WorldWideScience

Sample records for aluminosilicate nsas reduces

  1. Investigation of aluminosilicate refractory for solid oxide fuel cell applications

    Science.gov (United States)

    Gentile, Paul Steven

    Stationary solid oxide fuel cells (SOFCs) have been demonstrated to provide clean and reliable electricity through electro-chemical conversion of various fuel sources (CH4 and other light hydrocarbons). To become a competitive conversion technology the costs of SOFCs must be reduced to less than $400/kW. Aluminosilicate represents a potential low cost alternative to high purity alumina for SOFC refractory applications. The objectives of this investigation are to: (1) study changes of aluminosilicate chemistry and morphology under SOFC conditions, (2) identify volatile silicon species released by aluminosilicates, (3) identify the mechanisms of aluminosilicate vapor deposition on SOFC materials, and (4) determine the effects of aluminosilicate vapors on SOFC electrochemical performance. It is shown thermodynamically and empirically that low cost aluminosilicate refractory remains chemically and thermally unstable under SOFC operating conditions between 800°C and 1000°C. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) of the aluminosilicate bulk and surface identified increased concentrations of silicon at the surface after exposure to SOFC gases at 1000°C for 100 hours. The presence of water vapor accelerated surface diffusion of silicon, creating a more uniform distribution. Thermodynamic equilibrium modeling showed aluminosilicate remains stable in dry air, but the introduction of water vapor indicative of actual SOFC gas streams creates low temperature (active anode interface.

  2. Processing of radioactive ruthenium with aluminosilicate gels

    International Nuclear Information System (INIS)

    Kanno, Takuji; Ichinose, Yasuhiro; Ito, Katsuo

    1979-01-01

    Coprecipitation of radioactive Ru with hydroxides has been studied for the purpose of the management of the high level waste from the nuclear fuel reprocessing. Aluminosilicate gel used as coprecipitant was prepared by addition of aqueous sodium hydroxide to sodium aluminate-sodium silicate solution containing ruthenium nitrate. Ruthenium quantitatively precipitates under the conditions, aluminate > 4 x 10 -2 M, Al/Si 0 C. However, volatilization rate of Ru is suppressed by coating with mullite phase into which aluminosilicate gel transformes above 900 0 C. The amount of Ru volatilized in Ar-flow was reduced to about 10% of that in air-flow. (author)

  3. Nanoscale encapsulation: the structure of cations in hydrophobic microporous aluminosilicates

    International Nuclear Information System (INIS)

    Wasserman, S.R.; Yuchs, S.E.; Giaquinta, D.; Soderholm, L.; Song, Kang.

    1996-01-01

    Hydrophobic microporous aluminosilicates, created by organic surface modification of inherently hydrophilic materials such as zeolites and clays, are currently being investigated as storage media for hazardous cations. Use of organic monolayers to modify the surface of an aluminosilicate after introducing an ion into the zeolite/clay reduces the interaction of water with the material. Resulting systems are about 20 times more resistant to leaching of stored ion. XAS spectra from the encapsulated ion demonstrate that byproducts from the organic modifier can complex with the stored cation. This complexation can result in a decreased affinity of the cation for the aluminosilicate matrix. Changing the organic modifier eliminates this problem. XAS spectra also indicate that the reactivity and speciation of the encapsulated ion may change upon application of the hydrophobic layer

  4. Decomposition of aluminosilicate ores of Afghanistan by hydrochloric acid

    International Nuclear Information System (INIS)

    Mamatov, E.D.; Khomidi, A.K.

    2015-01-01

    Present article is devoted to decomposition of aluminosilicate ores of Afghanistan by hydrochloric acid. The physicochemical properties of initial aluminosilicate ores were studied by means of X-ray phase, differential-thermal analysis methods. The chemical and mineral composition of aluminosilicate ores was considered. The kinetics of acid decomposition of aluminosilicate ores composed of two stages was studied as well. The flowsheets of complex processing of aluminium comprising ores by means of chloric and acid methods were proposed.

  5. Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2016-12-01

    Full Text Available Porous aluminosilicate materials included microporous and mesoporous ZSM-5, hierarchical aluminosilicates, and mesoporous aluminosilicate were tested for acetalization of furfural (furan-2-carbaldehyde with propylene glycol. The existing synthesis methods for aluminosilicate and ZSM-5 were modified to produce aluminosilicate material with hierarchical porous structure. Catalytic activity in acetalization of furfural by propylene glycol were conducted by refluxed of the mixture of furfural, propylene glycol and catalyst, using toluene as solvent and nitrobenzene as internal standard, at 106 °C for 4 h. The result showed that a combination of two structure directing agents, tetrapropylammonium hydroxide (TPAOH and cetyltrimethylammonium bromide (CTAB and modification of catalytic crystallization produced an active aluminosilicate framework that provides a wide access for a bulky reactants and strong acid sites to catalyze the reaction. The pore structure and the strength of the Brønsted acid sites were crucial for the high conversion of furfural to produce a cyclic acetal.

  6. Optical properties of thermally reduced bismuth-doped sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Nielsen, K.H.; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...... pressure of hydrogen. Here, we present results on the effect of the heat-treatment on the optical properties of bismuth-doped sodium aluminosilicate glasses.......Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...

  7. Mechanical Properties of Densified Tectosilicate Calcium-Aluminosilicate Glasses

    DEFF Research Database (Denmark)

    Johnson, Nicole; Lamberson, Lisa; Smedskjær, Morten Mattrup

    Aluminosilicate glasses are widely used in applications such as LCD glass, touchscreens for hand held devices and car windows. We have shown that the tectosilicate compositions exhibit an interesting non-monotonic variation in hardness with increasing SiO2 content. From 40% to 85 mol% SiO2......, hardness and indentation modulus both decrease, consistent with the topological constraint theory. Above 85 mol% SiO2 , hardness increases rapidly with increasing SiO2 content while modulus continues to decrease. A switch from shear to densification based on the species present in the glass has been...... proposed to explain this behavior. To reduce densification and study shear deformation independently, a series of calcium aluminosilicate glasses with tectosilicate compositions were densified by isostatic compression in a gas pressure chamber at elevated temperatures. The compressed glasses have increased...

  8. The chemical durability of alkali aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tait, J.C.; Mandolesi, D.L.

    1983-09-01

    The aqueous durabilities of a series of glasses based on the sodium aluminosilicate system (Na 2 O-Al 2 O 3 -SiO 2 ) have been studied. The effects of molecular substitution of K 2 O or CaO for Na 2 O, and B 2 O 3 for Al 2 O 3 have been investigated. The temperature dependence of leaching in the Na 2 O-B 2 O 3 -Al 2 O 3 -SiO 2 system was studied with glasses containing 2 wt percent simulated UO 2 fuel recycle waste. The results confirm that aluminosilicate glasses are more durable than their borosilicate counterparts. The leaching results are explained in terms of glass structure and bonding, and a general leaching mechanism for aluminosilicate glasses is presented

  9. Sodium Aluminosilicate Formation in Tank 43H Simulants

    International Nuclear Information System (INIS)

    Wilmarth, W.R.; Walker, D.D.; Fink, S.D.

    1997-11-01

    This work studied the formation of a sodium aluminosilicate, Na 8 Al 6 Si 6 O 24 (NO 3 ) 2?4 H 2 O, at 40 degree 110 degree C in simulated waste solutions with varied amounts of silicon and aluminum. The data agree well with literature solubility data for sodalite, the analogous chloride salt. The following conclusions result from this work: (1) The study shows, by calculation and experiments, that evaporation of the September 1997 Tank 43H inventory will only form minor quantities of the aluminosilicate. (2) The data indicate that the rate of formation of the nitrate enclathrated sodalite solid at these temperatures falls within the residence time (<; 4 h) of liquid in the evaporator. (3) The silicon in entrained Frit 200 transferred to the evaporator with the Tank 43H salt solution will quantitatively convert to the sodium aluminosilicate. One kilogram of Frit 200 produces 2.1 kg of the sodium aluminosilicate

  10. Crystallization of Yttrium and Samarium Aluminosilicate Glasses

    OpenAIRE

    Lago, Diana Carolina; Prado, Miguel Oscar

    2016-01-01

    Aluminosilicate glasses containing samarium and yttrium (SmAS and YAS glasses) exhibit high glass transition temperatures, corrosion resistance, and glass stability on heating which make them useful for technological applications. Yttrium aluminosilicate glass microspheres are currently being used for internal selective radiotherapy of liver cancer. During the preparation process, crystallization needs to be totally or partially avoided depending on the final application. Thus knowing the cry...

  11. XPS analysis of aluminosilicate microspheres bioactivity tested in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Todea, M.; Vanea, E. [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania); Bran, S. [University of Medicine and Pharmacy “Iuliu Haţieganu”, Department of Cranio-Maxillofacial Surgery, 400029 Cluj-Napoca (Romania); Berce, P. [Technical University of Cluj-Napoca, Faculty of Machine Building and National Centre of Rapid Prototyping, 400641 Cluj-Napoca (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania)

    2013-04-01

    The study aims to characterize surface properties of aluminosilicate microspheres incorporating yttrium, with potential biomedical applications. Micrometric particles of spherical shape were obtained by spray drying method. The behavior of aluminosilicate microspheres without yttrium and with yttrium was investigated under in vitro conditions, by seven days incubation in simulated body fluid (SBF). The surface elemental composition and the atomic environments on outermost layer of the microspheres, prior to and after incubation in SBF were evaluated by X-ray photoelectron spectroscopy (XPS) in order to investigate their bioactivity. The results were analyzed to underline the effect of yttrium addition on surface properties of the aluminosilicate microspheres and implicitly on the behavior of the samples in simulated body environments.

  12. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  13. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  14. Investigation on the Stability of Aluminosilicate Colloids by Various Analytical Tools

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Y.; Lee, D. H.; Yun, J. I. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2010-05-15

    Colloids are ubiquitous in natural aquatic systems. Aquatic colloids may play a significant carrier role for radionuclide migration in aquifer systems. Being omnipresent in natural aquatic systems, aluminosilicate colloids are considered as a kernel for various aquatic colloids. Characterization of aluminosilicate colloids formed under various geochemical conditions is of importance to understand their chemical behavior in natural aquatic systems. In this work, a preliminary study on the formation of aluminosilicate colloids with a help of colorimetry and other colloid detection techniques is presented

  15. Development of Li+ alumino-silicate ion source

    International Nuclear Information System (INIS)

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-01-01

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  16. Formation and stability of aluminosilicate colloids by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Yuniati

    2011-02-15

    Colloids are ubiquitous in natural waters. Colloid-facilitated migration is of importance in safety assessment of a nuclear waste disposal. Aluminosilicate colloids are considered to be the kernel of aquatic colloids. Their stability is affected by a number of geochemical parameters. This work aims to study qualitatively and quantitatively the stability of aluminosilicate colloids formed by coprecipitation under various geochemical conditions, i.e. pH, concentration of Al and Si metal ions, ionic strength, and omnipresent cations (Na{sup +}, Ca{sup 2+}, and Mg{sup 2+}). The work is performed by colorimetric method and laser-induced breakdown detection (LIBD). Two consecutive phase separations at 450 nm and 1 kDa are applied to separate the precipitates and colloids from the ionic species. By means of colorimetry, Si and Al can be detected down to 5.8 x10{sup -8} M and 7.4x10{sup -7} M, respectively. On the other hand, LIBD is able to quantify the colloidal size and its number density down to several ppt. Depending on the concentration of Al and Si metal ions, the formation trend of aluminosilicate colloid changes following its solubility curve. The lower the concentration, the higher the pH range in which the colloids start to emerge. Furthermore, the colloids are stable at higher Al and Si concentration and at low ionic strength. In the low pH range, cations provide different effects at low and high ionic strengths. At high ionic strength, the colloids are stable in the presence of a larger cation, while all cations exhibit similar effects at low ionic strength. However, in the high pH range, valence seems to have a stronger effect than ionic radius; colloids are more stable in the presence of monovalent cations than divalent ones. Meanwhile, XRD shows non- and/or poor crystalline structure of the aluminosilicate species. Nevertheless, results from XPS may suggest that the chemical composition (Si/Al ∼ 0.6) of the aluminosilicate precipitates is sillimanite or

  17. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    International Nuclear Information System (INIS)

    Poirier, M.; Thomas Peters, T.; Fernando Fondeur, F.; Samuel Fink, S.

    2008-01-01

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached ∼10 psi while processing ∼1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective cleaning and

  18. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  19. Modification of Lime Mortars with Synthesized Aluminosilicates

    Science.gov (United States)

    Loganina, Valentina I.; Sadovnikova, Marija E.; Jezierski, Walery; Małaszkiewicz, Dorota

    2017-10-01

    The increasing attention for restoration of buildings of historical and architectural importance has increased the interest for lime-based binders, which could be applied for manufacturing repair mortars and plasters compatible with historical heritage. Different additives, admixtures or fibers may be incorporated to improve mechanical and thermal features of such materials. In this study synthesized aluminosilicates (SA) were applied as an additive for lime mortar. The technology of synthesis consisted in the deposition of aluminosilicates from a sodium liquid glass by the aluminum sulphate Al2(SO4)3. The goal of this investigation was developing a new method of aluminosilicates synthesis from a sodium liquid glass and using this new material as a component for a lime mortar. Aluminosilicates were precipitated from the solution of aluminum sulphate Al2(SO)3 and sodium silicate. SA were then used as an additive to calcareous compositions and their influence was tested. Mortars were prepared with commercial air lime and siliceous river sand. Air lime binder was replaced by 5 and 10 wt.% of SA. Calcareous composition specimens were formed at water/lime ratio 1.0. The following analyses were made: grain size distribution of SA, X-ray diffraction analysis (XRD), sorption properties, plastic strength and compressive strength of lime mortars. XRD pattern of the SA shows the presence of thenardite, gibbsite and amorphous phase represented by aggregate of nano-size cristobalite-like crystallites. Application of SA leads to increase of compressive strength after 90 days of hardening by 28% and 53% at SA content 5 and 10% respectively comparing to specimens without this additive. Contents of chemically bound lime in the reference specimens after 28 days of hardening in air-dry conditions was 46.5%, while in specimens modified with SA contained 50.0-55.3% of bound lime depending on filtrate pH. This testifies to high activity of calcareous composition. The new blended lime

  20. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  1. Transformation kinetics in plasma-sprayed barium- and strontium-doped aluminosilicate (BSAS)

    International Nuclear Information System (INIS)

    Harder, B.J.; Faber, K.T.

    2010-01-01

    The hexacelsian-to-celsian phase transformation in Ba 1-x Sr x Al 2 Si 2 O 8 is of interest for environmental barrier coating applications. Plasma-sprayed microstructures were heat treated above 1100 o C and the kinetics of the hexacelsian-to-celsian transformation were quantified. Activation energies for bulk and crushed materials were determined to be ∼340 and ∼500 kJ mol -1 , respectively. X-ray diffraction and electron backscattered diffraction were used to establish how plasma spraying barium- and strontium-doped aluminosilicate effectively reduces the energy required for its transformation.

  2. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  3. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    International Nuclear Information System (INIS)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-01-01

    We report results on lithium alumino-silicate ion source development in preparation for warm-dense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCX-II). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ∼1275 C, a space-charge-limited Li + beam current density of J ∼1 mA/cm 2 was obtained. The lifetime of the ion source was ∼50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 (micro) s.

  4. Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates

    Science.gov (United States)

    Tossell, J. A.

    1995-04-01

    13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2

  5. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, M; Poulsen, Søren Lundsted; Herfort, D

    2012-01-01

    M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012).......M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012)....

  6. Assessment of the multi-mycotoxin-binding efficacy of a carbon/aluminosilicate-based product in an in vitro gastrointestinal model

    NARCIS (Netherlands)

    Avantaggiato, G.; Havenaar, R.; Visconti, A.

    2007-01-01

    A laboratory model, set to simulate the in vivo conditions of the porcine gastrointestinal tract, was used to study the small intestinal absorption of several mycotoxins and the effectiveness of Standard Q/FIS (a carbon/aluminosilicate-based product) in reducing mycotoxin absorption when added to

  7. Synthesis of hybrid chitosan/calcium aluminosilicate using a sol-gel method for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Elnahrawy, Amany Mohamed [Department of Solid State, Physics Division, National Research Center (NRC), Giza 12622, Cairo (Egypt); Kim, Yong Soo, E-mail: yskim2@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Ali, Ahmed I., E-mail: Ahmed_ali_2010@helwan.edu.eg [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Basic Science Department, Faculty of Industrial Education & Technology, Helwan University, Cairo 11281 (Egypt)

    2016-08-15

    Hybrid chitosan (CS)/calcium aluminosilicate nanocomposites thin films and membranes were prepared using a sol–gel method with three different concentrations of Al{sub 2}O{sub 3} (5, 7 and 10 mol. %). The prepared nanocomposites were characterized by transmission electron microscopy, X-ray diffraction and Fourier Transform Infrared spectroscopy. The optical properties of the prepared samples were analyzed by UV/Vis spectrophotometry and photoluminescence (PL) spectroscopy. The optical parameters revealed an increase in both the refractive index and band gap of the nanocomposites with increasing Al concentration. In addition, the PL spectra revealed a blue shift that was consistent with an increase in the optical band gap. These results suggest that CS/calcium aluminosilicate in two different forms can be a good candidate for optical sensors applications. - Highlights: • We show a large specific surface area of hybrid CS/calcium aluminosilicate thin films and membranes using sol-gel method. • Inorganic SiO{sub 2}-based phase are perfectly embedded onto chitosan matrix has a reliable stability. • CS/calcium aluminosilicate could be usable for optical sensors, planar waveguide, and bio-sensing.

  8. Immobilization of aqueous radioactive cesium wastes by conversion to aluminosilicate minerals

    International Nuclear Information System (INIS)

    Barney, G.S.

    1975-05-01

    Radioactive cesium (primarily 137 Cs) is a major toxic constituent of liquid wastes from nuclear fuel processing plants. Because of the long half-life, highly penetrating radiation, and mobility of 137 Cs, it is necessary to convert wastes containing this radioisotope into a solid form which will prevent movement to the biosphere during long-term storage. A method for converting cesium wastes to solid, highly insoluble, thermally stable aluminosilicate minerals is described. Aluminum silicate clays (bentonite, kaolin, or pyrophyllite) or hydrous aluminosilicate gels are reacted with basic waste solutions to form pollucite, cesium zeolite (Cs-D), Cs-F, cancrinite, or nepheline. Cesium is trapped in the aluminosilicate crystal lattice of the mineral and is permanently immobilized. The identity of the mineral product is dependent on the waste composition and the SiO 2 /Al 2 O 3 ratio of the clay or gel. The stoichiometry and kinetics of mineral formation reactions are described. The products are evaluated with respect to leachability, thermal stability, and crystal morphology. (U.S.)

  9. Catalysts based on mesoporous aluminosilicates for the hydroisomerization and hydrodearomatization processes

    Energy Technology Data Exchange (ETDEWEB)

    Vilesov, A.S.; Kulikov, A.B. [Russian Academy of Sciences (Russian Federation). A.V. Topchiev Inst. of Petrochemical Synthesis; Ostroumova, V.A.; Baranova, S.V.; Lysenko, S.V.; Kardashev, S.V.; Lasarev, A.V.; Egazaryants, S.V.; Karakhanov, E.A. [Lomonosov Moscow State Univ. (Russian Federation). Chemistry Dept.; Maximov, A.L. [Russian Academy of Sciences (Russian Federation). A.V. Topchiev Inst. of Petrochemical Synthesis; Lomonosov Moscow State Univ. (Russian Federation). Chemistry Dept.

    2011-07-01

    In the present work the activity of bifunctional catalysts based on mesoporous aluminosilicates in the hydroisomerization of n-alkanes and the hydrodearomatization (HDA) process has been investigated. The structured mesoporous aluminosilicates (Si/Al = 5/30) were prepared using hexadecylamine and Pluronic P{sub 123} as templates, with a specific surface area up to 1030 m{sup 2}/g and a pore size from 33 to 84 A. Bifunctional catalysts were prepared in the form of extrudates using boehmite as a binder with the platinum content of 0,5% by mass. The experiment was carried out in a flow reactor. The highest selectivity in the isomerization of n-dodecane and n-hexadecane was shown by catalysts based on mesoporous aluminosilicates with Si/Al =10 and 20. In the hydrogenation of a model feed of 10% (wt.) naphthalene in benzene, it was established that, depending on the module aluminosilicate, the conversion of naphthalene to decalin and tetralin may proceed quantitatively with no conversion of benzene to cyclohexane. Selectivity was in the range from 55 to 90% by decalin, and from 10 to 45% by tetralin. We found the conditions under which the only product of the hydrogenation of naphthalene is tetralin, but the conversion of naphthalene was up to 65%. Also, the activity of such catalysts for hydroisomerization and hydrodearomatization processes on the hydrotreated straight-run diesel fraction was investigated. It was established, that due to hydroisomerization, the maximum filtration temperature goes under -38 C, that allows to use it as a component of winter and arctic diesel fuels. (orig.)

  10. Mixed alkaline earth effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    2013-01-01

    While the mixed alkali effect has received significant attention in the glass literature, the mixed alkaline earth effect has not been thoroughly studied. Here, we investigate the latter effect by partial substitution of magnesium for calcium in sodium aluminosilicate glasses. We use Raman and NMR...

  11. Development of a New Ferrous Aluminosilicate Refractory Material for Investment Casting of Aluminum Alloys

    Science.gov (United States)

    Yuan, Chen; Jones, Sam; Blackburn, Stuart

    2012-12-01

    Investment casting is a time-consuming, labour intensive process, which produces complex, high value-added components for a variety of specialised industries. Current environmental and economic pressures have resulted in a need for the industry to improve current casting quality, reduce manufacturing costs and explore new markets for the process. Alumino-silicate based refractories are commonly used as both filler and stucco materials for ceramic shell production. A new ceramic material, norite, is now being produced based on ferrous aluminosilicate chemistry, having many potential advantages when used for the production of shell molds for casting aluminum alloy. This paper details the results of a direct comparison made between the properties of a ceramic shell system produced with norite refractories and a typical standard refractory shell system commonly used in casting industry. A range of mechanical and physical properties of the systems was measured, and a full-scale industrial casting trial was also carried out. The unique properties of the norite shell system make it a promising alternative for casting aluminum based alloys in the investment foundry.

  12. Method of gradual acid leaching of uranium ores of silicate and aluminosilicate nature

    International Nuclear Information System (INIS)

    Bosina, B.; Krepelka, J.; Urban, P.; Kropacek, J.; Stransky, J.

    1987-01-01

    Leaching uranium ore pulp is divided into two stages. The first stage takes place without any addition of a leaching agent at elevated pressure and temperature. In the second stage, sulfuric acid is added to the pulp (50 to 1000 kg per tonne of ore) or an oxidation agent. Leaching then proceeds according to routine procedures. The procedure is used to advantage for silicate or aluminosilicate ores which contain uranium minerals which are difficult to leach, pyrite and reducing substances. The two stage leaching allows to use the technology of pressure leaching, reduces consumption of sulfuric acid and oxidation agents and still achieves the required reduction oxidation potential. (E.S.)

  13. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  14. High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation

    Science.gov (United States)

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

  15. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass...... to resist crystallization during reheating. In addition, the fragility index (m) is derived by fitting the viscosity data with the Avramov-Milchev equation. The results show that m is inversely proportional to the glass stability for the two series of melts, implying that m is an indirect measure of GFA...

  16. The Chemistry, Crystallization, Physicochemical Properties and Behavior of Sodium Aluminosilicate Solid Phases: Final Report

    International Nuclear Information System (INIS)

    Rosencrance, S.

    2003-01-01

    The synthesis of sodium aluminosilicate solids phases precipitated from NO 2 /NO 3 -free and NO 2 /NO 3 -rich liquors has been performed. Four sodium aluminosilicate precipitation products were formed. These are (1) X-ray/electron diffraction-indifferent amorphous phase; (2) crystalline zeolite A; (3)NO 2 /NO 3 -rich crystalline sodalite; and (4) NO 2 /NO 3 -rich crystalline cancrinite phase. Characterization of the physicochemical properties for these phases has been performed under conditions simulating Westinghouse Savannah River Company liquid waste processing

  17. Potentiated clinoptilolite: artificially enhanced aluminosilicate reduces symptoms associated with endoscopically negative gastroesophageal reflux disease and nonsteroidal anti-inflammatory drug induced gastritis

    Directory of Open Access Journals (Sweden)

    Potgieter W

    2014-07-01

    Full Text Available Wilna Potgieter, Caroline Selma Samuels, Jacques Renè SnymanDepartment of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, South AfricaPurpose: The cation exchanger, a potentiated clinoptilolite (Absorbatox™ 2.4D, is a synthetically enhanced aluminosilicate. The aim of this study was to evaluate the possible benefits of a potentiated clinoptilolite as a gastroprotective agent in reducing the severity of clinical symptoms and signs associated with 1 endoscopically negative gastroesophageal reflux disease (ENGORD and 2 nonsteroidal anti-inflammatory drug (NSAID medication.Methods and patients: Two randomized, double-blind, placebo-controlled, pilot studies, the ENGORD and NSAID studies, were conducted. After initial negative gastroscopy, a total of 25 patients suffering from ENGORD were randomized to receive either placebo capsules or 750 mg Absorbatox twice daily for 14 days. The NSAID study recruited 23 healthy patients who received orally either 1,500 mg Absorbatox or placebo three times daily, plus 500 mg naproxen twice daily. Patients underwent gastroscopic evaluation of their stomach linings prior to and on day 14 of the study. Gastric biopsies were obtained and evaluated via the upgraded Sydney system, whereas visible gastric events and status of the gastric mucosa were evaluated via a 0–3 rating scale. During both studies, patients recorded gastric symptoms in a daily symptom diary.Results: In the ENGORD study, patients who received the potentiated clinoptilolite reported a significant reduction (P≤0.05 in severity of symptoms including reduction in heartburn (44%, discomfort (54%, and pain (56%. Symptom-free days improved by 41% compared to the group who received placebo (not significant. This was over and above the benefits seen with the proton pump inhibitor. In the NSAID study, the reduction in gastric symptom severity was echoed in the group who received the potentiated

  18. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.

