WorldWideScience

Sample records for amplitude rotational motion

  1. Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations

    Science.gov (United States)

    Graizer, V.

    2017-12-01

    Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt

  2. Necessary conditions for tumbling in the rotational motion

    Science.gov (United States)

    Carrera, Danny H. Z.; Weber, Hans I.

    2012-11-01

    The goal of this work is the investigation of the necessary conditions for the possible existence of tumbling in rotational motion of rigid bodies. In a stable spinning satellite, tumbling may occur by sufficient strong action of external impulses, when the conical movement characteristic of the stable attitude is de-characterized. For this purpose a methodology is chosen to simplify the study of rotational motions with great amplitude, for example free bodies in space, allowing an extension of the analysis to non-conservative systems. In the case of a satellite in space, the projection of the angular velocity along the principal axes of inertia must be known, defining completely the initial conditions of motion for stability investigations. In this paper, the coordinate systems are established according to the initial condition in order to allow a simple analytical work on the equations of motion. Also it will be proposed the definition of a parameter, calling it tumbling coefficient, to measure the intensity of the tumbling and the amplitude of the motion when crossing limits of stability in the concept of Lyapunov. Tumbling in the motion of bodies in space is not possible when this coefficient is positive. Magnus Triangle representation will be used to represent the geometry of the body, establishing regions of stability/instability for possible initial conditions of motion. In the study of nonconservative systems for an oblate body, one sufficient condition will be enough to assure damped motion, and this condition is checked for a motion damped by viscous torques. This paper seeks to highlight the physical understanding of the phenomena and the influence of various parameters that are important in the process.

  3. Cosmophysical Factors in the Fluctuation Amplitude Spectrum of Brownian Motion

    Directory of Open Access Journals (Sweden)

    Kaminsky A. V.

    2010-04-01

    Full Text Available Phenomenon of the regular variability of the fine structure of the fluctuation in the amplitude distributions (shapes of related histograms for the case of Brownian motion was investigated. We took an advantage of the dynamic light scattering method (DLS to get a stochastically fluctuated signal determined by Brownian motion. Shape of the histograms is most likely to vary, synchronous, in two proximally located independent cells containing Brownian particles. The synchronism persists in the cells distant at 2m from each other, and positioned meridionally. With a parallel-wise positioning of the cells, high probability of the synchronous variation in the shape of the histograms by local time has been observed. This result meets the previous conclusion about the dependency of histogram shapes ("fluctuation amplitudes" of the spectra of stochastic processes upon rotation of the Earth.

  4. Can earthquake source inversion benefit from rotational ground motion observations?

    Science.gov (United States)

    Igel, H.; Donner, S.; Reinwald, M.; Bernauer, M.; Wassermann, J. M.; Fichtner, A.

    2015-12-01

    With the prospects of instruments to observe rotational ground motions in a wide frequency and amplitude range in the near future we engage in the question how this type of ground motion observation can be used to solve seismic inverse problems. Here, we focus on the question, whether point or finite source inversions can benefit from additional observations of rotational motions. In an attempt to be fair we compare observations from a surface seismic network with N 3-component translational sensors (classic seismometers) with those obtained with N/2 6-component sensors (with additional colocated 3-component rotational motions). Thus we keep the overall number of traces constant. Synthetic seismograms are calculated for known point- or finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content as a measure how the observations constrain the seismic source properties. The results show that with the 6-C subnetworks the source properties are not only equally well recovered (even that would be benefitial because of the substantially reduced logistics installing N/2 sensors) but statistically significant some source properties are almost always better resolved. We assume that this can be attributed to the fact the (in particular vertical) gradient information is contained in the additional rotational motion components. We compare these effects for strike-slip and normal-faulting type sources. Thus the answer to the question raised is a definite "yes". The challenge now is to demonstrate these effects on real data.

  5. Oscillatory-rotational processes in the Earth motion about the center of mass: Interpolation and forecast

    Science.gov (United States)

    Akulenko, L. D.; Klimov, D. M.; Markov, Yu. G.; Perepelkin, V. V.

    2012-11-01

    The celestial-mechanics approach (the spatial version of the problem for the Earth-Moon system in the field of gravity of the Sun) is used to construct a mathematical model of the Earth's rotational-oscillatory motions. The fundamental aspects of the processes of tidal inhomogeneity in the Earth rotation and the Earth's pole oscillations are studied. It is shown that the presence of the perturbing component of gravitational-tidal forces, which is orthogonal to the Moon's orbit plane, also allows one to distinguish short-period perturbations in the Moon's motion. The obtained model of rotational-oscillatory motions of the nonrigid Earth takes into account both the basic perturbations of large amplitudes and the more complicated small-scale properties of the motion due to the Moon short-period perturbations with combination frequencies. The astrometric data of the International Earth Rotation and Reference Systems Service (IERS) are used to perform numerical simulation (interpolation and forecast) of the Earth rotation parameters (ERP) on various time intervals.

  6. Historical Variations in Inner Core Rotation and Polar Motion at Decade Timescales

    Science.gov (United States)

    Dumberry, M.

    2005-12-01

    Exchanges of angular momentum between the mantle, the fluid core and the solid inner core result in changes in the Earth's rotation. Torques in the axial direction produce changes in amplitude, or changes in length of day, while torques in the equatorial direction lead to changes in orientation of the rotation vector with respect to the mantle, or polar motion. In this work, we explore the possibility that a combination of electromagnetic and gravitational torques on the inner core can reproduce the observed decadal variations in polar motion known as the Markowitz wobble. Torsional oscillations, which involve azimuthal motions in the fluid core with typical periods of decades, entrain the inner core by electromagnetic traction. When the inner core is axially rotated, its surfaces of constant density are no longer aligned with the gravitational potential from mantle density heterogeneities, and this results in a gravitational torque between the two. The axial component of this torque has been previously described and is believed to be partly responsible for decadal changes in length of day. In this work, we show that it has also an equatorial component, which produces a tilt of the inner core and results in polar motion. The polar motion produced by this mechanism depends on the density structure in the mantle, the rheology of the inner core, and the time-history of the angle of axial misalignment between the inner core and the mantle. We reconstruct the latter using a model of torsional oscillations derived from geomagnetic secular variation. From this time-history, and by using published models of mantle density structure, we show that we can reproduce the salient characteristics of the Markowitz wobble: an eccentric decadal polar motion of 30-50 milliarcsecs oriented along a specific longitude. We discuss the implications of this result, noting that a match in both amplitude and phase of the observed Markowitz wobble allows the recovery of the historical

  7. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  8. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  9. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    Science.gov (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  10. Detection of cardiac wall motion defects with combined amplitude/phase analysis

    International Nuclear Information System (INIS)

    Bacharach, S.L.; Green, M.V.; Bonow, R.O.; Pace, L.; Brunetti, A.; Larson, S.M.

    1985-01-01

    Fourier phase images have been used with some success to detect and quantify left ventricular (LV) wall motion defects. In abnormal regions of the LV, wall motion asynchronies often cause the time activity curve (TAC) to be shifted in phase. Such regional shifts are detected by analysis of the distribution function of phase values over the LV. However, not all wall motion defects result in detectable regional phase abnormalities. Such abnormalities may cause a reduction in the magnitude of contraction (and hence TAC amplitude) without any appreciable change in TAC shape(and hence phase). In an attempt to improve the sensitivity of the Fourier phase method for the detection of wall motion defects the authors analyzed the distribution function of Fourier amplitude as well as phase. 26 individuals with normal cardiac function and no history of cardiac disease served as controls. The goal was to detect and quantify wall motion as compared to the consensus of 3 independent observers viewing the scintigraphic cines. 26 subjects with coronary artery disease and mild wall motion defects (22 with normal EF) were studied ate rest. They found that analysis of the skew of thew amplitude distribution function improved the sensitivity for the detection of wall motion abnormalities at rest in the group from 65% to 85% (17/26 detected by phase alone, 22/26 by combined phase and amplitude analysis) while retaining a 0 false positive rate in the normal group. The authors conclude that analysis of Fourier amplitude distribution functions can significantly increase the sensitivity of phase imaging for detection of wall motion abnormalities

  11. Improved finite-source inversion through joint measurements of rotational and translational ground motions: a numerical study

    Science.gov (United States)

    Reinwald, Michael; Bernauer, Moritz; Igel, Heiner; Donner, Stefanie

    2016-10-01

    With the prospects of seismic equipment being able to measure rotational ground motions in a wide frequency and amplitude range in the near future, we engage in the question of how this type of ground motion observation can be used to solve the seismic source inverse problem. In this paper, we focus on the question of whether finite-source inversion can benefit from additional observations of rotational motion. Keeping the overall number of traces constant, we compare observations from a surface seismic network with 44 three-component translational sensors (classic seismometers) with those obtained with 22 six-component sensors (with additional three-component rotational motions). Synthetic seismograms are calculated for known finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content to measure how the observations constrain the seismic source properties. We minimize the influence of the source receiver geometry around the fault by statistically analyzing six-component inversions with a random distribution of receivers. Since our previous results are achieved with a regular spacing of the receivers, we try to answer the question of whether the results are dependent on the spatial distribution of the receivers. The results show that with the six-component subnetworks, kinematic source inversions for source properties (such as rupture velocity, rise time, and slip amplitudes) are not only equally successful (even that would be beneficial because of the substantially reduced logistics installing half the sensors) but also statistically inversions for some source properties are almost always improved. This can be attributed to the fact that the (in particular vertical) gradient information is contained in the additional motion components. We compare these effects for strike-slip and normal-faulting type sources and confirm that the increase in inversion quality for kinematic source parameters is

  12. Chemically Dissected Rotation Curves of the Galactic Bulge from Main-sequence Proper Motions

    Science.gov (United States)

    Clarkson, William I.; Calamida, Annalisa; Sahu, Kailash C.; Brown, Thomas M.; Gennaro, Mario; Avila, Roberto J.; Valenti, Jeff; Debattista, Victor P.; Rich, R. Michael; Minniti, Dante; Zoccali, Manuela; Aufdemberge, Emily R.

    2018-05-01

    We report results from an exploratory study implementing a new probe of Galactic evolution using archival Hubble Space Telescope imaging observations. Precise proper motions are combined with photometric relative metallicity and temperature indices, to produce the proper-motion rotation curves of the Galactic bulge separately for metal-poor and metal-rich main-sequence samples. This provides a “pencil-beam” complement to large-scale wide-field surveys, which to date have focused on the more traditional bright giant branch tracers. We find strong evidence that the Galactic bulge rotation curves drawn from “metal-rich” and “metal-poor” samples are indeed discrepant. The “metal-rich” sample shows greater rotation amplitude and a steeper gradient against line-of-sight distance, as well as possibly a stronger central concentration along the line of sight. This may represent a new detection of differing orbital anisotropy between metal-rich and metal-poor bulge objects. We also investigate selection effects that would be implied for the longitudinal proper-motion cut often used to isolate a “pure-bulge” sample. Extensive investigation of synthetic stellar populations suggests that instrumental and observational artifacts are unlikely to account for the observed rotation curve differences. Thus, proper-motion-based rotation curves can be used to probe chemodynamical correlations for main-sequence tracer stars, which are orders of magnitude more numerous in the Galactic bulge than the bright giant branch tracers. We discuss briefly the prospect of using this new tool to constrain detailed models of Galactic formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  13. Motions on a rotating planet

    Science.gov (United States)

    Schröer, H.

    In chapter 1 we want to describe the motion of a falling body on a rotating planet. The planet rotates with an arbitrary changable angular velocity and has a translational acceleration. We obtain 3 differential equations. For the general gravitational field an exact solution is possible, when the differential equation system is explicit solvable. Then we consider the case, if the angular velocity and the translational acceleration is constant. With a special transformation we get 3 partial differential equations of first order. Instead of a planet sphere we can choose a general body of rotation. Even general bodies are possible. Chapter 2 contains the motion in a local coordinate system on planet's surface. We have an inhomogeneous linear differential equation of first order. If the angular velocity is constant, we get a system with constant coefficients. There is an english and a german edition.

  14. The Dynamics of Large-Amplitude Motion in Energized Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Perry, David S. [Univ. of Akron, OH (United States). Dept. of Chemistry

    2016-05-27

    Chemical reactions involve large-amplitude nuclear motion along the reaction coordinate that serves to distinguish reactants from products. Some reactions, such as roaming reactions and reactions proceeding through a loose transition state, involve more than one large-amplitude degree of freedom. Because of the limitation of exact quantum nuclear dynamics to small systems, one must, in general, define the active degrees of freedom and separate them in some way from the other degrees of freedom. In this project, we use large-amplitude motion in bound model systems to investigate the coupling of large-amplitude degrees of freedom to other nuclear degrees of freedom. This approach allows us to use the precision and power of high-resolution molecular spectroscopy to probe the specific coupling mechanisms involved, and to apply the associated theoretical tools. In addition to slit-jet spectra at the University of Akron, the current project period has involved collaboration with Michel Herman and Nathalie Vaeck of the Université Libre de Bruxelles, and with Brant Billinghurst at the Canadian Light Source (CLS).

  15. Rotational Motion Control of a Spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2001-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...

  16. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2003-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...

  17. Dynamic response function and large-amplitude dissipative collective motion

    International Nuclear Information System (INIS)

    Wu Xizhen; Zhuo Yizhong; Li Zhuxia; Sakata, Fumihiko.

    1993-05-01

    Aiming at exploring microscopic dynamics responsible for the dissipative large-amplitude collective motion, the dynamic response and correlation functions are introduced within the general theory of nuclear coupled-master equations. The theory is based on the microscopic theory of nuclear collective dynamics which has been developed within the time-dependent Hartree-Fock (TDHF) theory for disclosing complex structure of the TDHF-manifold. A systematic numerical method for calculating the dynamic response and correlation functions is proposed. By performing numerical calculation for a simple model Hamiltonian, it is pointed out that the dynamic response function gives an important information in understanding the large-amplitude dissipative collective motion which is described by an ensemble of trajectories within the TDHF-manifold. (author)

  18. Analysis of macroscopic and microscopic rotating motions in rotating jets: A direct numerical simulation

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-05-01

    Full Text Available A direct numerical simulation study of the characteristics of macroscopic and microscopic rotating motions in swirling jets confined in a rectangular flow domain is carried out. The different structures of vortex cores for different swirl levels are illustrated. It is found that the vortex cores of low swirl flows are of regular cylindrical-helix patterns, whereas those of the high swirl flows are characterized by the formation of the bubble-type vortex breakdown followed by the radiant processing vortex cores. The results of mean velocity fields show the general procedures of vortex origination. Moreover, the effects of macroscopic and microscopic rotating motions with respect to the mean and fluctuation fields of the swirling flows are evaluated. The microscopic rotating effects, especially the effects with respect to the turbulent fluctuation motion, are increasingly intermittent with the increase in the swirl levels. In contrast, the maximum value of the probability density functions with respect to the macroscopic rotating effects of the fluctuation motion occurs at moderate swirl levels since the macroscopic rotating effects are attenuated by the formation of the bubble vortex breakdown with a region of stagnant fluids at supercritical swirl levels.

  19. The method of contour rotations and the three particle amplitudes

    International Nuclear Information System (INIS)

    Brinati, J.R.

    1980-01-01

    The application of the method of contour rotations to the solution of the Faddeev-Lovelace equations and the calculation of the break-up and stripping amplitudes in a system of three distinct particles is reviewed. A relationship between the masses of the particles is obtained, which permits the break-up amplitude to be calculated from a single iteration of the final integral equation. (Author) [pt

  20. Microscopic theory of dynamical subspace for large amplitude collective motion

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.

    1986-01-01

    A full quantum theory appropriate for describing large amplitude collective motion is proposed by exploiting the basic idea of the semi-classical theory so far developed within the time-depedent Hartree-Fock theory. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation specific for the collective subspace where the large amplitude collective motion is replicated as precisely as possible. As an extension of the semi-classical theory where the concept of an approximate integral surface played an important role, the collective subspace is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)

  1. Relaxation processes in rotational motion

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1986-01-01

    At few MeV above the yrast line the normally strong correlations among γ-ray energies in a rotational sequence become weaker. This observation can be interpreted as evidence for the damping of rotational motion in hot nuclei. It seems possible to relate the spreading width of the E2-rotational decay strength to the spread in frequency Δω 0 of rotational bands. The origin of these fluctuations is found in: (1) fluctuations in the occupation of special single-particle orbits which contribute a significant part of the total angular momentum; and (2) fluctuations in the moment of inertia induced by vibrations of the nuclear shape. Estimates of Δω 0 done making use of the hundred-odd known discrete rotational bands in the rare-earth region lead, for moderate spin and excitation energies (I ≅ 30 and U ≅ 3 to 4 MeV), to rotational spreading widths of the order of 60 to 160 keV in overall agreement with the data. 24 refs

  2. Three-dimensional motion of the uncovertebral joint during head rotation.

    Science.gov (United States)

    Nagamoto, Yukitaka; Ishii, Takahiro; Iwasaki, Motoki; Sakaura, Hironobu; Moritomo, Hisao; Fujimori, Takahito; Kashii, Masafumi; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi

    2012-10-01

    The uncovertebral joints are peculiar but clinically important anatomical structures of the cervical vertebrae. In the aged or degenerative cervical spine, osteophytes arising from an uncovertebral joint can cause cervical radiculopathy, often necessitating decompression surgery. Although these joints are believed to bear some relationship to head rotation, how the uncovertebral joints work during head rotation remains unclear. The purpose of this study is to elucidate 3D motion of the uncovertebral joints during head rotation. Study participants were 10 healthy volunteers who underwent 3D MRI of the cervical spine in 11 positions during head rotation: neutral (0°) and 15° increments to maximal head rotation on each side (left and right). Relative motions of the cervical spine were calculated by automatically superimposing a segmented 3D MR image of the vertebra in the neutral position over images of each position using the volume registration method. The 3D intervertebral motions of all 10 volunteers were standardized, and the 3D motion of uncovertebral joints was visualized on animations using data for the standardized motion. Inferred contact areas of uncovertebral joints were also calculated using a proximity mapping technique. The 3D animation of uncovertebral joints during head rotation showed that the joints alternate between contact and separation. Inferred contact areas of uncovertebral joints were situated directly lateral at the middle cervical spine and dorsolateral at the lower cervical spine. With increasing angle of rotation, inferred contact areas increased in the middle cervical spine, whereas areas in the lower cervical spine slightly decreased. In this study, the 3D motions of uncovertebral joints during head rotation were depicted precisely for the first time.

  3. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    Science.gov (United States)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  4. Solar Magnetized Tornadoes: Rotational Motion in a Tornado-like Prominence

    Science.gov (United States)

    Su, Yang; Gömöry, Peter; Veronig, Astrid; Temmer, Manuela; Wang, Tongjiang; Vanninathan, Kamalam; Gan, Weiqun; Li, YouPing

    2014-04-01

    Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ~5 km s-1.

  5. Finite amplitude, horizontal motion of a load symmetrically supported between isotropic hyperelastic springs.

    Science.gov (United States)

    Beatty, Millard F; Young, Todd R

    2012-03-01

    The undamped, finite amplitude horizontal motion of a load supported symmetrically between identical incompressible, isotropic hyperelastic springs, each subjected to an initial finite uniaxial static stretch, is formulated in general terms. The small amplitude motion of the load about the deformed static state is discussed; and the periodicity of the arbitrary finite amplitude motion is established for all such elastic materials for which certain conditions on the engineering stress and the strain energy function hold. The exact solution for the finite vibration of the load is then derived for the classical neo-Hookean model. The vibrational period is obtained in terms of the complete Heuman lambda-function whose properties are well-known. Dependence of the period and hence the frequency on the physical parameters of the system is investigated and the results are displayed graphically.

  6. Usage of stereoscopic visualization in the learning contents of rotational motion.

    Science.gov (United States)

    Matsuura, Shu

    2013-01-01

    Rotational motion plays an essential role in physics even at an introductory level. In addition, the stereoscopic display of three-dimensional graphics includes is advantageous for the presentation of rotational motions, particularly for depth recognition. However, the immersive visualization of rotational motion has been known to lead to dizziness and even nausea for some viewers. Therefore, the purpose of this study is to examine the onset of nausea and visual fatigue when learning rotational motion through the use of a stereoscopic display. The findings show that an instruction method with intermittent exposure of the stereoscopic display and a simplification of its visual components reduced the onset of nausea and visual fatigue for the viewers, which maintained the overall effect of instantaneous spatial recognition.

  7. Field theory of large amplitude collective motion. A schematic model

    International Nuclear Information System (INIS)

    Reinhardt, H.

    1978-01-01

    By using path integral methods the equation for large amplitude collective motion for a schematic two-level model is derived. The original fermion theory is reformulated in terms of a collective (Bose) field. The classical equation of motion for the collective field coincides with the time-dependent Hartree-Fock equation. Its classical solution is quantized by means of the field-theoretical generalization of the WKB method. (author)

  8. Precise measurement of velocity dependent friction in rotational motion

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Junaid; Hassan, Hafsa; Shamim, Sohaib; Mahmood, Waqas; Anwar, Muhammad Sabieh, E-mail: sabieh@lums.edu.pk [School of Science and Engineering, Lahore University of Management Sciences (LUMS), Opposite Sector U, D.H.A, Lahore 54792 (Pakistan)

    2011-09-15

    Frictional losses are experimentally determined for a uniform circular disc exhibiting rotational motion. The clockwise and anticlockwise rotations of the disc, that result when a hanger tied to a thread is released from a certain height, give rise to vertical oscillations of the hanger as the thread winds and unwinds over a pulley attached to the disc. It is thus observed how the maximum height is achieved by the hanger decrements in every bounce. From the decrements, the rotational frictional losses are measured. The precision is enhanced by correlating vertical motion with the angular motion. This method leads to a substantial improvement in precision. Furthermore, the frictional torque is shown to be proportional to the angular speed. The experiment has been successfully employed in the undergraduate lab setting.

  9. SOLAR MAGNETIZED TORNADOES: ROTATIONAL MOTION IN A TORNADO-LIKE PROMINENCE

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yang; Veronig, Astrid; Temmer, Manuela; Vanninathan, Kamalam [IGAM-Kanzelhöhe Observatory, Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Gömöry, Peter [Astronomical Institute of the Slovak Academy of Sciences, SK-05960 Tatranská Lomnica (Slovakia); Wang, Tongjiang [Department of Physics, the Catholic University of America, Washington, DC 20064 (United States); Gan, Weiqun; Li, YouPing, E-mail: yang.su@uni-graz.at [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-04-10

    Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ∼5 km s{sup –1}.

  10. SOLAR MAGNETIZED TORNADOES: ROTATIONAL MOTION IN A TORNADO-LIKE PROMINENCE

    International Nuclear Information System (INIS)

    Su, Yang; Veronig, Astrid; Temmer, Manuela; Vanninathan, Kamalam; Gömöry, Peter; Wang, Tongjiang; Gan, Weiqun; Li, YouPing

    2014-01-01

    Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ∼5 km s –1

  11. Acoustic Measurement Of Periodic Motion Of Levitated Object

    Science.gov (United States)

    Watkins, John L.; Barmatz, Martin B.

    1992-01-01

    Some internal vibrations, oscillations in position, and rotations of acoustically levitated object measured by use of microphone already installed in typical levitation chamber for tuning chamber to resonance and monitoring operation. Levitating acoustic signal modulated by object motion of lower frequency. Amplitude modulation detected and analyzed spectrally to determine amplitudes and frequencies of motions.

  12. Quantum theory of dynamical collective subspace for large-amplitude collective motion

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.

    1986-03-01

    By placing emphasis on conceptual correspondence to the ''classical'' theory which has been developed within the framework of the time-dependent Hartree-Fock theory, a full quantum theory appropriate for describing large-amplitude collective motion is proposed. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation; the representation is specific for the collective subspace where the large-amplitude collective motion is replicated as satisfactorily as possible. As an extension of the classical theory where the concept of an approximate integral surface plays an important role, the dynamical representation is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)

  13. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion

    International Nuclear Information System (INIS)

    Zou, Hong-Xiang; Zhang, Wen-ming; Li, Wen-Bo; Wei, Ke-Xiang; Gao, Qiu-Hua; Peng, Zhi-Ke; Meng, Guang

    2017-01-01

    Highlights: • A magnetically coupled two-degree-of-freedom harvester for rotation is proposed. • The electromechanical coupling model is developed and validated experimentally. • The harvester can generate high voltage at low rotating speeds. • The harvester can harvest vibration energy in multiple frequency bands. - Abstract: Energy can be harvested from rotational motion for powering wireless autonomous electronic devices. The paper presents a magnetically coupled two-degree-of-freedom vibration energy harvester for rotary motion applications. The design consists of two inverted piezoelectric cantilever beams whose free ends point to the rotating shaft. The centrifugal force of the inverted cantilever beam is beneficial to producing large amplitude in a low speed range. The electromechanical coupling dynamical model is developed by the energy method from Hamilton’s principle and validated experimentally. The experimental results indicate that the presented harvester is suitable for low speed rotation and can harvest vibration energy in multiple frequency bands. The first and second resonant behaviors of voltage can be obtained at 420 r/min and 550 r/min, and the average output powers are 564 μW and 535.3 μW, respectively.

  14. Rotational damping motion in nuclei

    International Nuclear Information System (INIS)

    Egido, J.L.; Faessler, A.

    1991-01-01

    The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)

  15. Large amplitude oscillatory motion along a solar filament

    Science.gov (United States)

    Vršnak, B.; Veronig, A. M.; Thalmann, J. K.; Žic, T.

    2007-08-01

    Context: Large amplitude oscillations of solar filaments is a phenomenon that has been known for more than half a century. Recently, a new mode of oscillations, characterized by periodical plasma motions along the filament axis, was discovered. Aims: We analyze such an event, recorded on 23 January 2002 in Big Bear Solar Observatory Hα filtergrams, to infer the triggering mechanism and the nature of the restoring force. Methods: Motion along the filament axis of a distinct buldge-like feature was traced, to quantify the kinematics of the oscillatory motion. The data were fitted by a damped sine function to estimate the basic parameters of the oscillations. To identify the triggering mechanism, morphological changes in the vicinity of the filament were analyzed. Results: The observed oscillations of the plasma along the filament were characterized by an initial displacement of 24 Mm, an initial velocity amplitude of 51 km s-1, a period of 50 min, and a damping time of 115 min. We interpret the trigger in terms of poloidal magnetic flux injection by magnetic reconnection at one of the filament legs. The restoring force is caused by the magnetic pressure gradient along the filament axis. The period of oscillations, derived from the linearized equation of motion (harmonic oscillator) can be expressed as P=π√{2}L/v_Aϕ≈4.4L/v_Aϕ, where v_Aϕ =Bϕ0/√μ_0ρ represents the Alfvén speed based on the equilibrium poloidal field Bϕ0. Conclusions: Combination of our measurements with some previous observations of the same kind of oscillations shows good agreement with the proposed interpretation. Movie to Fig. 1 is only available in electronic form at http://www.aanda.org

  16. Single-particle motion in rapidly rotating nuclei

    International Nuclear Information System (INIS)

    Bengtsson, R.; Frisk, H.

    1985-01-01

    The motion of particles belonging to a single-j shell is described in terms of classical orbitals. The effects of rapid rotation and pairing correlations are discussed and the results are compared with the quantum mechanical orbitals. (orig.)

  17. Rotation of vertically oriented objects during earthquakes

    Science.gov (United States)

    Hinzen, Klaus-G.

    2012-10-01

    Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the `right' moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L'Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.

  18. Benefits of rotational ground motions for planetary seismology

    Science.gov (United States)

    Donner, S.; Joshi, R.; Hadziioannou, C.; Nunn, C.; van Driel, M.; Schmelzbach, C.; Wassermann, J. M.; Igel, H.

    2017-12-01

    Exploring the internal structure of planetary objects is fundamental to understand the evolution of our solar system. In contrast to Earth, planetary seismology is hampered by the limited number of stations available, often just a single one. Classic seismology is based on the measurement of three components of translational ground motion. Its methods are mainly developed for a larger number of available stations. Therefore, the application of classical seismological methods to other planets is very limited. Here, we show that the additional measurement of three components of rotational ground motion could substantially improve the situation. From sparse or single station networks measuring translational and rotational ground motions it is possible to obtain additional information on structure and source. This includes direct information on local subsurface seismic velocities, separation of seismic phases, propagation direction of seismic energy, crustal scattering properties, as well as moment tensor source parameters for regional sources. The potential of this methodology will be highlighted through synthetic forward and inverse modeling experiments.

  19. Correlation of glenohumeral internal rotation deficit and total rotational motion to shoulder injuries in professional baseball pitchers.

    Science.gov (United States)

    Wilk, Kevin E; Macrina, Leonard C; Fleisig, Glenn S; Porterfield, Ronald; Simpson, Charles D; Harker, Paul; Paparesta, Nick; Andrews, James R

    2011-02-01

    Glenohumeral internal rotation deficit (GIRD) indicates a 20° or greater loss of internal rotation of the throwing shoulder compared with the nondominant shoulder. To determine whether GIRD and a deficit in total rotational motion (external rotation + internal rotation) compared with the nonthrowing shoulder correlate with shoulder injuries in professional baseball pitchers. Case series; Level of evidence, 4. Over 3 competitive seasons (2005 to 2007), passive range of motion measurements were evaluated on the dominant and nondominant shoulders for 170 pitcher-seasons. This included 122 professional pitchers during the 3 seasons of data collection, in which some pitchers were measured during multiple seasons. Ranges of motion were measured with a bubble goniometer during the preseason, by the same examiner each year. External and internal rotation of the glenohumeral joint was assessed with the participant supine and the arm abducted 90° in the plane of the scapula, with the scapula stabilized anteriorly at the coracoid process. The reproducibility of the test methods had an intraclass correlation coefficient of .81. Days in which the player was unable to participate because of injury or surgery were recorded during the season by the medical staff of the team and defined as an injury. Pitchers with GIRD (n = 40) were nearly twice as likely to be injured as those without but without statistical significance (P = .17). Pitchers with total rotational motion deficit greater than 5° had a higher rate of injury. Minor league pitchers were more likely than major league pitchers to be injured. However, when players were injured, major league pitchers missed a significantly greater number of games than minor league pitchers. Compared with pitchers without GIRD, pitchers with GIRD appear to be at a higher risk for injury and shoulder surgery.

  20. Digital tomosynthesis using a 35 mm X-ray cinematogram during an isocentric rotational motion

    International Nuclear Information System (INIS)

    Maeda, Hirofumi; Aikawa, Hisayuki; Maeda, Tohru; Miyake, Hidetoshi; Sugahara, Tetsuo.

    1988-01-01

    Digital tomosynthesis is performed using a 35 mm X-ray cinematogram obtained during an isocentric rotational motion of the cineangiographic apparatus. Formula of image shift for digital tomosynthesis using an isocentric rotational motion is induced by perspective projection and affine transformation. Images of desired layer are aligned at the same point in the image processor and summed. Resultant final image is displayed in sharp focus. We can set tomosynthetic factors on any desired projection, sweep angle and depth as concerns digital tomosynthesis using an isocentric rotational motion. Especially we emphasize that tomosynthesis tilted for central axis of isocentric rotational motion can be obtained, using shear transformation of image in the image processor. (author)

  1. Isolating integrals of the motion for stellar orbits in a rotating galactic bar

    International Nuclear Information System (INIS)

    Vandervoort, P.O.

    1979-01-01

    The study of the equilibrium of a rotating galactic bar requires an enumeration of the isolating integrals of the motion of a star in the prevailing gravitational field. In general, Jacobi's integral is the only exact isolating integral known. This paper describes a search for an additional isolating integral for orbits confined to a plane perpendicular to the axis of the bar's rotation. It is shown that, in general, the equations of motion admit an additional integral exactly which is a nonhomogeneous quadratic form in the momenta of the star only if (1) the gravitational potential is axisymmetric, (2) the gravitational potential is harmonic, or (3) the bar does not rotate and the gravitational potential is separable in elliptic coordinates. A formal integral of the motion is constructed for orbits in a slightly anharmonic potential. Numerical solutions of the equations of motion for orbits in a slightly anharmonic potential behave as if there were indeed an additional isolating integral, and that behavior is represented very well in terms of the formal integral. If the rotation of the bar is rapid and/or the nonaxisymmetry of the bar is weak, then the additional integral restricts the motion of a star in much the same way that the angular momentum restricts motion in an axisymmetric potential. Conversely, if the rotation of the bar is slow and/or the nonaxisymmetry of the bar is strong, then the additional integral restricts the motion in much the same way that the difference of the separable energies would if the motion were separable in Cartesian coordinates

  2. Bottom boundary layer forced by finite amplitude long and short surface waves motions

    Science.gov (United States)

    Elsafty, H.; Lynett, P.

    2018-04-01

    A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave

  3. Precise Measurement of Velocity Dependent Friction in Rotational Motion

    Science.gov (United States)

    Alam, Junaid; Hassan, Hafsa; Shamim, Sohaib; Mahmood, Waqas; Anwar, Muhammad Sabieh

    2011-01-01

    Frictional losses are experimentally determined for a uniform circular disc exhibiting rotational motion. The clockwise and anticlockwise rotations of the disc, that result when a hanger tied to a thread is released from a certain height, give rise to vertical oscillations of the hanger as the thread winds and unwinds over a pulley attached to the…

  4. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    Science.gov (United States)

    Simonelli, Andreino; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Maccioni, Enrico; De Luca, Gaetano; Saccorotti, Gilberto; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    We present analyses of rotational and translational ground motions from earthquakes recorded during October-November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozen of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 40 km and 80 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. In theory - assuming plane wave propagation - the ratio between the vertical rotation rate and the transverse acceleration permits, in a single station approach, the estimation of apparent phase velocity in the case of SH arrivals or real phase velocity in the case of Love surface waves. This is a standard approach for the analysis of earthquakes at teleseismic distances, and the results reported by the literature are compatible with the expected phase velocities from the PREM model. Here we extend the application of the same approach to local events, thus exploring higher frequency ranges and larger rotation rate amplitudes. We use a novel approach to joint rotation/acceleration analysis based on the continuous wavelet transform (CWT). Wavelet coherence (WTC) is used as a filter for identifying those regions of the time-period plane where the rotation rate and transverse acceleration signals exhibit significant coherence. This allows retrieving estimates of phase velocities over the period range spanned by correlated arrivals. Coherency among ground rotation and translation is also observed throughout the coda of the P-wave arrival, an observation which is interpreted in

  5. Importance of body rotation during the flight of a butterfly.

    Science.gov (United States)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2016-03-01

    In nature the body motion of a butterfly is clearly observed to involve periodic rotation and varied flight modes. The maneuvers of a butterfly in flight are unique. Based on the flight motion of butterflies (Kallima inachus) recorded in free flight, a numerical model of a butterfly is created to study how its flight relates to body pose; the body motion in a simulation is prescribed and tested with varied initial body angle and rotational amplitude. A butterfly rotates its body to control the direction of the vortex rings generated during flapping flight; the flight modes are found to be closely related to the body motion of a butterfly. When the initial body angle increases, the forward displacement decreases, but the upward displacement increases within a stroke. With increased rotational amplitudes, the jet flows generated by a butterfly eject more downward and further enhance the generation of upward force, according to which a butterfly executes a vertical jump at the end of the downstroke. During this jumping stage, the air relative to the butterfly is moving downward; the butterfly pitches up its body to be parallel to the flow and to decrease the projected area so as to avoid further downward force generated. Our results indicate the importance of the body motion of a butterfly in flight. The inspiration of flight controlled with body motion from the flight of a butterfly might yield an alternative way to control future flight vehicles.

  6. Modes of uncontrolled rotational motion of the Progress M-29M spacecraft

    Science.gov (United States)

    Belyaev, M. Yu.; Matveeva, T. V.; Monakhov, M. I.; Rulev, D. N.; Sazonov, V. V.

    2018-01-01

    We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3-7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft's angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft's motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth-Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1-0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.

  7. Effects of Rotational Motion in Robotic Needle Insertion

    Science.gov (United States)

    Ramezanpour, H.; Yousefi, H.; Rezaei, M.; Rostami, M.

    2015-01-01

    Background Robotic needle insertion in biological tissues has been known as one the most applicable procedures in sampling, robotic injection and different medical therapies and operations. Objective In this paper, we would like to investigate the effects of angular velocity in soft tissue insertion procedure by considering force-displacement diagram. Non-homogenous camel liver can be exploited as a tissue sample under standard compression test with Zwick/Roell device employing 1-D axial load-cell. Methods Effects of rotational motion were studied by running needle insertion experiments in 5, 50 and 200 mm/min in two types of with or without rotational velocity of 50, 150 and 300 rpm. On further steps with deeper penetrations, friction force of the insertion procedure in needle shaft was acquired by a definite thickness of the tissue. Results Designed mechanism of fixture for providing different frequencies of rotational motion is available in this work. Results for comparison of different force graphs were also provided. Conclusion Derived force-displacement graphs showed a significant difference between two procedures; however, tissue bleeding and disorganized micro-structure would be among unavoidable results. PMID:26688800

  8. Quasielastic neutron scattering study of large amplitude motions in molecular systems

    International Nuclear Information System (INIS)

    Bee, M.

    1996-01-01

    This lecture aims at giving some illustrations of the use of Incoherent Quasielastic Neutron Scattering in the investigation of motions of atoms or molecules in phases with dynamical disorder. The general incoherent scattering function is first recalled. Then the Elastic Incoherent Structure Factor is introduced. It is shown how its determination permits to deduce a particular dynamical model. Long-range translational diffusion is illustrated by some experiments carried out with liquids or with different chemical species intercalated in porous media. Examples of rotational motions are provided by solid phases where an orientational disorder of the molecules exists. The jump model is the most commonly used and yields simple scattering laws which can be easily handled. Highly disordered crystals require a description in terms of the isotropic rotational diffusion model. Many of the present studies are concerned with rather complicated systems. Considerable help is obtained either by using selectively deuterated samples or by carrying out measurements with semi-oriented samples. (author) 5 figs., 14 refs

  9. Nonlinear model of a rotating hub-beams structure: Equations of motion

    Science.gov (United States)

    Warminski, Jerzy

    2018-01-01

    Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.

  10. Semi-analytical study of the rotational motion stability of artificial satellites using quaternions

    International Nuclear Information System (INIS)

    Dos Santos, Josué C; Zanardi, Maria Cecília; Matos, Nicholas

    2013-01-01

    This study at aims performing the stability analysis of the rotational motion to artificial satellites using quaternions to describe the satellite attitude (orientation on the space). In the system of rotational motion equations, which is composed by four kinematic equations of the quaternions and by the three Euler equations in terms of the rotational spin components. The influence of the gravity gradient and the direct solar radiation pressure torques have been considered. Equilibrium points were obtained through numerical simulations using the softwares Matlab and Octave, which are then analyzed by the Routh-Hurwitz Stability Criterion

  11. Vertical Axis Rotational Motion Cues in Hovering Flight Simulation

    Science.gov (United States)

    Schroeder, Jeffrey A.; Johnson, Walter W.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    A previous study that examined how yaw motion affected a pilot's ability to perform realistic hovering flight tasks indicated that any amount of pure yaw motion had little-to-no effect on pilot performance or opinion. In that experiment, pilots were located at the vehicle's center of rotation; thus lateral or longitudinal accelerations were absent. The purpose of the new study described here was to investigate further these unanticipated results for additional flight tasks, but with the introduction of linear accelerations associated with yaw rotations when the pilot is not at the center of rotation. The question of whether a yaw motion degree-of-freedom is necessary or not is important to government regulators who specify what simulator motions are necessary according to prescribed levels of simulator sophistication. Currently, specifies two levels of motion sophistication for flight simulators: full 6-degree-of-freedom and 3-degree-of-freedom. For the less sophisticated simulator, the assumed three degrees of freedom are pitch, roll, and heave. If other degrees of freedom are selected, which are different f rom these three, they must be qualified on a case-by-case basis. Picking the assumed three axes is reasonable and based upon experience, but little empirical data are available to support the selection of critical axes. Thus, the research described here is aimed at answering this question. The yaw and lateral degrees of freedom were selected to be examined first, and maneuvers were defined to uncouple these motions from changes in the gravity vector with respect to the pilot. This approach simplifies the problem to be examined. For this experiment, the NASA Ames Vertical Motion Simulator was used in a comprehensive investigation. The math model was an AH-64 Apache in hover, which was identified from flight test data and had previously been validated by several AH-64 pilots. The pilot's head was located 4.5 ft in front of the vehicle center of gravity, which is

  12. Structure-from-motion: dissociating perception, neural persistence, and sensory memory of illusory depth and illusory rotation.

    Science.gov (United States)

    Pastukhov, Alexander; Braun, Jochen

    2013-02-01

    In the structure-from-motion paradigm, physical motion on a screen produces the vivid illusion of an object rotating in depth. Here, we show how to dissociate illusory depth and illusory rotation in a structure-from-motion stimulus using a rotationally asymmetric shape and reversals of physical motion. Reversals of physical motion create a conflict between the original illusory states and the new physical motion: Either illusory depth remains constant and illusory rotation reverses, or illusory rotation stays the same and illusory depth reverses. When physical motion reverses after the interruption in presentation, we find that illusory rotation tends to remain constant for long blank durations (T (blank) ≥ 0.5 s), but illusory depth is stabilized if interruptions are short (T (blank) ≤ 0.1 s). The stability of illusory depth over brief interruptions is consistent with the effect of neural persistence. When this is curtailed using a mask, stability of ambiguous vision (for either illusory depth or illusory rotation) is disrupted. We also examined the selectivity of the neural persistence of illusory depth. We found that it relies on a static representation of an interpolated illusory object, since changes to low-level display properties had little detrimental effect. We discuss our findings with respect to other types of history dependence in multistable displays (sensory stabilization memory, neural fatigue, etc.). Our results suggest that when brief interruptions are used during the presentation of multistable displays, switches in perception are likely to rely on the same neural mechanisms as spontaneous switches, rather than switches due to the initial percept choice at the stimulus onset.

  13. Reduction of the Glauber amplitude for electron impact rotational excitation of quadrupolar molecular ions

    International Nuclear Information System (INIS)

    Mathur, K.C.; Gupta, G.P.; Pundir, R.S.

    1981-06-01

    A reduction of the Glauber amplitude for the rotational excitation of pure quadrupolar molecular ions by electron impact is presented in a form suitable for numerical evaluation. The differential cross-section is expressed in terms of one dimensional integrals over impact parameter. (author)

  14. Descriptive profile of hip rotation range of motion in elite tennis players and professional baseball pitchers.

    Science.gov (United States)

    Ellenbecker, Todd S; Ellenbecker, Gail A; Roetert, E Paul; Silva, Rogerio Teixeira; Keuter, Greg; Sperling, Fabio

    2007-08-01

    Repetitive loading to the hip joint in athletes has been reported as a factor in the development of degenerative joint disease and intra-articular injury. Little information is available on the bilateral symmetry of hip rotational measures in unilaterally dominant upper extremity athletes. Side-to-side differences in hip joint range of motion may be present because of asymmetrical loading in the lower extremities of elite tennis players and professional baseball pitchers. Cohort (cross-sectional) study (prevalence); Level of evidence, 1. Descriptive measures of hip internal and external rotation active range of motion were taken in the prone position of 64 male and 83 female elite tennis players and 101 male professional baseball pitchers using digital photos and computerized angle calculation software. Bilateral differences in active range of motion between the dominant and nondominant hip were compared using paired t tests and Bonferroni correction for hip internal, external, and total rotation range of motion. A Pearson correlation test was used to test the relationship between years of competition and hip rotation active range of motion. No significant bilateral difference (P > .005) was measured for mean hip internal or external rotation for the elite tennis players or the professional baseball pitchers. An analysis of the number of subjects in each group with a bilateral difference in hip rotation greater than 10 degrees identified 17% of the professional baseball pitchers with internal rotation differences and 42% with external rotation differences. Differences in the elite male tennis players occurred in only 15% of the players for internal rotation and 9% in external rotation. Female subjects had differences in 8% and 12% of the players for internal and external rotation, respectively. Statistical differences were found between the mean total arc of hip range of internal and external rotation in the elite tennis players with the dominant side being greater

  15. Integration of Visual and Vestibular Information Used to Discriminate Rotational Self-Motion

    Directory of Open Access Journals (Sweden)

    Florian Soyka

    2011-10-01

    Full Text Available Do humans integrate visual and vestibular information in a statistically optimal fashion when discriminating rotational self-motion stimuli? Recent studies are inconclusive as to whether such integration occurs when discriminating heading direction. In the present study eight participants were consecutively rotated twice (2s sinusoidal acceleration on a chair about an earth-vertical axis in vestibular-only, visual-only and visual-vestibular trials. The visual stimulus was a video of a moving stripe pattern, synchronized with the inertial motion. Peak acceleration of the reference stimulus was varied and participants reported which rotation was perceived as faster. Just-noticeable differences (JND were estimated by fitting psychometric functions. The visual-vestibular JND measurements are too high compared to the predictions based on the unimodal JND estimates and there is no JND reduction between visual-vestibular and visual-alone estimates. These findings may be explained by visual capture. Alternatively, the visual precision may not be equal between visual-vestibular and visual-alone conditions, since it has been shown that visual motion sensitivity is reduced during inertial self-motion. Therefore, measuring visual-alone JNDs with an underlying uncorrelated inertial motion might yield higher visual-alone JNDs compared to the stationary measurement. Theoretical calculations show that higher visual-alone JNDs would result in predictions consistent with the JND measurements for the visual-vestibular condition.

  16. A novel rotational invariants target recognition method for rotating motion blurred images

    Science.gov (United States)

    Lan, Jinhui; Gong, Meiling; Dong, Mingwei; Zeng, Yiliang; Zhang, Yuzhen

    2017-11-01

    The imaging of the image sensor is blurred due to the rotational motion of the carrier and reducing the target recognition rate greatly. Although the traditional mode that restores the image first and then identifies the target can improve the recognition rate, it takes a long time to recognize. In order to solve this problem, a rotating fuzzy invariants extracted model was constructed that recognizes target directly. The model includes three metric layers. The object description capability of metric algorithms that contain gray value statistical algorithm, improved round projection transformation algorithm and rotation-convolution moment invariants in the three metric layers ranges from low to high, and the metric layer with the lowest description ability among them is as the input which can eliminate non pixel points of target region from degenerate image gradually. Experimental results show that the proposed model can improve the correct target recognition rate of blurred image and optimum allocation between the computational complexity and function of region.

  17. Magneto-elastic dynamics and bifurcation of rotating annular plate*

    International Nuclear Information System (INIS)

    Hu Yu-Da; Piao Jiang-Min; Li Wen-Qiang

    2017-01-01

    In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton’s principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincaré maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions, and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos. (paper)

  18. Ground motion: frequency of occurrence versus amplitude of disturbing transient events

    International Nuclear Information System (INIS)

    Werner, K.L.

    1983-01-01

    Successful collider operation requires that ground motion not exceed certain tolerances. In this note it is pointed out that on occasion these tolerances are exceeded. The frequency of such events and their amplitudes, measured as a function of time of day, have been measured. An examination of the data leads one to conclude that most events are of cultural (i.e., man-made) origin. 2 references, 20 figures

  19. Penetration of steady fluid motions into an outer stable layer excited by MHD thermal convection in rotating spherical shells

    Science.gov (United States)

    Takehiro, Shin-ichi; Sasaki, Youhei

    2018-03-01

    Penetration of steady magneto-hydrodynamic (MHD) disturbances into an upper strongly stratified stable layer excited by MHD thermal convection in rotating spherical shells is investigated. The theoretical model proposed by Takehiro (2015) is reexamined in the case of steady fluid motion below the bottom boundary. Steady disturbances penetrate into a density stratified MHD fluid existing in the semi-infinite region in the vertical direction. The axis of rotation of the system is tilted with respect to the vertical. The basic magnetic field is uniform and may be tilted with respect to the vertical and the rotation axis. Linear dispersion relation shows that the penetration distance with zero frequency depends on the amplitude of Alfvén wave speed. When Alfvén wave speed is small, viscous diffusion becomes dominant and penetration distance is similar to the horizontal scale of the disturbance at the lower boundary. In contrast, when Alfvén wave speed becomes larger, disturbance can penetrate deeper, and penetration distance becomes proportional to the Alfvén wave speed and inversely proportional to the geometric average of viscous and magnetic diffusion coefficients and to the total horizontal wavenumber. The analytic expression of penetration distance is in good agreement with the extent of penetration of mean zonal flow induced by finite amplitude convection in a rotating spherical shell with an upper stably stratified layer embedded in an axially uniform basic magnetic field. The theory expects that the stable layer suggested in the upper part of the outer core of the earth could be penetrated completely by mean zonal flows excited by thermal/compositional convection developing below the stable layer.

  20. Potential of mechanical metamaterials to induce their own global rotational motion

    Science.gov (United States)

    Dudek, K. K.; Wojciechowski, K. W.; Dudek, M. R.; Gatt, R.; Mizzi, L.; Grima, J. N.

    2018-05-01

    The potential of several classes of mechanical metamaterials to induce their own overall rotational motion through the individual rotation of their subunits is examined. Using a theoretical approach, we confirm that for various rotating rigid unit systems, if by design the sum of angular momentum of subunits rotating in different directions is made to be unequal, then the system will experience an overall rotation, the extent of which may be controlled through careful choice of the geometric parameters defining these systems. This phenomenon of self-induced rotation is also confirmed experimentally. Furthermore, we discuss how these systems can be designed in a special way so as to permit extended rotations which allows them to overcome geometric lockage and the relevance of this concept in applications ranging from satellites to spacecraft and telescopes employed in space.

  1. Adiabatic motion of charged dust grains in rotating magnetospheres

    International Nuclear Information System (INIS)

    Northrop, T.G.; Hill, J.R.

    1983-01-01

    Dust grains in the ring systems and rapidly rotating magnetospheres of the outer planets such as Jupiter and Saturn may be sufficiently charged that the magnetic and electric forces on them are comparable with the gravitational force. The adiabatic theory of charged particle motion has previously been applied to electrons and atomic size particles. But it is also applicable to these charged dust grains in the micrometer and smaller size range. We derive here the guiding center equation of motion, drift velocity, and parallel equation of motion for these grains in a rotating magnetosphere. The effects of periodic grain charge-discharge have not been treated previously and have been included in this analysis. Grain charge is affected by the surrounding plasma properties and by the grain plasma velocity (among other factors), both of which may vary over the gyrocircle. The resulting charge-discharge process at the gyrofrequency destroys the invariance of the magnetic moment and causes a grain to move radially. The magnetic moment may increase or decrease, depending on the gyrophase of the charge variation. If it decreases, the motion is always toward synchronous radius for an equatorial grain. But the orbit becomes circular before the grain reaches synchronous radius, a conclusion that follows from an exact constant of the motion. This circularization can be viewed as a consequence of the gradual reduction in the magnetic moment. This circularization also suggests that dust grains leaving Io could not reach the region of the Jovian ring, but several effects could change that conclusion. Excellent qualitative and quantitative agreement is obtained between adiabatic theory and detailed numerical orbit integrations

  2. Random motion and Brownian rotation

    International Nuclear Information System (INIS)

    Wyllie, G.

    1980-01-01

    The course is centred on the Brownian motion - the random movement of molecules arising from thermal fluctuations of the surrounding medium - and starts with the classical theory of A. Einstein, M.v. Smoluchowski and P. Langevin. The first part of this article is quite elementary, and several of the questions raised in it have been instructively treated in a much more sophisticated way in recent reviews by Pomeau and Resibois and by Fox. This simple material may nevertheless be helpful to some readers whose main interest lies in approaching the work on Brownian rotation reviewed in the latter part of the present article. The simplest, and most brutally idealised, problem in our field of interest is that of the random walk in one dimension of space. Its solution leads on, through the diffusivity-mobility relation of Einstein, to Langevin's treatment of the Brownian motion. The application of these ideas to the movement of a molecule in a medium of similar molecules is clearly unrealistic, and much energy has been devoted to finding a suitable generalisation. We shall discuss in particular ideas due to Green, Zwanzig and Mori. (orig./WL)

  3. Early Versus Delayed Motion After Rotator Cuff Repair: A Systematic Review of Overlapping Meta-analyses.

    Science.gov (United States)

    Houck, Darby A; Kraeutler, Matthew J; Schuette, Hayden B; McCarty, Eric C; Bravman, Jonathan T

    2017-10-01

    Previous meta-analyses have been conducted to compare outcomes of early versus delayed motion after rotator cuff repair. To conduct a systematic review of overlapping meta-analyses comparing early versus delayed motion rehabilitation protocols after rotator cuff repair to determine which meta-analyses provide the best available evidence. Systematic review. A systematic review was performed by searching PubMed and Cochrane Library databases. Search terms included "rotator cuff repair," "early passive motion," "immobilization," "rehabilitation protocol," and "meta-analysis." Results were reviewed to determine study eligibility. Patient outcomes and structural healing were extracted from these meta-analyses. Meta-analysis quality was assessed using the Oxman-Guyatt and Quality of Reporting of Meta-analyses (QUOROM) systems. The Jadad decision algorithm was then used to determine which meta-analyses provided the best level of evidence. Seven meta-analyses containing a total of 5896 patients met the eligibility criteria (1 Level I evidence, 4 Level II evidence, 2 Level III evidence). None of these meta-analyses found immobilization to be superior to early motion; however, most studies suggested that early motion would increase range of motion (ROM), thereby reducing time of recovery. Three of these studies suggested that tear size contributed to the choice of rehabilitation to ensure proper healing of the shoulder. A study by Chan et al in 2014 received the highest QUOROM and Oxman-Guyatt scores, and therefore this meta-analysis appeared to have the highest level of evidence. Additionally, a study by Riboh and Garrigues in 2014 was selected as the highest quality study in this systematic review according to the Jadad decision algorithm. The current, best available evidence suggests that early motion improves ROM after rotator cuff repair but increases the risk of rotator cuff retear. Lower quality meta-analyses indicate that tear size may provide a better strategy in

  4. Equations-of-motion approach to a quantum theory of large-amplitude collective motion

    International Nuclear Information System (INIS)

    Klein, A.

    1984-01-01

    The equations-of-motion approach to large-amplitude collective motion is implemented both for systems of coupled bosons, also studied in a previous paper, and for systems of coupled fermions. For the fermion case, the underlying formulation is that provided by the generalized Hartree-Fock approximation (or generalized density matrix method). To obtain results valid in the semi-classical limit, as in most previous work, we compute the Wigner transform of quantum matrices in the representation in which collective coordinates are diagonal and keep only the leading contributions. Higher-order contributions can be retained, however, and, in any case, there is no ambiguity of requantization. The semi-classical limit is seen to comprise the dynamics of time-dependent Hartree-Fock theory (TDHF) and a classical canonicity condition. By utilizing a well-known parametrization of the manifold of Slater determinants in terms of classical canonical variables, we are able to derive and understand the equations of the adiabatic limit in full parallelism with the boson case. As in the previous paper, we can thus show: (i) to zero and first order in the adiabatic limit the physics is contained in Villar's equations; (ii) to second order there is consistency and no new conditions. The structure of the solution space (discussed thoroughly in the previous paper) is summarized. A discussion of associated variational principles is given. A form of the theory equivalent to self-consistent cranking is described. A method of solution is illustrated by working out several elementary examples. The relationship to previsous work, especially that of Zelevinsky and Marumori and coworkers is discussed briefly. Three appendices deal respectively with the equations-of-motion method, with useful properties of Slater determinants, and with some technical details associated with the fermion equations of motion. (orig.)

  5. Gating-by-rotation: a solution to the problem of intratreatment motion in helical tomotherapy

    International Nuclear Information System (INIS)

    Kapatoes, J.M.; Olivera, G.H.; Schloesser, E.A.; Pearson, D.W.; Balog, J.P.; Ruchala, K.J.; Schmidt, R.; Reckwerdt, P.J.; Mehta, M.P.; Mackie, T.R.

    2001-01-01

    Purpose: To assess the feasibility of addressing intratreatment motion issues in helical tomotherapy by gating the treatments by rotation. Intratreatment motion is a problem common to all IMRT techniques. Traditional methods of gating in conformal radiotherapy and some forms of IMRT are not applicable to helical tomotherapy due to the continuous rotation of the gantry. An alternative method is presented. Materials and Methods: Rotation-gating in helical tomotherapy is the process in which one rotation of treatment is immediately followed by a rotation of non-treatment. This on-off strategy is repeated for the full treatment volume. During the treatment rotations, the patient is required to hold their breath while the intensity-modulated fan beam deposits dose. For the non-treatment rotations, the patient is allowed to breathe freely as all leaves of the MLC will be closed, the accelerator disabled, or both. The couch indexes normally for treatment rotations and holds the patient stationary during non-treatment rotations. An investigation was conducted to assess the feasibility of rotation-gating. Film was placed between two hemispheres of a water phantom and a continuous helical delivery was carried out with all leaves opened. The film was replaced and another treatment was performed employing rotation-gating. The two films were compared to assess the process. The films were irradiated to dose levels within the linear region of the film response curve (maximum film dose ∼35 cGy). Films were also acquired with all leaves closed to quantify leakage dose through the collimation systems. Results: Central profiles for the inferior-superior direction (parallel to the direction of translation) for both films are displayed in Figure 1. The profiles agree very well, illustrating that a rotation-gated treatment closely mimics a continuous helical delivery. The only significant discrepancy lay in the tails of the profiles: a higher film dose is seen for the rotation

  6. Cosmophysical Factors in the Fluctuation Amplitude Spectrum of Brownian Motion

    Directory of Open Access Journals (Sweden)

    Kaminsky A. V.

