the year 2050. Since no definitive pre-mortem tests exist to distinguish AD from mild cognitive impairment due to the natural aging process, we focus on detecting the beta amyloid (Aβ) protein, the primary component of the senile plaques characteristic of AD. We specifically detect cytotoxic species of Aβ by exploiting surface enhanced Raman scattering (SERS). Using a nanofluidic device with a bottleneck shape (a microchannel leading into a nanochannel); we trapped gold colloid particles (60 nm) at the entrance to the nanochannel, with Aβ restricted within the interstices between the aggregated nanoparticles. The continuous flow generated from pumping the solution into the device produced size-dependent trapping of the gold colloid particles, resulting in a high density of aggregated nanoparticles at this precise region, creating localized "hot spots" in the interstitial region between nanoparticles, and shifting the plasmon resonance to the near infrared region, in resonance with incident laser wavelength. With this robust sensing platform, we were able to obtain concentration-dependent SERS spectra of Aβ and of different proteins present in the cerebrospinal fluid of healthy people and people with Alzheimer's disease.

  8. Insulin Attenuates Beta-Amyloid-Associated Insulin/Akt/EAAT Signaling Perturbations in Human Astrocytes.

    Han, Xiaojuan; Yang, Liling; Du, Heng; Sun, Qinjian; Wang, Xiang; Cong, Lin; Liu, Xiaohui; Yin, Ling; Li, Shan; Du, Yifeng


    The excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2), mostly located on astrocytes, are the main mediators for glutamate clearance in humans. Malfunctions of these transporters may lead to excessive glutamate accumulation and subsequent excitotoxicity to neurons, which has been implicated in many kinds of neurodegenerative disorders including Alzheimer's disease (AD). Yet, the specific mechanism of the glutamate system dysregulation remains vague. To explore whether the insulin/protein kinase B (Akt)/EAAT signaling in human astrocytes could be disturbed by beta-amyloid protein (Aβ) and be protected by insulin, we incubated HA-1800 cells with varying concentrations of Aβ1-42 oligomers and insulin. Then the alterations of several key substrates in this signal transduction pathway were determined. Our results showed that expressions of insulin receptor, phospho-insulin receptor, phospho-protein kinase B, phospho-mammalian target of rapamycin, and EAAT1 and EAAT2 were decreased by the Aβ1-42 oligomers in a dose-dependent manner (p  0.05), and the mRNA levels of EAAT1 and EAAT2 were also unchanged (p > 0.05). Taken together, this study indicates that Aβ1-42 oligomers could cause disturbances in insulin/Akt/EAAT signaling in astrocytes, which might be responsible for AD onset and progression. Additionally, insulin can exert protective functions to the brain by modulating protein modifications or expressions. PMID:26358886

  9. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals

  10. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    Drochioiu, Gabi; Ion, Laura [Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506 (Romania); Murariu, Manuela; Habasescu, Laura [Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487 (Romania)


    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  11. Studies of amyloid toxicity in Drosophila models and effects of the BRICHOS domain

    Hermansson Wik, Erik


    Amyloid diseases involve specific protein misfolding events and formation of fibrillar deposits. The symptoms of these diseases are broad and dependent on site of accumulation, with different amyloid proteins depositing in specific tissues or systematically. One such protein is transthyretin (TTR) associated with senile systemic amyloidosis, familial amyloid polyneuropathy and familial amyloid cardiomyopathy. We show that the glycosaminoglycan heparan sulfate (HS) can be co-loc...

  12. Chronic cladribine administration increases amyloid beta peptide generation and plaque burden in mice.

    Crystal D Hayes

    Full Text Available BACKGROUND: The clinical uses of 2-chloro-2'-deoxyadenosine (2-CDA or cladribine which was initially prescribed to patients with hematological and lymphoid cancers is now extended to treat patients with multiple sclerosis (MS. Previous data has shown that 2-CDA has high affinity to the brain and readily passes through the blood brain barrier reaching CSF concentrations 25% of that found in plasma. However, whether long-term administration of 2-CDA can lead to any adverse effects in patients or animal models is not yet clearly known. METHODOLOGY: Here we show that exposure of 2-CDA to CHO cells stably expressing wild-type APP751 increased generation and secretion of amyloid β peptide (Aβ in to the conditioned medium. Interestingly, increased Aβ levels were noticed even at non-toxic concentrations of 2-CDA. Remarkably, chronic treatment of APdE9 mice, a model of Alzheimer's disease with 2-CDA for 60 days increased amyloid plaque burden by more than 1-fold. Increased Aβ generation appears to result from increased turnover of APP as revealed by cycloheximide-chase experiments. Additionally, surface labeling of APP with biotin and immunoprecipitation of surface labeled proteins with anti-biotin antibody also indicated increased APP at the cell surface in 2-CDA treated cells compared to controls. Increased turnover of APP by 2-CDA in turn might be a consequence of decreased protein levels of PIN 1, which is known to regulate cis-trans isomerization and phosphorylation of APP. Most importantly, like many other oncology drugs, 2-CDA administration led to significant delay in acquiring a reward-based learning task in a T maze paradigm. CONCLUSIONS: Taken together, these data provide compelling evidence for the first time that chronic 2-CDA administration can increase amyloidogenic processing of APP leading to robustly increased plaque burden which may be responsible for the observed deficits in learning skills. Thus chronic treatment of mice with 2

  13. Amyloid cascade in Alzheimer's disease: Recent advances in medicinal chemistry.

    Mohamed, Tarek; Shakeri, Arash; Rao, Praveen P N


    Alzheimer's disease is of major concern all over the world due to a number of factors including (i) an aging population (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multitargeting small molecules as therapeutic options. The pathophysiology of Alzheimer's disease is attributed to a number of factors such as the cholinergic dysfunction, amyloid/tau toxicity and oxidative stress/mitochondrial dysfunction. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of beta-amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia. The two commonly used approaches to prevent beta-amyloid accumulation in the brain include (i) development of beta-secretase inhibitors and (ii) designing direct inhibitors of beta-amyloid (self-induced) aggregation. This review highlights the amyloid cascade hypothesis and the key chemical features required to design small molecules that inhibit lower and higher order beta-amyloid aggregates. Several recent examples of small synthetic molecules with disease-modifying properties were considered and their molecular docking studies were conducted using either a dimer or steric-zipper assembly of beta-amyloid. These investigations provide a mechanistic understanding on the structural requirements needed to design novel small molecules with anti-amyloid aggregation properties. Significantly, this work also demonstrates that the structural requirements to prevent aggregation of various amyloid species differs considerably, which explains the fact that many small molecules do not exhibit similar inhibition profile toward diverse amyloid species such as dimers, trimers, tetramers, oligomers, protofibrils and fibrils. PMID:26945113

  14. Soluble Beta-Amyloid Precursor Protein Is Related to Disease Progression in Amyotrophic Lateral Sclerosis

    Steinacker, Petra; Fang, Lubin; Kuhle, Jens; Petzold, Axel; Tumani, Hayrettin; Ludolph, Albert C.; Otto, Markus; Brettschneider, Johannes


    Background Biomarkers of disease progression in amyotrophic lateral sclerosis (ALS) could support the identification of beneficial drugs in clinical trials. We aimed to test whether soluble fragments of beta-amyloid precursor protein (sAPPα and sAPPß) correlated with clinical subtypes of ALS and were of prognostic value. Methodology/Principal Findings In a cross-sectional study including patients with ALS (N = 68) with clinical follow-up data over 6 months, Parkinson's disease (PD, N = 20), and age-matched controls (N = 40), cerebrospinal fluid (CSF) levels of sAPPα a, sAPPß and neurofilaments (NfHSMI35) were measured by multiplex assay, Progranulin by ELISA. CSF sAPPα and sAPPß levels were lower in ALS with a rapidly-progressive disease course (p = 0.03, and p = 0.02) and with longer disease duration (p = 0.01 and p = 0.01, respectively). CSF NfHSMI35 was elevated in ALS compared to PD and controls, with highest concentrations found in patients with rapid disease progression (p<0.01). High CSF NfHSMI3 was linked to low CSF sAPPα and sAPPß (p = 0.001, and p = 0.007, respectively). The ratios CSF NfHSMI35/CSF sAPPα,-ß were elevated in patients with fast progression of disease (p = 0.002 each). CSF Progranulin decreased with ongoing disease (p = 0.04). Conclusions This study provides new CSF candidate markers associated with progression of disease in ALS. The data suggest that a deficiency of cellular neuroprotective mechanisms (decrease of sAPP) is linked to progressive neuro-axonal damage (increase of NfHSMI35) and to progression of disease. PMID:21858182

  15. Soluble beta-amyloid precursor protein is related to disease progression in amyotrophic lateral sclerosis.

    Petra Steinacker

    Full Text Available BACKGROUND: Biomarkers of disease progression in amyotrophic lateral sclerosis (ALS could support the identification of beneficial drugs in clinical trials. We aimed to test whether soluble fragments of beta-amyloid precursor protein (sAPPα and sAPPß correlated with clinical subtypes of ALS and were of prognostic value. METHODOLOGY/PRINCIPAL FINDINGS: In a cross-sectional study including patients with ALS (N = 68 with clinical follow-up data over 6 months, Parkinson's disease (PD, N = 20, and age-matched controls (N = 40, cerebrospinal fluid (CSF levels of sAPPα a, sAPPß and neurofilaments (NfH(SMI35 were measured by multiplex assay, Progranulin by ELISA. CSF sAPPα and sAPPß levels were lower in ALS with a rapidly-progressive disease course (p = 0.03, and p = 0.02 and with longer disease duration (p = 0.01 and p = 0.01, respectively. CSF NfH(SMI35 was elevated in ALS compared to PD and controls, with highest concentrations found in patients with rapid disease progression (p<0.01. High CSF NfH(SMI3 was linked to low CSF sAPPα and sAPPß (p = 0.001, and p = 0.007, respectively. The ratios CSF NfH(SMI35/CSF sAPPα,-ß were elevated in patients with fast progression of disease (p = 0.002 each. CSF Progranulin decreased with ongoing disease (p = 0.04. CONCLUSIONS: This study provides new CSF candidate markers associated with progression of disease in ALS. The data suggest that a deficiency of cellular neuroprotective mechanisms (decrease of sAPP is linked to progressive neuro-axonal damage (increase of NfH(SMI35 and to progression of disease.

  16. Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations as a model to study clearance of beta-amyloid plaques

    Christian eHumpel


    Full Text Available Alzheimer´s disease is a severe neurodegenerative disorder of the brain, pathologically characterized by extracellular beta-amyloid plaques, intraneuronal Tau inclusions, inflammation, reactive glial cells, vascular pathology and neuronal cell death. The degradation and clearance of beta-amyloid plaques is an interesting therapeutic approach, and the proteases neprilysin (NEP, insulysin and matrix metalloproteinases (MMP are of particular interest. The aim of this project was to establish and characterize a simple in vitro model to study the degrading effects of these proteases. Organoytpic brain vibrosections (120 µm thick were sectioned from adult (9 month old wildtype and transgenic mice (expressing amyloid precursor protein (APP harboring the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations; APP_SDI and cultured for 2 weeks. Plaques were stained by immunohistochemistry for beta-amyloid and Thioflavin S. Our data show that plaques were evident in 2 week old cultures from 9 month old transgenic mice. These plaques were surrounded by reactive GFAP+ astroglia and Iba1+ microglia. Incubation of fresh slices for 2 weeks with 1-0.1-0.01 µg/ml of NEP, insulysin, MMP-2 or MMP-9 showed that NEP, insulysin and MMP-9 markedly degradeded beta-amyloid plaques but only at the highest concentration. Our data provide for the first time a potent and powerful living brain vibrosection model containing a high number of plaques, which allows to rapidly and simply study the degradation and clearance of beta-amyloid plaques in vitro.

  17. Einfluß einer In-vitro- und In-vivo-Cholesterol-Modulation in Hirnmembranen auf die zellulären Effekte von Amyloid-beta-Peptid

    Kirsch, Christopher


    Die exzessive Bildung und Ablagerung von aggregiertem Amyloid beta-Peptid im Gehirn von Alzheimer Patienten wird allgemein als zentrales Ereignis im Rahmen des Neurodegenerationsprozesses der Alzheimer Demenz betrachtet. Der Amyloid-Stoffwechsel ist dabei in sehr vielfältiger Weise mit dem zellulären Cholesterol-Stoffwechsel verknüpft. Hohe Cholesterolspiegel in spezifischen Membrandomänen wie Lipid-Rafts forcieren sehr wahrscheinlich die zelluläre Produktion als auch die Fibrillogenese von A...

  18. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    Weiner, H L; Lemere, C A; Maron, R;


    -Abeta antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti-inflammatory cytokines interleukin-4, interleukin-10, and tumor growth factor-beta. Our results demonstrate that chronic nasal administration of Abeta peptide can induce an immune response to Abeta that decreases...