    Science.gov (United States)

    Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F

    2011-05-31

    Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.

  19. Investigation of Al–O–Al sites in an Na-aluminosilicate glass

    Indian Academy of Sciences (India)

    Unknown

    Despite 17OMAS NMR spectra of the sample in both fields do not give much information about the ... not be enough alkali or alkaline earth oxides for charge balancing to ... Although oxygen is the most abundant element in the aluminosilicates ...

  20. Thermal properties and modeling of aluminosilicate materials for low-temperature bulk applications

    International Nuclear Information System (INIS)

    Kaushal, S.

    1988-01-01

    This thesis concerns itself with the thermal properties of aluminosilicate materials such as cements, blended cements and clays and their application to the problem of radioactive waste encapsulation. The objective of this thesis is to study the thermal properties (heat of hydration, thermal conductivity and diffusivity) of these materials and to determine their effect on the temperature in large monoliths and on the material itself. In this thesis the hydration temperatures for the extreme conditions (adiabatic) were experimentally measured and compared to those predicted under real conditions. Such a simulation can be made by measuring the thermal properties and studying the temperature distribution predicted by a finite differences computer model. Measurements of adiabatic temperature rise were made using a computer-controlled adiabatic calorimeter which was designed and developed for this thesis. Conditions very close to zero heat exchange with the environment were achieved. The existence of this method made it possible to actually observe the fact that cement hydration results in boiling off of the water in such conditions. A number of additives were tried to prevent this. It was observed that waste or by-product materials such as blast furnace slag and fly ash could be used to dramatically reduced the temperature in large bodies. These materials also reacted extensively with the highly alkaline radioactive waste solution to form hydrogarnet and zeolitic material which had useful cementing properties. The conclusion was reached that a selection of blends of aluminosilicate materials can be utilized for providing the proper thermal environment for long-term geological disposal of radioactive waste

  1. Properties of Aluminosilicate Refractories with Synthesized Boron-Modified TiO2 Nanocrystals

    Directory of Open Access Journals (Sweden)

    Claudia Carlucci

    2015-03-01

    ture was analysed by Scanning Electron Microscopy (SEM and energy dispersion spectroscopy (EDS. The bricks obtained with nanoadditives presented improved mechanical characteristics with respect to the typical aluminosilicates, presumably because of a better compac‐ tion during the raw materials’ mixing stage.

  2. Environmental effects on fatigue of alkaline earth aluminosilicate glass with varying fictive temperature

    DEFF Research Database (Denmark)

    Striepe, Simon; Deubener, Joachim; Smedskjær, Morten Mattrup

    2013-01-01

    The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K) are comp......The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K....... The glasses with lower fictive temperature exhibit a larger change in the micromechanical properties when comparing wet and dry conditions. Finally, it is found that sub-critical crack growth is larger in the low fictive temperature glasses, indicating a diminished resistance against fatigue and stress...

  3. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations

    DEFF Research Database (Denmark)

    Xiang, Ye; Du, Jincheng; Smedskjær, Morten Mattrup

    2013-01-01

    the recent Corning® Gorilla® Glass. In this paper, the structures of sodium aluminosilicate glasses with a wide range of Al/Na ratios (from 1.5 to 0.6) have been studied using classical molecular dynamics simulations in a system containing around 3000 atoms, with the aim to understand the structural role...

  4. Creating large second-order optical nonlinearity in optical waveguides written by femtosecond laser pulses in boro-aluminosilicate glass

    Science.gov (United States)

    An, Hong-Lin; Arriola, Alexander; Gross, Simon; Fuerbach, Alexander; Withford, Michael J.; Fleming, Simon

    2014-01-01

    The thermal poling technique was applied to optical waveguides embedded in a commercial boro-aluminosilicate glass, resulting in high levels of induced second-order optical nonlinearity. The waveguides were fabricated using the femtosecond laser direct-write technique, and thermally poled samples were characterized with second harmonic optical microscopy to reveal the distribution profile of the induced nonlinearity. It was found that, in contrast to fused silica, the presence of waveguides in boro-aluminosilicate glass led to an enhancement of the creation of the second-order nonlinearity, which is larger in the laser written waveguiding regions when compared to the un-modified substrate. The magnitude of the nonlinear coefficient d33 achieved in the core of the laser-written waveguides, up to 0.2 pm/V, was comparable to that in thermally poled fused silica, enabling the realization of compact integrated electro-optic devices in boro-aluminosilicate glasses.

  5. Chemical durability of soda-lime-aluminosilicate glass for radioactive waste vitrification

    International Nuclear Information System (INIS)

    Eppler, F.H.; Yim, M.S.

    1998-01-01

    Vitrification has been identified as one of the most viable waste treatment alternatives for nuclear waste disposal. Currently, the most popular glass compositions being selected for vitrification are the borosilicate family of glasses. Another popular type that has been around in glass industry is the soda-lime-silicate variety, which has often been characterized as the least durable and a poor candidate for radioactive waste vitrification. By replacing the boron constituent with a cheaper substitute, such as silica, the cost of vitrification processing can be reduced. At the same time, addition of network intermediates such as Al 2 O 3 to the glass composition increases the environmental durability of the glass. The objective of this study is to examine the ability of the soda-lime-aluminosilicate glass as an alternative vitrification tool for the disposal of radioactive waste and to investigate the sensitivity of product chemical durability to variations in composition

  6. Impact Of Sodium Oxalate, Sodium Aluminosilicate, and Gibbsite/Boehmite on ARP Filter Performance

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodium aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.

  7. Eu2+-doped OH− free calcium aluminosilicate glass: A phosphor for smart lighting

    International Nuclear Information System (INIS)

    Lima, S.M.; Andrade, L.H.C.; Rocha, A.C.P.; Silva, J.R.; Farias, A.M.; Medina, A.N.; Baesso, M.L.; Nunes, L.A.O.; Guyot, Y.; Boulon, G.

    2013-01-01

    In this paper, a broad emission band from Eu 2+ -doped OH − free calcium aluminosilicate glass is reported. By changing the excitation wavelengths, the results showed it is possible to tune the emission from green to orange, what combined with the scattered light from the same blue LED used for excitation, provided a color rendering index of 71 and a correlated color temperature of 6550 K. Our preliminary tests indicate this material as a promising phosphor towards the development of smart lighting devices. -- Highlights: • We report a broad emission band from Eu 2+ -doped OH − free calcium aluminosilicate glass. • The maximum emission peak can be tune from green to orange region. • The test with a LED provided a color rendering index of 71 and a correlated color temperature of 6550 K

  8. Synthesis and luminescent properties of Eu{sup 3+}/Eu{sup 2+} co-doped calcium aluminosilicate glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bouchouicha, H. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Panczer, G., E-mail: gerard.panczer@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Ligny, D. de [Universität Erlangen-Nürnberg, Department Werkstoffwissenschaften, Lehrstuhl für Glas und Keramik, D-91058 Erlangen (Germany); Guyot, Y. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Baesso, M.L. [Departemento de Fisica, Universidade Estadual de Maringa, 87020-900 Maringa, PR (Brazil); Andrade, L.H.C.; Lima, S.M. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul – UEMS, C.P. 351, Dourados, MS (Brazil); Ternane, R. [Laboratoire d' Application de la Chimie aux Ressources et Substances Naturelles et à l' Environnement (LACReSNE), Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte (Tunisia)

    2016-01-15

    Eu{sup 3+} and Eu{sup 2+} co-doped calcium aluminosilicate glass–ceramics have been prepared by devitrification of calcium aluminosilicate glass using heat-treatment. Control of crystallization in the glass–ceramics was studied by X-ray diffraction (XRD) and Raman spectroscopy. The results showed that crystalline phases in glass–ceramic belong to the family of melilite Ca{sub 2}Mg{sub 0.25}Al{sub 1.5}Si{sub 1.25}O{sub 7} as the major phase and anorthite CaAl{sub 2}Si{sub 2}O{sub 8} as the minor phase. Luminescent properties were investigated by emission; lifetime and the color points were calculated. Emission spectra showed that Eu{sup 2+} entered into the crystalline phase in a two steps mechanism: first as Eu{sup 3+} which is then reduced to Eu{sup 2+}. This incorporation in the crystal enhanced Eu{sup 2+} emission with increasing time of heat-treatment and therefore crystallization. - Highlights: • Crystallization of doped glass–ceramics by heat-treatment controlled by microRaman. • Crystalline phases consist of melilite and anorthite. • Eu{sup 3+} and Eu{sup 2+} emissions characterized by their lifetime and color indexes. • Crystallization process modified efficiently the emission color point.

  9. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    Science.gov (United States)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  10. High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses

    International Nuclear Information System (INIS)

    Le Ngoc Chung; Chu Thi Thu Ha; Nguyen Thu Trang; Pham Thu Nga; Pham Van Hoi; Bui Van Thien

    2006-01-01

    High-power whispering-gallery-mode (WGM) lasing from highly erbium-doped sol-gel aluminosilicate microsphere cavity coupled to a half-tapered optical fiber is presented. The lasing output power as high as 0.45 mW (-3.5 dBm) was obtained from sol-gel glass microsphere cavity with diameters in the range of 40-150 μm. The sol-gel method for making highly concentration Er-doped aluminosilicate glasses with Er-ion concentrations from 0.125 to 0.65 mol% of Er 3+ is described. Controlling collected lasing wavelength at each WGM is possible by adjusting the distance between the half-taper fiber and the microcavity and by diameter of the waist of half-taper fiber. Using the analytic formulas we calculated the TE and TM lasing modes and it is shown that the experimental results are in good agreement with the calculation prediction

  11. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    International Nuclear Information System (INIS)

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded 137 Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500 0 C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of 137 Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded 137 Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10 -10 kg m -2 s -1 , while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10 -12 kg m -2 s -1 . The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level 137 Cs aluminosilicate pellets were 1.29 x 10 -16 m 2 s -1 , 6.88 x 10 -17 m 2 s -1 , and 1.35 x 10 -17 m 2 s -1 , respectively

  12. Thallium and manganese complexes involved in the luminescence emission of potassium-bearing aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, Miguel A., E-mail: miguel.gomez@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Garcia-Guinea, Javier, E-mail: guinea@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Garrido, Fernando, E-mail: fernando.garrido@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Townsend, Peter D., E-mail: pdtownsend@gmail.com [School of Science and Technology, University of Sussex, Brighton BN1 9QH (United Kingdom); Marco, Jose-Francisco, E-mail: jfmarco@iqfr.csic.es [Instituto de Química-Física Rocasolano, CSIC, Calle Serrano 119, Madrid E-28006 (Spain)

    2015-03-15

    The luminescence emission at 285 nm in natural K-feldspar has been studied by Russian groups and associated with thallium ions in structural positions of K{sup +} sites as artificially thallium-doped feldspars display the same emission band. Here attention is focussed on spectra of CL emission bands centered near 285 and 560 nm from paragenetic adularia, moscovite and quartz micro-inclusions. With accesorial thallium they show clear resemblances to each other. Associated sedimentary and hydrothermal aluminosilicate samples collected from Guadalix (Madrid, Spain) were analyzed with a wide range of experimental techniques including Environmental Scanning Electron Microscopy (ESEM) with an attached X-Ray Energy-Dispersive Spectrometer (EDS) and a cathodoluminescence probe (CL) and Electron Probe Microanalysis (EPMA), X-Ray Fluorescence Spectrometry (XRF), Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), Differential and Thermogravimetric Analyses (DTA-TG), radioluminescence (RL), Mössbauer spectroscopy and X-Ray Photoelectron Spectrometry (XPS). The luminescence emission bands at 285 and 560 nm seem to be associated with hydrous thallium–manganese complexes bonded to potassium-bearing aluminosilicates since various minerals such as K-feldspar, moscovite and quartz micro-inclusions display similar CL spectra, accesorial thallium and hydroxyl groups. The presence of iron introduces a brown color which is attributed to submicroscopic iron oxides detectable in the optical and chemical microanalysis, but this does not contribute to the luminescence emission. The XPS Mn 2p spectrum of the adularia sample at room temperature is composed of a spin–orbit doublet plus clear shake-up satellite structure ∼4 eV above the main photoemision lines and is consistent with Mn{sup 2+} in good agreement with the observed luminescence emission at 560 nm for aluminosilicates produced by a {sup 4}T1({sup 4}G)→{sup 6}A1({sup 6}S) transition in tetrahedrally

  13. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garcia-Moreno, Olga; Fernandez, Adolfo; Khainakov, Sergei; Torrecillas, Ramon

    2010-01-01

    Five lithium aluminosilicate compositions of the LAS system have been synthesized and sintered. The coefficient of thermal expansion of the sintered samples has been studied down to cryogenic conditions. The data presented here under cryogenic conditions will be of value in the future design of new composite materials with very low thermal expansion values. The variation in thermal expansion properties with composition and sintering temperature was studied and is discussed in relation to composition and crystal structure.

  14. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate glass melts

    International Nuclear Information System (INIS)

    Corrales, Louis R.; Du, Jincheng

    2006-01-01

    The distribution of cation and anion components of sodium containing calcium aluminosilicate glass was studied by classical molecular dynamics simulations in a high temperature melt in the bulk and at the vacuum-melt interface. A significant redistribution of the sodium and non-bridging oxygen ions was observed. Subsequently, a sodium depleted calcium aluminosilicate glass melt was simulated to determine the sensitivity of the redistribution of ions near the vacuum-melt interface to the presence of sodium ions. It is found that the thermodynamic equilibrium condition near a surface favors the enrichment of non-bridging oxygen ions that is closely associated with enrichment of the sodium ions

  15. The aluminosilicate fraction of North Pacific manganese nodules

    Science.gov (United States)

    Bischoff, J.L.; Piper, D.Z.; Leong, K.

    1981-01-01

    Nine nodules collected from throughout the deep North Pacific were analyzed for their mineralogy and major-element composition before and after leaching with Chester-Hughes solution. Data indicate that the mineral phillipsite accounts for the major part (> 75%) of the aluminosilicate fraction of all nodules. It is suggested that formation of phillipsite takes place on growing nodule surfaces coupled with the oxidation of absorbed manganous ion. All the nodules could be described as ternary mixtures of amorphous iron fraction (Fe-Ti-P), manganese oxide fraction (Mn-Mg Cu-Ni), and phillipsite fraction (Al-Si-K-Na), these fractions accounting for 96% of the variability of the chemical composition. ?? 1981.

  16. In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids

    Science.gov (United States)

    Daniel, Isabelle; Gillet, Philippe; Poe, Brent T.; McMillan, Paul F.

    1995-03-01

    We have measured in-situ Raman spectra of aluminosilicate glasses and liquids with albite (NaAlSi3 O8) and anorthite (CaAl2Si2O8) compositions at high temperatures, through their glass transition range up to 1700 and 2000 K, respectively. For these experiments, we have used a wire-loop heating device coupled with micro-Raman spectroscopy, in order to achieve effective spatial filtering of the extraneous thermal radiation. A major concern in this work is the development of methodology for reliably extracting the first and second order contributions to the Raman scattering spectra of aluminosilicate glasses and liquids from the high temperature experimental data, and analyzing these in terms of vibrational (anharmonic) and configurational changes. The changes in the first order Raman spectra with temperature are subtle. The principal low frequency band remains nearly constant with increasing temperature, indicating little change in the T-O-T angle, and that the angle bending vibration is quite harmonic. This is in contrast to vitreous SiO2, studied previously. Above Tg, intensity changes in the 560 590 cm-1 regions of both sets of spectra indicate configurational changes in the supercooled liquids, associated with formation of additional Al-O-Al linkages, or 3-membered (Al, Si)-containing rings. Additional intensity at 800 cm-1 reflects also some rearrangement of the Si-O-Al network.

  17. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    OpenAIRE

    Zhang, Long; Liu, Peng

    2008-01-01

    AbstractThe uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conduct...

  18. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, K K; Rybaltovsky, A A; Vel' miskin, V V; Likhachev, M E; Bubnov, M M; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Umnikov, A A; Gur' yanov, A N; Vechkanov, N N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Shestakova, I A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2014-12-31

    We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicate glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)

  19. Flux Decoupling and Chemical Diffusion in Redox Dynamics in Aluminosilicate Melts and Glasses (Invited)

    Science.gov (United States)

    Cooper, R. F.

    2010-12-01

    Measurements of redox dynamics in silicate melts and glasses suggest that, for many compositions and for many external environments, the reaction proceeds and is rate-limited by the diffusive flux of divalent-cation network modifiers. Application of ion-backscattering spectrometry either (i) on oxidized or reduced melts (subsequently quenched before analysis) or (ii) on similarly reacted glasses, both of basalt-composition polymerization, demonstrates that the network modifiers move relative to the (first-order-rigid) aluminosilicate network. Thus, the textures associated with such reactions are often surprising, and frequently include metastable or unstable phases and/or spatial compositional differences. This response is only possible if the motion of cations can be decoupled from that of anions. In many cases, decoupling is accomplished by the presence in the melt/glass of transition-metal cations, whose heterovalency creates distortions in the electronic band structure resulting in electronic defects: electron “holes” in the valence band or electrons in the conduction band. (The prevalence of holes or electrons being a function of bulk chemistry and oxygen activity.) These electronic species make the melt/glass a “defect semiconductor.” Because (a) the critical issue in reaction dynamics is the transport coefficient (the product of species mobility and species concentration) and (b) the electronic species are many orders of magnitude more mobile than are the ions, very low concentrations of transition-metal ions are required for flux decoupling. For example, 0.04 at% Fe keeps a magnesium aluminosilicate melt/glass a defect semiconductor down to 800°C [Cook & Cooper, 2000]. Depending on composition, high-temperature melts can see ion species having a high-enough transport coefficient to allow decoupling, e.g., alkali cations in a basaltic melt [e.g., Pommier et al., 2010]. In this presentation, these ideas will be illustrated by examining redox dynamics

  20. Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Kroll, Jared O. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Peterson, Jacob A. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Matyáš, Josef [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Olszta, Matthew J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Li, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Vienna, John D. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2017-09-14

    This paper discusses the development of aluminosilicates aerogels as scaffolds for Ag0 nanoparticles used for chemisorption of I2(g). The starting materials for these scaffolds included both Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag0 particles are added by soaking the aerogels in AgNO3 followed by drying and flowing under H2/Ar to reduce Ag+ → Ag0. In some cases, samples were soaked in 3-(mercaptopropyl)trimethoxysilane under supercritical CO2 to add –SH tethers to the aerogel surfaces for more effective binding of Ag+. During the Ag+-impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogel, Si was replaced with Ag. The Ag-loading of thiolated versus non-thiolated Na-Al-Si-O aerogels was comparable at ~35 at% whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ~ 7 at% after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na-Al-Si-O aerogels were > 0.5 g g-1 showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated Al-Si-O aerogel was 0.31 g g-1. The control of Ag uptake over solution residence time and [AgNO3] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the capacity of iodine chemisorption. Consolidation experimental results are also presented.

  1. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    International Nuclear Information System (INIS)

    Wurth, R.; Pascual, M.J.; Mather, G.C.; Pablos-Martín, A.; Muñoz, F.; Durán, A.; Cuello, G.J.; Rüssel, C.

    2012-01-01

    A base glass of composition 3.5 Li 2 O∙0.15 Na 2 O∙0.2 K 2 O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al 2 O 3 ∙67.2 SiO 2 ∙2.6 TiO 2 ∙1.7 ZrO 2 ∙1.2 As 2 O 3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi 2 O 6 with nanoscaled crystals forms at 750 °C. Quantitative Rietveld refinement of samples annealed at 750 °C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2 × 2 × 2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 ± 20 kJ mol −1 . - Highlights: ► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2 × 2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.

  2. Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass: A phosphor for smart lighting

    Energy Technology Data Exchange (ETDEWEB)

    Lima, S.M., E-mail: smlima@uems.br [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C. P. 351, CEP 79804-970 Dourados, MS (Brazil); Andrade, L.H.C.; Rocha, A.C.P. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C. P. 351, CEP 79804-970 Dourados, MS (Brazil); Silva, J.R.; Farias, A.M.; Medina, A.N.; Baesso, M.L. [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR (Brazil); Nunes, L.A.O. [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP (Brazil); Guyot, Y.; Boulon, G. [Laboratoire de Physico-Chimie des Matériaux Luminescents, Université de Lyon 1, UMR 5620 CNRS, 69622 Villeurbanne (France)

    2013-11-15

    In this paper, a broad emission band from Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass is reported. By changing the excitation wavelengths, the results showed it is possible to tune the emission from green to orange, what combined with the scattered light from the same blue LED used for excitation, provided a color rendering index of 71 and a correlated color temperature of 6550 K. Our preliminary tests indicate this material as a promising phosphor towards the development of smart lighting devices. -- Highlights: • We report a broad emission band from Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass. • The maximum emission peak can be tune from green to orange region. • The test with a LED provided a color rendering index of 71 and a correlated color temperature of 6550 K.

  3. H-D exchange on natural aluminosilicates of orthosilicate group

    International Nuclear Information System (INIS)

    Markevich, S.V.; Kolesnikov, I.M.

    1982-01-01

    Experimental data are presented on the effect of aluminium ion coordination in the composition of polyhedrons on the capability of polyhedrons to change the reaction rate of H-D exchange (on the example of ethylene). It is shown that at temperature lower 400 deg C the rate of isotopic exchange reaction is low. Experimental results both for irradiated and non-irradiated minerals are presented. The conclusion is made that the increase of aluminosilicates activity under radiation is connected with the presence of (AlO 4 )-tetrahedrons in the system and change of their state. (AlO 5 ) and (AlO 6 )-polyhedrons are not activated with gamma rays

  4. Adsorption of β-galactosidase on silica and aluminosilicate adsorbents

    Science.gov (United States)

    Atyaksheva, L. F.; Dobryakova, I. V.; Pilipenko, O. S.

    2015-03-01

    It is shown that adsorption of β-galactosidase of Aspergillus oryzae fungi on mesoporous and biporous silica and aluminosilicate adsorbents and the rate of the process grow along with the diameter of the pores of the adsorbent. It is found that the shape of the adsorption isotherms changes as well, depending on the texture of the adsorbent: the Michaelis constant rises from 0.3 mM for the enzyme in solution to 0.4-0.5 mM for the enzyme on a surface in the hydrolysis of o-nitrophenyl-β-D-galactopyranoside. It is concluded that β-galactosidase displays its maximum activity on the surface of biporous adsorbents.

  5. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    Science.gov (United States)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  6. Hydrothermal reaction of albite and a sodium aluminosilicate glass: A solid-state NMR study

    Science.gov (United States)

    Yang, Wang-hong Alex; Kirkpatrick, R. James

    1989-04-01

    We present here a solid-state NMR study of the structure and chemical composition of the products and mechanisms of the reaction of crystalline low albite and a glass of nearly albite composition with aqueous solutions of pH from 1 to 11 at 250°C. For the crystalline albite, there are no detectable bulk or surface structural changes due to aqueous attack, consistent with the idea that both cation exchange and disruption of the aluminosilicate framework occur only near the mineral/solution interface and that the hydrated surface layer, if it exists, is not more than about 30 Å thick. This reaction occurs by solution/reprecipitation, and its rate decreases with increasing solution pH, supporting the idea that the dissolution of feldspar is initiated by cation-exchange. For the glass, the reaction proceeds by cation exchange of protons for Na +, incorporation of molecular water into the bulk glass, and a small amount of depolymerization of the aluminosilicate framework in the interior of the glass. Cation exchange becomes less important with increasing solution pH. The incorporation of molecular water and cation-exchange cause structural changes in the glass via solidstate adjustment without dissolution/reprecipitation. The large cations in the hydrated glass (Na and K) probably have a shell of water molecules around them, with a maximum average coordination number of six. The secondary phases formed from both albite and the glass are often amorphous and can be well characterized by NMR. The compositional and structural variations of the amorphous phases are important factors in these reactions and cannot be ignored in theoretical models of aluminosilicate dissolution. As expected, the aluminum coordination in the secondary phases changes from six-fold to four-fold as the solution pH increases.

  7. Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Němec, P. [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Charrier, J. [FOTON, UMR CNRS 6082, Enssat, 6 rue de Kerampont, BP 80518, 22305 Lannion (France); Cathelinaud, M. [Missions des Ressources et Compétences Technologiques, UPS CNRS 2274, 92195 Meudon (France); Allix, M. [CEMHTI-CNRS, Site Haute Température, Orléans (France); Adam, J.-L.; Zhang, S. [Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France); Nazabal, V., E-mail: virginie.nazabal@univ-rennes1.fr [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France)

    2013-07-31

    Amorphous chalcogenide and alumino-silicate thin films were fabricated by the pulsed laser deposition technique. Prepared films were characterized in terms of their morphology, chemical composition, and optical properties. Multilayered thin film stacks for reflectors and vertical microcavities were designed for telecommunication wavelength and the window of atmosphere transparency (band II) at 1.54 μm and 4.65 μm, respectively. Bearing in mind the benefit coming from the opportunity of an efficient wavelength tuning or, conversely, to stabilize the photoinduced effects in chalcogenide films as well as to improve their mechanical properties and/or their chemical durability, several pairs of materials from pure chalcogenide layers to chalcogenide/oxide layers were investigated. Different layer stacks were fabricated in order to check the compatibility between dissimilar materials which can have a strong influence on the interface roughness, adhesion, density, and homogeneity, for instance. Three different reflector designs were formulated and tested including all-chalcogenide layers (As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70}) and mixed chalcogenide-oxide layers (As{sub 40}Se{sub 60}/alumino-silicate and Ga{sub 10}Ge{sub 15}Te{sub 75}/alumino-silicate). Prepared multilayers showed good compatibility between different material pairs deposited by laser ablation despite the diversity of chemical compositions. As{sub 40}Se{sub 60}/alumino-silicate reflector showed the best parameters; its stop band (R > 97% at 8° off-normal incidence) has a bandwidth of ∼ 100 nm and it is centered at 1490 nm. The quality of the different mirrors developed was good enough to try to obtain a microcavity structure for the 1.5 μm telecommunication wavelength made of chalcogenide layers. The microcavity structure consists of Ga{sub 5}Ge{sub 20}Sb{sub 10}S{sub 65} (doped with 5000 ppm of Er{sup 3+}) spacer surrounded by two 10-layer As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70

  8. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    Science.gov (United States)

    Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore

    2014-05-01

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.