    2010-07-01

    Full Text Available Phenomenon of the regular variability of the fine structure of the fluctuation in the am- plitude distributions (shapes of related histograms for the case of Brownian motion was investigated. We took an advantage of the dynamic light scattering method (DLS to get a stochastically fluctuated signal determined by Brownian motion. Shape of the histograms is most likely to vary, synchronous, in two proximally located independent cells containing Brownian particles. The synchronism persists in the cells distant at 2 m from each other, and positioned meridionally. With a parallel-wise positioning of the cells, high probability of the synchronous variation in the shape of the histograms by local time has been observed. This result meets the previous conclusion about the dependency of histogram shapes (“fluctuation amplitudes” of the spectra of stochastic processes upon rotation of the Earth.

  7. Equations of motion for free-flight systems of rotating-translating bodies

    International Nuclear Information System (INIS)

    Hodapp, A.E. Jr.

    1976-09-01

    General vector differential equations of motion are developed for a system of rotating-translating, unbalanced, constant mass bodies. Complete flexibility is provided in placement of the reference coordinates within the system of bodies and in placement of body fixed axes within each body. Example cases are presented to demonstrate the ease in reduction of these equations to the equations of motion for systems of interest

  8. Perception of self motion during and after passive rotation of the body around an earth-vertical axis.

    Science.gov (United States)

    Sinha, N; Zaher, N; Shaikh, A G; Lasker, A G; Zee, D S; Tarnutzer, A A

    2008-01-01

    We investigated the perception of self-rotation using constant-velocity chair rotations. Subjects signalled self motion during three independent tasks (1) by pushing a button when rotation was first sensed, when velocity reached a peak, when velocity began to decrease, and when velocity reached zero, (2) by rotating a disc to match the perceived motion of the body, or (3) by changing the static position of the dial such that a bigger change in its position correlated with a larger perceived velocity. All three tasks gave a consistent quantitative measure of perceived angular velocity. We found a delay in the time at which peak velocity of self-rotation was perceived (2-5 s) relative to the beginning or to the end of chair rotation. In addition the decay of the perception of self-rotation was preceded by a sensed constant-velocity interval or plateau (9-14 s). This delay in the rise of self-motion perception, and the plateau for the maximum perceived velocity, contrasts with the rapid rise and the immediate decay of the angular vestibuloocular reflex (aVOR). This difference suggests that the sensory signal from the semicircular canals undergoes additional neural processing, beyond the contribution of the velocity-storage mechanism of the aVOR, to compute the percept of self-motion.

  9. Relative Attitude Estimation for a Uniform Motion and Slowly Rotating Noncooperative Spacecraft

    Directory of Open Access Journals (Sweden)

    Liu Zhang

    2017-01-01

    Full Text Available This paper presents a novel relative attitude estimation approach for a uniform motion and slowly rotating noncooperative spacecraft. It is assumed that the uniform motion and slowly rotating noncooperative chief spacecraft is in failure or out of control and there is no a priori rotation rate information. We utilize a very fast binary descriptor based on binary robust independent elementary features (BRIEF to obtain the features of the target, which are rotational invariance and resistance to noise. And then, we propose a novel combination of single candidate random sample consensus (RANSAC with extended Kalman filter (EKF that makes use of the available prior probabilistic information from the EKF in the RANSAC model hypothesis stage. The advantage of this combination obviously reduces the sample size to only one, which results in large computational savings without the loss of accuracy. Experimental results from real image sequence of a real model target show that the relative angular error is about 3.5% and the mean angular velocity error is about 0.1 deg/s.

  10. An analysis of plasma ion toroidal rotation during large amplitude MHD activity in JET

    International Nuclear Information System (INIS)

    Snipes, J.A.; Esch, H.P.L. de; Lazzaro, E.; Stork, D.; Hellermann, M. von; Galvao, R.; Hender, T.C.; Zasche, D.

    1989-01-01

    A detailed study of plasma ion toroidal rotation in JET during large amplitude MHD activity has revealed a strong viscous force that couples plasma ions to MHD modes. Depending on the MHD modes present, this force can couple across all of the plasma cross section, across only the central region, roughly within the q=1 surface, or across only the outer region outside the q=1.5 surface. The force acts to flatten the ion toroidal rotation frequency profile, measured by the JET active charge exchange spectroscopy diagnostic, across the coupled region of plasma. The frequency of rotation in this region agrees with the MHD oscillation frequency measured by magnetic pick-up coils at the wall. The strength of the force between the ions and modes becomes evident during high power NBI when the mode locks and drags the ion toroidal rotation frequency to zero, within the errors of the measurements. The present theories of plasma rotation either ignore MHD effects entirely, consider only moderate n toroidal field ripple, or low n ripple effects. (author) 7 refs., 3 figs

  11. The effect of postoperative passive motion on rotator cuff healing in a rat model.

    Science.gov (United States)

    Peltz, Cathryn D; Dourte, Leann M; Kuntz, Andrew F; Sarver, Joseph J; Kim, Soung-Yon; Williams, Gerald R; Soslowsky, Louis J

    2009-10-01

    Surgical repairs of torn rotator cuff tendons frequently fail. Immobilization has been shown to improve tissue mechanical properties in an animal model of rotator cuff repair, and passive motion has been shown to improve joint mechanics in animal models of flexor tendon repair. Our objective was to determine if daily passive motion would improve joint mechanics in comparison with continuous immobilization in a rat rotator cuff repair model. We hypothesized that daily passive motion would result in improved passive shoulder joint mechanics in comparison with continuous immobilization initially and that there would be no differences in passive joint mechanics or insertion site mechanical properties after four weeks of remobilization. A supraspinatus injury was created and was surgically repaired in sixty-five Sprague-Dawley rats. Rats were separated into three postoperative groups (continuous immobilization, passive motion protocol 1, and passive motion protocol 2) for two weeks before all underwent a remobilization protocol for four weeks. Serial measurements of passive shoulder mechanics (internal and external range of motion and joint stiffness) were made before surgery and at two and six weeks after surgery. After the animals were killed, collagen organization and mechanical properties of the tendon-to-bone insertion site were determined. Total range of motion for both passive motion groups (49% and 45% of the pre-injury values) was less than that for the continuous immobilization group (59% of the pre-injury value) at two weeks and remained significantly less following four weeks of remobilization exercise. Joint stiffness at two weeks was increased for both passive motion groups in comparison with the continuous immobilization group. At both two and six weeks after repair, internal range of motion was significantly decreased whereas external range of motion was not. There were no differences between the groups in terms of collagen organization or mechanical

  12. On the amplitude changes of seasonal components in the rate of rotation of the earth

    International Nuclear Information System (INIS)

    Okazaki, Seichi

    1975-01-01

    In this paper an analysis of seasonal variations in the rate of the Earth's rotation is carried out with regard to the amplitude changes particularly. It is found that the annual and semi-annual components have peculiar changes in the amplitude, i.e., (i) the annual term has been a tendency of the amplitude enhancement of about 0.10 ms day -1 and following decay which occurred rhythmically at 1957. 5, 1963. 5, and 1969. 5, with a 6-yr period and (ii) the semi-annual term had a step change of the amplitude by about +0.13 ms day -1 at the beginning of 1962. As for the amplitude change of the annual term with the repeating period of 6 yr, there is a close correlation between this amplitude change and the westerly zonal winds at the 500-mb level in the particular zone (35 0 -55 0 N). Concerning the periods before and after the amplitude enhancement, the difference of changes in the relative westerly angular momentum in this zone is conspicuous more than that in the zone (20 0 -35 0 N). The amplitude change of the semi-annual term is proved to be attributed to the difference in Δαsub(α) between the fundamental catalogs FK3 and FK4. (auth.)

  13. Toward yrast spectroscopy in soft vibrational nuclei. A microscopic theory of the large amplitude collective motion of soft nuclei

    International Nuclear Information System (INIS)

    Marumori, Toshio; Kuriyama, Atsushi; Sakata, Fumihiko

    1980-01-01

    In a formally parallel way with that exciting progress has been recently achieved in understanding the yrast spectra of the rotational nuclei in terms of the quasi-particle motion in the rotating frame, an attempt to understand the yrast spectra of the vibrational nuclei in terms of the quasi-particle motion is proposed. The essential idea is to introduce the quasi-particle motion in a generalized vibrating frame, which can be regarded as a rotating frame in the gauge space of 'physical' phonons where the number of the physical phonons plays the role of the angular momentum. On the basis of a simple fundamental principle called as the 'invariance principle of the Schroedinger equation', which leads us to the 'maximal decoupling' between the physical phonon and the intrinsic modes, it is shown that the vibrational frame as well as the physical-phonon-number operator represented by the quasi-particles can be self-consistently determined. A new scope toward the yrast spectroscopy of the vibrational nuclei in terms of the quasi-particle motion is discussed

  14. Inversion of ground-motion data from a seismometer array for rotation using a modification of Jaeger's method

    Science.gov (United States)

    Chi, Wu-Cheng; Lee, W.H.K.; Aston, J.A.D.; Lin, C.J.; Liu, C.-C.

    2011-01-01

    We develop a new way to invert 2D translational waveforms using Jaeger's (1969) formula to derive rotational ground motions about one axis and estimate the errors in them using techniques from statistical multivariate analysis. This procedure can be used to derive rotational ground motions and strains using arrayed translational data, thus providing an efficient way to calibrate the performance of rotational sensors. This approach does not require a priori information about the noise level of the translational data and elastic properties of the media. This new procedure also provides estimates of the standard deviations of the derived rotations and strains. In this study, we validated this code using synthetic translational waveforms from a seismic array. The results after the inversion of the synthetics for rotations were almost identical with the results derived using a well-tested inversion procedure by Spudich and Fletcher (2009). This new 2D procedure can be applied three times to obtain the full, three-component rotations. Additional modifications can be implemented to the code in the future to study different features of the rotational ground motions and strains induced by the passage of seismic waves.

  15. SU-F-J-158: Respiratory Motion Resolved, Self-Gated 4D-MRI Using Rotating Cartesian K-Space Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Han, F; Zhou, Z; Yang, Y; Sheng, K; Hu, P [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: Dynamic MRI has been used to quantify respiratory motion of abdominal organs in radiation treatment planning. Many existing 4D-MRI methods based on 2D acquisitions suffer from limited slice resolution and additional stitching artifacts when evaluated in 3D{sup 1}. To address these issues, we developed a 4D-MRI (3D dynamic) technique with true 3D k-space encoding and respiratory motion self-gating. Methods: The 3D k-space was acquired using a Rotating Cartesian K-space (ROCK) pattern, where the Cartesian grid was reordered in a quasi-spiral fashion with each spiral arm rotated using golden angle{sup 2}. Each quasi-spiral arm started with the k-space center-line, which were used as self-gating{sup 3} signal for respiratory motion estimation. The acquired k-space data was then binned into 8 respiratory phases and the golden angle ensures a near-uniform k-space sampling in each phase. Finally, dynamic 3D images were reconstructed using the ESPIRiT technique{sup 4}. 4D-MRI was performed on 6 healthy volunteers, using the following parameters (bSSFP, Fat-Sat, TE/TR=2ms/4ms, matrix size=500×350×120, resolution=1×1×1.2mm, TA=5min, 8 respiratory phases). Supplemental 2D real-time images were acquired in 9 different planes. Dynamic locations of the diaphragm dome and left kidney were measured from both 4D and 2D images. The same protocol was also performed on a MRI-compatible motion phantom where the motion was programmed with different amplitude (10–30mm) and frequency (3–10/min). Results: High resolution 4D-MRI were obtained successfully in 5 minutes. Quantitative motion measurements from 4D-MRI agree with the ones from 2D CINE (<5% error). The 4D images are free of the stitching artifacts and their near-isotropic resolution facilitates 3D visualization and segmentation of abdominal organs such as the liver, kidney and pancreas. Conclusion: Our preliminary studies demonstrated a novel ROCK 4D-MRI technique with true 3D k-space encoding and respiratory

  16. Beyond RPA in nuclear rotation and wobbling motion at high spin

    International Nuclear Information System (INIS)

    Kaneko, Kazunari

    1991-01-01

    A quantum mechanical method of the nuclear rotation and the wobbling motion at high spin beyond the small-oscillation approximation is represented within the framework of time-dependent mean-field theory with some constraints. The constraints which determine the choice of the rotating reference frame are considered in the spin-orientation frame and the principal-axis frame. The quantization under such constraints is performed by making use of the Dirac bracket. Then the commutation relations of the angular momentum are derived. (orig.)

  17. The exact equation of motion of a simple pendulum of arbitrary amplitude: a hypergeometric approach

    International Nuclear Information System (INIS)

    Qureshi, M I; Rafat, M; Azad, S Ismail

    2010-01-01

    The motion of a simple pendulum of arbitrary amplitude is usually treated by approximate methods. By using generalized hypergeometric functions, it is however possible to solve the problem exactly. In this paper, we provide the exact equation of motion of a simple pendulum of arbitrary amplitude. A new and exact expression for the time of swinging of a simple pendulum from the vertical position to an arbitrary angular position θ is given by equation (3.10). The time period of such a pendulum is also exactly expressible in terms of hypergeometric functions. The exact expressions thus obtained are used to plot the graphs that compare the exact time period T(θ 0 ) with the time period T(0) (based on simple harmonic approximation). We also compare the relative difference between T(0) and T(θ 0 ) found from the exact equation of motion with the usual perturbation theory estimate. The treatment is intended for graduate students, who have acquired some familiarity with the hypergeometric functions. This approach may also be profitably used by specialists who encounter during their investigations nonlinear differential equations similar in form to the pendulum equation. Such nonlinear differential equations could arise in diverse fields, such as acoustic vibrations, oscillations in small molecules, turbulence and electronic filters, among others.

  18. Cyclic fatigue resistance of RaCe and Mtwo rotary files in continuous rotation and reciprocating motion.

    Science.gov (United States)

    Vadhana, Sekar; SaravanaKarthikeyan, Balasubramanian; Nandini, Suresh; Velmurugan, Natanasabapathy

    2014-07-01

    The purpose of this study was to evaluate and compare the cyclic fatigue resistance of RaCe (FKG Dentaire, La Chaux-de-Fonds, Switzerland) and Mtwo (VDW, Munich, Germany) rotary files in continuous rotation and reciprocating motion. A total of 60 new rotary Mtwo and RaCe files (ISO size = 25, taper = 0.06, length = 25 mm) were selected and randomly divided into 4 groups (n = 15 each): Mtc (Mtwo NiTi files in continuous rotation), Rc (RaCe NiTi files in continuous rotation), Mtr (Mtwo NiTi files in reciprocating motion), and Rr (RaCe NiTi files in reciprocating motion). A cyclic fatigue testing device was fabricated with a 60° angle of curvature and a 5-mm radius. All instruments were rotated or reciprocated until fracture occurred. The time taken for each instrument to fracture and the length of the broken fragments were recorded. All the fractured files were analyzed under a scanning electron microscope to detect the mode of fracture. The Kolmogorov-Smirnov test was used to assess the normality of samples distribution, and statistical analysis was performed using the independent sample t test. The time taken for the instruments of the Mtr and Rr groups to fail under cyclic loading was significantly longer compared with the Mtc and Rc groups (P ductile mode of fracture. The length of the fractured segments was between 5 and 6 mm, which was not statistically significant among the experimental groups. Mtwo and RaCe rotary instruments showed a significantly higher cyclic fatigue resistance in reciprocating motion compared with continuous rotation motion. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. On the propagation and stability of wave motions in rapidly rotating spherical shells. 2. Hydromagnetic two-dimensional motions

    International Nuclear Information System (INIS)

    Eltayeb, I.A.

    1983-07-01

    The linear progation properties and stability of wave motions in spherical shells examined in paper I (Geophys. Astr. Fluid Dyn., 16, 129) are here extended to the case of a toroidal magnetic field together with an associated shear flow. The analysis is restricted to moderate values of the magnetic field amplitude, in which case the ensuing motions are two-dimensional. They occur in thin cylindrical cells coaxial with the axis of rotation. For every set of the relevant parameters an infinity of modes exists and is divided into two uncoupled categories. One category is associated with a temperature perturbation even in the axial coordinate z and the other category odd in z. In the presence of an inner solid core the even set persists only outside the cylindrical surface, Csub(c), whose generators touch the inner core at its equator while the odd set persists everywhere. The direction of propagation of these waves depends on the ratio, q, of thermal to magnetic diffusivities and on the modified Chandrasekhar number Q (which is the ratio of Lorentz to Coriolis forces). For small values of q relevant to geophysical applications both eastward and westward propagation is possible if Q is small; but as Q increases beyond a certain value, only eastward propagation is possible. For the case of large q applicable to astrophysical situations both eastward and westward propagation is possible. All these results apply for a variety of temperature gradients in which both internal and differential forms of heating are invoked, and various forms of toroidal magnetic fields. The stability of these wave motions is examined and the most preferred mode of convection is identified in each case. The unstable cell always lies on Csub(c) or outside it. Its precise location depends on the types of magnetic field and temperature gradient. The sloping boundary of the spherical shell tends to stabilize westward propagating waves

  20. Differential contribution of visual and auditory information to accurately predict the direction and rotational motion of a visual stimulus.

    Science.gov (United States)

    Park, Seoung Hoon; Kim, Seonjin; Kwon, MinHyuk; Christou, Evangelos A

    2016-03-01

    Vision and auditory information are critical for perception and to enhance the ability of an individual to respond accurately to a stimulus. However, it is unknown whether visual and auditory information contribute differentially to identify the direction and rotational motion of the stimulus. The purpose of this study was to determine the ability of an individual to accurately predict the direction and rotational motion of the stimulus based on visual and auditory information. In this study, we recruited 9 expert table-tennis players and used table-tennis service as our experimental model. Participants watched recorded services with different levels of visual and auditory information. The goal was to anticipate the direction of the service (left or right) and the rotational motion of service (topspin, sidespin, or cut). We recorded their responses and quantified the following outcomes: (i) directional accuracy and (ii) rotational motion accuracy. The response accuracy was the accurate predictions relative to the total number of trials. The ability of the participants to predict the direction of the service accurately increased with additional visual information but not with auditory information. In contrast, the ability of the participants to predict the rotational motion of the service accurately increased with the addition of auditory information to visual information but not with additional visual information alone. In conclusion, this finding demonstrates that visual information enhances the ability of an individual to accurately predict the direction of the stimulus, whereas additional auditory information enhances the ability of an individual to accurately predict the rotational motion of stimulus.

  1. Observations of Near-Field Rotational Motions from Oklahoma Seismicity using Applied Technology Associate Sensors

    Science.gov (United States)

    Ringler, A. T.; Anthony, R. E.; Holland, A. A.; Wilson, D. C.

    2017-12-01

    Characterizing rotational motions from moderate-sized earthquakes in the near-field has the potential to improve earthquake engineering and seismic gradiometry by better characterizing the rotational component of the seismic wavefield, but has remained challenging due to the limited development of portable, low-noise rotational sensors. Here, we test Applied Technology Associate (ATA) Proto-Seismic Magnetohydrodynamic (SMHD) three-component rotational rate sensors at Albuquerque Seismological Laboratory (ASL) for self-noise and sensitivity before deploying them at U.S. Geological Survey (USGS) temporary aftershock station OK38 in Waynoka, Oklahoma. The sensors have low self-noise levels below 2 Hz, making them ideal to record local rotations. From April 11, 2017 to June 6, 2017 we recorded the translational and rotational motions of over 155 earthquakes of ML≥2.0 within 2 degrees of the station. Using the recorded events we compare Peak Ground Velocity (PGV) with Peak Ground Rotation Rate (PG). For example, we measured a maximal PG of 0.00211 radians/s and 0.00186 radians/s for the horizontal components of the two rotational sensors during the Mwr=4.2 event on May 13, 2017 which was 0.5 km from that station. Similarly, our PG for the vertical rotational components were 0.00112 radians/s and 0.00085 radians/s. We also measured Peak Ground Rotations (PGω) as a function of seismic moment, as well as mean vertical Power Spectral Density (PSD) with mean horizontal PSD power levels. We compute apparent phase velocity directly from the rotational data, which may have may improve estimates of local site effects. Finally, by comparing various rotational and translational components we look at potential implications for estimating local event source parameters, which may help in identifying phenomena such as repeating earthquakes by using differences in the rotational components correlation.

  2. Progress in Research on Diurnal and Semidiurnal Earth Rotation Change

    Science.gov (United States)

    Xu, Xueqing

    2015-08-01

    We mainly focus on the progress of research on high frequency changes in the earth rotation. Firstly, we review the development course and main motivating factors of the diurnal and semidiurnal earth rotation change. In recent decades, earth orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including lunar and satellite laser ranging, very long baseline interferometry and the global positioning system. We are able to obtain the Earth Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT1, whose compliance is 90%, and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. Then we comprehensively review the different types of global ocean tidal correction models since the last eighties century, as well as the application research on diurnal and semidiurnal polar motion and UT1, the current ocean tidal correction models have 10% to 20% uncertainty, and need for further refinement.

  3. Net Rotation of the Lithosphere in Mantle Convection Models with Self-consistent Plate Generation

    Science.gov (United States)

    Gerault, M.; Coltice, N.

    2017-12-01

    Lateral variations in the viscosity structure of the lithosphere and the mantle give rise to a discordant motion between the two. In a deep mantle reference frame, this motion is called the net rotation of the lithosphere. Plate motion reconstructions, mantle flow computations, and inferences from seismic anisotropy all indicate some amount of net rotation using different mantle reference frames. While the direction of rotation is somewhat consistent across studies, the predicted amplitudes range from 0.1 deg/Myr to 0.3 deg/Myr at the present-day. How net rotation rates could have differed in the past is also a subject of debate and strong geodynamic arguments are missing from the discussion. This study provides the first net rotation calculations in 3-D spherical mantle convection models with self-consistent plate generation. We run the computations for billions of years of numerical integration. We look into how sensitive the net rotation is to major tectonic events, such as subduction initiation, continental breakup and plate reorganisations, and whether some governing principles from the models could guide plate motion reconstructions. The mantle convection problem is solved with the finite volume code StagYY using a visco-pseudo-plastic rheology. Mantle flow velocities are solely driven by buoyancy forces internal to the system, with free slip upper and lower boundary conditions. We investigate how the yield stress, the mantle viscosity structure and the properties of continents affect the net rotation over time. Models with large lateral viscosity variations from continents predict net rotations that are at least threefold faster than those without continents. Models where continents cover a third of the surface produce net rotation rates that vary from nearly zero to over 0.3 deg/Myr with rapide increase during continental breakup. The pole of rotation appears to migrate along no particular path. For all models, regardless of the yield stress and the

  4. Motion Controllers for Learners to Manipulate and Interact with 3D Objects for Mental Rotation Training

    Science.gov (United States)

    Yeh, Shih-Ching; Wang, Jin-Liang; Wang, Chin-Yeh; Lin, Po-Han; Chen, Gwo-Dong; Rizzo, Albert

    2014-01-01

    Mental rotation is an important spatial processing ability and an important element in intelligence tests. However, the majority of past attempts at training mental rotation have used paper-and-pencil tests or digital images. This study proposes an innovative mental rotation training approach using magnetic motion controllers to allow learners to…

  5. Rotational motion of an artificial satellite perturbed by solar radiation pressure

    International Nuclear Information System (INIS)

    Moraes, R.V. de; Zanardi, M.C.

    1988-01-01

    The motion of a satellite about its center of mass is studied using a semi-analytical method. Torques produced by conservative and non conservative forces are considered. An analytical model is proposed for solar radiation torques. Andoyer variables are used to describe the rotational motion. Analytical equations are used to transform osculating to a mean set of differential equations. Since the mean equations are more slowly varying, a numerical integration using large step size can be performed to obtain the mean state at a later time. (author) [pt

  6. Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary; Wiersma, Rodney D., E-mail: rwiersma@uchicago.edu [Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-06-15

    Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared head position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS.

  7. Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary; Wiersma, Rodney D.

    2015-01-01

    Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared head position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS

  8. 4D rotational x-ray imaging of wrist joint dynamic motion

    International Nuclear Information System (INIS)

    Carelsen, Bart; Bakker, Niels H.; Strackee, Simon D.; Boon, Sjirk N.; Maas, Mario; Sabczynski, Joerg; Grimbergen, Cornelis A.; Streekstra, Geert J.

    2005-01-01

    Current methods for imaging joint motion are limited to either two-dimensional (2D) video fluoroscopy, or to animated motions from a series of static three-dimensional (3D) images. 3D movement patterns can be detected from biplane fluoroscopy images matched with computed tomography images. This involves several x-ray modalities and sophisticated 2D to 3D matching for the complex wrist joint. We present a method for the acquisition of dynamic 3D images of a moving joint. In our method a 3D-rotational x-ray (3D-RX) system is used to image a cyclically moving joint. The cyclic motion is synchronized to the x-ray acquisition to yield multiple sets of projection images, which are reconstructed to a series of time resolved 3D images, i.e., four-dimensional rotational x ray (4D-RX). To investigate the obtained image quality parameters the full width at half maximum (FWHM) of the point spread function (PSF) via the edge spread function and the contrast to noise ratio between air and phantom were determined on reconstructions of a bullet and rod phantom, using 4D-RX as well as stationary 3D-RX images. The CNR in volume reconstructions based on 251 projection images in the static situation and on 41 and 34 projection images of a moving phantom were 6.9, 3.0, and 2.9, respectively. The average FWHM of the PSF of these same images was, respectively, 1.1, 1.7, and 2.2 mm orthogonal to the motion and parallel to direction of motion 0.6, 0.7, and 1.0 mm. The main deterioration of 4D-RX images compared to 3D-RX images is due to the low number of projection images used and not to the motion of the object. Using 41 projection images seems the best setting for the current system. Experiments on a postmortem wrist show the feasibility of the method for imaging 3D dynamic joint motion. We expect that 4D-RX will pave the way to improved assessment of joint disorders by detection of 3D dynamic motion patterns in joints

  9. Electromagnetic torques in the core and resonant excitation of decadal polar motion

    Science.gov (United States)

    Mound, Jon E.

    2005-02-01

    Motion of the rotation axis of the Earth contains decadal variations with amplitudes on the order of 10 mas. The origin of these decadal polar motions is unknown. A class of rotational normal modes of the core-mantle system termed torsional oscillations are known to affect the length of day (LOD) at decadal periods and have also been suggested as a possible excitation source for the observed decadal polar motion. Torsional oscillations involve relative motion between the outer core and the surrounding solid bodies, producing electromagnetic torques at the inner-core boundary (ICB) and core-mantle boundary (CMB). It has been proposed that the ICB torque can explain the excitation of the approximately 30-yr-period polar motion termed the Markowitz wobble. This paper uses the results of a torsional oscillation model to calculate the torques generated at Markowitz and other decadal periods and finds, in contrast to previous results, that electromagnetic torques at the ICB can not explain the observed polar motion.

  10. Rotational and Translational Components of Motion Parallax: Observers' Sensitivity and Implications for Three-Dimensional Computer Graphics

    Science.gov (United States)

    Kaiser, Mary K.; Montegut, Michael J.; Proffitt, Dennis R.

    1995-01-01

    The motion of objects during motion parallax can be decomposed into 2 observer-relative components: translation and rotation. The depth ratio of objects in the visual field is specified by the inverse ratio of their angular displacement (from translation) or equivalently by the inverse ratio of their rotations. Despite the equal mathematical status of these 2 information sources, it was predicted that observers would be far more sensitive to the translational than rotational component. Such a differential sensitivity is implicitly assumed by the computer graphics technique billboarding, in which 3-dimensional (3-D) objects are drawn as planar forms (i.e., billboards) maintained normal to the line of sight. In 3 experiments, observers were found to be consistently less sensitive to rotational anomalies. The implications of these findings for kinetic depth effect displays and billboarding techniques are discussed.

  11. Random forcing of geostrophic motion in rotating stratified turbulence

    Science.gov (United States)

    Waite, Michael L.

    2017-12-01

    Random forcing of geostrophic motion is a common approach in idealized simulations of rotating stratified turbulence. Such forcing represents the injection of energy into large-scale balanced motion, and the resulting breakdown of quasi-geostrophic turbulence into inertia-gravity waves and stratified turbulence can shed light on the turbulent cascade processes of the atmospheric mesoscale. White noise forcing is commonly employed, which excites all frequencies equally, including frequencies much higher than the natural frequencies of large-scale vortices. In this paper, the effects of these high frequencies in the forcing are investigated. Geostrophic motion is randomly forced with red noise over a range of decorrelation time scales τ, from a few time steps to twice the large-scale vortex time scale. It is found that short τ (i.e., nearly white noise) results in about 46% more gravity wave energy than longer τ, despite the fact that waves are not directly forced. We argue that this effect is due to wave-vortex interactions, through which the high frequencies in the forcing are able to excite waves at their natural frequencies. It is concluded that white noise forcing should be avoided, even if it is only applied to the geostrophic motion, when a careful investigation of spontaneous wave generation is needed.

  12. Effects of asymptomatic rotator cuff pathology on in vivo shoulder motion and clinical outcomes.

    Science.gov (United States)

    Baumer, Timothy G; Dischler, Jack; Mende, Veronica; Zauel, Roger; van Holsbeeck, Marnix; Siegal, Daniel S; Divine, George; Moutzouros, Vasilios; Bey, Michael J

    2017-06-01

    The incidence of asymptomatic rotator cuff tears has been reported to range from 15% to 39%, but the influence of asymptomatic rotator cuff pathology on shoulder function is not well understood. This study assessed the effects of asymptomatic rotator cuff pathology on shoulder kinematics, strength, and patient-reported outcomes. A clinical ultrasound examination was performed in 46 asymptomatic volunteers (age: 60.3 ± 7.5 years) with normal shoulder function to document the condition of their rotator cuff. The ultrasound imaging identified the participants as healthy (n = 14) or pathologic (n = 32). Shoulder motion was measured with a biplane x-ray imaging system, strength was assessed with a Biodex (Biodex Medical Systems, Inc., Shirley, NY, USA), and patient-reported outcomes were assessed using the Western Ontario Rotator Cuff Index and visual analog scale pain scores. Compared with healthy volunteers, those with rotator cuff pathology had significantly less abduction (P = .050) and elevation (P = .041) strength, their humerus was positioned more inferiorly on the glenoid (P = .018), and the glenohumeral contact path length was longer (P = .007). No significant differences were detected in the Western Ontario Rotator Cuff Index, visual analog scale, range of motion, or acromiohumeral distance. The differences observed between the healthy volunteers and those with asymptomatic rotator cuff pathology lend insight into the changes in joint mechanics, shoulder strength, and conventional clinical outcomes associated with the early stages of rotator cuff pathology. Furthermore, these findings suggest a plausible mechanical progression of kinematic and strength changes associated with the development of rotator cuff pathology. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations

    Directory of Open Access Journals (Sweden)

    Harman Melinda K

    2012-10-01

    Full Text Available Abstract Background Clinical consequences of alignment errors in total knee replacement (TKR have led to the rigorous evaluation of surgical alignment techniques. Rotational alignment in the transverse plane has proven particularly problematic, with errors due to component malalignment relative to bone anatomic landmarks and an overall mismatch between the femoral and tibial components’ relative positions. Ranges of nominal rotational alignment are not well defined, especially for the tibial component and for relative rotational mismatch, and some studies advocate the use of mobile-bearing TKR to accommodate the resulting small rotation errors. However, the relationships between prosthesis rotational alignment and mobile-bearing polyethylene insert motion are poorly understood. This prospective, in vivo study evaluates whether component malalignment and mismatch affect axial rotation motions during passive knee flexion after TKR. Methods Eighty patients were implanted with mobile-bearing TKR. Rotational alignment of the femoral and tibial components was measured from postoperative CT scans. All TKR were categorized into nominal or outlier groups based on defined norms for surgical rotational alignment relative to bone anatomic landmarks and relative rotational mismatch between the femoral and tibial components. Axial rotation motion of the femoral, tibial and polyethylene bearing components was measured from fluoroscopic images acquired during passive knee flexion. Results Axial rotation motion was generally accomplished in two phases, dominated by polyethylene bearing rotation on the tibial component in early to mid-flexion and then femoral component rotation on the polyethylene articular surface in later flexion. Opposite rotations of the femur-bearing and bearing-baseplate articulations were evident at flexion greater than 80°. Knees with outlier alignment had lower magnitudes of axial rotation and distinct transitions from external to

  14. The influence of large-amplitude librational motion on the hydrogen bond energy for alcohol–water complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, J.; Larsen, René Wugt

    2015-01-01

    is a superior hydrogen bond acceptor. The class of large-amplitude donor OH librational motion is shown to account for up to 5.1 kJ mol-1 of the destabilizing change of vibrational zero-point energy upon intermolecular OH...O hydrogen bond formation. The experimental findings are supported by complementary...

  15. Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions

    Science.gov (United States)

    Chen, Liqiang; Wang, Jianjun; Han, Qinkai; Chu, Fulei

    2017-09-01

    Rotor systems carried in transportation system or under seismic excitations are considered to have a moving base. To study the dynamic behavior of flexible rotor systems subjected to time-variable base motions, a general model is developed based on finite element method and Lagrange's equation. Two groups of Euler angles are defined to describe the rotation of the rotor with respect to the base and that of the base with respect to the ground. It is found that the base rotations would cause nonlinearities in the model. To verify the proposed model, a novel test rig which could simulate the base angular-movement is designed. Dynamic experiments on a flexible rotor-bearing system with base angular motions are carried out. Based upon these, numerical simulations are conducted to further study the dynamic response of the flexible rotor under harmonic angular base motions. The effects of base angular amplitude, rotating speed and base frequency on response behaviors are discussed by means of FFT, waterfall, frequency response curve and orbits of the rotor. The FFT and waterfall plots of the disk horizontal and vertical vibrations are marked with multiplications of the base frequency and sum and difference tones of the rotating frequency and the base frequency. Their amplitudes will increase remarkably when they meet the whirling frequencies of the rotor system.

  16. CHAOTIC MOTION OF CHARGED PARTICLES IN AN ELECTROMAGNETIC FIELD SURROUNDING A ROTATING BLACK HOLE

    International Nuclear Information System (INIS)

    Takahashi, Masaaki; Koyama, Hiroko

    2009-01-01

    The observational data from some black hole candidates suggest the importance of electromagnetic fields in the vicinity of a black hole. Highly magnetized disk accretion may play an importance rule, and large-scale magnetic field may be formed above the disk surface. Then, we expect that the nature of the black hole spacetime would be revealed by magnetic phenomena near the black hole. We will start investigating the motion of a charged test particle which depends on the initial parameter setting in the black hole dipole magnetic field, which is a test field on the Kerr spacetime. Particularly, we study the spin effects of a rotating black hole on the motion of the charged test particle trapped in magnetic field lines. We make detailed analysis for the particle's trajectories by using the Poincare map method, and show the chaotic properties that depend on the black hole spin. We find that the dragging effects of the spacetime by a rotating black hole weaken the chaotic properties and generate regular trajectories for some sets of initial parameters, while the chaotic properties dominate on the trajectories for slowly rotating black hole cases. The dragging effects can generate the fourth adiabatic invariant on the particle motion approximately.

  17. Effects of Huge Earthquakes on Earth Rotation and the length of Day

    Directory of Open Access Journals (Sweden)

    Changyi Xu

    2013-01-01

    Full Text Available We calculated the co-seismic Earth rotation changes for several typical great earthquakes since 1960 based on Dahlen¡¦s analytical expression of Earth inertia moment change, the excitation functions of polar motion and, variation in the length of a day (ΔLOD. Then, we derived a mathematical relation between polar motion and earthquake parameters, to prove that the amplitude of polar motion is independent of longitude. Because the analytical expression of Dahlen¡¦s theory is useful to theoretically estimate rotation changes by earthquakes having different seismic parameters, we show results for polar motion and ΔLOD for various types of earthquakes in a comprehensive manner. The modeled results show that the seismic effect on the Earth¡¦s rotation decreases gradually with increased latitude if other parameters are unchanged. The Earth¡¦s rotational change is symmetrical for a 45° dip angle and the maximum changes appear at the equator and poles. Earthquakes at a medium dip angle and low latitudes produce large rotation changes. As an example, we calculate the polar motion and ΔLOD caused by the 2011 Tohoku-Oki Earthquake using two different fault models. Results show that a fine slip fault model is useful to compute co-seismic Earth rotation change. The obtained results indicate Dahlen¡¦s method gives good approximations for computation of co-seismic rotation changes, but there are some differences if one considers detailed fault slip distributions. Finally we analyze and discuss the co-seismic Earth rotation change signal using GRACE data, showing that such a signal is hard to be detected at present, but it might be detected under some conditions. Numerical results of this study will serve as a good indicator to check if satellite observations such as GRACE can detect a seismic rotation change when a great earthquake occur.

  18. High-resolution simulations of unstable cylindrical gravity currents undergoing wandering and splitting motions in a rotating system

    Science.gov (United States)

    Dai, Albert; Wu, Ching-Sen

    2018-02-01

    High-resolution simulations of unstable cylindrical gravity currents when wandering and splitting motions occur in a rotating system are reported. In this study, our attention is focused on the situation of unstable rotating cylindrical gravity currents when the ratio of Coriolis to inertia forces is larger, namely, 0.5 ≤ C ≤ 2.0, in comparison to the stable ones when C ≤ 0.3 as investigated previously by the authors. The simulations reproduce the major features of the unstable rotating cylindrical gravity currents observed in the laboratory, i.e., vortex-wandering or vortex-splitting following the contraction-relaxation motion, and good agreement is found when compared with the experimental results on the outrush radius of the advancing front and on the number of bulges. Furthermore, the simulations provide energy budget information which could not be attained in the laboratory. After the heavy fluid is released, the heavy fluid collapses and a contraction-relaxation motion is at work for approximately 2-3 revolutions of the system. During the contraction-relaxation motion of the heavy fluid, the unstable rotating cylindrical gravity currents behave similar to the stable ones. Towards the end of the contraction-relaxation motion, the dissipation rate in the system reaches a local minimum and a quasi-geostrophic equilibrium state is reached. After the quasi-geostrophic equilibrium state, vortex-wandering or vortex-splitting may occur depending on the ratio of Coriolis to inertia forces. The vortex-splitting process begins with non-axisymmetric bulges and, as the bulges grow, the kinetic energy increases at the expense of decreasing potential energy in the system. The completion of vortex-splitting is accompanied by a local maximum of dissipation rate and a local maximum of kinetic energy in the system. A striking feature of the unstable rotating cylindrical gravity currents is the persistent upwelling and downwelling motions, which are observed for both the

  19. Cross polarization with phase and amplitude modulation of radio frequency fields in NMR-experiments with sample rotation at magic angle

    International Nuclear Information System (INIS)

    Dvinskij, S.V.; Chizhik, V.I.

    2006-01-01

    One analyzes cross polarization of nuclei within a rotating system of coordinates as applied to the NMR-experiments with a specimen rotation under the magic angle. One worded a concept of simultaneous phase and amplitude modulation according to which the Hamiltonian form of the restored dipole interaction persisted if inversion of difference of radiofrequency field amplitudes occurred simultaneously with phase inversion. One presents a theoretical substantiation in terms of the average Hamiltonian theory. The concept is demonstrated both experimentally and by means of numerical analysis for a number of special cases. Phase periodic inversion in cross polarized experiments is shown to result into practically important advantage of suppression of interactions of chemical shift and influence of effects of coarse adjustment of radiofrequency field parameters [ru

  20. An adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems

    International Nuclear Information System (INIS)

    Baranger, M.; Veneroni, M.

    1977-11-01

    It is shown how to derive the parameters of a phenomenological collective model from a microscopic theory. The microscopic theory is Hartree-Fock, and one starts from the time-dependent Hartree-Fock equation. To this, the adiabatic approximation is added, and the energy in powers of an adiabatic parameter is expanded, which results in a collective kinetic energy quadratic in the velocities, with coefficients depending on the coordinates, as in the phenomenological models. The adiabatic equations of motion are derived in different ways and their analogy with classical mechanics is stressed. The role of the adiabatic hypothesis and its range of validity, are analyzed in detail. It assumes slow motion, but not small amplitude, and is therefore suitable for large-amplitude collective motion. The RPA is obtained as the limiting case where the amplitude is also small. The translational mass is correctly given and the moment of inertia under rotation is that of Thouless and Valatin

  1. Pros and cons of rotating ground motion records to fault-normal/parallel directions for response history analysis of buildings

    Science.gov (United States)

    Kalkan, Erol; Kwong, Neal S.

    2014-01-01

    According to the regulatory building codes in the United States (e.g., 2010 California Building Code), at least two horizontal ground motion components are required for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHAs should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here, for the first time, using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak values of engineering demand parameters (EDPs) were computed for rotation angles ranging from 0 through 180° to quantify the difference between peak values of EDPs over all rotation angles and those due to FN/FP direction rotated motions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  2. Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars

    International Nuclear Information System (INIS)

    Schenk, A.K.; Arras, P.; Flanagan, E.E.; Teukolsky, S.A.; Wasserman, I.

    2002-01-01

    We develop the formalism required to study the nonlinear interaction of modes in rotating Newtonian stars, assuming that the mode amplitudes are only mildly nonlinear. The formalism is simpler than previous treatments of mode-mode interactions for spherical stars, and simplifies and corrects previous treatments for rotating stars. At linear order, we elucidate and extend slightly a formalism due to Schutz, show how to decompose a general motion of a rotating star into a sum over modes, and obtain uncoupled equations of motion for the mode amplitudes under the influence of an external force. Nonlinear effects are added perturbatively via three-mode couplings, which suffices for moderate amplitude modal excitations; the formalism is easy to extend to higher order couplings. We describe a new, efficient way to compute the modal coupling coefficients, to zeroth order in the stellar rotation rate, using spin-weighted spherical harmonics. The formalism is general enough to allow computation of the initial trends in the evolution of the spin frequency and differential rotation of the background star. We apply this formalism to derive some properties of the coupling coefficients relevant to the nonlinear interactions of unstable r modes in neutron stars, postponing numerical integrations of the coupled equations of motion to a later paper. First, we clarify some aspects of the expansion in stellar rotation frequency Ω that is often used to compute approximate mode functions. We show that, in zero-buoyancy stars, the rotational modes (those modes whose frequencies vanish as Ω→0) are orthogonal to zeroth order in Ω. From an astrophysical viewpoint, the most interesting result of this paper is that many couplings of r modes to other rotational modes are small: either they vanish altogether because of various selection rules, or they vanish to lowest order in Ω or in compressibility. In particular, in zero-buoyancy stars, the coupling of three r modes is forbidden

  3. Gravitational torque on the inner core and decadal polar motion

    Science.gov (United States)

    Dumberry, Mathieu

    2008-03-01

    A decadal polar motion with an amplitude of approximately 25 milliarcsecs (mas) is observed over the last century, a motion known as the Markowitz wobble. The origin of this motion remains unknown. In this paper, we investigate the possibility that a time-dependent axial misalignment between the density structures of the inner core and mantle can explain this signal. The longitudinal displacement of the inner core density structure leads to a change in the global moment of inertia of the Earth. In addition, as a result of the density misalignment, a gravitational equatorial torque leads to a tilt of the oblate geometric figure of the inner core, causing a further change in the global moment of inertia. To conserve angular momentum, an adjustment of the rotation vector must occur, leading to a polar motion. We develop theoretical expressions for the change in the moment of inertia and the gravitational torque in terms of the angle of longitudinal misalignment and the density structure of the mantle. A model to compute the polar motion in response to time-dependent axial inner core rotations is also presented. We show that the polar motion produced by this mechanism can be polarized about a longitudinal axis and is expected to have decadal periodicities, two general characteristics of the Markowitz wobble. The amplitude of the polar motion depends primarily on the Y12 spherical harmonic component of mantle density, on the longitudinal misalignment between the inner core and mantle, and on the bulk viscosity of the inner core. We establish constraints on the first two of these quantities from considerations of the axial component of this gravitational torque and from observed changes in length of day. These constraints suggest that the maximum polar motion from this mechanism is smaller than 1 mas, and too small to explain the Markowitz wobble.

  4. Motion of a Rigid Body Supported at One Point by a Rotating Arm

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Stoen

    1993-01-01

    Full Text Available This article details a scheme for evaluating the stability of motions of a system consisting of a rigid body connected at one point to a rotating arm. The nonlinear equations of motion for the system are formulated, and a method for finding exact solutions representing motions that resemble a state of rest is presented. The equations are then linearized and roots of the eigensystem are classified and used to construct stability diagrams that facilitate the assessment of effects of varying the body's mass properties and system geometry, changing the position of the attachment joint, and adding energy dissipation in the joint.

  5. Velocity-dependent changes of rotational axes in the non-visual control of unconstrained 3D arm motions.

    Science.gov (United States)

    Isableu, B; Rezzoug, N; Mallet, G; Bernardin, D; Gorce, P; Pagano, C C

    2009-12-29

    We examined the roles of inertial (e(3)), shoulder-centre of mass (SH-CM) and shoulder-elbow articular (SH-EL) rotation axes in the non-visual control of unconstrained 3D arm rotations. Subjects rotated the arm in elbow configurations that yielded either a constant or variable separation between these axes. We hypothesized that increasing the motion frequency and the task complexity would result in the limbs' rotational axis to correspond to e(3) in order to minimize rotational resistances. Results showed two velocity-dependent profiles wherein the rotation axis coincided with the SH-EL axis for S and I velocities and then in the F velocity shifted to either a SH-CM/e(3) trade-off axis for one profile, or to no preferential axis for the other. A third profile was velocity-independent, with the SH-CM/e(3) trade-off axis being adopted. Our results are the first to provide evidence that the rotational axis of a multi-articulated limb may change from a geometrical axis of rotation to a mass or inertia based axis as motion frequency increases. These findings are discussed within the framework of the minimum inertia tensor model (MIT), which shows that rotations about e(3) reduce the amount of joint muscle torque that must be produced by employing the interaction torque to assist movement.

  6. Inner core tilt and polar motion

    Science.gov (United States)

    Dumberry, Mathieu; Bloxham, Jeremy

    2002-11-01

    A tilted inner core permits exchange of angular momentum between the core and the mantle through gravitational and pressure torques and, as a result, changes in the direction of Earth's axis of rotation with respect to the mantle. We have developed a model to calculate the amplitude of the polar motion that results from an equatorial torque at the inner core boundary which tilts the inner core out of alignment with the mantle. We specifically address the issue of the role of the inner core tilt in the decade polar motion known as the Markowitz wobble. We show that a decade polar motion of the same amplitude as the observed Markowitz wobble requires a torque of 1020 N m which tilts the inner core by 0.07 degrees. This result critically depends on the viscosity of the inner core; for a viscosity less than 5 × 1017 Pa s, larger torques are required. We investigate the possibility that a torque of 1020 N m with decadal periodicity can be produced by electromagnetic coupling between the inner core and torsional oscillations of the flow in the outer core. We demonstrate that a radial magnetic field at the inner core boundary of 3 to 4 mT is required to obtain a torque of such amplitude. The resulting polar motion is eccentric and polarized, in agreement with the observations. Our model suggests that equatorial torques at the inner core boundary might also excite the Chandler wobble, provided there exists a physical mechanism that can generate a large torque at a 14 month period.

  7. Three-dimensional organization of vestibular related eye movements to rotational motion in pigeons

    Science.gov (United States)

    Dickman, J. D.; Beyer, M.; Hess, B. J.

    2000-01-01

    During rotational motions, compensatory eye movement adjustments must continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined. Rotations about different head axes produced horizontal, vertical, and torsional eye movements, whose component magnitude was dependent upon the cosine of the stimulus axis relative to the animal's visual axis. Thus, the three-dimensional organization of the VOR in pigeons appears to be compensatory for any direction of head rotation. Frequency responses of the horizontal, vertical, and torsional slow phase components exhibited high pass filter properties with dominant time constants of approximately 3 s.

  8. Measurements of the spin rotation parameter R in high energy elastic scattering and helicity amplitudes at Serpukhov energies

    International Nuclear Information System (INIS)

    Pierrard, J.; Bruneton, C.; Bystricky, J.; Cozzika, G.; Deregel, J.; Ducros, Y.; Gaidot, A.; Khantine-Langlois, F.; Lehar, F.; Lesquen, A. de; Merlo, J.P.; Miyashita, S.; Movchet, J.; Raoul, J.C.; Van Rossum, L.; Kanavets, V.P.

    1975-01-01

    The spin rotation parameter R in pp and π + p elastic scattering at 45GeV/c has been measured at the Serpukhov accelerator, for /t/ ranging from 0.2 to 0.5(GeV/c) 2 . The results are presented, together with previous R measurements at 3.8, 6, 16 and 40GeV/c, and are compared with the predictions of Regge pole models. The equality of the values for R in proton-proton and pion-proton scattering, within the experimental errors, is a test of factorization of the residues. An s-channel helicity amplitude analysis for pion-nucleon scattering at 40GeV/c is made using all available data. Significant results are obtained for the non flip amplitude in isoscalar exchange and for flip amplitudes on both isovector and isoscalar exchanges. The helicity flip in isoscalar exchange is non negligible. The energy dependence of this amplitude, at 6, 16 and 40GeV/c, is compared with predictions of Regge pole models [fr

  9. Rotation driven translational diffusion of polyatomic ions in water: A novel mechanism for breakdown of Stokes-Einstein relation

    Science.gov (United States)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2017-04-01

    While most of the existing theoretical and simulation studies have focused on simple, spherical, halide and alkali ions, many chemically, biologically, and industrially relevant electrolytes involve complex non-spherical polyatomic ions like nitrate, chlorate, and sulfate to name only a few. Interestingly, some polyatomic ions in spite of being larger in size show anomalously high diffusivity and therefore cause a breakdown of the venerable Stokes-Einstein (S-E) relation between the size and diffusivity. Here we report a detailed analysis of the dynamics of anions in aqueous potassium nitrate (KNO3) and aqueous potassium acetate (CH3COOK) solutions. The two ions, nitrate (-NO3) and acetate (CH3-CO2 ), with their similar size show a large difference in diffusivity values. We present evidence that the translational motion of these polyatomic ions is coupled to the rotational motion of the ion. We show that unlike the acetate ion, nitrate ion with a symmetric charge distribution among all periphery oxygen atoms shows a faster rotational motion with large amplitude rotational jumps which enhances its translational motion due to translational-rotational coupling. By creating a family of modified-charge model systems, we have analysed the rotational motion of asymmetric polyatomic ions and the contribution of it to the translational motion. These model systems help clarifying and establishing the relative contribution of rotational motion in enhancing the diffusivity of the nitrate ion over the value predicted by the S-E relation and also over the other polyatomic ions having asymmetric charge distribution like the acetate ion. In the latter case, reduced rotational motion results in lower diffusivity values than those with symmetric charge distribution. We propose translational-rotational coupling as a general mechanism of the breakdown of the S-E relation in the case of polyatomic ions.

  10. Optimum collective submanifold in resonant cases by the self-consistent collective-coordinate method for large-amplitude collective motion

    International Nuclear Information System (INIS)

    Hashimoto, Y.; Marumori, T.; Sakata, F.

    1987-01-01

    With the purpose of clarifying characteristic difference of the optimum collective submanifolds in nonresonant and resonant cases, we develop an improved method of solving the basic equations of the self-consistent collective-coordinate (SCC) method for large-amplitude collective motion. It is shown that, in the resonant cases, there inevitably arise essential coupling terms which break the maximal-decoupling property of the collective motion, and we have to extend the optimum collective submanifold so as to properly treat the degrees of freedom which bring about the resonances

  11. Rotational Spectrum of the Methyl Salicylate-Water Complex: the Missing Conformer and the Tunneling Motions

    Science.gov (United States)

    Ghosh, Supriya; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2015-06-01

    Methyl salicylate is a naturally occurring organic ester produced by wintergreen and other plants. It is also found in many over-the-counter remedies, such as muscle ache creams. The rotational spectrum of the methyl salicylate monomer was reported previously, where the most stable, dominant conformer was identified. The methyl salicylate-water complex was first studied using fluorescence-detected infrared spectroscopy; only one monohydrate conformer was found in that work. In the present study, we employed both broadband chirped and cavity based Fourier transform microwave spectroscopy to examine the competition between intra- and intermolecular hydrogen-bonding interactions and possible large amplitude motions associated with the methyl group and the water subunit. In contrast to the previous infrared study, two monohydrate conformers were identified, with carbonyl O or hydroxyl O as the hydrogen bond acceptors. Detailed analyses of the observed hyperfine structures will be presented, as well as our efforts to extend the study to larger methyl salicylate hydration clusters. S. Melandri, B. M. Giuliano, A. Maris, L. B. Favero, P. Ottaviani, B. Velino, W. Caminati, J. Phys. Chem. A. 2007, 111, 9076. A. Mitsuzuka, A. Fujii, T. Ebata, N. Mikami, J. Phys. Chem. A 1998, 102, 9779.

  12. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    Science.gov (United States)

    Simonelli, A.; Igel, H.; Wassermann, J.; Belfi, J.; Di Virgilio, A.; Beverini, N.; De Luca, G.; Saccorotti, G.

    2018-05-01

    We present the analysis of rotational and translational ground motions from earthquakes recorded during October/November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozens of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 30 km and 70 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. Under the plane wave approximation we process the data set in order to get an experimental estimation of the events back azimuth. Peak values of rotation rate (PRR) and horizontal acceleration (PGA) are markedly correlated, according to a scaling constant which is consistent with previous measurements from different earthquake sequences. We used a prediction model in use for Italy to calculate the expected PGA at the recording site, obtaining consequently predictions for PRR. Within the modeling uncertainties, predicted rotations are consistent with the observed ones, suggesting the possibility of establishing specific attenuation models for ground rotations, like the scaling of peak velocity and peak acceleration in empirical ground-motion prediction relationships. In a second step, after identifying the direction of the incoming wave-field, we extract phase velocity data using the spectral ratio of the translational and rotational components.. This analysis is performed over time windows associated with the P-coda, S-coda and Lg phase. Results are consistent with independent estimates of shear-wave velocities in the shallow crust of the Central Apennines.

  13. Reconstructing plate-motion changes in the presence of finite-rotations noise.

    Science.gov (United States)

    Iaffaldano, Giampiero; Bodin, Thomas; Sambridge, Malcolm

    2012-01-01

    Understanding lithospheric plate motions is of paramount importance to geodynamicists. Much effort is going into kinematic reconstructions featuring progressively finer temporal resolution. However, the challenge of precisely identifying ocean-floor magnetic lineations, and uncertainties in geomagnetic reversal timescales result in substantial finite-rotations noise. Unless some type of temporal smoothing is applied, the scenario arising at the native temporal resolution is puzzling, as plate motions vary erratically and significantly over short periods (<1 Myr). This undermines our ability to make geodynamic inferences, as the rates at which forces need to be built upon plates to explain these kinematics far exceed the most optimistic estimates. Here we show that the largest kinematic changes reconstructed across the Atlantic, Indian and South Pacific ridges arise from data noise. We overcome this limitation using a trans-dimensional hierarchical Bayesian framework. We find that plate-motion changes occur on timescales no shorter than a few million years, yielding simpler kinematic patterns and more plausible dynamics.

  14. Shoulder Dynamic Control Ratio and Rotation Range of Motion in Female Junior Elite Handball Players and Controls.

    Science.gov (United States)

    van Cingel, Robert; Habets, Bas; Willemsen, Linn; Staal, Bart

    2018-03-01

    To compare glenohumeral range of motion and shoulder rotator muscle strength in healthy female junior elite handball players and controls. Cross-sectional case-control study. Sports medical center. Forty elite female handball players and 30 controls active in nonoverhead sports participated in this study. Passive external rotator (ER), internal rotator (IR), and total range of motion (TROM) of the dominant and nondominant arm were examined with a goniometer. An isokinetic dynamometer was used to evaluate concentric and eccentric rotator muscle strength at 60 and 120 degrees/s with dynamic control ratio (DCR = ERecc:IRcon) as the main outcome parameter. Except for the ER range of motion in the nondominant arm, no significant differences were found between groups for IR, ER of the dominant arm, and the TROM. Within the handball group, the side-to-side difference for IR of the dominant arm was -1.4 degrees. The ER and the TROM of the dominant arm were significantly larger, 6.3 and 4.9 degrees, respectively. For both groups, the DCR values were above 1 and no significant differences were found between the dominant and nondominant arm. The DCR values in the handball group were significantly lower than in the control group. Based on the adopted definitions for muscle imbalance, glenohumeral internal range of motion deficit and TROM deficit our elite female handball players seem not at risk for shoulder injuries. Prospective studies are needed to support the belief that a DCR below 1 places the shoulder at risk for injury.