  19. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    Wang, Jiying [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Ohno-Matsui, Kyoko, E-mail: [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Morita, Ikuo [Section of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)


    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells in vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas

  20. Structural reorganisation and potential toxicity of oligomeric species formed during the assembly of amyloid fibrils.

    Mookyung Cheon


    Full Text Available Increasing evidence indicates that oligomeric protein assemblies may represent the molecular species responsible for cytotoxicity in a range of neurological disorders including Alzheimer and Parkinson diseases. We use all-atom computer simulations to reveal that the process of oligomerization can be divided into two steps. The first is characterised by a hydrophobic coalescence resulting in the formation of molten oligomers in which hydrophobic residues are sequestered away from the solvent. In the second step, the oligomers undergo a process of reorganisation driven by interchain hydrogen bonding interactions that induce the formation of beta sheet rich assemblies in which hydrophobic groups can become exposed. Our results show that the process of aggregation into either ordered or amorphous species is largely determined by a competition between the hydrophobicity of the amino acid sequence and the tendency of polypeptide chains to form arrays of hydrogen bonds. We discuss how the increase in solvent-exposed hydrophobic surface resulting from such a competition offers an explanation for recent observations concerning the cytotoxicity of oligomeric species formed prior to mature amyloid fibrils.

  1. HP-β-cyclodextrin as an inhibitor of amyloid-β aggregation and toxicity.

    Ren, Baiping; Jiang, Binbo; Hu, Rundong; Zhang, Mingzhen; Chen, Hong; Ma, Jie; Sun, Yan; Jia, Lingyun; Zheng, Jie


    Amyloid deposits of misfolded amyloid-β protein (Aβ) on neuronal cells are a pathological hallmark of Alzheimer's disease (AD). Prevention of the abnormal Aβ aggregation has been considered as a promising therapeutic strategy for AD treatment. To prevent reinventing the wheel, we proposed to search the existing drug database for other diseases to identify potential Aβ inhibitors. Herein, we reported the inhibitory activity of HP-β-cyclodextrin (HP-β-CD), a well-known sugar used in drug delivery, genetic vector, environmental protection and treatment of Niemann-Pick disease type C1 (NPC1), against Aβ1-42 aggregation and Aβ-induced toxicity, with the aim of adding a new function as a sugar-based Aβ inhibitor. Experimental data showed that HP-β-CD molecules were not only nontoxic to cells, but also greatly inhibited Aβ fibrillization and reduced Aβ-induced toxicity in a concentration-dependent manner. At an optimal molar ratio of Aβ : HP-β-CD = 1 : 2, HP-β-CD enabled the reduction of 60% of Aβ fibrils and increased the cell viability to 92%. Such concentration-dependent inhibitor capacity of HP-β-CD was likely attributed to several combined effects, including the enhancement of Aβ-HP-β-CD interactions, prevention of structural transition of Aβ peptides towards β-sheet structures, and reduction of self-aggregation of HP-β-CD. In parallel, molecular simulations further revealed the atomic details of HP-β-CD interacting with the Aβ oligomer, showing that HP-β-CD had a high tendency to interact with hydrophobic residues of Aβ in two β-strands and the N-terminal tail. More importantly, we identified that the inner hydrophobic cavity of HP-β-CD was a key active site for Aβ inhibition. Once the inner cavity of HP-β-CD was blocked by a small hydrophobic molecule of ferulic acid, HP-β-CD completely lost its inhibition capacity against Aβ. Given the already established pharmaceutical functions of HP-β-CD in drug delivery, our findings

  2. AG10 inhibits amyloidogenesis and cellular toxicity of the familial amyloid cardiomyopathy-associated V122I transthyretin.

    Penchala, Sravan C; Connelly, Stephen; Wang, Yu; Park, Miki S; Zhao, Lei; Baranczak, Aleksandra; Rappley, Irit; Vogel, Hannes; Liedtke, Michaela; Witteles, Ronald M; Powers, Evan T; Reixach, Natàlia; Chan, William K; Wilson, Ian A; Kelly, Jeffery W; Graef, Isabella A; Alhamadsheh, Mamoun M


    The misassembly of soluble proteins into toxic aggregates, including amyloid fibrils, underlies a large number of human degenerative diseases. Cardiac amyloidoses, which are most commonly caused by aggregation of Ig light chains or transthyretin (TTR) in the cardiac interstitium and conducting system, represent an important and often underdiagnosed cause of heart failure. Two types of TTR-associated amyloid cardiomyopathies are clinically important. The Val122Ile (V122I) mutation, which alters the kinetic stability of TTR and affects 3% to 4% of African American subjects, can lead to development of familial amyloid cardiomyopathy. In addition, aggregation of WT TTR in individuals older than age 65 y causes senile systemic amyloidosis. TTR-mediated amyloid cardiomyopathies are chronic and progressive conditions that lead to arrhythmias, biventricular heart failure, and death. As no Food and Drug Administration-approved drugs are currently available for treatment of these diseases, the development of therapeutic agents that prevent TTR-mediated cardiotoxicity is desired. Here, we report the development of AG10, a potent and selective kinetic stabilizer of TTR. AG10 prevents dissociation of V122I-TTR in serum samples obtained from patients with familial amyloid cardiomyopathy. In contrast to other TTR stabilizers currently in clinical trials, AG10 stabilizes V122I- and WT-TTR equally well and also exceeds their efficacy to stabilize WT and mutant TTR in whole serum. Crystallographic studies of AG10 bound to V122I-TTR give valuable insights into how AG10 achieves such effective kinetic stabilization of TTR, which will also aid in designing better TTR stabilizers. The oral bioavailability of AG10, combined with additional desirable drug-like features, makes it a very promising candidate to treat TTR amyloid cardiomyopathy. PMID:23716704

  3. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder

    Cai, Zhiyou; Yan, Yong; Wang, Yonglong


    Background Compelling evidence has shown that diabetic metabolic disorder plays a critical role in the pathogenesis of Alzheimer’s disease, including increased expression of β-amyloid protein (Aβ) and tau protein. Evidence has supported that minocycline, a tetracycline derivative, protects against neuroinflammation induced by neurodegenerative disorders or cerebral ischemia. This study has evaluated minocycline influence on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the brain of diabetic rats to clarify neuroprotection by minocycline under diabetic metabolic disorder. Method An animal model of diabetes was established by high fat diet and intraperitoneal injection of streptozocin. In this study, we investigated the effect of minocycline on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the hippocampus of diabetic rats via immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. Results These results showed that minocycline decreased expression of Aβ protein and lowered the phosphorylation of tau protein, and retarded the proinflammatory cytokines, but not amyloid precursor protein. Conclusion On the basis of the finding that minocycline had no influence on amyloid precursor protein and beta-site amyloid precursor protein cleaving enzyme 1 which determines the speed of Aβ generation, the decreases in Aβ production and tau hyperphosphorylation by minocycline are through inhibiting neuroinflammation, which contributes to Aβ production and tau hyperphosphorylation. Minocycline may also lower the self-perpetuating cycle between neuroinflammation and the pathogenesis of tau and Aβ to act as a neuroprotector. Therefore, the ability of minocycline to modulate inflammatory reactions may be of great importance in the selection of neuroprotective agents, especially in chronic conditions

  4. Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus

    Silverberg Gerald D


    Full Text Available Abstract Background Previous studies in aging animals have shown that amyloid-beta protein (Aβ accumulates and its transporters, low-density lipoprotein receptor-related protein-1 (LRP-1 and the receptor for advanced glycation end products (RAGE are impaired during hydrocephalus. Furthermore, correlations between astrocytes and Aβ have been found in human cases of normal pressure hydrocephalus (NPH and Alzheimer's disease (AD. Because hydrocephalus occurs frequently in children, we evaluated the expression of Aβ and its transporters and reactive astrocytosis in animals with neonatal hydrocephalus. Methods Hydrocephalus was induced in neonatal rats by intracisternal kaolin injections on post-natal day one, and severe ventriculomegaly developed over a three week period. MRI was performed on post-kaolin days 10 and 21 to document ventriculomegaly. Animals were sacrificed on post-kaolin day 21. For an age-related comparison, tissue was used from previous studies when hydrocephalus was induced in a group of adult animals at either 6 months or 12 months of age. Tissue was processed for immunohistochemistry to visualize LRP-1, RAGE, Aβ, and glial fibrillary acidic protein (GFAP and with quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR to quantify expression of LRP-1, RAGE, and GFAP. Results When 21-day post-kaolin neonatal hydrocephalic animals were compared to adult (6–12 month old hydrocephalic animals, immunohistochemistry demonstrated levels of Aβ, RAGE, and LRP-1 that were substantially lower in the younger animals; in contrast, GFAP levels were elevated in both young and old hydrocephalic animals. When the neonatal hydrocephalic animals were compared to age-matched controls, qRT-PCR demonstrated no significant changes in Aβ, LRP-1 and RAGE. However, immunohistochemistry showed very small increases or decreases in individual proteins. Furthermore, qRT-PCR indicated statistically significant increases in GFAP

  5. DCP-LA neutralizes mutant amyloid beta peptide-induced impairment of long-term potentiation and spatial learning.

    Nagata, Tetsu; Tomiyama, Takami; Tominaga, Takemi; Mori, Hiroshi; Yaguchi, Takahiro; Nishizaki, Tomoyuki


    Long-term potentiation (LTP) was monitored from the CA1 region of the intact rat hippocampus by delivering high frequency stimulation (HFS) to the Schaffer collateral commissural pathway. Intraventricular injection with mutant amyloid beta(1-42) peptide lacking glutamate-22 (Abeta(1-42)E22Delta), favoring oligomerization, 10 min prior to HFS, inhibited expression of LTP, with the potency more than wild-type amyloid beta(1-42) peptide. Intraperitoneal injection with the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) 70 min prior to HFS neutralized mutant Abeta(1-42)E22Delta peptide-induced LTP inhibition. In the water maze test, continuous intraventricular injection with mutant Abeta(1-42)E22Delta peptide for 14 days prolonged the acquisition latency as compared with that for control, with the potency similar to wild-type Abeta(1-42) peptide, and intraperitoneal injection with DCP-LA shortened the prolonged latency to control levels. The results of the present study indicate that DCP-LA neutralizes mutant Abeta(1-42)E22Delta peptide-induced impairment of LTP and spatial learning. PMID:19716848

  6. Dynamic changes of beta-amyloid protein deposition in hippocampus of female ovariectomized rats

    Huiqing Xie; Jianda Zhou; Shaodan Sun; Xuhong Li; Liming Deng; Fengmei Li


    BACKGROUND: To evaluate and summarize the effects of cerebral perfusion and vascular reserve on the treatment of SICAS. Recently, research on β-amyloid protein has focused on the regulatory effects of es-trogen or phytoestrogen on its deposition. However, there have been only a few reports on dynamic changes of β-amyloid protein deposition in hippocampus of ovariectomized rats.OBJECTIVE: To measureβ-amyloid protein deposition in the hippocampal formation of ovariectomized rats by using immunohistochemistry; to observe time-dependent dynamic changes. DESIGN: Randomized controlled animal study.SETTING: Third Xiangya Hospital of Central South University.MATERIALS: The experiment was carried out in the Central Laboratory of the Third Xiangya Hospital of Central South University from November 2005 to December 2006. Fifty healthy female Sprague Dawley (SD) rats, weighing (293 ± 10) g, were provided by the Animal Laboratory of Xiangya Medical College, Central South University. All rats had neither a childbearing history nor hepatic or renal disease, or skeletal deformity. Β-amyloid protein immunohistochemical kit was provided by Wuhan Boster Company. The ex-periment was in accordance with animal ethics standards.METHODS: All rats were randomly divided into five groups, including normal control group (n = 10), sham operation group (n = 10), and ovariectomized group (n = 30). After anesthesia in the ovariectomized group, the bilateral ovaries were separated and resected. The same volume of fat was resected in the sham operation group. Rats from the normal control group, however, did not receive any surgical treatments. Rats in the normal control group and sham operation group were sacrificed by anesthesia 7 weeks after surgery. Every ten rats from the ovariectomized group was respectively sacrificed at 7, 15, and 30 weeks after surgery. Immunohistochemistry was used to detectβ-amyloid protein deposition in hippocampal sections. Cell counting and gray value

  7. The shark bile salt 5 beta-scymnol abates acetaminophen toxicity, but not covalent binding.

    Slitt, Angela Lucas; Naylor, Lee; Hoivik, J; Manautou, Jose E; Macrides, Theo; Cohen, Steven D