  9. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    Science.gov (United States)

    Zhang, Long; Liu, Peng

    2008-08-01

    The uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10-5 (Ω·cm)-1.

  10. Properties of Nanocrystals-formulated Aluminosilicate Bricks

    Directory of Open Access Journals (Sweden)

    Francesca Conciauro

    2015-10-01

    insulating and/or mechanical properties. The nanocrystals- modified refractories showed variations in properties, with respect to the untreated aluminosilicate reference in heat- insulating performances (thermal diffusivities were measured by the “hot disk” technique. In general, they also showed improvements in mechanical compression resist‐ ance for all of the samples at 2 wt. %. The best heat insula‐ tion was obtained with the addition of nano-aluminium hydroxide at 2 wt. %, while the highest mechanical compres‐ sion breaking resistance was found with nano-CaCO3 at 2 wt. %. These outcomes were investigated with complemen‐ tary techniques, like mercury porosimetry for porosity, and Archimedes methods to measure physical properties like the bulk and apparent densities, apparent porosities and water absorption. The results show that the nano-alumini‐ um hydroxide modified bricks were the most porous, which could explain the best heat-insulating performances. There is a less straightforward explanation for the mechanical resistance results, as they may have relations with the characteristics of the pores. Furthermore, the nanoparti‐ cles may have possible reactions with the matrix during the heat treatments.

  11. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2008-01-01

    Full Text Available AbstractThe uniform polyaniline (PANI nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10−5(Ω·cm−1.

  12. Dissolution of lanthanide alumino-silicate oxynitride glasses

    Science.gov (United States)

    Bois, L.; Barré, N.; Guillopé, S.; Guittet, M. J.; Gautier-Soyer, M.; Duraud, J. P.; Trocellier, P.; Verdier, P.; Laurent, Y.

    2000-01-01

    The aqueous corrosion behavior of lanthanide aluminosilicate glasses has been studied under static conditions ( T=96°C, duration=1 and 3 months, glass surface area/leachate volume, S/ V=0.3 cm -1) by means of solution and solid analyses. It was found that these glasses exhibit a high chemical durability. The influence of yttrium, magnesium and nitrogen, which are supposed to improve the mechanical properties, on the chemical durability, has been investigated. After a one-month experiment, lanthanum and yttrium releases were found to be about 10 -7 mol l -1, while silicon and aluminum releases were about 10 -5 mol l -1. Yttrium seems to improve the chemical durability. The presence of nitrogen does not seem to modify the glass constituents releases, but seems to improve the surface state of the altered glass. XPS experiments reveal that lanthanum and yttrium are more concentrated near the surface (20-30 Å) of the glass after the leaching test.

  13. Tipping Point for Expansion of Layered Aluminosilicates in Weakly Polar Solvents: Supercritical CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T.; Loganathan, Narasimhan; Bowers, Geoffrey M.; Kirkpatrick, Robert J.; Yazaydin, A. O.; Burton, Sarah D.; Hoyt, David W.; Thanthiriwatte, Sahan; Dixon, David A.; McGrail, Bernard P.; Rosso, Kevin M.; Ilton, Eugene S.; Loring, John S.

    2017-10-11

    Layered aluminosilicates play a dominant role in the mechanical and gas storage properties of the subsurface, are used in diverse industrial applications, and serve as model materials for understanding solvent-ion-support systems. Although expansion in the presence of H2O is well known to be systematically correlated with the hydration free energy of the interlayer cation, in environments dominated by non-polar solvents (i.e. CO2), uptake into the interlayer is not well-understood. Using novel high pressure capabilities, we investigated the interaction of super-critical CO2 with Na+-, NH4+-, and Cs+-saturated montmorillonite, comparing results with predictions from molecular dynamics simulations. Despite the known trend in H2O, and that cation solvation energies in CO2 suggest a stronger interaction with Na+, both the NH4+- and Cs+-clays readily absorbed CO2 and expanded while the Na+-clay did not. The apparent inertness of the Na+-clay was not due to kinetics, as experiments seeking a stable expanded state showed that none exists. Molecular dynamics simulations revealed a large endothermicity to CO2 intercalation in the Na+-clay, but little or no energy barrier for the NH4+- and Cs+-clays. Consequently, we have shown for the first time that in the presence of a low dielectric constant gas swelling depends more on the strength of the interaction between interlayer cation and aluminosilicate sheets and less on that with solvent. The finding suggests a distinct regime in layered aluminosilicates swelling behavior triggered by low solvent polarizability, with important implications in geomechanics, storage and retention of volatile gases, and across industrial uses in gelling, decoloring, heterogeneous catalysis, and semi-permeable reactive barriers.

  14. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2012-06-15

    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  15. Oxalate molecule as the trap for gamma-irradiation energy in the amorphous aluminosilicate Al2(OH)6H4SiO4

    International Nuclear Information System (INIS)

    Nothig-Laslo, V.; Horvath, L.; Bilinski, H.

    1990-01-01

    Paramagnetic species which were the products of gamma irradiation at 77 K and at room temperature were studied by ESR spectroscopy in the amorphous aluminosilicate, Al2(OH)6H4SiO4, prepared in the presence and in the absence of oxalate ion. The aluminosilicate precipitated from the solution containing the oxalate ion in 10(-4) mol dm-3 concentration contained the oxalate only in trace amounts. When gamma-irradiated at 77 K and at room temperature, this compound gave the stable paramagnetic species represented by the single ESR line centered at g = 2.000. We ascribe this spectrum to the CO2- radical formed from the oxalate ion. The same aluminosilicate prepared in the absence of the oxalate either produced no stable paramagnetic product after gamma irradiation at room temperature or resulted in composite ESR spectra, indicating the presence of several paramagnetic species if irradiated at 77 K. Complex ESR spectra were transformed by heating to the stable paramagnetic centers which differed from the one obtained from oxalate ion. We conclude that in Al2(OH)6H4SiO4 oxalate acts as a trap for the gamma-radiation energy

  16. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    Science.gov (United States)

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  17. Fabrication of large diameter alumino-silicate K+ sources

    International Nuclear Information System (INIS)

    Baca, D.; Chacon-Golcher, E.; Kwan, J.W.; Wu, J.K.

    2003-01-01

    Alumino-silicate K + sources have been used in HIF experiments for many years. For example the Neutralized Transport Expt. (NTX) and the High Current Transport Expt. (HCX) are now using this type of ion source with diameters of 2.54 cm and 10 cm respectively. These sources have demonstrated ion currents of 80 mA and 700 mA, for typical HIF pulse lengths of 5-10 (micro)s. The corresponding current density is ∼ 10-15 mA/cm 2 , but much higher current density has been observed using smaller size sources. Recently we have improved our fabrication techniques and, therefore, are able to reliably produce large diameter ion sources with high quality emitter surface without defects. This note provides a detailed description of the procedures employed in the fabrication process. The variables in the processing steps affecting surface quality, such as substrate porosity, powder size distribution, coating technique on large area concave surfaces, drying, and heat firing temperature have been investigated

  18. MoO3 incorporation in magnesium aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-01-01

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO 3 ) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO 3 can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO 3 increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO 4 2− units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO 4

  19. The use of natural and industrial aluminosilicates in the process of adsorption of heavy metals ions

    OpenAIRE

    Tsvetkova, A.; Akayev, O.

    2010-01-01

    The analysis of periodic scientific publications and patent literature was made, in which the possibilities of using natural and industrial silicon-containing compounds as adsorbents of ions of heavy metals are generalized. The conditions of adsorption, as well as the numerical values of the adsorption capacity of the studied materials are described Key words: adsorption, natural and industrial aluminosilicates, heavy metals ions.

  20. The plumber's nightmare: a new morphology in block copolymer-ceramic nanocomposites and mesoporous aluminosilicates.

    Science.gov (United States)

    Finnefrock, Adam C; Ulrich, Ralph; Toombes, Gilman E S; Gruner, Sol M; Wiesner, Ulrich

    2003-10-29

    A novel cubic bicontinuous morphology is found in polymer-ceramic nanocomposites and mesoporous aluminosilicates that are derived by an amphiphilic diblock copolymer, poly(isoprene-b-ethylene oxide) (PI-b-PEO), used as a structure-directing agent for an inorganic aluminosilicate. Small-angle X-ray scattering (SAXS) was employed to unambiguously identify the Im(-)3m crystallographic symmetry of the materials by fitting individual Bragg peak positions in the two-dimensional X-ray images. Structure factor calculations, in conjunction with results from transmission electron microscopy, were used to narrow the range of possible structures consistent with the symmetry and showed the plumber's nightmare morphology to be consistent with the data. The samples are made by deposition onto a substrate that imposes a strain field, generating a lattice distortion. This distortion is quantitatively analyzed and shown to have resulted in shrinkage of the crystallites by approximately one-third in a direction perpendicular to the substrate, in both as-made composites and calcined ceramic materials. Finally, the observation of the bicontinuous block-copolymer-derived hybrid morphology is discussed in the context of a pseudo-ternary morphology diagram and compared to existing studies of ternary phase diagrams of amphiphiles in a mixture of two solvents. The calcined mesoporous materials have potential applications in the fields of catalysis, separation technology, and microelectronics.

  1. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and Pcoating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.

  2. Crystallization, Microstructure, and Viscosity Evolutions in Lithium Aluminosilicate Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-11-01

    Full Text Available Lithium aluminosilicate glass-ceramics have found widespread commercial success in areas such as consumer products, telescope mirrors, fireplace windows, etc. However, there is still much to learn regarding the fundamental mechanisms of crystallization, especially related to the evolution of viscosity as a function of the crystallization (ceramming process. In this study, the impact of phase assemblage and microstructure on the viscosity was investigated using high temperature X-ray diffraction (HTXRD, beam bending viscometry (BBV, and transmission electron microscopy (TEM. Results from this study provide a first direct observation of viscosity evolution as a function of ceramming time and temperature. Sharp viscosity increases due to phase separation, nucleation and phase transformation are noticed through BBV measurement. A near-net shape ceramming can be achieved in TiO2-containing compositions by keeping the glass at a high viscosity (> 109 Pa.s throughout the whole thermal treatment.

  3. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Daniela A., E-mail: daniela.geraldo@unab.cl [Universidad Andres Bello, Departamento de Ciencias Quimicas (Chile); Arancibia-Miranda, Nicolas [CEDENNA, Center for the Development of Nanoscience and Nanotechnology (Chile); Villagra, Nicolas A. [Universidad Andres Bello, Laboratorio de Microbiologia, Facultad de Ciencias Biologicas (Chile); Mora, Guido C. [Universidad Andres Bello, Unidad de Microbiologia, Facultad de Medicina (Chile); Arratia-Perez, Ramiro [Universidad Andres Bello, Departamento de Ciencias Quimicas (Chile)

    2012-12-15

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV-Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  4. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    International Nuclear Information System (INIS)

    Geraldo, Daniela A.; Arancibia-Miranda, Nicolás; Villagra, Nicolás A.; Mora, Guido C.; Arratia-Perez, Ramiro

    2012-01-01

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV–Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  5. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    Science.gov (United States)

    Geraldo, Daniela A.; Arancibia-Miranda, Nicolás; Villagra, Nicolás A.; Mora, Guido C.; Arratia-Perez, Ramiro

    2012-12-01

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV-Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  6. From free to bound water - progress in hydratisation for concrete, measured by means of neutron small angle scatter

    International Nuclear Information System (INIS)

    Hempel, M.; Haeussler, F.; Eichhorn, E.

    1993-01-01

    Neutron small angle scatter (NSAS) is suitable for characterising matrix non-homogeneousness in many materials. The description of amorphous materials (distribution of clusters, defect structures, boundary surfaces, e.g.: Between pores and the solid matrix etc.) is possible, in principle, by NSAS. This method is non-destructive to the extent that no pretreatment of samples is necessary, which significantly affects the microstructure to be examined. The process of NSAS itself produces no changes in the sample regarding the target of the examination. Thus the progress of hydratisation in concrete can be observed by successive NSAS measurements in time. (orig./HP) [de

  7. MoO{sub 3} incorporation in magnesium aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-03-15

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO{sub 3}) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO{sub 3} can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO{sub 3} increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO{sub 4}{sup 2−} units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO{sub 4}.

  8. Development of alumino-silicate refractories in Ghana

    International Nuclear Information System (INIS)

    Kisiedu, A. K.; Tetteh, D.M.B.; Obiri, H. A.; Brenya, E. F.; Ayensu, A.

    2008-01-01

    Alumino-silicate (bauxite), andalusite, kaolin and clay were investigated for suitability in production of alumina, mullite and fireclay brick refractories. The raw materials were characterized by X-ray diffraction, differential thermal and silicate analyses. The x-ray diffraction analysis of alumina and mullite refractories fired at 1450 0 C, and fireclay bricks fired at 1350 0 C, indicated presence of corundum and alpha-alumina crystals. The values of thermal (fired) shrinkage, crushing, strength, porosity, water absorption and bulk density determined were 31.1%, 2.3 x 10 3 kg/m 3 , 4.86 x 10 6 N/m 2 and 13.2 % for mullite; 30.2%, 2.4 x 10 3 kg/m 3 , 3.20 x 10 6 N/m 2 and W = 12.8 % for alumina; and 25.2 %, 2.1 x 10 3 kg/m 3 , 2.61 x 10 6 N/m 2 and W = 11.8% for fireclay, respectively. Bauxite, andalusite and special kaolin were identified as potential raw materials for developing alumina and mullite refractories for construction of high temperature kilns and furnaces operating at 1350 0 C. The clay and kaolin minerals could be used to produce fireclay refractories for construction of incinerators operating at maximum temperatures of about 1000 0 C. The performance of the refractories was demonstrated by producing bricks to construct kilns and incinerators for the ceramic industry and hospitals. (au)

  9. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    Science.gov (United States)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  10. Toxicity of inhaled 90Sr in fused aluminosilicate particles in beagle dogs. VIII

    International Nuclear Information System (INIS)

    Snipes, M.B.; Hahn, F.F.; Muggenburg, B.A.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1977-01-01

    Studies on the metabolism, dosimetry and biological effects of 90 Sr inhaled in a relatively insoluble form by Beagle dogs have continued during the past year to define the biological consequences of inhaling this important radionuclide in a form which has a long retention time in the lung. One hundred and six dogs were exposed to a polydisperse aerosol of fused aluminosilicate particles labeled with 90 Sr. Initial lung burdens ranged from 0.21 to 94 μCi 90 Sr per kilogram of body weight (μCi/kg). Eighteen control dogs were exposed to an aerosol of stable strontium in fused aluminosilicate particles. These 124 dogs were assigned to the longevity study. An additional 26 dogs were exposed similarly to achieve lung burdens of approximately 1.5 to 12 μCi/kg and assigned for sacrifice at intervals after exposure to define metabolism and dosimetry of this aerosol in Beagle dogs. Of the longevity dogs, 33 dogs having initial lung burdens of 16 to 94 μCi 90 Sr/kg and cumulative doses to lung of 40,000 to 96,000 rads have died from radiation pneumonitis and/or pulmonary fibrosis from 159 to 2373 days after exposure. Thirty-one dogs with initial lung burdens of 3.7 to 36 μCi 90 Sr/kg and cumulative doses to lung of 13,000 to 68,000 rads have died from hemangiosarcomas in the lung or heart between 644 and 2565 days after exposure. In addition, one dog developed a bronchioloalveolar carcinoma, another developed epidermoid carcinoma of the lung, another died of pneumonia while recovering from anesthesia, one dog died at 1821 days after exposure with a hemangiosarcoma of the spleen and two dogs developed squamous cell carcinomas in the nasal cavity. The remaining exposed dogs and controls of the longevity study are surviving at 1022 to 2803 days after exposure

  11. Spying on Fe ions and their role in modified aluminosilicates during the sorption of anions using solid-state NMR spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kobera, Libor; Abbrent, Sabina; Holcova, L.; Urbanová, Martina; Koloušek, D.; Doušová, B.; Brus, Jiří

    2017-01-01

    Roč. 241, 15 March (2017), s. 115-122 ISSN 1387-1811 R&D Projects: GA ČR(CZ) GA13-24155S; GA ČR(CZ) GA16-13778S Institutional support: RVO:61389013 Keywords : paramagnetic NMR shift * solid-state NMR * aluminosilicate Subject RIV: JN - Civil Engineering OBOR OECD: Civil engineering Impact factor: 3.615, year: 2016

  12. Corrosion of K-3 glass-contact refractory in sodium-rich aluminosilicate melts

    International Nuclear Information System (INIS)

    Lu, X.D.; Gan, H.; Buechele, A.C.; Pegg, I.L.

    1999-01-01

    The corrosion of the glass-contact refractory Monofrax K-3 in two sodium-rich aluminosilicate melts has been studied at 1,208 and 1,283 C using a modified ASTM procedure with constant agitation of the melt by air bubbling. The results for the monolithic refractory indicate a fast initial stage involving phase dissolution and transformation and a later passivated stage in which the surface of the refractory has been substantially modified. The composition of the stable spinel phase in the altered layer on monolithic coupons of K-3 is almost identical to the equilibrium composition bracketed by the dissolution of powdered K-3 into under-saturated melts on the other. The temperature and melt shear viscosity were found to have significant effects on the rates of K-3 dissolution and transformation

  13. Optical spectroscopy and optical waveguide fabrication in Eu3+ and Eu3+/Tb3+ doped zinc–sodium–aluminosilicate glasses

    International Nuclear Information System (INIS)

    Caldiño, U.; Speghini, A.; Berneschi, S.; Bettinelli, M.; Brenci, M.; Pasquini, E.; Pelli, S.; Righini, G.C.

    2014-01-01

    Optical and spectroscopic properties of 2.0% Eu(PO 3 ) 3 singly doped and 5.0% Tb(PO 3 ) 3 –2.0% Eu(PO 3 ) 3 codoped zinc–sodium–aluminosilicate glasses were investigated. Reddish-orange light emission, with x=0.64 and y=0.36 CIE1931 chromaticity coordinates, is obtained in the europium singly doped glass excited at 393 nm. Such chromaticity coordinates are close to those (0.67,0.33) standard of the National Television System Committee for the red phosphor. When the sodium–zinc–aluminosilicate glass is co-doped with Tb 3+ and Eu 3+ , reddish-orange light emission, with (0.61,0.37) CIE1931 chromaticity coordinates, is obtained upon Tb 3+ excitation at 344 nm. This reddish-orange luminescence is generated mainly by 5 D 0 → 7 F 1 and 5 D 0 → 7 F 2 emissions of Eu 3+ , europium being sensitized by terbium through a non-radiative energy transfer. From an analysis of the Tb 3+ emission decay curves it is inferred that the Tb 3+ →Eu 3+ energy transfer might take place between Tb 3+ and Eu 3+ clusters through a short-range interaction mechanism, so that an electric dipole–quadrupole interaction appears to be the most probable transfer mechanism. The efficiency of this energy transfer is about 62% upon excitation at 344 nm. In the singly doped and codoped glasses multimode optical waveguides were successfully produced by Ag + –Na + ion exchange, and they could be characterized at various wavelengths. -- Highlights: • Reddish-orange light emission can be generated from Tb 3+ and Eu 3+ codoped zinc–sodium–aluminosilicate glasses excited at 344 nm. • The Eu 3+ is sensitized by Tb 3+ through a non-radiative energy transfer. • Highly multimode waveguides can be fabricated by diluted silver–sodium exchange. • This type of AlGaN LEDs pumped glass phosphors might be useful for generation of reddish-orange light

  14. Mercury Bioaccumulation in Eggs of Hens Experimentally Intoxicated with Methylmercury Chloride and Detoxified with a Humic-Aluminosilicate Preparation

    Directory of Open Access Journals (Sweden)

    R Barej

    2015-12-01

    Full Text Available ABSTRACT The aim of the study was to evaluate the effectiveness of preventive-detox preparation (P-dP based on humic and aluminosilicate substances in the diet of laying hens (3% daily dose previously intoxicated with methylmercury chloride (CH3ClHg, 5 mg Hg/kg feed mixture for six weeks. Mercury content in the whole eggs of the group intoxicated with CH3ClHg increased compared to the control group: 488-fold after 1 wk, 622-fold after 2 wks, and 853-fold after 6 wks of intoxication. The use of P-dP in the group previously intoxicated with CH3ClHg reduced he mercury content of whole eggs by 18.4%, on average, whereas the average was 29.9% two weeks after the discontinuation of CH3ClHg and P-dP supply. Maximum Hg content in the whole egg was observed in group III (299.7 g, whereas the highest mercury level was obtained in the egg albumen.

  15. Characterization of Uranium Solids Precipitated with Aluminosilicates

    International Nuclear Information System (INIS)

    DUFF, MC

    2004-01-01

    At the Savannah River Site (SRS), the High-Level Waste (HLW) Tank Farms store and process high-level liquid radioactive wastes from the Canyons and recycle water from the Defense Waste Processing Facility. The waste is concentrated using evaporators to minimize the volume of space required for HLW storage. Recently, the 2H Evaporator was shutdown due to the crystallization of sodium aluminosilicate (NAS) solids (such as cancrinite and sodalite) that contained close to 10 weight percent of elementally-enriched uranium (U). Prior to extensive cleaning,the evaporator deposits resided on the evaporator walls and other exposed internal surfaces within the evaporator pot. Our goal is to support the basis for the continued safe operation of SRS evaporators and to gain more information that could be used to help mitigate U accumulation during evaporator operation. To learn more about the interaction between U(VI) and NAS in HLW salt solutions, we performed several fundamental studies to examine the mechanisms of U accumulation with NAS in highly caustic solutions. This larger group of studies focused on the following processes: co-precipitation/structural incorporation, sorption, and precipitation (with or without NAS), which will be reviewed in this presentation. We will present and discuss local atomic structural characterization data about U that has been co-precipitated with NAS solids (such as amorphous zeolite precursor material and sodalite) using X-ray absorption fine-structure (XAFS) spectroscopic techniques

  16. Evaluation of aluminosilicate glass sintering during differential scanning calorimetry

    International Nuclear Information System (INIS)

    Souza, Juliana Pereira de

    2015-01-01

    In this work a difference in the baseline in differential scanning calorimetry analyses, observed in a work where aluminosilicate glasses microspheres containing Ho were studied for application in selective internal radiotherapy as hepatocellular carcinoma treatment, was studied. The glasses with nominal composition 53,7 SiO 2 .10,5 Al 2 O 3 . 35,8 MgO in %mol were produced from traditional melting. The first obtained were milled and sieved in the range of 45 a 63 μm. The material was used to produce glass microspheres by the gravitational fall method. The glass powder and the microspheres were characterized by X ray fluorescence spectrometry, laser diffraction, X ray diffraction, differential scanning calorimetry, differential thermal analysis, thermogravimetry, mass spectrometry, and scanning electron microscopy. After the thermal analyses, pellets were formed in the crucibles and were analyzed by scanning electron microscopy, X ray diffraction, and He pycnometry. The difference in the baseline was associated to the viscous flow sintering process and happens because of the decrease in the detected heat flow due to the sample shrinkage. Other events as concurrent crystallization with the sintering process were also studied. (author)

  17. Absorption and luminescence characteristics of {sup 5}I{sub 7} ↔ {sup 5}I{sub 8} transitions of the holmium ion in Ho{sup 3+}-doped aluminosilicate preforms and fibres

    Energy Technology Data Exchange (ETDEWEB)

    Ryabochkina, P A; Chabushkin, A N [N.P. Ogarev Mordovian State University, Saransk (Russian Federation); Kosolapov, A F [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Kurkov, A S [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-02-28

    We have obtained the spectral dependences of the absorption cross sections for the Ho{sup 3+} {sup 5}I{sub 8} → {sup 5}I{sub 6} and {sup 5}I{sub 8} → {sup 5}I{sub 7} transitions in Ho{sup 3+}-doped aluminosilicate fibres and the spectral dependence of the stimulated emission cross section for the Ho{sup 3+} {sup 5}I{sub 7} → {sup 5}I{sub 8} laser transition in Ho{sup 3+}-doped aluminosilicate fibre preforms. The lifetime of the Ho{sup 3+} {sup 5}I{sub 7} upper laser level in the preforms has been determined. (lasers)

  18. Silica, alumina and aluminosilicates as solid stationary phases in gas chromatography

    Directory of Open Access Journals (Sweden)

    S. Faramawy

    2016-09-01

    Full Text Available Silica, alumina and Aluminosilicates of different Si/Al ratios were prepared by conventional precipitation or co-precipitation methods and then subjected to thermal treatment at 800 °C. The parent and thermally treated materials were characterized by means of FTIR, SEM and thermal analysis (DTA and TGA in order to elucidate the main structural properties. Surface textural characteristics were investigated by means of nitrogen adsorption–desorption isotherms at −196 °C. Pore size distribution curves indicated the presence of mesopores (10–150 Å exhibiting maxima at 35 Å. The maxima were shifted toward higher values by increasing the alumina content. Thermodynamic parameters, ΔH, ΔG and ΔS, were determined by means of inverse gas chromatography using n-hexane as a probe. The untreated and thermally treated materials were tested as solid stationary phases in gas chromatography. The separation efficiency of various non polar and polar compounds was explained in terms of surface texture and thermodynamic parameters.