  15. Vibrational motions in rotating nuclei studied by Coulomb excitations

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)

  16. Relationship between massive chronic rotator cuff tear pattern and loss of active shoulder range of motion.

    Science.gov (United States)

    Collin, Philippe; Matsumura, Noboru; Lädermann, Alexandre; Denard, Patrick J; Walch, Gilles

    2014-08-01

    Management of massive chronic rotator cuff tears remains controversial, with no clearly defined clinical presentation as yet. The purpose of the study was to evaluate the effect of tear size and location on active motion in patients with chronic and massive rotator cuff tears with severe muscle degeneration. One hundred patients with massive rotator cuff tears accompanied by muscle fatty infiltration beyond Goutallier stage 3 were prospectively included in this study. All patients were divided into 5 groups on the basis of tear pattern (supraspinatus, superior subscapularis, inferior subscapularis, infraspinatus, and teres minor). Active range of shoulder motion was assessed in each group and differences were analyzed. Active elevation was significantly decreased in patients with 3 tear patterns involved. Pseudoparalysis was found in 80% of the cases with supraspinatus and complete subscapularis tears and in 45% of the cases with tears involving the supraspinatus, infraspinatus, and superior subscapularis. Loss of active external rotation was related to tears involving the infraspinatus and teres minor; loss of active internal rotation was related to tears of the subscapularis. This study revealed that dysfunction of the entire subscapularis and supraspinatus or 3 rotator cuff muscles is a risk factor for pseudoparalysis. For function to be preserved in patients with massive chronic rotator cuff tears, it may be important to avoid fatty infiltration with anterior extension into the lower subscapularis or involvement of more than 2 rotator cuff muscles. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  17. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gulshani, P., E-mail: matlap@bell.net [NUTECH Services, 3313 Fenwick Crescent, Mississauga, Ontario, L5L 5N1 (Canada)

    2016-07-07

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  18. Damping and non-linearity of a levitating magnet in rotation above a superconductor

    International Nuclear Information System (INIS)

    Druge, J; Jean, C; Laurent, O; Méasson, M-A; Favero, I

    2014-01-01

    We study the dissipation of moving magnets in levitation above a superconductor. The rotation motion is analyzed using optical tracking techniques. It displays a remarkable regularity together with long damping time up to several hours. The magnetic contribution to the damping is investigated in detail by comparing 14 distinct magnetic configurations and points towards amplitude-dependent dissipation mechanisms. The non-linear dynamics of the mechanical rotation motion is also revealed and described with an effective Duffing model. The magnetic mechanical damping is consistent with measured hysteretic cycles M(H) that are discussed within a modified critical state model. The obtained picture of the coupling of levitating magnets to their environment sheds light on their potential as ultra-low dissipation mechanical oscillators for high precision physics. (paper)

  19. Spherical Pendulum Small Oscillations for Slewing Crane Motion

    Directory of Open Access Journals (Sweden)

    Alexander V. Perig

    2014-01-01

    Full Text Available The present paper focuses on the Lagrange mechanics-based description of small oscillations of a spherical pendulum with a uniformly rotating suspension center. The analytical solution of the natural frequencies’ problem has been derived for the case of uniform rotation of a crane boom. The payload paths have been found in the inertial reference frame fixed on earth and in the noninertial reference frame, which is connected with the rotating crane boom. The numerical amplitude-frequency characteristics of the relative payload motion have been found. The mechanical interpretation of the terms in Lagrange equations has been outlined. The analytical expression and numerical estimation for cable tension force have been proposed. The numerical computational results, which correlate very accurately with the experimental observations, have been shown.

  20. SU-E-T-160: Characterization and Monitoring of Linear Accelerator Gantry Radiation Isocenter Motion

    International Nuclear Information System (INIS)

    Letourneau, D; Amin, N; Wang, K; Norrlinger, B; Jaffray, D; McNiven, A

    2015-01-01

    Purpose: To characterize the motion of the radiation isocenter, over time, as a function of gantry rotation for multiple linear accelerators (linacs). Two semi-automated image-based quality control (QC) test workflows were designed to achieve this goal. Methods: The full QC-test workflow for motion characterization consisted of acquiring 16 megavoltage images at 8 gantry angles of a ball-bearing suspended off the end of the couch. Performance constancy was assessed using a shortened QC-test workflow which consisted of imaging a cube phantom placed on the couch (5 images at 4 gantry angles). Both workflows use an image processing algorithm to determine the field center and phantom position on each image and computed radiation isocenter motion as a function of gantry angle. Motion was characterized for 9 linacs of same model and performance monitored for 2 months on 3 linacs. Results: The maximum isocenter motion determined with the full-workflow for 9 linacs was within 0.38–0.79 mm. The shortened-workflow usually agreed within 0.1 mm with the full-workflow and the time required for these methods was about 4 and 15 min, respectively. For all linacs, the isocenter motion perpendicular to the gantry rotation plane followed a consistent pattern with maximum amplitude of 0.36–0.59 mm. In the gantry rotation plane, the variation among linacs was higher and the beam axis described a circle of up to 0.6 mm radius around the gantry axis of rotation (2 linacs). The radiation isocenter motion was stable as a function of time for the monitored linacs and was within ±0.1 mm of the average. Conclusion: Radiation isocenter motion parallel and perpendicular to the gantry rotation plane was characterized. In the gantry rotation plane, beam spot positioning adjustment might be used to reduce the observed radiation isocenter motion. A shortened-workflow was designed and enables performance monitoring over time

  1. Rotating Hele-Shaw cell with a time-dependent angular velocity

    Science.gov (United States)

    Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.

    2017-12-01

    Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.

  2. Giant resonances in hot rotating nuclei

    International Nuclear Information System (INIS)

    Ring, P.

    1992-01-01

    Present theoretical descriptions of the giant resonances in hot rotating nuclei are reviewed. Mean field theory is used as a basis for the description of the hot compound states. Starting from the static solution at finite temperature and with fixed angular momentum small amplitude collective vibrations are calculated in the frame work of finite temperature random phase approximation for quasi-particles. The effect of pairing at low temperatures as well as the effect of rotations on the position of the resonance maxima are investigated. Microscopic and phenomenological descriptions of the damping mechanisms are reviewed. In particular it turns out that fluctuations play an important role in understanding of the behaviour of the width as a function of the temperature. Motional narrowing is critically discussed. (author). 99 refs., 5 figs

  3. Experimental study on flow past a rotationally oscillating cylinder

    Science.gov (United States)

    Gao, Yang-yang; Yin, Chang-shan; Yang, Kang; Zhao, Xi-zeng; Tan, Soon Keat

    2017-08-01

    A series of experiments was carried out to study the flow behaviour behind a rotationally oscillating cylinder at a low Reynolds number (Re=300) placed in a recirculation water channel. A stepper motor was used to rotate the cylinder clockwise- and- counterclockwise about its longitudinal axis at selected frequencies. The particle image velocimetry (PIV) technique was used to capture the flow field behind a rotationally oscillating cylinder. Instantaneous and timeaveraged flow fields such as the vorticity contours, streamline topologies and velocity distributions were analyzed. The effects of four rotation angle and frequency ratios F r ( F r= f n/ f v, the ratio of the forcing frequency f n to the natural vortex shedding frequency f v) on the wake in the lee of a rotationally oscillating cylinder were also examined. The significant wake modification was observed when the cylinder undergoes clockwise-and-counterclockwise motion with amplitude of π, especially in the range of 0.6≤ F r≤1.0.

  4. On rotational solutions for elliptically excited pendulum

    International Nuclear Information System (INIS)

    Belyakov, Anton O.

    2011-01-01

    The author considers the planar rotational motion of the mathematical pendulum with its pivot oscillating both vertically and horizontally, so the trajectory of the pivot is an ellipse close to a circle. The analysis is based on the exact rotational solutions in the case of circular pivot trajectory and zero gravity. The conditions for existence and stability of such solutions are derived. Assuming that the amplitudes of excitations are not small while the pivot trajectory has small ellipticity the approximate solutions are found both for high and small linear dampings. Comparison between approximate and numerical solutions is made for different values of the damping parameter. -- Highlights: → We study rotations of the mathematical pendulum when its pivot moves along an ellipse. → There are stable exact solutions for a circular pivot trajectory and zero gravity. → Asymptotic solutions are found for an elliptical pivot trajectory

  5. Observing atmospheric tides in Earth rotation parameters with VLBI

    Science.gov (United States)

    Girdiuk, Anastasiia; Böhm, Johannes; Schindelegger, Michael

    2015-04-01

    In this study, we assess the contribution of diurnal (S1) and semi-diurnal (S2) atmospheric tides to variations in Earth rotation by analyzing Very Long Baseline Interferometry (VLBI) observations. Particular emphasis is placed on the dependency of S1 and S2 estimates on varying settings in the a priori delay model. We use hourly Earth rotation parameters (ERP) of polar motion and UT1 as determined with the Vienna VLBI Software (VieVS) from 25 years of VLBI observations and we adjust diurnal and semi-diurnal amplitudes to the hourly ERP estimates after disregarding the effect of high-frequency ocean tides. Prograde and retrograde polar motion coefficients are obtained for several solutions differing in processing strategies (with/without thermal deformation, time span of observations, choice of a priori ERP model and celestial pole offsets) and we compare the corresponding harmonics with those derived from atmospheric and non-tidal oceanic angular momentum estimates.

  6. Exciting a rotating mass on a spring without change to its rotation rate

    International Nuclear Information System (INIS)

    Kenyon, Kern E.

    2001-01-01

    An exact mathematical solution, in terms of elementary functions, is presented for the two-dimensional problem of a mass rotating on a linear spring. The two governing equations in polar coordinates are nonlinear, coupled ordinary differential equations, but they can be solved analytically in sequence. In general, the orbit of the mass is an ellipse with the fixed end of the spring located at the centre of the ellipse. The orbital frequency is identical to the natural frequency of the spring and it is independent of the amplitude of the motion (independent of the major and minor axes of the ellipse). Based on the solution the following claim is made. No matter how the mass is perturbed, within its plane of motion, the orbital frequency will remain constant. The disturbance can be infinitesimal or finite and it can cause either the total energy or the angular momentum of the system or both to increase or decrease but the orbital period will not change. It follows from the fixed end of the spring being at the ellipse's centre that the radial vibration of the mass has twice the natural frequency of the spring; i.e. two maxima and minima in one orbital period, which is not possible unless there is rotation. (author)

  7. Rotational instability in a linear theta pinch

    International Nuclear Information System (INIS)

    Ekdahl, C.; Bartsch, R.R.; Commisso, R.J.; Gribble, R.F.; McKenna, K.F.; Miller, G.; Siemon, R.E.

    1980-01-01

    The m=1 ''wobble'' instability of the plasma column in a 5-m linear theta pinch has been studied using an axial array of orthogonally viewing position detectors to resolve the wavelength and frequency of the column motion. The experimental results are compared with recent theoretical predictions that include finite Larmor orbit effects. The frequency and wavelength characteristics at saturation agree with the predicted dispersion relation for a plasma rotating faster than the diamagnetic drift speed. Measurements of the magnetic fields at the ends of the pinch establish the existence of currents flowing in such a way that they short out the radial electric fields in the plasma column. The magnitude of rotation, the observed delay in the onset of m=1 motion, and the magnitude of end-shorting currents can all be understood in terms of the torsional Alfven waves that communicate to the central plasma column the information that the ends have been shorted. The same waves are responsible for the torque which rotates the plasma and leads to the observed m=1 instability. Observations of the plasma in the presence of solid end plugs indicate a stabilization of high-m number modes and a reduction of the m=1 amplitude

  8. Event-based motion correction for PET transmission measurements with a rotating point source

    International Nuclear Information System (INIS)

    Zhou, Victor W; Kyme, Andre Z; Meikle, Steven R; Fulton, Roger

    2011-01-01

    Accurate attenuation correction is important for quantitative positron emission tomography (PET) studies. When performing transmission measurements using an external rotating radioactive source, object motion during the transmission scan can distort the attenuation correction factors computed as the ratio of the blank to transmission counts, and cause errors and artefacts in reconstructed PET images. In this paper we report a compensation method for rigid body motion during PET transmission measurements, in which list mode transmission data are motion corrected event-by-event, based on known motion, to ensure that all events which traverse the same path through the object are recorded on a common line of response (LOR). As a result, the motion-corrected transmission LOR may record a combination of events originally detected on different LORs. To ensure that the corresponding blank LOR records events from the same combination of contributing LORs, the list mode blank data are spatially transformed event-by-event based on the same motion information. The number of counts recorded on the resulting blank LOR is then equivalent to the number of counts that would have been recorded on the corresponding motion-corrected transmission LOR in the absence of any attenuating object. The proposed method has been verified in phantom studies with both stepwise movements and continuous motion. We found that attenuation maps derived from motion-corrected transmission and blank data agree well with those of the stationary phantom and are significantly better than uncorrected attenuation data.

  9. Rotation sequence to report humerothoracic kinematics during 3D motion involving large horizontal component: application to the tennis forehand drive.

    Science.gov (United States)

    Creveaux, Thomas; Sevrez, Violaine; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle

    2018-03-01

    The aim of this study was to examine the respective aptitudes of three rotation sequences (Y t X f 'Y h '', Z t X f 'Y h '', and X t Z f 'Y h '') to effectively describe the orientation of the humerus relative to the thorax during a movement involving a large horizontal abduction/adduction component: the tennis forehand drive. An optoelectronic system was used to record the movements of eight elite male players, each performing ten forehand drives. The occurrences of gimbal lock, phase angle discontinuity and incoherency in the time course of the three angles defining humerothoracic rotation were examined for each rotation sequence. Our results demonstrated that no single sequence effectively describes humerothoracic motion without discontinuities throughout the forehand motion. The humerothoracic joint angles can nevertheless be described without singularities when considering the backswing/forward-swing and the follow-through phases separately. Our findings stress that the sequence choice may have implications for the report and interpretation of 3D joint kinematics during large shoulder range of motion. Consequently, the use of Euler/Cardan angles to represent 3D orientation of the humerothoracic joint in sport tasks requires the evaluation of the rotation sequence regarding singularity occurrence before analysing the kinematic data, especially when the task involves a large shoulder range of motion in the horizontal plane.

  10. The effect of ocean tides on the earth's rotation as predicted by the results of an ocean tide model

    Science.gov (United States)

    Gross, Richard S.

    1993-01-01

    The published ocean tidal angular momentum results of Seiler (1991) are used to predict the effects of the most important semidiurnal, diurnal, and long period ocean tides on the earth's rotation. The separate, as well as combined, effects of ocean tidal currents and sea level height changes on the length-of-day, UT1, and polar motion are computed. The predicted polar motion results reported here account for the presence of the free core nutation and are given in terms of the motion of the celestial ephemeris pole so that they can be compared directly to the results of observations. Outside the retrograde diurnal tidal band, the summed effect of the semidiurnal and diurnal ocean tides studied here predict peak-to-peak polar motion amplitudes as large as 2 mas. Within the retrograde diurnal tidal band, the resonant enhancement caused by the free core nutation leads to predicted polar motion amplitudes as large as 9 mas.

  11. Motion-induced dose artifacts in helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bryan; Chen, Jeff; Battista, Jerry [London Regional Cancer Program, London Health Sciences Centre, London, ON (Canada); Kron, Tomas [Peter MacCallum Cancer Center, Melbourne (Australia)], E-mail: bryan.kim@lhsc.on.ca

    2009-10-07

    Tumor motion is a particular concern for a complex treatment modality such as helical tomotherapy, where couch position, gantry rotation and MLC leaf opening all change with time. In the present study, we have investigated the impact of tumor motion for helical tomotherapy, which could result in three distinct motion-induced dose artifacts, namely (1) dose rounding, (2) dose rippling and (3) IMRT leaf opening asynchronization effect. Dose rounding and dose rippling effects have been previously described, while the IMRT leaf opening asynchronization effect is a newly discovered motion-induced dose artifact. Dose rounding is the penumbral widening of a delivered dose distribution near the edges of a target volume along the direction of tumor motion. Dose rippling is a series of periodic dose peaks and valleys observed within the target region along the direction of couch motion, due to an asynchronous interplay between the couch motion and the longitudinal component of tumor motion. The IMRT leaf opening asynchronization effect is caused by an asynchronous interplay between the temporal patterns of leaf openings and tumor motion. The characteristics of each dose artifact were investigated individually as functions of target motion amplitude and period for both non-IMRT and IMRT helical tomotherapy cases, through computer simulation modeling and experimental verification. The longitudinal dose profiles generated by the simulation program agreed with the experimental data within {+-}0.5% and {+-}1.5% inside the PTV region for the non-IMRT and IMRT cases, respectively. The dose rounding effect produced a penumbral increase up to 20.5 mm for peak-to-peak target motion amplitudes ranging from 1.0 cm to 5.0 cm. Maximum dose rippling magnitude of 25% was calculated, when the target motion period approached an unusually high value of 10 s. The IMRT leaf opening asynchronization effect produced dose differences ranging from -29% to 7% inside the PTV region. This information

  12. On connection of rotation and internal motion in deformed nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1979-01-01

    In the semiphenomenological nuclear madel (SPNM) the problem of ''overestimate of Coriolis interaction'' is shown to be easily solved. The rotation and internal motion coupling operator H(rot/in) is used. Overdetermination of the operator H(rot/in) has been generalized and extended into schemes of strong and weak coupling. In this case both schemes of coupling are transformed from approximate into precise ones and become applicable for any nuclear deformation. As examples of application of the theory considered are the matrix elements of the E2-transitions and inertia parameters of a 235 U nucleus

  13. Biases in the perception of self-motion during whole-body acceleration and deceleration

    Directory of Open Access Journals (Sweden)

    Luc eTremblay

    2013-12-01

    Full Text Available Several studies have investigated whether vestibular signals can be processed to determine the magnitude of passive body motions. Many of them required subjects to report their perceived displacements offline, i.e. after being submitted to passive displacements. Here, we used a protocol that allowed us to complement these results by asking subjects to report their introspective estimation of their displacement continuously, i.e. during the ongoing body rotation. To this end, participants rotated the handle of a manipulandum around a vertical axis to indicate their perceived change of angular position in space at the same time as they were passively rotated in the dark. The rotation acceleration (Acc and deceleration (Dec lasted either 1.5 s (peak of 60 deg/s2, referred to as being "High" or 3 s (peak of 33 deg/s2, referred to as being "Low". The participants were rotated either counter-clockwise or clockwise, and all combinations of acceleration and deceleration were tested (i.e., AccLow-DecLow; AccLow-DecHigh; AccHigh-DecLow; AccHigh-DecHigh. The participants' perception of body rotation was assessed by computing the gain, i.e. ratio between the amplitude of the perceived rotations (as measured by the rotating manipulandum’s handle and the amplitude of the actual chair rotations. The gain was measured at the end of the rotations, and was also computed separately for the acceleration and deceleration phases. Three salient findings resulted from this experiment: i the gain was much greater during body acceleration than during body deceleration, ii the gain was greater during High compared to Low accelerations and iii the gain measured during the deceleration was influenced by the preceding acceleration (i.e., Low or High. These different effects of the angular stimuli on the perception of body motion can be interpreted in relation to the consequences of body acceleration and deceleration on the vestibular system and on higher-order cognitive

  14. Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles.

    Science.gov (United States)

    Soyka, Florian; Giordano, Paolo Robuffo; Barnett-Cowan, Michael; Bülthoff, Heinrich H

    2012-07-01

    Understanding the dynamics of vestibular perception is important, for example, for improving the realism of motion simulation and virtual reality environments or for diagnosing patients suffering from vestibular problems. Previous research has found a dependence of direction discrimination thresholds for rotational motions on the period length (inverse frequency) of a transient (single cycle) sinusoidal acceleration stimulus. However, self-motion is seldom purely sinusoidal, and up to now, no models have been proposed that take into account non-sinusoidal stimuli for rotational motions. In this work, the influence of both the period length and the specific time course of an inertial stimulus is investigated. Thresholds for three acceleration profile shapes (triangular, sinusoidal, and trapezoidal) were measured for three period lengths (0.3, 1.4, and 6.7 s) in ten participants. A two-alternative forced-choice discrimination task was used where participants had to judge if a yaw rotation around an earth-vertical axis was leftward or rightward. The peak velocity of the stimulus was varied, and the threshold was defined as the stimulus yielding 75 % correct answers. In accordance with previous research, thresholds decreased with shortening period length (from ~2 deg/s for 6.7 s to ~0.8 deg/s for 0.3 s). The peak velocity was the determining factor for discrimination: Different profiles with the same period length have similar velocity thresholds. These measurements were used to fit a novel model based on a description of the firing rate of semi-circular canal neurons. In accordance with previous research, the estimates of the model parameters suggest that velocity storage does not influence perceptual thresholds.

  15. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    International Nuclear Information System (INIS)

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana

    2013-01-01

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and Hα (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare

  16. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  17. Charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion

    Energy Technology Data Exchange (ETDEWEB)

    Rahmi, Kinanti Aldilla, E-mail: kinanti.aldilla@ui.ac.id; Yudiarsah, Efta [Physics Department, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia)

    2016-04-19

    By using tight binding Hamiltonian model, charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion is studied. The DNA chain used is 32 base pairs long poly(dA)-poly(dT) molecule. The molecule is contacted to electrode at both ends. The influence of environment on charge transport in DNA is modeled as variation of backbone disorder. The twisting motion amplitude is taking into account by assuming that the twisting angle distributes following Gaussian distribution function with zero average and standard deviation proportional to square root of temperature and inversely proportional to the twisting motion frequency. The base-pair twisting motion influences both the onsite energy of the bases and electron hopping constant between bases. The charge transport properties are studied by calculating current using Landauer-Buttiker formula from transmission probabilities which is calculated by transfer matrix methods. The result shows that as the backbone disorder increases, the maximum current decreases. By decreasing the twisting motion frequency, the current increases rapidly at low voltage, but the current increases slower at higher voltage. The threshold voltage can increase or decrease with increasing backbone disorder and increasing twisting frequency.

  18. Study of the joining particle rotation in nuclei of 161-167 Er and 235 U

    International Nuclear Information System (INIS)

    Fernandez L, M.

    1996-01-01

    The residual quadrupole pairing and spin-spin interactions among the nucleons, in presence of the rotational motion, lead to additional terms in the particle-rotation coupling which attenuate the effects of the Coriolis interaction. These couplings are determined by using the density matrix formalism, under the consideration of the exact conservation of the nuclear angular moment. Finally the energy levels of the rotational bands and the mixing amplitudes of the BE2 transition probabilities are calculated for some odd deformed nuclei. A very good agreement between the theoretical and experimental energies is obtained. The Coriolis attenuation produced by these interactions shows itself as relevant for explaining the experimental results. (Author)

  19. Shoulder-Rotator Strength, Range of Motion, and Acromiohumeral Distance in Asymptomatic Adolescent Volleyball Attackers.

    Science.gov (United States)

    Harput, Gulcan; Guney, Hande; Toprak, Ugur; Kaya, Tunca; Colakoglu, Fatma Filiz; Baltaci, Gul

    2016-09-01

    Sport-specific adaptations at the glenohumeral joint could occur in adolescent athletes because they start participating in high-performance sports in early childhood. To investigate shoulder-rotator strength, internal-rotation (IR) and external-rotation (ER) range of motion (ROM), and acromiohumeral distance (AHD) in asymptomatic adolescent volleyball attackers to determine if they have risk factors for injury. Cross-sectional study. University laboratory. Thirty-nine adolescent high school-aged volleyball attackers (22 boys, 17 girls; age = 16.0 ± 1.4 years, height = 179.2 ± 9.0 cm, mass = 67.1 ± 10.9 kg, body mass index = 20.7 ± 2.6 kg/m 2 ). Shoulder IR and ER ROM, total-rotation ROM, glenohumeral IR deficit, AHD, and concentric and eccentric strength of the shoulder internal and external rotators were tested bilaterally. External-rotation ROM was greater (t 38 = 4.92, P 18°). We observed greater concentric internal-rotator (t 38 = 2.89, P = .006) and eccentric external-rotator (t 38 = 2.65, P = .01) strength in the dominant than in the nondominant shoulder. The AHD was less in the dominant shoulder (t 38 = -3.60, P volleyball attackers demonstrated decreased IR ROM, total ROM, and AHD and increased ER ROM in their dominant shoulder. Therefore, routine screening of adolescent athletes and designing training programs for hazardous adaptive changes could be important in preventing shoulder injuries.

  20. Design and construction of a planar motion mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Tanasovici, Gilberto [Protemaq Engenharia e Projetos, Santo Andre, SP (Brazil); Fucatu, Carlos H. [Technomar Engenharia Ltda., Sao Paulo, SP (Brazil); Tannuri, Eduardo A. [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecatronica; Umeda, Carlos H. [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2008-07-01

    This paper describes the design and construction of a PMM (Planar Motion Mechanism) towed by the IPT-SP main carriage. The IPT towing tank no. 2 is 220 m length and 6.6 m wide. The PMM provides a forced sway and/or yaw oscillation on a ship or other marine structure scaled model.. The maximum sway amplitude (transversal motion) is {+-}1 m, and the maximum sway velocity is 1.0 m/s, with a maximum carrying load of 1000 N. The maximum yaw velocity (rotation motion) is 36 deg/s. High-precision components were used in the construction, and the final estimated accuracy in the sway axis is 0.02 mm and approximately 0.1 deg for yaw motions. Finite Element Analysis and Structural Optimization techniques were used during the design stage. The PMM structure total mass is less than 1 ton, lighter than similar mechanisms in other institutions. A Man-Machine Interface was developed, and the operator is able to define the period and amplitude of sway and yaw motions, as well as the fade-in and fade-out time. An integral 3-component force load cell is installed in the end of the support axis, which measures the hydrodynamic loads on the captive model at low speed tests. This novel laboratorial facility allows the IPT to execute new kinds of experimental procedures, related to evaluation of hydrodynamic loads acting on ship hulls and offshore structures. (author)

  1. Assessment of shoulder external rotation range-of-motion on throwing athletes: the effects of testing end-range determination (active versus passive).

    Science.gov (United States)

    Ribeiro, A; Pascoal, A

    2015-07-01

    The purpose of this study was to compare the effects of active or passive end-range determination (supine position) for external rotation range of motion (ROM) in overhead throwing athletes and verify if athletes' ROM is similar to non-athletes. Kinematic data from the dominant shoulder of 24 healthy male subjects, divided into two groups (12 athletes and 12 non-athletes) were recorded at end-range external rotation, thoracohumeral and glenohumeral external rotation angles were compared and a 2-way repeated-measures ANOVA was used to calculate the effects of end-range determination (passive versus active) across groups (athlete and non-athlete). A significant main effect (p external end-range angles was observed while the highest end-range determination values were associated with passive motion. No differences were observed between the athletic or non-athletic groups for either thoracohumeral (p = 0.784) or glenohumeral (p = 0.364) motion.

  2. THE CONTRACTION OF OVERLYING CORONAL LOOP AND THE ROTATING MOTION OF A SIGMOID FILAMENT DURING ITS ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Qu, Z. Q.; Xue, Z. K.; Deng, L. H.; Ma, L.; Kong, D. F. [National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China); Pan, G. M. [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China); Liu, J. H. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-06-15

    We present an observation of overlying coronal loop contraction and rotating motion of the sigmoid filament during its eruption on 2012 May 22 observed by the Solar Dynamics Observatory (SDO). Our results show that the twist can be transported into the filament from the lower atmosphere to the higher atmosphere. The successive contraction of the coronal loops was due to a suddenly reduced magnetic pressure underneath the filament, which was caused by the rising of the filament. Before the sigmoid filament eruption, there was a counterclockwise flow in the photosphere at the right feet of the filament and the contraction loops and a convergence flow at the left foot of the filament. The hot and cool materials have inverse motion along the filament before the filament eruption. Moreover, two coronal loops overlying the filament first experienced brightening, expansion, and contraction successively. At the beginning of the rising and rotation of the left part of the filament, the second coronal loop exhibited rapid contraction. The top of the second coronal loop also showed counterclockwise rotation during the contraction process. After the contraction of the second loop, the left part of the filament rotated counterclockwise and expanded toward the right of NOAA AR 11485. During the filament expansion, the right part of the filament also exhibited counterclockwise rotation like a tornado.

  3. Collective circular motion in synchronized and balanced formations with second-order rotational dynamics

    Science.gov (United States)

    Jain, Anoop; Ghose, Debasish

    2018-01-01

    This paper considers collective circular motion of multi-agent systems in which all the agents are required to traverse different circles or a common circle at a prescribed angular velocity. It is required to achieve these collective motions with the heading angles of the agents synchronized or balanced. In synchronization, the agents and their centroid have a common velocity direction, while in balancing, the movement of agents causes the location of the centroid to become stationary. The agents are initially considered to move at unit speed around individual circles at different angular velocities. It is assumed that the agents are subjected to limited communication constraints, and exchange relative information according to a time-invariant undirected graph. We present suitable feedback control laws for each of these motion coordination tasks by considering a second-order rotational dynamics of the agent. Simulations are given to illustrate the theoretical findings.

  4. Optimization of voltage output of energy harvesters with continuous mechanical rotation extracted from human motion (Conference Presentation)

    Science.gov (United States)

    Rashid, Evan; Hamidi, Armita; Tadesse, Yonas

    2017-04-01

    With increasing popularity of portable devices for outdoor activities, portable energy harvesting devices are coming into spot light. The next generation energy harvester which is called hybrid energy harvester can employ more than one mechanism in a single device to optimize portion of the energy that can be harvested from any source of waste energy namely motion, vibration, heat and etc. In spite of few recent attempts for creating hybrid portable devices, the level of output energy still needs to be improved with the intention of employing them in commercial electronic systems or further applications. Moreover, implementing a practical hybrid energy harvester in different application for further investigation is still challenging. This proposal is projected to incorporate a novel approach to maximize and optimize the voltage output of hybrid energy harvesters to achieve a greater conversion efficiency normalized by the total mass of the hybrid device than the simple arithmetic sum of the individual harvesting mechanisms. The energy harvester model previously proposed by Larkin and Tadesse [1] is used as a baseline and a continuous unidirectional rotation is incorporated to maximize and optimize the output. The device harvest mechanical energy from oscillatory motion and convert it to electrical energy through electromagnetic and piezoelectric systems. The new designed mechanism upgrades the device in a way that can harvest energy from both rotational and linear motions by using magnets. Likewise, the piezoelectric section optimized to harvest at least 10% more energy. To the end, the device scaled down for tested with different sources of vibrations in the immediate environment, including machinery operation, bicycle, door motion while opening and closing and finally, human motions. Comparing the results from literature proved that current device has capability to be employed in commercial small electronic devices for enhancement of battery usage or as a backup

  5. Geometry of the self-consistent collective-coordinate method for the large-amplitude collective motion

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Une, Tsutomu.

    1983-05-01

    The geometry of the self-consistent collective-coordinate (SCC) method formulated within the framework of the time-dependent Hartree-Fock (TDHF) theory is investigated by associating the variational parameters with a symplectic manifold (a TDHF manifold). With the use of a canonical-variables parametrization, it is shown that the TDHF equation is equivalent to the canonical equations of motion in classical mechanics in the TDHF manifold. This enables us to investigate geometrical structure of the SCC method in the language of the classical mechanics. The SCC method turns out to give a prescription how to dynamically extract a ''maximally-decoupled'' collective submanifold (hypersurface) out of the TDHF manifold, in such a way that a certain kind of trajectories corresponding to the large-amplitude collective motion under consideration can be reproduced on the hypersurface as precisely as possible. The stability of the hypersurface at each point on it is investigated, in order to see whether the hypersurface obtained by the SCC method is really an approximate integral surface in the TDHF manifold or not. (author)

  6. Rotational Seismology: AGU Session, Working Group, and Website

    Science.gov (United States)

    Lee, William H.K.; Igel, Heiner; Todorovska, Maria I.; Evans, John R.

    2007-01-01

    Introduction Although effects of rotational motions due to earthquakes have long been observed (e. g., Mallet, 1862), nevertheless Richter (1958, p. 213) stated that: 'Perfectly general motion would also involve rotations about three perpendicular axes, and three more instruments for these. Theory indicates, and observation confirms, that such rotations are negligible.' However, Richter provided no references for this claim. Seismology is based primarily on the observation and modeling of three-component translational ground motions. Nevertheless, theoretical seismologists (e.g., Aki and Richards, 1980, 2002) have argued for decades that the rotational part of ground motions should also be recorded. It is well known that standard seismometers are quite sensitive to rotations and therefore subject to rotation-induced errors. The paucity of observations of rotational motions is mainly the result of a lack, until recently, of affordable rotational sensors of sufficient resolution. Nevertheless, in the past decade, a number of authors have reported direct observations of rotational motions and rotations inferred from rigid-body rotations in short baseline accelerometer arrays, creating a burgeoning library of rotational data. For example, ring laser gyros in Germany and New Zealand have led to the first significant and consistent observations of rotational motions from distant earthquakes (Igel et al., 2005, 2007). A monograph on Earthquake Source Asymmetry, Structural Media and Rotation Effects was published recently as well by Teisseyre et al. (2006). Measurement of rotational motions has implications for: (1) recovering the complete ground-displacement history from seismometer recordings; (2) further constraining earthquake rupture properties; (3) extracting information about subsurface properties; and (4) providing additional ground motion information to earthquake engineers for seismic design. A special session on Rotational Motions in Seismology was convened by H

  7. Successive X-class Flares and Coronal Mass Ejections Driven by Shearing Motion and Sunspot Rotation in Active Region NOAA 12673

    Science.gov (United States)

    Yan, X. L.; Wang, J. C.; Pan, G. M.; Kong, D. F.; Xue, Z. K.; Yang, L. H.; Li, Q. L.; Feng, X. S.

    2018-03-01

    We present a clear case study on the occurrence of two successive X-class flares, including a decade-class flare (X9.3) and two coronal mass ejections (CMEs) triggered by shearing motion and sunspot rotation in active region NOAA 12673 on 2017 September 6. A shearing motion between the main sunspots with opposite polarities began on September 5 and lasted even after the second X-class flare on September 6. Moreover, the main sunspot with negative polarity rotated around its umbral center, and another main sunspot with positive polarity also exhibited a slow rotation. The sunspot with negative polarity at the northwest of the active region also began to rotate counterclockwise before the onset of the first X-class flare, which is related to the formation of the second S-shaped structure. The successive formation and eruption of two S-shaped structures were closely related to the counterclockwise rotation of the three sunspots. The existence of a flux rope is found prior to the onset of two flares by using nonlinear force-free field extrapolation based on the vector magnetograms observed by Solar Dynamics Observatory/Helioseismic and Magnetic Image. The first flux rope corresponds to the first S-shaped structures mentioned above. The second S-shaped structure was formed after the eruption of the first flux rope. These results suggest that a shearing motion and sunspot rotation play an important role in the buildup of the free energy and the formation of flux ropes in the corona that produces solar flares and CMEs.

  8. Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

    Science.gov (United States)

    Kalkan, Erol; Kwong, Neal S.

    2012-01-01

    According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  9. Spectroscopic investigation of the vibrational quasi-continuum arising from internal rotation of a methyl group

    Energy Technology Data Exchange (ETDEWEB)

    Hougen, J.T. [NIST, Gaithersburg, MD (United States)

    1993-12-01

    The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.

  10. A motion algorithm to extract physical and motion parameters of mobile targets from cone-beam computed tomographic images.

    Science.gov (United States)

    Alsbou, Nesreen; Ahmad, Salahuddin; Ali, Imad

    2016-05-17

    A motion algorithm has been developed to extract length, CT number level and motion amplitude of a mobile target from cone-beam CT (CBCT) images. The algorithm uses three measurable parameters: Apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm are tested with mobile targets having different well-known sizes that are made from tissue-equivalent gel which is inserted into a thorax phantom. The phantom moves sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0-20 mm. Using this motion algorithm, three unknown parameters are extracted that include: Length of the target, CT number level, speed or motion amplitude for the mobile targets from CBCT images. The motion algorithm solves for the three unknown parameters using measured length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agrees with the measured lengths which are dependent on the target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, the target length and motion amplitude. Motion frequency and phase do not affect the elongation and CT number distribution of the mobile target and could not be determined. A motion algorithm has been developed to extract three parameters that include length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement of motion tracking and sorting of the images into different breathing phases. The motion model developed here works well for tumors that have simple shapes, high contrast relative to surrounding tissues and move nearly in regular motion pattern

  11. Effects of solar radiation pressure torque on the rotational motion of an artificial satellite

    Science.gov (United States)

    Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho

    1992-01-01

    The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.

  12. [Efficiency of a postoperative treatment after rotator cuff repair with a continuous passive motion device (CPM)].

    Science.gov (United States)

    Michael, J W-P; König, D P; Imhoff, A B; Martinek, V; Braun, S; Hübscher, M; Koch, C; Dreithaler, B; Bernholt, J; Preis, S; Loew, M; Rickert, M; Speck, M; Bös, L; Bidner, A; Eysel, P

    2005-01-01

    The main objective of this study was to prove that a postoperative combined continuous passive motion (CPM) and physiotherapy treatment protocol (CPM group) can achieve 90 degrees active abduction in the shoulder joint earlier than physiotherapy alone (PT group). The indication was a complete tear of the rotator cuff. The study was conducted under in-patient and out-patient conditions. 55 patients were included in this study. The prospective, randomized multicenter study design complies with DIN EN 540. The primary endpoint was the time span until 90 degrees active abduction was achieved by the patients. Patients in the CPM group reached the primary endpoint on average 12 days earlier than the control group. This difference was statistically significant (p = 0.0292). Analyzing the secondary endpoints, e. g., pain and disablement, the results in the CPM group showed again advantages of the combined treatment protocol (CPM + physiotherapy). The postoperative treatment of a total tear of the rotator cuff with a combined continuous passive motion and physiotherapy protocol provided a significantly earlier range of motion in the shoulder joint than physiotherapy alone. There was no report of CPM-related adverse effects.

  13. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (pperception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion

  14. Accumulation of Inertial Sensory Information in the Perception of Whole Body Yaw Rotation.

    Science.gov (United States)

    Nesti, Alessandro; de Winkel, Ksander; Bülthoff, Heinrich H

    2017-01-01

    While moving through the environment, our central nervous system accumulates sensory information over time to provide an estimate of our self-motion, allowing for completing crucial tasks such as maintaining balance. However, little is known on how the duration of the motion stimuli influences our performances in a self-motion discrimination task. Here we study the human ability to discriminate intensities of sinusoidal (0.5 Hz) self-rotations around the vertical axis (yaw) for four different stimulus durations (1, 2, 3 and 5 s) in darkness. In a typical trial, participants experienced two consecutive rotations of equal duration and different peak amplitude, and reported the one perceived as stronger. For each stimulus duration, we determined the smallest detectable change in stimulus intensity (differential threshold) for a reference velocity of 15 deg/s. Results indicate that differential thresholds decrease with stimulus duration and asymptotically converge to a constant, positive value. This suggests that the central nervous system accumulates sensory information on self-motion over time, resulting in improved discrimination performances. Observed trends in differential thresholds are consistent with predictions based on a drift diffusion model with leaky integration of sensory evidence.

  15. Frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency for gravitational-wave interferometers

    International Nuclear Information System (INIS)

    Mikhailov, Eugeniy E.; Goda, Keisuke; Corbitt, Thomas; Mavalvala, Nergis

    2006-01-01

    We study the effects of frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency (EIT) on gravitational-wave (GW) interferometers. We propose the use of low-pass, bandpass, and high-pass EIT filters, an S-shaped EIT filter, and an intracavity EIT filter to generate frequency-dependent squeezing for injection into the antisymmetric port of GW interferometers. We find that the EIT filters have several advantages over the previous filter designs with regard to optical losses, compactness, and the tunability of the filter linewidth

  16. The effect of a rotator cuff tear and its size on three-dimensional shoulder motion.

    Science.gov (United States)

    Kolk, Arjen; Henseler, Jan Ferdinand; de Witte, Pieter Bas; van Zwet, Erik W; van der Zwaal, Peer; Visser, Cornelis P J; Nagels, Jochem; Nelissen, Rob G H H; de Groot, Jurriaan H

    2017-06-01

    Rotator cuff-disease is associated with changes in kinematics, but the effect of a rotator cuff-tear and its size on shoulder kinematics is still unknown in-vivo. In this cross-sectional study, glenohumeral and scapulothoracic kinematics of the affected shoulder were evaluated using electromagnetic motion analysis in 109 patients with 1) subacromial pain syndrome (n=34), 2) an isolated supraspinatus tear (n=21), and 3) a massive rotator cuff tear involving the supraspinatus and infraspinatus (n=54). Mixed models were applied for the comparisons of shoulder kinematics between the three groups during abduction and forward flexion. In the massive rotator cuff-tear group, we found reduced glenohumeral elevation compared to the subacromial pain syndrome (16°, 95% CI [10.5, 21.2], protator cuff tears coincides with an increase in scapulothoracic lateral rotation compared to subacromial pain syndrome (11°, 95% CI [6.5, 15.2], protator cuff-tear group had substantially less glenohumeral elevation and more scapulothoracic lateral rotation compared to the other groups. These observations suggest that the infraspinatus is essential to preserve glenohumeral elevation in the presence of a supraspinatus tear. Shoulder kinematics are associated with rotator cuff-tear size and may have diagnostic potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Controllable rotational inversion in nanostructures with dual chirality.

    Science.gov (United States)

    Dai, Lu; Zhu, Ka-Di; Shen, Wenzhong; Huang, Xiaojiang; Zhang, Li; Goriely, Alain

    2018-04-05

    Chiral structures play an important role in natural sciences due to their great variety and potential applications. A perversion connecting two helices with opposite chirality creates a dual-chirality helical structure. In this paper, we develop a novel model to explore quantitatively the mechanical behavior of normal, binormal and transversely isotropic helical structures with dual chirality and apply these ideas to known nanostructures. It is found that both direction and amplitude of rotation can be finely controlled by designing the cross-sectional shape. A peculiar rotational inversion of overwinding followed by unwinding, observed in some gourd and cucumber tendril perversions, not only exists in transversely isotropic dual-chirality helical nanobelts, but also in the binormal/normal ones when the cross-sectional aspect ratio is close to 1. Beyond this rotational inversion region, the binormal and normal dual-chirality helical nanobelts exhibit a fixed directional rotation of unwinding and overwinding, respectively. Moreover, in the binormal case, the rotation of these helical nanobelts is nearly linear, which is promising as a possible design for linear-to-rotary motion converters. The present work suggests new designs for nanoscale devices.

  18. The strong motion amplitudes from Himalayan earthquakes and a pilot study for the deterministic first order microzonation of Delhi City

    International Nuclear Information System (INIS)

    Parvez, Imtiyaz A.; Panza, G.F.; Gusev, A.A.; Vaccari, F.

    2001-09-01

    The interdependence among the strong-motion amplitude, earthquake magnitude and hypocentral distance has been established (Parvez et al. 2001) for the Himalayan region using the dataset of six earthquakes, two from Western and four from Eastern Himalayas (M w =5.2-7.2) recorded by strong-motion networks in the Himalayas. The level of the peak strong motion amplitudes in the Eastern Himalayas is three fold larger than that in the Western Himalayas, in terms of both peak acceleration and peak velocities. In the present study, we include the strong motion data of Chamoli earthquake (M w =6.5) of 1999 from the western sub-region to see whether this event supports the regional effects and we find that the new result fits well with our earlier prediction in the Western Himalayas. The minimum estimates of peak acceleration for the epicentral zone of M w =7.5-8.5 events is A peak =0.25-0.4 g for the Western Himalayas and as large as A peak =1.0-1.6 g for the Eastern Himalayas. Similarly, the expected minimum epicentral values of V peak for M w =8 are 35 cm/s for Western and 112 cm/s for Eastern Himalayas. The presence of unusually high levels of epicentral amplitudes for the eastern subregion also agrees well with the macroseismic evidence (Parvez et al. 2001). Therefore, these results represent systematic regional effects, and may be considered as a basis for future regionalized seismic hazard assessment in the Himalayan region. Many metropolitan and big cities of India are situated in the severe hazard zone just south of the Himalayas. A detailed microzonation study of these sprawling urban centres is therefore urgently required for gaining a better understanding of ground motion and site effects in these cities. An example of the study of site effects and microzonation of a part of metropolitan Delhi is presented based on a detailed modelling along a NS cross sections from the Inter State Bus Terminal (ISBT) to Sewanagar. Full synthetic strong motion waveforms have been

  19. Self-motion perception and vestibulo-ocular reflex during whole body yaw rotation in standing subjects: the role of head position and neck proprioception.

    Science.gov (United States)

    Panichi, Roberto; Botti, Fabio Massimo; Ferraresi, Aldo; Faralli, Mario; Kyriakareli, Artemis; Schieppati, Marco; Pettorossi, Vito Enrico

    2011-04-01

    Self-motion perception and vestibulo-ocular reflex (VOR) were studied during whole body yaw rotation in the dark at different static head positions. Rotations consisted of four cycles of symmetric sinusoidal and asymmetric oscillations. Self-motion perception was evaluated by measuring the ability of subjects to manually track a static remembered target. VOR was recorded separately and the slow phase eye position (SPEP) was computed. Three different head static yaw deviations (active and passive) relative to the trunk (0°, 45° to right and 45° to left) were examined. Active head deviations had a significant effect during asymmetric oscillation: the movement perception was enhanced when the head was kept turned toward the side of body rotation and decreased in the opposite direction. Conversely, passive head deviations had no effect on movement perception. Further, vibration (100 Hz) of the neck muscles splenius capitis and sternocleidomastoideus remarkably influenced perceived rotation during asymmetric oscillation. On the other hand, SPEP of VOR was modulated by active head deviation, but was not influenced by neck muscle vibration. Through its effects on motion perception and reflex gain, head position improved gaze stability and enhanced self-motion perception in the direction of the head deviation. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Rapid fluctuations in ionospheric Faraday rotation angle and 4GHz amplitude scintillation observed at Suva, Fiji

    International Nuclear Information System (INIS)

    Buonsanto, M.J.; Northcott, R.L.; Wright, R.W.H.

    1987-01-01

    Observations are reported of rapid fluctuations in Faraday rotation angle (FRA) recorded at 137MHz and amplitude scintillation at 4 GHz. The observations were made at Suva, Fiji Islands (average ionospheric coordinates 17 0 S, 178 0 E) and cover the period September, 1978 through March, 1983. Monthly occurrence of both the FRA fluctuations and the amplitude scintillation are positively correlated with sunspot number and negatively correlated with Ap and hmF2 at Tahiti. No events were seen in the summer months (November, December, and January) and it is suggested that the south to north neutral wind may be responsible for this. Maximum occurrence of both the 137 MHz FRA fluctuations and the 4 GHz scintillation is in April-May and August-September. The more rapid FRA fluctuations, termed here V-type, occur more often in months when the ambient electron density is larger. Most events occur in the pre-midnight sector, as observed elsewhere. Fewer 4 GHz events are observed at later times in the evening, as compared to the 137 MHz FRA fluctuations

  1. Grain boundary motion and grain rotation in aluminum bicrystals: recent experiments and simulations

    International Nuclear Information System (INIS)

    Molodov, D A; Barrales-Mora, L A; Brandenburg, J-E

    2015-01-01

    The results of experimental and computational efforts over recent years to study the motion of geometrically different grain boundaries and grain rotation under various driving forces are briefly reviewed. Novel in-situ measuring techniques based on orientation contrast imaging and applied simulation techniques are described. The experimental results obtained on specially grown aluminum bicrystals are presented and discussed. Particularly, the faceting and migration behavior of low angle grain boundaries under the curvature force is addressed. In contrast to the pure tilt boundaries, which remained flat/faceted and immobile during annealing at elevated temperatures, mixed tilt-twist boundaries readily assumed a curved shape and steadily moved under the capillary force. Computational analysis revealed that this behavior is due to the inclinational anisotropy of grain boundary energy, which in turn depends on boundary geometry. The shape evolution and shrinkage kinetics of cylindrical grains with different tilt and mixed boundaries were studied by molecular dynamics simulations. The mobility of low angle <100> boundaries with misorientation angles higher than 10°, obtained by both the experiments and simulations, was found not to differ from that of the high angle boundaries, but decreases essentially with further decrease of misorientation. The shape evolution of the embedded grains in simulations was found to relate directly to results of the energy computations. Further simulation results revealed that the shrinkage of grains with pure tilt boundaries is accompanied by grain rotation. In contrast, grains with the tilt-twist boundaries composed of dislocations with the mixed edge-screw character do not rotate during their shrinkage. Stress driven boundary migration in aluminium bicrystals was observed to be coupled to a tangential translation of the grains. The activation enthalpy of high angle boundary migration was found to vary non-monotonically with

  2. The analysis of influence of field of co-rotation on motion of submicronic particles in the Earth's plasmasphere

    Science.gov (United States)

    Yakovlev, A. B.

    2018-05-01

    The analysis of the motion of micro-particles with radii of several dozens of nanometers in the Earth's plasmasphere has confirmed that the earlier proved statement about conservation of the form for an orbit of a particle with constant electric charge which moves in superposition of the central gravitational field and the field of a magnetic dipole is true also for the case of a quasi-equilibrium electric charge. For a wide range of altitudes and the sizes of micro-particles other forces that act on the charged grain make considerably smaller impact on its motion. On the basis of numerical simulation it has been shown that for motion in an equatorial plane the field of co-rotation leads to very small monotonous growth of the semimajor axis and an orbit eccentricity, and for not-equatorial orbits there are fluctuations of the semimajor axis, an eccentricity and an inclination of an orbit with the period that considerably exceeds the period of orbital motion. In this paper, on the basis of the analysis of the canonical equations of the motion of a micro-particle in superposition of the central gravitational field and the field of co-rotation the explanation of the time dependences obtained numerically for the basic characteristics of an orbit of a micro-particle is proposed.

  3. Effects of Frequency and Motion Paradigm on Perception of Tilt and Translation During Periodic Linear Acceleration

    Science.gov (United States)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.

    2009-01-01

    Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.

  4. EVIDENCE FOR ROTATIONAL MOTIONS IN THE FEET OF A QUIESCENT SOLAR PROMINENCE

    International Nuclear Information System (INIS)

    Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J.

    2012-01-01

    We present observational evidence of apparent plasma rotational motions in the feet of a solar prominence. Our study is based on spectroscopic observations taken in the He I 1083.0 nm multiplet with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope. We recorded a time sequence of spectra with 34 s cadence placing the slit of the spectrograph almost parallel to the solar limb and crossing two feet of an intermediate size, quiescent hedgerow prominence. The data show opposite Doppler shifts, ±6 km s –1 , at the edges of the prominence feet. We argue that these shifts may be interpreted as prominence plasma rotating counterclockwise around the vertical axis to the solar surface as viewed from above. The evolution of the prominence seen in EUV images taken with the Solar Dynamics Observatory provided us with clues to interpret the results as swirling motions. Moreover, time-distance images taken far from the central wavelength show plasma structures moving parallel to the solar limb with velocities of about 10-15 km s –1 . Finally, the shapes of the observed intensity profiles suggest the presence of, at least, two components at some locations at the edges of the prominence feet. One of them is typically Doppler shifted (up to ∼20 km s –1 ) with respect to the other, thus suggesting the existence of supersonic counter-streaming flows along the line of sight.

  5. Vibration of rotating-shaft design spindles with flexible bases

    Science.gov (United States)

    Tseng, Chaw-Wu

    The purpose of this study is to demonstrate an accurate mathematical model predicting forced vibration of rotating-shaft HDD spindle motors with flexible stationary parts. The mathematical model consists of three parts: a rotating part, a stationary part, and bearings. The rotating part includes a flexible hub, a flexible shaft press-fit into the hub, and N elastic disks mounted on the hub. The stationary part can include motor bracket (stator), base casting, and top cover. The bearings under consideration can be ball bearings or hydrodynamic bearings (HDB). The rotating disks are modelled through the classical plate theory. The rotating part (except the disks) and the stationary part are modelled through finite element analyses (FEA). With mode shapes and natural frequencies obtained from FEA, the kinetic and potential energies of the rotating and stationary parts are formulated and discretized to compensate for the gyroscopic effects from rotation. Finally, use of Lagrange equation results in the equations of motion. To verify the mathematical model, frequency response functions are measured experimentally for an HDB spindle carrying two identical disks at motor and drive levels. Experimental measurements agree very well with theoretical predictions not only in resonance frequency but also in resonance amplitude.

  6. Dynamic strain and rotation ground motions of the 2011 Tohoku earthquake from dense high-rate GPS observations in Taiwan

    Science.gov (United States)

    Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.

    2017-12-01

    Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.

  7. Comment on "The motion of an arbitrarily rotating spherical projectile and its application to ball games"

    DEFF Research Database (Denmark)

    Jensen, Jens Højgaard

    2014-01-01

    In a recent paper (Robinson G and Robinson I 2013 Phys. Scr. 88 018101) the authors developed the differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary wind, assuming that both the drag force and the lift force...

  8. On the relative rotational motion between rigid fibers and fluid in turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Marchioli, C. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Zhao, L., E-mail: lihao.zhao@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Andersson, H. I. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)

    2016-01-15

    In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin show that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)

  9. Foucault pendulum with eddy-current damping of the elliptical motion

    Science.gov (United States)

    Mastner, G.; Vokurka, V.; Maschek, M.; Vogt, E.; Kaufmann, H. P.

    1984-10-01

    A newly designed Foucault pendulum is described in which the mechanical Charron ring, used throughout in previous designs for damping of the elliptical motion of the pendulum, is replaced by an electromagnetic eddy-current brake, consisting of a permanent magnet attached to the bottom of the bob and a metallic ring. This damping device is very efficient, as it is self-aligning, symmetrical in the damping effect, and never wears out. The permanent magnet is also used, together with a coil assembly and an electronic circuitry, for the dipole-torque drive of the pendulum as well as for accurate stabilization of the amplitude of the swing. A latched time display, controlled by Hall probes activated by the magnet, is used to visualize the Foucault rotation. The pendulum system and its associated electronic circuitry are described in detail. The optimizing of the drive mode is discussed. Measurements of deviations from theoretical value of the Foucault rotation velocity made automatically in a continuous run show a reproducible accuracy of ±1% or better in individual 360° rotations during the summer months. The quality factor of the pendulum as mechanical resonator was measured as a function of the amplitude in the presence of the eddy-current damping ring.

  10. A COMPARATIVE STUDY OF PASSIVE SHOULDER ROTATION RANGE OF MOTION, ISOMETRIC ROTATION STRENGTH AND SERVE SPEED BETWEEN ELITE TENNIS PLAYERS WITH AND WITHOUT HISTORY OF SHOULDER PAIN.

    Science.gov (United States)

    Moreno-Pérez, V; Elvira, Jll; Fernandez-Fernandez, J; Vera-Garcia, F J

    2018-02-01

    Glenohumeral internal rotation deficit and external rotation strength have been associated with the development of shoulder pain in overhead athletes. To examine the bilateral passive shoulder rotational range of motion (ROM), the isometric rotational strength and unilateral serve speed in elite tennis players with and without shoulder pain history (PH and NPH, respectively) and compare between dominant and non-dominant limbs and between groups. Cohort study. Fifty-eight elite tennis players were distributed into the PH group (n = 20) and the NPH group (n = 38). Serve velocity, dominant and non-dominant passive shoulder external and internal rotation (ER and IR) ROM, total arc of motion (TAM: the sum of IR and ER ROM), ER and IR isometric strength, bilateral deficits and ER/IR strength ratio were measured in both groups. Questionnaires were administered in order to classify characteristics of shoulder pain. The dominant shoulder showed significantly reduced IR ROM and TAM, and increased ER ROM compared to the non-dominant shoulder in both groups. Isometric ER strength and ER/IR strength ratio were significantly lower in the dominant shoulder in the PH group when compared with the NPH group. No significant differences between groups were found for serve speed. These data show specific adaptations in the IR, TAM and ER ROM in the dominant shoulder in both groups. Isometric ER muscle weakness and ER/IR strength ratio deficit appear to be associated with history of shoulder injuries in elite tennis players. It would be advisable for clinicians to use the present information to design injury prevention programs. 2.

  11. The amplitude of the deep solar convection and the origin of the solar supergranulation

    Science.gov (United States)

    Rast, Mark

    2017-11-01

    Recent observations and models have raised questions about our understanding of the dynamics of the deep solar convection. In particular, the amplitude of low wavenumber convective motions appears to be too high in both local area radiative magnetohydrodynamic and global spherical shell magnetohydrodynamic simulations. In global simulations this results in weaker than needed rotational constraints and consequent non solar-like differential rotation profiles. In deep local area simulations it yields strong horizontal flows in the photosphere on scales much larger than the observed supergranulation. We have undertaken numerical studies that suggest that solution to this problem is closely related to the long standing question of the origin of the solar supergranulation. Two possibilities have emerged. One suggests that small scale photospherically driven motions dominate convecive transport even at depth, descending through a very nearly adiabatic interior (more more nearly adiabatic than current convection models achieve). Convection of this form can meet Rossby number constraints set by global scale motions and implies that the solar supergranulation is the largest buoyantly driven scale of motion in the Sun. The other possibility is that large scale convection driven deeep in the Sun dynamically couples to the near surface shear layer, perhaps as its origin. In this case supergranulation would be the largest non-coupled convective mode, or only weakly coupled and thus potentially explaining the observed excess power in the prograde direction. Recent helioseismic results lend some support to this. We examind both of these possibilities using carefully designed numerical experiments, and weigh thier plausibilities in light of recent observations.

  12. Thouless-Valatin rotational moment of inertia from linear response theory

    Science.gov (United States)

    Petrík, Kristian; Kortelainen, Markus

    2018-03-01

    Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.

  13. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    Science.gov (United States)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  14. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  15. Comparison of erector spinae and hamstring muscle activities and lumbar motion during standing knee flexion in subjects with and without lumbar extension rotation syndrome.

    Science.gov (United States)

    Kim, Si-hyun; Kwon, Oh-yun; Park, Kyue-nam; Kim, Moon-Hwan

    2013-12-01

    The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate

    Science.gov (United States)

    Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe

    2014-05-01

    Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small

  17. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion

    Science.gov (United States)

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu

    2015-01-01

    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  18. Thrombelastography Early Amplitudes in bleeding and coagulopathic trauma patients

    DEFF Research Database (Denmark)

    Laursen, Thomas Holst; Meyer, Martin A S; Meyer, Anna Sina P

    2018-01-01

    BACKGROUND: Early amplitudes in the viscoelastic hemostatic assays Thrombelastography (TEG) and Rotation Thromboelastometry (ROTEM) provide fast results, which is critical in resuscitation of bleeding patients. This study investigated associations between TEG early amplitudes and standard TEG var...