    Acetaminophen (APAP) toxicity involves both arylative and oxidative mechanisms. The shark bile salt, 5 beta-scymnol (5beta-S), has been demonstrated to act as an antioxidant and free radical scavenger in vitro. To determine if 5beta-S protects against either APAP-induced hepatic or renal toxicity, 3-4-month-old male Swiss Laca mice were given APAP (500 mg/kg), and 5beta-S (100 mg/kg) was given at 0 and 2 h after APAP. Plasma SDH at 12 h after APAP alone was 1630 U/l and BUN was 19 mg/dl versus 20 U/l and 10 mg/dl, respectively, in controls. Either simultaneous or 2 h delayed treatment with 5beta-S significantly decreased the APAP-induced SDH increase while only the simultaneous pretreatment prevented the BUN elevation. 5beta-S alone did not increase liver glutathione content. Western analysis of APAP covalent binding using anti-APAP antibodies indicated the 5beta-S did not alter protein arylation either qualitatively or quantitatively. These results suggest that 5beta-S treatment did not impair APAP activation and are consistent with 5beta-S protection that likely results from its antioxidant activity. PMID:15363587

  8. Toxicity of inhaled beta-emitting radionuclides: an experimental approach

    An experimental approach to evaluation of the toxicity of inhaled beta-emitting radionuclides in laboratory animals is described. These radionuclides are being studied in both relatively soluble (90SrCl2, 144CeCl3, 91YCl3 or 137CsCl) and relatively insoluble aerosol forms (90Y, 91Y, 144Ce or 90Sr in fused aluminosilicate particles). Initial lung or whole-body radionuclide burdens were selected to result in early deaths due to severe lesions at the highest exposure levels, and more subtle changes, such as neoplasia, at the lower levels. The organs affected vary depending on the solubility and chemical characteristics of the isotope. For radionuclides inhaled in relatively soluble forms, long-term effects have been seen in the liver, skeleton, respiratory tract and other tissues. In contrast, long-term effects seen in the dogs exposed to relatively insoluble forms have been mainly associated with the lung and contiguous tissues. In all experiments, emphasis is placed on an evaluation of the influence of radiation dose rate and total dose on the resulting dose-response relationship. Over the mid-range of exposure levels, it will be possible to compare the radiation dose and biological response relationships for the several radioactive aerosols with their different radiation dose patterns. These studies with young adult dogs are complemented with comparable studies in other species (mice, rats and Syrian hamsters) and with animals of different ages (immature, aged). This basic approach, with emphasis on factors that alter the resulting radiation dose pattern, offers the maximum likelihood of meeting the continuing, and not always predictable, needs for information on the toxicity of inhaled beta-emitting radionuclides that may be encountered in nuclear industry operations

  9. Toxicity of inhaled beta-emitting radionuclides: an experimental approach

    An experimental approach to evaluation of the toxicity of inhaled beta-emitting radionuclides in experimental animals is described. Graded levels of these radionuclides are being studied in both relatively soluble (90SrCl2, 144CeCl3, 91YCl3, 137CsCl) and relatively insoluble forms (90Y, 91Y, 144Ce and 90Sr in fused clay particles). Initial lung or whole-body activity burdens were selected to result in early deaths due to severe lesions at the highest levels, deaths at later times with moderate to marked pathologic changes and more subtle changes such as neoplasia at the lower levels. The organs affected vary depending on the solubility and chemical characteristics of the isotope. For radionuclides inhaled in relatively soluble forms, long-term effects have been seen in the liver, skeleton, and other tissues in addition to some pulmonary effects. In contrast, long-term effects seen in the dogs exposed to relatively insoluble forms have been mainly associated with the lung and contiguous tissues. In the latter experiments, emphasis is placed on an evaluation of the influence of radiation dose rate and total dose on the resulting dose-response relationship. Over the mid-range of the relationship between radiation dose and biological response, it will be possible to compare the relationships for the several radioactive aerosols with their different radiation dose patterns. These studies with young adult dogs are complemented with comparable studies in other species (mice, Syrian hamsters) and with animals of different ages (immature, aged). This basic approach, with emphasis on factors that alter the resulting radiation dose pattern, offers the maximum likelihood of meeting the continuing, and not always predictable, needs for information on the toxicity of inhaled beta-emitting radionuclides that may be encountered in nuclear industry operations. (U.S.)

  10. Insulin Promotes Survival of Amyloid-Beta Oligomers Neuroblastoma Damaged Cells via Caspase 9 Inhibition and Hsp70 Upregulation

    M. Di Carlo


    Full Text Available Alzheimer's disease (AD and type 2 diabetes are connected in a way that is still not completely understood, but insulin resistance has been implicated as a risk factor for developing AD. Here we show an evidence that insulin is capable of reducing cytotoxicity induced by Amyloid-beta peptides (A-beta in its oligomeric form in a dose-dependent manner. By TUNEL and biochemical assays we demonstrate that the recovery of the cell viability is obtained by inhibition of intrinsic apoptotic program, triggered by A-beta and involving caspase 9 and 3 activation. A protective role of insulin on mitochondrial damage is also shown by using Mito-red vital dye. Furthermore, A-beta activates the stress inducible Hsp70 protein in LAN5 cells and an overexpression is detectable after the addition of insulin, suggesting that this major induction is the necessary condition to activate a cell survival program. Together, these results may provide opportunities for the design of preventive and therapeutic strategies against AD.

  11. Inhibition of beta-site amyloid precursor protein-cleaving enzyme and beta-amyloid precursor protein genes in SK-N-SH cells

    Suqin Gao; Lin Sun; Enji Han; Hongshun Qi; Jinbo Feng; Shunliang Xu; Wen Xia


    BACKGROUND:Previous studies have demonstrated that Piper futokadsura stem selectively inhibits expression of amyloid precursor protein (APP) at the mRNA level.In addition,the piperlonguminine (A) and dihydropiperlonguminine (B) components (1:0.8),which can be separated from Futokadsura stem,selectively inhibit expression of the APP at mRNA and protein levels.OBJECTIVE:Based on previous findings,the present study investigated the effects of β-site amyloid precursor protein cleaving enzyme (BACE1) and APP genes on the production of β-amyloid peptide 42 (Aβ42) in human neuroblastoma cells (SK-N-SH cells) using small interfering RNAs (siRNAs) and A/B components separated from Futokadsura stem,respectively.DESIGN,TIME AND SETTING:A gene interference-based randomized,controlled,in vitro experiment was performed at the Key Laboratory of Cardiovascular Remodeling and Function Research,Ministries of Education and Public Health,and Institute of Pharmacologic Research,School of Pharmaceutical Science & Department of Biochemistry,School of Medicine,Shandong University between July 2006 and December 2007.MATERIALS:SK-N-SH cells were provided by Shanghai Institutes of Biological Sciences,Chinese Academy of Sciences,Shanghai,China;mouse anti-human BACE1 monoclonal antibody was purchased from R&D Systems,USA;mouse anti-human APP monoclonal antibody was purchased from Cell Signaling Technology,USA;and horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG was provided by Sigma,USA.METHODS:The human BACE1 cDNA sequence was obtained from NCBI website ( pairs of siRNAs,specific to human BACE1 gene,were synthesized through the use of Silencer? pre-designed siRNA specification,and were transfected into SK-N-SH cells with siPORT NeoFX transfection agent to compare the effects of different concentrations of siRNAs (10-50 nmol/L) on SK-N-SH cells.Futokadsura stem was separated and purified with chemical methods,and the crystal was composed of

  12. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder

    Cai Z


    Full Text Available Zhiyou Cai,1 Yong Yan,2 Yonglong Wang2 1Department of Neurology, the Lu’an Affiliated Hospital of Anhui Medical University, Lu’an People’s Hospital, Lu’an, Anhui Province, People’s Republic of China; 2Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, People’s Republic of China Background: Compelling evidence has shown that diabetic metabolic disorder plays a critical role in the pathogenesis of Alzheimer’s disease, including increased expression of β-amyloid protein (Aβ and tau protein. Evidence has supported that minocycline, a tetracycline derivative, protects against neuroinflammation induced by neurodegenerative disorders or cerebral ischemia. This study has evaluated minocycline influence on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α in the brain of diabetic rats to clarify neuroprotection by minocycline under diabetic metabolic disorder. Method: An animal model of diabetes was established by high fat diet and intraperitoneal injection of streptozocin. In this study, we investigated the effect of minocycline on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α in the hippocampus of diabetic rats via immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. Results: These results showed that minocycline decreased expression of Aβ protein and lowered the phosphorylation of tau protein, and retarded the proinflammatory cytokines, but not amyloid precursor protein. Conclusion: On the basis of the finding that minocycline had no influence on amyloid precursor protein and beta-site amyloid precursor protein cleaving enzyme 1 which determines the speed of Aβ generation, the decreases in Aβ production and tau hyperphosphorylation by minocycline are through inhibiting

  13. Evaluation of protease resistance and toxicity of amyloid-like food fibrils from whey, soy, kidney bean, and egg white.

    Lassé, Moritz; Ulluwishewa, Dulantha; Healy, Jackie; Thompson, Dion; Miller, Antonia; Roy, Nicole; Chitcholtan, Kenny; Gerrard, Juliet A


    The structural properties of amyloid fibrils combined with their highly functional surface chemistry make them an attractive new food ingredient, for example as highly effective gelling agents. However, the toxic role of amyloid fibrils in disease may cause some concern about their food safety because it has not been established unequivocally if consumption of food fibrils poses a health risk to consumers. Here we present a study of amyloid-like fibrils from whey, kidney bean, soy bean, and egg white to partially address this concern. Fibrils showed varied resistance to proteolytic digestion in vitro by either Proteinase K, pepsin or pancreatin. The toxicity of mature fibrils was measured in vitro and compared to native protein, early-stage-fibrillar protein, and sonicated fibrils in two immortalised human cancer cell lines, Caco-2 and Hec-1a. There was no reduction in the viability of either Caco-2 or Hec-1a cells after treatment with a fibril concentration of up to 0.25 mg/mL. PMID:26304377

  14. Screening for a human single chain Fv antibody against epitope on amyloid-beta 1-40 from a human phage display library

    ZHAO Zhen-fu; GAO Guo-quan; LIU Shu; ZOU Jun-tao; XIE Yao; YUAN Qun-fang; WANG Hua-qiao; YAO Zhi-bin


    @@ Amyloid-beta peptides (Aβ) are believed to be responsible for the mental decline in patients with Alzheimer's disease (AD). In 1999, Schenk et al1 reported that immunization with Aβ attenuated AD-like pathology in the PDAPP mouse, and developed a new vaccination approach to AD.

  15. Poor Memory Performance in Aged Cynomolgus Monkeys with Hippocampal Atrophy, Depletion of Amyloid Beta 1-42 and Accumulation of Tau Proteins in Cerebrospinal Fluid

    Darusman, Huda S; Pandelaki, Jacub; Mulyadi, Rahmad;


    performance had evidence of atrophy in the hippocampus and cortical areas, significantly lower cerebrospinal fluid levels of amyloid beta amino acid 1-42 (p<0.001) and higher cerebrospinal fluid total tau levels (p<0.05) compared to the group performing well on the DRT tests. CONCLUSION: Old, memory...

  16. Radioiodinated benzimidazole derivatives as single photon emission computed tomography probes for imaging of {beta}-amyloid plaques in Alzheimer's disease

    Cui Mengchao [Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Ono, Masahiro, E-mail: [Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Kimura, Hiroyuki; Kawashima, Hidekazu [Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Liu Boli [Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Saji, Hideo, E-mail: [Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan)


    Five iodinated 2-phenyl-1H-benzo[d]imidazole derivatives were synthesized and evaluated as potential probes for {beta}-amyloid (A{beta}) plaques. One of the compounds, 4-(6-iodo-1H-benzo[d]imidazol-2-yl)-N,N-dimethylaniline (12), showed excellent affinity for A{beta}{sub 1-42} aggregates (K{sub i}=9.8 nM). Autoradiography with sections of postmortem Alzheimer's disease (AD) brain revealed that a radioiodinated probe [{sup 125}I]12, labeled A{beta} plaques selectively with low nonspecific binding. Biodistribution experiments with normal mice injected intravenously with [{sup 125}I]12 showed high uptake [4.14 percent injected dose per gram (% ID/g) at 2 min] into and rapid clearance (0.15% ID/g at 60 min) from the brain, which may bring about a good signal-to-noise ratio and therefore achieve highly sensitive detection of A{beta} plaques. In addition, [{sup 125}I]12 labeled amyloid plaques in vivo in an AD transgenic model. The preliminary results strongly suggest that [{sup 125}I]12 bears characteristics suitable for detecting amyloid plaques in vivo. When labeled with {sup 123}I, it may be a useful SPECT imaging agent for A{beta} plaques in the brain of living AD patients.