  19. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    Energy Technology Data Exchange (ETDEWEB)

    Enterría, Marina, E-mail: marina@incar.csic.es; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-15

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm{sup 3}/g, respectively. X-ray diffraction and N{sub 2} adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica.

  20. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    International Nuclear Information System (INIS)

    Enterría, Marina; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-01

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm 3 /g, respectively. X-ray diffraction and N 2 adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica

  1. Surface functionalization of aluminosilicate nanotubes with organic molecules

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2012-02-01

    Full Text Available The surface functionalization of inorganic nanostructures is an effective approach for enriching the potential applications of existing nanomaterials. Inorganic nanotubes attract great research interest due to their one-dimensional structure and reactive surfaces. In this review paper, recent developments in surface functionalization of an aluminosilicate nanotube, “imogolite”, are introduced. The functionalization processes are based on the robust affinity between phosphate groups of organic molecules and the aluminol (AlOH surface of imogolite nanotubes. An aqueous modification process employing a water soluble ammonium salt of alkyl phosphate led to chemisorption of molecules on imogolite at the nanotube level. Polymer-chain-grafted imogolite nanotubes were prepared through surface-initiated polymerization. In addition, the assembly of conjugated molecules, 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid (HT3P and 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid 1,1-dioxide (HT3OP, on the imogolite nanotube surface was achieved by introducing a phosphonic acid group to the corresponding molecules. The optical and photophysical properties of these conjugated-molecule-decorated imogolite nanotubes were characterized. Moreover, poly(3-hexylthiophene (P3HT chains were further hybridized with HT3P modified imogolite to form a nanofiber hybrid.

  2. Aluminosilicate-based sealants for SOFCs and other electrochemical applications - A brief review

    Science.gov (United States)

    Tulyaganov, Dilshat U.; Reddy, Allu Amarnath; Kharton, Vladislav V.; Ferreira, José M. F.

    2013-11-01

    Among different designs of solid oxide fuel cells (SOFCs), planar design is the most promising due to easier fabrication, improved performance and relatively high power density. In planar SOFCs and other solid-electrolyte devices, gas-tight seals must be formed along the edges of each cell and between the stack and gas manifolds. For a sealant to work effectively in high-temperature SOFC environment, equilibrium needs to be achieved amid its mechanical properties and flow behavior so that it does not only maintain its hermeticity at high temperature but is also able to reduce mechanical stresses generated in the seal during thermal cycling. The most common sealants based on glass or glass-ceramic materials have been shown to operate in fuel cells for more than 1000 h with no significant degradation. Analysis of the current literature sources demonstrated that from thermal and chemical stability points of view, silicate based glass systems are more suitable than borate and borosilicate glass systems. In this work, different glass-ceramic (GC) compositions based on alkaline- and alkaline-earth aluminosilicate-based glass systems are reviewed with a special emphasis on their thermal, chemical, mechanical, and electrical properties. Based on these considerations, glass composition design approaches are provided that aid in search of the best seal glasses satisfying the rigid functional requirements. Among all the glass systems studied, a pyroxene based CaO-MgO-SrO-BaO-La2O3-Al2O3-SiO2 seal GC compositions have been specifically discussed because those have achieved appropriate thermal and chemical properties along with high stability. Approaches for further developments and optimization of GC sealants are briefly discussed.

  3. Enhanced oxidation resistance of carbon fiber reinforced lithium aluminosilicate composites by boron doping

    International Nuclear Information System (INIS)

    Xia, Long; Jin, Feng; Zhang, Tao; Hu, Xueting; Wu, Songsong; Wen, Guangwu

    2015-01-01

    Highlights: • C f /LAS composites exhibit enhanced oxidation resistance by boron doping. • Boron doping is beneficial to the improvement of graphitization degree of carbon fibers. • Graphitization of carbon fibers together with the decrease of viscosity of LAS matrix is responsible to the enhancement of oxidation resistance of C f /LAS composites. - Abstract: Carbon fiber reinforced lithium aluminosilicate matrix composites (C f /LAS) modified with boron doping were fabricated and oxidized for 1 h in static air. Weight loss, residual strength and microstructure were analyzed. The results indicate that boron doping has a remarkable effect on improving the oxidation resistance for C f /LAS. The synergism of low viscosity of LAS matrix at high temperature and formation of graphite crystals on the surface of carbon fibers, is responsible for excellent oxidation resistance of the boron doped C f /LAS.

  4. Behavior of uranium and its surrogates in molten aluminosilicate glasses in contact with liquid metals

    International Nuclear Information System (INIS)

    Chevreux, Pierrick

    2016-01-01

    This study concerns an innovative process used for conditioning nuclear waste that contain metallic parts contaminated with actinides. High actinides concentrations are expected to be incorporated in the glass melt in contact with the molten metals. Among these metals, aluminum and/or stainless steel impose a strongly reducing environment to the glass melt involving redox reactions. These reactions modify actinides oxidation states and therefore change their solubilities in the glass and could also reduce them into the metallic form. In this work, we focus on the behavior of uranium and its surrogates, namely hafnium and neodymium, in aluminosilicate glasses from the Na 2 O-CaO-SiO 2 -Al 2 O 3 system melted in highly reducing conditions. The first step consists in comparing the hafnium and uranium solubilities in the glass as functions of redox conditions and glass composition. A methodology has been set up and a specific device has been used to control the oxygen fugacity and the alkali content of the glass. The results show that uranium is far less soluble in the glass than hafnium (Hf(IV)) in reducing conditions. The uranium solubility ranges from 4 to 7 wt% UO 2 for an oxygen fugacity below 10 -14 atm at 1250 C-1400 C. Uranium oxidation states have been investigated by X-ray absorption spectroscopy (XANES). It has been pointed out that U(IV) is the main form in the glass for such imposed oxygen fugacities. The second step of this work is to identify the glass-metal interaction mechanisms in order to determine the localization of uranium and its surrogates (Nd, Hf) in the glass-metal system. Mechanisms are mostly ruled by the presence of metallic aluminum and are similar for uranium, neodymium and hafnium. Glass-metal interaction kinetics demonstrate that uranium and its surrogates can temporarily be reduced into the metallic form for particular conditions. A re-oxidation occurs with time which is in good agreement with thermodynamics. Regarding uranium, the re

  5. In situ structural analysis of calcium aluminosilicate glasses under high pressure.

    Science.gov (United States)

    Muniz, R F; de Ligny, D; Martinet, C; Sandrini, M; Medina, A N; Rohling, J H; Baesso, M L; Lima, S M; Andrade, L H C; Guyot, Y

    2016-08-10

    In situ micro-Raman spectroscopy was used to investigate the structural evolution of OH(-)-free calcium aluminosilicate glasses, under high pressure and at room temperature. Evaluation was made of the role of the SiO2 concentration in percalcic join systems, for Al/(Al  +  Si) in the approximate range from 0.9 to 0.2. Under high pressure, the intensity of the main band related to the bending mode of bridging oxygen ([Formula: see text][T-O-T], where T  =  Si or Al) decreased gradually, suggesting that the bonds were severely altered or even destroyed. In Si-rich glasses, compression induced a transformation of Q (n) species to Q (n-1). In the case of Al-rich glass, the Al in the smallest Q (n) units evolved from tetrahedral to higher-coordinated Al (([5])Al and ([6])Al). Permanent structural changes were observed in samples recovered from the highest pressure of around 15 GPa and, particularly for Si-rich samples, the recovered structure showed an increase of three-membered rings in the Si/Al tetrahedral network.

  6. Bridging the gap between non-state actors and the state in ...

    African Journals Online (AJOL)

    State Actors (NSAs) particularly, Civil Society Organizations' (CSOs) in public policy process in Nigeria. Using library retrieval technique, the paper argues that the state and NSAs have different but coordinate roles to play within the limit ...

  7. Near-surface alloys for hydrogen fuel cell applications

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Mavrikakis, Manos

    2006-01-01

    of CO with relatively facile H-2 activation is nearly ideal for this application. We suggest that. as nanoscale materials synthesis techniques improve, it will become feasible to reproducibly prepare NSAs with highly specified surface structures, resulting in the design and manufacture of a wide variety...... facile H-2 activation. These NSAs could, potentially, facilitate highly selective hydrogenation reactions at low temperatures. In the present work, the suitability of NSAs for use as hydrogen fuel cell anodes has been evaluated: the combination of properties, possessed by selected NSAs, of weak binding...... of such materials for use in fuel cells and in an ever. increasing range of catalytic applications. Furthermore, we introduce a new concept for NSA-defect sites, which could be responsible for the promotional catalytic effects of a second metal added. even in minute quantities, to a host metal catalyst....

  8. Electro-optical parameters of bond polarizability model for aluminosilicates.

    Science.gov (United States)

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  9. Emission tunability and local environment in europium-doped OH{sup −}-free calcium aluminosilicate glasses for artificial lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Aline M.; Sandrini, Marcelo; Viana, José Renato M.; Baesso, Mauro L.; Bento, Antônio C.; Rohling, Jurandir H. [Departamento de Física, Universidade Estadual de Maringá, Av Colombo, 5790, 87020-900, Maringá, PR (Brazil); Guyot, Yannick [Laboratoire de Physico–Chimie des Matériaux Luminescents, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, UMR 5620 CNRS 69622 (France); De Ligny, Dominique [Department of Materials Science and Engineering, University of Erlangen Nürnberg, Martens str. 5, 91058, Erlangen (Germany); Nunes, Luiz Antônio O. [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense400, 13566-590, São Carlos, SP (Brazil); Gandra, Flávio G. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Sampaio, Juraci A. [Lab Ciências Físicas, Universidade Estadual Norte Fluminense, 28013-602, Campos Dos Goytacazes, RJ (Brazil); Lima, Sandro M.; Andrade, Luis Humberto C. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul-UEMS, Dourados, MS, C. P. 351, CEP 79804-970 (Brazil); and others

    2015-04-15

    The relationship between emission tunability and the local environment of europium ions in OH{sup −}-free calcium aluminosilicate glasses was investigated, focusing on the development of devices for artificial lighting. Significant conversion of Eu{sup 3+} to Eu{sup 2+} was obtained by means of melting the glasses under a vacuum atmosphere and controlling the silica content, resulting in broad, intense, and tunable luminescence ranging from blue to red. Electron spin resonance and X-ray absorption near edge structure measurements enabled correlation of the luminescence behavior of the material with the Eu{sup 2+}/Eu{sup 3+} concentration ratio and changes in the surrounding ions' crystal field. The coordinates of the CIE 1931 chromaticity diagram were calculated from the spectra, and the contour maps showed that the light emitted from Eu{sup 2+} presented broad bands and enhanced color tuning, ranging from reddish-orange to blue. The results showed that these Eu doped glasses can be used for tunable white lighting by combining matrix composition and the adjustment of the pumping wavelength. - Highlights: • Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass as a new source for white lighting. • Correlation between emission tunability and local environment of europium ions. • Significant reduction of Eu{sup 3+} to Eu{sup 2+} by melting the glasses under vacuum atmosphere. • Broad, intense and tunable luminescence ranging from blue to red.

  10. Properties of dry masonry mixtures based on hollow aluminosilicate microspheres

    Directory of Open Access Journals (Sweden)

    Semenov Vyacheslav

    2017-01-01

    Full Text Available At present, there is a steady increase in the volume of housing construction in the Russian Federation. The modern trends in the field of energy and resource saving determine the need of the use of efficient building materials that ensure the safety, comfort and minimum cost of housing construction. Among the materials, often used for erecting of fencing structures, it is possible to note effective small-piece elements (ceramic and light-weight concrete units, etc.. To ensure the solidity of such structures, it is necessary to use the masonry mortars whose properties correspond to those of the main wall material. The existing dry mixes for obtaining of such mortars are expensive and often do not meet the minimum physical-and-mechanical and exploitation requirements. The solution of this problem is the usage of the hollow ceramics (aluminosilicate microspheres as a filler for such mixes. The article presents the results of studies of the main physical-and-mechanical and exploitation characteristics of dry masonry mixes with hollow ceramics microspheres modified with various chemical additives. The effect of the compounding factors on the average density and strength of dry masonry mixes was studied. The compositions have been optimized by the methods of mathematical planning.

  11. A Quick Negative Selection Algorithm for One-Class Classification in Big Data Era

    Directory of Open Access Journals (Sweden)

    Fangdong Zhu

    2017-01-01

    Full Text Available Negative selection algorithm (NSA is an important kind of the one-class classification model, but it is limited in the big data era due to its low efficiency. In this paper, we propose a new NSA based on Voronoi diagrams: VorNSA. The scheme of the detector generation process is changed from the traditional “Random-Discard” model to the “Computing-Designated” model by VorNSA. Furthermore, we present an immune detection process of VorNSA under Map/Reduce framework (VorNSA/MR to further reduce the time consumption on massive data in the testing stage. Theoretical analyses show that the time complexity of VorNSA decreases from the exponential level to the logarithmic level. Experiments are performed to compare the proposed technique with other NSAs and one-class classifiers. The results show that the time cost of the VorNSA is averagely decreased by 87.5% compared with traditional NSAs in UCI skin dataset.

  12. Judd-Ofelt Analysis of Dy3+-Activated Aluminosilicate Glasses Prepared by Sol-Gel Method

    Science.gov (United States)

    Sengthong, Buonyavong; Van Tuyen, Ho; An, Nguyen Thi Thai; Van Do, Phan; Hai, Nguyen Thi Quy; Chau, Pham Thi Minh; Quang, Vu Xuan

    2018-04-01

    Aluminosilicate (AS) glasses doped with different Dy3+ concentrations were synthesized via sol-gel method. Absorption, photoluminescence spectra and lifetime of this material have been studied. From analytical results of absorption spectra, the Judd-Ofelt (JO) parameters of prepared samples have been determined. These JO parameters combined with photoluminescence spectra have been used to evaluate transition probabilities ( A R), branching ratios ( β) and the calculated oscillator strengths of AS:Dy3+ glasses. The radiative branching ratio of 4F9/2 → 6H13/2 transition has a minimum value at 62.2% for β R which predicts that this transition in AS:Dy3+ glasses can give rise to lasing action. JO parameters show that the Ω2 increases with the increasing of Dy3+ ion concentration due to the increased polarizability of the average coordination medium and decreased average symmetry.

  13. The role of humic acid on the formation of HAS (hydroxy-aluminosilicate) colloid-borne actinides

    Energy Technology Data Exchange (ETDEWEB)

    Priemyshev, A.; Kim, M.A. [Inst. fuer Radiochemie, Technische Universitaet Muenchen, D-85748 Garching (Germany); Breban, D.; Panak, P.J.; Yun, J.I.; Kim, J.I.; Fanghanel, Th. [Inst. fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Mansel, A. [Inst. fuer Interdisziplinaere Isotopenforschung, Georadiochemie, Leipzig, D-04318 Leipzig (Germany)

    2005-07-01

    Full text of publication follows: One of the major unknowns in the process of actinide migration is the formation of their colloid-borne species. Previous studies have been directed to the incorporation of actinides into HAS (hydroxy-aluminosilicate) colloids generated by the nucleation of Si and Al. The present work further pursues the behaviour of actinides at HAS colloid formation but in the presence of humic acid that is known to be an ubiquitous groundwater constituent. The formation and degree of stability of the aluminosilicate binding for the generation of HAS colloids are investigated at first in the absence of actinides. Free and complexed Al resulting from ligand competitions reactions for the complexation of Al with mono-silicic acid, poly-silicic acid and EDTA are monitored spectroscopically by colour reaction. The second part of the study concentrates on the formation and stability of humic colloids using {sup 14}C-labeled humic acid. The activity distribution is ascertained in the ionic, colloidal and precipitated fractions under different conditions of colloid formation, e.g. as a function of pH, time, humic acid and Al concentration. The third part follows the appraisal of appropriate conditions under which stable HAS and humic colloids are formed, and their interaction with actinides, either separately or in competition. Trace actinides of different oxidation states {sup 241}Am(III), {sup 234}Th(IV) and {sup 233}U(VI) are taken for the purpose. HAS colloids generated from poly-silicic acid at neutral pH show EDTA-resistance, whereas HAS colloids formed from mono-silicic acid become EDTA-resistant only by aging (> one month). Humic acid appears to stabilize HAS colloids, unless the loading capacity of humic acid for the Al ion is exceeded. The incorporation of actinides into the colloidal phase is generally enhanced in the presence of humic acid. Synergic effects produce chimeric HAS-humic colloids into which tri-, tetra- and hexavalent actinides

  14. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX-II)

    International Nuclear Information System (INIS)

    Roy, P.K.; Greenway, W.; Kwan, J.W.; Seidl, P.A.; Waldron, W.

    2011-01-01

    To heat targets to electron-volt temperatures for the study of warm dense matter with intense ion beams, low mass ions, such as lithium, have an energy loss peak (dE/dx) at a suitable kinetic energy. The Heavy Ion Fusion Sciences (HIFS) program at Lawrence Berkeley National Laboratory will carry out warm dense matter experiments using Li + ion beam with energy 1.2-4 MeV in order to achieve uniform heating up to 0.1-1 eV. The accelerator physics design of Neutralized Drift Compression Experiment (NDCX-II) has a pulse length at the ion source of about 0.5 (micro)s. Thus for producing 50 nC of beam charge, the required beam current is about 100 mA. Focusability requires a normalized (edge) emittance ∼2 π-mm-mrad. Here, lithium aluminosilicate ion sources, of β-eucryptite, are being studied within the scope of NDCX-II construction. Several small (0.64 cm diameter) lithium aluminosilicate ion sources, on 70%-80% porous tungsten substrate, were operated in a pulsed mode. The distance between the source surface and the mid-plane of the extraction electrode (1 cm diameter aperture) was 1.48 cm. The source surface temperature was at 1220 C to 1300 C. A 5-6 (micro)s long beam pulsed was recorded by a Faraday cup (+300 V on the collector plate and -300 V on the suppressor ring). Figure 1 shows measured beam current density (J) vs. V 3/2 . A space-charge limited beam density of ∼1 mA/cm 2 was measured at 1275 C temperature, after allowing a conditioning time of about ∼ 12 hours. Maximum emission limited beam current density of (ge) 1.8mA/cm 2 was recorded at 1300 C with 10-kV extractions. Figure 2 shows the lifetime of two typical sources with space-charge limited beam current emission at a lower extraction voltage (1.75 kV) and at temperature of 1265 ± 7 C. These data demonstrate a constant, space-charge limited beam current for 20-50 hours. The lifetime of a source is determined by the loss of lithium from the alumino-silicate material either as ions or as neutral

  15. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    International Nuclear Information System (INIS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-01-01

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al 2 O 3 ) 1−x (SiO 2 ) x , glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO 5 structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution of the glass-transition temperature as well as of the fragility as a function of silica content along the three joins

  16. Thermal properties of alkali-activated aluminosilicates with CNT admixture

    Science.gov (United States)

    Zmeskal, Oldrich; Trhlikova, Lucie; Fiala, Lukas; Florian, Pavel; Cerny, Robert

    2017-07-01

    Material properties of electrically conductive cement-based materials with increased attention paid on electric and thermal properties were often studied in the last years. Both electric and thermal properties play an important role thanks to their possible utilization in various practical applications (e.g. snow-melting systems or building structures monitoring systems without the need of an external monitoring system). The DC/AC characteristics depend significantly on the electrical resistivity and the electrical capacity of bulk materials. With respect to the DC/AC characteristics of cement-based materials, such materials can be basically classified as electric insulators. In order to enhance them, various conductive admixtures such as those based on different forms of carbon, can be used. Typical representatives of carbon-based admixtures are carbon nanotubes (CNT), carbon fibers (CF), graphite powder (GP) and carbon black (CB). With an adequate amount of such admixtures, electric properties significantly change and new materials with higher added value can be prepared. However, other types of materials can be enhanced in the same way. Alkali-activated aluminosilicates (AAA) based on blast furnace slag are materials with high compressive strength comparable with cement-based materials. Moreover, the price of slag is lower than of Portland cement. Therefore, this paper deals with the study of thermal properties of this promising material with different concentrations of CNT. Within the paper a simple method of basic thermal parameters determination based on the thermal transient response to a heat power step is presented.

  17. Optical spectroscopy and optical waveguide fabrication in Eu{sup 3+} and Eu{sup 3+}/Tb{sup 3+} doped zinc–sodium–aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Caldiño, U., E-mail: cald@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México D.F. (Mexico); Speghini, A. [Dipartimento di Biotecnologie, Università di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Berneschi, S. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Bettinelli, M. [Dipartimento di Biotecnologie, Università di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); Brenci, M. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Pasquini, E. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, 50019 Sesto Fiorentino (Firenze) (Italy); Pelli, S. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Righini, G.C. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 2, 00184 Roma (Italy)

    2014-03-15

    Optical and spectroscopic properties of 2.0% Eu(PO{sub 3}){sub 3} singly doped and 5.0% Tb(PO{sub 3}){sub 3}–2.0% Eu(PO{sub 3}){sub 3} codoped zinc–sodium–aluminosilicate glasses were investigated. Reddish-orange light emission, with x=0.64 and y=0.36 CIE1931 chromaticity coordinates, is obtained in the europium singly doped glass excited at 393 nm. Such chromaticity coordinates are close to those (0.67,0.33) standard of the National Television System Committee for the red phosphor. When the sodium–zinc–aluminosilicate glass is co-doped with Tb{sup 3+} and Eu{sup 3+}, reddish-orange light emission, with (0.61,0.37) CIE1931 chromaticity coordinates, is obtained upon Tb{sup 3+} excitation at 344 nm. This reddish-orange luminescence is generated mainly by {sup 5}D{sub 0}→{sup 7}F{sub 1} and {sup 5}D{sub 0} →{sup 7}F{sub 2} emissions of Eu{sup 3+}, europium being sensitized by terbium through a non-radiative energy transfer. From an analysis of the Tb{sup 3+} emission decay curves it is inferred that the Tb{sup 3+}→Eu{sup 3+} energy transfer might take place between Tb{sup 3+} and Eu{sup 3+} clusters through a short-range interaction mechanism, so that an electric dipole–quadrupole interaction appears to be the most probable transfer mechanism. The efficiency of this energy transfer is about 62% upon excitation at 344 nm. In the singly doped and codoped glasses multimode optical waveguides were successfully produced by Ag{sup +}–Na{sup +} ion exchange, and they could be characterized at various wavelengths. -- Highlights: • Reddish-orange light emission can be generated from Tb{sup 3+} and Eu{sup 3+} codoped zinc–sodium–aluminosilicate glasses excited at 344 nm. • The Eu{sup 3+} is sensitized by Tb{sup 3+} through a non-radiative energy transfer. • Highly multimode waveguides can be fabricated by diluted silver–sodium exchange. • This type of AlGaN LEDs pumped glass phosphors might be useful for generation of reddish-orange light.

  18. Elasticity of phase-Pi (Al3Si2O7(OH)3) - A hydrous aluminosilicate phase

    Science.gov (United States)

    Peng, Ye; Mookherjee, Mainak; Hermann, Andreas; Bajgain, Suraj; Liu, Songlin; Wunder, Bernd

    2017-08-01

    Phase-Pi (Al3Si2O7(OH)3) is an aluminosilicate hydrous mineral and is likely to be stable in hydrated sedimentary layers of subducting slabs. Phase-Pi is likely to be stable between the depths of 60 and 200 km and is likely to transport water into the Earth's interior. Here, we use first principles simulations based on density functional theory to explore the crystal structure at high-pressure, equation of state, and full elastic stiffness tensor as a function of pressure. We find that the pressure volume results could be described by a finite strain fit with V0 , K0 , and K0‧ being 310.3 Å3, 133 GPa, and 3.6 respectively. At zero pressure, the full elastic stiffness tensor shows significant anisotropy with the diagonal principal components C11 , C22 , and C33 being 235, 292, 266 GPa respectively, the diagonal shear C44 , C55 , and C66 being 86, 92, and 87 GPa respectively, and the off-diagonal stiffness C12 , C13 , C14 ,C15 , C16 , C23 , C24 , C25 , C26 , C34 , C35 , C36 , C45 , C46 , and C56 being 73, 78, 6, -30, 15, 61, 17, 2, 1, -13, -15, 6, 3, 1, and 3 GPa respectively. The zero pressure, shear modulus, G0 and its pressure derivative, G0 ‧ are 90 GPa and 1.9 respectively. Upon compression, hydrogen bonding in phase-Pi shows distinct behavior, with some hydrogen bonds weakening and others strengthening. The latter eventually undergo symmetrization, at pressure greater (>40 GPa) than the thermodynamic stability of phase-Pi. Full elastic constant tensors indicate that phase-Pi is very anisotropic with AVP ∼22.4% and AVS ∼23.7% at 0 GPa. Our results also indicate that the bulk sound velocity of phase-Pi is slower than that of the high-pressure hydrous aluminosilicate phase, topaz-OH.