  19. SIMULATION OF TRANSLATIONAL - ROTATIONAL MOTION OF WOOD PARTICLES DURING THE PROCESS OF PARTICLE ORIENTATION

    Directory of Open Access Journals (Sweden)

    Sergey PLOTNIKOV

    2014-09-01

    Full Text Available The simulation from the motion of flat particle revealed that the fall depends on the height of the drop, the thickness and density of the particles and does not depend on its length and width. The drop in air is about 20% longer than in vacuum. During orientation from angular particles the velocity of rotating particles with a length of 150mm is reduced by 18%, for particles with a length of 75mm by 12%. This reduction increases linearly with decreasing density of particles. A velocity field acting on the particle in the fall and rotation was presented. The results of the study prove the possibility to reduce the scatter of the particles during the mat's formation, that in turns can increase the board’s bending strength.

  20. Adaptation of the S-5-S Pendulím Seismometer for Measurement of Rotational Ground Motion

    Czech Academy of Sciences Publication Activity Database

    Knejzlík, Jaromír; Kaláb, Zdeněk; Rambouský, Zdeněk

    2012-01-01

    Roč. 16, č. 4 (2012), s. 649-656 ISSN 1383-4649 Institutional support: RVO:68145535 Keywords : rotation al ground motion * experimental measurement * mining induced seismicity * S-5-S seismometer Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.388, year: 2012 http://link.springer.com/article/10.1007%2Fs10950-012-9279-6

  1. Application of a self-consistent theory of large amplitude collective motion to the generalized Meshkov-Glick-Lipkin model

    International Nuclear Information System (INIS)

    Umar, A.S.; Klein, A.

    1986-01-01

    A recent formulation of the theory of large amplitude collective motion in the adiabatic limit is applied to a generalized monopole shell model. Numerical calculations are carried out for the three-level model, approximately equivalent to a classical system with two degrees of freedom. Our results go somewhat beyond previous treatments of this system and provide substantiation for the validity of the method, in suitable parameter ranges, as a way of recognizing and decoupling the collective and the non-collective degrees of freedom. (orig.)

  2. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  3. Estimation of the center of rotation using wearable magneto-inertial sensors.

    Science.gov (United States)

    Crabolu, M; Pani, D; Raffo, L; Cereatti, A

    2016-12-08

    Determining the center of rotation (CoR) of joints is fundamental to the field of human movement analysis. CoR can be determined using a magneto-inertial measurement unit (MIMU) using a functional approach requiring a calibration exercise. We systematically investigated the influence of different experimental conditions that can affect precision and accuracy while estimating the CoR, such as (a) angular joint velocity, (b) distance between the MIMU and the CoR, (c) type of the joint motion implemented, (d) amplitude of the angular range of motion, (e) model of the MIMU used for data recording, (f) amplitude of additive noise on inertial signals, and (g) amplitude of the errors in the MIMU orientation. The evaluation process was articulated at three levels: assessment through experiments using a mechanical device, mathematical simulation, and an analytical propagation model of the noise. The results reveal that joint angular velocity significantly impacted CoR identification, and hence, slow joint movement should be avoided. An accurate estimation of the MIMU orientation is also fundamental for accurately subtracting the contribution owing to gravity to obtain the coordinate acceleration. The unit should be preferably attached close to the CoR, but both type and range of motion do not appear to be critical. When the proposed methodology is correctly implemented, error in the CoR estimates is expected to be <3mm (best estimates=2±0.5mm). The findings of the present study foster the need to further investigate this methodology for application in human subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    Energy Technology Data Exchange (ETDEWEB)

    Jaskowiak, J; Ahmad, S; Ali, I [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Alsbou, N [Ohio Northern University, Ada, OH (United States)

    2015-06-15

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were used to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased

  5. Poisson equations of rotational motion for a rigid triaxial body with application to a tumbling artificial satellite

    Science.gov (United States)

    Liu, J. J. F.; Fitzpatrick, P. M.

    1975-01-01

    A mathematical model is developed for studying the effects of gravity gradient torque on the attitude stability of a tumbling triaxial rigid satellite. Poisson equations are used to investigate the rotation of the satellite (which is in elliptical orbit about an attracting point mass) about its center of mass. An averaging method is employed to obtain an intermediate set of differential equations for the nonresonant, secular behavior of the osculating elements which describe the rotational motions of the satellite, and the averaged equations are then integrated to obtain long-term secular solutions for the osculating elements.

  6. Coupled jump rotational dynamics in aqueous nitrate solutions.

    Science.gov (United States)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-21

    A nitrate ion (NO 3 - ) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO 3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO 3 - is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the

  7. Theoretical prediction of a rotating magnon wave packet in ferromagnets.

    Science.gov (United States)

    Matsumoto, Ryo; Murakami, Shuichi

    2011-05-13

    We theoretically show that the magnon wave packet has a rotational motion in two ways: a self-rotation and a motion along the boundary of the sample (edge current). They are similar to the cyclotron motion of electrons, but unlike electrons the magnons have no charge and the rotation is not due to the Lorentz force. These rotational motions are caused by the Berry phase in momentum space from the magnon band structure. Furthermore, the rotational motion of the magnon gives an additional correction term to the magnon Hall effect. We also discuss the Berry curvature effect in the classical limit of long-wavelength magnetostatic spin waves having macroscopic coherence length.

  8. About the stability of the rotational motion of a top with a cavity filled up with a viscous fluid

    International Nuclear Information System (INIS)

    Parada, R.F.; Collar, A.F.

    1995-09-01

    The linear stability problem of the rotational motion of a top around a fixed point containing an inner cavity filled up with a viscous fluid is considered. The effect of the viscosity in the stability problem is studied. (author). 15 refs

  9. Evaluation of accuracy about 2D vs 3D real-time position management system based on couch rotation when non-coplanar respiratory gated radiation therapy

    International Nuclear Information System (INIS)

    Kwon, Kyung Tae; Kim, Jung Soo; Sim, Hyun Sun; Min, Jung Whan; Son, Soon Yong; Han, Dong Kyoon

    2016-01-01

    Because of non-coplanar therapy with couch rotation in respiratory gated radiation therapy, the recognition of marker movement due to the change in the distance between the infrared camera and the marker due to the rotation of the couch is called RPM (Real-time The purpose of this paper is to evaluate the accuracy of motion reflections (baseline changes) of 2D gating configuration (two dot marker block) and 3D gating configuration (six dot marker block). The motion was measured by varying the couch angle in the clockwise and counterclockwise directions by 10° in the 2D gating configuration. In the 3D gating configuration, the couch angle was changed by 10° in the clockwise direction and compared with the baseline at the reference 0°. The reference amplitude was 1.173 to 1.165, the couch angle at 20° was 1.132, and the couch angle at 1.0° was 1.083. At 350° counterclockwise, the reference amplitude was 1.168 to 1.157, the couch angle at 340° was 1.124, and the couch angle at 330° was 1.079. In this study, the phantom is used to quantitatively evaluate the value of the amplitude according to couch change

  10. Evaluation of accuracy about 2D vs 3D real-time position management system based on couch rotation when non-coplanar respiratory gated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyung Tae; Kim, Jung Soo [Dongnam Health University, Suwon (Korea, Republic of); Sim, Hyun Sun [College of Health Sciences, Korea University, Seoul (Korea, Republic of); Min, Jung Whan [Shingu University College, Sungnam (Korea, Republic of); Son, Soon Yong [Wonkwang Health Science University, Iksan (Korea, Republic of); Han, Dong Kyoon [College of Health Sciences, EulJi University, Daejeon (Korea, Republic of)

    2016-12-15

    Because of non-coplanar therapy with couch rotation in respiratory gated radiation therapy, the recognition of marker movement due to the change in the distance between the infrared camera and the marker due to the rotation of the couch is called RPM (Real-time The purpose of this paper is to evaluate the accuracy of motion reflections (baseline changes) of 2D gating configuration (two dot marker block) and 3D gating configuration (six dot marker block). The motion was measured by varying the couch angle in the clockwise and counterclockwise directions by 10° in the 2D gating configuration. In the 3D gating configuration, the couch angle was changed by 10° in the clockwise direction and compared with the baseline at the reference 0°. The reference amplitude was 1.173 to 1.165, the couch angle at 20° was 1.132, and the couch angle at 1.0° was 1.083. At 350° counterclockwise, the reference amplitude was 1.168 to 1.157, the couch angle at 340° was 1.124, and the couch angle at 330° was 1.079. In this study, the phantom is used to quantitatively evaluate the value of the amplitude according to couch change.

  11. On the relativity of rotation

    International Nuclear Information System (INIS)

    Gron, O.

    2010-01-01

    The question whether rotational motion is relative according to the general theory of relativity is discussed. Einstein's ambivalence concerning this question is pointed out. In the present article I defend Einstein's way of thinking on this when he presented the theory in 1916. The significance of the phenomenon of perfect inertial dragging in connection with the relativity of rotational motion is discussed. The necessity of introducing an extended model of the Minkowski spacetime, in which a globally empty space is supplied with a cosmic mass shell with radius equal to its own Schwarzschild radius, in order to extend the principle of relativity to accelerated and rotational motion, is made clear.

  12. Destabilization of a peeling-ballooning mode by a toroidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Aiba, N.; Hirota, M.; Tokuda, S.; Furukawa, M.

    2009-01-01

    Full text: From the viewpoint of the heat load on the divertor, Type-I edge localized mode (ELM) needs to be suppressed or the amplitude of this ELM needs to be reduced. In JT-60U, some experimental results showed that the ELM frequency depends on the toroidal rotation, and the rapid rotation in the counter direction of the plasma current changes from Type-I ELM to Grassy ELM, whose frequency is high and the amplitude is small. Recent experimental and theoretical/numerical studies in a static system have identified that both Type-I and Grassy ELMs are considered ideal magnetohydrodynamic (MHD) modes destabilizing near the plasma surface, called peeling-ballooning modes. To investigate the mechanism of the change of ELM frequency by a toroidal rotation, theoretical and numerical analyses are important for understanding the toroidal rotation effects on the peeling-ballooning mode. Previous works about the toroidal rotation effect on the edge MHD stability have illustrated that the toroidal rotation with shear can destabilize low/intermediate-n (<50) modes but can stabilize high-n modes, where n is the toroidal mode number. The stabilization of the high-n mode can be understood qualitatively in analogy with the infinite-n ballooning mode case. However, the destabilizing mechanism of the low/intermediate-n mode is not still clarified, and to understand the stability property related to ELM suppression/mitigation, it is important to clarify this destabilizing mechanism. In this paper, we investigate numerically the destabilizing effect of a toroidal rotation on the peeling-ballooning mode with a newly developed code MINERVA, which solves the Frieman-Rotenberg equation. Particularly, we pay attention to the effect of the centrifuged force on not only equilibrium but also change of equation of motion. (author)

  13. Clinical Assessment of Scapula Motion: Scapula Upward Rotation and Relationship with Injury in Swimmers

    Directory of Open Access Journals (Sweden)

    Jo Brown

    2016-01-01

    Full Text Available Abnormal scapulothoracic mechanics and scapulohumeral rhythm are implicated in shoulder pathologies, including glenohumeral impingement and rotator cuff tears. Upward scapula rotation, specifically asymmetry of scapula motion and associations of patterns through range with injury, was investigated in dominant and non-dominant limbs of nationally ranked junior and Paralympic swimmers during competition season. The static and throughout phases measures of upward scapula rotation were: Phase I (start position, 45°, Phase II (45° to 90°, Phase III (90° to 135° and Phase IV (135° to max. Injury was assessed with a validated questionnaire. Differences between side (dominant and non-dominant, group (junior and Paralympic, and phase were examined. Significant differences (P < 0.05 between groups were identified for dominant side at rest, 45° and 135°, and in phases II and IV (including range. Scapulohumeral rhythm was higher in the non-dominant limb of Paralympic swimmers but in the dominant limb of junior swimmers. Greatest differences in upward rotation between injured and non-injured swimmers were found in Phase 1: 43.6% (3.3° Paralympic; 73.1% (8° junior. Results suggest asymmetry of movement in both limbs, through all phases, and at single points in range, should be investigated for assessing injury and developing preventive strategies and rehabilitation protocols.

  14. Anatomical glenohumeral internal rotation deficit and symmetric rotational strength in male and female young beach volleyball players.

    Science.gov (United States)

    Saccol, Michele Forgiarini; Almeida, Gabriel Peixoto Leão; de Souza, Vivian Lima

    2016-08-01

    Beach volleyball is a sport with a high demand of shoulder structures that may lead to adaptations in range of motion (ROM) and strength like in other overhead sports. Despite of these possible alterations, no study evaluated the shoulder adaptations in young beach volleyball athletes. The aim of this study was to compare the bilateral ROM and rotation strength in the shoulders of young beach volleyball players. Goniometric passive shoulder ROM of motion and isometric rotational strength were evaluated in 19 male and 14 female asymptomatic athletes. External and internal ROM, total rotation motion, glenohumeral internal rotation deficit (GIRD), external rotation and internal rotation strength, bilateral deficits and external rotation to internal rotation ratio were measured. The statistical analysis included paired Student's t-test and analysis of variance with repeated measures. Significantly lower dominant GIRD was found in both groups (pvolleyball athletes present symmetric rotational strength and shoulder ROM rotational adaptations that can be considered as anatomical. These results indicate that young practitioners of beach volleyball are subject to moderate adaptations compared to those reported for other overhead sports. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. On the effects of rotation on interstellar molecular line profiles

    International Nuclear Information System (INIS)

    Adelson, L.M.; Chunming Leung

    1988-01-01

    Theoretical models are constructed to study the effects of systematic gas rotation on the emergent profiles of interstellar molecular lines, in particular the effects of optical depth and different velocity laws. Both rotational and radial motions (expansion or contraction) may produce similar asymmetric profiles, but the behaviour of the velocity centroid of the emergent profile over the whole cloud (iso-centroid maps) can be used to distinguish between these motions. Iso-centroid maps can also be used to determine the location and orientation of the rotation axis and of the equatorial axis. For clouds undergoing both radial and rotational motion, the component of the centroid due to the rotational motion can be separated from that due to the radial motion. Information on the form of the rotational velocity law can also be derived. (author)

  16. Rolling motion in moving droplets

    Indian Academy of Sciences (India)

    motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively .... rigid body rotation. The solid body rotation makes sense in the context of small Reynolds. (Re) number flows ...

  17. Vibrot, a simple device for the conversion of vibration into rotation mediated by friction: preliminary evaluation.

    Directory of Open Access Journals (Sweden)

    Ernesto Altshuler

    Full Text Available While "vibrational noise" induced by rotating components of machinery is a common problem constantly faced by engineers, the controlled conversion of translational into rotational motion or vice-versa is a desirable goal in many scenarios ranging from internal combustion engines to ultrasonic motors. In this work, we describe the underlying physics after isolating a single degree of freedom, focusing on devices that convert a vibration along the vertical axis into a rotation around this axis. A typical Vibrot (as we label these devices consists of a rigid body with three or more cantilevered elastic legs attached to its bottom at an angle. We show that these legs are capable of transforming vibration into rotation by a "ratchet effect", which is caused by the anisotropic stick-slip-flight motion of the leg tips against the ground. Drawing an analogy with the Froude number used to classify the locomotion dynamics of legged animals, we discuss the walking regime of these robots. We are able to control the rotation frequency of the Vibrot by manipulating the shaking amplitude, frequency or waveform. Furthermore, we have been able to excite Vibrots with acoustic waves, which allows speculating about the possibility of reducing the size of the devices so they can perform tasks into the human body, excited by ultrasound waves from the outside.

  18. A Comparison of Amplitude-Based and Phase-Based Positron Emission Tomography Gating Algorithms for Segmentation of Internal Target Volumes of Tumors Subject to Respiratory Motion

    International Nuclear Information System (INIS)

    Jani, Shyam S.; Robinson, Clifford G.; Dahlbom, Magnus; White, Benjamin M.; Thomas, David H.; Gaudio, Sergio; Low, Daniel A.; Lamb, James M.

    2013-01-01

    Purpose: To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET). Methods and Materials: List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated. Results: Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001). Conclusions: Target volumes in images generated

  19. Eye position signals modify vestibulo- and cervico-ocular fast phases during passive yaw rotations in humans.

    Science.gov (United States)

    Anastasopoulos, D; Mandellos, D; Kostadima, V; Pettorossi, V E

    2002-08-01

    We studied the amplitude, latency, and probability of occurrence of fast phases (FP) in darkness to unpredictable vestibular and/or cervical yaw stimulation in normal human subjects. The rotational stimuli were smoothed trapezoidal motion transients of 14 degrees amplitude and 1.25 s duration. Eye position before stimulus application (initial eye position, IEP) was introduced as a variable by asking the subjects to fixate a spot appearing either straight ahead or at 7 degrees eccentric positions. The recordings demonstrated that the generation of FP during vestibular stimulation was facilitated when the whole-body rotation was directed opposite the eccentric IEP. Conversely, FP were attenuated if the whole-body rotation was directed toward the eccentric IEP; i.e., the FP attenuated if they were made to further eccentric positions. Cervical stimulation-induced FP were small and variable in direction when IEP was directed straight ahead before stimulus onset. Eccentric IEPs resulted in large FP, the direction of which was essentially independent of the neck-proprioceptive stimulus. They tended to move the eye toward the primary position, both when the trunk motion under the stationary head was directed toward or away from the IEP. FP dependence on IEP was evident also during head-on-trunk rotations. No consistent interaction between vestibularly and cervically induced FP was found. We conclude that extraretinal eye position signals are able to modify vestibularly evoked reflexive FP in darkness, aiming at minimizing excursions of the eyes away from the primary position. However, neck-induced FP do not relate to specific tasks of stabilization or visual search. By keeping the eyes near the primary position, FP may permit flexibility of orienting responses to incoming stimuli. This recentering bias for both vestibularly and cervically generated FP may represent a visuomotor optimizing strategy.

  20. Long-lasting effects of neck muscle vibration and contraction on self-motion perception of vestibular origin.

    Science.gov (United States)

    Pettorossi, Vito Enrico; Panichi, Roberto; Botti, Fabio Massimo; Biscarini, Andrea; Filippi, Guido Maria; Schieppati, Marco

    2015-10-01

    To show that neck proprioceptive input can induce long-term effects on vestibular-dependent self-motion perception. Motion perception was assessed by measuring the subject's error in tracking in the dark the remembered position of a fixed target during whole-body yaw asymmetric rotation of a supporting platform, consisting in a fast rightward half-cycle and a slow leftward half-cycle returning the subject to the initial position. Neck muscles were relaxed or voluntarily contracted, and/or vibrated. Whole-body rotation was administered during or at various intervals after the vibration train. The tracking position error (TPE) at the end of the platform rotation was measured during and after the muscle conditioning maneuvers. Neck input produced immediate and sustained changes in the vestibular perceptual response to whole-body rotation. Vibration of the left sterno-cleido-mastoideus (SCM) or right splenius capitis (SC) or isometric neck muscle effort to rotate the head to the right enhanced the TPE by decreasing the perception of the slow rotation. The reverse effect was observed by activating the contralateral muscle. The effects persisted after the end of SCM conditioning, and slowly vanished within several hours, as tested by late asymmetric rotations. The aftereffect increased in amplitude and persistence by extending the duration of the vibration train (from 1 to 10min), augmenting the vibration frequency (from 5 to 100Hz) or contracting the vibrated muscle. Symmetric yaw rotation elicited a negligible TPE, upon which neck muscle vibrations were ineffective. Neck proprioceptive input induces enduring changes in vestibular-dependent self-motion perception, conditional on the vestibular stimulus feature, and on the side and the characteristics of vibration and status of vibrated muscles. This shows that our perception of whole-body yaw-rotation is not only dependent on accurate vestibular information, but is modulated by proprioceptive information related to

  1. Longitudinal tracking with phase and amplitude modulated rf

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Ball, M.; Brabson, B.

    1993-06-01

    Synchrotron motion was induced by phase shifting the rf of the Indiana University Cyclotron Facility (IUCF) cooler-synchrotron. The resulting coherent-bunch motion was tracked in longitudinal phase space for as many as 700,000 turns, or for over 350 synchrotron oscillations. Results of recent experimental studies of longitudinal motion in which the rf phase and amplitude were harmonically modulated are also presented. Comparisons of experimental data with numerical simulations, assuming independent particle motion, are made. Observed multiparticle effects are also discussed

  2. The rotation of Titan and Ganymede

    Science.gov (United States)

    Van Hoolst, Tim; Coyette, Alexis; Baland, Rose-Marie; Trinh, Antony

    2016-10-01

    The rotation rates of Titan and Ganymede, the largest satellites of Saturn and Jupiter, are on average equal to their orbital mean motion. Here we discuss small deviations from the average rotation for both satellites and evaluate the polar motion of Titan induced by its surface fluid layers. We examine different causes at various time scales and assess possible consequences and the potential of using librations and polar motion as probes of the interior structure of the satellites.The rotation rate of Titan and Ganymede cannot be constant on the orbital time scale as a result of the gravitational torque of the central planet acting on the satellites. Titan is moreover expected to show significant polar motion and additional variations in the rotation rate due to angular momentum exchange with the atmosphere, mainly at seasonal periods. Observational evidence for deviations from the synchronous state has been reported several times for Titan but is unfortunately inconclusive. The measurements of the rotation variations are based on determinations of the shift in position of Cassini radar images taken during different flybys. The ESA JUICE (JUpiter ICy moons Explorer) mission will measure the rotation variations of Ganymede during its orbital phase around the satellite starting in 2032.We report on different theoretical aspects of the librations and polar motion. We consider the influence of the rheology of the ice shell and take into account Cassini measurements of the external gravitational field and of the topography of Titan and similar Galileo data about Ganymede. We also evaluate the librations and polar motion induced by Titan's hydrocarbon seas and use the most recent results of Titan's atmosphere dynamics. We finally evaluate the potential of rotation variations to constrain the satellite's interior structure, in particular its ice shell and ocean.

  3. SU-E-J-252: A Motion Algorithm to Extract Physical and Motion Parameters of a Mobile Target in Cone-Beam Computed Tomographic Imaging Retrospective to Image Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [Department of Electrical and Computer Engineering, Ada, OH (United States)

    2014-06-01

    Purpose: A motion algorithm was developed to extract actual length, CT-numbers and motion amplitude of a mobile target imaged with cone-beam-CT (CBCT) retrospective to image-reconstruction. Methods: The motion model considered a mobile target moving with a sinusoidal motion and employed three measurable parameters: apparent length, CT number level and gradient of a mobile target obtained from CBCT images to extract information about the actual length and CT number value of the stationary target and motion amplitude. The algorithm was verified experimentally with a mobile phantom setup that has three targets with different sizes manufactured from homogenous tissue-equivalent gel material embedded into a thorax phantom. The phantom moved sinusoidal in one-direction using eight amplitudes (0–20mm) and a frequency of 15-cycles-per-minute. The model required imaging parameters such as slice thickness, imaging time. Results: This motion algorithm extracted three unknown parameters: length of the target, CT-number-level, motion amplitude for a mobile target retrospective to CBCT image reconstruction. The algorithm relates three unknown parameters to measurable apparent length, CT-number-level and gradient for well-defined mobile targets obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on actual length of the target and motion amplitude. The cumulative CT-number for a mobile target was dependent on CT-number-level of the stationary target and motion amplitude. The gradient of the CT-distribution of mobile target is dependent on the stationary CT-number-level, actual target length along the direction of motion, and motion amplitude. Motion frequency and phase did not affect the elongation and CT-number distributions of mobile targets when imaging time included several motion cycles. Conclusion: The motion algorithm developed in this study has potential applications in diagnostic CT imaging and radiotherapy to extract

  4. Motion of rectangular prismatic bodies

    International Nuclear Information System (INIS)

    Poreh, M.; Wray, R.N.

    1979-01-01

    Rectangular prismatic bodies can assume either a translatory or an auto-rotating mode of motion during free motion in the atmosphere. The translatory mode is stable only when the dimensionless moment of inertia of the bodies is large, however, large perturbations will always start auto-rotation. The characteristics of the auto-rotational mode are shown to depend primarily on the aspect ratio of the bodies which determines the dimensionless rotational speed and the lift coefficient. Both the average drag and lift-coefficients of auto-rotating bodies are estimated, but it is shown that secondary effects make it impossible to determine their exact trajectories in atmospheric flows

  5. Isolated assessment of translation or rotation severely underestimates the effects of subject motion in fMRI data.

    Directory of Open Access Journals (Sweden)

    Marko Wilke

    Full Text Available Subject motion has long since been known to be a major confound in functional MRI studies of the human brain. For resting-state functional MRI in particular, data corruption due to motion artefacts has been shown to be most relevant. However, despite 6 parameters (3 for translations and 3 for rotations being required to fully describe the head's motion trajectory between timepoints, not all are routinely used to assess subject motion. Using structural (n = 964 as well as functional MRI (n = 200 data from public repositories, a series of experiments was performed to assess the impact of using a reduced parameter set (translationonly and rotationonly versus using the complete parameter set. It could be shown that the usage of 65 mm as an indicator of the average cortical distance is a valid approximation in adults, although care must be taken when comparing children and adults using the same measure. The effect of using slightly smaller or larger values is minimal. Further, both translationonly and rotationonly severely underestimate the full extent of subject motion; consequently, both translationonly and rotationonly discard substantially fewer datapoints when used for quality control purposes ("motion scrubbing". Finally, both translationonly and rotationonly severely underperform in predicting the full extent of the signal changes and the overall variance explained by motion in functional MRI data. These results suggest that a comprehensive measure, taking into account all available parameters, should be used to characterize subject motion in fMRI.

  6. Isolated assessment of translation or rotation severely underestimates the effects of subject motion in fMRI data.

    Science.gov (United States)

    Wilke, Marko

    2014-01-01

    Subject motion has long since been known to be a major confound in functional MRI studies of the human brain. For resting-state functional MRI in particular, data corruption due to motion artefacts has been shown to be most relevant. However, despite 6 parameters (3 for translations and 3 for rotations) being required to fully describe the head's motion trajectory between timepoints, not all are routinely used to assess subject motion. Using structural (n = 964) as well as functional MRI (n = 200) data from public repositories, a series of experiments was performed to assess the impact of using a reduced parameter set (translationonly and rotationonly) versus using the complete parameter set. It could be shown that the usage of 65 mm as an indicator of the average cortical distance is a valid approximation in adults, although care must be taken when comparing children and adults using the same measure. The effect of using slightly smaller or larger values is minimal. Further, both translationonly and rotationonly severely underestimate the full extent of subject motion; consequently, both translationonly and rotationonly discard substantially fewer datapoints when used for quality control purposes ("motion scrubbing"). Finally, both translationonly and rotationonly severely underperform in predicting the full extent of the signal changes and the overall variance explained by motion in functional MRI data. These results suggest that a comprehensive measure, taking into account all available parameters, should be used to characterize subject motion in fMRI.

  7. Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions

    Science.gov (United States)

    Biondi, Gabriele; Mauro, Stefano; Pastorelli, Stefano; Sorli, Massimo

    2018-05-01

    One of the key functionalities required by an Active Debris Removal mission is the assessment of the target kinematics and inertial properties. Passive sensors, such as stereo cameras, are often included in the onboard instrumentation of a chaser spacecraft for capturing sequential photographs and for tracking features of the target surface. A plenty of methods, based on Kalman filtering, are available for the estimation of the target's state from feature positions; however, to guarantee the filter convergence, they typically require continuity of measurements and the capability of tracking a fixed set of pre-defined features of the object. These requirements clash with the actual tracking conditions: failures in feature detection often occur and the assumption of having some a-priori knowledge about the shape of the target could be restrictive in certain cases. The aim of the presented work is to propose a fault-tolerant alternative method for estimating the angular velocity and the relative magnitudes of the principal moments of inertia of the target. Raw data regarding the positions of the tracked features are processed to evaluate corrupted values of a 3-dimentional parameter which entirely describes the finite screw motion of the debris and which primarily is invariant on the particular set of considered features of the object. Missing values of the parameter are completely restored exploiting the typical periodicity of the rotational motion of an uncontrolled satellite: compressed sensing techniques, typically adopted for recovering images or for prognostic applications, are herein used in a completely original fashion for retrieving a kinematic signal that appears sparse in the frequency domain. Due to its invariance about the features, no assumptions are needed about the target's shape and continuity of the tracking. The obtained signal is useful for the indirect evaluation of an attitude signal that feeds an unscented Kalman filter for the estimation of

  8. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    International Nuclear Information System (INIS)

    Abd-Alla, A.M.; Abo-Dahab, S.M.; Al-Simery, R.D.

    2013-01-01

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient

  9. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Abo-Dahab, S.M., E-mail: sdahb@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Maths Department, Faculty of Science, SVU, Qena 83523 (Egypt); Al-Simery, R.D. [Maths Department, Faculty of Science, Taif University (Saudi Arabia)

    2013-12-15

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient.

  10. Modeling and experimental characterization of a new piezoelectric sensor for low-amplitude vibration measurement

    International Nuclear Information System (INIS)

    Hou, X Y; Koh, C G; Kuang, K S C; Lee, W H

    2017-01-01

    This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations. (paper)

  11. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    International Nuclear Information System (INIS)

    Ali, I; Ahmad, S; Alsbou, N

    2015-01-01

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases

  12. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [Ohio Northern University, Ada, OH (United States)

    2015-06-15

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases

  13. Directional bias of illusory stream caused by relative motion adaptation.

    Science.gov (United States)

    Tomimatsu, Erika; Ito, Hiroyuki

    2016-07-01

    Enigma is an op-art painting that elicits an illusion of rotational streaming motion. In the present study, we tested whether adaptation to various motion configurations that included relative motion components could be reflected in the directional bias of the illusory stream. First, participants viewed the center of a rotating Enigma stimulus for adaptation. There was no physical motion on the ring area. During the adaptation period, the illusory stream on the ring was mainly seen in the direction opposite to that of the physical rotation. After the physical rotation stopped, the illusory stream on the ring was mainly seen in the same direction as that of the preceding physical rotation. Moreover, adapting to strong relative motion induced a strong bias in the illusory motion direction in the subsequently presented static Enigma stimulus. The results suggest that relative motion detectors corresponding to the ring area may produce the illusory stream of Enigma. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Helicopter flight simulation motion platform requirements

    Science.gov (United States)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  15. Linear instability and nonlinear motion of rotating plasma

    International Nuclear Information System (INIS)

    Liu, J.

    1985-01-01

    Two coupled nonlinear equations describing the flute dynamics of the magnetically confined low-β collisionless rotating plasma are derived. The linear instability and nonlinear dynamics of the rotating column are analyzed theoretically. In the linear stability analysis, a new sufficient condition of stability is obtained. From the exact solution of eigenvalue equation for Gaussian density profile and uniform rotation of the plasma, the stability of the system strongly depends on the direction of plasma rotation, FLR effect and the location of the conducting wall. An analytic expression showing the finite wall effect on different normal modes is obtained and it explains the different behavior of (1,0) normal mode from other modes. The sheared rotation driven instability is investigated by using three model equilibrium profiles, and the analytic expressions of eigenvalues which includes the wall effect are obtained. The analogy between shear rotation driven instability and the instability driven by sheared plane parallel flow in the inviscid fluid is analyzed. Applying the linear analysis to the central cell of tandem mirror system, the trapped particle instability with only passing electronics is analyzed. For uniform rotation and Gaussian density profile, an analytic expression that determines the stability boundary is found. The nonlinear analysis shows that the nonlinear equations have a solitary vortex solution which is very similar to the vortex solution of nonlinear Rossby wave equation

  16. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  17. The influence of respiratory motion on CT image volume definition

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid (Spain)

    2014-04-15

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath

  18. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  19. Vection is the main contributor to motion sickness induced by visual yaw rotation: Implications for conflict and eye movement theories.

    Directory of Open Access Journals (Sweden)

    Suzanne A E Nooij

    Full Text Available This study investigated the role of vection (i.e., a visually induced sense of self-motion, optokinetic nystagmus (OKN, and inadvertent head movements in visually induced motion sickness (VIMS, evoked by yaw rotation of the visual surround. These three elements have all been proposed as contributing factors in VIMS, as they can be linked to different motion sickness theories. However, a full understanding of the role of each factor is still lacking because independent manipulation has proven difficult in the past. We adopted an integrative approach to the problem by obtaining measures of potentially relevant parameters in four experimental conditions and subsequently combining them in a linear mixed regression model. To that end, participants were exposed to visual yaw rotation in four separate sessions. Using a full factorial design, the OKN was manipulated by a fixation target (present/absent, and vection strength by introducing a conflict in the motion direction of the central and peripheral field of view (present/absent. In all conditions, head movements were minimized as much as possible. Measured parameters included vection strength, vection variability, OKN slow phase velocity, OKN frequency, the number of inadvertent head movements, and inadvertent head tilt. Results show that VIMS increases with vection strength, but that this relation varies among participants (R2 = 0.48. Regression parameters for vection variability, head and eye movement parameters were not significant. These results may seem to be in line with the Sensory Conflict theory on motion sickness, but we argue that a more detailed definition of the exact nature of the conflict is required to fully appreciate the relationship between vection and VIMS.

  20. Contrast gain control in first- and second-order motion perception.

    Science.gov (United States)

    Lu, Z L; Sperling, G

    1996-12-01

    A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.

  1. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  2. Discovery of a new motion mechanism of biomotors similar to the earth revolving around the sun without rotation

    International Nuclear Information System (INIS)

    Guo, Peixuan; Schwartz, Chad; Haak, Jeannie; Zhao, Zhengyi

    2013-01-01

    Biomotors have been classified into linear and rotational motors. For 35 years, it has been popularly believed that viral dsDNA-packaging apparatuses are pentameric rotation motors. Recently, a third class of hexameric motor has been found in bacteriophage phi29 that utilizes a mechanism of revolution without rotation, friction, coiling, or torque. This review addresses how packaging motors control dsDNA one-way traffic; how four electropositive layers in the channel interact with the electronegative phosphate backbone to generate four steps in translocating one dsDNA helix; how motors resolve the mismatch between 10.5 bases and 12 connector subunits per cycle of revolution; and how ATP regulates sequential action of motor ATPase. Since motors with all number of subunits can utilize the revolution mechanism, this finding helps resolve puzzles and debates concerning the oligomeric nature of packaging motors in many phage systems. This revolution mechanism helps to solve the undesirable dsDNA supercoiling issue involved in rotation. - Highlights: • New motion mechanism of revolution without rotation found for phi29 DNA packaging. • Revolution motor finding expands classical linear and rotation biomotor classes. • Revolution motors transport dsDNA unidirectionally without supercoiling. • New mechanism solves many puzzles, mysteries, and debates in biomotor studies. • Motors with all numbers of subunits can utilize the revolution mechanism

  3. Discovery of a new motion mechanism of biomotors similar to the earth revolving around the sun without rotation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peixuan, E-mail: peixuan.guo@uky.edu; Schwartz, Chad; Haak, Jeannie; Zhao, Zhengyi

    2013-11-15

    Biomotors have been classified into linear and rotational motors. For 35 years, it has been popularly believed that viral dsDNA-packaging apparatuses are pentameric rotation motors. Recently, a third class of hexameric motor has been found in bacteriophage phi29 that utilizes a mechanism of revolution without rotation, friction, coiling, or torque. This review addresses how packaging motors control dsDNA one-way traffic; how four electropositive layers in the channel interact with the electronegative phosphate backbone to generate four steps in translocating one dsDNA helix; how motors resolve the mismatch between 10.5 bases and 12 connector subunits per cycle of revolution; and how ATP regulates sequential action of motor ATPase. Since motors with all number of subunits can utilize the revolution mechanism, this finding helps resolve puzzles and debates concerning the oligomeric nature of packaging motors in many phage systems. This revolution mechanism helps to solve the undesirable dsDNA supercoiling issue involved in rotation. - Highlights: • New motion mechanism of revolution without rotation found for phi29 DNA packaging. • Revolution motor finding expands classical linear and rotation biomotor classes. • Revolution motors transport dsDNA unidirectionally without supercoiling. • New mechanism solves many puzzles, mysteries, and debates in biomotor studies. • Motors with all numbers of subunits can utilize the revolution mechanism.

  4. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    Directory of Open Access Journals (Sweden)

    Shukui Liu

    2011-03-01

    Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  5. Motion of two spheres translating and rotating through a viscous fluid with slip surfaces

    International Nuclear Information System (INIS)

    Saad, E I

    2012-01-01

    The axisymmetrical motion of two spherical particles translating along and rotating about a common line that joins their centers in viscous fluid with slip flow boundary conditions on their surfaces has been studied numerically. The particles may differ in radius and in translational and angular velocities. Under the Stokesian approximation, a general solution is constructed from the superposition of the basic functions in the two spherical coordinate systems based on the centers of the particles. The boundary conditions at their surfaces are satisfied by the collocation technique. Numerical results for the normalized drag force and couple acting on each sphere are obtained for various values of the slip coefficients, size ratio, separation parameter, and velocity ratio of the particles. The normalized force and couple on each particle reach the single particle limit as the distance between the centers grows large enough and each particle may then be translated and rotated independently of each other. The accuracy of the numerical technique has been tested against the known analytical solution for two spheres with no-slip surfaces. (paper)

  6. Amplitude-cyclic frequency decomposition of vibration signals for bearing fault diagnosis based on phase editing

    Science.gov (United States)

    Barbini, L.; Eltabach, M.; Hillis, A. J.; du Bois, J. L.

    2018-03-01

    In rotating machine diagnosis different spectral tools are used to analyse vibration signals. Despite the good diagnostic performance such tools are usually refined, computationally complex to implement and require oversight of an expert user. This paper introduces an intuitive and easy to implement method for vibration analysis: amplitude cyclic frequency decomposition. This method firstly separates vibration signals accordingly to their spectral amplitudes and secondly uses the squared envelope spectrum to reveal the presence of cyclostationarity in each amplitude level. The intuitive idea is that in a rotating machine different components contribute vibrations at different amplitudes, for instance defective bearings contribute a very weak signal in contrast to gears. This paper also introduces a new quantity, the decomposition squared envelope spectrum, which enables separation between the components of a rotating machine. The amplitude cyclic frequency decomposition and the decomposition squared envelope spectrum are tested on real word signals, both at stationary and varying speeds, using data from a wind turbine gearbox and an aircraft engine. In addition a benchmark comparison to the spectral correlation method is presented.

  7. Curves from Motion, Motion from Curves

    Science.gov (United States)

    2000-01-01

    De linearum curvarum cum lineis rectis comparatione dissertatio geometrica - an appendix to a treatise by de Lalouv~re (this was the only publication... correct solution to the problem of motion in the gravity of a permeable rotating Earth, considered by Torricelli (see §3). If the Earth is a homogeneous...in 1686, which contains the correct solution as part of a remarkably comprehensive theory of orbital motions under centripetal forces. It is a

  8. When is respiratory management necessary for partial breast intensity modulated radiotherapy: A respiratory amplitude escalation treatment planning study

    International Nuclear Information System (INIS)

    Quirk, Sarah; Conroy, Leigh; Smith, Wendy L.

    2014-01-01

    Purpose: The impact of typical respiratory motion amplitudes (∼2 mm) on partial breast irradiation (PBI) is minimal; however, some patients have larger respiratory amplitudes that may negatively affect dose homogeneity. Here we determine at what amplitude respiratory management may be required to maintain plan quality. Methods and Materials: Ten patients were planned with PBI IMRT. Respiratory motion (2–20 mm amplitude) probability density functions were convolved with static plan fluence to estimate the delivered dose. Evaluation metrics included target coverage, ipsilateral breast hotspot, homogeneity, and uniformity indices. Results: Degradation of dose homogeneity was the limiting factor in reduction of plan quality due to respiratory motion, not loss of coverage. Hotspot increases were observed even at typical motion amplitudes. At 2 and 5 mm, 2/10 plans had a hotspot greater than 107% and at 10 mm this increased to 5/10 plans. Target coverage was only compromised at larger amplitudes: 5/10 plans did not meet coverage criteria at 15 mm amplitude and no plans met minimum coverage at 20 mm. Conclusions: We recommend that if respiratory amplitude is greater than 10 mm, respiratory management or alternative radiotherapy should be considered due to an increase in the hotspot in the ipsilateral breast and a decrease in dose homogeneity

  9. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    Science.gov (United States)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  10. Differential rotation of viscous neutron matter

    International Nuclear Information System (INIS)

    Nitsch, J.; Pfarr, J.; Heintzmann, H.

    1976-08-01

    The reaction of homogeneous sphere of neutron matter set in rotational motion under the influence of an external torque acting on its surface is investigated. For neutron matter with a typical neutron star density of 10 15 gcm -3 and a temperature varying between 10 6 and 10 9 K originally in uniform rotation, a time dependent differential motion sets in, which lasts a time scale of hours to some decades, resulting finally in co-rotation. During these times the braking index of a magnetic neutron sphere very sensitively depends on time

  11. Effect of observed micropolar motions on wave propagation in deep Earth minerals

    Science.gov (United States)

    Abreu, Rafael; Thomas, Christine; Durand, Stephanie

    2018-03-01

    We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate perovskite) solid from frequency gaps observed in Raman experiments. To this aim, we apply micropolar theory which is a generalization of the classical linear elastic theory, where each particle has an intrinsic rotational degree of freedom, called micro-rotation and/or spin, and which depends on the so-called Cosserat couple modulus μc that characterizes the micropolar medium. We investigate both wave propagation and dispersion. The wave propagation simulations in both potassium nitrate (KNO3) and bridgmanite crystal leads to a faster elastic wave propagation as well as to an independent rotational field of motion, called optic mode, which is smaller in amplitude compared to the conventional rotational field. The dispersion analysis predicts that the optic mode only appears above a cutoff frequency, ωr , which has been observed in Raman experiments done at high pressures and temperatures on bridgmanite crystal. The comparison of the cutoff frequency observed in experiments and the micropolar theory enables us to compute for the first time the temperature and pressure dependency of the Cosserat couple modulus μc of bridgmanite. This study thus shows that the micropolar theory can explain particle motions observed in laboratory experiments that were before neglected and that can now be used to constrain the micropolar elastic constants of Earth's mantle like material. This pioneer work aims at encouraging the use of micropolar theory in future works on deep Earth's mantle material by providing Cosserat couple modulus that were not available before.

  12. Is the anomalous magnetic moment the consequence of a non-classical transformation for rotating frames?

    International Nuclear Information System (INIS)

    Gisin, B V

    2002-01-01

    We consider the anomalous magnetic moment from an 'optical viewpoint' using an analogy between the motion of a particle with a magnetic moment in a magnetic field and the propagation of an optical pulse through an electro-optical crystal in an electric field. We show that an optical experiment similar to electron magnetic resonance is possible in some electro-optical crystals possessing the Faraday effect. This phenomenon is described by an analogue of the Pauli equation extracted from the Maxwell equation in the slowly varied amplitude approximation. In such an experiment the modulation by rotating fields plays a significant role. From the optical viewpoint the modulation assumes introducing the concept of a point rotation frame with the rotation axis at every point originated from the concept of the optical indicatrix (index ellipsoid). We discuss the connection between the non-classical transformation by transition from one such frame to another and an anomalous magnetic moment

  13. Classical theory of rotational rainbow scattering from uncorrugated surfaces

    International Nuclear Information System (INIS)

    Khodorkovsky, Yuri; Averbukh, Ilya Sh; Pollak, Eli

    2010-01-01

    A classical perturbation theory is developed to study rotational rainbow scattering of molecules from uncorrugated frozen surfaces. Considering the interaction of the rigid rotor with the translational motion towards the surface to be weak allows for a perturbative treatment, in which the known zeroth order motion is that of a freely rotating molecule hitting a surface. Using perturbation theory leads to explicit expressions for the angular momentum deflection function with respect to the initial orientational angle of the rotor that are valid for any magnitude of the initial angular momentum. The rotational rainbows appear as peaks both in the final angular momentum and rotational energy distributions, as well as peaks in the angular distribution, although the surface is assumed to be uncorrugated. The derived analytic expressions are compared with numerical simulation data. Even when the rotational motion is significantly coupled to the translational motion, the predictions of the perturbative treatment remain qualitatively correct.

  14. Empirical model of subdaily variations in the Earth rotation from GPS and its stability

    Science.gov (United States)

    Panafidina, N.; Kurdubov, S.; Rothacher, M.

    2012-12-01

    The model recommended by the IERS for these variations at diurnal and semidiurnal periods has been computed from an ocean tide model and comprises 71 terms in polar motion and Universal Time. In the present study we compute an empirical model of variations in the Earth rotation on tidal frequencies from homogeneously re-processed GPS-observations over 1994-2007 available as free daily normal equations. We discuss the reliability of the obtained amplitudes of the ERP variations and compare results from GPS and VLBI data to identify technique-specific problems and instabilities of the empirical tidal models.

  15. Single-particle motion in large-amplitude quadrupole shape transition

    International Nuclear Information System (INIS)

    Yamada, Kazuya

    1991-01-01

    The microscopic structure of the single-particle motion for the spherical-deformed transitional nuclei is analysed by using the self-consistent collective-coordinate method (SCC method). The single-particle motion in the moving-frame of reference called the collective vibrating coordinate frame is introduced by the generalized Bogoliubov transformation depending on the collective coordinate. The numerical calculations of the single-particle (quasi-particle) energy level diagrams and their occupation probabilities for the static deformation are carried out for the Sm isotopes. A clear change of the single-particle distribution structure appears in the course of deformation. (author)

  16. Determination of the axial rotation rate using apsidal motion for early-type eclipsing binaries

    Science.gov (United States)

    Khaliullin, Kh. F.; Khaliullina, A. I.

    2007-11-01

    Because the modern theory of stellar structure and evolution has a sound observational basis, we can consider that the apsidal parameters k2 computed in terms of this theory correctly reflect the radial density distribution in stars of different masses and spectral types. This allows us to address the problem of apsidal motion in close binary systems in a new way. Unlike the traditional approach, in this paper we use the observed apsidal periods Uobs to estimate the angular axial velocities of components, ωr, at fixed model values of k2. We use this approach to analyse the observational data for 28 eclipsing systems with known Uobs and early-type primaries (M >= 1.6 Msolar or Te >= 6000 K). We measure the age of the system in units of the synchronization time, t/tsyn. Our analysis yielded the following results. (i) There is a clear correlation between ωr/ωsyn and t/tsyn: the younger a star, the higher the angular velocity of its axial rotation in units of ωsyn, the angular velocity at pseudo-synchronization. This correlation is more significant and obvious if the synchronization time, tsyn, is computed in terms of the Zahn theory. (ii) This observational fact implies that the synchronization of early-type components in close binary systems continues on the main sequence. The synchronization times for the inner layers of the components (i.e. those that are responsible for apsidal motion) are about 1.6 and 3.1 dex longer than those predicted by the theories of Zahn and Tassoul, respectively. The average initial angular velocities (for the zero-age main sequence) are equal to ω0/ωsyn ~ 2.0. The dependence of the parameter E2 on stellar mass probably needs to be refined in the Zahn theory. (iii) Some components of the eclipsing systems of the sample studied show radially differential axial rotation. This is consistent with the Zahn theory, which predicts that the synchronization starts at the surface, where radiative damping of dynamical tides occurs, and

  17. Wobbling motion in high spin states

    International Nuclear Information System (INIS)

    Onishi, Naoki

    1982-01-01

    By generalizing the cranking model, interwoven motions of collective and non-collective rotation of nuclei are treated as three dimensional non-uniform rotations including precession and wobbling. Classical trajectories are obtained for the + j vector + = 30 h/2π sphere. A method of quantization for wobbling motions is discussed and is applied to estimate excitation energies. (author)

  18. Study of Stability of Rotational Motion of Spacecraft with Canonical Variables

    Directory of Open Access Journals (Sweden)

    William Reis Silva

    2012-01-01

    Full Text Available This work aims to analyze the stability of the rotational motion of artificial satellites in circular orbit with the influence of gravity gradient torque, using the Andoyer variables. The used method in this paper to analyze stability is the Kovalev-Savchenko theorem. This method requires the reduction of the Hamiltonian in its normal form up to fourth order by means of canonical transformations around equilibrium points. The coefficients of the normal Hamiltonian are indispensable in the study of nonlinear stability of its equilibrium points according to the three established conditions in the theorem. Some physical and orbital data of real satellites were used in the numerical simulations. In comparison with previous work, the results show a greater number of equilibrium points and an optimization in the algorithm to determine the normal form and stability analysis. The results of this paper can directly contribute in maintaining the attitude of artificial satellites.

  19. Estimating the accuracy of the technique of reconstructing the rotational motion of a satellite based on the measurements of its angular velocity and the magnetic field of the Earth

    Science.gov (United States)

    Belyaev, M. Yu.; Volkov, O. N.; Monakhov, M. I.; Sazonov, V. V.

    2017-09-01

    The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station ( ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.

  20. Complex demodulation in VLBI estimation of high frequency Earth rotation components

    Science.gov (United States)

    Böhm, S.; Brzeziński, A.; Schuh, H.

    2012-12-01

    The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of

  1. Nuclear moments of inertia and wobbling motions in triaxial superdeformed nuclei

    International Nuclear Information System (INIS)

    Matsuzaki, Masayuki; Shimizu, Yoshifumi R.; Matsuyanagi, Kenichi

    2004-01-01

    The wobbling motion excited on triaxial superdeformed nuclei is studied in terms of the cranked shell model plus random phase approximation. First, by calculating at a low rotational frequency the γ dependence of the three moments of inertia associated with the wobbling motion, the mechanism of the appearance of the wobbling motion in positive-γ nuclei is clarified theoretically--the rotational alignment of the πi 13/2 quasiparticle(s) is the essential condition. This indicates that the wobbling motion is a collective motion that is sensitive to the single-particle alignment. Second, we prove that the observed unexpected rotational-frequency dependence of the wobbling frequency is an outcome of the rotational-frequency dependent dynamical moments of inertia

  2. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging

    International Nuclear Information System (INIS)

    Hu, Zhengyi; Yuan, Xunhua; Pollmann, Steven I; Nikolov, Hristo N; Holdsworth, David W; Welch, Ian

    2015-01-01

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice. (paper)

  3. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging

    Science.gov (United States)

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I.; Nikolov, Hristo N.; Holdsworth, David W.

    2015-08-01

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  4. A Model of Polarisation Rotations in Blazars from Kink Instabilities in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Krzysztof Nalewajko

    2017-10-01

    Full Text Available This paper presents a simple model of polarisation rotation in optically thin relativistic jets of blazars. The model is based on the development of helical (kink mode of current-driven instability. A possible explanation is suggested for the observational connection between polarisation rotations and optical/gamma-ray flares in blazars, if the current-driven modes are triggered by secular increases of the total jet power. The importance of intrinsic depolarisation in limiting the amplitude of coherent polarisation rotations is demonstrated. The polarisation rotation amplitude is thus very sensitive to the viewing angle, which appears to be inconsistent with the observational estimates of viewing angles in blazars showing polarisation rotations. Overall, there are serious obstacles to explaining large-amplitude polarisation rotations in blazars in terms of current-driven kink modes.

  5. Evaluation of hip internal and external rotation range of motion as an injury risk factor for hip, abdominal and groin injuries in professional baseball players

    Directory of Open Access Journals (Sweden)

    Xinning Li

    2015-12-01

    Full Text Available Normal hip range of motion (ROM is essential in running and transfer of energy from lower to upper extremities during overhead throwing. Dysfunctional hip ROM may alter lower extremity kinematics and predispose athletes to hip and groin injuries. The purpose of this study is characterize hip internal/external ROM (Arc and its effect on the risk of hip, hamstring, and groin injuries in professional baseball players. Bilateral hip internal and external ROM was measured on all baseball players (N=201 in one professional organization (major and minor league during spring training. Players were organized according to their respective positions. All injuries were documented prospectively for an entire MLB season (2010 to 2011. Data was analyzed according to position and injuries during the season. Total number of players (N=201 with an average age of 24±3.6 (range=17-37. Both pitchers (N=93 and catchers (N=22 had significantly decreased mean hip internal rotation and overall hip arc of motion compared to the positional players (N=86. Players with hip, groin, and hamstring injury also had decreased hip rotation arc when compared to the normal group. Overall, there is a correlation between decreased hip internal rotation and total arc of motion with hip, hamstring, and groin injuries.

  6. Prolonged asymmetric vestibular stimulation induces opposite, long-term effects on self-motion perception and ocular responses.

    Science.gov (United States)

    Pettorossi, V E; Panichi, R; Botti, F M; Kyriakareli, A; Ferraresi, A; Faralli, M; Schieppati, M; Bronstein, A M

    2013-04-01

    Self-motion perception and the vestibulo-ocular reflex (VOR) were investigated in healthy subjects during asymmetric whole body yaw plane oscillations while standing on a platform in the dark. Platform oscillation consisted of two half-sinusoidal cycles of the same amplitude (40°) but different duration, featuring a fast (FHC) and a slow half-cycle (SHC). Rotation consisted of four or 20 consecutive cycles to probe adaptation further with the longer duration protocol. Self-motion perception was estimated by subjects tracking with a pointer the remembered position of an earth-fixed visual target. VOR was measured by electro-oculography. The asymmetric stimulation pattern consistently induced a progressive increase of asymmetry in motion perception, whereby the gain of the tracking response gradually increased during FHCs and decreased during SHCs. The effect was observed already during the first few cycles and further increased during 20 cycles, leading to a totally distorted location of the initial straight-ahead. In contrast, after some initial interindividual variability, the gain of the slow phase VOR became symmetric, decreasing for FHCs and increasing for SHCs. These oppositely directed adaptive effects in motion perception and VOR persisted for nearly an hour. Control conditions using prolonged but symmetrical stimuli produced no adaptive effects on either motion perception or VOR. These findings show that prolonged asymmetric activation of the vestibular system leads to opposite patterns of adaptation of self-motion perception and VOR. The results provide strong evidence that semicircular canal inputs are processed centrally by independent mechanisms for perception of body motion and eye movement control. These divergent adaptation mechanisms enhance awareness of movement toward the faster body rotation, while improving the eye stabilizing properties of the VOR.

  7. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  8. Effects of Age and Gender on Hand Motion Tasks

    Directory of Open Access Journals (Sweden)

    Wing Lok Au

    2015-01-01

    Full Text Available Objective. Wearable and wireless motion sensor devices have facilitated the automated computation of speed, amplitude, and rhythm of hand motion tasks. The aim of this study is to determine if there are any biological influences on these kinematic parameters. Methods. 80 healthy subjects performed hand motion tasks twice for each hand, with movements measured using a wireless motion sensor device (Kinesia, Cleveland Medical Devices Inc., Cleveland, OH. Multivariate analyses were performed with age, gender, and height added into the model. Results. Older subjects performed poorer in finger tapping (FT speed (r=0.593, p<0.001, hand-grasp (HG speed (r=0.517, p<0.001, and pronation-supination (PS speed (r=0.485, p<0.001. Men performed better in FT rhythm p<0.02, HG speed p<0.02, HG amplitude p<0.02, and HG rhythm p<0.05. Taller subjects performed better in the speed and amplitude components of FT p<0.02 and HG tasks p<0.02. After multivariate analyses, only age and gender emerged as significant independent factors influencing the speed but not the amplitude and rhythm components of hand motion tasks. Gender exerted an independent influence only on HG speed, with better performance in men p<0.05. Conclusions. Age, gender, and height are not independent factors influencing the amplitude and rhythm components of hand motion tasks. The speed component is affected by age and gender differences.

  9. PELVIC ROTATION AND LOWER EXTREMITY MOTION WITH TWO DIFFERENT FRONT FOOT DIRECTIONS IN THE TENNIS BACKHAND GROUNDSTROKE

    Directory of Open Access Journals (Sweden)

    Sayumi Iwamoto

    2013-06-01

    Full Text Available When a tennis player steps forward to hit a backhand groundstroke in closed stance, modifying the direction of the front foot relative to the net may reduce the risk of ankle injury and increase performance. This study evaluated the relationship between pelvic rotation and lower extremity movement during the backhand groundstroke when players stepped with toes parallel to the net (Level or with toes pointed towards the net (Net. High school competitive tennis players (eleven males and seven females, 16.8 ± 0.8 years, all right- handed performed tennis court tests comprising five maximum speed directional runs to the court intersection line to hit an imaginary ball with forehand or backhand swings. The final backhand groundstroke for each player at the backcourt baseline was analyzed. Pelvic rotation and lower extremity motion were quantified using 3D video analysis from frontal and sagittal plane camera views reconstructed to 3D using DLT methods. Plantar flexion of ankle and supination of the front foot were displayed for both Net and Level groups during the late phase of the front foot step. The timings of the peak pelvis rotational velocity and peak pelvis rotational acceleration showed different pattern for Net and Level groups. The peak timing of the pelvis rotational velocity of the Level group occurred during the late phase of the step, suggesting an increase in the risk of inversion ankle sprain and a decrease in stroke power compared to the Net group

  10. On selection rules in vibrational and rotational molecular spectroscopy

    International Nuclear Information System (INIS)

    Guichardet, A.