  17. Evaluation and comparison of alpha- and beta-amanitin toxicity on MCF-7 cell line

    Kaya, Ertuğrul; BAYRAM, Recep; YAYKAŞLI, Kürşat Oğuz; YILMAZ, İsmail; BAYRAM, Sait


    Alpha- and beta-amanitins are the main toxins of the poisonous Amanita phalloides mushroom. Although there are many studies available concerning alpha-amanitin, there are limited data about beta-amanitin in the literature. Therefore, this study is aimed at comparing the toxic effects of alpha- and beta-amanitin on the MCF-7 cell line. Materials and methods: The alpha- and beta-amanitins used for this research were purified from Amanita phalloides by preparative high-performance liquid chrom...

  18. Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer's disease.

    Jiao, Yanan; Kong, Liang; Yao, Yingjia; Li, Shaoheng; Tao, Zhenyu; Yan, Yuhui; Yang, Jingxian


    Accumulation of β-amyloid peptide (Aβ) in the brain plays an important role in the pathogenesis of Alzheimer's disease (AD). Although osthole has been shown to neuroprotective activity in AD, the exact molecular mechanism of its neuroprotective effects has not yet been fully elucidated. Recently, microRNAs (miRNAs) have been reported to regulate multiple aspects of AD development and progression, indicating that targeting miRNAs could be a novel strategy to treat AD. In the current study, we investigated whether a natural coumarin derivative osthole could up-regulate miR-107, resulting in facilitating the cells survival, reducing LDH leakage, inhibiting apoptosis and reducing beta amyloid (Aβ) production in AD. We found that osthole treatment significantly up-regulate miR-107 expression and inhibited BACE1, one of the targets of miR-107. Administration of osthole to APP/PS1 transgenic mice resulted in a significant improvement in learning and memory function, which was associated with a significant a decrease in Aβ in the hippocampal and cortex region of the brain. Our findings demonstrated that osthole plays a neuroprotective activity role in part through up-regulate miR-107 in AD. PMID:27143098

  19. Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons

    Ungureanu, Andreea-Alexandra; Benilova, Iryna; Krylychkina, Olga; Braeken, Dries; De Strooper, Bart; Van Haesendonck, Chris; Dotti, Carlos G.; Bartic, Carmen


    Small soluble species of amyloid-beta (Aβ) formed during early peptide aggregation stages are responsible for several neurotoxic mechanisms relevant to the pathology of Alzheimer’s disease (AD), although their interaction with the neuronal membrane is not completely understood. This study quantifies the changes in the neuronal membrane elasticity induced by treatment with the two most common Aβ isoforms found in AD brains: Aβ40 and Aβ42. Using quantitative atomic force microscopy (AFM), we measured for the first time the static elastic modulus of living primary hippocampal neurons treated with pre-aggregated Aβ40 and Aβ42 soluble species. Our AFM results demonstrate changes in the elasticity of young, mature and aged neurons treated for a short time with the two Aβ species pre-aggregated for 2 hours. Neurons aging under stress conditions, showing aging hallmarks, are the most susceptible to amyloid binding and show the largest decrease in membrane stiffness upon Aβ treatment. Membrane stiffness defines the way in which cells respond to mechanical forces in their environment and has been shown to be important for processes such as gene expression, ion-channel gating and neurotransmitter vesicle transport. Thus, one can expect that changes in neuronal membrane elasticity might directly induce functional changes related to neurodegeneration. PMID:27173984

  20. Amyloid Beta and Tau Proteins as Therapeutic Targets for Alzheimer’s Disease Treatment: Rethinking the Current Strategy

    Siddhartha Mondragón-Rodríguez


    Full Text Available Alzheimer’s disease (AD is defined by the concurrence of accumulation of abnormal aggregates composed of two proteins: Amyloid beta (Aβ and tau, and of cellular changes including neurite degeneration and loss of neurons and cognitive functions. Based on their strong association with disease, genetically and pathologically, it is not surprising that there has been a focus towards developing therapies against the aggregated structures. Unfortunately, current therapies have but mild benefit. With this in mind we will focus on the relationship of synaptic plasticity with Aβ and tau protein and their role as potential targets for the development of therapeutic drugs. Finally, we will provide perspectives in developing a multifactorial strategy for AD treatment.

  1. NMDA-receptor activation but not ion flux is required for amyloid-beta induced synaptic depression.

    Albert Tamburri

    Full Text Available Alzheimer disease is characterized by a gradual decrease of synaptic function and, ultimately, by neuronal loss. There is considerable evidence supporting the involvement of oligomeric amyloid-beta (Aβ in the etiology of Alzheimer's disease. Historically, AD research has mainly focused on the long-term changes caused by Aβ rather than analyzing its immediate effects. Here we show that acute perfusion of hippocampal slice cultures with oligomeric Aβ depresses synaptic transmission within 20 minutes. This depression is dependent on synaptic stimulation and the activation of NMDA-receptors, but not on NMDA-receptor mediated ion flux. It, therefore, appears that Aβ dependent synaptic depression is mediated through a use-dependent metabotropic-like mechanism of the NMDA-receptor, but does not involve NMDA-receptor mediated synaptic transmission, i.e. it is independent of calcium flux through the NMDA-receptor.

  2. Intracellular accumulation of amyloid-beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease

    Thomas A Bayer


    Full Text Available Despite of long-standing evidence that beta-amyloid (Aβ peptides have detrimental effects on synaptic function, the relationship between Aβ, synaptic and neuron loss is largely unclear. During the last years there is growing evidence that early intraneuronal accumulation of Aβ peptides is one of the key events leading to synaptic and neuronal dysfunction. Many studies have been carried out using transgenic mouse models of Alzheimer’s disease (AD which have been proven to be valuable model system in modern AD research. The present review discusses the impact of intraneuronal Aβ accumulation on synaptic impairment and neuron loss and provides an overview of currently available AD mouse models showing these pathological alterations.

  3. In vivo PET imaging of beta-amyloid deposition in mouse models of Alzheimer's disease with a high specific activity PET imaging agent [18F]flutemetamol

    Snellman, Anniina; Rokka, Johanna; Lopez-Picon, Francisco R; Eskola, Olli; Salmona, Mario; Forloni, Gianluigi; Scheinin, Mika; Solin, Olof; Rinne, Juha O; Haaparanta-Solin, Merja


    Background: The purpose of the study was to evaluate the applicability of 18F-labelled amyloid imaging positron emission tomography (PET) agent [18F]flutemetamol to detect changes in brain beta-amyloid (Aβ) deposition in vivo in APP23, Tg2576 and APPswe-PS1dE9 mouse models of Alzheimer's disease. We expected that the high specific activity of [18F]flutemetamol would make it an attractive small animal Aβ imaging agent. Methods: [18F]flutemetamol uptake in the m...

  4. Analysis of the complex between amyloid beta peptides and mitochondrial enzyme 17beta-HSD in cerebrospinal fluid

    Krištofíková, Z.; Hegnerová, Kateřina; Bocková, Markéta; Vaisocherová, Hana; Bartoš, A.; Říčný, J.; Řípová, D.; Homola, J.


    Roč. 275, podzim (2008), s. 249-249. ISSN 1742-464X. [EUROPTRODE /9./. Dublin, 30.03.2008-02.04.2008] Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * alzheimer disease * 17beta-HSD10 Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.139, year: 2008

  5. Effects of age and beta-amyloid on cognitive changes in normal elderly people

    Oh, Hwamee; Madison, Cindee,; Haight, Thaddeus J.; Markley, Candace; Jagust, William J.


    Age-related decline is common in multiple cognitive domains. β-amyloid (Aβ) deposition, a pathological hallmark of Alzheimer’s disease, is also associated with cognitive changes in many older people. In this study, we examined a wide range of cognitive function in order to differentiate the effect of age and Aβ on cognition during aging. Using PET imaging with the radiotracer Pittsburgh compound B (PIB), we classified normal older subjects as High PIB-Old and Low PIB-Old and applied sequentia...

  6. Amyloid-beta peptide degradation in cell cultures by mycoplasma contaminants

    Davies Peter


    Full Text Available Abstract Background Cell cultures have become an indispensable tool in Alzheimer's disease research for studying amyloid-β (Aβ metabolism. It is estimated that up to 35% of cell cultures in current use are infected with various mycoplasma species. In contrast with common bacterial and fungal infections, contaminations of cell cultures with mycoplasmas represent a challenging issue in terms of detectability and prevention. Mycoplasmas are the smallest and simplest self-replicating bacteria and the consequences of an infection for the host cells are variable, ranging from no apparent effect to induction of apoptosis. Findings Here we present evidence that mycoplasmas from a cell culture contamination are able to efficiently and rapidly degrade extracellular Aβ. As a result, we observed no accumulation of Aβ in the conditioned medium of mycoplasma-positive cells stably transfected with the amyloid-β precursor protein (APP. Importantly, eradication of the mycoplasma contaminant – identified as M. hyorhinis – by treatments with a quinolone-based antibiotic, restored extracellular Aβ accumulation in the APP-transfected cells. Conclusion These data show that mycoplasmas degrade Aβ and thus may represent a significant source of variability when comparing extracellular Aβ levels in different cell lines. On the basis of these results, we recommend assessment of mycoplasma contaminations prior to extracellular Aβ level measurements in cultured cells.

  7. Independent and Interactive Influences of the APOE Genotype and Beta-Amyloid Burden on Cognitive Function in Mild Cognitive Impairment.

    Seo, Eun Hyun; Kim, Sang Hoon; Park, Sang Hag; Kang, Seong-Ho; Choo, Il Han


    This study aimed to investigate the independent and interactive influences of apolipoprotein E (APOE) ε4 and beta-amyloid (Aβ) on multiple cognitive domains in a large group of cognitively normal (CN) individuals and patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Participants were included if clinical and cognitive assessments, amyloid imaging, and APOE genotype were all available from the Alzheimer's Disease Neuroimaging Initiative database (CN = 324, MCI = 502, AD = 182). Individuals with one or two copies of ε4 were designated as APOE ε4 carriers (ε4+); individuals with no ε4 were designated as APOE ε4 non-carriers (ε4-). Based on mean florbetapir standard uptake value ratios, participants were classified as Aβ burden-positive (Aβ+) or Aβ burden-negative (Aβ-). In MCI, APOE ε4 effects were predominantly observed on frontal executive function, with ε4+ participants exhibiting poorer performances; Aβ positivity had no influence on this effect. Aβ effects were observed on global cognition, memory, and visuospatial ability, with Aβ+ participants exhibiting poorer performances. Measures of frontal executive function were not influenced by Aβ. Interactive effects of APOE ε4+ and Aβ were observed on global cognition and verbal recognition memory. Aβ, not APOE ε4+, influenced clinical severity and functional status. The influences of APOE ε4+ and Aβ on cognitive function were minimal in CN and AD. In conclusion, we provide further evidence of both independent and interactive influences of APOE ε4+ and Aβ on cognitive function in MCI, with APOE ε4+ and Aβ showing dissociable effects on executive and non-executive functions, respectively. PMID:26839485

  8. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.; Jap, Bing K.


    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLa cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins

  9. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Saak V. Ovsepian


    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  10. Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer's disease.

    Alfred N Fonteh

    Full Text Available Sphingolipids are important in many brain functions but their role in Alzheimer's disease (AD is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but

  11. Synergistic effects of high fat feeding and apolipoprotein E deletion on enterocytic amyloid-beta abundance

    Dhaliwal Satvinder S


    Full Text Available Abstract Background Amyloid-β (Aβ, a key protein found in amyloid plaques of subjects with Alzheimer's disease is expressed in the absorptive epithelial cells of the small intestine. Ingestion of saturated fat significantly enhances enterocytic Aβ abundance whereas fasting abolishes expression. Apolipoprotein (apo E has been shown to directly modulate Aβ biogenesis in liver and neuronal cells but it's effect in enterocytes is not known. In addition, apo E modulates villi length, which may indirectly modulate Aβ as a consequence of differences in lipid absorption. This study compared Aβ abundance and villi length in wild-type (WT and apo E knockout (KO mice maintained on either a low-fat or high-fat diet. Wild-type C57BL/6J and apo E KO mice were randomised for six-months to a diet containing either 4% (w/w unsaturated fats, or chow comprising 16% saturated fats and 1% cholesterol. Quantitative immunohistochemistry was used to assess Aβ abundance in small intestinal enterocytes. Apo E KO mice given the low-fat diet had similar enterocytic Aβ abundance compared to WT controls. Results The saturated fat diet substantially increased enterocytic Aβ in WT and in apo E KO mice, however the effect was greater in the latter. Villi height was significantly greater in apo E KO mice than for WT controls when given the low-fat diet. However, WT mice had comparable villi length to apo E KO when fed the saturated fat and cholesterol enriched diet. There was no effect of the high-fat diet on villi length in apo E KO mice. Conclusion The findings of this study are consistent with the notion that lipid substrate availability modulates enterocytic Aβ. Apo E may influence enterocytic lipid availability by modulating absorptive capacity.