  19. Understanding the role of Co3O4 on stability between active hierarchies and scaffolds: An insight into NiMoO4 composites for supercapacitors

    Science.gov (United States)

    Zhao, Yuanyuan; Zhang, Peng; Fu, Wenbin; Ma, Xiangwen; Zhou, Jinyuan; Zhang, Xiaojuan; Li, Jian; Xie, Erqing; Pan, Xiaojun

    2017-09-01

    It is often reported that pseudocapacitive electrodes' mechanical stability seriously limited their cycling performances in supercapacitors due to their quick fall off the electrode matrix during frequent fast charge/discharge process. In this work, we have demonstrated the mechanical enhancement in hierarchical NiMoO4 nanosheet arrays (NSAs) on free-standing substrates after introducing Co3O4 hierarchies. Under sonication vibration environment, the mechanical stability of Co3O4@NiMoO4 NSAs was enhanced by ∼70% compared to that of the pure NiMoO4 ones. Moreover, the Co3O4@NiMoO4 NSAs can display a high specific capacitance of 1476 F g-1 at the current density of 1 A g-1, and an excellent rate capability (keeping 81% at 20 A g-1). And after 2000 cycles, high capacitance retention of 96% was achieved for the Co3O4@NiMoO4 core/shell NSAs, while only 70% for the pure NiMoO4 ones.

  20. Structural analysis and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Yusuke; Akiyama, Kazuhiko [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan); Kobzi, Balázs; Sinkó, Katalin; Homonnay, Zoltán [Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117 (Hungary); Kuzmann, Ernő [Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117 (Hungary); Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest 1512 (Hungary); Ristić, Mira; Krehula, Stjepko [Division of Materials Chemistry, RuđerBošković Institute, Bijenička cesta 54, Zagreb 10000 (Croatia); Nishida, Tetsuaki [Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555 (Japan); Kubuki, Shiro, E-mail: kubuki@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan)

    2015-10-05

    Highlights: • Hematite was precipitated by heat treatment of iron aluminosilicate glass. • The hematite phase shows visible light photocatalytic activity. • We could prepare an effective photocatalyst from ‘ubiquitous elements’. - Abstract: A relationship between structure and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate (15Na{sub 2}O⋅15CaO⋅40Fe{sub 2}O{sub 3}⋅xAl{sub 2}O{sub 3}⋅(30−x)SiO{sub 2}) glass (xNCFAS) was investigated by means of {sup 57}Fe-Mössbauer spectroscopy, X-ray diffractometry (XRD) and UV–visible light absorption spectroscopy (UV–VIS). The {sup 57}Fe-Mössbauer spectrum of 11NCFAS glass measured after heat-treatment at 1000 °C for 100 min was composed of a paramagnetic doublet due to Fe{sup III}(T{sub d}) and two magnetic sextets due to regular hematite (α-Fe{sub 2}O{sub 3}) and hematite with larger internal magnetic field. X-ray diffraction patterns of heat-treated xNCFAS samples resulted in decrease of α-Fe{sub 2}O{sub 3} and increase of Ca{sub 2}Fe{sub 22}O{sub 33} or CaFe{sub 2}O{sub 4} with alumina content. A quick decrease in methylene blue (MB) concentration from 15.6 to 4.7 μmol L{sup −1} was observed in the photocatalytic reaction test with 40 mg of heat-treated 11NCFAS glass under visible light-exposure. The largest first-order rate constant of MB decomposition (k) was estimated to be 9.26 × 10{sup −3} min{sup −1}. Tauc’s plot yielded a band gap energy (E{sub g}) of 1.88 eV for heat-treated 11NCFAS glass, which is smaller than previously reported E{sub g} of 2.2 eV for α-Fe{sub 2}O{sub 3}. These results prove that addition of Al{sub 2}O{sub 3} into iron-containing soda lime silicate glass is favorable for the preparation of improved visible light-photocatalyst with ‘ubiquitous’ elements.

  1. Mobility of chemisorbed molecules and surface regeneration of active centers during dehydration of isopropanol on aluminium oxide and aluminosilicate

    International Nuclear Information System (INIS)

    Makhlis, L.A.; Vasserberg, V.Eh.

    1976-01-01

    By a differential isotope method involving 14 C the authors have investigated the surface mobility of chemisorbed molecules of isopropanol during its dehydration in an adsorption layer on aluminium oxide and aluminosilicate. The chemisorbed alcohol molecules possess marked surface mobility which plays a decisive part in the mechanism of surface regeneration of the active catalyst centers in the process of dehydration. The cessation of the reaction long before the adsorbed alcohol is completely used up is explained by the hypothesis that there is local overpopulation of the active sectors by water formed by the reaction; this hinders further surface regeneration and repetition of the elementary events of dehydration

  2. Metal Oxide Nanoparticles Supported on Macro-Mesoporous Aluminosilicates for Catalytic Steam Gasification of Heavy Oil Fractions for On-Site Upgrading

    Directory of Open Access Journals (Sweden)

    Daniel López

    2017-10-01

    Full Text Available Catalytic steam gasification of extra-heavy oil (EHO fractions was studied using functionalized aluminosilicates, with NiO, MoO3, and/or CoO nanoparticles with the aim of evaluating the synergistic effect between active phase and the support in heavy oil on-site upgrading. Catalysts were characterized by chemical composition through X-ray Fluorescence, surface area, and pore size distribution through N2 adsorption/desorption, catalyst acidity by temperature programmed desorption (TPD, and metal dispersion by pulse H2 chemisorption. Batch adsorption experiments and catalytic steam gasification of adsorbed heavy fractions was carried out by thermogravimetric analysis and were performed with heavy oil model solutions of asphaltenes and resins (R–A in toluene. Effective activation energy estimation was used to determine the catalytic effect of the catalyst in steam gasification of Colombian EHO. Additionally, R–A decomposition under inert atmosphere was conducted for the evaluation of oil components reactions with active phases and steam atmosphere. The presence of a bimetallic active phase Inc.reases the decomposition of the heavy compounds at low temperature by an increase in the aliphatic chains decomposition and the dissociation of heteroatoms bonds. Also, coke formation after steam gasification process is reduced by the application of the bimetallic catalyst yielding a conversion greater than 93%.

  3. Are Diatoms “Green” Aluminosilicate Synthesis Microreactors for Future Catalyst Production?

    Directory of Open Access Journals (Sweden)

    Lydia Köhler

    2017-12-01

    Full Text Available Diatom biosilica may offer an interesting perspective in the search for sustainable solutions meeting the high demand for heterogeneous catalysts. Diatomaceous earth (diatomite, i.e., fossilized diatoms, is already used as adsorbent and carrier material. While diatomite is abundant and inexpensive, freshly harvested and cleaned diatom cell walls have other advantages, with respect to purity and uniformity. The present paper demonstrates an approach to modify diatoms both in vivo and in vitro to produce a porous aluminosilicate that is serving as a potential source for sustainable catalyst production. The obtained material was characterized at various processing stages with respect to morphology, elemental composition, surface area, and acidity. The cell walls appeared normal without morphological changes, while their aluminum content was raised from the molar ratio n(Al:n(Si 1:600 up to 1:50. A specific surface area of 55 m2/g was measured. The acidity of the material increased from 149 to 320 µmol NH3/g by ion exchange, as determined by NH3 TPD. Finally, the biosilica was examined by an acid catalyzed test reaction, the alkylation of benzene. While the cleaned cell walls did not catalyze the reaction at all, and the ion exchanged material was catalytically active. This demonstrates that modified biosilica does indeed has potential as a basis for future catalytically active materials.

  4. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Santaquiteria, C., E-mail: ruiz.cs@ietcc.csic.es [Eduardo Torroja Institute (CSIC), c/Serrano Galvache, n Degree-Sign 4, 28033 Madrid (Spain); Skibsted, J. [Instrument Centre for Solid-State NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Fernandez-Jimenez, A.; Palomo, A. [Eduardo Torroja Institute (CSIC), c/Serrano Galvache, n Degree-Sign 4, 28033 Madrid (Spain)

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  5. Interface induced growth and transformation of polymer-conjugated proto-crystalline phases in aluminosilicate hybrids: a multiple-quantum 23Na-23Na MAS NMR correlation spectroscopy study

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Kobera, Libor; Urbanová, Martina; Doušová, B.; Lhotka, M.; Koloušek, D.; Kotek, Jiří; Čuba, P.; Czernek, Jiří; Dědeček, Jiří

    2016-01-01

    Roč. 32, č. 11 (2016), s. 2787-2797 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GA13-24155S; GA MŠk(CZ) LD14010; GA MŠk(CZ) LO1507 Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 ; RVO:61388955 Keywords : aluminosilicate hybrids * hybrid geopolymers * interface Subject RIV: CD - Macromolecular Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 3.833, year: 2016

  6. Scattering of light by colloidal aluminosilicate particles produces the unusual sky-blue color of Río Celeste (Tenorio volcano complex, Costa Rica.

    Directory of Open Access Journals (Sweden)

    Erick Castellón

    Full Text Available Río Celeste (Sky-Blue River in Tenorio National Park (Costa Rica, a river that derives from the confluence and mixing of two colorless streams--Río Buenavista (Buenavista River and Quebrada Agria (Sour Creek--is renowned in Costa Rica because it presents an atypical intense sky-blue color. Although various explanations have been proposed for this unusual hue of Río Celeste, no exhaustive tests have been undertaken; the reasons hence remain unclear. To understand this color phenomenon, we examined the physico-chemical properties of Río Celeste and of the two streams from which it is derived. Chemical analysis of those streams with ion-exchange chromatography (IC and inductively coupled plasma atomic emission spectroscopy (ICP-OES made us discard the hypothesis that the origin of the hue is due to colored chemical species. Our tests revealed that the origin of this coloration phenomenon is physical, due to suspended aluminosilicate particles (with diameters distributed around 566 nm according to a lognormal distribution that produce Mie scattering. The color originates after mixing of two colorless streams because of the enlargement (by aggregation of suspended aluminosilicate particles in the Río Buenavista stream due to a decrease of pH on mixing with the acidic Quebrada Agria. We postulate a chemical mechanism for this process, supported by experimental evidence of dynamic light scattering (DLS, zeta potential measurements, X-ray diffraction and scanning electron microscopy (SEM with energy-dispersive spectra (EDS. Theoretical modeling of the Mie scattering yielded a strong coincidence between the observed color and the simulated one.

  7. Decreasing of transfer of caesium and strontium radionuclides from soil to vegetation - Use of modified aluminosilicates for decreasing of transfer of caesium and strontium radionuclides from soil to vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Voronina, Anna V.; Blinova, Marina O.; Semenischev, Vladimir S.; Kutergin, Andrey S. [Ural federal university, 620002 Ekaterinburg (Russian Federation)

    2014-07-01

    The method of addition of sorbents to soils is seemed to be the most efficient for decreasing of transfer of radionuclides from soil to vegetation. Using sorbents should possess affinity to natural systems, high specificity and selectivity and also irreversibility of sorption of radionuclides for effective retention of radionuclides as well as to prevent their migration into vegetation and further movement through food chains. Specificity, selectivity and reversibility of sorption of caesium and strontium radionuclides by natural aluminosilicates (glauconite, clinoptilolite) and modified ferrocyanide sorbents based on them was studied in this work. It was shown that the natural glauconite sorbs caesium from tap water with distribution coefficient K{sub d} = 10{sup (3.5±0.1)} mL/g, static exchange capacity of Cs is 11.0 mg/g; it shows lower specificity to strontium: K{sub d} = 10(2.5±0.1) mL/g, static exchange capacity = 9 mg/g. For clinoptilolite these parameters are for caesium K{sub d} = 10(4.4±0.5) mL/g, static exchange capacity 210 mg/g; for strontium K{sub d} = 10(3.5±0.1) mL/g, capacity = 12 mg/g. Ferrocyanide sorbents concentrate caesium radionuclides more effectively: distribution coefficient of Cs from tap water by mixed nickel-potassium ferrocyanide based on glauconite is 10(5.9±1.6) mL/g, static exchange capacity of Cs is (63.0±2.0) mg/g; for mixed nickel-potassium ferrocyanide based on clinoptilolite these characteristics are respectively 10(7.4±1.3) mL/g, 500 mg/g. In case of modified sorbents specificity to strontium remains the same as for natural aluminosilicates. Reversibility of sorption of caesium by natural glauconite and ferrocyanide sorbent was determined as caesium leaching degree from saturated samples. High caesium leaching rates and degrees are typical for natural glauconite irrespective of leachant salinity: total degree of leaching after 35 days of leaching was: mineral water = 63.4%, tap water = 41.6% and rain water = 28.8%. For

  8. Model for deposition and long-term disposition of 134Cs-labeled fused aluminosilicate particles inhaled by guinea pigs

    International Nuclear Information System (INIS)

    Snipes, M.B.; McClellan, R.O.

    1986-01-01

    When considering which laboratory animal species to use in inhalation studies, it is important to evaluate the similarities and differences in deposition and fate of the inhaled materials in various laboratory animals compared with humans. Beagle dogs have deposition and clearance patterns of inhaled particles similar to humans. However, some studies require smaller laboratory animals to be cost effective or to allow an adequate number of animals to address the scientific questions. This study evaluated the deposition and clearance of a relatively insoluble aerosol inhaled by guinea pigs. The test aerosol was monodisperse 134 Cs-labeled fused aluminosilicate particles inhaled during 75 minute inhalation exposure. The guinea pigs had deposition similar to rats but respiratory tract retention and clearance patterns were similar to dogs and humans. 5 references, 2 figures, 1 table

  9. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  10. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    Directory of Open Access Journals (Sweden)

    Amparo Borrell, Olga García-Moreno, Ramón Torrecillas, Victoria García-Rocha and Adolfo Fernández

    2012-01-01

    Full Text Available Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C. The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  11. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    International Nuclear Information System (INIS)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-01-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  12. Aluminosilicate melts and glasses at 1 to 3 GPa: Temperature and pressure effects on recovered structural and density changes

    Science.gov (United States)

    Bista, S; Stebbins, Jonathan; Hankins, William B.; Sisson, Thomas W.

    2015-01-01

    In the pressure range in the Earth’s mantle where many basaltic magmas are generated (1 to 3 GPa) (Stolper et al. 1981), increases in the coordination numbers of the network-forming cations in aluminosilicate melts have generally been considered to be minor, although effects on silicon and particularly on aluminum coordination in non-bridging oxygen-rich glasses from the higher, 5 to 12 GPa range, are now well known. Most high-precision measurements of network cation coordination in such samples have been made by spectroscopy (notably 27Al and 29Si NMR) on glasses quenched from high-temperature, high-pressure melts synthesized in solid-media apparatuses and decompressed to room temperature and 1 bar pressure. There are several effects that could lead to the underestimation of the extent of actual structural (and density) changes in high-pressure/temperature melts from such data. For non-bridging oxygen-rich sodium and calcium aluminosilicate compositions in the 1 to 3 GPa range, we show here that glasses annealed near to their glass transition temperatures systematically record higher recovered increases in aluminum coordination and in density than samples quenched from high-temperature melts. In the piston-cylinder apparatus used, rates of cooling through the glass transition are measured as very similar for both higher and lower initial temperatures, indicating that fictive temperature effects are not the likely explanation of these differences. Instead, transient decreases in melt pressure during thermal quenching, which may be especially large for high initial run temperatures, of as much as 0.5 to 1 GPa, may be responsible. As a result, the equilibrium proportion of high-coordinated Al in this pressure range may be 50 to 90% greater than previously estimated, reaching mean coordination numbers (e.g., 4.5) that are probably high enough to significantly affect melt properties. New data on jadeite (NaAlSi2O6) glass confirm that aluminum coordination increase

  13. In situ study at high pressure and temperature of the environment of water in hydrous Na and Ca aluminosilicate melts and coexisting aqueous fluids

    Science.gov (United States)

    Le Losq, Charles; Dalou, Célia; Mysen, Bjorn O.

    2017-07-01

    The bonding and speciation of water dissolved in Na silicate and Na and Ca aluminosilicate melts were inferred from in situ Raman spectroscopy of the samples, in hydrothermal diamond anvil cells, while at crustal temperature and pressure conditions. Raman data were also acquired on Na silicate and Na and Ca aluminosilicate glasses, quenched from hydrous melts equilibrated at high temperature and pressure in a piston cylinder apparatus. In the hydrous melts, temperature strongly influences O-H stretching ν(O-H) signals, reflecting its control on the bonding of protons between different molecular complexes. Pressure and melt composition effects are much smaller and difficult to discriminate with the present data. However, the chemical composition of the melt + fluid system influences the differences between the ν(O-H) signals from the melts and the fluids and, hence, between their hydrogen partition functions. Quenching modifies the O-H stretching signals: strong hydrogen bonds form in the glasses below the glass transition temperature Tg, and this phenomenon depends on glass composition. Therefore, glasses do not necessarily record the O-H stretching signal shape in melts near Tg. The melt hydrogen partition function thus cannot be assessed with certainty using O-H stretching vibration data from glasses. From the present results, the ratio of the hydrogen partition functions of hydrous silicate melts and aqueous fluids mostly depends on temperature and the bulk melt + fluid system chemical composition. This implies that the fractionation of hydrogen isotopes between magmas and aqueous fluids in water-saturated magmatic systems with differences in temperature and bulk chemical composition will be different.

  14. Quantifying Modern Recharge to the Nubian Sandstone Aquifer System: Inferences from GRACE and Land Surface Models

    Science.gov (United States)

    Mohamed, A.; Sultan, M.; Ahmed, M.; Yan, E.

    2014-12-01

    The Nubian Sandstone Aquifer System (NSAS) is shared by Egypt, Libya, Chad and Sudanand is one of the largest (area: ~ 2 × 106 km2) groundwater systems in the world. Despite its importance to the population of these countries, major hydrological parameters such as modern recharge and extraction rates remain poorly investigated given: (1) the large extent of the NSAS, (2) the absence of comprehensive monitoring networks, (3) the general inaccessibility of many of the NSAS regions, (4) difficulties in collecting background information, largely included in unpublished governmental reports, and (5) limited local funding to support the construction of monitoring networks and/or collection of field and background datasets. Data from monthly Gravity Recovery and Climate Experiment (GRACE) gravity solutions were processed (Gaussian smoothed: 100 km; rescaled) and used to quantify the modern recharge to the NSAS during the period from January 2003 to December 2012. To isolate the groundwater component in GRACE data, the soil moisture and river channel storages were removed using the outputs from the most recent Community Land Model version 4.5 (CLM4.5). GRACE-derived recharge calculations were performed over the southern NSAS outcrops (area: 835 × 103 km2) in Sudan and Chad that receive average annual precipitation of 65 km3 (77.5 mm). GRACE-derived recharge rates were estimated at 2.79 ± 0.98 km3/yr (3.34 ± 1.17 mm/yr). If we take into account the total annual extraction rates (~ 0.4 km3; CEDARE, 2002) from Chad and Sudan the average annual recharge rate for the NSAS could reach up to ~ 3.20 ± 1.18 km3/yr (3.84 ± 1.42 mm/yr). Our recharge rates estimates are similar to those calculated using (1) groundwater flow modelling in the Central Sudan Rift Basins (4-8 mm/yr; Abdalla, 2008), (2) WaterGAP global scale groundwater recharge model (plans are underway for the deployment of a GRACE follow-On and GRACE-II missions, we suggest that within the next few years, GRACE

  15. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    Science.gov (United States)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  16. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF)

    Science.gov (United States)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.

    2018-05-01

    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  17. Self-rolling of an aluminosilicate sheet into a single walled imogolite nanotube: The role of the hydroxyl arrangement

    International Nuclear Information System (INIS)

    González, R. I.; Rogan, J.; Valdivia, J. A.; Munoz, F.; Valencia, F.; Ramírez, M.; Kiwi, M.; Ramírez, R.

    2015-01-01

    Imogolite is an inorganic nanotube, that forms naturally in weathered volcanic ashes, and it can be synthesized in nearly monodisperse diameters. However, long after its successful synthesis, the details of the way it is achieved are not fully understood. Here we elaborate on a model of its synthesis, which starts with a planar aluminosilicate sheet that is allowed to evolve freely, by means of classical molecular dynamics, until it achieves its minimum energy configuration. The minimal structures that the system thus adopts are tubular, scrolled, and more complex conformations, depending mainly on temperature as a driving force. Here we focus on the effect that the arrangement of the hydroxyl groups in the inner wall of the nanotube have on the minimal nanotubular configurations that we obtain are monodispersed in diameter, and quite similar to both from the those of weathered natural volcanic ashes, and to the ones that are synthesized in the laboratory. In this contribution we expand on the atomic mechanisms behind those behaviors

  18. Self-rolling of an aluminosilicate sheet into a single walled imogolite nanotube: The role of the hydroxyl arrangement

    Energy Technology Data Exchange (ETDEWEB)

    González, R. I.; Rogan, J.; Valdivia, J. A.; Munoz, F.; Valencia, F.; Ramírez, M.; Kiwi, M. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, 7800024 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago, 9170124 (Chile); Ramírez, R. [Facultad de Física, Universidad Católica de Chile, Casilla 306, Santiago, 7820436 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago, 9170124 (Chile)

    2015-12-31

    Imogolite is an inorganic nanotube, that forms naturally in weathered volcanic ashes, and it can be synthesized in nearly monodisperse diameters. However, long after its successful synthesis, the details of the way it is achieved are not fully understood. Here we elaborate on a model of its synthesis, which starts with a planar aluminosilicate sheet that is allowed to evolve freely, by means of classical molecular dynamics, until it achieves its minimum energy configuration. The minimal structures that the system thus adopts are tubular, scrolled, and more complex conformations, depending mainly on temperature as a driving force. Here we focus on the effect that the arrangement of the hydroxyl groups in the inner wall of the nanotube have on the minimal nanotubular configurations that we obtain are monodispersed in diameter, and quite similar to both from the those of weathered natural volcanic ashes, and to the ones that are synthesized in the laboratory. In this contribution we expand on the atomic mechanisms behind those behaviors.

  19. The occurrence of primary pulmonary neoplasms in rats after inhalation of 147Pm in fused aluminosilicate particles

    International Nuclear Information System (INIS)

    Herbert, R.A.; Scott, B.R.; Hahn, F.F.; Newton, G.J.; Snipes, M.B.; Damon, E.G.; Boecker, B.B.

    1988-01-01

    To determine the biological response following low-energy, beta irradiation of the lung, F344/Crl rats were exposed to aerosols of promethium-147 in fused aluminosilicate particles and observed for their life spans. Radiation pneumonitis and pulmonary fibrosis caused the majority of deaths during the first year after exposure with cumulative doses to the lungs of 210 to 630 Gy. Primary pulmonary neoplasms were responsible for the majority of deaths that occurred beyond 1 yr after exposure and in rats receiving lower cumulative doses to the lung. Hemangiosarcomas and squamous cell carcinomas were the most prevalent pulmonary neoplasms. Three adenocarcinomas were found. The uncorrected crude incidence of primary lung tumors increased with increasing dose to the lung for cumulative doses less than 140 Gy. With higher doses, the incidence declined. Adjusting the data for competing risks eliminated the turnover in the dose-response curve. The times of onset of pulmonary tumors and median survival times were dose-dependent. Rats with higher accumulated radiation doses developed fatal lung tumors at earlier times after exposure. (author)

  20. Aqueous dissolution of sodium aluminosilicate geopolymers derived from metakaolin

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Z., E-mail: zaynab.aly@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Vance, E.R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Perera, D.S. [School of Materials Science, University of NSW, Kensington, NSW 2052 (Australia)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer In dilute solutions, Na, Al and Si releases were not sensitive to pH in range 4-10. Black-Right-Pointing-Pointer On heating from 18 to 90 Degree-Sign C in DIW, Na dissolution rate increased by a factor of {approx}4. Black-Right-Pointing-Pointer Elemental extractions in DIW at 18 Degree-Sign C increased linearly with time over 1-7 days. Black-Right-Pointing-Pointer Na release kinetics in DIW followed a pseudo-second-order kinetic model. Black-Right-Pointing-Pointer Contact with KCl, KHCO{sub 3} and phthalate buffers (pH6 and 10) resulted in Na{sup +} {r_reversible} K{sup +} exchange. - Abstract: In dilute aqueous solutions, the elemental releases of Na, Al and Si from a metakaolin-based sodium aluminosilicate geopolymer were not very sensitive to pH in the range of 4-10 but increased outside this range, particularly on the acidic side. To minimise pH drifts, experiments were carried out using small amounts of graded powders in relatively large volumes of water. In deionised water, the Na dissolution rate in 7 days was dominant and increased by at least a factor of {approx}4 on heating from 18 to 90 Degree-Sign C, with greater increases in the extractions of Al and Si. At 18 Degree-Sign C the elemental extractions in deionised water increased approximately linearly with time over the 1-7 days period. Further exposure led to a slower extraction into solution for Na and Si, with a decrease in extraction of Al. It was deduced that framework dissolution was important in significantly acidic or alkaline solutions, but that contributions from water transfer from pores to elemental extractions were present, even at low temperatures in neutral solutions. It was also deduced from the Na release data that the Na leaching kinetics of geopolymer in deionised water (dilute solutions) followed the pseudo-second-order kinetic model and the pseudo-second-order rate constant evaluated. Contact with KCl, KHCO{sub 3}, and pH {approx}6 and 10

  1. Influence of Gd2O3 on thermal and spectroscopic properties of aluminosilicate glasses

    Science.gov (United States)

    Kasprzyk, Marta; Środa, Marcin

    2018-06-01

    A series of aluminosilicate glasses 25SiO2·(20-x)Al2O3·40Na2O·15BaO-xGd2O3 with 0 ≤ x ≤ 10 were prepared in order to analyze the influence of gadolinium on thermal and spectroscopic properties of these materials. Increasing of thermal parameters (Tg, Tx, Δcp, ΔT) values with higher Gd2O3 content was determined using DSC method. Crystalline phases, formed during heat treatment, were identified with XRD - NaAlSiO4 and BaSiO3 in glass with 0% mol. Gd2O3 and Gd9.33(SiO4)6O2, NaAlSiO4 and BaAl2Si2O6 in glass with 10% mol. Gd2O3. Spectroscopic analysis - FTIR and Raman - revealed Gd2O3 influence on glass structure in the same way like Al2O3, but some differences appear due to the differ bond strength and ionic radius between Gd and Al. Raman spectra confirmed higher network polymerization (enriched with Q2 units). Optical band gap energy (Eopt) and Urbach energy (ΔE) were calculated from the Tauc plot. Mechanical tests demonstrated lower microhardness with increasing content of Gd2O3 content, as a result of higher concentration of atoms with larger radius.