    1986-01-01

    The aim of this work is a rigorous proof of the Selection Rules in Molecular Spectroscopy (Vibration and Rotation). To get this we give mathematically rigorous definitions of the (tensor) transition operators, in this case the electric dipole moment; this is done, firstly by considering the molecule as a set of point atomic kernels performing arbitrary motions, secondly by limiting ourselves either to infinitesimal vibration motions, or to arbitrary rotation motions. Then the selection rules follow from an abstract formulation of the Wigner-Eckart theorem. In a last paragraph we discuss the problem of separating vibration and rotation motions; very simple ideas from Differential Geometry, linked with the ''slice theorem'', allow us to define the relative speeds, the solid motions speeds, the Coriolis energies and the moving Eckart frames [fr

  11. Ambiguity in Tactile Apparent Motion Perception.

    Directory of Open Access Journals (Sweden)

    Emanuela Liaci

    Full Text Available In von Schiller's Stroboscopic Alternative Motion (SAM stimulus two visually presented diagonal dot pairs, located on the corners of an imaginary rectangle, alternate with each other and induce either horizontal, vertical or, rarely, rotational motion percepts. SAM motion perception can be described by a psychometric function of the dot aspect ratio ("AR", i.e. the relation between vertical and horizontal dot distances. Further, with equal horizontal and vertical dot distances (AR = 1 perception is biased towards vertical motion. In a series of five experiments, we presented tactile SAM versions and studied the role of AR and of different reference frames for the perception of tactile apparent motion.We presented tactile SAM stimuli and varied the ARs, while participants reported the perceived motion directions. Pairs of vibration stimulators were attached to the participants' forearms and stimulator distances were varied within and between forearms. We compared straight and rotated forearm conditions with each other in order to disentangle the roles of exogenous and endogenous reference frames.Increasing the tactile SAM's AR biased perception towards vertical motion, but the effect was weak compared to the visual modality. We found no horizontal disambiguation, even for very small tactile ARs. A forearm rotation by 90° kept the vertical bias, even though it was now coupled with small ARs. A 45° rotation condition with crossed forearms, however, evoked a strong horizontal motion bias.Existing approaches to explain the visual SAM bias fail to explain the current tactile results. Particularly puzzling is the strong horizontal bias in the crossed-forearm conditions. In the case of tactile apparent motion, there seem to be no fixed priority rule for perceptual disambiguation. Rather the weighting of available evidence seems to depend on the degree of stimulus ambiguity, the current situation and on the perceptual strategy of the individual

  12. Conjunct rotation: Codman's paradox revisited.

    Science.gov (United States)

    Wolf, Sebastian I; Fradet, Laetitia; Rettig, Oliver

    2009-05-01

    This contribution mathematically formalizes Codman's idea of conjunct rotation, a term he used in 1934 to describe a paradoxical phenomenon arising from a closed-loop arm movement. Real (axial) rotation is distinguished from conjunct rotation. For characterizing the latter, the idea of reference vector fields is developed to define the neutral axial position of the humerus for any given orientation of its long axis. This concept largely avoids typical coordinate singularities arising from decomposition of 3D joint motion and therefore can be used for postural (axial) assessment of the shoulder joint both clinically and in sports science in almost the complete accessible range of motion. The concept, even though algebraic rather complex, might help to get an easier and more intuitive understanding of axial rotation of the shoulder in complex movements present in daily life and in sports.

  13. Data analysis for seismic motion characteristics

    International Nuclear Information System (INIS)

    Ishimaru, Tsuneari; Kohriya, Yorihide

    2002-10-01

    This data analysis is aimed at studying the characteristics of amplification of acceleration amplitude from deep underground to the surface, and is one of several continuous studies on the effects of earthquake motion. Seismic wave records were observed via a center array located in Shibata-cho, Miyagi Prefecture, which is part of the Kumagai-Gumi Array System for Strong Earthquake Motion (KASSEM) located on the Pacific coast in Miyagi and Fukushima Prefectures. Using acceleration waves obtained from earthquake observations, the amplification ratios of maximum acceleration amplitude and of root mean square acceleration amplitude which were based on the deepest observation point were estimated. Comparison between the seismic motion amplification characteristics of this study were made with the analyzed data at the Kamaishi-Mine (Kamaishi Miyagi Prefecture). The obtained results are as follows. The amplification ratios estimated from maximum acceleration amplitude and root mean square acceleration amplitude are almost constant in soft rock formations. However, amplification ratios at the surface in diluvium and alluvium are about three to four times larger than the ratios in soft rock formations. The amplification ratios estimated from root mean square acceleration amplitude are less dispersed than the ratios estimated from maximum acceleration amplitude. Comparing the results of this analysis with the results obtained at the Kamaishi-Mine, despite the difference in the rock types and the geologic formations at the observation points, there is a tendency for the amplification ratios at both points to be relatively small in the rock foundation and gradually increase toward the ground surface. (author)

  14. Visual perception of axes of head rotation

    Science.gov (United States)

    Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.

    2013-01-01

    Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is

  15. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen

    2013-02-01

    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  16. Increase in the Amplitude of Line-of-sight Velocities of the Small-scale Motions in a Solar Filament before Eruption

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Daikichi; Isobe, Hiroaki [Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo, Kyoto 606-8306 (Japan); Otsuji, Kenichi; Ishii, Takako T.; Sakaue, Takahito; Hirose, Kumi, E-mail: seki@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2017-07-10

    We present a study on the evolution of the small-scale velocity field in a solar filament as it approaches the eruption. The observation was carried out by the Solar Dynamics Doppler Imager (SDDI) that was newly installed on the Solar Magnetic Activity Research Telescope at Hida Observatory. The SDDI obtains a narrowband full-disk image of the Sun at 73 channels from H α − 9.0 Å to H α + 9.0 Å, allowing us to study the line-of-sight (LOS) velocity of the filament before and during the eruption. The observed filament is a quiescent filament that erupted on 2016 November 5. We derived the LOS velocity at each pixel in the filament using the Becker’s cloud model, and made the histograms of the LOS velocity at each time. The standard deviation of the LOS velocity distribution can be regarded as a measure for the amplitude of the small-scale motion in the filament. We found that the standard deviation on the previous day of the eruption was mostly constant around 2–3 km s{sup −1}, and it slightly increased to 3–4 km s{sup −1} on the day of the eruption. It shows a further increase, with a rate of 1.1 m s{sup −2}, about three hours before eruption, and another increase, with a rate of 2.8 m s{sup −2}, about an hour before eruption. From this result we suggest that the increase in the amplitude of the small-scale motions in a filament can be regarded as a precursor of the eruption.

  17. SU-F-J-117: Impact of Motion Artifacts On Image Quality and Accuracy of Tumor Motion Reconstruction in 4D CT-On-Rails and MV-CBCT Scans: A Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Lin, T; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: To compare and quantify respiratory motion artifacts in images from free breathing 4D-CT-on-Rails(CTOR) and those from MV-Cone-beam-CT(MVCB) and facilitate respiratory motion guided radiation therapy. Methods: 4D-CTOR: Siemens Somatom CT-on-Rails system with Anzai belt loaded with pressure sensor load cells. 4D scans were performed in helical mode, pitch 0.1, gantry rotation time 0.5s, 1.5mm slice thickness, 120kVp, 400 mAs. Normal and fast breathing (>12rpm) scanning protocols were investigated. Helical scan, AIP(average intensity projection) and MIP(maximum intensity projection) were generated from 4D-CTOR scans with amplitude sorting into 10 phases.MVCB: Siemens Artiste diamond view(1MV)MVCB was performed with 5MU thorax protocol with 60 second of full rotation.Phantom: Anzai AZ-733V respiratory phantom. The settings were set to normal and resp. modes with repetition rates at 15 rpm and 10 rpm. Surgical clips, acrylic, wooden, rubber and lung density, total six mock-ups were scanned and compared in this study.Signal-to-noise ratio(SNR), contrast-to-noise ratio(CNR) and reconstructed motion volume were compared to different respiratory setups for the mock-ups. Results: Reconstructed motion volume was compared to the real object volume for the six test mock-ups. It shows that free breathing helical in all instances underestimates the object excursions largest to −67.4% and least −6.3%. Under normal breathing settings, MIP can predict very precise motion volume with minimum 0.4% and largest −13.9%. MVCB shows underestimate of the motion volume with −1.11% minimum and −18.0% maximum. With fast breathing, AIP provides bad representation of the object motion; however, the MIP can predict the motion volume with −2.0% to −11.4% underestimate. Conclusion: Respiratory motion guided radiation therapy requires good motion recording. This study shows that regular CTOR helical scans provides bad guidance, 4D CTOR AIP cannot represent the fast breathing

  18. Responses of Medullary Lateral Line Units of the Goldfish, Carassius auratus, to Amplitude-Modulated Sinusoidal Wave Stimuli

    Directory of Open Access Journals (Sweden)

    Ramadan Ali

    2010-01-01

    Full Text Available This paper describes the responses of brainstem lateral line units in goldfish, Carassius auratus, to constant-amplitude and to amplitude-modulated sinusoidal water motions. If stimulated with constant-amplitude sinusoidal water motions, units responded with phasic (50% or with sustained (50% increases in dicharge rate. Based on isodisplacement curves, units preferred low (33 Hz, 12.5%, mid (50 Hz, 10% and 100 Hz, 30% or high (200 Hz, 47.5% frequencies. In most units, responses were weakly phase locked to the carrier frequency. However, at a carrier frequency of 50 Hz or 100 Hz, a substantial proportion of the units exhibited strong phase locking. If stimulated with amplitude-modulated water motions, units responded with a burst of discharge to each modulation cycle, that is, units phase locked to the amplitude modulation frequency. Response properties of brainstem units were in many respects comparable to those of midbrain units, suggesting that they emerge first in the lateral line brainstem.

  19. Drift motion of a charged particle in the crossed axial magnetic and radial electric fields, and the electric field of a rotating potential wave

    International Nuclear Information System (INIS)

    Eliseev, Yu.N.; Stepanov, K.N.

    1983-01-01

    In the drift motion approximation solution of the problem is obtained on the motion of a nonrelativistic charged particle in the crossed axial magnetic and radial electric fields, and the electric field of a rotating potential wave under cherenkov and modified cyclotron resonances. The static radial electric field potential is supposed to be close to the parabolic one. The drift motion equations and their integrals are preseOted. The experimentally obtained effect of plasma ionic component division in the crossed fields under the excitation of ion cyclotron oscillations is explained with the help of the theory developed in the paper

  20. Effect of Nonlinearity by the Amplitude Variation in coherent transmission in Laser Heterodyne Interferometric

    International Nuclear Information System (INIS)

    Chen, H F; Ding, X M; Zhong, Z; Xie, Z L; Yue, H

    2006-01-01

    To reduce the nonlinearity of nanometer measurement in laser heterodyne interferometric, the influence mechanics of the amplitude variation in coherent transmission upon nonlinearity must be confirmed. Based on the mechanics of nonlinearity, the models about how first-harmonic and second-harmonic nonlinearity caused by the amplitude variation in coherent transmission are proposed. The emulation result shows that different amplitude between measurement arm and reference arm increases the first-harmonic nonlinearity when laser beams nonorthogonality errors exist, but it doesn't change the relationship between nonlinearity and half wavelength. When the rotation angle error β of polarizing beam splitter (PBS) exists, amplitude variation only affects the first-harmonic nonlinearity. With a constant rotation angle of PBS β = 4 0 , when the amplitude factor of measurement arm reduces from 1 to 0.6, the nonlinearity increases from 0.25 nm to 3.81 nm, and the nonlinearity is simple superposition of first-harmonic and second-harmonic. Theoretic analysis and emulation show that the reduction of amplitude variation in coherent transmission can reduce influence on nonlinearity

  1. Asteroid rotation rates

    International Nuclear Information System (INIS)

    Binzel, R.P.; Farinella, P.

    1989-01-01

    Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

  2. A Comprehensive Motion Estimation Technique for the Improvement of EIS Methods Based on the SURF Algorithm and Kalman Filter.

    Science.gov (United States)

    Cheng, Xuemin; Hao, Qun; Xie, Mengdi

    2016-04-07

    Video stabilization is an important technology for removing undesired motion in videos. This paper presents a comprehensive motion estimation method for electronic image stabilization techniques, integrating the speeded up robust features (SURF) algorithm, modified random sample consensus (RANSAC), and the Kalman filter, and also taking camera scaling and conventional camera translation and rotation into full consideration. Using SURF in sub-pixel space, feature points were located and then matched. The false matched points were removed by modified RANSAC. Global motion was estimated by using the feature points and modified cascading parameters, which reduced the accumulated errors in a series of frames and improved the peak signal to noise ratio (PSNR) by 8.2 dB. A specific Kalman filter model was established by considering the movement and scaling of scenes. Finally, video stabilization was achieved with filtered motion parameters using the modified adjacent frame compensation. The experimental results proved that the target images were stabilized even when the vibrating amplitudes of the video become increasingly large.

  3. Dynamic modelling and control of a rotating Euler-Bernoulli beam

    Science.gov (United States)

    Yang, J. B.; Jiang, L. J.; Chen, D. CH.

    2004-07-01

    Flexible motion of a uniform Euler-Bernoulli beam attached to a rotating rigid hub is investigated. Fully coupled non-linear integro-differential equations, describing axial, transverse and rotational motions of the beam, are derived by using the extended Hamilton's principle. The centrifugal stiffening effect is included in the derivation. A finite-dimensional model, including couplings of axial and transverse vibrations, and of elastic deformations and rigid motions, is obtained by the finite element method. By neglecting the axial motion, a simplified modelling, suitable for studying the transverse vibration and control of a beam with large angle and high-speed rotation, is presented. And suppressions of transverse vibrations of a rotating beam are simulated with the model by combining positive position feedback and momentum exchange feedback control laws. It is indicated that an improved performance for vibration control can be achieved with the method.

  4. Effect of octupole interaction on the rotational motion of rotors in a solid Kr-CD4 solution

    International Nuclear Information System (INIS)

    Dudkin, V V; Bagatskii, M I; Mashchenko, D A

    2007-01-01

    The heat capacity of solid (CD 4 ) n Kr 1-n solutions with CD 4 concentrations n = 0.09, 0.17, 0.25, 0.35 and solutions with n = 0.25 doped with 0.0005, 0.0021 and 0.0123 of O 2 impurity has been investigated at T 0.6-30 K. It is found that the molecular field responsible for a qualitative change in the rotational motion of the rotators increases sharply as the number of nearest neighbours increases from one to three. Below 1.6 K the temperature dependence of the heat capacities of the rotational subsystems of the solutions can be described by a sum of the contributions made by molecules finding themselves in effective weak, moderate and strong molecular fields. The average concentration and the effective energy differences between the ground and the first excited energy levels of the CD 4 molecules in the above mentioned fields have been estimated. It is shown that the considerable changes in the experimental heat capacities of the rotational subsystem normalized to a mole of rotors are mostly due to the changes in the relative concentrations x(n) of the rotors in these molecular fields. Above T = 0.6 K the nuclear-spin A, T and E species of the molecules reach equilibrium distribution within one measurement of the heat capacity. The O 2 impurity is found to produce great influence on the heat capacity of the rotational subsystem in the solution with n = 0.25 and the equilibrium composition of the nuclear-spin species of the molecules

  5. Langevin equation method for the rotational Brownian motion and orientational relaxation in liquids: II. Symmetrical top molecules

    CERN Document Server

    Coffey, W T; Titov, S V

    2003-01-01

    A theory of orientational relaxation for the inertial rotational Brownian motion of a symmetric top molecule is developed using the Langevin equation rather than the Fokker-Planck equation. The infinite hierarchy of differential-recurrence relations for the orientational correlation functions for the relaxation behaviour is derived by averaging the corresponding Euler-Langevin equations. The solution of this hierarchy is obtained using matrix continued fractions allowing the calculation of the correlation times and the spectra of the orientational correlation functions for typical values of the model parameters.

  6. Motion of a Point Mass in a Rotating Disc: A Quantitative Analysis of the Coriolis and Centrifugal Force

    Science.gov (United States)

    Haddout, Soufiane

    2016-06-01

    In Newtonian mechanics, the non-inertial reference frames is a generalization of Newton's laws to any reference frames. While this approach simplifies some problems, there is often little physical insight into the motion, in particular into the effects of the Coriolis force. The fictitious Coriolis force can be used by anyone in that frame of reference to explain why objects follow curved paths. In this paper, a mathematical solution based on differential equations in non-inertial reference is used to study different types of motion in rotating system. In addition, the experimental data measured on a turntable device, using a video camera in a mechanics laboratory was conducted to compare with mathematical solution in case of parabolically curved, solving non-linear least-squares problems, based on Levenberg-Marquardt's and Gauss-Newton algorithms.

  7. Real World Testing Of A Piezoelectric Rotational Energy Harvester For Human Motion

    International Nuclear Information System (INIS)

    Pillatsch, P; Yeatman, E M; Holmes, A S

    2013-01-01

    Harvesting energy from human motion is challenging because the frequencies are generally low and random compared to industrial machinery that vibrates at much higher frequencies. One of the most promising and popular strategies to overcome this is frequency up-conversion. The transducing element is actuated at its optimal frequency of operation, higher than the source excitation frequency, through some kind of catch and release mechanism. This is beneficial for efficient power generation. Such devices have now been investigated for a few years and this paper takes a previously introduced piezoelectric rotational harvester, relying on beam plucking for the energy conversion, to the next step by testing the device during a half marathon race. The prototype and data acquisition system are described in detail and the experimental results presented. A comparison of the input excitation, based on an accelerometer readout, and the output voltage of the piezoelectric beam, recorded at the same time, confirm the successful implementation of the system. For a device functional volume of 1.85 cm 3 , a maximum power output of 7 μW was achieved when the system was worn on the upper arm. However, degradation of the piezoelectric material meant that the performance dropped rapidly from this initial level; this requires further research. Furthermore, the need for intermediate energy storage solutions is discussed, as human motion harvesters only generate power as long as the wearer is actually moving

  8. Controlling Sample Rotation in Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.

    1985-01-01

    Rotation of acoustically levitated object stopped or controlled according to phase-shift monitoring and control concept. Principle applies to square-cross-section levitation chamber with two perpendicular acoustic drivers operating at same frequency. Phase difference between X and Y acoustic excitation measured at one corner by measuring variation of acoustic amplitude sensed by microphone. Phase of driver adjusted to value that produces no rotation or controlled rotation of levitated object.

  9. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  10. Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander

    Science.gov (United States)

    Fu, Roger R.; Kent, Dennis V.

    2018-05-01

    True polar wander, or TPW, is the rotation of the entire mantle-crust system about an equatorial axis that results in a coherent velocity contribution for all lithospheric plates. One of the most recent candidate TPW events consists of a ∼30° rotation during Late Jurassic time (160-145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continents, which compose less than 50% of the Earth's surface area and may not reflect motion of the entire mantle-crust system. Additional paleopositional information from the Pacific Basin would significantly enhance coverage of the Earth's surface and allow more rigorous testing for the occurrence of TPW. We perform paleomagnetic analyses on core samples from Ocean Drilling Program (ODP) Site 801B, which were taken from the oldest available Pacific crust, to determine its paleolatitude during the Late Jurassic and Early Cretaceous (167-133 Ma). We find that the Pacific Plate underwent a steady southward drift of 0.49°-0.74° My-1 except for an interval between Kimmeridgian and Tithonian time (157-147 Ma), during which it underwent northward motion at 1.45° ± 0.76° My-1 (1σ). This trajectory indicates that the plates of the Pacific Basin participated in the same large-amplitude (∼30°) rotation as continental lithosphere in the 160-145 Ma interval. Such coherent motion of a large majority of the Earth's surface strongly supports the occurrence of TPW, suggesting that a combination of subducting slabs and rising mantle plumes was sufficient to significantly perturb the Earth's inertia tensor in the Late Jurassic.

  11. Ground-motion prediction from tremor

    Science.gov (United States)

    Baltay, Annemarie S.; Beroza, Gregory C.

    2013-01-01

    The widespread occurrence of tremor, coupled with its frequency content and location, provides an exceptional opportunity to test and improve strong ground-motion attenuation relations for subduction zones. We characterize the amplitude of thousands of individual 5 min tremor events in Cascadia during three episodic tremor and slip events to constrain the distance decay of peak ground acceleration (PGA) and peak ground velocity (PGV). We determine the anelastic attenuation parameter for ground-motion prediction equations (GMPEs) to a distance of 150 km, which is sufficient to place important constraints on ground-motion decay. Tremor PGA and PGV show a distance decay that is similar to subduction-zone-specific GMPEs developed from both data and simulations; however, the massive amount of data present in the tremor observations should allow us to refine distance-amplitude attenuation relationships for use in hazard maps, and to search for regional variations and intrasubduction zone differences in ground-motion attenuation.

  12. SU-F-J-119: Pilot Study On the Location-Based Lung Motion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, TK [Procure Proton Therapy Center, Oklahoma City, OK (United States); Ewald, A [McLaren Cancer Institute, Flint, MI (United States)

    2016-06-15

    Purpose: In most of lung treatment cases with various radiotherapy beam modalities, 4DCT images are obtained in order to define ITV. ITV is defined with the signal from motion monitoring system, e.g. RPM. However, the signal is not consistent with tumor motion because it varies with location, its size, age, gender, etc. In the present study, the location-based motion assessment is presented. Methods: 4DCT images of 70 patients were reviewed: 28-left-lung and 42-right-lung patients; 36-female and 34-male patients; the age range of 51.2–89.9; tumor-size range of 0.75–9.50cm with 25% of these adherent to bony-anatomy. Philips Big-Bore Simulation CT and RPM systems were used. The study was performed as follows. First, RPM signal and tumor motion in superior-inferior direction was compared. Second, the tumor size and its motion amplitude in all directions were measured at multiple locations. Third, the average tumor motion was calculated to assess general motion amplitudes at various locations. Results: RPM amplitude is not consistent with lung tumor motion amplitude. The tumors of similar sizes at similar location present various motion amplitude up to 1.1cm difference, but in average, the standard deviation was <0.5cm. Almost regardless of tumor sizes, the tumor motion was greatest at lower lobe location (>=1.0cm), and the smallest at upper lobe location and when adherent to bony-anatomy (<=0.5cm). Conclusion: The tumor size affects the motion amplitude less than does the tumor location. However, as the study results indicate that tumor motion has noticeable variation and so further study with more patient cases is needed. Also, for the same patient, the RPM signal presents instability of breathing, and clinically the patient with the instability of RPM breathing of <=10% is selected for respiratory-gated radiotherapy and ∼25% of patients under current study was treated. Patient-specific motion-uncertainty margins are considered to be added following further

  13. Large amplitude dynamics of micro-/nanomechanical resonators actuated with electrostatic pulses

    International Nuclear Information System (INIS)

    Juillard, J.; Bonnoit, A.; Avignon, E.; Hentz, S.; Colinet, E.

    2010-01-01

    In the field of resonant nano-electro-mechanical system (NEMS) design, it is a common misconception that large-amplitude motion, and thus large signal-to-noise ratio, can only be achieved at the risk of oscillator instability. In the present paper, we show that very simple closed-loop control schemes can be used to achieve stable large-amplitude motion of a resonant structure even when jump resonance (caused by electrostatic softening or Duffing hardening) is present in its frequency response. We focus on the case of a resonant accelerometer sensing cell, consisting of a nonlinear clamped-clamped beam with electrostatic actuation and detection, maintained in an oscillation state with pulses of electrostatic force that are delivered whenever the detected signal (the position of the beam) crosses zero. We show that the proposed feedback scheme ensures the stability of the motion of the beam much beyond the critical Duffing amplitude and that, if the parameters of the beam are correctly chosen, one can achieve almost full-gap travel range without incurring electrostatic pull-in. These results are illustrated and validated with transient simulations of the nonlinear closed-loop system.

  14. PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation

    International Nuclear Information System (INIS)

    Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van

    2013-01-01

    Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV max ) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV max up to 25% and reduce the diameter of the 50% SUV max volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions

  15. Probing the two-scale-factor universality hypothesis by exact rotation symmetry-breaking mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Neto, J.F.S.; Lima, K.A.L.; Carvalho, P.R.S. [Universidade Federal do Piaui, Departamento de Fisica, Teresina, PI (Brazil); Sena-Junior, M.I. [Universidade de Pernambuco, Escola Politecnica de Pernambuco, Recife, PE (Brazil); Universidade Federal de Alagoas, Instituto de Fisica, Maceio, AL (Brazil)

    2017-12-15

    We probe the two-scale-factor universality hypothesis by evaluating, firstly explicitly and analytically at the one-loop order, the loop quantum corrections to the amplitude ratios for O(N)λφ{sup 4} scalar field theories with rotation symmetry breaking in three distinct and independent methods in which the rotation symmetry-breaking mechanism is treated exactly. We show that the rotation symmetry-breaking amplitude ratios turn out to be identical in the three methods and equal to their respective rotation symmetry-breaking ones, although the amplitudes themselves, in general, depend on the method employed and on the rotation symmetry-breaking parameter. At the end, we show that all these results can be generalized, through an inductive process based on a general theorem emerging from the exact calculation, to any loop level and physically interpreted based on symmetry ideas. (orig.)

  16. Off-shell two-particle scattering amplitude in the P-matrix approach

    International Nuclear Information System (INIS)

    Babenko, V.A.; Petrov, N.M.

    1988-01-01

    A generalization of the P-matrix approach which makes it possible to describe the interaction of two particles off the energy shell is proposed. Explicit separation in the wave function of a part corresponding to free motion yields a compact expression for the off-shell scattering amplitude and gives directly a method for separable expansion of the amplitude

  17. The rotation of P/Halley

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Szegoe, K.; Kondor, A.; Merenyi, E.; Smith, B.A.; Larson, S.; Toth, I.

    1987-11-01

    The nucleus of the comet Halley rotates as a slightly asymmetric top, the orientation of the rotation axis (the orientation of the angular momentum vector) is b=54 deg +-15 deg, l=219 deg +-15 deg in the ecliptic system. In the case of the rotation of an asymmetric top the rotation axis is not fixed rigidly to the body, which means that while the nucleus rotates around the axis with a period of 2.2+-0.05 d, its long axis 'nods' periodically with a period of 7.4+-0.05 d. The amplitude of the 'nodding' is about 15 deg +-3 deg in both directions relative to a plane perpendicular to the rotation axis. (author) 21 refs.; 6 figs.; 2 tabs

  18. An Elongated Leading Edge Facilitates Rotation Flap Closure: In Vivo Demonstration.

    Science.gov (United States)

    Lichon, Vanessa; Barbosa, Naiara; Gomez, Doug; Goldman, Glenn

    2016-01-01

    Variation in the design of a rotation flap may affect wound closure tension. Lengthening the leading edge of a rotation flap has been a method of reducing the tension of closure in the primary motion. An in vitro study negating this tenant has been published. The authors set out to design an in vivo experiment to determine if lengthening the leading edge of a rotation flap has the effect of reducing closure tension in the primary motion of the repair. An animal study approved by Institutional Animal Care and Use Committee was undertaken in a pig model. A tension-measuring apparatus was designed using Teflon-coated wires and digital tensiometers. Rotation flaps of a standard design and with elongated leading edges were incised on the flanks of pigs under general anesthesia. Flap closure tensions were measured at points along the leading edge of the flap and in the secondary motion. Elongating the leading edge of a flap led to a statistically significant reduction in closure tension in the primary motion of the flap and at the flap tip. The secondary motion closure tensions were essentially unaffected. The authors confirm that elongating the leading edge of a standard rotation flap will reduce closure tension in the primary flap motion.

  19. Phase-space spinor amplitudes for spin-1/2 systems

    International Nuclear Information System (INIS)

    Watson, P.; Bracken, A. J.

    2011-01-01

    The concept of phase-space amplitudes for systems with continuous degrees of freedom is generalized to finite-dimensional spin systems. Complex amplitudes are obtained on both a sphere and a finite lattice, in each case enabling a more fundamental description of pure spin states than that previously given by Wigner functions. In each case the Wigner function can be expressed as the star product of the amplitude and its conjugate, so providing a generalized Born interpretation of amplitudes that emphasizes their more fundamental status. The ordinary product of the amplitude and its conjugate produces a (generalized) spin Husimi function. The case of spin-(1/2) is treated in detail, and it is shown that phase-space amplitudes on the sphere transform correctly as spinors under rotations, despite their expression in terms of spherical harmonics. Spin amplitudes on a lattice are also found to transform as spinors. Applications are given to the phase space description of state superposition, and to the evolution in phase space of the state of a spin-(1/2) magnetic dipole in a time-dependent magnetic field.

  20. Lumped model for rotational modes in phononic crystals

    KAUST Repository

    Peng, Pai

    2012-10-16

    We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.

  1. Lumped model for rotational modes in phononic crystals

    KAUST Repository

    Peng, Pai; Mei, Jun; Wu, Ying

    2012-01-01

    We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.

  2. Gravitational wave extraction in simulations of rotating stellar core collapse

    International Nuclear Information System (INIS)

    Reisswig, C.; Ott, C. D.; Sperhake, U.; Schnetter, E.

    2011-01-01

    We perform simulations of general relativistic rotating stellar core collapse and compute the gravitational waves (GWs) emitted in the core-bounce phase of three representative models via multiple techniques. The simplest technique, the quadrupole formula (QF), estimates the GW content in the spacetime from the mass-quadrupole tensor only. It is strictly valid only in the weak-field and slow-motion approximation. For the first time, we apply GW extraction methods in core collapse that are fully curvature based and valid for strongly radiating and highly relativistic sources. These techniques are not restricted to weak-field and slow-motion assumptions. We employ three extraction methods computing (i) the Newman-Penrose (NP) scalar Ψ 4 , (ii) Regge-Wheeler-Zerilli-Moncrief master functions, and (iii) Cauchy-characteristic extraction (CCE) allowing for the extraction of GWs at future null infinity, where the spacetime is asymptotically flat and the GW content is unambiguously defined. The latter technique is the only one not suffering from residual gauge and finite-radius effects. All curvature-based methods suffer from strong nonlinear drifts. We employ the fixed-frequency integration technique as a high-pass waveform filter. Using the CCE results as a benchmark, we find that finite-radius NP extraction yields results that agree nearly perfectly in phase, but differ in amplitude by ∼1%-7% at core bounce, depending on the model. Regge-Wheeler-Zerilli-Moncrief waveforms, while, in general, agreeing in phase, contain spurious high-frequency noise of comparable amplitudes to those of the relatively weak GWs emitted in core collapse. We also find remarkably good agreement of the waveforms obtained from the QF with those obtained from CCE. The results from QF agree very well in phase and systematically underpredict peak amplitudes by ∼5%-11%, which is comparable to the NP results and is certainly within the uncertainties associated with core collapse physics.

  3. The importance of stimulus noise analysis for self-motion studies.

    Directory of Open Access Journals (Sweden)

    Alessandro Nesti

    Full Text Available Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator's inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception.

  4. A Rotational and Axial Motion System Load Frame Insert for In Situ High Energy X-Ray Studies (Postprint)

    Science.gov (United States)

    2015-09-08

    Paul A. Shade, Jay C. Schuren, and Todd J. Turner AFRL/RX Basil Blank PulseRay Peter Kenesei, Kurt Goetze, Ulrich Lienert, and Jonathan Almer...AFRL/RX 2) Basil Blank – PulseRay (continued on page 2) 5d. PROJECT NUMBER 4349 5e. TASK NUMBER 0001 5f...2015) A rotational and axial motion system load frame insert for in situ high energy x-ray studies Paul A. Shade,1,a) Basil Blank,2 Jay C. Schuren,1,b

  5. Interplay between symmetries and residual interactions in rotating nuclei

    International Nuclear Information System (INIS)

    Cwiok, S.; Kvasil, J.; Nazmitdinov, R.G.

    1990-01-01

    Using the space rotation and translation invariance of the nuclear Hamiltonian, the residual interactions for a rotating nucleus are constructed. The connection is found between the Goldstone modes of motion (spurious states) and the symmetries of equations of motion in Random Phase Approximation for states near the yrast line. (author). 18 figs

  6. Note: Attenuation motion of acoustically levitated spherical rotor

    Science.gov (United States)

    Lü, P.; Hong, Z. Y.; Yin, J. F.; Yan, N.; Zhai, W.; Wang, H. P.

    2016-11-01

    Here we observe the attenuation motion of spherical rotors levitated by near-field acoustic radiation force and analyze the factors that affect the duration time of free rotation. It is found that the rotating speed of freely rotating rotor decreases exponentially with respect to time. The time constant of exponential attenuation motion depends mainly on the levitation height, the mass of rotor, and the depth of concave ultrasound emitter. Large levitation height, large mass of rotor, and small depth of concave emitter are beneficial to increase the time constant and hence extend the duration time of free rotation.

  7. Performance assessment of a programmable five degrees-of-freedom motion platform for quality assurance of motion management techniques in radiotherapy.

    Science.gov (United States)

    Huang, Chen-Yu; Keall, Paul; Rice, Adam; Colvill, Emma; Ng, Jin Aun; Booth, Jeremy T

    2017-09-01

    Inter-fraction and intra-fraction motion management methods are increasingly applied clinically and require the development of advanced motion platforms to facilitate testing and quality assurance program development. The aim of this study was to assess the performance of a 5 degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the motion platform were derived from literature regarding the motion characteristics of prostate and lung tumor targets required for real time motion management. The performance of the programmable motion platform was evaluated against (1) maximum range, velocity and acceleration (5 DoF), (2) static position accuracy (5 DoF) and (3) dynamic position accuracy using patient-derived prostate and lung tumor motion traces (3 DoF). Translational motion accuracy was compared against electromagnetic transponder measurements. Rotation was benchmarked with a digital inclinometer. The static accuracy and reproducibility for translation and rotation was quality assurance and commissioning of motion management systems in radiation oncology.

  8. Self-rotations in simulated microgravity: performance effects of strategy training.

    Science.gov (United States)

    Stirling, Leia; Newman, Dava; Willcox, Karen

    2009-01-01

    This research studies reorientation methodologies in a simulated microgravity environment using an experimental framework to reduce astronaut adaptation time and provide for a safety countermeasure during extravehicular activity. There were 20 subjects (10 men, 10 women, mean age of 23.6 +/- 3.5) who were divided into 2 groups, fully trained and minimally trained, which determined the amount of motion strategy training received. Subjects performed a total of 48 rotations about their pitch, roll, and yaw axes in a suspension system that simulated microgravity. In each trial subjects either rotated 90 degrees in pitch, 90 degrees in roll, or 180 degrees in yaw. Experimental measures include subject coordination, performance time, cognitive workload assessments, and qualitative motion control strategies. Subjects in the fully trained group had better initial performance with respect to performance time and workload scores for the pitch and yaw rotations. Further, trained subjects reached a steady-state performance time in fewer trials than those with minimal training. The subjects with minimal training tended to use motions that were common in an Earth environment since no technique was provided. For roll rotations they developed motions that would have led to significant off-axis (pitch and yaw) rotations in a true microgravity environment. We have shown that certain body axes are easier to rotate about than others and that fully trained subjects had an easier time performing the body rotations than the minimally trained subjects. This study has provided the groundwork for the development of an astronaut motion-control training program.

  9. A study of coronary artery rotational motion with dense scale-space optical flow in intravascular ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Danilouchkine, M G; Mastik, F; Steen, A F W van der [Department of Biomedical Engineering, Erasmus Medical Center, Ee2302, PO Box 2040, 3000 CA, Rotterdam (Netherlands)], E-mail: m.danilouchkine@ErasmusMC.nl, E-mail: f.mastik@ErasmusMC.nl, E-mail: a.vandersteen@ErasmusMC.nl

    2009-03-21

    This paper describes a novel method for estimating tissue motion in two-dimensional intravascular ultrasound (IVUS) images of a coronary artery. It is based on the classical Lukas-Kanade (LK) algorithm for optical flow (OF). The OF vector field quantifies the amount of misalignment between two consecutive frames in a sequence of images. From the theoretical standpoint, two fundamental improvements are proposed in this paper. First, using a simplified representation of the vessel wall as a medium with randomly distributed scatterers, it was shown that the OF equation satisfies the integral brightness conservation law. Second, a scale-space embedding for the OF equation was derived under the assumption of spatial consistency in IVUS acquisitions. The spatial coherence is equivalent to a locally affine motion model. The latter effectively captures and appropriately describes a complex deformation pattern of the coronary vessel wall under the varying physiological conditions (i.e. pulsatile blood pressure). The accuracy of OF tracking was estimated on the tissue-mimicking phantoms subjected to the controlled amount of angular deviation. Moreover, the performance of the classical LK and proposed approach was compared using the simulated IVUS images with an atherosclerotic lesion. The experimental results showed robust and reliable performance of up to 5{sup 0} of rotation, which is within the plausible range of circumferential displacement of the coronary arteries. Subsequently, the algorithm was used to analyze vessel wall motion in 18 IVUS pullbacks from 16 patients. The in vivo experiments revealed that the motion of coronary arteries is primarily determined by the cardiac contraction.

  10. Rotational and translational Brownian motion

    International Nuclear Information System (INIS)

    Coffey, W.T.; Salford Univ.

    1980-01-01

    In this review it is proposed to summarise the work on the theory of the translational and rotational Brownian movement which has been carried on over roughly the past 30 years. The review is intended to take the form of a tutorial paper rather than a list of the results obtained by the various investigators over the period in question. In this vein then it seems appropriate to firstly give a brief account of those parts of the theory of probability which are relevant to the problems under discussion. (orig.)

  11. High frequency variations of Earth Rotation Parameters from GPS and GLONASS observations.

    Science.gov (United States)

    Wei, Erhu; Jin, Shuanggen; Wan, Lihua; Liu, Wenjie; Yang, Yali; Hu, Zhenghong

    2015-01-28

    The Earth's rotation undergoes changes with the influence of geophysical factors, such as Earth's surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP) are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations) and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas) in Polar Motion (PM) and 0.5 milli-seconds (ms) in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM) and hydrological angular momentum (HAM), which needs more detailed analysis with more geophysical data in the future.

  12. Programmable motion of DNA origami mechanisms.

    Science.gov (United States)

    Marras, Alexander E; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E

    2015-01-20

    DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank-slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼ minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.

  13. Programmable motion of DNA origami mechanisms

    Science.gov (United States)

    Marras, Alexander E.; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E.

    2015-01-01

    DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank–slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach. PMID:25561550

  14. 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications

    Science.gov (United States)

    Sollberger, David; Greenhalgh, Stewart A.; Schmelzbach, Cedric; Van Renterghem, Cédéric; Robertsson, Johan O. A.

    2018-04-01

    We provide a six-component (6-C) polarization model for P-, SV-, SH-, Rayleigh-, and Love-waves both inside an elastic medium as well as at the free surface. It is shown that single-station 6-C data comprised of three components of rotational motion and three components of translational motion provide the opportunity to unambiguously identify the wave type, propagation direction, and local P- and S-wave velocities at the receiver location by use of polarization analysis. To extract such information by conventional processing of three-component (3-C) translational data would require large and dense receiver arrays. The additional rotational components allow the extension of the rank of the coherency matrix used for polarization analysis. This enables us to accurately determine the wave type and wave parameters (propagation direction and velocity) of seismic phases, even if more than one wave is present in the analysis time window. This is not possible with standard, pure-translational 3-C recordings. In order to identify modes of vibration and to extract the accompanying wave parameters, we adapt the multiple signal classification algorithm (MUSIC). Due to the strong nonlinearity of the MUSIC estimator function, it can be used to detect the presence of specific wave types within the analysis time window at very high resolution. We show how the extracted wavefield properties can be used, in a fully automated way, to separate the wavefield into its different wave modes using only a single 6-C recording station. As an example, we apply the method to remove surface wave energy while preserving the underlying reflection signal and to suppress energy originating from undesired directions, such as side-scattered waves.

  15. Framing the features of Brownian motion and thermophoresis on radiative nanofluid flow past a rotating stretching sheet with magnetohydrodynamics

    Directory of Open Access Journals (Sweden)

    F. Mabood

    Full Text Available This article addresses the combined effects of chemical reaction and viscous dissipation on MHD radiative heat and mass transfer of nanofluid flow over a rotating stretching surface. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis in the presence of heat source. Similarity transformation variables have been used to model the governing equations of momentum, energy, and nanoparticles concentration. Runge-Kutta-Fehlberg method with shooting technique is applied to solve the resulting coupled ordinary differential equations. Physical features for all pertinent parameters on the dimensionless velocity, temperature, skin friction coefficient, and heat and mass transfer rates are analyzed graphically. The numerical comparison has also presented for skin friction coefficient and local Nusselt number as a special case for our study. It is noted that fluid velocity enhances when rotational parameter is increased. Surface heat transfer rate enhances for larger values of Prandtl number and heat source parameter while mass transfer rate increases for larger values of chemical reaction parameter. Keywords: Nanofluid, MHD, Chemical reaction, Rotating stretching sheet, Radiation

  16. The Role of Rotation in Convective Heat Transport: an Application to Low-Mass Stars

    Science.gov (United States)

    Matilsky, Loren; Hindman, Bradley W.; Toomre, Juri; Featherstone, Nicholas

    2018-06-01

    It is often supposed that the convection zones (CZs) of low-mass stars are purely adiabatically stratified. This is thought to be because convective motions are extremely efficient at homogenizing entropy within the CZ. For a purely adiabatic fluid layer, only very small temperature variations are required to drive convection, making the amplitude and overall character of the convection highly sensitive to the degree of adiabaticity established in the CZ. The presence of rotation, however, fundamentally changes the dynamics of the CZ; the strong downflow plumes that are required to homogenize entropy are unable to penetrate through the entire fluid layer if they are deflected too soon by the Coriolis force. This talk discusses 3D global models of spherical-shell convection subject to different rotation rates. The simulation results emphasize the possibility that for stars with a high enough rotation rate, large fractions of their CZs are not in fact adiabatically stratified; rather, there is a finite superadiabatic gradient that varies in magnitude with radius, being at a minimum in the CZ’s middle layers. Two consequences of the varying superadiabatic gradient are that the convective amplitudes at the largest length scales are effectively suppressed and that there is a strong latitudinal temperature gradient from a cold equator to a hot pole, which self-consistently drives a thermal wind. A connection is naturally drawn to the Sun’s CZ, which has supergranulation as an upper limit to its convective length scales and isorotational contours along radial lines, which can be explained by the presence of a thermal wind.

  17. Mobile technology and telemedicine for shoulder range of motion: validation of a motion-based machine-learning software development kit.

    Science.gov (United States)

    Ramkumar, Prem N; Haeberle, Heather S; Navarro, Sergio M; Sultan, Assem A; Mont, Michael A; Ricchetti, Eric T; Schickendantz, Mark S; Iannotti, Joseph P

    2018-03-07

    Mobile technology offers the prospect of delivering high-value care with increased patient access and reduced costs. Advances in mobile health (mHealth) and telemedicine have been inhibited by the lack of interconnectivity between devices and software and inability to process consumer sensor data. The objective of this study was to preliminarily validate a motion-based machine learning software development kit (SDK) for the shoulder compared with a goniometer for 4 arcs of motion: (1) abduction, (2) forward flexion, (3) internal rotation, and (4) external rotation. A mobile application for the SDK was developed and "taught" 4 arcs of shoulder motion. Ten subjects without shoulder pain or prior shoulder surgery performed the arcs of motion for 5 repetitions. Each motion was measured by the SDK and compared with a physician-measured manual goniometer measurement. Angular differences between SDK and goniometer measurements were compared with univariate and power analyses. The comparison between the SDK and goniometer measurement detected a mean difference of less than 5° for all arcs of motion (P > .05), with a 94% chance of detecting a large effect size from a priori power analysis. Mean differences for the arcs of motion were: abduction, -3.7° ± 3.2°; forward flexion, -4.9° ± 2.5°; internal rotation, -2.4° ± 3.7°; and external rotation -2.6° ± 3.4°. The SDK has the potential to remotely substitute for a shoulder range of motion examination within 5° of goniometer measurements. An open-source motion-based SDK that can learn complex movements, including clinical shoulder range of motion, from consumer sensors offers promise for the future of mHealth, particularly in telemonitoring before and after orthopedic surgery. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex

    Science.gov (United States)

    Raymond, J. L.; Lisberger, S. G.

    1996-01-01

    We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.

  19. Interaction between subdaily Earth rotation parameters and GPS orbits

    Science.gov (United States)

    Panafidina, Natalia; Seitz, Manuela; Hugentobler, Urs

    2013-04-01

    In processing GPS observations the geodetic parameters like station coordinates and ERPs (Earth rotation parameters) are estimated w.r.t. the celestial reference system realized by the satellite orbits. The interactions/correlations between estimated GPS orbis and other parameters may lead to numerical problems with the solution and introduce systematic errors in the computed values: the well known correlations comprise 1) the correlation between the orbital parameters determining the orientation of the orbital plane in inertial space and the nutation and 2) in the case of estimating ERPs with subdaily resolution the correlation between retrograde diurnal polar motion and nutation (and so the respective orbital elements). In this contribution we study the interaction between the GPS orbits and subdaily model for the ERPs. Existing subdaily ERP model recommended by the IERS comprises ~100 terms in polar motion and ~70 terms in Universal Time at diurnal and semidiurnal tidal periods. We use a long time series of daily normal equation systems (NEQ) obtaine from GPS observations from 1994 till 2007 where the ERPs with 1-hour resolution are transformed into tidal terms and the influence of the tidal terms with different frequencies on the estimated orbital parameters is considered. We found that although there is no algebraic correlation in the NEQ between the individual orbital parameters and the tidal terms, the changes in the amplitudes of tidal terms with periods close to 24 hours can be better accmodated by systematic changes in the orbital parameters than for tidal terms with other periods. Since the variation in Earth rotation with the period of siderial day (23.93h, tide K1) in terrestrial frame has in inertial space the same period as the period of revolution of GPS satellites, the K1 tidal term in polar motion is seen by the satellites as a permanent shift. The tidal terms with close periods (from ~24.13h to ~23.80h) are seen as a slow rotation of the

  20. Particle Distribution Modification by Low Amplitude Modes

    International Nuclear Information System (INIS)

    White, R.B.; Gorelenkov, N.; Heidbrink, W.W.; Van Zeeland, M.A.

    2009-01-01

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  1. Near-inertial motions over a mid-Ocean Ridge; Effects of topography and hydrothermal plumes

    Science.gov (United States)

    Thomson, Richard E.; Roth, Sharon E.; Dymond, Jack

    1990-05-01

    We investigate the spatial structure of near-inertial motions in the vicinity of the Endeavour segment of Juan de Fuca Ridge (approximately 48°N, 129°W) in the northeast Pacific Ocean. On the basis of time series current and water property data collected from September 1984 to September 1987, near-inertial motions are ubiquitous features of the 2200-m water column, with root-mean-square (rms) current speeds comparable to those of the dominant M2 tidal currents. Within the lower 1000 m of the water column where most of the observations were obtained, near-inertial oscillations have rms current speeds of O(1 cm/s) and vertical isotherm displacements of O(10 m). The fluctuations are confined to the frequency band 0.966-1.079 f(f is the local Coriolis parameter) and have characteristic event durations of 1 week. Although the spectra of subsurface motions are dominated by the "blue-shifted" superinertial band, significant spectral peaks are found also in the subinertial and inertial frequency bands. Marked alteration of the near-inertial current amplitudes occurs over two well-defined depth zones within the study region. Within the 200-m zone immediately above the 2100-m ridge crest, current amplitudes are amplified by a factor of 1.2-1.7 because of bottom reflection and/or scattering of the downward propagating energy. Evidence that the amplification may be linked to bottom reflection rather than to scattering is provided by flattening and cross-slope rotation of the near-inertial current ellipses with increased proximity to the top of the ridge. Reflection would occur at grazing angles of less than 1° and would be associated with surface-generated waves originating at distances of over 100 km from the observational site. In contrast to the enhanced amplitudes immediately above the top of the ridge, near-inertial currents within the 1600- to 1800-m depth range undergo pronounced attenuation and frequency alteration. Amplitude attenuation is especially pronounced for

  2. Seismic rotation waves: basic elements of theory and recording

    Directory of Open Access Journals (Sweden)

    P. Palangio

    2003-06-01

    Full Text Available Returning to the old problem of observed rotation effects, we present the recording system and basic elements of the theory related to the rotation fi eld and its association with seismic waves. There can be many different causes leading to observed/recorded rotation effects; we can group them as follows: generation of micro-displacement motion due to asymmetry of source processes and/or due to interaction between seismic body/surface waves and medium structure; interaction between incident seismic waves and objects situated on the ground surface. New recording techniques and advanced theory of deformation in media with defects and internal (e.g., granular structure make it possible to focus our attention on the fi rst group, related to microdisplacement motion recording, which includes both rotation and twist motions. Surface rotations and twists caused directly by the action of emerging seismic waves on some objects situated on the ground surface are considered here only in the historical aspects of the problem. We present some examples of experimental results related to recording of rotation and twist components at the Ojcow Observatory, Poland, and L'Aquila Observatory, Italy, and we discuss some prospects for further research.

  3. The Relationship Between Shoulder Stiffness and Rotator Cuff Healing: A Study of 1,533 Consecutive Arthroscopic Rotator Cuff Repairs.

    Science.gov (United States)

    McNamara, William J; Lam, Patrick H; Murrell, George A C

    2016-11-16

    Retear and stiffness are not uncommon outcomes of rotator cuff repair. The purpose of this study was to evaluate the relationship between rotator cuff repair healing and shoulder stiffness. A total of 1,533 consecutive shoulders had an arthroscopic rotator cuff repair by a single surgeon. Patients assessed their shoulder stiffness using a Likert scale preoperatively and at 1, 6, 12, and 24 weeks (6 months) postoperatively, and examiners evaluated passive range of motion preoperatively and at 6, 12, and 24 weeks postoperatively. Repair integrity was determined by ultrasound evaluation at 6 months. After rotator cuff repair, there was an overall significant loss of patient-ranked and examiner-assessed shoulder motion at 6 weeks compared with preoperative measurements (p rotator cuff integrity at 6 months postoperatively (r = 0.11 to 0.18; p rotation at 6 weeks postoperatively was 7%, while the retear rate of patients with >20° of external rotation at 6 weeks was 15% (p rotator cuff repair was more likely to heal. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  4. SU-E-J-11: A New Optical Method to Register Patient External Motion

    International Nuclear Information System (INIS)

    Barbes, B; Azcona, J; Moreno, M; Prieto, E; Foronda, J; Burguete, J

    2014-01-01

    Purpose: To devise and implement a new system to measure and register the patient motion during radiotherapy treatments. Methods: The system can obtain the position of several points in the 3D-space, through their projections in the 2D-images recorded by two cameras. The algorithm needs a series of constants, that are obtained using the images of a calibrated phantom.To test the system, some adhesive labels were placed on the surface of an object. Two cameras recorded the moving object over time. An in-house developed software localized the labels in each image. In the first pair of images, the program used a first approximation given by the user. In the subsequent images, it used the last position as an approximate location. The final exact coordinates of the point were obtained in a two-step process using the contrast of the images. From the 2D-positions of the point in each frame, the 3D-trajectories of each of these marks were obtained.The system was tested with linear displacements, oscillations of a mechanical oscillator, circular trajectories of a rotating disk, and with respiratory motion of a volunteer. Results: Trajectories of several points were reproduced with sub-millimeter accuracy in the three directions of the space. The system was able to follow periodic motion with amplitudes lower than 0.5mm; and trajectories of rotating points at speeds up to 200mm/s. The software could also track accurately the respiration motion of a person. Conclusion: A new, inexpensive optical tracking system for patient motion has been demonstrated. The system detects motion with high accuracy. Installation and calibration of the system is simple and quick. Data collection is not expected to involve any discomfort for the patient, nor any delay for the treatment. The system could be also used as a method of warning for patient movements, and for gating. We acknowledge financial support from Fundacion Mutua Madrilena, Madrid, Spain

  5. SU-E-J-11: A New Optical Method to Register Patient External Motion

    Energy Technology Data Exchange (ETDEWEB)

    Barbes, B; Azcona, J; Moreno, M; Prieto, E [Clinica Universidad de Navarra, Pamplona, Navarra (Spain); Foronda, J [Tecnun Universidad de Navarra, San Sabastian (Spain); Burguete, J [Universidad de Navarra, Pamplona, Navarra (Spain)

    2014-06-01

    Purpose: To devise and implement a new system to measure and register the patient motion during radiotherapy treatments. Methods: The system can obtain the position of several points in the 3D-space, through their projections in the 2D-images recorded by two cameras. The algorithm needs a series of constants, that are obtained using the images of a calibrated phantom.To test the system, some adhesive labels were placed on the surface of an object. Two cameras recorded the moving object over time. An in-house developed software localized the labels in each image. In the first pair of images, the program used a first approximation given by the user. In the subsequent images, it used the last position as an approximate location. The final exact coordinates of the point were obtained in a two-step process using the contrast of the images. From the 2D-positions of the point in each frame, the 3D-trajectories of each of these marks were obtained.The system was tested with linear displacements, oscillations of a mechanical oscillator, circular trajectories of a rotating disk, and with respiratory motion of a volunteer. Results: Trajectories of several points were reproduced with sub-millimeter accuracy in the three directions of the space. The system was able to follow periodic motion with amplitudes lower than 0.5mm; and trajectories of rotating points at speeds up to 200mm/s. The software could also track accurately the respiration motion of a person. Conclusion: A new, inexpensive optical tracking system for patient motion has been demonstrated. The system detects motion with high accuracy. Installation and calibration of the system is simple and quick. Data collection is not expected to involve any discomfort for the patient, nor any delay for the treatment. The system could be also used as a method of warning for patient movements, and for gating. We acknowledge financial support from Fundacion Mutua Madrilena, Madrid, Spain.

  6. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    International Nuclear Information System (INIS)

    Tian, Y; Stützer, K; Enghardt, W; Priegnitz, M; Helmbrecht, S; Fiedler, F; Bert, C

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed. (note)

  7. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    Science.gov (United States)

    Tian, Y.; Stützer, K.; Enghardt, W.; Priegnitz, M.; Helmbrecht, S.; Bert, C.; Fiedler, F.

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed.

  8. Rotational glenohumeral adaptations are associated with shoulder pathology in professional male handball players.

    Science.gov (United States)

    Lubiatowski, Przemyslaw; Kaczmarek, Piotr; Cisowski, Pawel; Breborowicz, Ewa; Grygorowicz, Monika; Dzianach, Marcin; Krupecki, Tomasz; Laver, Lior; Romanowski, Leszek

    2018-01-01

    Glenohumeral range of motion adaptations may affect throwing athletes and contribute to shoulder injury. The purpose of this study was to evaluate shoulder rotation deficits among elite professional handball players and its correlation to the presence of shoulder pain and morphological changes. Eighty-seven elite professional handball players and 41 healthy non-athlete volunteers participated in the study. Evaluations included measurement of range of internal and external rotation, total arch of motion, identification of shoulder pain and ultrasound scan for diagnosis of rotator cuff tears and internal impingement. Glenohumeral rotational deficits (>20-25°) were found among 11 players group (13%). The throwing shoulders in the players group showed a decrease in internal rotation and an increase in external rotation with significantly larger ranges among players compared to the non-athlete group. Internal rotation deficit >20° was associated with higher incidence of shoulder pain among players. Both internal rotation deficits (>25°) and total arch of motion deficit (>20°) co-existed with higher incidence of internal impingement. Shoulder pain was common (36/97-41%) and was associated with decreased external rotation and total arch of motion. Internal impingement (found in 13/87-15%) correlated with decreased rotation ranges and a greater deficit in total arch of motion, whereas higher gain in external rotation correlated with a partial rotator cuff tear (found in 12/87-14%). Shoulder pathologies and problems commonly affected the group of handball players. Greater glenohumeral rotational deficits in throwing shoulders of handball players correlate with shoulder pain and internal impingement, while increased external rotation with partial rotator cuff tears. Such deficits affect 13% of the athlete population. Major clinical relevance of the study is to monitor handball players' shoulders both clinically and by proper imaging. Evaluation of range of rotation seems

  9. On complex periodic motions and bifurcations in a periodically forced, damped, hardening Duffing oscillator

    International Nuclear Information System (INIS)

    Guo, Yu; Luo, Albert C.J.

    2015-01-01

    In this paper, analytically predicted are complex periodic motions in the periodically forced, damped, hardening Duffing oscillator through discrete implicit maps of the corresponding differential equations. Bifurcation trees of periodic motions to chaos in such a hardening Duffing oscillator are obtained. The stability and bifurcation analysis of periodic motion in the bifurcation trees is carried out by eigenvalue analysis. The solutions of all discrete nodes of periodic motions are computed by the mapping structures of discrete implicit mapping. The frequency-amplitude characteristics of periodic motions are computed that are based on the discrete Fourier series. Thus, the bifurcation trees of periodic motions are also presented through frequency-amplitude curves. Finally, based on the analytical predictions, the initial conditions of periodic motions are selected, and numerical simulations of periodic motions are carried out for comparison of numerical and analytical predictions. The harmonic amplitude spectrums are also given for the approximate analytical expressions of periodic motions, which can also be used for comparison with experimental measurement. This study will give a better understanding of complex periodic motions in the hardening Duffing oscillator.

  10. Special considerations for testing rising rotating stem MOVs

    International Nuclear Information System (INIS)

    Moffa, A.

    1992-01-01

    Rising stem gate and globe valves have one plane of motion: linear. The stem is either pushed or pulled into position. For rising and rotating stems however, there are two planes of motion: linear and rotational. The stem is twisted in addition to being pushed or pulled into position. Typical motor operated valve (MOV) sizing equations account only for the linear requirements of the valve to open or close. Theoretical calculations performed for a two-dimensional system predict that in the running load region, rotational torque requirements far exceed the linear requirements. To validate the theoretical model, torque testing of rising rotating stem valves was preformed, using Liberty Technologies Valve Operation Test and Evaluation System (VOTES). Theoretical and empirical data have produced a new perspective for operational requirements and a guideline for testing rising rotating stem valves

  11. Human otolith-ocular reflexes during off-vertical axis rotation: effect of frequency on tilt-translation ambiguity and motion sickness

    Science.gov (United States)

    Wood, Scott J.; Paloski, W. H. (Principal Investigator)

    2002-01-01

    The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.