  12. Chronic treatment with amyloid beta(1-42) inhibits non-cholinergic high-affinity choline transport in NG108-15 cells through protein kinase C signaling

    Nováková, Jana; Mikasová, Lenka; Machová, Eva; Lisá, Věra; Doležal, Vladimír


    Roč. 1062, č. 1-2 (2005), s. 101-110. ISSN 0006-8993 R&D Projects: GA AV ČR(CZ) IAA5011206; GA MŠk(CZ) LC554 Grant ostatní: Lipidiet(XE) QLK1-CT-2002-00172 Institutional research plan: CEZ:AV0Z50110509 Keywords : choline transporter * beta-amyloid * protein kinase C Subject RIV: ED - Physiology Impact factor: 2.296, year: 2005

  13. A semi-automated motion-tracking analysis of locomotion speed in the C. elegans transgenics overexpressing beta-amyloid in neurons

    Machino, Kevin; Link, Christopher D.; Wang, Susan; Murakami, Hana; Murakami, Shin


    Multi-Worm Tracker (MWT) is a real-time computer vision system that can simultaneously quantify motional patterns of multiple worms. MWT provides several behavioral parameters, including analysis of accurate real-time locomotion speed in the nematode, Caenorhabditis elegans. Here, we determined locomotion speed of the Alzheimer's disease (AD) transgenic strain that over-expresses human beta-amyloid1-42 (Aβ) in the neurons. The MWT analysis showed that the AD strain logged a slower average spe...

  14. Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease

    Zhang, Xueli; Tian, Yanli; Zhang, Can; Tian, Xiaoyu; Ross, Alana W.; Moir, Robert D.; Sun, Hongbin; Tanzi, Rudolph E.; Moore, Anna; Ran, Chongzhao


    Drug development for Alzheimer’s disease (AD) has been largely unsuccessful to date. Although numerous agents are reportedly effective in vitro, only an inadequate number of them have been tested in vivo, partially because of the lack of reliable and cost-efficient imaging methods to monitor their in vivo therapeutic effectiveness. Several amyloid beta (Aβ)-specific PET tracers have been used for clinical studies. However, their application for monitoring drug treatment in small animals is li...

  15. Neurogenic Responses to Amyloid-Beta Plaques in the Brain of Alzheimer's Disease-Like Transgenic (pPDGF-APPSw,Ind) Mice

    Gan, Li; Qiao, Shuhong; Lan, Xun; Chi, Liying; Luo, Chun; Lien, Lindsey; Liu, Qing Yan; Liu, Rugao


    Formation and accumulation of amyloid-beta (Aβ) plaques are associated with declined memory and other neurocognitive function in Alzheimer's Disease (AD) patients. However, the effects of Aβ plaques on neural progenitor cells (NPCs) and neurogenesis from NPCs remain largely unknown. The existing data on neurogenesis in AD patients and AD-like animal models remain controversial. For this reason, we utilized the nestin second-intron enhancer controlled LacZ (pNes-LacZ) reporter transgenic mice ...

  16. Anti-acetylcholinesterase and Antioxidant Activities of Inhaled Juniper Oil on Amyloid Beta (1-42)-Induced Oxidative Stress in the Rat Hippocampus.

    Cioanca, Oana; Hancianu, Monica; Mihasan, Marius; Hritcu, Lucian


    Juniper volatile oil is extracted from Juniperus communis L., of the Cupressaceae family, also known as common juniper. Also, in aromatherapy the juniper volatile oil is used against anxiety, nervous tension and stress-related conditions. In the present study, we identified the effects of the juniper volatile oil on amyloid beta (1-42)-induced oxidative stress in the rat hippocampus. Rats received a single intracerebroventricular injection of amyloid beta (1-42) (400 pmol/rat) and then were exposed to juniper volatile oil (200 μl, either 1 or 3 %) for controlled 60 min period, daily, for 21 continuous days. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Additionally, the acetylcholinesterase activity in the hippocampus was assessed. The amyloid beta (1-42)-treated rats exhibited the following: increase of the acetylcholinesterase, superoxide dismutase and catalase specific activities, decrease of glutathione peroxidase specific activity and the total content of the reduced glutathione along with an elevation of malondialdehyde and protein carbonyl levels. Inhalation of the juniper volatile oil significantly decreases the acetylcholinesterase activity and exhibited antioxidant potential. These findings suggest that the juniper volatile oil may be a potential candidate for the development of therapeutic agents to manage oxidative stress associated with Alzheimer's disease through decreasing the activity of acetylcholinesterase and anti-oxidative mechanism. PMID:25743585

  17. Rosiglitazone activation of PPARγ-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction and oxidative stress.

    Chiang, Ming-Chang; Nicol, Christopher J; Cheng, Yi-Chuan; Lin, Kuan-Hung; Yen, Chia-Hui; Lin, Chien-Hung


    Neuronal cell impairment, such as that induced by amyloid-beta (Aβ) protein, is a process with limited therapeutic interventions and often leads to long-term neurodegeneration common in disorders such as Alzheimer's disease. Interestingly, peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor whose ligands control many physiological and pathologic processes, and may be neuroprotective. We hypothesized that rosiglitazone, a PPARγ agonist, would prevent Aβ-mediated effects in human neural stem cells (hNSCs). Here, we show that rosiglitazone reverses, via PPARγ-dependent downregulation of caspase 3 and 9 activity, the Aβ-mediated decreases in hNSC cell viability. In addition, Aβ decreases hNSC messenger RNA (mRNA) levels of 2 neuroprotective factors (Bcl-2 and CREB), but co-treatment with rosiglitazone significantly rescues these effects. Rosiglitazone co-treated hNSCs also showed significantly increased mitochondrial function (reflected by levels of adenosine triphosphate and Mit mass), and PPARγ-dependent mRNA upregulation of PGC1α and mitochondrial genes (nuclear respiratory factor-1 and Tfam). Furthermore, hNSCs co-treated with rosiglitazone were significantly rescued from Aβ-induced oxidative stress and correlates with reversal of the Aβ-induced mRNA decrease in oxidative defense genes (superoxide dismutase 1, superoxide dismutase 2, and glutathione peroxidase 1). Taken together, these novel findings show that rosiglitazone-induced activation of PPARγ-dependent signaling rescues Aβ-mediated toxicity in hNSCs and provide evidence supporting a neuroprotective role for PPARγ activating drugs in Aβ-related diseases such as Alzheimer's disease. PMID:26973118

  18. Comparison of the amyloid pore forming properties of rat and human Alzheimer’s beta-amyloid peptide 1-42: Calcium imaging data

    Coralie Di Scala


    Full Text Available The data here consists of calcium imaging of human neuroblastoma SH-SY5Y cells treated with the calcium-sensitive dye Fluo-4AM and then incubated with nanomolar concentrations of either human or rat Alzheimer’s β-amyloid peptide Aβ1-42. These data are both of a qualitative (fluorescence micrographs and semi-quantitative nature (estimation of intracellular calcium concentrations of cells probed by Aβ1-42 peptides vs. control untreated cells. Since rat Aβ1-42 differs from its human counterpart at only three amino acid positions, this comparative study is a good assessment of the specificity of the amyloid pore forming assay. The interpretation of this dataset is presented in the accompanying study “Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides” [1].

  19. Comparison of the amyloid pore forming properties of rat and human Alzheimer’s beta-amyloid peptide 1-42: Calcium imaging data

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques


    The data here consists of calcium imaging of human neuroblastoma SH-SY5Y cells treated with the calcium-sensitive dye Fluo-4AM and then incubated with nanomolar concentrations of either human or rat Alzheimer’s β-amyloid peptide Aβ1-42. These data are both of a qualitative (fluorescence micrographs) and semi-quantitative nature (estimation of intracellular calcium concentrations of cells probed by Aβ1-42 peptides vs. control untreated cells). Since rat Aβ1-42 differs from its human counterpart at only three amino acid positions, this comparative study is a good assessment of the specificity of the amyloid pore forming assay. The interpretation of this dataset is presented in the accompanying study “Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides” [1]. PMID:26909380

  20. Comparison of the amyloid pore forming properties of rat and human Alzheimer's beta-amyloid peptide 1-42: Calcium imaging data.

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques


    The data here consists of calcium imaging of human neuroblastoma SH-SY5Y cells treated with the calcium-sensitive dye Fluo-4AM and then incubated with nanomolar concentrations of either human or rat Alzheimer's β-amyloid peptide Aβ1-42. These data are both of a qualitative (fluorescence micrographs) and semi-quantitative nature (estimation of intracellular calcium concentrations of cells probed by Aβ1-42 peptides vs. control untreated cells). Since rat Aβ1-42 differs from its human counterpart at only three amino acid positions, this comparative study is a good assessment of the specificity of the amyloid pore forming assay. The interpretation of this dataset is presented in the accompanying study "Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides" [1]. PMID:26909380

  1. Stoichiometric inhibition of amyloid beta-protein aggregation with peptides containing alternating alpha,alpha-disubstituted amino acids.

    Etienne, Marcus A; Aucoin, Jed P; Fu, Yanwen; McCarley, Robin L; Hammer, Robert P


    We have prepared two peptides based on the hydrophobic core (Lys-Leu-Val-Phe-Phe) of amyloid beta-protein (Abeta) that contain alpha,alpha-disubstituted amino acids at alternating positions, but differ in the positioning of the oligolysine chain (AMY-1, C-terminus; AMY-2, N-terminus). We have studied the effects of AMY-1 and AMY-2 on the aggregation of Abeta and find that, at stoichiometric concentrations, both peptides completely stop Abeta fibril growth. Equimolar mixtures of AMY-1 and Abeta form only globular aggregates as imaged by scanning force microscopy and transmission electron microscopy. These samples show no signs of protofibrillar or fibrillar material even after prolonged periods of time (4.5 months). Also, 10 mol % of AMY-1 prevents Abeta self-assembly for long periods of time; aged samples (4.5 months) show only a few protofibrillar or fibrillar aggregates. Circular dichroism spectroscopy of equimolar mixtures of AMY-1 and Abeta show that the secondary structure of the mixture changes over time and progresses to a predominantly beta-sheet structure, which is consistent with the design of these inhibitors preferring a sheet-like conformation. Changing the position of the charged tail on the peptide, AMY-2 interacts with Abeta differently in that equimolar mixtures form large ( approximately 1 mum) globular aggregates which do not progress to fibrils, but precipitate out of solution. The differences in the aggregation mediated by the two peptides is discussed in terms of a model where the inhibitors act as cosurfactants that interfere with the native ability of Abeta to self-assemble by disrupting hydrophobic interactions either at the C-terminus or N-terminus of Abeta. PMID:16536517

  2. Increased tauopathy drives microglia-mediated clearance of beta-amyloid.

    Chen, Wesley; Abud, Edsel A; Yeung, Stephen T; Lakatos, Anita; Nassi, Trevor; Wang, Jane; Blum, David; Buée, Luc; Poon, Wayne W; Blurton-Jones, Mathew


    Alzheimer disease is characterized by the accumulation of β-amyloid (Aβ) plaques and tau-laden neurofibrillary tangles. Emerging studies suggest that in neurodegenerative diseases, aggregation of one protein species can promote other proteinopathies and that inflammation plays an important role in this process. To study the interplay between Aβ deposition, tau pathology, and microgliosis, we established a new AD transgenic mouse model by crossing 5xfAD mice with Thy-Tau22 transgenic mice. The resulting 'T5x' mice exhibit a greater than three-fold increase in misfolded and hyperphosphorylated tau and further substantiates the hypothesis that Aβ accelerates tau pathology. Surprisingly, T5x mice exhibit a 40-50 % reduction in Aβ plaque load and insoluble Aβ species when compared with aged-matched 5xfAD littermates. T5x mice exhibit significant changes in cytokine production, an almost doubling of microglial number, and a dramatic shift in microglia activation state. Furthermore, T5x microglia exhibit increased phagocytic capacity that enhances the clearance of insoluble Aβ and decreasing plaque load. Therefore, our results suggest that strategies to increase the phagocytic ability of microglia can be employed to reduce Aβ and that tau-induced changes in microglial activation state can promote the clearance of Aβ. PMID:27339073

  3. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Sergio Rosales-Corral


    Full Text Available Amyloid-beta (Aβ pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS. Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer’s disease (AD brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance.