  2. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Minmin [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Hou, Li-an, E-mail: 11liuminmin@tongji.edu.cn [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xi, Beidou; Zhao, Ying; Xia, Xunfeng [China Research Academy of Environmental Science, Beijing 200012 (China)

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and {sup 29}Si and {sup 27}Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  3. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash.

    Science.gov (United States)

    Liu, Minmin; Hou, Li-An; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29 Si and 27 Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  4. The encapsulation of nuclear waste in a magnesium aluminosilicate glass-ceramic

    International Nuclear Information System (INIS)

    Luk, K.M.

    1999-07-01

    The use of Magnesium aluminosilicate (MAS) glass-ceramics for the immobilisation of nuclear waste has been investigated. Nuclear waste is currently immobilised in a borosilicate glass. It is possible that immobilisation in an MAS glass-ceramic will reduce processing temperature of the waste, offer greater thermal and chemical stabilities and chemical durabilities. The primary reason for investigating sintered glass-ceramics is the possible advent of wastes containing high levels of refractory elements such as zirconia from the future reprocessing techniques such as electrochemical dissolution. In the first instance zirconia was used as a simulated waste with the principal of encapsulating zirconia with the minimum of porosity. Attempts were made to encapsulate 0, 20 and 40 volume % of zirconia in MAS sintering at temperatures of around 950 deg. C. It was found that the main cause of porosity was the agglomeration of fine zirconia powder. Three Taguchi experiments to optimise conditions for encapsulation of zirconia in MAS were carried out. In each case 10 volume % of zirconia was encapsulated. A Taguchi L 8 was carried out to optimise thermal conditions and powder characteristics. A Taguchi L 9 was carried out to improve knowledge of the thermal characteristics and an L 16 was carried out to provide information on curvature of thermal parameters and powder particle sizes. The conditions predicted to be optimum from these Taguchi experiments were a temperature of 940 - 960 deg. C, a heating rate of 30 deg. C/min, a hold time of 30 - 50 minutes and particle sizes of 2-4 and ∼ 15μm respectively. Densifications of up to 99% have been observed. Tapping experiments were carried out in an attempt to remove the pressing stage from processing. MAS was tapped into an alumina crucible with and without the addition of a dead weight. Almost fully dense MAS pellets were produced. This is an indication that it may be possible to process glass-ceramic waste forms in their final

  5. Crystallization and structural approaches of rare earths aluminosilicate glasses (Ln = La, Y, Sc)

    International Nuclear Information System (INIS)

    Sadiki, N.; Coutures, J.P.; Hennet, L.; Florian, P.; Vaills, Y.; Massiot, D.

    2010-01-01

    The crystallization behaviour of aluminosilicate glasses of lanthanum, yttrium and scandium has been studied by DTA, XRD, SEM-EDX and EPMA analysis. Young modulus E and hardness H have been measured by using nano-indentation and elastic modulus C 11 and C 44 by Brillouin scattering. The Young modulus measured by nano-indentation agree to those determined by Brillouin scattering and those calculated using Makishima-Mackenzie and Rocherulle model's. The results of DTA analysis indicate that (a) the glass transition temperatures T g are higher for yttrium and scandium containing glasses than their lanthanum counterparts, the melting observed in the yttrium glasses and recently in the scandium glasses correspond to the ternary eutectic Ln 2 O 3 -Al 2 O 3 -SiO 2 (Ln = Y, Sc) (b) the thermal stability is strongly related to the ionic radii of the rare earth. The last results obtained on scandium containing glasses confirm this hypothesis. The XRD results show that the nature of the observed crystallized phases is consistent with the phase diagrams. We also have investigated by NMR-MAS of 27 Al (high field- 17.6 T) these glasses. The results indicate that Al(V) species are correlated to the ionic radii of the rare earth. X-rays and neutron scattering experiments have been respectively performed on the high energy diffraction beam lines ID11 and ID15 at ESRF. The interatomic distances and first-shell coordination numbers were determined. The results are consistent with those performed by NMR-MAS. (authors)

  6. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  7. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    Science.gov (United States)

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  8. Thermal Conductivity of Aluminosilicate- and Aluminum Oxide-Filled Thermosets for Injection Molding: Effect of Filler Content, Filler Size and Filler Geometry

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2018-04-01

    Full Text Available In this study, epoxy molding compounds (EMCs with aluminosilicate (AlS and aluminum oxide (AlO were fabricated as fillers by a twin-screw-extruder (TSE and shaped to plate samples using injection molding. AlS and AlO, electrical insulating mineral materials, were used as fillers to improve the thermal conductivity (λc of composites. Composites with different filler particle sizes, filler contents and filler geometry were fabricated and the influence of these variables on the λc was studied. The λc of composites was measured with the hot-disk method. The distribution of fillers in composites was observed using scanning electron microscopy (SEM. Using the Lewis-Nielsen equation, experimental values of λc were compared with those predicted. The predicted results fit the experimental values well. The result showed that λc increases significantly when the filler content of composites is approximately over 50 vol %.

  9. Alumino-silicate speciation in aqueous fluids at deep crustal conditions

    Science.gov (United States)

    Mookherjee, M.; Keppler, H.; Manning, C. E.

    2014-12-01

    Alumina and silica are major oxides in most crustal rocks. While SiO2 is quite soluble in aqueous fluids at metamorphic conditions, behavior of Al2O3 in crustal metamorphic fluids has been poorly understood. It is known that alumina is dramatically less soluble in aqueous fluids and hence it is difficult to explain the common occurrence of quartz with aluminous minerals in metamorphic veins. In order to understand this complex behavior of alumina, we investigated aluminum speciation in aqueous fluids in equilibrium with corundum using in situ Raman spectroscopy in hydrothermal diamond anvil cells to 20 kbar and 1000 oC. In order to better understand the spectral features of the aqueous fluids, we used first principles simulations based on density functional theory to calculate and predict the energetics and vibrational spectra for various aluminum species that are likely to be present in aqueous solutions. The Raman spectra of pure water in equilibrium with Al2O3 are devoid of any characteristic spectral features. In contrast, aqueous fluids with KOH solution in equilibrium with Al2O3 show a sharp band at ~620 cm-1 which could be attributed to the [Al(OH)4]1- species. The band grows in intensity with temperature along an isochore. In the limited pressure, temperature and density explored in the present study, we do not find any evidence for the polymerization of the [Al(OH)4]1- species to dimers [(OH)2-Al-O2-Al(OH)2]2- or [(OH)3-Al-O-Al(OH)3]2-. This is likely due to the relatively low concentration of Al in the solutions and does not rule out significant polymerization at higher pressures and temperatures. We are also investigating the effect of SiO2 on the solubility of Al2O3 and the relative energetics of formation of pure alumina dimer [(OH)3-Al-O-Al(OH)3]2- vs. the aluminosilicate dimers, [(OH)3-Al-O-Si(OH)3]2- at deep crustal conditions. Acknowledgement- MM is supported by the US National Science Foundation grant (EAR-1250477).

  10. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate

    Science.gov (United States)

    Geng, Guoqing; Myers, Rupert J.; Li, Jiaqi; Maboudian, Roya; Carraro, Carlo; Shapiro, David A.; Monteiro, Paulo J. M.

    2017-03-01

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca2+ of the interlayer. Dreierketten chain cross-links act as ‘columns’ to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a ‘bottom-up’ approach.

  11. Effects of Fiber Content on Mechanical Properties of CVD SiC Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    Science.gov (United States)

    Bansal, Narottam P.

    1996-01-01

    Unidirectional CVD SiC(f)(SCS-6) fiber-reinforced strontium aluminosilicate (SAS) glass-ceramic matrix composites containing various volume fractions, approximately 16 to 40 volume %, of fibers were fabricated by hot pressing at 1400 C for 2 h under 27.6 MPa. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase formed, with complete absence of the undesired hexacelsian phase, in the matrix. Room temperature mechanical properties were measured in 3-point flexure. The matrix microcracking stress and the ultimate strength increased with increase in fiber volume fraction, reached maximum values for V(sub f) approximately equal to 0.35, and degraded at higher fiber loadings. This degradation in mechanical properties is related to the change in failure mode, from tensile at lower V(sub f) to interlaminar shear at higher fiber contents. The extent of fiber loading did not have noticeable effect on either fiber-matrix debonding stress, or frictional sliding stress at the interface. The applicability of micromechanical models in predicting the mechanical properties of the composites was also examined. The currently available theoretical models do not appear to be useful in predicting the values of the first matrix cracking stress, and the ultimate strength of the SCS-6/SAS composites.

  12. Temperature and Vibration Dependence of the Faraday Effect of Gd₂O₃ NPs-Doped Alumino-Silicate Glass Optical Fiber.

    Science.gov (United States)

    Ju, Seongmin; Kim, Jihun; Linganna, Kadathala; Watekar, Pramod R; Kang, Seong Gu; Kim, Bok Hyeon; Boo, Seongjae; Lee, Youjin; An, Yong Ho; Kim, Cheol Jin; Han, Won-Taek

    2018-03-27

    All-optical fiber magnetic field sensor based on the Gd₂O₃ nano-particles (NPs)-doped alumino-silicate glass optical fiber was developed, and its temperature and vibration dependence on the Faraday Effect were investigated. Uniformly embedded Gd₂O₃ NPs were identified to form in the core of the fiber, and the measured absorption peaks of the fiber appearing at 377 nm, 443 nm, and 551 nm were attributed to the Gd₂O₃ NPs incorporated in the fiber core. The Faraday rotation angle (FRA) of the linearly polarized light was measured at 650 nm with the induced magnetic field by the solenoid. The Faraday rotation angle was found to increase linearly with the magnetic field, and it was about 18.16° ± 0.048° at 0.142 Tesla (T) at temperatures of 25 °C-120 °C, by which the estimated Verdet constant was 3.19 rad/(T∙m) ± 0.01 rad/(T∙m). The variation of the FRA with time at 0.142 T and 120 °C was negligibly small (-9.78 × 10 -4 °/min). The variation of the FRA under the mechanical vibration with the acceleration below 10 g and the frequency above 50 Hz was within 0.5°.

  13. Assessment of the hydrologic setting and mass transport within Saharan and Arabian Aquifers using GRACE, geochemical, geophysical and subsurface data

    Science.gov (United States)

    Sultan, M.; Sturchio, N. C.; Ahmed, M.; Saleh, S.; Mohamed, A.; Abuabdullah, M. M.; Emil, M. K.; Bettadpur, S. V.; Save, H.; Fathy, K.; Chouinard, K.

    2016-12-01

    A better understanding of the hydrologic setting, mass transport, origin, evolution, utilization, sustainability, and paleo-climatic recharge conditions of Saharan and Arabian aquifers was achieved by integrating observation from monthly (04/2002 to 03/2016) Gravity Recovery and Climate Experiment (GRACE)-derived Terrestrial Water Storage (TWS) from multiple GRACE solutions (mascons and spherical harmonic fields) with others from geochemical (solute chemistry), isotopic (O, H, Sr), geochronologic (Chlorine-36, Krypton-81), geophysical (aerogravity and aeromagnetic), and subsurface data. The investigated aquifers are: (1) Nubian Sandstone Aquifer System (NSAS; area: 2×106 km2) in northeast Africa and, (2) Mega Aquifer System (MAS; area: 1.1×106 km2) in Arabia. Our findings indicate the NSAS and MAS were largely recharged in previous wet climatic Pleistocene periods, as evidenced by the groundwater ages (up to 1 million years), yet they receive modest local recharge during interleaving dry periods in areas of relatively high (≥ 20 mm/yr) precipitation. In Sudan and Chad (southern NSAS), the average annual precipitation (AAP) is 95 mm/yr and the recharge is estimated at 3.2 x 109 m3/yr ( 7% of AAP); in the southwest parts of the MAS, the recharge at the foothills of the Red Sea mountains is 1.8 x 109 m3/yr (10% of AAP). Uplifts and/or shear zones orthogonal to groundwater flow impede the south to north flow in the NSAS as evidenced by the large differences in GRACE-derived TWS trends, groundwater ages, and isotopic compositions on either side of the east-west trending Uweinat-Aswan uplift. Similarly west to east groundwater flow in the MAS is impeded and impounded up-gradient from the N-S and/or NW-SE trending basement structures, reactivated during Red Sea opening. Shear zones subparallel to groundwater flow act as preferred flow pathways, as is the case with the NE-SW trending Pelusium shear zone which channels groundwater from the Kufra sub-basin (Libya

  14. Aluminosilicate Dissolution and Silicate Carbonation during Geologic CO2 Sequestration

    Science.gov (United States)

    Min, Yujia

    Geologic CO2 sequestration (GCS) is considered a promising method to reduce anthropogenic CO2 emission. Assessing the supercritical CO2 (scCO2) gas or liquid phase water (g, l)-mineral interactions is critical to evaluating the viability of GCS processes. This work contributes to our understanding of geochemical reactions at CO 2-water (g, l)-mineral interfaces, by investigating the dissolution of aluminosilicates in CO2-acidified water (l). Plagioclase and biotite were chosen as model minerals in reservoir rock and caprock, respectively. To elucidate the effects of brine chemistry, first, the influences of cations in brine including Na, Ca, and K, have been investigated. In addition to the cations, the effects of abundant anions including sulfate and oxalate were also examined. Besides the reactions in aqueous phase, we also examine the carbonation of silicates in water (g)-bearing supercritical CO2 (scCO2) under conditions relevant to GCS. For the metal carbonation, in particular, the effects of particle sizes, water, temperature, and pressure on the carbonation of wollastonite were systematically examined. For understanding the cations effects in brine, the impacts of Na concentrations up to 4 M on the dissolution of plagioclase and biotite were examined. High concentrations of Na significantly inhibited plagioclase dissolution by competing adsorption with proton and suppressing proton-promoted dissolution. Ca has a similar effect to Na, and their effects did not suppress each other when Na and Ca co-existed. For biotite, the inhibition effects of Na coupled with an enhancing effect due to ion exchange reaction between Na and interlayer K, which cracked the basal surfaces of biotite. The K in aqueous phase significantly inhibited the dissolution. If the biotite is equilibrated with NaCl solutions initially, the biotite dissolved faster than the original biotite and the dissolution was inhibited by Na and K in brine. The outcomes improve our current knowledge of

  15. Some approaches to the quantum-chemical theory of heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhidomirov, G M

    1977-09-01

    A discussion of mathematical methods, models, and parameters used in various quantum-chemical descriptions of chemisorption and reaction at silica and aluminosilicate surfaces covers the continuous-surface model, the cluster model of the surface, the variation of pseudo-atom parameters to reduce the magnitude of boundary effects in the cluster model, the calculation of individual bond strengths in chemisorbed molecules, dissociative adsorption, applications to adsorption on silica and aluminosilicates, the mechanisms of hydrogen-deuterium exchange, etc. Diagrams, graphs, and 42 references.

  16. Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures

    Science.gov (United States)

    Mookherjee, Mainak; Tsuchiya, Jun; Hariharan, Anant

    2016-02-01

    We examined the equation of state and high-pressure elasticity of the hydrous aluminosilicate mineral topaz-OH (Al2SiO4(OH)2) using first principles simulation. Topaz-OH is a hydrous phase in the Al2O3-SiO2-H2O (ASH) ternary system, which is relevant for the mineral phase relations in the hydrated sedimentary layer of subducting slabs. Based on recent neutron diffraction experiments, it is known that the protons in the topaz-OH exhibit positional disorder with half occupancy over two distinct crystallographic sites. In order to adequately depict the proton environment in the topaz-OH, we examined five crystal structure models with distinct configuration for the protons in topaz-OH. Upon full geometry optimization we find two distinct space group, an orthorhombic Pbnm and a monoclinic P21/c for topaz-OH. The topaz-OH with the monoclinic P21/c space group has a lower energy compared to the orthorhombic Pbmn space group symmetry. The pressure-volume results for the monoclinic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0mon = 348.63 (±0.04) Å3, K0mon = 164.7 (±0.04) GPa, and K0mon = 4.24 (±0.05). The pressure-volume results for the orthorhombic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0orth = 352.47 (±0.04) Å3, K0orth = 166.4 (±0.06) GPa, and K0orth = 4.03 (±0.04). While the bulk moduli are very similar for both the monoclinic and orthorhombic topaz-OH, the shear elastic constants and the shear moduli are very sensitive to the position of the proton, orientation of the O-H dipole, and the space group symmetry. The S-wave anisotropy for the orthorhombic and monoclinic topaz-OH are also quite distinct. In the hydrated sedimentary layer of subducting slabs, transformation of a mineral assemblage consisting of coesite (SiO2) and diaspore (AlOOH) to topaz-OH (Al2SiO4(OH)2) is likely to be accompanied by an increase in density, compressional velocity, and shear wave velocity. However

  17. Effect of submergence-emergence sequence and organic matter or aluminosilicate amendment on metal uptake by woody wetland plant species from contaminated sediments

    International Nuclear Information System (INIS)

    Vandecasteele, Bart; Du Laing, Gijs; Tack, Filip M.G.

    2007-01-01

    Site-specific hydrological conditions affect the availability of trace metals for vegetation. In a greenhouse experiment, the effect of submersion on the metal uptake by the wetland plant species Salix cinerea and Populus nigra grown on a contaminated dredged sediment-derived soil and on an uncontaminated soil was evaluated. An upland hydrological regime for the polluted sediment caused elevated Cd concentrations in leaves and cuttings for both species. Emergence and soil oxidation after initial submersion of a polluted sediment resulted in comparable foliar Cd and Zn concentrations for S. cinerea as for the constant upland treatment. The foliar Cd and Zn concentrations were clearly higher than for submerged soils after initial upland conditions. These results point at the importance of submergence-emergence sequence for plant metal availability. The addition of foliar-based organic matter or aluminosilicates to the polluted sediment-derived soil in upland conditions did not decrease Cd and Zn uptake by S. cinerea. - The effect of a wetland hydrological regime on Cd uptake was similar for Populus nigra and Salix cinerea

  18. Structure of aluminosilicate melts produced from granite rocks for the manufacturing of petrurgical glass-ceramics construction materials

    Directory of Open Access Journals (Sweden)

    Simakin, A. G.

    2001-12-01

    Full Text Available The aluminosilicate melt is a partly ordered phase and is the origin of glass for producing glassceramics and petrurgical materials. They are well extended used as construction materials for pavings and coatings. Its structure can be described in the terms of the aluminosilica tetrahedras coordination so-called Q speciation. The proportions of tetrahedra with different degree of connectivity with others (from totally connected to free has been studied by NMR and IR methods for sodium-silicate melts. Medium range structure can be characterized by the sizes of irreducible rings composed of the aluminosilica tetrahedra. Systematic increase of the four member rings proportion in the sequence of the Ab-An glasses were observed. The water dissolution in sodium-silicate glass affects the Q speciation. Cations network-modifiers positions in the melt structure are important to know since these cations stabilize particular structure configurations. Modification of the distribution of Na coordination in the sodium-silicate glass at water dissolution was determined by NMR spectroscopy. The observed modification of the hydrous aluminosilicate melt structure resulted in the shift of the eutectic composition in the granite system with decreasing of the crystallization field of feldspars. The feldspar growth rates show practically no dependence on the water content in the concentration range 2-4 wt.%. Likewise, the solved water has a little influence on the crystal growth rate of the lithium silicate phase in lithium containing glasses in accordance with estimated enhancing of the diffusion transport.

    Los fundidos de alumino-silicato son una fase parcialmente ordenada. Su estructura puede ser descrita en términos de la coordinación de tetraedros de alúmina-sílice también denominados especies Q. La proporción de tetraedros con diferente grado de conectividad entre si se ha investigado por espectroscopias de RMN e IR en fundidos de silicatos

  19. On the induction of homogeneous bulk crystallization in Eu-doped calcium aluminosilicate glass by applying simultaneous high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, R. F., E-mail: robsonfmuniz@yahoo.com.br [Institut Lumière Matière, UMR 5306 CNRS-Université Lyon 1, Université de Lyon, 69622 Villeurbanne (France); Departamento de Física, Universidade Estadual de Maringá, 87020900, Maringá, PR (Brazil); Ligny, D. de [Department of Materials Science, Glass and Ceramics, University of Erlangen Nürnberg, Martensstr. 5, 91058 Erlangen (Germany); Le Floch, S.; Martinet, C.; Guyot, Y. [Institut Lumière Matière, UMR 5306 CNRS-Université Lyon 1, Université de Lyon, 69622 Villeurbanne (France); Rohling, J. H.; Medina, A. N.; Sandrini, M.; Baesso, M. L. [Departamento de Física, Universidade Estadual de Maringá, 87020900, Maringá, PR (Brazil); Andrade, L. H. C.; Lima, S. M. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C.P. 351, Dourados, MS (Brazil)

    2016-06-28

    From initial calcium aluminosilicate glass, transparent glass-ceramics have been successfully synthesized under simultaneous high pressure and temperature (SHPT). Possible homogeneous volumetric crystallization of this glassy system, which was not achieved previously by means of conventional heat treatment, has been put in evidence with a SHPT procedure. Structural, mechanical, and optical properties of glass and glass-ceramic obtained were investigated. Raman spectroscopy and X-ray diffraction allowed to identify two main crystalline phases: merwinite [Ca{sub 3}Mg(SiO{sub 4}){sub 2}] and diopside [CaMgSi{sub 2}O{sub 6}]. A Raman scanning profile showed that the formation of merwinite is quite homogeneous over the bulk sample. However, the sample surface also contains significant diopside crystals. Instrumented Berkovich nanoindentation was applied to determine the effect of SHPT on hardness from glass to glass-ceramic. For Eu-doped samples, the broadband emission due to 4f{sup 6}5d{sup 1} → 4f{sup 7} transition of Eu{sup 2+} was studied in both host systems. Additionally, the {sup 5}D{sub 0} → {sup 7}F{sub J} transition of Eu{sup 3+} was used as an environment probe in the pristine glass and the glass-ceramic.

  20. Effects of initial radius of the interface and Atwood number on nonlinear saturation amplitudes in cylindrical Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Liu, Wanhai; Yu, Changping; Li, Xinliang

    2014-01-01

    Nonlinear saturation amplitudes (NSAs) of the first two harmonics in classical Rayleigh-Taylor instability (RTI) in cylindrical geometry for arbitrary Atwood numbers have been analytically investigated considering nonlinear corrections up to the fourth-order. The NSA of the fundamental mode is defined as the linear (purely exponential) growth amplitude of the fundamental mode at the saturation time when the growth of the fundamental mode (first harmonic) is reduced by 10% in comparison to its corresponding linear growth, and the NSA of the second harmonic can be obtained in the same way. The analytic results indicate that the effects of the initial radius of the interface (r 0 ) and the Atwood number (A) play an important role in the NSAs of the first two harmonics in cylindrical RTI. On the one hand, the NSA of the fundamental mode first increases slightly and then decreases quickly with increasing A. For given A, the smaller the r 0 /λ (with λ perturbation wavelength) is, the larger the NSA of the fundamental mode is. When r 0 /λ is large enough (r 0 ≫λ), the NSA of the fundamental mode is reduced to the prediction of previous literatures within the framework of third-order perturbation theory [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988); S. W. Haan, Phys. Fluids B 3, 2349 (1991)]. On the other hand, the NSA of the second harmonic first decreases quickly with increasing A, reaching a minimum, and then increases slowly. Furthermore, the r 0 can reduce the NSA of the second harmonic for arbitrary A at r 0 ≲2λ while increase it for A ≲ 0.6 at r 0 ≳2λ. Thus, it should be included in applications where the NSA has a role, such as inertial confinement fusion ignition target design

  1. Operations and Autonomy of the Mars Pathfinder Microrover

    Science.gov (United States)

    Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Stone, H. W.; Cooper, B. K.

    1998-01-01

    The Microrover Flight Experiment (MFEX) is a NSAS OACT (Office of Advanced Concepts and Technology) flight experiment which, integrated with the Mars Pathfinder (MPF) lander and spacecraft system, landed on Mars on July 4, 1997.