  12. Development of a fast response rotating polarimeter for a faraday rotation measurement

    International Nuclear Information System (INIS)

    Maeno, Masaki; Ogiwara, Norio; Ogawa, Hiroaki; Matsuda, Toshiaki

    1994-03-01

    This paper describes a method for using a spindle sustained with active magnetic bearing to make a rotating half waveplate frequency more fast. The time interval of the zero-cross phase measurement is 189 μsec in this experiment. The magnetic bearing is applicable to increase the rotating waveplate frequency by a factor of 2-3 compared with the conventional one. The waveplate speed as well as the deviation with respect to the stationary laser beam has no influence on the amplitude and phase shift of the rotating polarized beam signal. There is also no influence of the mirror reflections on the phase shift. The overall phase resolution is estimated to be about 0.1 degrees. (author)

  13. Altered spinal motion in low back pain associated with lumbar strain and spondylosis.

    Science.gov (United States)

    Cheng, Joseph S; Carr, Christopher B; Wong, Cyrus; Sharma, Adrija; Mahfouz, Mohamed R; Komistek, Richard D

    2013-04-01

    Study Design We present a patient-specific computer model created to translate two-dimensional (2D) fluoroscopic motion data into three-dimensional (3D) in vivo biomechanical motion data. Objective The aim of this study is to determine the in vivo biomechanical differences in patients with and without acute low back pain. Current dynamic imaging of the lumbar spine consists of flexion-extension static radiographs, which lack sensitivity to out-of-plane motion and provide incomplete information on the overall spinal motion. Using a novel technique, in-plane and coupled out-of-plane rotational motions are quantified in the lumbar spine. Methods A total of 30 participants-10 healthy asymptomatic subjects, 10 patients with low back pain without spondylosis radiologically, and 10 patients with low back pain with radiological spondylosis-underwent dynamic fluoroscopy with a 3D-to-2D image registration technique to create a 3D, patient-specific bone model to analyze in vivo kinematics using the maximal absolute rotational magnitude and the path of rotation. Results Average overall in-plane rotations (L1-L5) in patients with low back pain were less than those asymptomatic, with the dominant loss of motion during extension. Those with low back pain also had significantly greater out-of-plane rotations, with 5.5 degrees (without spondylosis) and 7.1 degrees (with spondylosis) more out-of-plane rotational motion per level compared with asymptomatic subjects. Conclusions Subjects with low back pain exhibited greater out-of-plane intersegmental motion in their lumbar spine than healthy asymptomatic subjects. Conventional flexion-extension radiographs are inadequate for evaluating motion patterns of lumbar strain, and assessment of 3D in vivo spinal motion may elucidate the association of abnormal vertebral motions and clinically significant low back pain.

  14. Image quality of cone beam CT on respiratory motion

    International Nuclear Information System (INIS)

    Zhang Ke; Li Minghui; Dai Jianrong; Wang Shi

    2011-01-01

    In this study,the influence of respiratory motion on Cone Beam CT (CBCT) image quality was investigated by a motion simulating platform, an image quality phantom, and a kV X-ray CBCT. A total of 21 motion states in the superior-inferior direction and the anterior-posterior direction, separately or together, was simulated by considering different respiration amplitudes, periods and hysteresis. The influence of motion on CBCT image quality was evaluated with the quality indexes of low contrast visibility, geometric accuracy, spatial resolution and uniformity of CT values. The results showed that the quality indexes were affected by the motion more prominently in AP direction than in SI direction, and the image quality was affected by the respiration amplitude more prominently than the respiration period and the hysteresis. The CBCT image quality and its characteristics influenced by the respiration motion, and may be exploited in finding solutions. (authors)

  15. Adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems

    International Nuclear Information System (INIS)

    Baranger, M.; Veneroni, M.

    1978-01-01

    We show how to derive the parameters of a phenomenological collective model from a microscopic theory. The microscopic theory is Hartree-Fock, and we start from the time-dependent Hartree-Fock equation. To this we add the adiabatic approximation, which results in a collective kinetic energy quadratic in the velocities, with coefficients depending on the coordinates, as in the phenomenological models. The crucial step is the decomposition of the single-particle density matrix p in the form exp(i/sub chi/) rho/sub omicron/exp(-i/sub chi/), where rho/sub omicron/ represents a time-even Slater determinant and plays the role of coordinate. Then chi plays the role of momentum, and the adiabatic assumption is that chi is small. The energy is expanded in powers of chi, the zeroth-order being the collective potential energy. The analogy with classical mechanics is stressed and studied. The same adiabatic equations of motion are derived in three different ways (directly, from the Lagrangian, from the Hamiltonian), thus proving the consistency of the theory. The dynamical equation is not necessary for writing the energy or for the subsequent quantization which leads to a Schroedinger equation, but it must be used to check the validity of various approximation schemes, particularly to reduce the problem to a few degrees of freedom. The role of the adiabatic hypothesis, its definition, and range of validity, are analyzed in great detail. It assumes slow motion, but not small amplitude, and is therefore suitable for large-amplitude collective motion. The RPA is obtained as the limiting case where the amplitude is also small. The translational mass is correctly given, and the moment of inertia under rotation is that of Thouless and Valatin. For a quadrupole two-body force, the Baranger-Kumar formalism is recovered. The self-consistency brings additional terms to the Inglis cranking formula. Comparison is also made with generator coordinate methods

  16. Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy

    International Nuclear Information System (INIS)

    Shirato, Hiroki; Suzuki, Keishiro; Sharp, Gregory C.; Fujita, Katsuhisa R.T.; Onimaru, Rikiya; Fujino, Masaharu; Kato, Norio; Osaka, Yasuhiro; Kinoshita, Rumiko; Taguchi, Hiroshi; Onodera, Shunsuke; Miyasaka, Kazuo

    2006-01-01

    Background: To reduce the uncertainty of registration for lung tumors, we have developed a four-dimensional (4D) setup system using a real-time tumor-tracking radiotherapy system. Methods and Materials: During treatment planning and daily setup in the treatment room, the trajectory of the internal fiducial marker was recorded for 1 to 2 min at the rate of 30 times per second by the real-time tumor-tracking radiotherapy system. To maximize gating efficiency, the patient's position on the treatment couch was adjusted using the 4D setup system with fine on-line remote control of the treatment couch. Results: The trajectory of the marker detected in the 4D setup system was well visualized and used for daily setup. Various degrees of interfractional and intrafractional changes in the absolute amplitude and speed of the internal marker were detected. Readjustments were necessary during each treatment session, prompted by baseline shifting of the tumor position. Conclusion: The 4D setup system was shown to be useful for reducing the uncertainty of tumor motion and for increasing the efficiency of gated irradiation. Considering the interfractional and intrafractional changes in speed and amplitude detected in this study, intercepting radiotherapy is the safe and cost-effective method for 4D radiotherapy using real-time tracking technology

  17. Exploiting Performance of Different Low-Cost Sensors for Small Amplitude Oscillatory Motion Monitoring: Preliminary Comparisons in View of Possible Integration

    Directory of Open Access Journals (Sweden)

    Elisa Benedetti

    2016-01-01

    Full Text Available We address the problem of low amplitude oscillatory motion detection through different low-cost sensors: a LIS3LV02DQ MEMS accelerometer, a Microsoft Kinect v2 range camera, and a uBlox 6 GPS receiver. Several tests were performed using a one-direction vibrating table with different oscillation frequencies (in the range 1.5–3 Hz and small challenging amplitudes (0.02 m and 0.03 m. A Mikrotron EoSens high-resolution camera was used to give reference data. A dedicated software tool was developed to retrieve Kinect v2 results. The capabilities of the VADASE algorithm were employed to process uBlox 6 GPS receiver observations. In the investigated time interval (in the order of tens of seconds the results obtained indicate that displacements were detected with the resolution of fractions of millimeters with MEMS accelerometer and Kinect v2 and few millimeters with uBlox 6. MEMS accelerometer displays the lowest noise but a significant bias, whereas Kinect v2 and uBlox 6 appear more stable. The results suggest the possibility of sensor integration both for indoor (MEMS accelerometer + Kinect v2 and for outdoor (MEMS accelerometer + uBlox 6 applications and seem promising for structural monitoring applications.

  18. Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

    International Nuclear Information System (INIS)

    Wang, H H; Yuan, Z H; Wu, J

    2006-01-01

    At present, gondola platform is one of the stratospheric balloon-borne platforms being in research focus at home and overseas. Comparing to other stratospheric balloon-borne platforms, such as airship platform, gondola platform has advantages of higher stability, rapid in motion regulation and lower energy cost but disadvantages of less supporting capacity and be incapable of fixation. While all platforms have the same goal of keeping them at accurate angle and right pose for the requirements of instruments and objects installed in the platforms, when platforms rotate round the ground level perpendicular. That is accomplishing motion control. But, platform control system has factors of low damper, excessive and uncertain disturbances by the reason of its being hung over balloon in the air, it is hard to achieve the desired control precision because platform is ease to deviate its benchmark motion. Thus, in the controlling procedure in order to get higher precision, it is crucial to perceive the platform's swing synchronously and rapidly, and restrain the influence of disturbances effectively, keep the platform's pose steadily. Furthermore, while the platform in the air regard control center in the ground as reference object, it is ultimate to select a appropriate reference frame and work out the coordinates and implement the adjustment by the PC104 controller. This paper introduces the methods of the motion control based on stratospheric balloon-borne gondola platform. Firstly, this paper compares the characteristic of the flywheel and CMG and specifies the key methods of obtaining two significant states which are 'orientation stability' state and 'orientation tracking' state for platform motion control procedure using CMG as the control actuator. These two states reduce the deviation amplitude of rotation and swing of gondola's motion relative to original motion due to stratospheric intense atmosphere disturbance. We define it as the first procedure. In next

  19. Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

    Science.gov (United States)

    Wang, H. H.; Yuan, Z. H.; Wu, J.

    2006-10-01

    At present, gondola platform is one of the stratospheric balloon-borne platforms being in research focus at home and overseas. Comparing to other stratospheric balloon-borne platforms, such as airship platform, gondola platform has advantages of higher stability, rapid in motion regulation and lower energy cost but disadvantages of less supporting capacity and be incapable of fixation. While all platforms have the same goal of keeping them at accurate angle and right pose for the requirements of instruments and objects installed in the platforms, when platforms rotate round the ground level perpendicular. That is accomplishing motion control. But, platform control system has factors of low damper, excessive and uncertain disturbances by the reason of its being hung over balloon in the air, it is hard to achieve the desired control precision because platform is ease to deviate its benchmark motion. Thus, in the controlling procedure in order to get higher precision, it is crucial to perceive the platform's swing synchronously and rapidly, and restrain the influence of disturbances effectively, keep the platform's pose steadily. Furthermore, while the platform in the air regard control center in the ground as reference object, it is ultimate to select a appropriate reference frame and work out the coordinates and implement the adjustment by the PC104 controller. This paper introduces the methods of the motion control based on stratospheric balloon-borne gondola platform. Firstly, this paper compares the characteristic of the flywheel and CMG and specifies the key methods of obtaining two significant states which are 'orientation stability' state and 'orientation tracking' state for platform motion control procedure using CMG as the control actuator. These two states reduce the deviation amplitude of rotation and swing of gondola's motion relative to original motion due to stratospheric intense atmosphere disturbance. We define it as the first procedure. In next

  20. CISM Course on Rotating Fluids

    CERN Document Server

    1992-01-01

    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  1. Dynamical heterogeneities of rotational motion in room temperature ionic liquids evidenced by molecular dynamics simulations

    Science.gov (United States)

    Usui, Kota; Hunger, Johannes; Bonn, Mischa; Sulpizi, Marialore

    2018-05-01

    Room temperature ionic liquids (RTILs) have been shown to exhibit spatial heterogeneity or structural heterogeneity in the sense that they form hydrophobic and ionic domains. Yet studies of the relationship between this structural heterogeneity and the ˜picosecond motion of the molecular constituents remain limited. In order to obtain insight into the time scales relevant to this structural heterogeneity, we perform molecular dynamics simulations of a series of RTILs. To investigate the relationship between the structures, i.e., the presence of hydrophobic and ionic domains, and the dynamics, we gradually increase the size of the hydrophobic part of the cation from ethylammonium nitrate (EAN), via propylammonium nitrate (PAN), to butylammonium nitrate (BAN). The two ends of the organic cation, namely, the charged Nhead-H group and the hydrophobic Ctail-H group, exhibit rotational dynamics on different time scales, evidencing dynamical heterogeneity. The dynamics of the Nhead-H group is slower because of the strong coulombic interaction with the nitrate counter-ionic anions, while the dynamics of the Ctail-H group is faster because of the weaker van der Waals interaction with the surrounding atoms. In particular, the rotation of the Nhead-H group slows down with increasing cationic chain length, while the rotation of the Ctail-H group shows little dependence on the cationic chain length, manifesting that the dynamical heterogeneity is enhanced with a longer cationic chain. The slowdown of the Nhead-H group with increasing cationic chain length is associated with a lower number of nitrate anions near the Nhead-H group, which presumably results in the increase of the energy barrier for the rotation. The sensitivity of the Nhead-H rotation to the number of surrounding nitrate anions, in conjunction with the varying number of nitrate anions, gives rise to a broad distribution of Nhead-H reorientation times. Our results suggest that the asymmetry of the cations and the

  2. Further Development of Rotating Rake Mode Measurement Data Analysis

    Science.gov (United States)

    Dahl, Milo D.; Hixon, Ray; Sutliff, Daniel L.

    2013-01-01

    The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode amplitudes and phases were quantified. For low-speed fans within axisymmetric ducts, mode power levels computed from rotating rake measured data would agree with the far-field power levels on a tone by tone basis. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection at the exit and previous studies suggested conditions could exist where significant reflections could occur. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. The fit equations were also modified to allow evanescent mode amplitudes to be computed. This extension of the rotating rake data analysis technique was tested using simulated data, numerical code produced data, and preliminary in-duct measured data.

  3. Using Co-located Rotational and Translational Ground-Motion Sensors to Characterize Seismic Scattering in the P-Wave Coda

    Science.gov (United States)

    Bartrand, J.; Abbott, R. E.

    2017-12-01

    We present data and analysis of a seismic data collect at the site of a historical underground nuclear explosion at Yucca Flat, a sedimentary basin on the Nevada National Security Site, USA. The data presented here consist of active-source, six degree-of-freedom seismic signals. The translational signals were collected with a Nanometrics Trillium Compact Posthole seismometer and the rotational signals were collected with an ATA Proto-SMHD, a prototype rotational ground motion sensor. The source for the experiment was the Seismic Hammer (a 13,000 kg weight-drop), deployed on two-kilometer, orthogonal arms centered on the site of the nuclear explosion. By leveraging the fact that compressional waves have no rotational component, we generated a map of subsurface scattering and compared the results to known subsurface features. To determine scattering intensity, signals were cut to include only the P-wave and its coda. The ratio of the time-domain signal magnitudes of angular velocity and translational acceleration were sectioned into three time windows within the coda and averaged within each window. Preliminary results indicate an increased rotation/translation ratio in the vicinity of the explosion-generated chimney, suggesting mode conversion of P-wave energy to S-wave energy at that location. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  4. Relativistic motion of spinning particles in a gravitational field

    International Nuclear Information System (INIS)

    Chicone, C.; Mashhoon, B.; Punsly, B.

    2005-01-01

    The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed

  5. Influence of Continuous Table Motion on Patient Breathing Patterns

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Baier, Kurt; Richter, Anne; Herrmann, Christian; Ma Lei; Flentje, Michael; Guckenberger, Matthias

    2010-01-01

    Purpose: To investigate the influence of continuous table motion on patient breathing patterns for compensation of moving targets by a robotic treatment couch. Methods and Materials: Fifteen volunteers were placed on a robotic treatment couch, and the couch was moved on different breathing-correlated and -uncorrelated trajectories. External abdominal breathing motion of the patients was measured using an infrared camera system. The influence of table motion on breathing range and pattern was analyzed. Results: Continuous table motion was tolerated well by all test persons. Volunteers reacted differently to table motion. Four test persons showed no change of breathing range and pattern. Increased irregular breathing was observed in 4 patients; however, irregularity was not correlated with table motion. Only 4 test persons showed an increase in mean breathing amplitude of more than 2mm during motion of the couch. The mean cycle period decreased by more than 1 s for 2 test persons only. No abrupt changes in amplitude or cycle period could be observed. Conclusions: The observed small changes in breathing patterns support the application of motion compensation by a robotic treatment couch.

  6. Experimental investigation of the sloshing motion of the water free surface in the draft tube of a Francis turbine operating in synchronous condenser mode

    Science.gov (United States)

    Vagnoni, Elena; Favrel, Arthur; Andolfatto, Loïc; Avellan, François

    2018-06-01

    Hydropower units may be required to operate in condenser mode to supply reactive power. In this operating mode, the water level in the turbine or pump-turbine is decreased below the runner by closing the guide vanes and injecting pressurized air. While operating in condenser mode the machine experiences power losses due to several air-water interaction phenomena which cause air losses. One of such phenomena is the sloshing motion of the water free surface below the runner in the draft tube cone of a Francis turbine. The objective of the present work is to experimentally investigate the sloshing motion of the water free surface in the draft tube cone of a reduced scale physical model of a Francis turbine operating in condenser mode. Images acquisition and simultaneous pressure fluctuation measurements are performed and an image processing method is developed to investigate amplitude and frequency of the sloshing motion of the free surface. It is found that this motion is excited at the natural frequency of the water volume and corresponds to the azimuthal wavenumber m = 1 of a rotating gravity wave. The amplitude of the motion is perturbed by wave breaking and it decreases by increasing the densimetric Froude number. The sloshing frequency slightly increases with respect to the natural frequency of the water volume by increasing the densimetric Froude number. Moreover, it results that this resonant phenomenon is not related to the torque perturbation.

  7. An estimation of Envisat's rotational state accounting for the precession of its rotational axis caused by gravity-gradient torque

    Science.gov (United States)

    Lin, Hou-Yuan; Zhao, Chang-Yin

    2018-01-01

    The rotational state of Envisat is re-estimated using the specular glint times in optical observation data obtained from 2013 to 2015. The model is simplified to a uniaxial symmetric model with the first order variation of its angular momentum subject to a gravity-gradient torque causing precession around the normal of the orbital plane. The sense of Envisat's rotation can be derived from observational data, and is found to be opposite to the sense of its orbital motion. The rotational period is estimated to be (120.674 ± 0.068) · exp((4.5095 ± 0.0096) ×10-4 · t) s , where t is measured in days from the beginning of 2013. The standard deviation is 0.760 s, making this the best fit obtained for Envisat in the literature to date. The results demonstrate that the angle between the angular momentum vector and the negative normal of the orbital plane librates around a mean value of 8.53 ° ± 0.42 ° with an amplitude from about 0.7 ° (in 2013) to 0.5 ° (in 2015), with the libration period equal to the precession period of the angular momentum, from about 4.8 days (in 2013) to 3.4 days (in 2015). The ratio of the minimum to maximum principal moments of inertia is estimated to be 0.0818 ± 0.0011 , and the initial longitude of the angular momentum in the orbital coordinate system is 40.5 ° ± 9.3 ° . The direction of the rotation axis derived from our results at September 23, 2013, UTC 20:57 is similar to the results obtained from satellite laser ranging data but about 20 ° closer to the negative normal of the orbital plane.

  8. On the dynamics of slowly rotating stellar systems

    International Nuclear Information System (INIS)

    Davoust, E.

    1989-01-01

    Kinematical observations are now available for stellar systems which might rotate slowly. The study of periodic orbits in model stellar systems shows that a mean motion in epicyclic or circular orbits contributes to balance the centrifugal force, in addition to the velocity dispersions. Two dynamical models, the generalized Toomre and Plummer models, are adapted to the case of slow rotation. They are applied to two globular clusters, M 3 and 47 Tucanae, and 12 clusters of galaxies. 47 Tucanae is found to rotate, but none of the clusters of galaxies has any significant mean motion, except SC 316-44. 34 refs., 1 fig., 3 tabs. (author)

  9. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    Energy Technology Data Exchange (ETDEWEB)

    Knybel, Lukas [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic); VŠB-Technical University of Ostrava, Ostrava (Czech Republic); Cvek, Jakub, E-mail: Jakub.cvek@fno.cz [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic); Molenda, Lukas; Stieberova, Natalie; Feltl, David [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic)

    2016-11-15

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe

  10. The effect of dynamic femoroacetabular impingement on pubic symphysis motion: a cadaveric study.

    Science.gov (United States)

    Birmingham, Patrick M; Kelly, Bryan T; Jacobs, Robert; McGrady, Linda; Wang, Mei

    2012-05-01

    A link between femoroacetabular impingement and athletic pubalgia has been reported clinically. One proposed origin of athletic pubalgia is secondary to repetitive loading of the pubic symphysis, leading to instability and parasymphyseal tendon and ligament injury. Hypothesis/ The purpose of this study was to investigate the effect of simulated femoral-based femoroacetabular impingement on rotational motion at the pubic symphysis. The authors hypothesize that the presence of a cam lesion leads to increased relative symphyseal motion. Controlled laboratory study. Twelve hips from 6 fresh-frozen human cadaveric pelvises were used to simulate cam-type femoroacetabular impingement. The hips were held in a custom jig and maximally internally rotated at 90° of flexion and neutral adduction. Three-dimensional motion of the pubic symphysis was measured by a motion-tracking system for 2 states: native and simulated cam. Load-displacement plots were generated between the internal rotational torque applied to the hip and the responding motion in 3 anatomic planes of the pubic symphysis. As the hip was internally rotated, the motion at the pubic symphysis increased proportionally with the degrees of the rotation as well as the applied torque measured at the distal femur for both states. The primary rotation of the symphysis was in the transverse plane and on average accounted for more than 60% of the total rotation. This primary motion caused the anterior aspect of the symphyseal joint to open or widen, whereas the posterior aspect narrowed. At the torque level of 18.0 N·m, the mean transverse rotation in degrees was 0.89° ± 0.35° for the native state and 1.20° ± 0.41° for cam state. The difference between cam and the native groups was statistically significant (P pubalgia.

  11. High Frequency Variations of Earth Rotation Parameters from GPS and GLONASS Observations

    Directory of Open Access Journals (Sweden)

    Erhu Wei

    2015-01-01

    Full Text Available The Earth’s rotation undergoes changes with the influence of geophysical factors, such as Earth’s surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS, Global Navigation Satellite System (GLONASS, and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas in Polar Motion (PM and 0.5 milli-seconds (ms in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM and hydrological angular momentum (HAM, which needs more detailed analysis with more geophysical data in the future.

  12. The rotational temperature of polar molecular ions in Coulomb crystals

    International Nuclear Information System (INIS)

    Bertelsen, Anders; Joergensen, Solvejg; Drewsen, Michael

    2006-01-01

    With MgH + ions as a test case, we investigate to what extent the rotational motion of smaller polar molecular ions sympathetically cooled into Coulomb crystals in linear Paul traps couples to the translational motions of the ion ensemble. By comparing the results obtained from rotational resonance-enhanced multiphoton photo-dissociation experiments with data from theoretical simulations, we conclude that the effective rotational temperature exceeds the translational temperature (<100 mK) by more than two orders of magnitude, indicating a very weak coupling. (letter to the editor)

  13. Broad-Band Analysis of Polar Motion Excitations

    Science.gov (United States)

    Chen, J.

    2016-12-01

    Earth rotational changes, i.e. polar motion and length-of-day (LOD), are driven by two types of geophysical excitations: 1) mass redistribution within the Earth system, and 2) angular momentum exchange between the solid Earth (more precisely the crust) and other components of the Earth system. Accurate quantification of Earth rotational excitations has been difficult, due to the lack of global-scale observations of mass redistribution and angular momentum exchange. The over 14-years time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) have provided a unique means for quantifying Earth rotational excitations from mass redistribution in different components of the climate system. Comparisons between observed Earth rotational changes and geophysical excitations estimated from GRACE, satellite laser ranging (SLR) and climate models show that GRACE-derived excitations agree remarkably well with polar motion observations over a broad-band of frequencies. GRACE estimates also suggest that accelerated polar region ice melting in recent years and corresponding sea level rise have played an important role in driving long-term polar motion as well. With several estimates of polar motion excitations, it is possible to estimate broad-band noise variance and noise power spectra in each, given reasonable assumptions about noise independence. Results based on GRACE CSR RL05 solutions clearly outperform other estimates with the lowest noise levels over a broad band of frequencies.

  14. Earth rotation excitation mechanisms derived from geodetic space observations

    Science.gov (United States)

    Göttl, F.; Schmidt, M.

    2009-04-01

    Earth rotation variations are caused by mass displacements and motions in the subsystems of the Earth. Via the satellite Gravity and Climate Experiment (GRACE) gravity field variations can be identified which are caused by mass redistribution in the Earth system. Therefore time variable gravity field models (GFZ RL04, CSR RL04, JPL RL04, ITG-Grace03, GRGS, ...) can be used to derive different impacts on Earth rotation. Furthermore satellite altimetry provides accurate information on sea level anomalies (AVISO, DGFI) which are caused by mass and volume changes of seawater. Since Earth rotation is solely affected by mass variations and motions the volume (steric) effect has to be reduced from the altimetric observations in order to infer oceanic contributions to Earth rotation variations. Therefore the steric effect is estimated from physical ocean parameters such as temperature and salinity changes in the oceans (WOA05, Ishii). In this study specific individual geophysical contributions to Earth rotation variations are identified by means of a multitude of accurate geodetic space observations in combination with a realistic error propagation. It will be shown that due to adjustment of altimetric and/or gravimetric solutions the results for polar motion excitations can be improved.

  15. Rotation of the planet mercury.

    Science.gov (United States)

    Jefferys, W H

    1966-04-08

    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.

  16. A fluid Foucault pendulum: the impossibility of achieving solid-body rotation on Earth

    Science.gov (United States)

    Blum, Robert; Zimmerman, Daniel; Triana, Santiago; Lathrop, Daniel

    2012-11-01

    Rotating fluid dynamics is key to our understanding of the Earth's atmosphere, oceans, and core, along with a plethora of astrophysical objects. Laboratory study of these natural systems often involves spinning experimental devices, which are assumed to tend to rigid rotation when unstirred. We present results showing that even at the tabletop scale, there is a measurable oscillatory flow driven by the precession of the experiment's axis as the earth rotates. We measure this flow in a rotating cylinder with an adjustable aspect ratio. The horizontal flow in the rotating frame is measured using particle tracking. The steady state is well-described by an inertial mode whose amplitude is maximum when the height to diameter ratio is 0.995, which matches theoretical predictions. We also quantify the resonant amplitude of the inertial mode in the cylinder and estimate the amplitude in other devices. We compare our results to similar studies done in spherical devices. [Triana et al., JGR, 117 (2012), B04103][Boisson et al., EPL, 98 (2012), 59002].

  17. Cervical flexion-rotation test and physiological range of motion - A comparative study of patients with myogenic temporomandibular disorder versus healthy subjects.

    Science.gov (United States)

    Greenbaum, Tzvika; Dvir, Zeevi; Reiter, Shoshana; Winocur, Ephraim

    2017-02-01

    Temporomandibular Disorders (TMD) refer to several common clinical disorders which involve the masticatory muscles, the temporomandibular joint (TMJ) and the adjacent structures. Although neck signs and symptoms are found with higher prevalence in TMD patients compared to the overall population, whether limitation of cervical mobility is an additional positive finding in this cohort is still an open question. To compare the physiological cervical range of motion (CROM) and the extent of rotation during cervical flexion (flexion-rotation test, FRT) in people with TMD (muscular origin) and healthy control subjects. The range of motion of the neck and FRT was measured in 20 women with myogenic TMD and 20 age matched healthy controls. Women with myogenic TMD had significantly lower FRT scores compared to their matched healthy women. No difference was found between groups in CROM in any of the planes of movement. The FRT was positive (less than 32°) in 90% of the TMD participants versus 5% in the healthy control but the findings were not correlated with TMD severity. The results point out a potential involvement of the upper cervical joints (c1-c2) in women with myogenic TMD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Asymmetric sensory reweighting in human upright stance.

    Directory of Open Access Journals (Sweden)

    David Logan

    Full Text Available To investigate sensory reweighting as a fundamental property of sensor fusion during standing, we probed postural control with simultaneous rotations of the visual scene and surface of support. Nineteen subjects were presented with pseudo-random pitch rotations of visual scene and platform at the ankle to test for amplitude dependencies in the following conditions: low amplitude vision: high amplitude platform, low amplitude vision: low amplitude platform, and high amplitude vision: low amplitude platform. Gain and phase of frequency response functions (FRFs to each stimulus were computed for two body sway angles and a single weighted EMG signal recorded from seven muscles. When platform stimulus amplitude was increased while visual stimulus amplitude remained constant, gain to vision increased, providing strong evidence for inter-modal reweighting between vision and somatosensation during standing. Intra-modal reweighting of vision was also observed as gains to vision decreased as visual stimulus amplitude increased. Such intra-modal and inter-modal amplitude dependent changes in gain were also observed in muscular activity. Gains of leg segment angle and muscular activity relative to the platform, on the other hand, showed only intra-modal reweighting. That is, changing platform motion amplitude altered the responses to both visual and support surface motion whereas changing visual scene motion amplitude did not significantly affect responses to support surface motion, indicating that the sensory integration scheme between somatosensation (at the support surface and vision is asymmetric.

  19. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    International Nuclear Information System (INIS)

    Knybel, Lukas; Cvek, Jakub; Molenda, Lukas; Stieberova, Natalie; Feltl, David

    2016-01-01

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P 15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P 3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe tumors; higher interfraction amplitude variability indicated tumors in contact

  20. A rotating bag model for hadrons. 2

    International Nuclear Information System (INIS)

    Iwasaki, Masaharu

    1994-01-01

    The MIT bag model is modified in order to describe rotational motion of hadrons. It has a kind of 'diatomic molecular' structure; The rotational excitation of the MIT bag is described by the polarized two colored sub-bags which are connected with each other by the gluon flux. One sub-bag contains a quark and the other has an antiquark for mesons. For baryons, the latter sub-bag contains the remaining two quarks instead of the antiquark. The Regge trajectories of hadrons are explained qualitatively by our new model with the usual MIT bag parameters. In particular the Regge slopes are reproduced fairly well. It is also pointed out that the gluon flux plays an important role in the rotational motion of hadrons. (author)

  1. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    Science.gov (United States)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  2. Postoperative stiff shoulder after open rotator cuff repair: a 3- to 20-year follow-up study.

    Science.gov (United States)

    Vastamäki, H; Vastamäki, M

    2014-12-01

    Stiffness after a rotator cuff tear is common. So is stiffness after an arthroscopic rotator cuff repair. In the literature, however, postoperative restriction of passive range of motion after open rotator cuff repair in shoulders with free passive range of motion at surgery has seldom been recognized. We hypothesize that this postoperative stiffness is more frequent than recognized and slows the primary postoperative healing after a rotator cuff reconstruction. We wondered how common is postoperative restriction of both active and passive range of motion after open rotator cuff repair in shoulders with free passive preoperative range of motion, how it recovers, and whether this condition influences short- and long-term results of surgery. We also explored factors predicting postoperative shoulder stiffness. We retrospectively identified 103 postoperative stiff shoulders among 416 consecutive open rotator cuff repairs, evaluating incidence and duration of stiffness, short-term clinical results and long-term range of motion, pain relief, shoulder strength, and functional results 3-20 (mean 8.7) years after surgery in 56 patients. The incidence of postoperative shoulder stiffness was 20%. It delayed primary postoperative healing by 3-6 months and resolved during a mean 6.3 months postoperatively. External rotation resolved first, corresponding to that of the controls at 3 months; flexion and abduction took less than 1 year after surgery. The mean summarized range of motion (flexion + abduction + external rotation) increased as high as 93% of the controls' range of motion by 6 months and 100% by 1 year. Flexion, abduction, and internal rotation improved to the level of the contralateral shoulders as did pain, strength, and function. Age at surgery and condition of the biceps tendon were related to postoperative stiffness. Postoperative stiff shoulder after open rotator cuff repair is a common complication resolving in 6-12 months with good long-term results. © The

  3. Interior structure of rotating black holes. I. Concise derivation

    International Nuclear Information System (INIS)

    Hamilton, Andrew J. S.; Polhemus, Gavin

    2011-01-01

    This paper presents a concise derivation of a new set of solutions for the interior structure of accreting, rotating black holes. The solutions are conformally stationary, axisymmetric, and conformally separable. Hyper-relativistic counter-streaming between freely-falling collisionless ingoing and outgoing streams leads to mass inflation at the inner horizon, followed by collapse. The solutions fail at an exponentially tiny radius, where the rotational motion of the streams becomes comparable to their radial motion. The papers provide a fully nonlinear, dynamical solution for the interior structure of a rotating black hole from just above the inner horizon inward, down to a tiny scale.

  4. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  5. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    Science.gov (United States)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  6. Nonlinear travelling waves in rotating Hagen–Poiseuille flow

    Science.gov (United States)

    Pier, Benoît; Govindarajan, Rama

    2018-03-01

    The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.

  7. Bayesian noise-reduction in Arabia/Somalia and Nubia/Arabia finite rotations since ˜20 Ma: Implications for Nubia/Somalia relative motion

    Science.gov (United States)

    Iaffaldano, Giampiero; Hawkins, Rhys; Sambridge, Malcolm

    2014-04-01

    Knowledge of Nubia/Somalia relative motion since the Early Neogene is of particular importance in the Earth Sciences, because it (i) impacts on inferences on African dynamic topography; and (ii) allows us to link plate kinematics within the Indian realm with those within the Atlantic basin. The contemporary Nubia/Somalia motion is well known from geodetic observations. Precise estimates of the past-3.2-Myr average motion are also available from paleo-magnetic observations. However, little is known of the Nubia/Somalia motion prior to ˜3.2 Ma, chiefly because the Southwest Indian Ridge spread slowly, posing a challenge to precisely identify magnetic lineations. This also makes the few observations available particularly prone to noise. Here we reconstruct Nubia/Somalia relative motions since ˜20 Ma from the alternative plate-circuit Nubia-Arabia-Somalia. We resort to trans-dimensional hierarchical Bayesian Inference, which has proved effective in reducing finite-rotation noise, to unravel the Arabia/Somalia and Arabia/Nubia motions. We combine the resulting kinematics to reconstruct the Nubia/Somalia relative motion since ˜20 Ma. We verify the validity of the approach by comparing our reconstruction with the available record for the past ˜3.2 Myr, obtained through Antarctica. Results indicate that prior to ˜11 Ma the total motion between Nubia and Somalia was faster than today. Furthermore, it featured a significant strike-slip component along the Nubia/Somalia boundary. It is only since ˜11 Ma that Nubia diverges away from Somalia at slower rates, comparable to the present-day one. Kinematic changes of some 20% might have occurred in the period leading to the present-day, but plate-motion steadiness is also warranted within the uncertainties.

  8. Angular momentum projection of tilted axis rotating states

    Energy Technology Data Exchange (ETDEWEB)

    Oi, M; Onishi, N; Tajima, N [Tokyo Univ. (Japan); Horibata, T

    1998-03-01

    We applied an exact angular momentum projection to three dimensional cranked HFB (3d-CHFB) states. Tilted axis rotating states (TAR) and principal axis rotating states (PAR) are compared. It is shown that TAR is more adequate than PAR for description of the back bending phenomena driven by tilted rotation or wobbling motion. (author)

  9. Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin

    International Nuclear Information System (INIS)

    Haller, Jens D.; Schanda, Paul

    2013-01-01

    Solid-state NMR provides insight into protein motion over time scales ranging from picoseconds to seconds. While in solution state the methodology to measure protein dynamics is well established, there is currently no such consensus protocol for measuring dynamics in solids. In this article, we perform a detailed investigation of measurement protocols for fast motions, i.e. motions ranging from picoseconds to a few microseconds, which is the range covered by dipolar coupling and relaxation experiments. We perform a detailed theoretical investigation how dipolar couplings and relaxation data can provide information about amplitudes and time scales of local motion. We show that the measurement of dipolar couplings is crucial for obtaining accurate motional parameters, while systematic errors are found when only relaxation data are used. Based on this realization, we investigate how the REDOR experiment can provide such data in a very accurate manner. We identify that with accurate rf calibration, and explicit consideration of rf field inhomogeneities, one can obtain highly accurate absolute order parameters. We then perform joint model-free analyses of 6 relaxation data sets and dipolar couplings, based on previously existing, as well as new data sets on microcrystalline ubiquitin. We show that nanosecond motion can be detected primarily in loop regions, and compare solid-state data to solution-state relaxation and RDC analyses. The protocols investigated here will serve as a useful basis towards the establishment of a routine protocol for the characterization of ps–μs motions in proteins by solid-state NMR

  10. Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Jens D.; Schanda, Paul, E-mail: paul.schanda@ibs.fr [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France)

    2013-10-09

    Solid-state NMR provides insight into protein motion over time scales ranging from picoseconds to seconds. While in solution state the methodology to measure protein dynamics is well established, there is currently no such consensus protocol for measuring dynamics in solids. In this article, we perform a detailed investigation of measurement protocols for fast motions, i.e. motions ranging from picoseconds to a few microseconds, which is the range covered by dipolar coupling and relaxation experiments. We perform a detailed theoretical investigation how dipolar couplings and relaxation data can provide information about amplitudes and time scales of local motion. We show that the measurement of dipolar couplings is crucial for obtaining accurate motional parameters, while systematic errors are found when only relaxation data are used. Based on this realization, we investigate how the REDOR experiment can provide such data in a very accurate manner. We identify that with accurate rf calibration, and explicit consideration of rf field inhomogeneities, one can obtain highly accurate absolute order parameters. We then perform joint model-free analyses of 6 relaxation data sets and dipolar couplings, based on previously existing, as well as new data sets on microcrystalline ubiquitin. We show that nanosecond motion can be detected primarily in loop regions, and compare solid-state data to solution-state relaxation and RDC analyses. The protocols investigated here will serve as a useful basis towards the establishment of a routine protocol for the characterization of ps–μs motions in proteins by solid-state NMR.

  11. Determination of pitch rotation in a spherical birefringent microparticle

    Science.gov (United States)

    Roy, Basudev; Ramaiya, Avin; Schäffer, Erik

    2018-03-01

    Rotational motion of a three dimensional spherical microscopic object can happen either in pitch, yaw or roll fashion. Among these, the yaw motion has been conventionally studied using the intensity of scattered light from birefringent microspheres through crossed polarizers. Up until now, however, there is no way to study the pitch motion in spherical microspheres. Here, we suggest a new method to study the pitch motion of birefringent microspheres under crossed polarizers by measuring the 2-fold asymmetry in the scattered signal either using video microscopy or with optical tweezers. We show a couple of simple examples of pitch rotation determination using video microscopy for a microsphere attached with a kinesin molecule while moving along a microtubule and of a particle diffusing freely in water.

  12. A note on probabilistic computation of earthquake response spectrum amplitudes

    International Nuclear Information System (INIS)

    Anderson, J.G.; Trifunac, M.D.

    1979-01-01

    This paper analyzes a method for computation of Pseudo Relative Velocity (PSV) spectrum and Absolute Acceleration (SA) spectrum so that the amplitudes and the shapes of these spectra reflect the geometrical characteristics of the seismic environment of the site. The estimated spectra also incorporate the geologic characteristics at the site, direction of ground motion and the probability of exceeding these motions. An example of applying this method in a realistic setting is presented and the uncertainties of the results are discussed. (Auth.)

  13. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Directory of Open Access Journals (Sweden)

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  14. Hyperventilation in a motion sickness desensitization program

    NARCIS (Netherlands)

    Mert, A.; Bles, W.; Nooij, S.A.E.

    2007-01-01

    Introduction: In motion sickness desensitization programs, the motion sickness provocative stimulus is often a forward bending of the trunk on a rotating chair, inducing Coriolis effects. Since respiratory relaxation techniques are applied successfully in these courses, we investigated whether these

  15. Inner Core Tilt and Polar Motion: Probing the Dynamics Deep Inside the Earth

    Science.gov (United States)

    Dumberry, M.; Bloxham, J.

    2003-12-01

    A tilted inner core permits exchange of angular momentum between the core and the mantle through gravitational and pressure torques and, as a result, changes in the direction of Earth's axis of rotation with respect to the mantle. Some of the observed variations in the direction of Earth's rotation could then be caused by equatorial torques on the inner core which tilt the latter out of its alignment with the mantle. In this work, we investigate whether such a scenario could explain the decade polar motion known as the Markowitz wobble. We show that a decade polar motion of the same amplitude as the observed Markowitz wobble requires a torque of 1020 N m which tilts the inner core by 0.07 degrees. This result critically depends on the viscosity of the inner core; for a viscosity less than 5 x 1017 Pa s, larger torques are required. A torque of 1020 N m with decadal periodicity can perhaps be produced by electromagnetic coupling between the inner core and a component of the flow in the outer core known as torsional oscillations, provided that the radial magnetic field at the inner core boundary is on the order of 3 to 4 mT and satisfies certain geometrical constraints. The resulting polar motion thus produced is eccentric and polarized, in agreement with the observations. Our model suggests that equatorial torques at the inner core boundary might also excite the Chandler wobble, provided shorter wavelength torsional oscillations with higher natural frequencies have enough power or provided there exists another physical mechanism that can generate a large torque at a 14 month period.

  16. Balancing bistable perception during self-motion.

    Science.gov (United States)

    van Elk, Michiel; Blanke, Olaf

    2012-10-01

    In two experiments we investigated whether bistable visual perception is influenced by passive own body displacements due to vestibular stimulation. For this we passively rotated our participants around the vertical (yaw) axis while observing different rotating bistable stimuli (bodily or non-bodily) with different ambiguous motion directions. Based on previous work on multimodal effects on bistable perception, we hypothesized that vestibular stimulation should alter bistable perception and that the effects should differ for bodily versus non-bodily stimuli. In the first experiment, it was found that the rotation bias (i.e., the difference between the percentage of time that a CW or CCW rotation was perceived) was selectively modulated by vestibular stimulation: the perceived duration of the bodily stimuli was longer for the rotation direction congruent with the subject's own body rotation, whereas the opposite was true for the non-bodily stimulus (Necker cube). The results found in the second experiment extend the findings from the first experiment and show that these vestibular effects on bistable perception only occur when the axis of rotation of the bodily stimulus matches the axis of passive own body rotation. These findings indicate that the effect of vestibular stimulation on the rotation bias depends on the stimulus that is presented and the rotation axis of the stimulus. Although most studies on vestibular processing have traditionally focused on multisensory signal integration for posture, balance, and heading direction, the present data show that vestibular self-motion influences the perception of bistable bodily stimuli revealing the importance of vestibular mechanisms for visual consciousness.

  17. Dynamic Models of Instruments Using Rotating Unbalanced Masses

    Science.gov (United States)

    Hung, John Y.; Gallaspy, Jason M.; Bishop, Carlee A.

    1998-01-01

    The motion of telescopes, satellites, and other flight bodies have been controlled by various means in the past. For example, gimbal mounted devices can use electric motors to produce pointing and scanning motions. Reaction wheels, control moment gyros, and propellant-charged reaction jets are other technologies that have also been used. Each of these methods has its advantages, but all actuator systems used in a flight environment face the challenges of minimizing weight, reducing energy consumption, and maximizing reliability. Recently, Polites invented and patented the Rotating Unbalanced Mass (RUM) device as a means for generation scanning motion on flight experiments. RUM devices together with traditional servomechanisms have been successfully used to generate various scanning motions: linear, raster, and circular. The basic principle can be described: A RUM rotating at constant angular velocity exerts a cyclic centrifugal force on the instrument or main body, thus producing a periodic scanning motion. A system of RUM devices exerts no reaction forces on the main body, requires very little energy to rotate the RUMS, and is simple to construct. These are significant advantages over electric motors, reaction wheels, and control moment gyroscopes. Although the RUM device very easily produces scanning motion, an auxiliary control system has been required to maintain the proper orientation, or pointing of the main body. It has been suggested that RUM devices can be used to control pointing dynamics, as well as generate the desired periodic scanning motion. The idea is that the RUM velocity will not be kept constant, but will vary over the period of one RUM rotation. The thought is that the changing angular velocity produces a centrifugal force having time-varying magnitude and direction. The scope of this ongoing research project is to study the pointing control concept, and recommend a direction of study for advanced pointing control using only RUM devices. This

  18. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  19. Earth Rotation Dynamics: Review and Prospects

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Modem space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations", for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  20. Amplitude saturation of MEMS resonators explained by autoparametric resonance

    International Nuclear Information System (INIS)

    Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M; Van der Hout, R; Hulshof, J; Fey, R H B

    2010-01-01

    This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators

  1. Amplitude saturation of MEMS resonators explained by autoparametric resonance

    Energy Technology Data Exchange (ETDEWEB)

    Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M [NXP Research, Eindhoven (Netherlands); Van der Hout, R; Hulshof, J [Department of Mathematics, VU University—Faculty of Sciences, De Boelelaan 1081a, 1081 HV Amsterdam (Netherlands); Fey, R H B, E-mail: cas.van.der.avoort@nxp.com [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands)

    2010-10-15

    This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators.

  2. Degenerative full thickness rotator cuff tears : Towards optimal management

    NARCIS (Netherlands)

    Lambers Heerspink, Frederik

    2016-01-01

    The shoulder is one of the most complex joints in the body. Besides a wide range of motion it also has to be stable. The rotator cuff is a major stabiliser of the glenohumoral joint. With increasing age rotator cuff tears are common. Successful treatment is described following surgical (rotator cuff

  3. Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander

    Science.gov (United States)

    Fu, R. R.; Kent, D.

    2017-12-01

    True polar wander, or TPW, is the rotation of the entire mantle-crust system that results in simultaneous change in latitude and orientation for all lithospheric plates. One of the most recent candidate TPW events consists of a 30˚ rotation during Late Jurassic time (160 - 145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continental studies. Because all major landmasses except China were connected directly or via spreading centers in the Late Jurassic, the velocities of these continents were mutually constrained and their motion as a group over the underlying mantle would be indistinguishable from TPW using only continental data. On the other hand, plates of the Pacific Basin constituted a kinematically independent domain, interfacing with continents at subduction zones and slip-strike boundaries. Coherent motion of both Pacific Basin and continental plates would therefore indicate uniform motion of virtually the entire lithosphere, providing a means to distinguish TPW from continental drift. We performed thermal demagnetization on remaining samples from Ocean Drilling Program (ODP) Site 801B, which were cored from the oldest sampled oceanic crust in the Western Pacific, to determine its change in paleolatitude during the Late Jurassic and Early Cretaceous (167 - 134 Ma). We find that the Pacific Plate likely underwent a steady southward drift during this time period, consistent with previous results from magnetic anomalies, except for an episode of northward motion between Oxfordian and Tithonian time (161 - 147 Ma). Although the amplitude of this northward shift is subject to significant uncertainty due to the sparse recovery of core samples, the trajectory of the Pacific Plate is most simply explained by TPW in the 160 - 145 Ma interval as inferred from continental data. Furthermore, such an interpretation is consistent with the sense of shear inferred at the Farallon-North American Plate boundary, whereas uniform

  4. Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator

    International Nuclear Information System (INIS)

    Renaud, Michael; Fiorini, Paolo; Van Hoof, Chris; Van Schaijk, Rob

    2009-01-01

    Vibration energy harvesters can replace batteries and serve as clean and renewable energy sources in low-consumption wireless applications. Harvesters delivering sufficient power for sensors operating in an industrial environment have been developed, but difficulties are encountered when the devices to be powered are located on the human body. In this case, classical harvester designs (resonant systems) are not adapted to the low-frequency and high-amplitude characteristics of the motion. For this reason, we propose in this paper an alternative design based on the impact of a moving mass on piezoelectric bending structures. A model of the system is presented and analysed in order to determine the parameters influencing the device performances in terms of energy harvesting. A prototype of the impact harvester is experimentally characterized: for a generator occupying approximately 25 cm 3 and weighing 60 g, an output power of 47 µW was measured across a resistive load when the device was rotated by 180° each second. 600 µW were obtained for a 10 Hz frequency and 10 cm amplitude linear motion. Further optimization of the piezoelectric transducer is possible, allowing a large increase in these values, bringing the power density for the two cases respectively to 10 and 120 µW cm −3

  5. Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator

    Science.gov (United States)

    Renaud, Michael; Fiorini, Paolo; van Schaijk, Rob; van Hoof, Chris

    2009-03-01

    Vibration energy harvesters can replace batteries and serve as clean and renewable energy sources in low-consumption wireless applications. Harvesters delivering sufficient power for sensors operating in an industrial environment have been developed, but difficulties are encountered when the devices to be powered are located on the human body. In this case, classical harvester designs (resonant systems) are not adapted to the low-frequency and high-amplitude characteristics of the motion. For this reason, we propose in this paper an alternative design based on the impact of a moving mass on piezoelectric bending structures. A model of the system is presented and analysed in order to determine the parameters influencing the device performances in terms of energy harvesting. A prototype of the impact harvester is experimentally characterized: for a generator occupying approximately 25 cm3 and weighing 60 g, an output power of 47 µW was measured across a resistive load when the device was rotated by 180° each second. 600 µW were obtained for a 10 Hz frequency and 10 cm amplitude linear motion. Further optimization of the piezoelectric transducer is possible, allowing a large increase in these values, bringing the power density for the two cases respectively to 10 and 120 µW cm-3.

  6. Comparison of Flight Simulators Based on Human Motion Perception Metrics

    Science.gov (United States)

    Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.

    2015-01-01

    In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.

  7. Harmonic pulsed excitation and motion detection of a vibrating reflective target.

    Science.gov (United States)

    Urban, Matthew W; Greenleaf, James F

    2008-01-01

    Elasticity imaging is an emerging medical imaging modality. Methods involving acoustic radiation force excitation and pulse-echo ultrasound motion detection have been investigated to assess the mechanical response of tissue. In this work new methods for dynamic radiation force excitation and motion detection are presented. The theory and model for harmonic motion detection of a vibrating reflective target are presented. The model incorporates processing of radio frequency data acquired using pulse-echo ultrasound to measure harmonic motion with amplitudes ranging from 100 to 10,000 nm. A numerical study was performed to assess the effects of different parameters on the accuracy and precision of displacement amplitude and phase estimation and showed how estimation errors could be minimized. Harmonic pulsed excitation is introduced as a multifrequency radiation force excitation method that utilizes ultrasound tonebursts repeated at a rate f(r). The radiation force, consisting of frequency components at multiples of f(r), is generated using 3.0 MHz ultrasound, and motion detection is performed simultaneously with 9.0 MHz pulse-echo ultrasound. A parameterized experimental analysis showed that displacement can be measured with small errors for motion with amplitudes as low as 100 nm. The parameterized numerical and experimental analyses provide insight into how to optimize acquisition parameters to minimize measurement errors.

  8. Integrable spin chains and scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute (Russian Federation); Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation)

    2011-04-15

    In this review we show that the multi-particle scattering amplitudes in N=4 SYM at large N{sub c} and in the multi-Regge kinematics for some physical regions have the high energy behavior appearing from the contribution of the Mandelstam cuts in the complex angular momentum plane of the corresponding t-channel partial waves. These Mandelstam cuts or Regge cuts are resulting from gluon composite states in the adjoint representation of the gauge group SU(N{sub c}). In the leading logarithmic approximation (LLA) their contribution to the six point amplitude is in full agreement with the known two-loop result. The Hamiltonian for the Mandelstam states constructed from n gluons in LLA coincides with the local Hamiltonian of an integrable open spin chain. We construct the corresponding wave functions using the integrals of motion and the Baxter-Sklyanin approach. (orig.)

  9. Instability of nuclear wobbling motion and tilted axis rotation

    International Nuclear Information System (INIS)

    Matsuzaki, Masayuki; Ohtsubo, Shin-Ichi

    2004-01-01

    We study a possible correspondence between the softening of the wobbling mode and the 'phase transition' of the one-dimensionally rotating mean field to a three-dimensionally rotating one by comparing the properties of the wobbling mode obtained by the one-dimensional cranking model + random phase approximation with the total Routhian surface obtained by the three-dimensional tilted-axis cranking model. The potential surface for the observed wobbling mode excited on the triaxial superdeformed states in 163 Lu is also analyzed

  10. Effects of Cervical High-Velocity Low-Amplitude Techniques on Range of Motion, Strength Performance, and Cardiovascular Outcomes: A Review.

    Science.gov (United States)

    Galindez-Ibarbengoetxea, Xabier; Setuain, Igor; Andersen, Lars L; Ramírez-Velez, Robinson; González-Izal, Miriam; Jauregi, Andoni; Izquierdo, Mikel

    2017-09-01

    Cervical high-velocity low-amplitude (HVLA) manipulation technique is among the oldest and most frequently used chiropractic manual therapy, but the physiologic and biomechanics effects were not completely clear. This review aims to describe the effects of cervical HVLA manipulation techniques on range of motion, strength, and cardiovascular performance. A systematic search was conducted of the electronic databases from January 2000 to August 2016: PubMed (n = 131), ScienceDirect (n = 101), Scopus (n = 991), PEDro (n = 33), CINAHL (n = 884), and SciELO (n = 5). Two independent reviewers conducted the screening process to determine article eligibility. The intervention that included randomized controlled trials was thrust, or HVLA, manipulative therapy directed to the cervical spine. Methodological quality was assessed using the Cochrane risk-of-bias tool. The initial search rendered 2145 articles. After screening titles and abstracts, 11 articles remained for full-text review. The review shows that cervical HVLA manipulation treatment results in a large effect size (d > 0.80) on increasing cervical range of motion and mouth opening. In patients with lateral epicondylalgia, cervical HVLA manipulation resulted in increased pain-free handgrip strength, with large effect sizes (1.44 and 0.78, respectively). Finally, in subjects with hypertension the blood pressure seemed to decrease after cervical HVLA manipulation. Higher quality studies are needed to develop a stronger evidence-based foundation for HVLA manipulation techniques as a treatment for cervical conditions.

  11. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging

    International Nuclear Information System (INIS)

    Liu Chi; Pierce II, Larry A; Alessio, Adam M; Kinahan, Paul E

    2009-01-01

    Our aim is to investigate the impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging using a population of patient respiratory traces. A total of 1295 respiratory traces acquired during whole body PET/CT imaging were classified into three types according to the qualitative shape of their signal histograms. Each trace was scaled to three diaphragm motion amplitudes (6 mm, 11 mm and 16 mm) to drive a whole body PET/CT computer simulation that was validated with a physical phantom experiment. Three lung lesions and one liver lesion were simulated with diameters of 1 cm and 2 cm. PET data were reconstructed using the OS-EM algorithm with attenuation correction using CT images at the end-expiration phase and respiratory-averaged CT. The errors of the lesion maximum standardized uptake values (SUV max ) and lesion volumes between motion-free and motion-blurred PET/CT images were measured and analyzed. For respiration with 11 mm diaphragm motion and larger quiescent period fraction, respiratory motion can cause a mean lesion SUV max underestimation of 28% and a mean lesion volume overestimation of 130% in PET/CT images with 1 cm lesions. The errors of lesion SUV max and volume are larger for patient traces with larger motion amplitudes. Smaller lesions are more sensitive to respiratory motion than larger lesions for the same motion amplitude. Patient respiratory traces with relatively larger quiescent period fraction yield results less subject to respiratory motion than traces with long-term amplitude variability. Mismatched attenuation correction due to respiratory motion can cause SUV max overestimation for lesions in the lower lung region close to the liver dome. Using respiratory-averaged CT for attenuation correction yields smaller mismatch errors than those using end-expiration CT. Respiratory motion can have a significant impact on static oncological PET/CT imaging where SUV and/or volume measurements are important. The impact

  12. An immediate effect of axial neck rotation training with real time visual feedback using a smartphone inclinometer on improvement in axial neck rotation function.

    Science.gov (United States)

    Park, Kyue-Nam; Kwon, Oh-Yun; Kim, Si-Hyun; Jeon, In-Cheol

    2017-03-01

    The purpose of this study was to compare the immediate effects of axial neck rotation training (Axi-NRT) with and without real-time visual feedback (VF) using a smartphone inclinometer on the range of motion (ROM) for axial neck rotation and the onset of compensatory neck lateral bending and extension during active neck rotation. Twenty participants with restricted ROM for neck rotation but no neck pain (21.1 ± 1.6 years and 8 males, 12 females) were recruited for Axi-NRT with VF, and twenty age- and gender-matched participants with restricted ROM for neck rotation were recruited for Axi-NRT without VF. Changes in ROM for neck rotation and the onset time of compensatory neck movement during active neck rotation were measured using an electromagnetic tracking system. Axi-NRT with VF was more effective in increasing ROM for neck rotation and decreasing and delaying the onset of compensatory neck movements during active neck rotation compared with Axi-NRT without VF. Repeated Axi-NRT using VF is useful to educate participants in maintaining the axis of the cervical spine and to increase ROM for axial neck rotation with less compensatory neck motion in participants with a restricted range of neck rotations.

  13. Local measurement of error field using naturally rotating tearing mode dynamics in EXTRAP T2R

    Science.gov (United States)

    Sweeney, R. M.; Frassinetti, L.; Brunsell, P.; Fridström, R.; Volpe, F. A.

    2016-12-01

    An error field (EF) detection technique using the amplitude modulation of a naturally rotating tearing mode (TM) is developed and validated in the EXTRAP T2R reversed field pinch. The technique was used to identify intrinsic EFs of m/n  =  1/-12, where m and n are the poloidal and toroidal mode numbers. The effect of the EF and of a resonant magnetic perturbation (RMP) on the TM, in particular on amplitude modulation, is modeled with a first-order solution of the modified Rutherford equation. In the experiment, the TM amplitude is measured as a function of the toroidal angle as the TM rotates rapidly in the presence of an unknown EF and a known, deliberately applied RMP. The RMP amplitude is fixed while the toroidal phase is varied from one discharge to the other, completing a full toroidal scan. Using three such scans with different RMP amplitudes, the EF amplitude and phase are inferred from the phases at which the TM amplitude maximizes. The estimated EF amplitude is consistent with other estimates (e.g. based on the best EF-cancelling RMP, resulting in the fastest TM rotation). A passive variant of this technique is also presented, where no RMPs are applied, and the EF phase is deduced.