  4. Icariin Prevents Amyloid Beta-Induced Apoptosis via the PI3K/Akt Pathway in PC-12 Cells

    Dongdong Zhang


    Full Text Available Icariin is a prenylated flavonol glycoside derived from the Chinese herb Epimedium sagittatum that exerts a variety of pharmacological activities and shows promise in the treatment and prevention of Alzheimer’s disease. In this study, we investigated the neuroprotective effects of icariin against amyloid beta protein fragment 25–35 (Aβ25–35 induced neurotoxicity in cultured rat pheochromocytoma PC12 cells and explored potential underlying mechanisms. Our results showed that icariin dose-dependently increased cell viability and decreased Aβ25–35-induced apoptosis, as assessed by MTT assay and Annexin V/propidium iodide staining, respectively. Results of western blot analysis revealed that the selective phosphatidylinositol 3-kinase (PI3K inhibitor LY294002 suppressed icariin-induced Akt phosphorylation, suggesting that the protective effects of icariin are associated with activation of the PI3K/Akt signaling pathway. LY294002 also blocked the icariin-induced downregulation of proapoptotic factors Bax and caspase-3 and upregulation of antiapoptotic factor Bcl-2 in Aβ25–35-treated PC12 cells. These findings provide further evidence for the clinical efficacy of icariin in the treatment of Alzheimer’s disease.

  5. IMPY, a potential {beta}-amyloid imaging probe for detection of prion deposits in scrapie-infected mice

    Song, P.-J. [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Bernard, Serge [IFR135, F-37000 Tours (France); INRA, UR1282, IASP, 37380 Nouzilly (France)], E-mail:; Sarradin, Pierre [INRA, UR1282, IASP, 37380 Nouzilly (France); Vergote, Jackie [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Barc, Celine [INRA, UR1282, IASP, 37380 Nouzilly (France); Chalon, Sylvie [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Kung, M.-P.; Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Guilloteau, Denis [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France)


    Introduction: A potential single-photon emission computed tomography imaging agent for labeling of A{beta} plaques of Alzheimer's disease, IMPY (2-(4'-dimethylaminophenyl)-6-iodo-imidazo[1,2-a]pyridine), would be effective in detection of prion amyloid deposits in transmissible spongiform encephalopathies (TSEs). Methods: In vitro autoradiographic studies were carried out with [{sup 125}I]IMPY on brain sections from scrapie-infected mice and age-matched controls. Competition study was performed to evaluate the prion deposit binding specificity with nonradioactive IMPY. Results: Binding of [{sup 125}I]IMPY was observed in infected brain sections, while on age-matched control brain sections, there was no or very low labeling. Prion deposit binding was confirmed by histoblots with prion protein-specific monoclonal antibody 2D6. In the presence of nonradioactive IMPY, the binding of [{sup 125}I]IMPY was significantly inhibited in all regions studied. Conclusions: These findings indicate that IMPY can detect the prion deposits in vitro in scrapie-infected mice. Labeled with {sup 123}I, this ligand may be useful to quantitate prion deposit burdens in TSEs by in vivo imaging.

  6. Computational identification of potential multitarget treatments for ameliorating the adverse effects of amyloid-beta on synaptic plasticity



    Full Text Available The leading hypothesis on Alzheimer Disease (AD is that it is caused by buildup of the peptide amyloid-beta (Abeta, which initially causes dysregulation of synaptic plasticity and eventually causes destruction of synapses and neurons. Pharmacological efforts to limit Abeta buildup have proven ineffective, and this raises the twin challenges of understanding the adverse effects of Abeta on synapses and of suggesting pharmacological means to prevent it. The purpose of this paper is to initiate a computational approach to understanding the dysregulation by Abeta of synaptic plasticity and to offer suggestions whereby combinations of various chemical compounds could be arrayed against it. This data-driven approach confronts the complexity of synaptic plasticity by representing findings from the literature in a course-grained manner, and focuses on understanding the aggregate behavior of many molecular interactions. The same set of interactions is modeled by two different computer programs, each written using a different programming modality: one imperative, the other declarative. Both programs compute the same results over an extensive test battery, providing an essential crosscheck. Then the imperative program is used for the computationally intensive purpose of determining the effects on the model of every combination of ten different compounds, while the declarative program is used to analyze model behavior using temporal logic. Together these two model implementations offer new insights into the mechanisms by which Abeta dysregulates synaptic plasticity and suggest many drug combinations that potentially may reduce or prevent it.

  7. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.

    Anna Kahler

    Full Text Available Amyloid-[Formula: see text] (A[Formula: see text] oligomers play a crucial role in Alzheimer's disease due to their neurotoxic aggregation properties. Fibrillar A[Formula: see text] oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel [Formula: see text]-sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A[Formula: see text] monomers. From that, we propose the following growth mechanism from A[Formula: see text] oligomers to fibrils: (1 elongation of short protofilaments; (2 breakage of large protofilaments; (3 formation of short protofilament pairs; and (4 elongation of protofilament pairs.

  8. The conjugation of amyloid beta protein on the gold colloidal nanoparticles' surfaces

    The conjugation of various sequences of amyloid β protein solution (Aβ); Aβ1-11, Aβ12-28, Aβ31-35, Aβ1-40, and Aβ1-42 with gold colloidal suspension of 20 nm size was examined. Absorption spectroscopy was utilized to identify changes in the optical properties of gold colloid for pHs, ranging from pH 2 to pH 10. Colour changes were seen for all tested proteins in this study at a higher pH than where bare gold colloid exhibits its colour change at pH = 3.09 ± 0.02. All tested Aβ sequences except for Aβ1-42 exhibited colour changes around pI values of Aβ1-40, about pH 5.2. The Aβ1-42 exhibited precipitants in all pH lower than pH 7 and showed the colour change around pH 3.96 ± 0.05. The colour change observed at a pH lower than 5 is attributed to the unfolded Aβ monomer units around the gold colloidal surface. Interestingly, only Aβ1-40-coated gold colloidal nanoparticles exhibited a reversible colour change as the pH was externally altered between pH 4 and 10. This reversibility is an important implication of the observation of a reversible step reported for the fibrillogenesis. It was interpreted that the reversible process takes place when hydrophilic Aβ possesses a three-dimensional network containing both β-sheet and α-helices

  9. Low background and high contrast PET imaging of amyloid-{beta} with [{sup 11}C]AZD2995 and [{sup 11}C]AZD2184 in Alzheimer's disease patients

    Forsberg, Anton; Andersson, Jan; Varnaes, Katarina; Halldin, Christer [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Jureus, Anders; Swahn, Britt-Marie; Sandell, Johan; Julin, Per; Svensson, Samuel [AstraZeneca Research and Development, Neuroscience Research and Therapy Area, Soedertaelje (Sweden); Cselenyi, Zsolt; Schou, Magnus; Johnstroem, Peter; Farde, Lars [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Karolinska Hospital, AstraZeneca Translational Sciences Centre, PET CoE, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (Sweden); Eriksdotter, Maria; Freund-Levi, Yvonne [Karolinska Institutet, Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Stockholm (Sweden); Karolinska University Hospital, Department of Geriatric Medicine, Stockholm (Sweden); Jeppsson, Fredrik [AstraZeneca Research and Development, Neuroscience Research and Therapy Area, Soedertaelje (Sweden); Karolinska Institutet, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Stockholm (Sweden)


    The aim of this study was to evaluate AZD2995 side by side with AZD2184 as novel PET radioligands for imaging of amyloid-{beta} in Alzheimer's disease (AD). In vitro binding of tritium-labelled AZD2995 and AZD2184 was studied and compared with that of the established amyloid-{beta} PET radioligand PIB. Subsequently, a first-in-human in vivo PET study was performed using [{sup 11}C]AZD2995 and [{sup 11}C]AZD2184 in three healthy control subjects and seven AD patients. AZD2995, AZD2184 and PIB were found to share the same binding site to amyloid-{beta}. [{sup 3}H]AZD2995 had the highest signal-to-background ratio in brain tissue from patients with AD as well as in transgenic mice. However, [{sup 11}C]AZD2184 had superior imaging properties in PET, as shown by larger effect sizes comparing binding potential values in cortical regions of AD patients and healthy controls. Nevertheless, probably due to a lower amount of nonspecific binding, the group separation of the distribution volume ratio values of [{sup 11}C]AZD2995 was greater in areas with lower amyloid-{beta} load, e.g. the hippocampus. Both AZD2995 and AZD2184 detect amyloid-{beta} with high affinity and specificity and also display a lower degree of nonspecific binding than that reported for PIB. Overall [{sup 11}C]AZD2184 seems to be an amyloid-{beta} radioligand with higher uptake and better group separation when compared to [{sup 11}C]AZD2995. However, the very low nonspecific binding of [{sup 11}C]AZD2995 makes this radioligand potentially interesting as a tool to study minute levels of amyloid-{beta}. This sensitivity may be important in investigating, for example, early prodromal stages of AD or in the longitudinal study of a disease modifying therapy. (orig.)

  10. Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity.

    Matlack, Kent E S; Tardiff, Daniel F; Narayan, Priyanka; Hamamichi, Shusei; Caldwell, Kim A; Caldwell, Guy A; Lindquist, Susan


    Alzheimer's disease (AD) is a common, progressive neurodegenerative disorder without effective disease-modifying therapies. The accumulation of amyloid-β peptide (Aβ) is associated with AD. However, identifying new compounds that antagonize the underlying cellular pathologies caused by Aβ has been hindered by a lack of cellular models amenable to high-throughput chemical screening. To address this gap, we use a robust and scalable yeast model of Aβ toxicity where the Aβ peptide transits through the secretory and endocytic compartments as it does in neurons. The pathogenic Aβ 1-42 peptide forms more oligomers and is more toxic than Aβ 1-40 and genome-wide genetic screens identified genes that are known risk factors for AD. Here, we report an unbiased screen of ∼140,000 compounds for rescue of Aβ toxicity. Of ∼30 hits, several were 8-hydroxyquinolines (8-OHQs). Clioquinol (CQ), an 8-OHQ previously reported to reduce Aβ burden, restore metal homeostasis, and improve cognition in mouse AD models, was also effective and rescued the toxicity of Aβ secreted from glutamatergic neurons in Caenorhabditis elegans. In yeast, CQ dramatically reduced Aβ peptide levels in a copper-dependent manner by increasing degradation, ultimately restoring endocytic function. This mirrored its effects on copper-dependent oligomer formation in vitro, which was also reversed by CQ. This unbiased screen indicates that copper-dependent Aβ oligomer formation contributes to Aβ toxicity within the secretory/endosomal pathways where it can be targeted with selective metal binding compounds. Establishing the ability of the Aβ yeast model to identify disease-relevant compounds supports its further exploitation as a validated early discovery platform. PMID:24591589

  11. Ashwagandha (Withania somnifera reverses β-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND.

    Kesava Rao Venkata Kurapati

    Full Text Available Alzheimer's disease (AD is characterized by progressive dysfunction of memory and higher cognitive functions with abnormal accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles throughout cortical and limbic brain regions. At present no curative treatment is available, and research focuses on drugs for slowing disease progression or providing prophylaxis. Withania somnifera (WS also known as 'ashwagandha' is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer. However, there is a paucity of data on the potential neuroprotective effects of W.somnifera against β-Amyloid (1-42-induced neuropathogenesis. In the present study, we have tested the neuroprotective effects of methanol:Chloroform (3:1 extract of ashwagandha against β-amyloid induced toxicity and HIV-1Ba-L (clade B infection using a human neuronal SK-N-MC cell line. Our results showed that β-amyloid induced cytotoxic effects in SK-N-MC cells as shown by decreased cell growth when tested individually. Also, confocal microscopic analysis showed decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC cells compared to uninfected cells. However, when ashwagandha was added to β-amyloid treated and HIV-1 infected samples, the toxic effects were neutralized. Further, the MTT cell viability assays and the peroxisome proliferator-activated receptor-γ (PPARγ levels supported these observations indicating the neuroprotective effect of WS root extract against β-amyloid and HIV-1Ba-L (clade B induced neuro-pathogenesis.