  2. Hafnium in peralkaline and peraluminous boro-aluminosilicate glass, and glass subcomponents: a solubility study

    International Nuclear Information System (INIS)

    Davis, Linda L.; Darab, John G.; Qian, Maoxu; Zhao, Donggao; Palenik, Christopher S.; Li, Hong; Strachan, Denis M.; Li, Liyu

    2003-01-01

    A relationship between the solubility of hafnia (HfO2) and the host glass composition was explored by determining the solubility limits of HfO2 in peralkaline and peraluminous borosilicate glasses in the system SiO2-Al2O3-B2O3-Na2O, and in glasses in the system SiO2-Na2O-Al2O3 in air at 1450 C. The only Hf-bearing phase to crystallize in the peralkaline borosilicate melts is hafnia, while in the boron-free melts sodium-hafnium silicates crystallize. All peraluminous borosilicate melts crystallize hafnia, but the slightly peraluminous glasses also have sector-zoned hafnia crystals that contain Al and Si. The more peraluminous borosilicate glasses also crystallize a B-containing mullite. The general morphology of the hafnia crystals changes as peralkalinity (Na2O/(Na2O+Al2O3)) decreases, as expected in melts with increasing viscosity. In all of the glasses with Na2O > Al2O3, the solubility of hafnia is linearly and positively correlated with Na2O/(Na2O + Al2O3) or Na2O - Al2O3 (excess sodium), despite the presence of 5 to 16 mol% B2O3. The solubility of hafnia is higher in the sodium-aluminum borosilicate glasses than in the sodium-aluminosilicate glasses, suggesting that the boron is enhancing the effect that excess sodium has on the incorporation of Hf into the glass structure. The results of this solubility study are compared to other studies of high-valence cation solubility in B-free silicate melts. From this, for peralkaline B-bearing glasses, it is shown that, although the solubility limits are higher, the solution behavior of hafnia is the same as in B-free silicate melts previously studied. By comparison, also, it is shown that in peraluminous melts, there must be a different solution mechanism for hafnia: different than for peralkaline sodium-aluminum borosilicate glasses and different than for B-free silicate melts studied by others

  3. Effect of spatial differences in growth on distribution of seasonally co-occurring herring Clupea harengus stocks

    DEFF Research Database (Denmark)

    Worsøe Clausen, Lotte; Stæhr, Karl-Johan; Rindorf, Anna

    2015-01-01

    The mechanisms most likely to determine the distribution of the two major herring Clupea harengus stocks in their common early summer feeding ground in the eastern North Sea, Skagerrak and Kattegat were investigated through analysis of acoustic survey data from six consecutive years. No change...... was detected in biomass of North Sea autumn spawning C. harengus (NSAS) over time, whereas the biomass of western Baltic spring spawning C. harengus (WBSS) declined severely. Analyses of centre of abundance by stock showed no change in NSAS distribution, whereas the WBSS changed to a more western distribution...... Kattegat. The westward movement of spring spawners over time suggests that growth rate and possibly density of conspecifics influence the migration pattern and distribution of C. harengus in the area. In contrast, there was no evidence to suggest that distribution was constant over time within stocks...

  4. Monitoring Aquifer Depletion from Space: Case Studies from the Saharan and Arabian Aquifers

    Science.gov (United States)

    Ahmed, M.; Sultan, M.; Wahr, J. M.; Yan, E.

    2013-12-01

    Access to potable fresh water resources is a human right and a basic requirement for economic development in any society. In arid and semi-arid areas, the characterization and understanding of the geologic and hydrologic settings of, and the controlling factors affecting, these resources is gaining increasing importance due to the challenges posed by increasing population. In these areas, there is immense natural fossil fresh water resources stored in large extensive aquifers, the transboundary aquifers. Yet, natural phenomena (e.g., rainfall patterns and climate change) together with human-related factors (e.g., population growth, unsustainable over-exploitation, and pollution) are threatening the sustainability of these resources. In this study, we are developing and applying an integrated cost-effective approach to investigate the nature (i.e., natural and anthropogenic) and the controlling factors affecting the hydrologic settings of the Saharan (i.e., Nubian Sandstone Aquifer System [NSAS], Northwest Sahara Aquifer System [NWSA]) and Arabian (i.e., Arabian Peninsula Aquifer System [APAS]) aquifer systems. Analysis of the Gravity Recovery and Climate Experiment (GRACE)-derived Terrestrial Water Storage (TWS) inter-annual trends over the NSAS and the APAS revealed two areas of significant TWS depletions; the first correlated with the Dakhla Aquifer System (DAS) in the NSAS and second with the Saq Aquifer System (SAS) in the APAS. Annual depletion rates were estimated at 1.3 × 0.66 × 109 m3/yr and 6.95 × 0.68 × 109 m3/yr for DAS and SAS, respectively. Findings include (1) excessive groundwater extraction, not climatic changes, is responsible for the observed TWS depletions ;(2) the DAS could be consumed in 350 years if extraction rates continue to double every 50 years and the APAS available reserves could be consumed within 60-140 years at present extraction (7.08 × 109 m3/yr) and depletion rates; and (3) observed depletions over DAS and SAS and their

  5. Managing the Aviation Insider Threat

    Science.gov (United States)

    2010-12-01

    World Airport NSAS National Strategy for Aviation Security OIS Office of Intelligence SIDA Security Identification Display Area STA Security...Security of the secured area”, 1542.205, “Security of the security identification display area ( SIDA )”, and 1542.209, “Fingerprint-based criminal

  6. Celosia argentea

    African Journals Online (AJOL)

    DELL

    Application of 1000 mg/kg of S-nZVI to the parent soil reduced bioavailable Pb in Celosia argentea(Quail grass). ... aluminosilicates, coal, flyash, clay minerals, .... synthesis of the modified zerovalent iron ..... remediation technologies for ...

  7. Calcification mechanism and bony bonding studies of calcium carbonate and composite aluminosilicate/calcium phosphate applied as biomaterials by using radioactivation methods

    International Nuclear Information System (INIS)

    Oudadesse, H.; Derrien, A.C.; Lucas-Girot, A.; Martin, S.; Cathelieau, G.

    2007-01-01

    Bony grafts are used as a filling biomaterial for defective bone. The introduction of new range of synthetic materials offers to surgeons additional possibilities to avoid virus transmission risks by using natural grafts in bony surgery. In this work, two materials, synthetic calcium carbonate and composite aluminosilicate/calcium phosphate were synthesized by an original method and experimented 'in vivo' as biomaterials for bony filling. Extracted biopsies were studied by several physico chemical and biological methods. The aim was to evaluate the kinetic resorption and bioconsolidation of these materials. We focused on the bioconsolidation between implant and bone by realising cartographies from the implant to the bone and on the calcification mechanism by determination of the origin of Ca and Sr responsible of the neo-formed bone. Neutron activation analysis (NAA), radiotracers 45 Ca* and 85 Sr* and proton-induced X-ray emission (PIXE) were used. Concerning the synthetic calcium carbonate, results show that twelve months after implantation, the mineral composition of implant becomes similar to that of the mature bone. The neoformed bone is composed with Ca and Sr coming from the organism when the Ca and Sr of the implant were progressively eliminated. Concerning the composite geopolymer/calcium phosphate, PIXE and histological studies reveal the intimate links between the bone and the implant starting with the first month after implantation. (author)

  8. Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange, and Precipitation Kinetics of NO3 Cancrinite and NO3 Sodalite

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra; Liu, Qinyuan

    2004-01-01

    The precipitation of aluminosilicate phases from caustic nuclear wastes has proven to be problematic in a number of processes including radionuclide separations (cementation of columns by aluminosilicate phases), tank emptying (aluminosilicate tank heels), and condensation of wastes in evaporators (aluminosilicate precipitates in the evaporators, providing nucleation sites for growth of critical masses of radioactive actinide salts). In a collaboration between SNL and UCD, we have investigated why and how these phases form, and which conditions favor the formation of which phases. These studies have involved synthesis and characterization of aluminosilicate phases formed using a variety of synthesis techniques, kinetics of precipitation, structural investigations of aluminosilicate phases, thermodynamic calculations of aluminosilicate solubility, calorimetric studies of aluminosilicate precipitation, and a limited investigation of radionuclide partitioning and ion exchange processes (involving typical tank fluid chemistries and these materials). The predominant phases that are observed in the aluminosilicate precipitates from basic tanks wastes (i.e. Hanford, Savannah River Site ''SRS'' wastes) are the salt enclathrated zeolites: sodium nitrate, sodium carbonate and sodium hydroxide sodalite and cancrinite. These phases precipitate readily from the high ionic strength, highly basic solutions at ambient temperatures as well as at elevated temperatures, with or without the presence of an external Al and Si source (both are contained in the waste solutions), and upon interactions with reactive soil components such as clays

  9. Non-State Actors in Global Governance. Three Faces of Power

    NARCIS (Netherlands)

    Arts, B.J.M.

    2003-01-01

    The political power of non-state actors (NSAs) remains a contested issue, as the continuing debates between neo-realists and transnationalists within the Study of International Relations (SIR) show. This paper builds on as well as tries to transcend this debate. Its objective is to bring more

  10. High‐resolution acoustic indices of Atlantic herring (Clupea harengus) paving the way for inclusion of migration patterns in management considerations of herring in ICES Divisions IIIa and SD 22‐24

    DEFF Research Database (Denmark)

    Stæhr, Karl-Johan; Worsøe Clausen, Lotte

    2012-01-01

    Herring catches in the Western Baltic, Kattegat and Skagerrak consist of a mixture of stocks; the two predominant stocks are the spring‐spawning Western Baltic herring stock and the North Sea autumn‐spawning herring (NSAS), and the mixing follows an age‐ and season‐dependent pattern with high var...

  11. Al/Fe isomorphic substitution versus Fe{sub 2}O{sub 3} clusters formation in Fe-doped aluminosilicate nanotubes (imogolite)

    Energy Technology Data Exchange (ETDEWEB)

    Shafia, Ehsan [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy); Esposito, Serena [Università degli Studi di Cassino e del Lazio Meridionale, Department of Civil and Mechanical Engineering (Italy); Manzoli, Maela; Chiesa, Mario [Università di Torino, Dipartimento di Chimica and Centro Interdipartimentale NIS (Italy); Tiberto, Paola [Electromagnetism, I.N.Ri.M. (Italy); Barrera, Gabriele [Università di Torino, Dipartimento di Chimica and Centro Interdipartimentale NIS (Italy); Menard, Gabriel [Harvard University, Department of Chemistry and Chemical Biology (United States); Allia, Paolo, E-mail: paolo.allia@polito.it [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy); Freyria, Francesca S. [Massachusetts Institute of Technology, Department of Chemistry (United States); Garrone, Edoardo; Bonelli, Barbara, E-mail: barbara.bonelli@polito.it [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy)

    2015-08-15

    Textural, magnetic and spectroscopic properties are reported of Fe-doped aluminosilicate nanotubes (NTs) of the imogolite type, IMO, with nominal composition (OH){sub 3}Al{sub 2−x}Fe{sub x}O{sub 3}SiOH (x = 0, 0.025, 0.050). Samples were obtained by either direct synthesis (Fe-0.025-IMO, Fe-0.050-IMO) or post-synthesis loading (Fe-L-IMO). The Fe content was either 1.4 wt% (both Fe-0.050-IMO and Fe-L-IMO) or 0.7 wt% (Fe-0.025-IMO). Textural properties were characterized by High-Resolution Transmission Electron Microscopy, X-ray diffraction and N{sub 2} adsorption/desorption isotherms at 77 K. The presence of different iron species was studied by magnetic moment measurements and three spectroscopies: Mössbauer, UV–Vis and electron paramagnetic resonance, respectively. Fe{sup 3+}/Al{sup 3+} isomorphic substitution (IS) at octahedral sites at the external surface of NTs is the main process occurring by direct synthesis at low Fe loadings, giving rise to the formation of isolated high-spin Fe{sup 3+} sites. Higher loadings give rise, besides IS, to the formation of Fe{sub 2}O{sub 3} clusters. IS occurs up to a limit of Al/Fe atomic ratio of ca. 60 (corresponding to x = 0.032). A fraction of the magnetism related to NCs is pinned by the surface anisotropy; also, clusters are magnetically interacting with each other. Post-synthesis loading leads to a system rather close to that obtained by direct synthesis, involving both IS and cluster formations. Slightly larger clusters than with direct synthesis samples, however, are formed. The occurrence of IS indicates a facile cleavage/sealing of Al–O–Al bonds: this opens the possibility to exchange Al{sup 3+} ions in pre-formed IMO NTs, a much simpler procedure compared with direct synthesis.

  12. The initial step of silicate versus aluminosilicate formation in zeolite synthesis: a reaction mechanism in water with a tetrapropylammonium template

    KAUST Repository

    Trinh, Thuat T.

    2012-01-01

    The initial step for silicate and aluminosilicate condensation is studied in water in the presence of a realistic tetrapropylammonium template under basic conditions. The model corresponds to the synthesis conditions of ZSM5. The free energy profile for the dimer formation ((OH) 3Si-O-Si-(OH) 2O - or [(OH) 3Al-O-Si-(OH) 3] -) is calculated with ab initio molecular dynamics and thermodynamic integration. The Si-O-Si dimer formation occurs in a two-step manner with an overall free energy barrier of 75 kJ mol -1. The first step is associated with the Si-O bond formation and results in an intermediate with a five-coordinated Si, and the second one concerns the removal of the water molecule. The template is displaced away from the Si centres upon dimer formation, and a shell of water molecules is inserted between the silicate and the template. The main effect of the template is to slow down the backward hydrolysis reaction with respect to the condensation one. The Al-O-Si dimer formation first requires the formation of a metastable precursor state by proton transfer from Si(OH) 4 to Al(OH) 4 - mediated by a solvent molecule. It then proceeds through a single step with an overall barrier of 70 kJ mol -1. The model with water molecules explicitly included is then compared to a simple calculation using an implicit continuum model for the solvent. The results underline the importance of an explicit and dynamical treatment of the water solvent, which plays a key role in assisting the reaction. © the Owner Societies 2012.

  13. Sport for Development and Global Public Health Issues: A Case Study of National Sports Associations

    Directory of Open Access Journals (Sweden)

    Davies Banda

    2017-05-01

    Full Text Available Sport is widely recognised for the contribution it can make to international development goals. More specifically, the value of sport as a tool for development gained its impetus through the HIV/AIDS pandemic in sub-Saharan Africa. The institutionalized relationship between sport and development has mainly focussed on sport-for-development (SfD non-governmental organisations (NGOs. This study proposed to examine the response of National Sports Associations (NSAs towards the multisectoral approach for HIV/AIDS prevention in Zambia. The study draws on lessons learnt from how NSAs within a resource-scarce or low-income country responded to a health pandemic. While public health was previously a state and health sector preserve, the impact of HIV/AIDS pandemic influenced not only the way that a pandemic is managed but also other public health issues. A case study approach was adopted comprising of three National Sports Associations (NSAs as units of analysis. The study utilised semi-structured interviews, documentary analysis and field observations to gain perspectives on how each NSA mainstreamed and implemented work-based health programmes. Using governance and policy network theories, the paper discusses each NSAs’ role in the governance and implementation of a multisectoral approach to a health pandemic. The findings identified lack of engagement of sports agencies at strategic decision-making level, marginalisation of sport by other sectors, and variations in implementation patterns among sports agencies. Further findings indicate that lack of resources among government sport agencies or departments limited their involvement with other state or non-state actors in strategic level meetings or health policy networks. Resource-scarce conditions placed limitations on the political steer of state actors while non-state actors with foreign resources attracted collaboration from other public health policy networks.

  14. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  15. Potentiated clinoptilolite reduces signs and symptoms associated with veisalgia

    Directory of Open Access Journals (Sweden)

    Gandy JJ

    2015-08-01

    Full Text Available Justin John Gandy, Ilze Laurens, Jacques Rene Snyman Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, South Africa Introduction: Abundant anecdotal evidence for products claiming to reduce veisalgia after alcohol overindulgence are available on the Internet and as many advertisements in journals. None of these claims are, however, substantiated by research. The aim of this research was to ascertain the validity of such claims for the substance Absorbatox™, a potentiated aluminosilicate (cation exchanger able to bind NH4+, histamine, and other positively charged ions by investigating the signs and symptoms, as well as blood or breath alcohol levels, in healthy volunteers. Methods: Blood or breath alcohol levels were measured in all volunteers in initial controlled experiments, and symptoms were scored on a diary card for gastrointestinal tract symptoms, as well as other symptoms such as headache and light sensitivity. Eighteen volunteers completed the initial blood alcohol study, which investigated the effect of Absorbatox™ on blood alcohol levels after fasting. The follow-up studies researched the effects of the symptoms and signs of alcohol overindulgence. The “night out” study was completed by ten volunteers in a typical controlled environment, which was followed by the real-life four-leg crossover study. In the crossover study, volunteers (number =25 completers had to fill matching diary cards to containers of two placebo and two active drugs after a night out where they themselves decided on the container (color coded to be used and the amount of alcohol to be consumed. Results: Absorbatox™ had no effect on blood alcohol levels, but it significantly reduced the symptoms and signs of veisalgia by approximately 40%–50%. Conclusion: This research indicates that Absorbatox™ does not have an effect on blood- or breath-alcohol levels. Furthermore, treatment with

  16. Single-Crystalline Ultrathin Nickel Nanosheets Array from In Situ Topotactic Reduction for Active and Stable Electrocatalysis.

    Science.gov (United States)

    Kuang, Yun; Feng, Guang; Li, Pengsong; Bi, Yongmin; Li, Yaping; Sun, Xiaoming

    2016-01-11

    Simultaneously synthesizing and structuring atomically thick or ultrathin 2D non-precious metal nanocrystal may offer a new class of materials to replace the state-of-art noble-metal electrocatalysts; however, the synthetic strategy is the bottleneck which should be urgently solved. Here we report the synthesis of an ultrathin nickel nanosheet array (Ni-NSA) through in situ topotactic reduction from Ni(OH)2 array precursors. The Ni nanosheets showed a single-crystalline lamellar structure with only ten atomic layers in thickness and an exposed (111) facet. Combined with a superaerophobic (low bubble adhesive) arrayed structure the Ni-NSAs exhibited a dramatic enhancement on both activity and stability towards the hydrazine-oxidation reaction (HzOR) relative to platinum. Furthermore, the partial oxidization of Ni-NSAs in ambient atmosphere resulted in effective water-splitting electrocatalysts for the hydrogen-evolution reaction (HER). © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

  17. The Effect of Micro/Nano-metrics Size on the Interaction of Jordanian Aluminosilicate Raw Materials with High pH Solution

    Science.gov (United States)

    Aldabsheh, Islam; Garcia-Valles, Maite; Martinez, Salvador

    2014-05-01

    Environmental preservation has become a driving force behind the search for new sustainable and environmentally friendly composites to replace conventional concrete produced from ordinary Portland cement (OPC). Current researches concentrate on developing building products (geopolymers) through geopolymerization. The goal is to produce low cost construction materials for green housing. Geopolymerization is the process of polymerizing minerals with high silica and alumina at low temperature by the use of alkali solutions. Dissolution is the most important process for supplying the high initial Al and Si concentrations to produce the gel phase that is responsible for geopolymerization. This study has been focused on the influence of different micrometric particle sizes of three Jordanian raw materials on their dissolution behavior in sodium hydroxide solution. The samples are kaolinite, volcanic tuff and silica sand. The dissolution properties of each material, alone and mixed with the other two materials were studied in different concentrations (5 and 10 M) using (NaOH) at 25ºC, and shaking time for 24 and 168 h. To better understand the dissolution process, the alkaline solution was renewed after the desired time in order to know if the Al-Si raw material is completely dissolved or not. Different analytical techniques were used to characterize raw materials physically, mineralogically, chemically and thermally. All processed samples either centrifuged solutions or solid residues were fully characterized. The leached concentrations of Al and Si were determined by inductively coupled plasma (ICP). X-ray Diffraction Technique (XRD), Scanning Electron Microscopy (SEM), and Thermo Gravimetric Analysis (TGA) were used to evaluate the solid residue characterization compared with the original ones. The three aluminosilicate raw materials have indicated variable degrees of solubility under highly alkaline conditions. The method for the size reduction of the used raw

  18. Balance of power theory meets Al Qaeda : dynamics of non-state actor balancing in postinternational politics

    OpenAIRE

    Denk, Aytaç

    2008-01-01

    Ankara : The Department of International Relations, Bilkent University, 2008. Thesis (Master's) -- Bilkent University, 2008. Includes bibliographical references leaves 196-207. The bulk of studies on the balance of power, which constitutes balance of power theory, suggest that only states are involved in balance of power dynamics. This thesis maintains that exclusion of non-state actors (NSAs) from balance of power dynamics constitutes a significant gap in balance of power t...

  19. Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria

    Directory of Open Access Journals (Sweden)

    Furukawa Yoko

    2005-10-01

    Full Text Available Experimental batch and miscible-flow cultures were studied in order to determine the mechanistic pathways of microbial Fe(III respiration in ferruginous smectite clay, NAu-1. The primary purpose was to resolve if alteration of smectite and release of Fe precedes microbial respiration. Alteration of NAu-1, represented by the morphological and mineralogical changes, occurred regardless of the extent of microbial Fe(III reduction in all of our experimental systems, including those that contained heat-killed bacteria and those in which O2, rather than Fe(III, was the primary terminal electron acceptor. The solid alteration products observed under transmission electron microscopy included poorly crystalline smectite with diffuse electron diffraction signals, discrete grains of Fe-free amorphous aluminosilicate with increased Al/Si ratio, Fe-rich grains, and amorphous Si globules in the immediate vicinity of bacterial cells and extracellular polymeric substances. In reducing systems, Fe was also found as siderite. The small amount of Fe partitioned to the aqueous phase was primarily in the form of dissolved Fe(III species even in the systems in which Fe(III was the primary terminal electron acceptor for microbial respiration. From these observations, we conclude that microbial respiration of Fe(III in our laboratory systems proceeded through the following: (1 alteration of NAu-1 and concurrent release of Fe(III from the octahedral sheets of NAu-1; and (2 subsequent microbial respiration of Fe(III.

  20. A new glass option for parenteral packaging.

    Science.gov (United States)

    Schaut, Robert A; Peanasky, John S; DeMartino, Steven E; Schiefelbein, Susan L

    2014-01-01

    Glass is the ideal material for parenteral packaging because of its chemical durability, hermeticity, strength, cleanliness, and transparency. Alkali borosilicate glasses have been used successfully for a long time, but they do have some issues relating to breakage, delamination, and variation in hydrolytic performance. In this paper, alkali aluminosilicate glasses are introduced as a possible alternative to alkali borosilicate glasses. An example alkali aluminosilicate glass is shown to meet the compendial requirements, and to have similar thermal, optical, and mechanical attributes as the current alkali borosilicate glasses. In addition, the alkali aluminosilicate performed as well or better than the current alkali borosilicates in extractables tests and stability studies, which suggests that it would be suitable for use with the studied liquid product formulation. The physical, mechanical, and optical properties of glass make it an ideal material for packaging injectable drugs and biologics. Alkali borosilicate glasses have been used successfully for a long time for these applications, but there are some issues. In this paper, alkali aluminosilicate glasses are introduced as a possible alternative to alkali borosilicate glasses. An example alkali aluminosilicate glass is shown to meet the requirements for packaging injectable drugs and biologics, and to be suitable for use with a particular liquid drug. © PDA, Inc. 2014.

  1. A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Durdziński, Paweł T., E-mail: pawel.durdzinski@gmail.com [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland); Dunant, Cyrille F. [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland); Haha, Mohsen Ben [HeidelbergCement Technology Center GmbH (HeidelbergCement AG), Rohrbacher Str. 95, 69181 Leimen (Germany); Scrivener, Karen L. [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland)

    2015-07-15

    Calcareous fly ashes are high-potential reactive residues for blended cements, but their qualification and use in concrete are hindered by heterogeneity and variability. Current characterization often fails to identify the dominant, most reactive, amorphous fraction of the ashes. We developed an approach to characterize ashes using electron microscopy. EDS element composition of millions of points is plotted in a ternary frequency plot. A visual analysis reveals number and ranges of chemical composition of populations: silicate, calcium-silicate, aluminosilicate, and calcium-rich aluminosilicate. We quantified these populations in four ashes and followed their hydration in two Portland-ash systems. One ash reacted at a moderate rate: it was composed of 70 vol.% of aluminosilicates and calcium-silicates and reached 60% reaction at 90 days. The other reacted faster, reaching 60% at 28 days due to 55 vol.% of calcium-rich aluminosilicates, but further reaction was slower and 15 vol.% of phases, the silica-rich ones, did not react.

  2. A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste

    International Nuclear Information System (INIS)

    Durdziński, Paweł T.; Dunant, Cyrille F.; Haha, Mohsen Ben; Scrivener, Karen L.

    2015-01-01

    Calcareous fly ashes are high-potential reactive residues for blended cements, but their qualification and use in concrete are hindered by heterogeneity and variability. Current characterization often fails to identify the dominant, most reactive, amorphous fraction of the ashes. We developed an approach to characterize ashes using electron microscopy. EDS element composition of millions of points is plotted in a ternary frequency plot. A visual analysis reveals number and ranges of chemical composition of populations: silicate, calcium-silicate, aluminosilicate, and calcium-rich aluminosilicate. We quantified these populations in four ashes and followed their hydration in two Portland-ash systems. One ash reacted at a moderate rate: it was composed of 70 vol.% of aluminosilicates and calcium-silicates and reached 60% reaction at 90 days. The other reacted faster, reaching 60% at 28 days due to 55 vol.% of calcium-rich aluminosilicates, but further reaction was slower and 15 vol.% of phases, the silica-rich ones, did not react

  3. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Microstructural and compositional change of NaOH-activated high calcium fly ash by incorporating Na-aluminate and co-existence of geopolymeric gel and C–S–H(I)

    KAUST Repository

    Oh, Jae Eun

    2012-05-01

    This study explores the reaction products of alkali-activated Class C fly ash-based aluminosilicate samples by means of high-resolution synchrotron X-ray diffraction (HSXRD), scanning electron microscope (SEM), and compressive strength tests to investigate how the readily available aluminum affects the reaction. Class C fly ash-based aluminosilicate raw materials were prepared by incorporating Na-aluminate into the original fly ashes, then alkali-activated by 10 M NaOH solution. Incorporating Na-aluminate reduced the compressive strength of samples, with the reduction magnitude relatively constant regardless of length of curing period. The HSXRD provides evidence of the co-existence of C-S-H with geopolymeric gels and strongly suggests that the C-S-H formed in the current system is C-S-H(I). The back-scattered electron images suggest that the C-S-H(I) phase exists as small grains in a finely intermixed form with geopolymeric gels. Despite providing extra source of aluminum, adding Na-aluminate to the mixes did not decrease the Si/Al ratio of the geopolymeric gel. © 2012 Elsevier Ltd.

  5. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Laura J.; Bernal, Susan A.; Walling, Samuel A.; Corkhill, Claire L.; Provis, John L.; Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk

    2015-08-15

    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on {sup 25}Mg, {sup 27}Al, {sup 29}Si, {sup 31}P and {sup 39}K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC.