  14. Approximate Integrals of rf-driven Particle Motion in Magnetic Field

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2004-01-01

    For a particle moving in nonuniform magnetic field under the action of an rf wave, ponderomotive effects result from rf-driven oscillations nonlinearly coupled with Larmor rotation. Using Lagrangian and Hamiltonian formalism, we show how, despite this coupling, two independent integrals of the particle motion are approximately conserved. Those are the magnetic moment of free Larmor rotation and the quasi-energy of the guiding center motion parallel to the magnetic field. Under the assumption of non-resonant interaction of the particle with the rf field, these integrals represent adiabatic invariants of the particle motion

  15. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    Science.gov (United States)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  16. Aging increases compensatory saccade amplitude in the video head impulse test

    Directory of Open Access Journals (Sweden)

    Eric R Anson

    2016-07-01

    Full Text Available Objective: Rotational vestibular function declines with age resulting in saccades as a compensatory mechanism to improve impaired gaze stability. Small reductions in rotational vestibulo-ocular reflex (VOR gain that would be considered clinically normal have been associated with compensatory saccades. We evaluated whether compensatory saccade characteristics varied as a function of age, independent of semicircular canal function as quantified by VOR gain.Methods: Horizontal VOR gain was measured in 243 participants age 27-93 from the Baltimore Longitudinal Study of Aging using video head impulse testing (HIT. Latency and amplitude of the first saccade (either covert – occurring during head impulse, or overt – occurring following head impulse were measured for head impulses with compensatory saccades (n = 2230 head impulses. The relationship between age and saccade latency, as well as the relationship between age and saccade amplitude, were evaluated using regression analyses adjusting for VOR gain, gender, and race.Results: Older adults (mean age 75.9 made significantly larger compensatory saccades relative to younger adults (mean age 45.0. In analyses adjusted for VOR gain, there was a significant association between age and amplitude of the first compensatory covert saccade (β = 0.015, p = 0.008. In analyses adjusted for VOR gain, there was a significant association between age and amplitude of the first compensatory overt saccade (β = 0.02, p < 0.001. Compensatory saccade latencies did not vary significantly by age. Conclusions: We observed that aging increases the compensatory catch-up saccade amplitude in healthy adults after controlling for VOR gain. Size of compensatory saccades may be useful in addition to VOR gain for characterizing vestibular function in aging adults.

  17. Hydrodynamic interaction induced spontaneous rotation of coupled active filaments.

    Science.gov (United States)

    Jiang, Huijun; Hou, Zhonghuai

    2014-12-14

    We investigate the coupled dynamics of active filaments with long range hydrodynamic interactions (HI). Remarkably, we find that filaments can rotate spontaneously under the same conditions in which a single filament alone can only move in translation. Detailed analysis reveals that the emergence of coupled rotation originates from an asymmetric flow field associated with HI which breaks the symmetry of translational motion when filaments approach. The breaking is then further stabilized by HI to form self-sustained coupled rotation. Intensive simulations show that coupled rotation forms easily when one filament tends to collide with the front-half of the other. For head-to-tail approaching, we observe another interesting HI-induced coupled motion, where filaments move together in the form of one following the other. Moreover, the radius of coupled rotation increases exponentially as the rigidity of the filament increases, which suggests that HI are also important for the alignment of rigid-rod-like filaments which has been assumed to be solely a consequence of direct collisions.

  18. Contribution of self-motion perception to acoustic target localization.

    Science.gov (United States)

    Pettorossi, V E; Brosch, M; Panichi, R; Botti, F; Grassi, S; Troiani, D

    2005-05-01

    The findings of this study suggest that acoustic spatial perception during head movement is achieved by the vestibular system, which is responsible for the correct dynamic of acoustic target pursuit. The ability to localize sounds in space during whole-body rotation relies on the auditory localization system, which recognizes the position of sound in a head-related frame, and on the sensory systems, namely the vestibular system, which perceive head and body movement. The aim of this study was to analyse the contribution of head motion cues to the spatial representation of acoustic targets in humans. Healthy subjects standing on a rotating platform in the dark were asked to pursue with a laser pointer an acoustic target which was horizontally rotated while the body was kept stationary or maintained stationary while the whole body was rotated. The contribution of head motion to the spatial acoustic representation could be inferred by comparing the gains and phases of the pursuit in the two experimental conditions when the frequency was varied. During acoustic target rotation there was a reduction in the gain and an increase in the phase lag, while during whole-body rotations the gain tended to increase and the phase remained constant. The different contributions of the vestibular and acoustic systems were confirmed by analysing the acoustic pursuit during asymmetric body rotation. In this particular condition, in which self-motion perception gradually diminished, an increasing delay in target pursuit was observed.

  19. Orbit effects on impurity transport in a rotating plasma

    International Nuclear Information System (INIS)

    Wong, K.L.; Cheng, C.Z.

    1988-01-01

    In 1985, very high ion temperature plasmas were first produced in TFTR with co-injecting neutral beams in low current, low density plasmas. This mode of operation is called the energetic ion mode in which the plasma rotates at very high speed. It was found that heavy impurities injected into these plasmas diffused out very quickly. In this paper, the authors calculate the impurity ion orbits in a rotating tokamak plasma based on the equation of motion in the frame that rotates with the plasma. It is shown that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster. Particle orbits near the surface of a rotating tokamak are also analyzed. During impurity injection experiments, freshly ionized impurities near the plasma surface are essentially stationary in the laboratory frame and they are counter-rotating in the plasma frame with co-beam injection. The results are substantiated by numeral particle simulation. The computer code follows the impurity guiding center positions by integrating the equation of motion with the second order predictor-corrector method

  20. Investigation of the Linker Swing Motion in the Zeolitic Imidazolate Framework ZIF-90

    KAUST Repository

    Zheng, Bin

    2018-03-13

    The linker swing motion in the zeolitic imidazolate framework ZIF-90 is investigated by density functional theory (DFT) calculation, molecular dynamics (MD) and grand-canonical Monte Carlo (GCMC) simulations. The relation between the terminal aldehyde group rotation and the linker swing motion is revealed. The extremely high activation energy of the linker swing motion in ZIF-90 can be attributed to the asymmetric geometry and electron distribution of aldehyde groups. The change in the gate structure resulting from the linker rotation is used to understand the guest adsorption in ZIF-90. This study shows that it is possible to tune the linker swing motion and then the properties of ZIF-90 by manipulating the terminal group rotation. The results highlight the importance of considering the internal freedom effects to correctly describe the linker swing motion and the flexibility of metal-organic frameworks (MOFs).

  1. Electro-mechanical coupling of rotating 3D beams

    Directory of Open Access Journals (Sweden)

    Stoykov S.

    2016-01-01

    Full Text Available A rotating thin-walled beam with piezoelectric element is analysed. The beam is considered to vibrate in space, hence the longitudinal, transverse and torsional deformations are taken into account. The bending deformations of the beam are modelled by assuming Timoshenko's theory. Torsion is included by considering that the cross section rotates as a rigid body but can deform in longitudinal direction due to warping. The warping function is computed preliminary by the finite element method. The equation of motion is derived by the principle of virtual work and discretized in space by the Ritz method. Electro-mechanical coupling is included in the model by considering the internal electrical energy and the electric charge output. The piezo-electric constitutive relations are used in reduced form. The beam is assumed to rotate about a fixed axis with constant speed. The equation of motion is derived in rotating coordinate system, but the influence of the rotation of the coordinate system is taken into account through the inertia forces. Results in time domain are presented for different speeds of rotation and frequencies of vibration. The influence of the speed of rotation and of the frequency of vibration on the electrical output is presented and analysed.

  2. The effect of the earth's rotation on ground water motion.

    Science.gov (United States)

    Loáiciga, Hugo A

    2007-01-01

    The average pore velocity of ground water according to Darcy's law is a function of the fluid pressure gradient and the gravitational force (per unit volume of ground water) and of aquifer properties. There is also an acceleration exerted on ground water that arises from the Earth's rotation. The magnitude and direction of this rotation-induced force are determined in exact mathematical form in this article. It is calculated that the gravitational force is at least 300 times larger than the largest rotation-induced force anywhere on Earth, the latter force being maximal along the equator and approximately equal to 34 N/m(3) there. This compares with a gravitational force of approximately 10(4) N/m(3).

  3. Rotating saddle trap as Foucault's pendulum

    Science.gov (United States)

    Kirillov, Oleg N.; Levi, Mark

    2016-01-01

    One of the many surprising results found in the mechanics of rotating systems is the stabilization of a particle in a rapidly rotating planar saddle potential. Besides the counterintuitive stabilization, an unexpected precessional motion is observed. In this note, we show that this precession is due to a Coriolis-like force caused by the rotation of the potential. To our knowledge, this is the first example where such a force arises in an inertial reference frame. We also propose a simple mechanical demonstration of this effect.

  4. Cervical motion assessment using virtual reality.

    Science.gov (United States)

    Sarig-Bahat, Hilla; Weiss, Patrice L; Laufer, Yocheved

    2009-05-01

    Repeated measures of cervical motion in asymptomatic subjects. To introduce a virtual reality (VR)-based assessment of cervical range of motion (ROM); to establish inter and intratester reliability of the VR-based assessment in comparison with conventional assessment in asymptomatic individuals; and to evaluate the effect of a single VR session on cervical ROM. Cervical ROM and clinical issues related to neck pain is frequently studied. A wide variety of methods is available for evaluation of cervical motion. To date, most methods rely on voluntary responses to an assessor's instructions. However, in day-to-day life, head movement is generally an involuntary response to multiple stimuli. Therefore, there is a need for a more functional assessment method, using sensory stimuli to elicit spontaneous neck motion. VR attributes may provide a methodology for achieving this goal. A novel method was developed for cervical motion assessment utilizing an electromagnetic tracking system and a VR game scenario displayed via a head mounted device. Thirty asymptomatic participants were assessed by both conventional and VR-based methods. Inter and intratester repeatability analyses were performed. The effect of a single VR session on ROM was evaluated. Both assessments showed non-biased results between tests and between testers (P > 0.1). Full-cycle repeatability coefficients ranged between 15.0 degrees and 29.2 degrees with smaller values for rotation and for the VR assessment. A single VR session significantly increased ROM, with largest effect found in the rotation direction. Inter and intratester reliability was supported for both the VR-based and the conventional methods. Results suggest better repeatability for the VR method, with rotation being more precise than flexion/extension. A single VR session was found to be effective in increasing cervical motion, possibly due to its motivating effect.

  5. Magnetic cycles and rotation periods of late-type stars from photometric time series

    Science.gov (United States)

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.

    2016-10-01

    Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability

  6. Improper trunk rotation sequence is associated with increased maximal shoulder external rotation angle and shoulder joint force in high school baseball pitchers.

    Science.gov (United States)

    Oyama, Sakiko; Yu, Bing; Blackburn, J Troy; Padua, Darin A; Li, Li; Myers, Joseph B

    2014-09-01

    In a properly coordinated throwing motion, peak pelvic rotation velocity is reached before peak upper torso rotation velocity, so that angular momentum can be transferred effectively from the proximal (pelvis) to distal (upper torso) segment. However, the effects of trunk rotation sequence on pitching biomechanics and performance have not been investigated. The aim of this study was to investigate the effects of trunk rotation sequence on ball speed and on upper extremity biomechanics that are linked to injuries in high school baseball pitchers. The hypothesis was that pitchers with improper trunk rotation sequence would demonstrate lower ball velocity and greater stress to the joint. Descriptive laboratory study. Three-dimensional pitching kinematics data were captured from 72 high school pitchers. Subjects were considered to have proper or improper trunk rotation sequences when the peak pelvic rotation velocity was reached either before or after the peak upper torso rotation velocity beyond the margin of error (±3.7% of the time from stride-foot contact to ball release). Maximal shoulder external rotation angle, elbow extension angle at ball release, peak shoulder proximal force, shoulder internal rotation moment, and elbow varus moment were compared between groups using independent t tests (α ways that may influence injury risk. As such, exercises that reinforce the use of a proper trunk rotation sequence during the pitching motion may reduce the stress placed on the structures around the shoulder joint and lead to the prevention of injuries. © 2014 The Author(s).

  7. Manipulation and controlled amplification of Brownian motion of microcantilever sensors

    International Nuclear Information System (INIS)

    Mehta, Adosh; Cherian, Suman; Hedden, David; Thundat, Thomas

    2001-01-01

    Microcantilevers, such as those used in atomic force microscopy, undergo Brownian motion due to mechanical thermal noise. The root mean square amplitude of the Brownian motion of a cantilever typically ranges from 0.01--0.1 nm, which limits its use in practical applications. Here we describe a technique by which the Brownian amplitude and the Q factor in air and water can be amplified by three and two orders of magnitude, respectively. This technique is similar to a positive feedback oscillator, wherein the Brownian motion of the vibrating cantilever controls the frequency output of the oscillator. This technique can be exploited to improve sensitivity of microcantilever-based chemical and biological sensors, especially for sensors in liquid environments

  8. A Note on Standing Internal Inertial Gravity Waves of Finite Amplitude

    Science.gov (United States)

    Thorpe, S. A.

    2003-01-01

    The effects of finite amplitude are examined in two-dimensional, standing, internal gravity waves in a rectangular container which rotates about a vertical axis at frequency f/2. Expressions are given for the velocity components, density fluctuations and isopycnal displacements to second order in the wave steepness in fluids with buoyancy frequency, N, of general form, and the effect of finite amplitude on wave frequency is given in an expansion to third order. The first order solutions, and the solutions to second order in the absence of rotation, are shown to conserve energy during a wave cycle. Analytical solutions are found to second order for the first two modes in a deep fluid with N proportional to sech(az), where z is the upward vertical coordinate and a is scaling factor. In the absence of rotation, results for the first mode in the latter stratification are found to be consistent with those for interfacial waves. An analytical solution to fourth order in a fluid with constant N is given and used to examine the effects of rotation on the development of static instability or of conditions in which shear instability may occur. As in progressive internal waves, an effect of rotation is to enhance the possibility of shear instability for waves with frequencies close to f. The analysis points to a significant difference between the dynamics of standing waves in containers of limited size and progressive internal waves in an unlimited fluid; the effect of boundaries on standing waves may inhibit the onset of instability. A possible application of the analysis is to transverse oscillations in long, narrow, steep-sided lakes such as Loch Ness, Scotland.

  9. Friction, Free Axes of Rotation and Entropy

    Directory of Open Access Journals (Sweden)

    Alexander Kazachkov

    2017-03-01

    Full Text Available Friction forces acting on rotators may promote their alignment and therefore eliminate degrees of freedom in their movement. The alignment of rotators by friction force was shown by experiments performed with different spinners, demonstrating how friction generates negentropy in a system of rotators. A gas of rigid rotators influenced by friction force is considered. The orientational negentropy generated by a friction force was estimated with the Sackur-Tetrode equation. The minimal change in total entropy of a system of rotators, corresponding to their eventual alignment, decreases with temperature. The reported effect may be of primary importance for the phase equilibrium and motion of ubiquitous colloidal and granular systems.

  10. Bio-inspired optical rotation sensor

    Science.gov (United States)

    O'Carroll, David C.; Shoemaker, Patrick A.; Brinkworth, Russell S. A.

    2007-01-01

    Traditional approaches to calculating self-motion from visual information in artificial devices have generally relied on object identification and/or correlation of image sections between successive frames. Such calculations are computationally expensive and real-time digital implementation requires powerful processors. In contrast flies arrive at essentially the same outcome, the estimation of self-motion, in a much smaller package using vastly less power. Despite the potential advantages and a few notable successes, few neuromorphic analog VLSI devices based on biological vision have been employed in practical applications to date. This paper describes a hardware implementation in aVLSI of our recently developed adaptive model for motion detection. The chip integrates motion over a linear array of local motion processors to give a single voltage output. Although the device lacks on-chip photodetectors, it includes bias circuits to use currents from external photodiodes, and we have integrated it with a ring-array of 40 photodiodes to form a visual rotation sensor. The ring configuration reduces pattern noise and combined with the pixel-wise adaptive characteristic of the underlying circuitry, permits a robust output that is proportional to image rotational velocity over a large range of speeds, and is largely independent of either mean luminance or the spatial structure of the image viewed. In principle, such devices could be used as an element of a velocity-based servo to replace or augment inertial guidance systems in applications such as mUAVs.

  11. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction.

    Science.gov (United States)

    Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta

    2018-01-01

    The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.

  12. Prospective randomized study of arthroscopic rotator cuff repair using an early versus delayed postoperative physical therapy protocol.

    Science.gov (United States)

    Cuff, Derek J; Pupello, Derek R

    2012-11-01

    This study evaluated patient outcomes and rotator cuff healing after arthroscopic rotator cuff repair using a postoperative physical therapy protocol with early passive motion compared with a delayed protocol that limited early passive motion. The study enrolled 68 patients (average age, 63.2 years) who met inclusion criteria. All patients had a full-thickness crescent-shaped tear of the supraspinatus that was repaired using a transosseous equivalent suture-bridge technique along with subacromial decompression. In the early group, 33 patients were randomized to passive elevation and rotation that began at postoperative day 2. In the delayed group, 35 patients began the same protocol at 6 weeks. Patients were monitored clinically for a minimum of 12 months, and rotator cuff healing was assessed using ultrasound imaging. Both groups had similar improvements in preoperative to postoperative American Shoulder and Elbow Surgeons scores (early group: 43.9 to 91.9, P rotator cuff healing, or range of motion between the early and delayed groups. Patients in the early group and delayed group both demonstrated very similar outcomes and range of motion at 1 year. There was a slightly higher rotator cuff healing rate in the delayed passive range of motion group compared with the early passive range of motion group (91% vs 85%). Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  13. Verification of Fourier phase and amplitude values from simulated heart motion using a hydrodynamic cardiac model

    Energy Technology Data Exchange (ETDEWEB)

    Yiannikas, J; Underwood, D A; Takatani, Setsuo; Nose, Yukihiko; MacIntyre, W J; Cook, S A; Go, R T; Golding, L; Loop, F D

    1986-02-01

    Using pusher-plate-type artificial hearts, changes in the degree of synchrony and stroke volume were compared to phase and amplitude calculations from the first Fourier component of individual-pixel time-activity curves generated from gated radionuclide images (RNA) of these hearts. In addition, the ability of Fourier analysis to quantify paradoxical volume shifts was tested using a ventricular aneurysm model by which the Fourier amplitude was correlated to known increments of paradoxical volume. Predetermined phase-angle differences (incremental increases in asynchrony) and the mean phase-angle difference calculated from RNAs showed an agreement of -7/sup 0/ +- 4.4/sup 0/ (mean +- SD). A strong correlation was noted between stroke volume and Fourier amplitude as well as between the paradoxical volume accepted by the 'aneurysm' and the Fourier amplitude. The degree of asynchrony and changes in stroke volume were accurately reflected by the Fourier phase and amplitude values, respectively. In the specific case of ventricular aneurysms, the data demonstrate that using this method, the paradoxically moving areas may be localized, and the expansile volume within these regions can be quantified. (orig.).

  14. Rotational Response of Toe-Restrained Retaining Walls to Earthquake Ground Motions

    National Research Council Canada - National Science Library

    Ebeling, Robert M; White, Barry C

    2006-01-01

    .... The PC software CorpsWallRotate (sometimes referred to as CWRotate) was developed to perform an analysis of permanent wall rotation for each proposed retaining wall section to a user-specified earthquake acceleration time-history...

  15. Hybrid method for consistent model of the Pacific absolute plate motion and a test for inter-hotspot motion since 70Ma

    Science.gov (United States)

    Harada, Y.; Wessel, P.; Sterling, A.; Kroenke, L.

    2002-12-01

    Inter-hotspot motion within the Pacific plate is one of the most controversial issues in recent geophysical studies. However, it is a fact that many geophysical and geological data including ages and positions of seamount chains in the Pacific plate can largely be explained by a simple model of absolute motion derived from assumptions of rigid plates and fixed hotspots. Therefore we take the stand that if a model of plate motion can explain the ages and positions of Pacific hotspot tracks, inter-hotspot motion would not be justified. On the other hand, if any discrepancies between the model and observations are found, the inter-hotspot motion may then be estimated from these discrepancies. To make an accurate model of the absolute motion of the Pacific plate, we combined two different approaches: the polygonal finite rotation method (PFRM) by Harada and Hamano (2000) and the hot-spotting technique developed by Wessel and Kroenke (1997). The PFRM can determine accurate positions of finite rotation poles for the Pacific plate if the present positions of hotspots are known. On the other hand, the hot-spotting technique can predict present positions of hotspots if the absolute plate motion is given. Therefore we can undertake iterative calculations using the two methods. This hybrid method enables us to determine accurate finite rotation poles for the Pacific plate solely from geometry of Hawaii, Louisville and Easter(Crough)-Line hotspot tracks from around 70 Ma to present. Information of ages can be independently assigned to the model after the poles and rotation angles are determined. We did not detect any inter-hotspot motion from the geometry of these Pacific hotspot tracks using this method. The Ar-Ar ages of Pacific seamounts including new age data of ODP Leg 197 are used to test the newly determined model of the Pacific plate motion. The ages of Hawaii, Louisville, Easter(Crough)-Line, and Cobb hotspot tracks are quite consistent with each other from 70 Ma to

  16. More than a cool illusion? Functional significance of self-motion illusion (circular vection) for perspective switches.

    Science.gov (United States)

    Riecke, Bernhard E; Feuereissen, Daniel; Rieser, John J; McNamara, Timothy P

    2015-01-01

    Self-motion can facilitate perspective switches and "automatic spatial updating" and help reduce disorientation in applications like virtual reality (VR). However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion ("circular vection") can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields ("auditory vection") and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective VR simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  17. Rotational Seismology Workshop of February 2006

    Science.gov (United States)

    Evans, John R.; Cochard, A.; Graizer, Vladimir; Huang, Bor-Shouh; Hudnut, Kenneth W.; Hutt, Charles R.; Igel, H.; Lee, William H.K.; Liu, Chun-Chi; Majewski, Eugeniusz; Nigbor, Robert; Safak, Erdal; Savage, William U.; Schreiber, U.; Teisseyre, Roman; Trifunac, Mihailo; Wassermann, J.; Wu, Chien-Fu

    2007-01-01

    Introduction A successful workshop titled 'Measuring the Rotation Effects of Strong Ground Motion' was held simultaneously in Menlo Park and Pasadena via video conference on 16 February 2006. The purpose of the Workshop and this Report are to summarize existing data and theory and to explore future challenges for rotational seismology, including free-field strong motion, structural strong motion, and teleseismic motions. We also forged a consensus on the plan of work to be pursued by this international group in the near term. At this first workshop were 16 participants in Menlo Park, 13 in Pasadena, and a few on the telephone. It was organized by William H. K. Lee and John R. Evans and chaired by William U. Savage in Menlo Park and by Kenneth W. Hudnut in Pasadena. Its agenda is given in the Appendix. This workshop and efforts in Europe led to the creation of the International Working Group on Rotational Seismology (IWGoRS), an international volunteer group providing forums for exchange of ideas and data as well as hosting a series of Workshops and Special Sessions. IWGoRS created a Web site, backed by an FTP site, for distribution of materials related to rotational seismology. At present, the FTP site contains the 2006 Workshop agenda (also given in the Appendix below) and its PowerPoint presentations, as well as many papers (reasonable-only basis with permission of their authors), a comprehensive citations list, and related information. Eventually, the Web site will become the sole authoritative source for IWGoRS and shared information: http://www.rotational-seismology.org ftp://ehzftp.wr.usgs.gov/jrevans/IWGoRS_FTPsite/ With contributions from various authors during and after the 2006 Workshop, this Report proceeds from the theoretical bases for making rotational measurements (Graizer, Safak, Trifunac) through the available observations (Huang, Lee, Liu, Nigbor), proposed suites of measurements (Hudnut), a discussion of broadband teleseismic rotational

  18. Correlation between hip function and knee kinematics evaluated by three-dimensional motion analysis during lateral and medial side-hopping.

    Science.gov (United States)

    Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke

    2016-09-01

    [Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results.

  19. Kepler observations of the high-amplitude δ Scuti star V2367 Cyg

    DEFF Research Database (Denmark)

    Balona, L. A.; Lenz, P.; Antoci, V.

    2012-01-01

    We analyse Kepler observations of the high-amplitude δ Scuti (HADS) star V2367 Cyg (KIC 9408694). The variations are dominated by a mode with frequency f1= 5.6611 d−1. Two other independent modes with f2= 7.1490 d−1 and f3= 7.7756 d−1 have amplitudes an order of magnitude smaller than f1. Nearly...... all the light variation is due to these three modes and their combination frequencies, but several hundred other frequencies of very low amplitude are also present. The amplitudes of the principal modes may vary slightly with time. The star has twice the projected rotational velocity of any other HADS...... star, which makes it unusual. We find a correlation between the phases of the combination frequencies and their pulsation frequencies, which is not understood. Since modes of highest amplitude in HADS stars are normally radial modes, we assumed that this would also be true in this star. However...

  20. Absolute plate motions and true polar wander in the absence of hotspot tracks.

    Science.gov (United States)

    Steinberger, Bernhard; Torsvik, Trond H

    2008-04-03

    The motion of continents relative to the Earth's spin axis may be due either to rotation of the entire Earth relative to its spin axis--true polar wander--or to the motion of individual plates. In order to distinguish between these over the past 320 Myr (since the formation of the Pangaea supercontinent), we present here computations of the global average of continental motion and rotation through time in a palaeomagnetic reference frame. Two components are identified: a steady northward motion and, during certain time intervals, clockwise and anticlockwise rotations, interpreted as evidence for true polar wander. We find approximately 18 degrees anticlockwise rotation about 250-220 Myr ago and the same amount of clockwise rotation about 195-145 Myr ago. In both cases the rotation axis is located at about 10-20 degrees W, 0 degrees N, near the site that became the North American-South American-African triple junction at the break-up of Pangaea. This was followed by approximately 10 degrees clockwise rotation about 145-135 Myr ago, followed again by the same amount of anticlockwise rotation about 110-100 Myr ago, with a rotation axis in both cases approximately 25-50 degrees E in the reconstructed area of North Africa and Arabia. These rotation axes mark the maxima of the degree-two non-hydrostatic geoid during those time intervals, and the fact that the overall net rotation since 320 Myr ago is nearly zero is an indication of long-term stability of the degree-two geoid and related mantle structure. We propose a new reference frame, based on palaeomagnetism, but corrected for the true polar wander identified in this study, appropriate for relating surface to deep mantle processes from 320 Myr ago until hotspot tracks can be used (about 130 Myr ago).

  1. Asteroid rotation. IV

    International Nuclear Information System (INIS)

    Harris, A.W.; Young, J.W.

    1983-01-01

    The results from the year 1979 of an ongoing program of asteroid photometry at Table Mountain Observatory are presented. The results for 53 asteroids are summarized in a table, showing the number, name, opposition date, taxonomic class, diameter, absolute magnitude, mean absolute magnitude at zero phase angle and values of the absolute magnitude and linear phase coefficient derived from it, the rotation period in hours, peak-to-peak amplitude of variation, difference between mean and maximum brightness, and reliability index. Another table presents data on aspect and comparison stars, including brightness and distance data. Reliable rotation periods are reported for 22 asteroids for which no previous values are known. For seven asteroids, periods are reported which are revisions of previously reported values

  2. Methyl group rotation and segmental motion in atactic polypropylene. An incoherent quasi elastic neutron scattering investigation

    International Nuclear Information System (INIS)

    Arrighi, V.; Triolo, A.

    1999-01-01

    Complete text of publication follows. Results from the analysis of recent quasielastic neutron scattering (QENS) experiments on atactic polypropylene (aPP), are presented both in the sub-T g and above T g regimes. Experiments were carried out on the IRIS (ISIS, Rutherford Appleton Laboratory, UK) and IN10 (ILL FR) spectrometers in the temperature range from 140 to 400 K. Different instrumental resolutions were used in order to cover a wide energy window. The high resolution data collected on IN10 using the fixed energy scan technique, give clear evidence of two separate dynamic processes that we attribute to methyl group rotational hopping (below T g ) and to segmental motion (above T g ), respectively. Data were fitted using a model involving a distribution of relaxation rates. The IN10 results are used in interpreting and analyzing the QENS data from the IRIS spectrometer. In order to exploit the different energy resolutions of IRIS, Fourier inversion of the experimental data was carried out. This approach to data analysis allows us to widen the energy range available for data analysis. Due to the high activation energy of the methyl group hopping in aPP, this motion overlaps with the segmental relaxation, thus making analysis of high temperature data quite complex. The IN10 results are employed in order to perform data analysis in terms of two distinct processes. (author)

  3. Forced vibrations of rotating circular cylindrical shells

    International Nuclear Information System (INIS)

    Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru

    1995-01-01

    Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)

  4. Validation of strong-motion stochastic model using observed ground motion records in north-east India

    Directory of Open Access Journals (Sweden)

    Dipok K. Bora

    2016-03-01

    Full Text Available We focused on validation of applicability of semi-empirical technique (spectral models and stochastic simulation for the estimation of ground-motion characteristics in the northeastern region (NER of India. In the present study, it is assumed that the point source approximation in far field is valid. The one-dimensional stochastic point source seismological model of Boore (1983 (Boore, DM. 1983. Stochastic simulation of high frequency ground motions based on seismological models of the radiated spectra. Bulletin of Seismological Society of America, 73, 1865–1894. is used for modelling the acceleration time histories. Total ground-motion records of 30 earthquakes of magnitudes lying between MW 4.2 and 6.2 in NER India from March 2008 to April 2013 are used for this study. We considered peak ground acceleration (PGA and pseudospectral acceleration (response spectrum amplitudes with 5% damping ratio at three fundamental natural periods, namely: 0.3, 1.0, and 3.0 s. The spectral models, which work well for PGA, overestimate the pseudospectral acceleration. It seems that there is a strong influence of local site amplification and crustal attenuation (kappa, which control spectral amplitudes at different frequencies. The results would allow analysing regional peculiarities of ground-motion excitation and propagation and updating seismic hazard assessment, both the probabilistic and deterministic approaches.

  5. Lateralization of event-related potential effects during mental rotation of polygons.

    Science.gov (United States)

    Pellkofer, Julia; Jansen, Petra; Heil, Martin

    2012-07-11

    Numerous studies have shown that there is an amplitude modulation of the late positivity depending on the angular disparity during mental rotation performance. However, almost all of these studies used characters as stimulus material, whereas studies with different stimuli are rare. In the present experiment, 35 participants were instructed to rotate polygons mentally. Most importantly, with this stimulus material, the well-known event-related potential effects were also present at posterior electrode leads. Interestingly, the amplitude modulation were found to be larger and more reliable over left than over right posterior electrode leads, a finding reported previously for characters as stimuli, although not consistently. Thus, the present data suggest that the left lateralization of event-related potential effects during mental rotation of characters might not be because of their 'verbal nature', but might suggest a stronger involvement of the left parietal cortex during mental rotation per se, a suggestion that needs to be addressed with methods providing a higher spatial resolution.

  6. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...... beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps...

  7. Motion-induced eddy current thermography for high-speed inspection

    Directory of Open Access Journals (Sweden)

    Jianbo Wu

    2017-08-01

    Full Text Available This letter proposes a novel motion-induced eddy current based thermography (MIECT for high-speed inspection. In contrast to conventional eddy current thermography (ECT based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday’s law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  8. Teasing Apart Complex Motions using VideoPoint

    Science.gov (United States)

    Fischer, Mark

    2002-10-01

    Using video analysis software such as VideoPoint, it is possible to explore the physics of any phenomenon that can be captured on videotape. The good news is that complex motions can be filmed and analyzed. The bad news is that the motions can become very complex very quickly. An example of such a complicated motion, the 2-dimensional motion of an object as filmed by a camera that is moving and rotating in the same plane will be discussed. Methods for extracting the desired object motion will be given as well as suggestions for shooting more easily analyzable video clips.

  9. An event database for rotational seismology

    Science.gov (United States)

    Salvermoser, Johannes; Hadziioannou, Celine; Hable, Sarah; Chow, Bryant; Krischer, Lion; Wassermann, Joachim; Igel, Heiner

    2016-04-01

    The ring laser sensor (G-ring) located at Wettzell, Germany, routinely observes earthquake-induced rotational ground motions around a vertical axis since its installation in 2003. Here we present results from a recently installed event database which is the first that will provide ring laser event data in an open access format. Based on the GCMT event catalogue and some search criteria, seismograms from the ring laser and the collocated broadband seismometer are extracted and processed. The ObsPy-based processing scheme generates plots showing waveform fits between rotation rate and transverse acceleration and extracts characteristic wavefield parameters such as peak ground motions, noise levels, Love wave phase velocities and waveform coherence. For each event, these parameters are stored in a text file (json dictionary) which is easily readable and accessible on the website. The database contains >10000 events starting in 2007 (Mw>4.5). It is updated daily and therefore provides recent events at a time lag of max. 24 hours. The user interface allows to filter events for epoch, magnitude, and source area, whereupon the events are displayed on a zoomable world map. We investigate how well the rotational motions are compatible with the expectations from the surface wave magnitude scale. In addition, the website offers some python source code examples for downloading and processing the openly accessible waveforms.

  10. A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta

    Science.gov (United States)

    Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.

    2015-12-01

    Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.

  11. Interfractional variability of respiration-induced esophageal tumor motion quantified using fiducial markers and four-dimensional cone-beam computed tomography.

    Science.gov (United States)

    Jin, Peng; Hulshof, Maarten C C M; van Wieringen, Niek; Bel, Arjan; Alderliesten, Tanja

    2017-07-01

    To investigate the interfractional variability of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional cone-beam computed tomography (4D-CBCT) and assess if a 4D-CT is sufficient for predicting the motion during the treatment. Twenty-four patients with 63 markers visible in the retrospectively reconstructed 4D-CBCTs were included. For each marker, we calculated the amplitude and trajectory of the respiration-induced motion. Possible time trends of the amplitude over the treatment course and the interfractional variability of amplitudes and trajectory shapes were assessed. Further, the amplitudes measured in the 4D-CT were compared to those in the 4D-CBCTs. The amplitude was largest in the cranial-caudal direction of the distal esophagus (mean: 7.1mm) and proximal stomach (mean: 7.8mm). No time trend was observed in the amplitude over the treatment course. The interfractional variability of amplitudes and trajectory shapes was limited (mean: ≤1.4mm). Moreover, small and insignificant deviation was found between the amplitudes quantified in the 4D-CT and in the 4D-CBCT (mean absolute difference: ≤1.0mm). The limited interfractional variability of amplitudes and trajectory shapes and small amplitude difference between 4D-CT-based and 4D-CBCT-based measurements imply that a single 4D-CT would be sufficient for predicting the respiration-induced esophageal tumor motion during the treatment course. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Verification of Fourier phase and amplitude values from simulated heart motion using a hydrodynamic cardiac model

    International Nuclear Information System (INIS)

    Yiannikas, J.; Underwood, D.A.; Takatani, Setsuo; Nose, Yukihiko; MacIntyre, W.J.; Cook, S.A.; Go, R.T.; Golding, L.; Loop, F.D.

    1986-01-01

    Using pusher-plate-type artificial hearts, changes in the degree of synchrony and stroke volume were compared to phase and amplitude calculations from the first Fourier component of individual-pixel time-activity curves generated from gated radionuclide images (RNA) of these hearts. In addition, the ability of Fourier analysis to quantify paradoxical volume shifts was tested using a ventricular aneurysm model by which the Fourier amplitude was correlated to known increments of paradoxical volume. Predetermined phase-angle differences (incremental increases in asynchrony) and the mean phase-angle difference calculated from RNAs showed an agreement of -7 0 +-4.4 0 (mean +-SD). A strong correlation was noted between stroke volume and Fourier amplitude (r=0.98; P<0.0001) as well as between the paradoxical volume accepted by the 'aneurysm' and the Fourier amplitude (r=0.97; P<0.0001). The degree of asynchrony and changes in stroke volume were accurately reflected by the Fourier phase and amplitude values, respectively. In the specific case of ventricular aneurysms, the data demonstrate that using this method, the paradoxically moving areas may be localized, and the expansile volume within these regions can be quantified. (orig.)

  13. Examining the time dependence of DAMA's modulation amplitude

    Science.gov (United States)

    Kelso, Chris; Savage, Christopher; Sandick, Pearl; Freese, Katherine; Gondolo, Paolo

    2018-03-01

    If dark matter is composed of weakly interacting particles, Earth's orbital motion may induce a small annual variation in the rate at which these particles interact in a terrestrial detector. The DAMA collaboration has identified at a 9.3σ confidence level such an annual modulation in their event rate over two detector iterations, DAMA/NaI and DAMA/LIBRA, each with ˜ 7 years of observations. This data is well fit by a constant modulation amplitude for the two iterations of the experiment. We statistically examine the time dependence of the modulation amplitudes, which "by eye" appear to be decreasing with time in certain energy ranges. We perform a chi-squared goodness of fit test of the average modulation amplitudes measured by the two detector iterations which rejects the hypothesis of a consistent modulation amplitude at greater than 80, 96, and 99.6% for the 2-4, 2-5 and 2-6 keVee energy ranges, respectively. We also find that among the 14 annual cycles there are three ≳ 3σ departures from the average in our estimated data in the 5-6 keVee energy range. In addition, we examined several phenomenological models for the time dependence of the modulation amplitude. Using a maximum likelihood test, we find that descriptions of the modulation amplitude as decreasing with time are preferred over a constant modulation amplitude at anywhere between 1σ and 3σ , depending on the phenomenological model for the time dependence and the signal energy range considered. A time dependent modulation amplitude is not expected for a dark matter signal, at least for dark matter halo morphologies consistent with the DAMA signal. New data from DAMA/LIBRA-phase2 will certainly aid in determining whether any apparent time dependence is a real effect or a statistical fluctuation.

  14. Rotational Fourier tracking of diffusing polygons.

    Science.gov (United States)

    Mayoral, Kenny; Kennair, Terry P; Zhu, Xiaoming; Milazzo, James; Ngo, Kathy; Fryd, Michael M; Mason, Thomas G

    2011-11-01

    We use optical microscopy to measure the rotational Brownian motion of polygonal platelets that are dispersed in a liquid and confined by depletion attractions near a wall. The depletion attraction inhibits out-of-plane translational and rotational Brownian fluctuations, thereby facilitating in-plane imaging and video analysis. By taking fast Fourier transforms (FFTs) of the images and analyzing the angular position of rays in the FFTs, we determine an isolated particle's rotational trajectory, independent of its position. The measured in-plane rotational diffusion coefficients are significantly smaller than estimates for the bulk; this difference is likely due to the close proximity of the particles to the wall arising from the depletion attraction.

  15. Characteristics of manipulator for industrial robot with three rotational pairs having parallel axes

    Science.gov (United States)

    Poteyev, M. I.

    1986-01-01

    The dynamics of a manipulator with three rotatinal kinematic pairs having parallel axes are analyzed, for application in an industrial robot. The system of Lagrange equations of the second kind, describing the motion of such a mechanism in terms of kinetic energy in generalized coordinates, is reduced to equations of motion in terms of Newton's laws. These are useful not only for either determining the moments of force couples which will produce a prescribed motion or, conversely determining the motion which given force couples will produce but also for solving optimization problems under constraints in both cases and for estimating dynamic errors. As a specific example, a manipulator with all three axes of vertical rotation is considered. The performance of this manipulator, namely the parameters of its motion as functions of time, is compared with that of a manipulator having one rotational and two translational kinematic pairs. Computer aided simulation of their motion on the basis of ideal models, with all three links represented by identical homogeneous bars, has yielded velocity time diagrams which indicate that the manipulator with three rotational pairs is 4.5 times faster.

  16. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    International Nuclear Information System (INIS)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L.

    2014-01-01

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  17. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L., E-mail: Wendy.Smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada)

    2014-09-15

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  18. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms

    Science.gov (United States)

    Cowings, P. S.; Toscano, W. B.

    2000-01-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p training.

  19. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    Energy Technology Data Exchange (ETDEWEB)

    Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Blank, Basil [PulseRay, Beaver Dams, New York 14812 (United States); Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Suter, Robert M. [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Bernier, Joel V.; Li, Shiu Fai [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lind, Jonathan [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

  20. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction

    Directory of Open Access Journals (Sweden)

    Eiji Watanabe

    2018-03-01

    Full Text Available The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.

  1. Effects on ground motion related to spatial variability

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.

    1987-01-01

    Models of the spectral content and the space-time correlation structure of strong earthquake ground motion are combined with transient random vibration analysis to yield site-specific response spectra that can account for the effect of local spatial averaging of the ground motion across a rigid foundation of prescribed size. The methodology is presented with reference to sites in eastern North America, although the basic approach is applicable to other seismic regions provided the source and attenuation parameters are regionally adjusted. Parameters in the spatial correlation model are based on data from the SMART-I accelerograph array, and the sensitivity of response spectra reduction factors with respect to these parameters is examined. The starting point of the analysis is the Fourier amplitude spectrum of site displacement expresses as a function of earthquake source parameters and source-to-site distance. The bedrock acceleration spectral density function at a point, derived from the displacement spectrum, is modified to account for anelastic attenuation, and where appropriate, for local soil effects and/or local spatial averaging across a foundation. Transient random vibration analysis yields approximate analytical expressions for median ground motion amplitudes and median response spectra of an earthquake defined in terms of its spectral density function and strong motion duration. The methodology is illustrated for three events characterized by their m b magnitude and epicentral distance. The focus in this paper is on the stochastic response prediction methodology enabling explicit accounting for strong motion duration and the effect of local spatial averaging on response spectra. The numerical examples enable a preliminary assessment of the reduction of response spectral amplitudes attributable to local spatial averaging across rigid foundations of different sizes. 36 refs

  2. More than a Cool Illusion? Functional Significance of Self-Motion Illusion (Circular Vection for Perspective Switches

    Directory of Open Access Journals (Sweden)

    Bernhard E. Riecke

    2015-08-01

    Full Text Available Self-motion can facilitate perspective switches and automatic spatial updating and help reduce disorientation in applications like Virtual Reality. However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion (circular vection can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously-learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields (auditory vection and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective Virtual Reality simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  3. Surface acoustic wave micromotor with arbitrary axis rotational capability

    Science.gov (United States)

    Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.

    2011-11-01

    A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.

  4. Rotational diffusion of a molecular cat

    Science.gov (United States)

    Katz-Saporta, Ori; Efrati, Efi

    We show that a simple isolated system can perform rotational random walk on account of internal excitations alone. We consider the classical dynamics of a ''molecular cat'': a triatomic molecule connected by three harmonic springs with non-zero rest lengths, suspended in free space. In this system, much like for falling cats, the angular momentum constraint is non-holonomic allowing for rotations with zero overall angular momentum. The geometric nonlinearities arising from the non-zero rest lengths of the springs suffice to break integrability and lead to chaotic dynamics. The coupling of the non-integrability of the system and its non-holonomic nature results in an angular random walk of the molecule. We study the properties and dynamics of this angular motion analytically and numerically. For low energy excitations the system displays normal-mode-like motion, while for high enough excitation energy we observe regular random-walk. In between, at intermediate energies we observe an angular Lévy-walk type motion associated with a fractional diffusion coefficient interpolating between the two regimes.

  5. Motion correction in neurological fan beam SPECT using motion tracking and fully 3D reconstruction

    International Nuclear Information System (INIS)

    Fulton, R.R.; Hutton, B.; Eberl, S.; Meikle, S.; Braun, M.; Westmead Hospital, Westmead, NSW; University of Technology, Sydney, NSW

    1998-01-01

    Full text: We have previously proposed the use of fully three-dimensional (3D) reconstruction and continuous monitoring of head position to correct for motion artifacts in neurological SPECT and PET. Knowledge of the motion during acquisition provided by a head tracking system can be used to reposition the projection data in space in such a way as to negate motion effects during reconstruction. The reconstruction algorithm must deal with variations in the projection geometry resulting from differences in the timing and nature of motion between patients. Rotational movements about any axis other than the camera's axis of rotation give rise to projection geometries which necessitate the use of a fully 3D reconstruction algorithm. Our previous work with computer simulations assuming parallel hole collimation demonstrated the feasibility of correcting for motion. We have now refined our iterative 3D reconstruction algorithm to support fan beam data and attenuation correction, and developed a practical head tracking system for use on a Trionix Triad SPECT system. The correction technique has been tested in fan beam SPECT studies of the 3D Hoffman brain phantom. Arbitrary movements were applied to the phantom during acquisition and recorded by the head tracker which monitored the position and orientation of the phantom throughout the study. 3D reconstruction was then performed using the motion data provided by the tracker. The accuracy of correction was assessed by comparing the corrected images with a motion free study acquired immediately beforehand, visually and by calculating mean squared error (MSE). Motion correction reduced distortion perceptibly and, depending on the motions applied, improved MSE by up to an order of magnitude. 3D reconstruction of the 128x128x128 data set took 20 minutes on a SUN Ultra 1 workstation. The results of these phantom experiments suggest that the technique can effectively compensate for head motion under clinical SPECT imaging

  6. Relativistic Mechanics in Gravitational Fields Exterior to Rotating Homogeneous Mass Distributions within Spherical Geometry

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2009-07-01

    Full Text Available General Relativistic metric tensors for gravitational fields exterior to homogeneous spherical mass distributions rotating with constant angular velocity about a fixed di- ameter are constructed. The coeffcients of affine connection for the gravitational field are used to derive equations of motion for test particles. The laws of conservation of energy and angular momentum are deduced using the generalized Lagrangian. The law of conservation of angular momentum is found to be equal to that in Schwarzschild’s gravitational field. The planetary equation of motion and the equation of motion for a photon in the vicinity of the rotating spherical mass distribution have rotational terms not found in Schwarzschild’s field.

  7. Forward amplitude in pion deuteron

    International Nuclear Information System (INIS)

    Ferreira, E.M.; Munguia, G.A.P.; Rosa, L.P.; Thome, Z.D.

    1979-06-01

    The data on total cross section for πd scattering is analysed in terms of a single scattering calculation with Fermi motion dependence, in order to obtain a criterion to fix the value of the energy entering the two body meson nucleon amplitude. It is found that the prescription derived from the non-relativistic three body kinematics gives reasonable results. The introduction of a shift in the energy value, possibly representing nuclear binding effects, leads to a very good fitting of the data. The results are compared with those obtained in direct calculations of Faddeev equations and with the Brueckner model of fixed scatterers. (Author) [pt

  8. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    Science.gov (United States)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  9. Solar rotation measurements at Mount Wilson. Pt. 2

    International Nuclear Information System (INIS)

    Labonte, B.J.; Howard, R.; Carnegie Institution of Washington, Pasadena

    1981-01-01

    Possible sources of systematic error in solar Doppler rotational velocities are examined. Scattered light is shown to affect the Mount Wilson solar rotation results, but this effect is not enough to bring the spectroscopic results in coincidence with the sunspot rotation. Interference fringes at the spectrograph focus at Mount Wilson have in two intervals affected the rotation results. It has been possible to correlate this error with temperature and thus correct for it. A misalignment between the entrance and exit slits is a possible source of error, but for the Mount Wilson slit configuration the amplitude of this effect is negligibly small. Rapid scanning of the solar image also produces no measurable effect. (orig.)

  10. Survey of large-amplitude flapping motions in the midtail current sheet

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2006-08-01

    Full Text Available We surveyed fast current sheet crossings (flapping motions over the distance range 10–30 RE in the magnetotail covered by the Geotail spacecraft. Since the local tilts of these dynamic sheets are large and variable in these events, we compare three different methods of evaluating current sheet normals using 4-s/c Cluster data and define the success criteria for the single-spacecraft-based method (MVA to obtain the reliable results. Then, after identifying more than ~1100 fast CS crossings over a 3-year period of Geotail observations in 1997–1999, we address their parameters, spatial distribution and activity dependence. We confirm that over the entire distance covered and LT bins, fast crossings have considerable tilts in the YZ plane (from estimated MVA normals which show a preferential appearance of one (YZ kink-like mode that is responsible for these severe current sheet perturbations. Their occurrence is highly inhomogeneous; it sharply increases with radial distance and has a peak in the tail center (with some duskward shift, resembling the occurrence of the BBFs, although there is no one-to-one local correspondence between these two phenomena. The crossing durations typically spread around 1 min and decrease significantly where the high-speed flows are registered. Based on an AE index superposed epoch study, the flapping motions prefer to appear during the substorm expansion phase, although a considerable number of events without any electrojet and auroral activity were also observed. We also present statistical distributions of other parameters and briefly discuss what could be possible mechanisms to generate the flapping motions.

  11. Pairing effects in rotating nuclei: a semi classical approach

    International Nuclear Information System (INIS)

    Durand, M.

    1985-10-01

    The semi-classical phase-space distribution ρ(r,p) is calculated for rotating superfluid nuclei, taking into account the reaction of the pairing field to the rotational motion. Moments of inertia and current distributions calculated by means of this distribution pass continuously from a rigid to an irrotational behaviour

  12. Motion monitoring during a course of lung radiotherapy with anchored electromagnetic transponders. Quantification of inter- and intrafraction motion and variability of relative transponder positions

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Daniela [German Cancer Research Center (DKFZ), Division of Medical Physics in Radiation Oncology, Heidelberg (Germany); National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg University Hospital, Department of Radiation Oncology, Heidelberg (Germany); Nill, Simeon; Oelfke, Uwe [German Cancer Research Center (DKFZ), Division of Medical Physics in Radiation Oncology, Heidelberg (Germany); National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg (Germany); The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Joint Department of Physics, London (United Kingdom); Roeder, Falk [German Cancer Research Center (DKFZ), Clinical Cooperation Unit Molecular Radiooncology, Heidelberg (Germany); University of Munich (LMU), Department of Radiation Oncology, Munich (Germany); Gompelmann, Daniela; Herth, Felix [University of Heidelberg, Pneumology and Critical Care Medicine, Thoraxklinik, Heidelberg (Germany); German Center for Lung Research, Translational Lung Research Center Heidelberg (TLRC), Heidelberg (Germany)

    2017-10-15

    Anchored electromagnetic transponders for tumor motion monitoring during lung radiotherapy were clinically evaluated. First, intrafractional motion patterns were analyzed as well as their interfractional variations. Second, intra- and interfractional changes of the geometric transponder positions were investigated. Intrafractional motion data from 7 patients with an upper or middle lobe tumor and three implanted transponders each was used to calculate breathing amplitudes, overall motion amount and motion midlines in three mutual perpendicular directions and three-dimensionally (3D) for 162 fractions. For 6 patients intra- and interfractional variations in transponder distances and in the size of the triangle defined by the transponder locations over the treatment course were determined. Mean 3D values of all fractions were up to 4.0, 4.6 and 3.4 mm per patient for amplitude, overall motion amount and midline deviation, respectively. Intrafractional transponder distances varied with standard deviations up to 3.2 mm, while a maximal triangle shrinkage of 36.5% over 39 days was observed. Electromagnetic real-time motion monitoring was feasible for all patients. Detected respiratory motion was on average modest in this small cohort without lower lobe tumors, but changes in motion midline were of the same size as the amplitudes and greater midline motion can be observed in some fractions. Intra- and interfractional variations of the geometric transponder positions can be large, so for reliable motion management correlation between transponder and tumor motion needs to be evaluated per patient. (orig.) [German] Verankerte, elektromagnetische Transponder fuer die Bewegungserkennung des Tumors waehrend der Strahlentherapie der Lunge wurden klinisch evaluiert. Dafuer wurden intrafraktionelle Bewegungsmuster und ihre interfraktionellen Variationen analysiert und intra- und interfraktionelle Veraenderungen der geometrischen Transponderpositionen untersucht. Intrafraktionelle

  13. Angle measures, general rotations, and roulettes in normed planes

    Science.gov (United States)

    Balestro, Vitor; Horváth, Ákos G.; Martini, Horst

    2017-12-01

    In this paper a special group of bijective maps of a normed plane (or, more generally, even of a plane with a suitable Jordan curve as unit circle) is introduced which we call the group of general rotations of that plane. It contains the isometry group as a subgroup. The concept of general rotations leads to the notion of flexible motions of the plane, and to the concept of Minkowskian roulettes. As a nice consequence of this new approach to motions the validity of strong analogues to the Euler-Savary equations for Minkowskian roulettes is proved.

  14. Multi-frequency response of a cylinder subjected to vortex shedding and support motions

    Energy Technology Data Exchange (ETDEWEB)

    Vikestad, Kyrre

    1998-12-31

    This thesis deals with an experimental investigation of vortex induced vibrations of a circular cylinder. The purpose of the experiment was to identify the influence from a controlled disturbance of the cylinder motions on the response caused by vortex shedding. The cylinder investigated is 2 m long and the diameter is 10 cm. The cylinder is elastically mounted in an apparatus using springs, where the foundation of one of the springs can have a harmonic motion. The apparatus is placed on a carriage in a 25 m long towing tank. Towing velocities are varied between 0.140 m/s and 0.655 m/s corresponding to reduced velocity range from 2.8 to 13.2. The still water natural frequency is 0.497 Hz, and the natural frequency in air is 0.634 Hz. The cylinder is only able to oscillate in the cross-flow direction. The support motion frequency was varied between 0.26 Hz and 1.01 Hz, and the force motion amplitude was varied using 2, 4 and 6 cm support amplitudes. Three sets of experiments were carried out: (1) Still water oscillations due to harmonic support motion excitation, support amplitude and frequencies varied, (2) Towing tests with no support motion, the velocity is varied, (3) Combined excitation: Towing tests with support motion. All possible combinations of experiments (1) and (2) are carried out. The two first experiments provide reference values for the combined excitation experiments and for verification purposes. The results reveal the ability of the external disturbance to influence the vortex shedding process both regarding frequency and the resulting response amplitudes. Results for added mass, in-line drag and damping are also obtained. The work may be of use in deep water floating petroleum production. 81 refs., 73 figs., 6 tabs.

  15. Influence of rotation on multiphoton processes in HF

    International Nuclear Information System (INIS)

    Broeckhove, J.; Feyen, B.; Van Leuven, P.

    1994-01-01

    In this contribution, the authors are concerned with the role of rotational motion in multiphoton processes induced by a laser field of high intensity. The authors use the pseudospectral split operator method for the propagation of the quantum wave-function. The rotation is treated by decomposition of the HF wave-function in its angular momentum components

  16. Stochastic motion due to a single wave in a magnetoplasma

    International Nuclear Information System (INIS)

    Smith, G.R.

    1979-01-01

    A single electrostatic wave in a magnetoplasma causes stochastic ion motion in several physically different situations. Various magnetic fields (uniform, tokamak, and mirror) and various propagation angles with respect to the field have been studied. A brief review of this work shows that all situations can be understood using the concept of overlapping resonances. Analytical calculations of the wave amplitude necessary for stochasticity have been carried out in some cases and compared with computer and laboratory experiments. In the case of an axisymmetric mirror field the calculations predict stochastic motion of ions with energy below a threshold that depends weakly on the wave amplitude and on the scale lengths of the magnetic field. Studies with an azimuthally asymmetric field show that the asymmetry causes substantial changes in the motion of some ions

  17. Autorotation motions of a turbine coursed by the Magnus effect

    Science.gov (United States)

    Ishkhanyan, M. V.; Klimina, L. A.; Privalova, O. G.

    2018-05-01

    The motion of the turbine in the flow is studied. Each blade of the main turbine is represented by a Savonius rotor. Self-induced rotation of Savonius rotors produces the Magnus force that courses the rotation of the main turbine. Existence and stability of the self-induced rotation are discussed. Parametrical analysis is carried out.

  18. Control of fluid-containing rotating rigid bodies

    CERN Document Server

    Gurchenkov, Anatoly A

    2013-01-01

    This book is devoted to the study of the dynamics of rotating bodies with cavities containing liquid. Two basic classes of motions are analyzed: rotation and libration. Cases of complete and partial filling of cavities with ideal liquid and complete filling with viscous liquid are treated. The volume presents a method for obtaining relations between angular velocities perpendicular to main rotation and external force momentums, which are treated as control. The developed models and methods of solving dynamical problems as well as numerical methods for solving problems of optimal control can be

  19. Optical surface scanning for respiratory motion monitoring in radiotherapy: a feasibility study

    DEFF Research Database (Denmark)

    Bekke, Susanne Lise; Mahmood, Faisal; Helt-Hansen, Jakob

    2014-01-01

    Purpose. We evaluated the feasibility of a surface scanning system (Catalyst) for respiratory motion monitoring of breast cancer patients treated with radiotherapy in deep inspiration breath-hold (DIBH). DIBH is used to reduce the radiation dose to the heart and lung. In contrast to RPM, a compet......Purpose. We evaluated the feasibility of a surface scanning system (Catalyst) for respiratory motion monitoring of breast cancer patients treated with radiotherapy in deep inspiration breath-hold (DIBH). DIBH is used to reduce the radiation dose to the heart and lung. In contrast to RPM...... and 3: the Quasar phantom was used to study if the angle of the monitored surface affects the amplitude of the recorded signal. Results. Experiment 1: we observed comparable period estimates for both systems. The amplitudes were 8 ± 0.1 mm (Catalyst) and 4.9 ± 0.1 mm (RPM). Independent check with in...... 1. Experiment 3: an increased (fixed) surface angle during breathing motion resulted in an overestimated amplitude with RPM, while the amplitude estimated by Catalyst was unaffected. Conclusion. Our study showed that Catalyst can be used as a better alternative to the RPM. With Catalyst...