  12. Hubungan Konsumsi Antioksidan dari Makanan dengan Beta-Amyloid Plasma sebagai Penanda Gangguan Fungsi Kognitif pada Lanjut Usia

    Ratna D Siregar


    Full Text Available AbstrakPenelitian ini bertujuan untuk mengetahui hubungan antara konsumsi vitamin A, vitamin C, vitamin E, zink dan selenium dari makanan dengan fungsi kognitif pada lanjut usia. Metoda penelitian adalah cross sectional study terhadap 145 lansia umur ≥ 60 tahun, pada dua kecamatan di Kabupaten Lima Puluh Kota Sumatra Barat. Wawancara konsumsi antioksidan menggunakan Food Frequency Questionnaires (FFQ, fungsi kognitif diperiksa dengan Montreal Cognitive Assesment versi Indonesia (MoCA-Ina, Aβ40 dan Aβ42 plasma diperiksa dengan metode ELISA. Data dianalisis menggunakan uji Mann-Whitney dan Chi-square. Pada hasil penelitian ditemukan 83 orang (57,2% lansia yang mengalami gangguan fungsi kognitif. Terdapat hubungan yang signifikan antara konsumsi vitamin C (p<0,049 dan vitamin E (p<0,037 tetapi tidak terdapat hubungan signifikan antara vitamin A, zink dan selenium dengan fungsi kognitif. Tidak terdapat hubungan yang signifikan antara konsumsi antioksidan dengan tingkat Aβ40 dan Aβ42 serta antara tingkat Aβ40 dan Aβ42 dengan fungsi kognitif masing-masing (p<0,058 dan p<0,350. Kesimpulan hasil penelitian ini didapatkan hubungan antara konsumsi vitamin C dan vitamin E dari makanan dengan fungsi kognitif. Tetapi tidak terdapat hubungan antara konsumsi antioksidan dengan Aβ40 dan Aβ42 plasma dan Aβ40 dan Aβ42 dengan fungsi kognitif.Kata kunci: antioksidan, beta-amyloid, fungsi kognitif, lanjut usiaAbstractThe objective of this study was to determine the relationship between consumption of vitamin A, vitamin C, vitamin E, zinc and selenium from foods with cognitive function in elderly. This was a cross-sectional study that was conducted to 145 elderly with age ≥ 60 years, in two districts in West Sumatra, in Lima Puluh Kota city. Interview antioxidant intake using a Food Frequency Questionnaires (FFQ, cognitive function was checked by Montreal Cognitive Assessment Indonesian version (MoCA-Ina, plasma Aβ40 dan Aβ42 were examined by ELISA

  13. Cortical Amyloid beta in cognitively normal elderly adults is associated with decreased network efficiency within the cerebro-cerebellar system.

    Stefanie eSteininger


    Full Text Available Deposition of cortical amyloid beta (Aβ is a correlate of aging and a risk factor for Alzheimer Disease (AD. While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using Pittsburgh Compound-B positron-emission-tomography (PiB-PET late frame signals. Volumes of brain structures were assessed by applying an automated parcellation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent (BOLD resting state functional magnetic resonance imaging (fMRI at the high field strength of 7 Tesla for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling.Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus and thalamus. Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro

  14. The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling.

    Wang, Gang; Chen, Ling; Pan, Xiaoyu; Chen, Jiechun; Wang, Liqun; Wang, Weijie; Cheng, Ruochuan; Wu, Fan; Feng, Xiaoqing; Yu, Yingcong; Zhang, Han-Ting; O'Donnell, James M; Xu, Ying


    Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling. PMID:26980711

  15. Plasma beta-amyloid as potential biomarker of Alzheimer disease: possibility of diagnostic tool for Alzheimer disease.

    Takeda, Shuko; Sato, Naoyuki; Rakugi, Hiromi; Morishita, Ryuichi


    Alzheimer disease (AD), which is characterized by progressive cognitive and behavioral deficit, is the most common form of dementia. The incidence of AD is increasing at an alarming rate, and has become a major public health concern in many countries. It is well known that the onset of AD is preceded by a long preclinical period. It is thus critical to establish diagnostic biomarkers that can predict the risk of developing AD prior to clinical manifestation of dementia, for effective prevention and early intervention. With the emergence of potential promising approaches to treat AD targeting the beta-amyloid (Abeta) pathway, such as gamma-secretase inhibitors and vaccine therapy, there is an urgent need for such diagnostic markers. Although cerebrospinal fluid (CSF) Abeta and tau protein levels are candidate biomarkers for AD, the invasive sampling procedure with associated complications limits their use in routine clinical practice. Plasma Abeta has been suggested as an inexpensive and non-invasive biomarker for AD. Although most previous cross-sectional studies on plasma Abeta level in humans failed to show a significant difference between individuals with AD compared to healthy older adults, many strategies are under investigation to improve the diagnostic potential of plasma Abeta. One promising approach is to modify the plasma Abeta level using some potential modulators. It is possible that a difference in plasma Abeta level might be unmasked by evaluating the response to stimulation by a modulator. Anti-Abeta antibody and Abeta binding proteins have been reported to be such modulators of plasma Abeta. In addition, the glucometabolic or hormonal status appears to modulate the plasma Abeta level. Our recent study has shown the possibility that glucose loading could be a novel simple strategy to modulate the plasma Abeta level, making it better suited for early diagnosis. This review summarizes the utility and limitations of current biomarkers of AD and

  16. Development of a high-sensitivity immunoassay for amyloid-beta 1-42 using a silicon microarray platform.

    Gagni, Paola; Sola, Laura; Cretich, Marina; Chiari, Marcella


    In this work, we present a highly sensitive immunoassay for the detection of the Alzheimer's disease (AD) biomarker amyloid-beta 1-42 (Aβ42) based on a label/label-free microarray platform that utilises silicon/silicon oxide (Si/SiO2) substrates. Due to constructive interference, Si/SiO2 layered slides allow enhancement of the fluorescence intensity on the surface with significant improvements in sensitivity of detection. The same substrate allows the label-free multiplexed detection of targets using the Interferometric Reflectance Imaging Sensor (IRIS), a platform amenable to high-throughput detection of mass changes on microarray substrates. Silicon chips are coated with copoly(DMA-NAS-MAPS), a ter-copolymer made from dimethylacrylamide (DMA), 3-(trimethoxysilyl)propyl methacrylate (MAPS) and N-Acryloyloxy succinimide (NAS). Aβ42 aggregation was studied by circular dichroism (CD), and an optimal antibody pair was selected based on specificity of recognition, binding yield and spot morphology of the capture antibody on the coated silicon surface as analysed by IRIS. Finally, incubation conditions were optimised, and an unprecedented Aβ42 detection sensitivity of 73pg/mL was achieved using an artificial cerebrospinal fluid (CSF) sample. Because of their multiplexing capability, low volume sample consumption and efficient sample-to-result time for population-wide screening, microarrays are ideal tools for the identification of individuals with preclinical AD who are still cognitively healthy. The high sensitivity of this assay format, potentially coupled to a pre-concentration step or signal-enhancing modifications, could lead to a non-invasive, inexpensive diagnostic tool for population-wide screening of AD biomarkers in biological fluids other than CSF, such as serum or plasma. PMID:23624018

  17. Reduced amyloidogenic processing of the amyloid beta-protein precursor by the small-molecule Differentiation Inducing Factor-1.

    Myre, Michael A; Washicosky, Kevin; Moir, Robert D; Tesco, Giuseppina; Tanzi, Rudolph E; Wasco, Wilma


    The detection of cell cycle proteins in Alzheimer's disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Abeta properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid beta-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Abeta40 and Abeta42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Abeta42 to Abeta40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Abeta. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a gamma-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668. PMID:19154786

  18. Nanoformulated alpha-mangostin ameliorates Alzheimer's disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance.

    Yao, Lei; Gu, Xiao; Song, Qingxiang; Wang, Xiaolin; Huang, Meng; Hu, Meng; Hou, Lina; Kang, Ting; Chen, Jun; Chen, Hongzhuan; Gao, Xiaoling


    Alzheimer's disease (AD), the most common form of dementia, is now representing one of the largest global healthcare challenges. However, an effective therapy is still lacking. Accumulation of amyloid-beta (Aβ) in the brain is supposed to trigger pathogenic cascades that eventually lead to AD. Therefore, Aβ clearance strategy is being actively pursued as a promising disease modifying therapy. Here, we found that α-mangostin (α-M), a polyphenolic xanthone derivative from mangosteen, up-regulated low density lipoprotein receptor (LDLR) expression in microglia and liver cells, and efficiently facilitated Aβ clearance. However, the in vivo application of α-M is limited due to its hydrophobic nature, poor aqueous solubility and stability, and thus low bioavailability and accumulation in the target organs. To overcome this limitation, α-M was encapsulated into the core of poly(ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles [NP(α-M)]. Such nanoencapsulation improved the biodistribution of α-M in both the brain and liver, enhanced the brain clearance of (125)I-radiolabeled Aβ1-42 in an LDLR-dependent manner, reduced Aβ deposition, attenuated neuroinflammatory responses, ameliorated neurologic changes and reversed behavioral deficits in AD model mice. These findings justified the concept that polyphenol-mediated modulation of LDLR expression might serve as a safe and efficient disease-modifying therapy for AD by accelerating Aβ clearance. It also demonstrated the powerful capacity of nanotechnology in modulating the biodistribution behavior of drug to improve its therapeutic efficacy in AD. PMID:26836197

  19. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla


    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD. PMID:26638718

  20. Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function

    Barucker, Christian; Bittner, Heiko J.; Chang, Philip K.-Y.; Cameron, Scott; Hancock, Mark A.; Liebsch, Filip; Hossain, Shireen; Harmeier, Anja; Shaw, Hunter; Charron, François M.; Gensler, Manuel; Dembny, Paul; Zhuang, Wei; Schmitz, Dietmar; Rabe, Jürgen P.; Rao, Yong; Lurz, Rudi; Hildebrand, Peter W.; McKinney, R. Anne; Multhaup, Gerhard


    The amyloid-β42 (Aβ42) peptide is believed to be the main culprit in the pathogenesis of Alzheimer disease (AD), impairing synaptic function and initiating neuronal degeneration. Soluble Aβ42 oligomers are highly toxic and contribute to progressive neuronal dysfunction, loss of synaptic spine density, and affect long-term potentiation (LTP). We have characterized a short, L-amino acid Aβ-oligomer Interacting Peptide (AIP) that targets a relatively well-defined population of low-n Aβ42 oligomers, rather than simply inhibiting the aggregation of Aβ monomers into oligomers. Our data show that AIP diminishes the loss of Aβ42-induced synaptic spine density and rescues LTP in organotypic hippocampal slice cultures. Notably, the AIP enantiomer (comprised of D-amino acids) attenuated the rough-eye phenotype in a transgenic Aβ42 fly model and significantly improved the function of photoreceptors of these flies in electroretinography tests. Overall, our results indicate that specifically “trapping” low-n oligomers provides a novel strategy for toxic Aβ42-oligomer recognition and removal.

  1. Gengnianchun recipe inhibits apoptosis of pheochromocytoma cells from beta-amyloid 25-35 insult, better than monotherapies and their compounds

    Jun Li; Wenjun Wang; Dajin Li; Wenjiang Zhou


    This study aims to determine and compare the protective effects of Gengnianchun recipe drug serum and compounds of its representative drug monotherapies against sympathetic nerve pheochromocytoma cell line PC12 cells damaged by beta-amyloid 25-35 at the cellular apoptosis and related signal pathway levels. PC12 cells cultured with medicated rat serum showed enhanced cell viability and reduced cellular apoptosis rates compared with those of monotherapies and their compounds. Furthermore, Gengnianchun recipe up-regulated expressions of anti-apoptotic protein Bcl-2, estrogen receptor-beta and phosphorylated extracellular-signal-regulated kinase 1/2; and down-regulated expressions of pro-apoptotic proteins Bax and caspase-3. Gengnianchun recipe was superior to representative drug monotherapies, such as paeoniflorin, berberine, timosaponin A-III, icariine and their compounds in protecting PC12 cells. Mitogen-activated protein kinase blocker and estrogen receptor antagonist were found to reverse the above effects of Gengnianchun recipe. The experimental findings indicate that, Gengnianchun recipe protects PC12 cells from beta-amyloid 25-35 insult; its inhibitory effect on apoptosis may be achieved through the mitogen-activated protein kinase and estrogen receptor pathways.