  20. ROTATION AND OUTFLOW MOTIONS IN THE VERY LOW-MASS CLASS 0 PROTOSTELLAR SYSTEM HH 211 AT SUBARCSECOND RESOLUTION

    International Nuclear Information System (INIS)

    Lee, C.-F.; Hirano, Naomi; Ho, Paul T. P.; Shang, Hsien; Palau, Aina; Bourke, Tyler L.; Zhang Qizhou

    2009-01-01

    HH 211 is a nearby young protostellar system with a highly collimated jet. We have mapped it in 352 GHz continuum, SiO (J = 8 - 7), and HCO + (J = 4 - 3) emission at up to ∼0.''2 resolution with the Submillimeter Array (SMA). The continuum source is now resolved into two sources, SMM1 and SMM2, with a separation of ∼ 84 AU. SMM1 is seen at the center of the jet, probably tracing a (inner) dusty disk around the protostar driving the jet. SMM2 is seen to the southwest of SMM1 and may trace an envelope-disk around a small binary companion. A flattened envelope-disk is seen in HCO + around SMM1 with a radius of ∼ 80 AU perpendicular to the jet axis. Its velocity structure is consistent with a rotation motion and can be fitted with a Keplerian law that yields a mass of ∼50 ± 15 M Jup (a mass of a brown dwarf) for the protostar. Thus, the protostar could be the lowest mass source known to have a collimated jet and a rotating flattened envelope-disk. A small-scale (∼200 AU) low-speed (∼2 km s -1 ) outflow is seen in HCO + around the jet axis extending from the envelope-disk. It seems to rotate in the same direction as the envelope-disk and may carry away part of the angular momentum from the envelope-disk. The jet is seen in SiO close to ∼100 AU from SMM1. It is seen with a 'C-shaped' bending. It has a transverse width of ∼ -1 . A possible velocity gradient is seen consistently across its innermost pair of knots, ∼0.5 km s -1 at ∼10 AU, consistent with the sense of rotation of the envelope-disk. If this gradient is an upper limit of the true rotational gradient of the jet, then the jet carries away a very small amount of angular momentum of ∼ -1 and thus must be launched from the very inner edge of the disk near the corotation radius.

  1. Nth-powered amplitude squeezing in fan-states

    CERN Document Server

    Duc, T M

    2002-01-01

    Squeezing properties of the Hillery-type N-powered amplitude are investigated in the fan-state vertical bar xi; 2k, f> sub F which is linearly superposed by 2k 2k-quantum nonlinear coherent states in the phase-locked manner. The general expression of squeezing is derived analytically for arbitrary xi, k, N and f showing a multi-directional character of squeezing. For a given k, squeezing may appear to the even power N=2k if f ident to 1 and N>=2k if f not =1 and the number of directions along with the Nth-powered amplitude is squeezed is exactly equal to N, for both f ident to 1 (the light field) and f not =1 (the vibrational motion of the trapped ion). Discussions are also given elucidating the qualitative difference between the cases of f ident to 1 and f not =1.

  2. Rotational dynamics with Tracker

    International Nuclear Information System (INIS)

    Eadkhong, T; Danworaphong, S; Rajsadorn, R; Jannual, P

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia (I) of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction (b) for our system. By omitting the effect of such friction, we derive I for a cylindrical plate rotated around its central axis from the other two experiments based on the relation between torque and angular acceleration of rotational motion and conservation of energy. Movies of the rotating plate and hung masses are recorded. As a result, we have the deviation of I from its theoretical value of 0.4% and 3.3%, respectively. Our setup is completely constructed from locally available inexpensive materials and the experimental results indicate that the system is highly reliable. This work should pave the way for those who prefer to build a similar setup from scratch at relatively low cost compared to commercial units. (paper)

  3. SU-E-J-175: Comparison of the Treatment Reproducibility of Tumors Affected by Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, M; Piotrowski, T; Adamczyk, S [Medical Physics Department, Greater Poland Cancer Centre, Poznan (Poland)

    2015-06-15

    Purpose: The aim of the dose distribution simulations was to form a global idea of intensity-modulated radiation therapy (IMRT) realization, by its comparison to three-dimensional conformal radiation therapy (3DCRT) delivery for tumors affected by respiratory motion. Methods: In the group of 10patients both 3DCRT and IMRT plans were prepared.For each field the motion kernel was generated with the largest movement amplitude of 4;6 and 8mm.Additionally,the sets of reference measurements were made in no motion conditions(0 mm).The evaluation of plan delivery,using a diode array placed on moving platform,was based on the Gamma Index analysis with distance to agreement of 3mm and dose difference of 3%. Results: IMRT plans tended to spare doses delivered to lungs compared to 3DCRT.Nonetheless,analyzed volumes showed no significant difference between the static and dynamic techniques,except for the volumes of both lungs receiving 10 and 15Gy.After adding the components associated with the respiratory movement,all IMRT lung parameters evaluated for the ipsilateral,contralateral and both lungs together,revealed considerable differences between the 0vs.6, 0vs.8 and 4vs.8-mm amplitudes.Similar results were obtained for the 3DCRT lung measurements,but without significance between the 0vs.6-mm amplitude.Taking into account the CTV score parameter in 3DCRT and IMRT plans,there was no statistically significant difference between the motion patterns with the smallest amplitudes.The differences were found for the 8-mm amplitude when it was compared both with static conditions and 4-mm amplitude (for 3DCRT) and between 0vs.6, 0vs.8 and 4vs.8-mm amplitudes (for IMRT).All accepted and measured 3DCRT and IMRT doses to spinal cord,esophagus and heart were always below the QUANTEC limits. Conclusion: The application of IMRT technique in lung radiotherapy affords possibilities for reducing the lung doses.For maximal amplitudes of breathing trajectory below 4mm,the disagreement between CTV

  4. Monitoring core barrel motion by neutron noise diagnostics

    International Nuclear Information System (INIS)

    Por, G.

    1985-08-01

    The core barrel motion is detected by ionization chambers located around the reactor vessel. The method is based on the measurement of the neutron flux fluctuations. Calculations to determine the direction and the size of the motion are discussed. The identification of core barrel motion and its connection with the error of one of the main circulating pumps in the Rheinsberg nuclear power plant are described. Core barrel motion of 10 Hz with an amplitude less than 50 μm could be diagnozed at the Paks-1 reactor using the Dutch high accuracy evaluation system. (V.N.)

  5. Ground motion predictions

    Energy Technology Data Exchange (ETDEWEB)

    Loux, P C [Environmental Research Corporation, Alexandria, VA (United States)

    1969-07-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  6. Ground motion predictions

    International Nuclear Information System (INIS)

    Loux, P.C.

    1969-01-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  7. The Influence of Second Harmonic Phase and Amplitude Variation in Cyclically Pitching Wings

    Science.gov (United States)

    Culler, Ethan; Farnsworth, John

    2017-11-01

    From wind tunnel testing of a cyber-physical wing model, it has been found that the pitch trajectory for stall flutter is described by an array of higher harmonic frequencies with decaying energy content. These frequencies distort the stall flutter motion from that of a pure sinusoidal oscillation in pitch and can have a significant effect on the resulting force production. In order to understand how these higher harmonic frequencies contribute to the overall pitching moment characteristics of a wing in stall flutter, a rigid finite span wing model, with aspect ratio four, was pitched in the wind tunnel. The prescribed motion of the pitch cycle was varied by changing the amplitude ratio and phase of the second harmonic of the oscillation frequency. The second harmonic represents the second highest energy mode in the pitching cycle spectra. Pitching moment and planar particle image velocimetry data was collected. From these pitching trajectories, a significant dependence of pitching moment on both the phase and amplitude of the prescribed waveforms was found. Specifically, for the same amplitude ratio, variations in the phase produced changes of approximately 30 percent in the phase averaged pitching moment.

  8. Measurement and description of three-dimensional shoulder range of motion with degrees of freedom interactions.

    Science.gov (United States)

    Haering, Diane; Raison, Maxime; Begon, Mickael

    2014-08-01

    The shoulder is the most mobile joint of the human body due to bony constraint scarcity and soft tissue function unlocking several degrees of freedom (DOF). Clinical evaluation of the shoulder range of motion (RoM) is often limited to a few monoplanar measurements where each DOF varies independently. The main objective of this study was to provide a method and its experimental approach to assess shoulder 3D RoM with DOF interactions. Sixteen participants performed four series of active arm movements with maximal amplitude consisting in (1) elevations with fixed arm axial rotations (elevation series), (2) axial rotations at different elevations (rotation series), both in five planes of elevation, (3) free arm movements with the instruction to fill the largest volume in space while varying hand orientation (random series), and (4) a combination of elevation and rotation series (overall series). A motion analysis system combined with an upper limb kinematic model was used to estimate the 3D joint kinematics. Thoracohumeral Euler angles with correction were chosen to represent rotations. The angle-time-histories were treated altogether to analyze their 3D interaction. Then, all 3D angular poses were included into a nonconvex hull representing the RoM space accounting for DOF interactions. The effect of series of movements (n = 4) on RoM volumes was tested with a one-way repeated-measures ANOVA followed by Bonferroni posthoc analysis. A normalized 3D RoM space was defined by including 3D poses common to a maximal number of participants into a hull of average volume. A significant effect of the series of movements (p measured the largest RoM with an average volume of 3.46 ± 0.89 million cubic degrees. The main difference between the series of movements was due to axial rotation. A normalized RoM hull with average volume was found by encompassing arm poses common to more than 50% of the participants. In general, the results confirmed and characterized the complex 3D

  9. A 3-DOF parallel robot with spherical motion for the rehabilitation and evaluation of balance performance.

    Science.gov (United States)

    Patanè, Fabrizio; Cappa, Paolo

    2011-04-01

    In this paper a novel electrically actuated parallel robot with three degrees-of-freedom (3 DOF) for dynamic postural studies is presented. The design has been described, the solution to the inverse kinematics has been found, and a numerical solution for the direct kinematics has been proposed. The workspace of the implemented robot is characterized by an angular range of motion of about ±10° for roll and pitch when yaw is in the range ±15°. The robot was constructed and the orientation accuracy was tested by means of an optoelectronic system and by imposing a sinusoidal input, with a frequency of 1 Hz and amplitude of 10°, along the three axes, in sequence. The collected data indicated a phase delay of 1° and an amplitude error of 0.5%-1.5%; similar values were observed for cross-axis sensitivity errors. We also conducted a clinical application on a group of normal subjects, who were standing in equilibrium on the robot base with eyes open (EO) and eyes closed (EC), which was rotated with a tri-axial sinusoidal trajectory with a frequency of 0.5 Hz and amplitude 5° for roll and pitch and 10° for the yaw. The postural configuration of the subjects was recorded with an optoelectronic system. However, due to the mainly technical nature of this paper, only initial validation outcomes are reported here. The clinical application showed that only the tilt and displacement on the sagittal pane of head, trunk, and pelvis in the trials conducted with eyes closed were affected by drift and that the reduction of the yaw rotation and of the mediolateral translation was not a controlled parameter, as happened, instead, for the other anatomical directions.

  10. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  11. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2001-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  12. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    International Nuclear Information System (INIS)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom

    2015-01-01

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  13. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr [Department of Electrical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  14. Speed of recovery after arthroscopic rotator cuff repair.

    Science.gov (United States)

    Kurowicki, Jennifer; Berglund, Derek D; Momoh, Enesi; Disla, Shanell; Horn, Brandon; Giveans, M Russell; Levy, Jonathan C

    2017-07-01

    The purpose of this study was to delineate the time taken to achieve maximum improvement (plateau of recovery) and the degree of recovery observed at various time points (speed of recovery) for pain and function after arthroscopic rotator cuff repair. An institutional shoulder surgery registry query identified 627 patients who underwent arthroscopic rotator cuff repair between 2006 and 2015. Measured range of motion, patient satisfaction, and patient-reported outcome measures were analyzed for preoperative, 3-month, 6-month, 1-year, and 2-year intervals. Subgroup analysis was performed on the basis of tear size by retraction grade and number of anchors used. As an entire group, the plateau of maximum recovery for pain, function, and motion occurred at 1 year. Satisfaction with surgery was >96% at all time points. At 3 months, 74% of improvement in pain and 45% to 58% of functional improvement were realized. However, only 22% of elevation improvement was achieved (P rotation. Smaller tears had higher motion and functional scores across all time points. Tear size did not influence pain levels. The plateau of maximum recovery after rotator cuff repair occurred at 1 year with high satisfaction rates at all time points. At 3 months, approximately 75% of pain relief and 50% of functional recovery can be expected. Larger tears have a slower speed of recovery. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. Does immobilization after arthroscopic rotator cuff repair increase tendon healing? A systematic review and meta-analysis.

    Science.gov (United States)

    Shen, Chong; Tang, Zhi-Hong; Hu, Jun-Zu; Zou, Guo-Yao; Xiao, Rong-Chi; Yan, Dong-Xue

    2014-09-01

    To determine whether immobilization after arthroscopic rotator cuff repair improved tendon healing compared with early passive motion. A systematic electronic literature search was conducted to identify randomized controlled trials (RCTs) comparing early passive motion with immobilization after arthroscopic rotator cuff repair. The primary outcome assessed was tendon healing in the repaired cuff. Secondary outcome measures were range of motion (ROM) and American Shoulder and Elbow Surgeons (ASES) shoulder scale, Simple Shoulder Test (SST), Constant, and visual analog scale (VAS) for pain scores. Pooled analyses were performed using a random effects model to obtain summary estimates of treatment effect with 95% confidence intervals. Heterogeneity among included studies was quantified. Three RCTs examining 265 patients were included. Meta-analysis revealed no significant difference in tendon healing in the repaired cuff between the early-motion and immobilization groups. A significant difference in external rotation at 6 months postoperatively favored early motion over immobilization, but no significant difference was observed at 1 year postoperatively. In one study, Constant scores were slightly higher in the early-motion group than in the immobilization group. Two studies found no significant difference in ASES, SST, or VAS score between groups. We found no evidence that immobilization after arthroscopic rotator cuff repair was superior to early-motion rehabilitation in terms of tendon healing or clinical outcome. Patients in the early-motion group may recover ROM more rapidly. Level II; systematic review of levels I and II studies.

  16. Localized diffusive motion on two different time scales in solid alkane nanoparticles

    International Nuclear Information System (INIS)

    Wang, S.-K.; Mamontov, Eugene; Bai, M.; Hansen, F.Y.; Taub, H.; Copley, J.R.D.; Garcia Sakai, V.; Gasparovic, Goran; Jenkins, Timothy; Tyagi, M.; Herwig, Kenneth W.; Neumann, D.A.; Montfrooij, W.; Volkmann, U.G.

    2010-01-01

    High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a 'fast' motion corresponding to uniaxial rotation about the long molecular axis; and a 'slow' motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.

  17. Error field assessment from driven rotation of stable external kinks at EXTRAP-T2R reversed field pinch

    Science.gov (United States)

    Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.

    2013-04-01

    A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.

  18. Establishing Maximal Medical Improvement After Arthroscopic Rotator Cuff Repair.

    Science.gov (United States)

    Zuke, William A; Leroux, Timothy S; Gregory, Bonnie P; Black, Austin; Forsythe, Brian; Romeo, Anthony A; Verma, Nikhil N

    2018-03-01

    As health care transitions from a pay-for-service to a pay-for-performance infrastructure, the value of orthopaedic care must be defined accurately. Significant efforts have been made in defining quality and cost in arthroplasty; however, there remains a lag in ambulatory orthopaedic care. Two-year follow-up has been a general requirement for reporting outcomes after rotator cuff repair. However, this time requirement has not been established scientifically and is of increasing importance in the era of value-based health care. Given that arthroscopic rotator cuff repair is a common ambulatory orthopaedic procedure, the purpose of this study was to establish a time frame for maximal medical improvement (the state when improvement has stabilized) after arthroscopic rotator cuff repair. Systematic review. A systematic review of the literature was conducted, identifying studies reporting sequential patient-reported outcomes up to a minimum of 2 years after arthroscopic rotator cuff repair. The primary clinical outcome was patient-reported outcomes at 3-month, 6-month, 1-year, and 2-year follow-up. Secondary clinical outcomes included range of motion, strength, retears, and complications. Clinically significant improvement was determined between various time intervals by use of the minimal clinically important difference. The review included 19 studies including 1370 patients who underwent rotator cuff repair. Clinically significant improvement in patient-reported outcomes was seen up to 1 year after rotator cuff repair, but no clinical significance was noted from 1 year to 2 years. The majority of improvement in strength and range of motion was seen up to 6 months, but no clinically meaningful improvement was seen thereafter. All reported complications and the majority of retears occurred within 6 months after rotator cuff repair. After rotator cuff repair, a clinically significant improvement in patient-reported outcomes, range of motion, and strength was seen up to 1

  19. Simplified Methods Applied to Nonlinear Motion of Spar Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Haslum, Herbjoern Alf

    2000-07-01

    Simplified methods for prediction of motion response of spar platforms are presented. The methods are based on first and second order potential theory. Nonlinear drag loads and the effect of the pumping motion in a moon-pool are also considered. Large amplitude pitch motions coupled to extreme amplitude heave motions may arise when spar platforms are exposed to long period swell. The phenomenon is investigated theoretically and explained as a Mathieu instability. It is caused by nonlinear coupling effects between heave, surge, and pitch. It is shown that for a critical wave period, the envelope of the heave motion makes the pitch motion unstable. For the same wave period, a higher order pitch/heave coupling excites resonant heave response. This mutual interaction largely amplifies both the pitch and the heave response. As a result, the pitch/heave instability revealed in this work is more critical than the previously well known Mathieu's instability in pitch which occurs if the wave period (or the natural heave period) is half the natural pitch period. The Mathieu instability is demonstrated both by numerical simulations with a newly developed calculation tool and in model experiments. In order to learn more about the conditions for this instability to occur and also how it may be controlled, different damping configurations (heave damping disks and pitch/surge damping fins) are evaluated both in model experiments and by numerical simulations. With increased drag damping, larger wave amplitudes and more time are needed to trigger the instability. The pitch/heave instability is a low probability of occurrence phenomenon. Extreme wave periods are needed for the instability to be triggered, about 20 seconds for a typical 200m draft spar. However, it may be important to consider the phenomenon in design since the pitch/heave instability is very critical. It is also seen that when classical spar platforms (constant cylindrical cross section and about 200m draft

  20. Origin of inertia in large-amplitude collective motion in finite Fermi ...

    Indian Academy of Sciences (India)

    There is a tacit assumption that the collective variables (shape) determine the internal structure and state of the nucleus. A detailed derivation of eq. (2) based on the principle of least action is given in [16]. During collec- tive motion, the eigenstate does not change leading thereby to adiabatic approximation, and we shall ...

  1. MATHEMATICAL MODEL OF WHEELSET OSCILLATIONS WITH INDEPENDENT WHEEL ROTATION IN THE HORIZONTAL PLANE

    Directory of Open Access Journals (Sweden)

    S. V. Myamlin

    2016-08-01

    Full Text Available Purpose. The work is devoted to the study of horizontal oscillation and the assessment of the motion stability of a single wheelset with independent wheel rotation, and to the comparison of stability indicators of the typical wheelset and the wheelset with independent wheel rotation. This is connected with the necessity to increase traffic speed of rolling stock, improve road safety and comfort of passengers. Methodology. To achieve this purpose we used the methods of mathematical simulation of railway rolling stock dynamics, as well as the linear algebra methods to assess the stability of solutions of the linear homogeneous differential equations. Findings. To solve the set task the design model of a single wheelset with independent wheel rotation was created. The wheelset is not a single solid body; each of the wheelset axles has a surplus degree of freedom. Thus, we obtained the system with 4 degrees of freedom. The design model allowed to obtain the system of linear homogeneous differential equations describing the oscillations of the represented wheelset in a horizontal plane on a straight track section. On the basis of the computer modeling were calculated the eigenvalues of the differential equation system coefficients and the asymptotic stability analysis of the wheelset motion with independent wheel rotation. The increment and the frequency of fluctuations were compared with similar indicators for the standard wheelset. The authors also discussed non-oscillatory forms of the wheelset motion and the issues of wheelset self-centering on the track. Originality. The result of the work is the mathematical model of the sinuous movement of a single wheelset, in two-dimensional formulation, with independent wheel rotation and the estimate of the dynamic indices during its motion on a straight track section without any irregularities. There were also proposed the ways to ensure the self-centering on the track of the wheelset with independent

  2. Empirical recurrence rates for ground motion signals on planetary surfaces

    Science.gov (United States)

    Lorenz, Ralph D.; Panning, Mark

    2018-03-01

    We determine the recurrence rates of ground motion events as a function of sensed velocity amplitude at several terrestrial locations, and make a first interplanetary comparison with measurements on the Moon, Mars, Venus and Titan. This empirical approach gives an intuitive order-of-magnitude guide to the observed ground motion (including both tectonic and ocean- and atmosphere-forced signals) of these locations as a guide to instrument expectations on future missions, without invoking interior models and specific sources: for example a Venera-14 observation of possible ground motion indicates a microseismic environment mid-way between noisy and quiet terrestrial locations. Quiet terrestrial regions see a peak velocity amplitude in mm/s roughly equal to 0.3*N(-0.7), where N is the number of "events" (half-hour intervals in which a given peak ground motion is exceeded) observed per year. The Apollo data show endogenous seismic signals for a given recurrence rate that are typically about 10,000 times smaller in amplitude than a quiet site on Earth, although local thermally-induced moonquakes are much more common. Viking data masked for low-wind periods appear comparable with a quiet terrestrial site, whereas a Venera observation of microseisms suggests ground motion more similar to a more active terrestrial location. Recurrence rate plots from in-situ measurements provide a context for seismic instrumentation on future planetary missions, e.g. to guide formulation of data compression schemes. While even small geophones can discriminate terrestrial activity rates, observations with guidance accelerometers are typically too insensitive to provide meaningful constraints (i.e. a non-zero number of "events") on actual ground motion observations unless operated for very long periods.

  3. On the Motion of solids in modified quantum mechanics

    International Nuclear Information System (INIS)

    Diosi, L.

    1988-01-01

    In this paper we apply the unified dynamics of Ghirardi, Rimini and Weber to the translational and rotational motion of solids in three dimensions. We show that, in a certain approximation, the rotational equations can formally be reduced to the translational ones already known. We point out that the rotation of solids as well as their translation are practically of classical nature without any observable quantum effects

  4. Solar rotation and meridional motions derived from sunspot groups

    International Nuclear Information System (INIS)

    Tuominen, J.; Tuominen, I.; Kyroelaeinen, J.

    1982-01-01

    Latitudinal and longitudinal motions of sunspot groups have been studied using the positions of recurrent sunspot groups of 103 years published by Greenwich observatory. In order to avoid any limb effects, only positions close to the central meridian have been used. The data were divided into two parts: those belonging to the years around sunspot maxima and those belonging to the years around sunspot minima. Using several different criteria it was ascertained that sunspot groups show meridional motions and that their drift curves as a function of latitude are different around maxima and around minima. In addition, also the angular velocity, as a function of latitude, was found to be different around maxima and minima. (Auth.)

  5. TH-AB-202-10: Quantifying the Accuracy and Precision of Six Degree-Of-Freedom Motion Estimation for Use in Real-Time Tumor Motion Monitoring During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J [The University of Sydney, Sydney, New South Wales (Australia); Nguyen, D; O’Brien, R; Keall, P [University of Sydney, Sydney, NSW (Australia); Huang, C [Sydney Medical School, Camperdown (Australia); Caillet, V [The University of Sydney, Sydney, NSW (Australia); Poulsen, P [Aarhus University Hospital, Aarhus (Denmark); Booth, J [Royal North Shore Hospital, Sydney (Australia)

    2016-06-15

    Purpose: Kilovoltage intrafraction monitoring (KIM) scheme has been successfully used to simultaneously monitor 3D tumor motion during radiotherapy. Recently, an iterative closest point (ICP) algorithm was implemented in KIM to also measure rotations about three axes, enabling real-time tracking of tumor motion in six degrees-of-freedom (DoF). This study aims to evaluate the accuracy of the six DoF motion estimates of KIM by comparing it with the corresponding motion (i) measured by the Calypso; and (ii) derived from kV/MV triangulation. Methods: (i) Various motions (static and dynamic) were applied to a CIRS phantom with three embedded electromagnetic transponders (Calypso Medical) using a 5D motion platform (HexaMotion) and a rotating treatment couch while both KIM and Calypso were used to concurrently track the phantom motion in six DoF. (ii) KIM was also used to retrospectively estimate six DoF motion from continuous sets of kV projections of a prostate, implanted with three gold fiducial markers (2 patients with 80 fractions in total), acquired during the treatment. Corresponding motion was obtained from kV/MV triangulation using a closed form least squares method based on three markers’ positions. Only the frames where all three markers were present were used in the analysis. The mean differences between the corresponding motion estimates were calculated for each DoF. Results: Experimental results showed that the mean of absolute differences in six DoF phantom motion measured by Calypso and KIM were within 1.1° and 0.7 mm. kV/MV triangulation derived six DoF prostate tumor better agreed with KIM estimated motion with the mean (s.d.) difference of up to 0.2° (1.36°) and 0.2 (0.25) mm for rotation and translation, respectively. Conclusion: These results suggest that KIM can provide an accurate six DoF intrafraction tumor during radiotherapy.

  6. Actomyosin contractility rotates the cell nucleus.

    Science.gov (United States)

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  7. Unlocking the talus by eversion limits medial ankle injury risk during external rotation.

    Science.gov (United States)

    Button, Keith D; Wei, Feng; Haut, Roger C

    2015-10-15

    Eversion prior to excessive external foot rotation has been shown to predispose the anterior tibiofibular ligament (ATiFL) to failure, yet protect the anterior deltoid ligament (ADL) from failure despite high levels of foot rotation. The purpose of the current study was to measure the rotations of both the subtalar and talocrural joints during foot external rotation at sub-failure levels in either a neutral or a pre-everted position as a first step towards understanding the mechanisms of injury in previous studies. Fourteen (seven pairs) cadaver lower extremities were externally rotated 20° in either a pre-everted or neutral configuration, without producing injury. Motion capture was performed to track the tibia, talus, and calcaneus motions, and a joint coordinate system was used to analyze motions of the two joints. While talocrural joint rotation was greater in the neutral ankle (13.3±2.0° versus 10.5±2.7°, p=0.006), subtalar joint rotation was greater in the pre-everted ankle (2.4±1.9° versus 1.1±1.0°, p=0.014). Overall, the talocrural joint rotated more than the subtalar joint (11.9±2.8° versus 1.8±1.6°, p<0.001). It was proposed that the calcaneus and talus 'lock' in a neutral position, but 'unlock' when the ankle is everted prior to rotation. This locking/unlocking mechanism could be responsible for an increased subtalar rotation, but decreased talocrural rotation when the ankle is pre-everted, protecting the ADL from failure. This study may provide information valuable to the study of external rotation kinematics and injury risk. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Research on Measurement Accuracy of Laser Tracking System Based on Spherical Mirror with Rotation Errors of Gimbal Mount Axes

    Science.gov (United States)

    Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang

    2018-02-01

    This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.

  9. Measurements of Drag Coefficients and Rotation Rates of Free-Falling Helixes

    KAUST Repository

    Al-Omari, Abdulrhaman A.

    2016-05-01

    The motion of bacteria in the environment is relevant to several fields. At very small scales and with simple helical shapes, we are able to describe experimentally and mathematically the motion of solid spirals falling freely within a liquid pool. Using these shapes we intend to mimic the motion of bacteria called Spirochetes. We seek to experimentally investigate the linear and the rotational motion of such shapes. A better understanding of the dynamics of this process will be practical not only on engineering and physics, but the bioscience and environmental as well. In the following pages, we explore the role of the shape on the motion of passive solid helixes in different liquids. We fabricate three solid helical shapes and drop them under gravity in water, glycerol and a mixture of 30% glycerol in water. That generated rotation due to helical angle in water. However, we observe the rotation disappear in glycerol. The movement of the solid helical shapes is imaged using a high-speed video camera. Then, the images are analyzed using the supplied software and a computer. Using these simultaneous measurements, we examine the terminal velocity of solid helical shapes. Using this information we computed the drag coefficient and the drag force. We obtain the helical angular velocity and the torque applied to the solid. The results of this study will allow us to more accurately predict the motion of solid helical shape. This analysis will also shed light onto biological questions of bacteria movement.

  10. Semiclassical approach to giant resonances of rotating nuclei

    International Nuclear Information System (INIS)

    Winter, J.

    1983-01-01

    Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large-amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. (author)

  11. Dynamics of a discrete geotropic sensor subject to rotation-induced gravity compensation

    Energy Technology Data Exchange (ETDEWEB)

    Silver, I.L.

    1976-01-01

    A clinostat achieves gravity compensation by providing circular rotation with uniform speed, about a horizontal axis. The dynamics of an assumed, discrete and free-moving subcellular gravity receptor, subject to clinostat rotation, is analyzed. The results imply that there is an optimum rotation rate; higher speeds result in circular motions with diameters more comparable to thermal noise fluctuations, but with greater linear velocities due to increasing centrifugal forces. An optimizing function is proposed. The nucleolus and mitochondrion is chosen as a gravity receptor for illustrating the use of this theory. The characteristics of their clinostat-induced motions are incorporated with experimental results on Avena plant shoots in an illustrative example.

  12. Modification of the Penn State Reactor to allow transverse and rotational core motion to increase operational versatility

    International Nuclear Information System (INIS)

    Hughes, Daniel E.

    1994-01-01

    At Penn State the Nuclear Engineering students have the opportunity to perform experiments in reactor physics, work with reactor and radiation instrumentation, and operate a nuclear reactor. These activities are done at the Penn State Breazeale Reactor (PSBR), a General Atomics Mark III TRIGA reactor. Unfortunately this activity alone can not fully support the facility. The PSBR is mandated by Penn State to provide a portion of its operating budget by selling services to users outside as well as inside Penn State. In order to increase the marketability of PSBR an upgrade program was started to increase the quality and versatility of operation. The PSBR is the longest operating university reactor in the United States. The first phase of the upgrade program began in 1992. The quality of operation was increased by replacing a 1965 vintage console with a more reliable digital control and monitoring system. The present phase of the upgrade program is to increase the versatility of operation by modifying the reactor to allow transverse and rotational core motion. Adding two more degrees of motion to the reactor core increases the capability of the facility to meet the needs of present and future users. This upgrade is being financed by a grant from the Department of Energy and matching funds from Penn State. (author)

  13. General principles in motion vision: color blindness of object motion depends on pattern velocity in honeybee and goldfish.

    Science.gov (United States)

    Stojcev, Maja; Radtke, Nils; D'Amaro, Daniele; Dyer, Adrian G; Neumeyer, Christa

    2011-07-01

    Visual systems can undergo striking adaptations to specific visual environments during evolution, but they can also be very "conservative." This seems to be the case in motion vision, which is surprisingly similar in species as distant as honeybee and goldfish. In both visual systems, motion vision measured with the optomotor response is color blind and mediated by one photoreceptor type only. Here, we ask whether this is also the case if the moving stimulus is restricted to a small part of the visual field, and test what influence velocity may have on chromatic motion perception. Honeybees were trained to discriminate between clockwise- and counterclockwise-rotating sector disks. Six types of disk stimuli differing in green receptor contrast were tested using three different rotational velocities. When green receptor contrast was at a minimum, bees were able to discriminate rotation directions with all colored disks at slow velocities of 6 and 12 Hz contrast frequency but not with a relatively high velocity of 24 Hz. In the goldfish experiment, the animals were trained to detect a moving red or blue disk presented in a green surround. Discrimination ability between this stimulus and a homogenous green background was poor when the M-cone type was not or only slightly modulated considering high stimulus velocity (7 cm/s). However, discrimination was improved with slower stimulus velocities (4 and 2 cm/s). These behavioral results indicate that there is potentially an object motion system in both honeybee and goldfish, which is able to incorporate color information at relatively low velocities but is color blind with higher speed. We thus propose that both honeybees and goldfish have multiple subsystems of object motion, which include achromatic as well as chromatic processing.

  14. Measurements of translation, rotation and strain: new approaches to seismic processing and inversion

    NARCIS (Netherlands)

    Bernauer, M.; Fichtner, A.; Igel, H.

    2012-01-01

    We propose a novel approach to seismic tomography based on the joint processing of translation, strain and rotation measurements. Our concept is based on the apparent S and P velocities, defined as the ratios of displacement velocity and rotation amplitude, and displacement velocity and

  15. Relationships between Paraspinal Muscle Activity and Lumbar Inter-Vertebral Range of Motion

    Directory of Open Access Journals (Sweden)

    Alister du Rose

    2016-01-01

    Full Text Available Control of the lumbar spine requires contributions from both the active and passive sub-systems. Identifying interactions between these systems may provide insight into the mechanisms of low back pain. However, as a first step it is important to investigate what is normal. The purpose of this study was to explore the relationships between the lumbar inter-vertebral range of motion and paraspinal muscle activity during weight-bearing flexion in healthy controls using quantitative fluoroscopy (QF and surface electromyography (sEMG. Contemporaneous lumbar sEMG and QF motion sequences were recorded during controlled active flexion of 60° using electrodes placed over Longissimus thoracis pars thoracis (TES, Longissimus thoracis pars lumborum (LES, and Multifidus (LMU. Normalised root mean square (RMS sEMG amplitude data were averaged over five epochs, and the change in amplitude between epochs was calculated. The sEMG ratios of LMU/LES LMU/TES and LES/TES were also determined. QF was used to measure the maximum inter-vertebral range of motion from L2-S1, and correlation coefficients were calculated between sEMG amplitude variables and these measurements. Intra- and inter-session sEMG amplitude repeatability was also assessed for all three paraspinal muscles. The sEMG amplitude measurements were highly repeatable, and sEMG amplitude changes correlated significantly with L4-5 and L5-S1 IV-RoMmax (r = −0.47 to 0.59. The sEMG amplitude ratio of LES/TES also correlated with L4-L5 IV-RoMmax (r = −0.53. The relationships found may be important when considering rehabilitation for low back pain.

  16. Relationships between Paraspinal Muscle Activity and Lumbar Inter-Vertebral Range of Motion.

    Science.gov (United States)

    du Rose, Alister; Breen, Alan

    2016-01-05

    Control of the lumbar spine requires contributions from both the active and passive sub-systems. Identifying interactions between these systems may provide insight into the mechanisms of low back pain. However, as a first step it is important to investigate what is normal. The purpose of this study was to explore the relationships between the lumbar inter-vertebral range of motion and paraspinal muscle activity during weight-bearing flexion in healthy controls using quantitative fluoroscopy (QF) and surface electromyography (sEMG). Contemporaneous lumbar sEMG and QF motion sequences were recorded during controlled active flexion of 60° using electrodes placed over Longissimus thoracis pars thoracis (TES), Longissimus thoracis pars lumborum (LES), and Multifidus (LMU). Normalised root mean square (RMS) sEMG amplitude data were averaged over five epochs, and the change in amplitude between epochs was calculated. The sEMG ratios of LMU/LES LMU/TES and LES/TES were also determined. QF was used to measure the maximum inter-vertebral range of motion from L2-S1, and correlation coefficients were calculated between sEMG amplitude variables and these measurements. Intra- and inter-session sEMG amplitude repeatability was also assessed for all three paraspinal muscles. The sEMG amplitude measurements were highly repeatable, and sEMG amplitude changes correlated significantly with L4-5 and L5-S1 IV-RoMmax (r = -0.47 to 0.59). The sEMG amplitude ratio of LES/TES also correlated with L4-L5 IV-RoMmax (r = -0.53). The relationships found may be important when considering rehabilitation for low back pain.

  17. Seismic Excitation of the Polar Motion

    Science.gov (United States)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-01-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by Chao and Gross (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0-1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards approx. 140 deg E, away from the actually observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by Chao and Gross (1987), manifests some geodynamic behavior yet to be explored.

  18. Relighting Character Motion for Photoreal Simulations

    National Research Council Canada - National Science Library

    Lamond, Bruce; Chabert, Charles-Felix; Einarsson, Per; Jones, Andrew; Ma, Wan-Chun; Hawkins, Tim; Bolas, Mark; Sylwan, Sebastian; Debevec, Paul

    2006-01-01

    .... The known rotation of the treadmill, repeatability of the actor's motion, timing of the lighting pattern and capture rate of the cameras are all carefully synchronized so that the actor is imaged in (approximately...

  19. Theoretical research in nuclear collective motion. Progress report

    International Nuclear Information System (INIS)

    1984-01-01

    Progress is summarized on the following research projects: generalized density matrix method, large amplitude collective motion, boson mappings for the Interacting Boson Model, and semi-classical method for testing IBM hypothesis

  20. Superiority of triple-detector single-photon emission tomography over single- and dual-detector systems in the minimization of motion artefacts

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Taki, Junichi; Michigishi, Takatoshi; Tonami, Norihisa

    1998-01-01

    A patient motion-related artefact is one of the most important artefacts in single-photon emission tomography (SPET) imaging. This study evaluated the effect of the number and configuration of SPET detectors on motion artefacts. The following acquisition conditions were simulated based on original 360 projection images: (1) single-detector 180 rotation (S180), (2) a dual-detector rectangular (L-shaped) 180 acquisition (D180L), (3) dual-detector cameras mounted opposite each other with 360 acquisition (D360) and (4) triple-detector 360 acquisition (T360). The motion artefacts were introduced using a syringe and a myocardial phantom. Clinical cases with technetium-99m methoxyisobutylisonitrile and thallium-201 studies were analysed to confirm the validity of this phantom simulation. The effect of continuous alternate rotation acquisition and summing the projections on the reduction of motion artefacts was investigated in each model. The effect of motion depended on the number and the configuration of the SPET detectors. A 1-pixel (6.4 mm) motion in the S180, D180L and D360 models generated only slight artefacts, and a 2-pixel motion led to an apparent decrease in activity or created hot areas in the myocardium. On the other hand, a T360 rotation created few artefacts even with a 2-pixel motion of the last quarter of the projections. Despite the difference in attenuation with 201 Tl and 99m Tc, similar artefact patterns were observed with both radionuclides in selected patient model studies. Continuous alternate rotation could reduce artefacts caused by less than a 2-pixel motion. In conclusion, calculating the average of the sum of the projections of triple-detector 360 rotations with alternate rotation is the best method to minimize motion artefacts. This ''averaging'' effect of motion artefacts is a key to this simulation. (orig.)

  1. Aerodynamic damping in oscillatory pitching motion of canard-body combinations in unsteady supersonic regime

    International Nuclear Information System (INIS)

    Mateescu, D.

    1985-01-01

    A method of solution is developed in the present paper for studying the unsteady supersonic flow past a cruciform canard - conical body system, represented in the figure, which executes an oscillatory pitching motion of rotation. The generality of the analysis permits particular solutions such as the case of symmetrical cruciform canards (for l 1 =l 2 =l) used mainly in missile applications, and tail-body configurations (for l 2 =0 pr l 2 →∞ used in aeronautical applications, as well as more general solutions. Attached supersonic flow past the system, associated with small amplitude oscillations of reasonably low frequency with respect to a mean equilibrium position are assumed in this paper. As a result, the steady flow past the canard-body system at an attitude defined by the mean equilibrium position can be separated from the actual flow; general methods of solution for this steady flow have been established. The aim of the present analysis is to develop a method of solution for the unsteady motion resulting from the actual flow after the above separation, which incorporates the effects of the system oscillations. (author)

  2. Test suite for image-based motion estimation of the brain and tongue

    Science.gov (United States)

    Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.

    2017-03-01

    Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an "image synthesis" test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head- brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that

  3. Development Of Translational Motion Of Unmanned Aerial Vehicle Using MATLAB

    Directory of Open Access Journals (Sweden)

    Thwe Thwe Htoo

    2015-08-01

    Full Text Available This research work describes the translational motion analysis of unmanned aerial vehicle UAV. Since the center of mass of the receiver is timevarying the equations are written in a reference frame that is geometrically fixed in the aircraft. Due to the fact that aerial vehicle simulation and control deal with the position and orientation of the UAV the equations of motion are derived in terms of the translational and rotational position and velocity with respect to the aircraft location. The formation relative motion control is a challenging problem due to the coupled translational and rotational dynamics. As the translational vector depends on the current attitude and its angular velocity and some of the attitude constraints also couple the position and attitude of the spacecraft it makes the formation control problem high dimensional. This work develops UAV stability conditions including translational vector maneuverability condition and included angle condition between the translational and the rotational motion of UAV system and then presents two methods to calculate the UAV attitude. Both of the two methods need first design the optimal trajectory of the translational vector and then use geometric and nonlinear programming methods to calculate the target trajectory. The validity of the proposed approach is demonstrated in a UAV by using MATLAB. The performance of the translational motion control is evaluated by the simulated results.

  4. Entropy generation impact on peristaltic motion in a rotating frame

    Directory of Open Access Journals (Sweden)

    H. Zahir

    Full Text Available Outcome of entropy generation in peristalsis of Casson fluid in a rotating frame is intended. Formulation is based upon thermal radiation, viscous dissipation and slip conditions of velocity and temperature. Lubrication approach is followed. The velocity components, temperature and trapping are examined. Specifically the outcomes of Taylor number, fluid parameter, slip parameters, Brinkman, radiation and compliant wall effects are focused. In addition entropy generation and Bejan numbers are examined. It is observed that entropy is controlled through slip effects. Keywords: Casson fluid, Radiative heat flux, Entropy generation, Rotating frame, Slip conditions, Wall properties

  5. Normal left ventricular wall motion measured with two-dimensional myocardial tagging

    DEFF Research Database (Denmark)

    Qi, P; Thomsen, C; Ståhlberg, F

    1993-01-01

    contraction towards the center of the left ventricle, a motion of the base of the heart towards the apex, and a rotation of the left ventricle around its long axis. The direction of left ventricular rotation changed from early systole to late systole. The base and middle levels of the left ventricle rotated...

  6. MRI-based tumor motion characterization and gating schemes for radiation therapy of pancreatic cancer

    International Nuclear Information System (INIS)

    Heerkens, Hanne D.; Vulpen, Marco van; Berg, Cornelis A.T. van den; Tijssen, Rob H.N.; Crijns, Sjoerd P.M.; Molenaar, Izaak Q.; Santvoort, Hjalmar C. van; Reerink, Onne; Meijer, Gert J.

    2014-01-01

    Background and purpose: To characterize pancreatic tumor motion and to develop a gating scheme for radiotherapy in pancreatic cancer. Materials and methods: Two cine MRIs of 60 s each were performed in fifteen pancreatic cancer patients, one in sagittal direction and one in coronal direction. A Minimum Output Sum of Squared Error (MOSSE) adaptive correlation filter was used to quantify tumor motion in craniocaudal, lateral and anteroposterior directions. To develop a gating scheme, stability of the breathing phases was examined and a gating window assessment was created, incorporating tumor motion, treatment time and motion margins. Results: The largest tumor motion was found in craniocaudal direction, with an average peak-to-peak amplitude of 15 mm (range 6–34 mm). Amplitude of the tumor in the anteroposterior direction was on average 5 mm (range 1–13 mm). The least motion was seen in lateral direction (average 3 mm, range 2–5 mm). The end exhale position was the most stable position in the breathing cycle and tumors spent more time closer to the end exhale position than to the end inhale position. On average, a margin of 25% of the maximum craniocaudal breathing amplitude was needed to achieve full target coverage with a duty cycle of 50%. When reducing the duty cycle to 50%, a margin of 5 mm was sufficient to cover the target in 11 out of 15 patients. Conclusion: Gated delivery for radiotherapy of pancreatic cancer is best performed around the end exhale position as this is the most stable position in the breathing cycle. Considerable margin reduction can be established at moderate duty cycles, yielding acceptable treatment efficiency. However, motion patterns and amplitude do substantially differ between individual patients. Therefore, individual treatment strategies should be considered for radiotherapy in pancreatic cancer

  7. Molecular motion in restricted geometries

    Indian Academy of Sciences (India)

    Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...

  8. Research of Short-range Missile Motion in Terms of Different Wind Loads

    Directory of Open Access Journals (Sweden)

    A. N. Klishin

    2015-01-01

    Full Text Available When modeling the aircraft motion it is advisable to choose a particular model of the Earth, depending both on the task and on the required accuracy of calculation. The article describes various models of the Earth, such as the flat Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a central gravitational field, spherical and non-rotating Earth, taking into account the polar flattening of the Earth, spherical Earth based compression and polar daily rotation. The article also considers the influence of these models on the motion of the selected aircraft.To date, there is technical equipment to provide highly accurate description of the Earthshape, gravitational field, etc. The improved accuracy of the Earth model description results in more correct description of the trajectory and motion parameters of a ballistic missile. However, for short ranges (10-20 km this accuracy is not essential, and, furthermore, it increases time of calculation. Therefore, there is a problem of choosing the optimal description of the Earth parameters.The motion in the model of the Earth, which takes into account a daily rotation of the planet and polar flattening, is discussed in more detail, and the geographical latitude impact on coordinates of the points of fall of a ballistic missile is analyzed on the basis of obtained graphs.The article individually considers a problem of the wind effect on the aircraft motion and defines dependences of the missile motion on the parameters of different wind loads, such as wind speed and height of its action.A mathematical model of the missile motion was built and numerically integrated, using the Runge-Kutta 4th order method, for implementation and subsequent analysis.Based on the analysis of the calculation results in the abovementioned models of the Earth, differences in impact of these models on the parameters of the

  9. Evidence for quantization of mechanical rotation of magnetic nanoparticles.

    Science.gov (United States)

    Tejada, J; Zysler, R D; Molins, E; Chudnovsky, E M

    2010-01-15

    We report evidence of the quantization of the rotational motion of solid particles containing thousands of atoms. A system of CoFe2O4 nanoparticles confined inside polymeric cavities has been studied. The particles have been characterized by the x-ray diffraction, transmission electron microscopy, plasma mass spectroscopy, ferromagnetic resonance (FMR), and magnetization measurements. Magnetic and FMR data confirm the presence of particles that are free to rotate inside the cavities. Equidistant, temperature-independent jumps in the dependence of the microwave absorption on the magnetic field have been detected. This observation is in accordance with the expectation that orbital motion splits the low-field absorption line into multiple lines.

  10. A study on the characteristics of strong ground motions in southern Korea

    International Nuclear Information System (INIS)

    Bang, Chang Eob; Lee, Kie Hwa; Kang, Tae Seob

    2001-12-01

    Ground motion characteristics in southern Korea are analyzed such as the variations of ground motion durations depending on the hypocentral distance, the earthquake magnitude and the frequency contents of the motion, and the predominant frequency of the maximum ground motion, the ratio of the horizontal to the vertical component amplitudes, the frequency dependence of the Coda Q values, the local distribution of Lg Q values using recorded data sets

  11. A study on the characteristics of strong ground motions in southern Korea

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Chang Eob; Lee, Kie Hwa; Kang, Tae Seob [Seoul National Univ., Seoul (Korea, Republic of)

    2001-12-15

    Ground motion characteristics in southern Korea are analyzed such as the variations of ground motion durations depending on the hypocentral distance, the earthquake magnitude and the frequency contents of the motion, and the predominant frequency of the maximum ground motion, the ratio of the horizontal to the vertical component amplitudes, the frequency dependence of the Coda Q values, the local distribution of Lg Q values using recorded data sets.

  12. Domain-walls motion in glass-coated CoFeSiB amorphous microwires

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.S. E-mail: as.antonov@mtu-net.ru; Buznikov, N.A.; Granovsky, A.B.; Joura, A.V.; Rakhmanov, A.L.; Yakunin, A.M

    2002-08-01

    A method for observation of domain-walls motion in amorphous microwires with circular magnetic anisotropy is proposed. Using the method, the magnetization reversal of glass-coated Co-based microwires induced by current pulses of high amplitude is studied. The magnetization reversal is shown to occur due to the nucleation of the domain walls at the sample ends and their subsequent motion along the microwire. The dependencies of the domain-wall velocity on the current pulse amplitude and a longitudinal DC magnetic field are measured. A model describing main features of experimental data is presented.

  13. Domain-walls motion in glass-coated CoFeSiB amorphous microwires

    International Nuclear Information System (INIS)

    Antonov, A.S.; Buznikov, N.A.; Granovsky, A.B.; Joura, A.V.; Rakhmanov, A.L.; Yakunin, A.M.

    2002-01-01

    A method for observation of domain-walls motion in amorphous microwires with circular magnetic anisotropy is proposed. Using the method, the magnetization reversal of glass-coated Co-based microwires induced by current pulses of high amplitude is studied. The magnetization reversal is shown to occur due to the nucleation of the domain walls at the sample ends and their subsequent motion along the microwire. The dependencies of the domain-wall velocity on the current pulse amplitude and a longitudinal DC magnetic field are measured. A model describing main features of experimental data is presented

  14. Volumetric evaluation of the rotator cuff musculature in massive rotator cuff tears with pseudoparalysis.

    Science.gov (United States)

    Rhee, Yong Girl; Cho, Nam Su; Song, Jong Hoon; Park, Jung Gwan; Kim, Tae Yong

    2017-09-01

    If the balance of the rotator cuff force couple is disrupted, pseudoparalysis may occur, but the exact mechanism remains unknown. This study investigated the effect of rotator cuff force couple disruption on active range of motion in massive rotator cuff tear (mRCT) by rotator cuff muscle volume analysis. The study included 53 patients with irreparable mRCT: 22 in the nonpseudoparalysis group and 31 in the pseudoparalysis group. The volumes of the subscapularis (SBS), infraspinatus (ISP), and teres minor (TM) muscles were measured using magnetic resonance imaging (MRI), and the ratios of each muscle volume to the anatomic external rotator (aER) volume were calculated. A control group of 25 individuals with normal rotator cuffs was included. Anterior-to-posterior cuff muscle volume ratio (SBS/ISP + TM) was imbalanced in both mRCT groups (1.383 nonpseudoparalysis and 1.302 pseudoparalysis). Between the 2 groups, the ISP/aER ratio (0.277 vs. 0.249) and the inferior SBS/aER ratio (0.426 vs. 0.390) were significantly decreased in the pseudoparalysis group (P= .022 and P= .040, respectively). However, neither the TM/aER ratio (0.357 vs. 0.376) nor the superior SBS/aER ratio (0.452 vs. 0.424) showed a significant difference between the two groups (P= .749 and P= .068, respectively). If the inferior SBS was torn, a high frequency of pseudoparalysis was noted (81.0%, P= .010). The disruption of transverse force couple was noted in both irreparable mRCT groups, although no significant difference was found between the nonpseudoparalysis and pseudoparalysis groups. ISP and inferior SBS muscle volumes showed a significant decrease in pseudoparalysis group and, therefore, were considered to greatly influence the loss of active motion in mRCT. The TM did not exert significant effect on the incidence of pseudoparalysis. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. Outcomes assessment in rotator cuff pathology: what are we measuring?

    Science.gov (United States)

    Makhni, Eric C; Steinhaus, Michael E; Morrow, Zachary S; Jobin, Charles M; Verma, Nikhil N; Cole, Brian J; Bach, Bernard R

    2015-12-01

    Assessments used to measure outcomes associated with rotator cuff pathology and after repair are varied. This lack of standardization leads to difficulty drawing comparisons across studies. We hypothesize that this variability in patient-reported outcome measures and objective metrics used in rotator cuff studies persists even in high-impact, peer reviewed journals. All studies assessing rotator cuff tear and repair outcomes in 6 orthopedic journals with a high impact factor from January 2010 to December 2014 were reviewed. Cadaveric and animal studies and those without outcomes were excluded. Outcome measures included range of motion (forward elevation, abduction, external rotation, and internal rotation), strength (in the same 4 planes), tendon integrity imaging, patient satisfaction, and functional assessment scores. Of the 156 included studies, 63% documented range of motion measurements, with 18% reporting range of motion in all 4 planes. Only 38% of studies reported quantitative strength measurements. In 65% of studies, tendon integrity was documented with imaging (38% magnetic resonance imaging/magnetic resonance anrhrogram, 31% ultrasound, and 8% computed tomography arthrogram). Finally, functional score reporting varied significantly, with the 5 most frequently reported scores ranging from 16% to 61% in studies, and 15 of the least reported outcomes were each reported in ≤6% of studies. Significant variability exists in outcomes reporting after rotator cuff tear and repair, making comparisons between clinical studies difficult. Creating a uniformly accepted, validated outcomes tool that assesses pain, function, patient satisfaction, and anatomic integrity would enable consistent outcomes assessment after operative and nonoperative management and allow comparisons across the literature. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. On Physical Interpretation of the In-Site Measurement of Earth Rotation by Ring Laser Gyrometers

    Science.gov (United States)

    Chao, B. F.

    2004-01-01

    Large ring laser gyrometers under development have demonstrated the capability of detecting minute ground motions and deformations on a wide range of timescales. The next challenge and goal is to measure the Earth's rotation variations to a precision that rivals that of the present space-geodesy techniques, thus providing an in-situ (and cost effective alternatives of Earth rotation measurement for geophysical research and geodetic applications. Aside from thermal and mechanical instabilities, "undesirable" ground motion and tilt that appear in the signal will need to be removed before any variation in Earth rotation can be detected. Removal of these signals, some of them are larger than the sought rotation signals, has been a typical procedure in many precise geophysical instruments, such as gravimeters, seismometers, and tiltmeters. The remaining Earth rotation signal resides in both the spin around the axis and in the orientation of the axis. In the case of the latter, the in-situ measurement is complementary to the space-geodetic observables in terms of polar motion and nutation, a fact to be exploited.

  17. Knudsen torque: A rotational mechanism driven by thermal force

    Science.gov (United States)

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    2014-09-01

    Thermally induced mechanical loading has been shown to have significant effects on micro- and nano-objects immersed in a gas with a nonuniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Our study has found that a torque can be induced if the configuration of the system is asymmetric. In addition, both the magnitude and the direction of the torque depend highly on the system configuration, indicating the possibility of manipulating the rotational motion via geometrical design. Based on this feature, two types of rotational micromotor that are of practical importance, namely pendulum motor and unidirectional motor, are designed. The magnitude of the torque at Kn =0.5 can reach to around 2nN×μm for a rectangular microbeam with a length of 100μm.

  18. Flexibility of internal and external glenohumeral rotation of junior female tennis players and its correlation with performance ranking.

    Science.gov (United States)

    Chiang, Ching-Cheng; Hsu, Chih-Chia; Chiang, Jinn-Yen; Chang, Weng-Cheng; Tsai, Jong-Chang

    2016-12-01

    [Purpose] The purpose of this study was to compare the internal and external rotation of the dominant and nondominant shoulders of adolescent female tennis players. The correlation between the shoulder rotation range of motion and the player's ranking was also analyzed. [Subjects and Methods] Twenty-one female junior tennis players who were 13 to 18 years old participated in this study. A standard goniometer was used to measure the internal and external rotation of both glenohumeral joints. The difference in internal and external rotation was calculated as the glenohumeral rotation deficit. The year-end ranking of each player was obtained from the Chinese Taipei Tennis Association. [Results] The internal rotation of the dominant shoulder was significantly smaller than that of the nondominant shoulder. Moreover, player ranking was significantly and negatively correlated with the internal rotation range of motion of both shoulders. On the other hand, the correlations of the internal and external rotation ranges of motion with the age, height, and weight were not significant. [Conclusion] The flexibility of the glenohumeral internal rotation is smaller in the dominant shoulder than of the nondominant shoulder in these junior female tennis players. Flexibility of the glenohumeral internal rotation may be a factor affecting performance in junior female tennis players.

  19. Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella.

    Science.gov (United States)

    Vutukuri, Hanumantha Rao; Bet, Bram; van Roij, René; Dijkstra, Marjolein; Huck, Wilhelm T S

    2017-12-01

    The quest for designing new self-propelled colloids is fuelled by the demand for simple experimental models to study the collective behaviour of their more complex natural counterparts. Most synthetic self-propelled particles move by converting the input energy into translational motion. In this work we address the question if simple self-propelled spheres can assemble into more complex structures that exhibit rotational motion, possibly coupled with translational motion as in flagella. We exploit a combination of induced dipolar interactions and a bonding step to create permanent linear bead chains, composed of self-propelled Janus spheres, with a well-controlled internal structure. Next, we study how flexibility between individual swimmers in a chain can affect its swimming behaviour. Permanent rigid chains showed only active rotational or spinning motion, whereas longer semi-flexible chains showed both translational and rotational motion resembling flagella like-motion, in the presence of the fuel. Moreover, we are able to reproduce our experimental results using numerical calculations with a minimal model, which includes full hydrodynamic interactions with the fluid. Our method is general and opens a new way to design novel self-propelled colloids with complex swimming behaviours, using different complex starting building blocks in combination with the flexibility between them.

  20. Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion

    International Nuclear Information System (INIS)

    Kissick, Michael W.; Boswell, Sarah A.; Jeraj, Robert; Mackie, T. Rockwell

    2005-01-01

    The interplay between a constant scan speed and intrafraction oscillatory motion produces interesting fluence intensity modulations along the axis of motion that are sensitive to the motion function, as originally shown in a classic paper by Yu et al. [Phys. Med. Biol. 43, 91-104 (1998)]. The fluence intensity profiles are explored in this note for an intuitive understanding, then compared with Yu et al., and finally further explored for the effects of low scan speed and random components of both intrafraction and interfraction motion. At slow scan speeds typical of helical tomotherapy, these fluence intensity modulations are only a few percent. With the addition of only a small amount of cycle-to-cycle randomness in frequency and amplitude, the fluence intensity profiles change dramatically. It is further shown that after a typical 30-fraction treatment, the sensitivities displayed in the single fraction fluence intensity profiles greatly diminish