  2. Toxicity studies of inhaled beta-emitting radionuclides: status report

    The influence of total dose and dose rate on the effects of inhaled beta-emitting radionuclides is being studied in laboratory animals. The radionuclides are inhaled either in a relatively soluble form (90SrCl2, 144CeCl3, 91YCl3 or 137CsCl) or in a relatively insoluble form in fused aluminosilicate particles. The organs affected depend on the solubility and chemical characteristics of the radio isotopes. Studies with young adult dogs are complemented with comparable studies in other species (mice, rats and Syrian hamsters), with animals of different ages and with animals repeatedly exposed to 144Ce

  3. Effects of long-term estrogen replacement therapy on beta-amyloid precursor protein and mRNA expression in ovariectomized rat hippocampus

    Bo Jiang; Eryuan Liao; Liming Tan; Ruchun Dai; Zhijie Xiao


    BACKGROUND: In vitro cultures of neural stem cells have shown that estrogen can regulate beta-amyloid precursor protein (β-APP) metabolism and reduce amyloid-beta production.OBJECTIVE: To investigate the effects of long-term oral administration of compound nylestriol or low-dose 17beta-estradiol on β-APP and mRNA expression in the hippocampus of ovariectomized (OVX) rats. DESIGN, TIME AND SETTING: This randomized and controlled experiment was performed at the Animal Laboratory and Laboratory of Endocrine and Metabolic Disease, Xiangya Second Hospital of Central South University between April 2003 and May 2004.MATERIALS: According to body mass, 50 six-month-old female Sprague-Dawley rats were randomly divided into five groups (n = 10 per group): normal control, sham operation, OVX model, 17beta-estradiol (Sigma, USA), and compound nylestriol tablet (Laboratory of Endocrine and Metabolic Disease, Xiangya Second Hospital of Central South University) groups.METHODS: Rats in OVX plus 17beta-estradiol and OVX plus compound nylestriol tablet groups underwent ovariectomy. On the second day after surgery, rats were intragastrically given 17beta-estradiol (100 μg/kg), once per day or compound nylestriol tablet (0.5 mg/kg) and levonorgestrel (0.15 mg/kg) every 2 days.MAIN OUTCOME MEASURES: β-APP expression in the hippocampus of OVX rats was determined using immunohistochemistry (SABC method) and β-APP mRNA expression was analyzed by in situ hybridization. The results were quantitatively analyzed using cell counting and average optical density. RESULTS: The number and optical density of β-APP-positive neurons in every subregion of the hippocampus of OVX rats was dramatically increased compared with normal and sham operation groups following 35 weeks of administration (P < 0.05). Levels of β-APP were decreased following oral administration of compound nylestriol or 17beta-estradiol. In situ hybridization showed that long-term estrogen deficiency and oral administration

  4. Local atomic structure and oxidation processes of Cu(I) binding site in amyloid beta peptide: XAS Study

    Kremennaya, M. A.; Soldatov, M. A.; Stretsov, V. A.; Soldatov, A. V.


    There are two different motifs of X-ray absorption spectra for Cu(I) K-edge in amyloid-β peptide which could be due to two different configurations of local Cu(I) environment. Two or three histidine ligands can coordinate copper ion in varying conformations. On the other hand, oxidation of amyloid-β peptide could play an additional role in local copper environment. In order to explore the peculiarities of local atomic and electronic structure of Cu(I) binding sites in amyloid-β peptide the x-ray absorption spectra were simulated for various Cu(I) environments including oxidized amyloid-β and compared with experimental data.

  5. Phosphatidylcholine protects neurons from toxic effects of amyloid β-protein in culture.

    Ko, Mihee; Hattori, Toshihide; Abdullah, Mohammad; Gong, Jian-Sheng; Yamane, Tsuneo; Michikawa, Makoto


    Amyloid β-protein (Aβ) is the major component of extracellular plaques in the brains of patients with Alzheimer's disease. It has been suggested that the interaction of Aβ with membrane cholesterol is essential for Aβ to exert neurotoxicity; however, the effect of phospholipids, another major membrane lipid component, on Aβ-induced neurotoxicity remains unclarified. Here we report the protective effect of phosphatidylcholine (PC) on primary cultured neurons against Aβ1-42-induced damage. Aβ1-42 caused neuronal death as demonstrated by lactose dehydrogenase (LDH) release, which was completely prevented by a pretreatment with PC in a dose-dependent manner. PC containing unsaturated long-chain acyl groups, 1,2-dioleoyl-PC (DOPC), also prevented neuronal death caused by Aβ1-42. The oleic acid ethyl-ester (OAEE) partially prevented Aβ1-42-induced neurotoxicity. Neurons that were pretreated with DOPC or OAEE for 24h, washed out, and exposed to Aβ1-42 in the absence of either of these reagents, were still resistant to Aβ1-42-induced neurotoxicity. In contrast, treatment with phosphotidylserine (PS) or docosahexaenoic acid etyl-ester (DHAEE) had no protective effect on neurons against Aβ1-42-induced damage. These results suggest that the control of cellular PC content, not PS content, may prove useful in the prevention or treatment of Alzheimer's disease. PMID:27086970

  6. The effect of zinc on amyloid β-protein assembly and toxicity: A mechanistic investigation

    Solomonov, Inna; Sagi, Irit


    Neurotoxic assemblies of amyloid β-protein (Aβ) are widely believed to be the cause for Alzheimer's disease (AD). Therefore, understanding the factors and mechanisms that control, modulate, and inhibit formation of these assemblies is crucial for the development of therapeutic intervention of AD. This information also can contribute significantly to our understanding of the mechanisms of other amyloidosis diseases, such as Parkinson's disease, Huntington's disease, type 2 diabetes, amyotrophic lateral sclerosis (Lou Gehrig's disease) and prion diseases (e.g. Mad Cow disease). We have developed a multidisciplinary experimental strategy to study structural and dynamic mechanistic aspects that underlie the Aβ assembly process. Utilizing this strategy, we explored the molecular basis leading to the perturbation of the Aβ assembly process by divalent metal ions, mainly Zn2+ ions. Using Zn2+ as reaction physiological relevant probes, it was demonstrated that Zn2+ rapidly (milliseconds) induce self-assembly of Aβ aggregates and stabilize them in a manner that prevents formation of Aβ fibrils. Importantly, the early-formed intermediates are substantially more neurotoxic than fibrils. Our results suggest that relevant Aβ modulators should be targeted against the rapidly evolved intermediate states of Aβ assembly. The design of such modulators is challenging, as they have to compete with different natural mediators (such as Zn2+) of Aβ aggregation, which diverse Aβ assemblies in both specific and nonspecific manners.

  7. Fetzima (levomilnacipran), a drug for major depressive disorder as a dual inhibitor for human serotonin transporters and beta-site amyloid precursor protein cleaving enzyme-1.

    Rizvi, Syed Mohd Danish; Shaikh, Sibhghatulla; Khan, Mahiuddin; Biswas, Deboshree; Hameed, Nida; Shakil, Shazi


    Pharmacological management of Major Depressive Disorder includes the use of serotonin reuptake inhibitors which targets serotonin transporters (SERT) to increase the synaptic concentrations of serotonin. Beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1) is responsible for amyloid β plaque formation. Hence it is an interesting target for Alzheimer's disease (AD) therapy. This study describes molecular interactions of a new Food and Drug Administration approved antidepressant drug named 'Fetzima' with BACE-1 and SERT. Fetzima is chemically known as levomilnacipran. The study has explored a possible link between the treatment of Depression and AD. 'Autodock 4.2' was used for docking study. The free energy of binding (ΔG) values for 'levomilnacipran-SERT' interaction and 'levomilnacipran-BACE1' interaction were found to be -7.47 and -8.25 kcal/mol, respectively. Levomilnacipran was found to interact with S438, known to be the most important amino acid residue of serotonin binding site of SERT during 'levomilnacipran-SERT' interaction. In the case of 'levomilnacipran-BACE1' interaction, levomilnacipran interacted with two very crucial aspartic acid residues of BACE-1, namely, D32 and D228. These residues are accountable for the cleavage of amyloid precursor protein and the subsequent formation of amyloid β plaques in AD brain. Hence, Fetzima (levomilnacipran) might act as a potent dual inhibitor of SERT and BACE-1 and expected to form the basis of a future dual therapy against depression and AD. It is an established fact that development of AD is associated with Major Depressive Disorder. Therefore, the design of new BACE-1 inhibitors based on antidepressant drug scaffolds would be particularly beneficial. PMID:25345508

  8. Phosphorylated tau/amyloid beta 1-42 ratio in ventricular cerebrospinal fluid reflects outcome in idiopathic normal pressure hydrocephalus

    Patel Sunil


    Full Text Available Abstract Background Idiopathic normal pressure hydrocephalus (iNPH is a potentially reversible cause of dementia and gait disturbance that is typically treated by operative placement of a ventriculoperitoneal shunt. The outcome from shunting is variable, and some evidence suggests that the presence of comorbid Alzheimer's disease (AD may impact shunt outcome. Evidence also suggests that AD biomarkers in cerebrospinal fluid (CSF may predict the presence of AD. The aim of this study was to investigate the relationship between the phosphorylated tau/amyloid beta 1-42 (ptau/Aβ1-42 ratio in ventricular CSF and shunt outcome in patients with iNPH. Methods We conducted a prospective trial with a cohort of 39 patients with suspected iNPH. Patients were clinically and psychometrically assessed prior to and approximately 4 months after ventriculoperitoneal shunting. Lumbar and ventricular CSF obtained intraoperatively, and tissue from intraoperative cortical biopsies were analyzed for AD biomarkers. Outcome measures included performance on clinical symptom scales, supplementary gait measures, and standard psychometric tests. We investigated relationships between the ptau/Aβ1-42 ratio in ventricular CSF and cortical AD pathology, initial clinical features, shunt outcome, and lumbar CSF ptau/Aβ1-42 ratios in the patients in our cohort. Results We found that high ptau/Aβ1-42 ratios in ventricular CSF correlated with the presence of cortical AD pathology. At baseline, iNPH patients with ratio values most suggestive of AD presented with better gait performance but poorer cognitive performance. Patients with high ptau/Aβ1-42 ratios also showed a less robust response to shunting on both gait and cognitive measures. Finally, in a subset of 18 patients who also underwent lumbar puncture, ventricular CSF ratios were significantly correlated with lumbar CSF ratios. Conclusions Levels of AD biomarkers in CSF correlate with the presence of cortical AD pathology

  9. Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation

    Podlisny Marcia


    Full Text Available Abstract Background Previously we reported 1 μM synthetic human amyloid beta1-42 oligomers induced cofilin dephosphorylation (activation and formation of cofilin-actin rods within rat hippocampal neurons primarily localized to the dentate gyrus. Results Here we demonstrate that a gel filtration fraction of 7PA2 cell-secreted SDS-stable human Aβ dimers and trimers (Aβd/t induces maximal neuronal rod response at ~250 pM. This is 4,000-fold more active than traditionally prepared human Aβ oligomers, which contain SDS-stable trimers and tetramers, but are devoid of dimers. When incubated under tyrosine oxidizing conditions, synthetic human but not rodent Aβ1-42, the latter lacking tyrosine, acquires a marked increase (620 fold for EC50 in rod-inducing activity. Gel filtration of this preparation yielded two fractions containing SDS-stable dimers, trimers and tetramers. One, eluting at a similar volume to 7PA2 Aβd/t, had maximum activity at ~5 nM, whereas the other, eluting at the void volume (high-n state, lacked rod inducing activity at the same concentration. Fractions from 7PA2 medium containing Aβ monomers are not active, suggesting oxidized SDS-stable Aβ1-42 dimers in a low-n state are the most active rod-inducing species. Aβd/t-induced rods are predominantly localized to the dentate gyrus and mossy fiber tract, reach significance over controls within 2 h of treatment, and are reversible, disappearing by 24 h after Aβd/t washout. Overexpression of cofilin phosphatases increase rod formation when expressed alone and exacerbate rod formation when coupled with Aβd/t, whereas overexpression of a cofilin kinase inhibits Aβd/t-induced rod formation. Conclusions Together these data support a mechanism by which Aβd/t alters the actin cytoskeleton via effects on cofilin in neurons critical to learning and memory.

  10. The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy.

    Smilansky, Angela; Dangoor, Liron; Nakdimon, Itay; Ben-Hail, Danya; Mizrachi, Dario; Shoshan-Barmatz, Varda


    The voltage-dependent anion channel 1 (VDAC1), found in the mitochondrial outer membrane, forms the main interface between mitochondrial and cellular metabolisms, mediates the passage of a variety of molecules across the mitochondrial outer membrane, and is central to mitochondria-mediated apoptosis. VDAC1 is overexpressed in post-mortem brains of Alzheimer disease (AD) patients. The development and progress of AD are associated with mitochondrial dysfunction resulting from the cytotoxic effects of accumulated amyloid β (Aβ). In this study we demonstrate the involvement of VDAC1 and a VDAC1 N-terminal peptide (VDAC1-N-Ter) in Aβ cell penetration and cell death induction. Aβ directly interacted with VDAC1 and VDAC1-N-Ter, as monitored by VDAC1 channel conductance, surface plasmon resonance, and microscale thermophoresis. Preincubated Aβ interacted with bilayer-reconstituted VDAC1 and increased its conductance ∼ 2-fold. Incubation of cells with Aβ resulted in mitochondria-mediated apoptotic cell death. However, the presence of non-cell-penetrating VDAC1-N-Ter peptide prevented Aβ cellular entry and Aβ-induced mitochondria-mediated apoptosis. Likewise, silencing VDAC1 expression by specific siRNA prevented Aβ entry into the cytosol as well as Aβ-induced toxicity. Finally, the mode of Aβ-mediated action involves detachment of mitochondria-bound hexokinase, induction of VDAC1 oligomerization, and cytochrome c release, a sequence of events leading to apoptosis. As such, we suggest that Aβ-mediated toxicity involves mitochondrial and plasma membrane VDAC1, leading to mitochondrial dysfunction and apoptosis induction. The VDAC1-N-Ter peptide targeting Aβ cytotoxicity is thus a potential new therapeutic strategy for AD treatment. PMID:26542804