  6. Microstructural and compositional change of NaOH-activated high calcium fly ash by incorporating Na-aluminate and co-existence of geopolymeric gel and C–S–H(I)

    KAUST Repository

    Oh, Jae Eun; Moon, Juhyuk; Oh, Sang-Gyun; Clark, Simon M.; Monteiro, Paulo J.M.

    2012-01-01

    This study explores the reaction products of alkali-activated Class C fly ash-based aluminosilicate samples by means of high-resolution synchrotron X-ray diffraction (HSXRD), scanning electron microscope (SEM), and compressive strength tests to investigate how the readily available aluminum affects the reaction. Class C fly ash-based aluminosilicate raw materials were prepared by incorporating Na-aluminate into the original fly ashes, then alkali-activated by 10 M NaOH solution. Incorporating Na-aluminate reduced the compressive strength of samples, with the reduction magnitude relatively constant regardless of length of curing period. The HSXRD provides evidence of the co-existence of C-S-H with geopolymeric gels and strongly suggests that the C-S-H formed in the current system is C-S-H(I). The back-scattered electron images suggest that the C-S-H(I) phase exists as small grains in a finely intermixed form with geopolymeric gels. Despite providing extra source of aluminum, adding Na-aluminate to the mixes did not decrease the Si/Al ratio of the geopolymeric gel. © 2012 Elsevier Ltd.

  7. Zeolite food supplementation reduces abundance of enterobacteria.

    Science.gov (United States)

    Prasai, Tanka P; Walsh, Kerry B; Bhattarai, Surya P; Midmore, David J; Van, Thi T H; Moore, Robert J; Stanley, Dragana

    2017-01-01

    According to the World Health Organisation, antibiotics are rapidly losing potency in every country of the world. Poultry are currently perceived as a major source of pathogens and antimicrobial resistance. There is an urgent need for new and natural ways to control pathogens in poultry and humans alike. Porous, cation rich, aluminosilicate minerals, zeolites can be used as a feed additive in poultry rations, demonstrating multiple productivity benefits. Next generation sequencing of the 16S rRNA marker gene was used to phylogenetically characterize the fecal microbiota and thus investigate the ability and dose dependency of zeolite in terms of anti-pathogenic effects. A natural zeolite was used as a feed additive in laying hens at 1, 2, and 4% w/w for a 23 week period. At the end of this period cloacal swabs were collected to sample faecal microbial communities. A significant reduction in carriage of bacteria within the phylum Proteobacteria, especially in members of the pathogen-rich family Enterobacteriaceae, was noted across all three concentrations of zeolite. Zeolite supplementation of feed resulted in a reduction in the carriage of a number of poultry pathogens without disturbing beneficial bacteria. This effect was, in some phylotypes, correlated with the zeolite concentration. This result is relevant to zeolite feeding in other animal production systems, and for human pathogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Investment Casting vs Replicast CS Considered in Terms of the Ceramic Mould Making and Dimensional Accuracy of Castings

    Directory of Open Access Journals (Sweden)

    Karwiński A.

    2014-03-01

    Full Text Available The article presents an analysis of the applicability of the Replicast CS process as an alternative to the investment casting process, considered in terms of the dimensional accuracy of castings. Ceramic shell moulds were based on the Ekosil binder and a wide range of ceramic materials, such as crystalline quartz, fused silica, aluminosilicates and zirconium silicate. The linear dimensions were measured with a Zeiss UMC 550 machine that allowed reducing to minimum the measurement uncertainty

  9. Kinetic analysis of temperature-induced transformation of zeolite 4A to low-carnegieite

    International Nuclear Information System (INIS)

    Kosanovic, C.; Subotic, B.; Ristic, A.

    2004-01-01

    Kinetics of the isothermal amorphization of zeolite 4A and recrystallization of the formed amorphous phase to low-carnegieite at three different temperatures were investigated by powder X-ray diffraction method. Changes in the fractions f A of zeolite 4A, f a of amorphous aluminosilicate and f C of low-carnegieite during heating of zeolite 4A, show that amorphization and recrystallization take place simultaneously. Kinetic analyzes of single processes (amorphization, recrystallization) as well as solution of the population balance of the entire transformation process (simultaneous transformation of zeolite 4A into amorphous aluminosilicate and its recrystallization into low-carnegieite) have shown that: (A) the transformation of zeolite 4A takes place by a random, diffusion-limited agglomeration of the short-range-ordered aluminosilicate subunits formed by thermally induced breaking of Si-O-Si and Si-O-Al bonds between different building units of zeolite framework; and (B) the crystallization of low-carnegieite occurs by homogeneous nucleation of low-carnegieite inside the matrix of amorphous aluminosilicate and diffusion-controlled, one-dimensional growth of the nuclei, thus forming needle-shaped crystals of low-carnegieite

  10. Modelling the mixing of herring stocks between the Baltic and the North Sea from otolith data

    DEFF Research Database (Denmark)

    Ulrich, Clara; Post, Søren Lorentzen; Worsøe Clausen, Lotte

    2012-01-01

    and Swedish commercial landings and surveys samples for the purpose of stock assessment. But the split estimates from sampling data are highly variable and noisy. Better understanding of the migration and exploitation patterns involved could therefore potentially improve the stock assessment as well...... and are consistent with existing ideas about the migration patterns of WBSS and NSAS within Division IIIa and adjacent waters. This work therefore provides the foundation for the development of a more rational management of the herring stocks in this area...

  11. The influence of interfacial energies and gravitational levels on the directionally solidified structures in hypermonotectic alloys

    Science.gov (United States)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Various Cu-Pb-Al alloys were directionally solidified under 1-g conditions and alternating high-g/low-g conditions (achieved using NSAS's KC-135 aircraft) as a means of studying the influence of interfacial energies and gravitational levels on the resulting microstructures. Directional solidification of low Al content alloys was found to result in samples with coarser more irregular microstructures than in alloys with high Al contents under all the gravity conditions considered. Structures are correlated with interfacial energies, growth rates, and gravitational levels.

  12. Toxicity of 144Ce inhaled in a relatively insoluble form by Beagle dogs. XI

    International Nuclear Information System (INIS)

    Hahn, F.F.; Hanika-Rebar, C.; Boecker, B.B.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1978-01-01

    The metabolism, dosimetry and effects of 144 Ce inhaled in fused aluminosilicate particles are being investigated in the Beagle dog to assess the biological consequences of release of 144 Ce in a relatively insoluble form such as might occur in certain types of nuclear accidents. The toxicity of inhaled 144 Ce is also of general interest since it is representative of intermediate-lived beta-emitting radionuclides. Two major studies with young adult dogs (12 to 14 months of age at exposure) are involved: (1) a metabolism and dosimetry study in which 24 dogs were serially sacrificed over an extended period of time, and (2) a longevity study with two series of dogs. Series I contains 15 dogs exposed to aerosols of 144 Ce in fused aluminosilicate particles to yield initial lung burdens of 11 to 210 μCi/kg body weight and three control dogs exposed to nonradioactive fused aluminosilicate particles. Series II contains 96 dogs exposed to aerosols of 144 Ce in fused aluminosilicate particles to yield initial lung burdens of 0.0024 to 66 μCi/kg body weight and 12 control dogs exposed to nonradioactive, fused aluminosilicate particles. To date, 51 dogs have died or were euthanized at 143 to 3280 days after inhalation of 144 Ce. The prominent findings were radiation pneumonitis in 17 dogs that died or were euthanized at 750 days or later. The cumulative radiation dose to the lung at time of death has ranged from 550 to 140,000 rads. Serial observations are continuing on the 60 survivors and 15 controls

  13. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    International Nuclear Information System (INIS)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by 29 Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of 29 Si spectra. A high-temperature (to 1300 0 C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T 1 and T 2 ) measurements as a function of composition and temperature for 23 Na and 29 Si

  14. Composite media for fluid stream processing, a method of forming the composite media, and a related method of processing a fluid stream

    Science.gov (United States)

    Garn, Troy G; Law, Jack D; Greenhalgh, Mitchell R; Tranter, Rhonda

    2014-04-01

    A composite media including at least one crystalline aluminosilicate material in polyacrylonitrile. A method of forming a composite media is also disclosed. The method comprises dissolving polyacrylonitrile in an organic solvent to form a matrix solution. At least one crystalline aluminosilicate material is combined with the matrix solution to form a composite media solution. The organic solvent present in the composite media solution is diluted. The composite media solution is solidified. In addition, a method of processing a fluid stream is disclosed. The method comprises providing a beads of a composite media comprising at least one crystalline aluminosilicate material dispersed in a polyacrylonitrile matrix. The beads of the composite media are contacted with a fluid stream comprising at least one constituent. The at least one constituent is substantially removed from the fluid stream.

  15. REM-containing silicate concentrates

    Science.gov (United States)

    Pavlov, V. F.; Shabanova, O. V.; Pavlov, I. V.; Pavlov, M. V.; Shabanov, A. V.

    2016-01-01

    A new method of advanced complex processing of ores containing rare-earth elements (REE) is proposed to obtain porous X-ray amorphous aluminosilicate material with a stable chemical composition which concentrates oxides of rare-earth metals (REM). The ferromanganese oxide ores of Chuktukon deposit (Krasnoyarsk Region, RF) were used for the experiment. The obtained aluminosilicate material is appropriate for treatment with 5 - 15% solutions of mineral acids to leach REM.

  16. REM-containing silicate concentrates

    International Nuclear Information System (INIS)

    Pavlov, V F; Shabanova, O V; Pavlov, I V; Pavlov, M V; Shabanov, A V

    2016-01-01

    A new method of advanced complex processing of ores containing rare-earth elements (REE) is proposed to obtain porous X-ray amorphous aluminosilicate material with a stable chemical composition which concentrates oxides of rare-earth metals (REM). The ferromanganese oxide ores of Chuktukon deposit (Krasnoyarsk Region, RF) were used for the experiment. The obtained aluminosilicate material is appropriate for treatment with 5 - 15% solutions of mineral acids to leach REM. (paper)

  17. Electron spin resonance and electron spin echo modulation studies of Cu(II) ions in the aluminosilicate chabazite: A comparison of Cu(II) cation location and adsorbate interaction with isostructural silicoaluminophosphate-34

    International Nuclear Information System (INIS)

    Zamadics, M.; Kevan, L.

    1992-01-01

    This study focuses on Cu(II) ions exchanged in the aluminosilicate zeolite chabazite. The various Cu(II) species formed after dehydration, rehydration, and exposure to adsorbates are characterized by electron spin resonance and electron spin echo modulation spectroscopies. These results are interpreted in terms of Cu(II) ion location and adsorbate interaction. The results of this study are compared to the results found earlier for SAPO-34, chabazite's structural analog from the silicoaluminophosphate group. In a hydrated sample of chabazite the Cu(II) ions are found to be in a near octahedral environment coordinated to three nonequivalent water molecules and three framework oxygens. The most probable location of the Cu(II) ion in a hydrated sample is above the plane of the six-membered ring slightly displaced into the ellipsoidal cavity. A somewhat similar location and coordination is found for Cu(II) ions in H-SAPO-34. A feature common to both CuH-chabazite and CuH-SAPO-34 is the generation of two distinct Cu(II) species upon dehydration. It is found that Cu(II) cations in chabazite interact with the various adsorbate molecules in a similar manner as Cu(II) cation in H-chabazite and three molecules of ethanol and three propanol molecules. Only the Cu(II) ions located in the hexagonal rings after dehydration were found to complex with ethylene. The differences observed in the interaction of the Cu(II) in with water, propanol, and ehtylene between SAPO-34 and chabazite can be related to the differing cation densities of these two materials. 32 refs., 7 figs., 21 tabs

  18. Precipitation and Deposition of Aluminum-Containing Species in Tank Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David T.; Wang, Li-Qiong; Dabbs, Daniel M.; Aksay, Ilhan A.

    2002-01-01

    Aluminum-containing phases represent the most prevalent solids that can appear or disappear during the processing of radioactive tank wastes. Processes such as sludge washing and leaching are designed to dissolve Al-containing phases and thereby minimize the volume of high-level waste glass required to encapsulate radioactive sludges. Unfortunately, waste-processing steps that include evaporation can involve solutions that are supersaturated with respect to cementitious aluminosilicates that result in unwanted precipitation and scale formation. Of all the constituents of tank waste, limited solubility cementitious aluminosilicates have the greatest potential for clogging pipes and transfer lines, fouling highly radioactive components such as ion exchangers, and completely shutting down processing operations. For instance, deposit buildup and clogged drain lines experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. The Waste Processing Technology Section of Westinghouse Savannah River Company at SRS now is collaborating with team members from Pacific Northwest National Laboratory (PNNL) to verify the thermodynamic stability of aluminosilicate compounds under waste tank conditions in an attempt to solve the deposition and clogging problems. The primary objectives of this study are (1) to understand the major factors controlling precipitation, heterogeneous nucleation, and growth phenomena of relatively insoluble aluminosilicates; (2) to determine the role of organics for inhibiting aluminosilicate formation, and (3) to develop a predictive tool to control precipitation, scale formation, and cementation under tank waste processing conditions. The results of this work will provide crucial information for (1) avoiding problematical sludge processing steps and (2) identifying and developing effective technologies to process retrieved sludges and supernatants before ultimate

  19. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  20. Development of alkali activated cements and concrete mixture design with high volumes of red mud

    OpenAIRE

    Krivenko, Pavel; Kovalchuk, Oleksandr; Pasko, Anton; Croymans, Tom; Hutt, Mikael; Lutter, Guillaume; Vandevenne, Niels; Schreurs, Sonja; Schroeyers, Wouter

    2017-01-01

    Dedicated cement compositions were formulated to enable the incorporation of large volume fractions of red mud in alkali activated cements, taking into account the role of the aluminosilicate phase in the processes of hydration and hardening. High volume red mud alkali activated cements were synthesized using a proper combination of red mud, low basic aluminosilicate compounds with a glass phase (blast-furnace slag) and additives selected from high-basic Ca-containing cements with a crystalli...

  1. Semi-Passive Oxidation-Based Approaches for Control of Large, Dilute Groundwater Plumes of Chlorinated Ethylenes

    Science.gov (United States)

    2014-04-01

    Chemical US DHHS United States Department of Human and Health Services UV-VIS Ultraviolet-Visible XRD X-Ray Diffraction Keywords Slow-release solids...biopolymers prompted us to more to geopolymers. Aluminosilicate gels, also known as zeolite gels, are formed through a sol-gel process in which an...precursors used in this study was Linde Type A (LTA) or zeolite A. This type of aluminosilicate typically has an extremely small cell volume of

  2. The influence of Pb addition on the properties of fly ash-based geopolymers.

    Science.gov (United States)

    Nikolić, Violeta; Komljenović, Miroslav; Džunuzović, Nataša; Miladinović, Zoran

    2018-05-15

    Preventing or reducing negative effects on the environment from the waste landfilling is the main goal defined by the European Landfill Directive. Generally geopolymers can be considered as sustainable binders for immobilization of hazardous wastes containing different toxic elements. In this paper the influence of addition of high amount of lead on structure, strength, and leaching behavior (the effectiveness of Pb immobilization) of fly ash-based geopolymers depending on the geopolymer curing conditions was investigated. Lead was added during the synthesis of geopolymers in the form of highly soluble salt - lead-nitrate. Structural changes of geopolymers as a result of lead addition/immobilization were assessed by means of XRD, SEM/EDS, and 29 Si MAS NMR analysis. Investigated curing conditions significantly influenced structure, strength and leaching behavior of geopolymers. High addition of lead caused a sizeable decrease in compressive strength of geopolymers and promoted formation of aluminum-deficient aluminosilicate gel (depolymerization of aluminosilicate gel), regardless of the curing conditions investigated. According to the EUWAC limitations, 4% of lead was successfully immobilized by fly ash-based geopolymers cured for 28 days in a humid chamber at room temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Mechanical and thermal expansion properties of β-eucryptite prepared by sol-gel methods and hot pressing

    International Nuclear Information System (INIS)

    Xia, L.; Wen, G.W.; Qin, C.L.; Wang, X.Y.; Song, L.

    2011-01-01

    Research highlights: → Dense LAS glass-ceramics were fabricated by sol-gel and hot pressing technique. → The LAS glass-ceramics have relative good mechanical properties. → The negative thermal expansion behavior of LAS glass-ceramics was investigated. -- Abstract: The microstructures, mechanical properties and thermal expansion behavior of monolithic lithium aluminosilicate glass-ceramics, prepared by sol-gel method and hot pressing, were investigated by using X-ray diffraction, scanning and transmission electron microscopies, three-point bend tests and dilatometry. β-eucryptite appeared as main phase in the monolithic lithium aluminosilicate glass-ceramics. The glass ceramics exhibited high relative densities and the average flexural strength and fracture toughness values were 154 MPa and 2.46 MPa m 1/2 , respectively. The lithium aluminosilicate glass-ceramics hot pressed 1300 and 1350 o C demonstrated negative coefficient of thermal expansion, which was affected by amount and type of crystalline phases.

  4. Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion

    Science.gov (United States)

    Levard, Clément; Doelsch, Emmanuel; Rose, Jérôme; Masion, Armand; Basile-Doelsch, Isabelle; Proux, Olivier; Hazemann, Jean-Louis; Borschneck, Daniel; Bottero, Jean-Yves

    2009-08-01

    Andosols on the island of Réunion have high nickel (Ni) concentrations due to the natural pedo-geochemical background. Enhanced knowledge of Ni speciation is necessary to predict the bioavailability and potential toxicity of this element. Ni speciation in these andosols, marked by the presence of high amounts of natural aluminosilicate nanoparticles, was investigated in two complementary systems: (i) In a soil sample—densimetric fractionation was first performed in order to separate the potential bearing phases, prior to Ni speciation characterization. (ii) In a synthetic sample—Ni reactivity with synthetic aluminosilicate nanoparticle analogs were studied. In both cases, Ni speciation was determined using X-ray absorption spectroscopy (XAS). The results revealed that Ni had the same local environment in both systems (natural and synthetic systems), and Ni was chemically linked to natural short-range ordered aluminosilicates or analogs. This complex represented about 75% of the total Ni in the studied soil.

  5. Pulmonary collagen metabolism in irradiated hamsters and those treated with corticosteroids

    International Nuclear Information System (INIS)

    Pickrell, J.A.; Straus, F.C.; Halliwell, W.H.; Jones, R.K.

    1976-01-01

    Syrian hamsters were exposed to 90 Y in fused aluminosilicate particles to produce pulmonary fibrosis. Irradiated hamsters and contols were treated with Depomedrol, arresting the developing fibrosis. All hamsters receiving steroid showed a reduced incorporation of 14 C-proline into noncollagen protein during the 3-19 wk period after exposure. Collagen synthesis relative to noncollagen protein synthesis was decreased five-fold in these animals at early times after exposure and during high steroid dosage, but had returned to control levels after considerable time at lower steroid dosage. Collagen synthesis in irradiated animals not receiving steroids was elevated during the same time period and collagen synthesis in irradiated hamsters treated with steroid was intermediate between that in radiation animals and in control or steroid animals. Collagen breakdown was elevated to the same level as in irradiated animals, and collagen content was normal and well below that of irradiated animals. These and previous data indicate that steroid treatment delays development of pulmonary fibrosis in animals irradiated with fibrogenic doses of 90 Y in fused aluminosilicate particles. Experiments incubating BAPN or Depomedrol with L-929 or WI-38 fibroblasts in vitro were performed to note any effect of these agents upon fibroblast proliferation, cellular collagen processing or collagen synthesis. Steroids frequently reduced fibroblast proliferation and altered cellular collagen processings to reflect an increased proportion of collagen breakdown products. These changes reflect the importance of fibroblast proliferation in developing pulmonary fibrosis

  6. Aluminosilikat Berpotensi Menekan Gangguan Reproduksi Mikotoksin Zearalenon Berdasarkan Pengamatan Jumlah Folikel dan Ekspresi Caspase-9 Ovarium

    Directory of Open Access Journals (Sweden)

    Muhammad Thohawi Elziyad Purnama

    2017-06-01

    Full Text Available Zearalenone is a resorcylic acid lactone produced by fungal Fusarium graminearum in contaminated edible grains and can cause reproduction disorder in animals by binding to estrogen receptors on target cells. The aim of this study was to assess the potential use of aluminosilicates as mycotoxin binders to eliminate the adverse effect of zearalenone by examining the number of follicles and caspase-9 expression in the ovary of mice. The study adopted a completely randomized simple design using 20 mices which were randomly divided into five group each of which consisted of four mices. Five treatment groups consisted of K+ (without zearalenone and aluminosilicates; K- (treated with zearalenone 0.1 mg/mice/day; P1 (treated with zearalenone 0.1 mg/mice/day and aluminosilicates 0.5 mg/mice/day; P2 (treated with zearalenone 0.1 mg/mice/day and aluminosilicates 1 mg/mice/day; and P3 were treated with zearalenone 0,1 mg/mice/day and aluminosilicates 2 mg/mice/day with gastric tube daily for 10 days. The data obtained from this study were analyzed by analysis of variance and proceeded with Duncan test. The result showed that the primary follicles, secondary follicles, tertiary follicles and de Graaf follicles increased significantly on P3 treatment group. Caspase-9 expressions decreased significantly in all of aluminosilicates groups as compared to positive control. The treatment of mice with zearalenone and aluminosilicates increases the number of follicles and decreased caspase-9 expression in the ovary of mice. ABSTRAK Zearalenon merupakan senyawa resorcylic acid lactone yang diproduksi oleh jamur Fusarium graminearum dan dapat mengakibatkan gangguan reproduksi pada ternak dengan membentuk ikatan pada reseptor estrogen. Penelitian ini bertujuan untuk menguji potensi aluminosilikat terhadap mencit yang telah dipapar zearalenon pada aspek jumlah folikel dan ekspresi caspase-9 organ ovarium. Penelitian ini menggunakan 20 ekor mencit yang dibagi menjadi lima

  7. The structural studies of aluminosilicate gels and thin films synthesized by the sol-gel method using different Al2O3 and SiO2 precursors

    Directory of Open Access Journals (Sweden)

    Adamczyk Anna

    2015-12-01

    Full Text Available Aluminosilicate materials were obtained by sol-gel method, using different Al2O3 and SiO2 precursors in order to prepare sols based on water and organic solvents. As SiO2 precursors, Aerosil 200TM and tetraethoxysilane TEOS: Si(OC2H54 were applied, while DisperalTM and aluminium secondary butoxide ATSB: Al(OC4H93 were used for Al2O3 ones. Bulk samples were obtained by heating gels at 500 °C, 850 °C and at 1150 °C in air, while thin films were synthesized on carbon, steel and alundum (representing porous ceramics substrates by the dip coating method. Thin films were annealed in air (steel and alundum and in argon (carbon at different temperatures, depending on the substrate type. The samples were synthesized as gels and coatings of the composition corresponding the that of 3Al2O3·2SiO2 mullite because of the specific valuable properties of this material. The structure of the annealed bulk samples and coatings was studied by FT-IR spectroscopy and XRD method (in standard and GID configurations. Additionally, the electron microscopy (SEM together with EDS microanalysis were applied to describe the morphology and the chemical composition of thin films. The analysis of FT-IR spectra and X-ray diffraction patterns of bulk samples revealed the presence of γ-Al2O3 and δ-Al2O3 phases, together with the small amount of SiO2 in the particulate samples. This observation was confirmed by the bands due to vibrations of Al–O bonds occurring in γ-Al2O3 and δ-Al2O3 structures, in the range of 400 to 900 cm−1. The same phases (γ-Al2O3 and δ-Al2O were observed in the deposited coatings, but the presence of particulate ones strongly depended on the type of Al2O3 and SiO2 precursor and on the heat treatment temperature. All thin films contained considerable amounts of amorphous phase.

  8. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  9. Correlation between hardness and water absorption properties of Saudi kaolin and white clay geopolymer coating

    Science.gov (United States)

    Ramasamy, Shamala; Abdullah, Mohd Mustafa Al Bakri; Huang, Yue; Hussin, Kamarudin; Wang, Jin; Shahedan, Noor Fifinatasha

    2017-09-01

    Geopolymer is an uprising technology that is being studied worldwide. Geopolymer raw materials are basically aluminosilicate source materials. However, this technology is yet to infiltrate into pipelines and coating industries which initiated our research idea. The idea of creating universal geopolymer based coating material is mainly to help oil and gas industry reduce its maintenance cost. Kaolin based geopolymer paste was coated on glass reinforced epoxy (GRE) substrates which are majorly used as pipeline material in the oil and gas industry at Saudi Arabia. Kaolin and white clay was chosen as raw material to study the possibilities of utilizing underused aluminosilicate raw materials for geopolymer coating. To obtain suitable formulation, Na2SiO3/NaOH ratio was varied from 0.40 untill 0.60 while other parameters such as solid/liquid ratio and NaOH molarity were kept constant at values as per previous works. Geopolymer coated GRE substrates were then subjected to water absorption, flexural strength and hardness test to validate our findings. Water absorption is a crucial test as for coating materials which justifies the pratical usability of the coating product. Upon testing, kaolin and white clay based geopolymer coating each shows promising properties at Na2SiO3/NaOH ratio of 0.45 and 0.50 each.

  10. Relationships between stream nitrate concentration and spatially distributed snowmelt in high-elevation catchments of the western U.S.

    Science.gov (United States)

    Perrot, Danielle; Molotch, Noah P.; Williams, Mark W.; Jepsen, Steven M.; Sickman, James O.

    2014-11-01

    This study compares stream nitrate (NO3-) concentrations to spatially distributed snowmelt in two alpine catchments, the Green Lakes Valley, Colorado (GLV4) and Tokopah Basin, California (TOK). A snow water equivalent reconstruction model and Landsat 5 and 7 snow cover data were used to estimate daily snowmelt at 30 m spatial resolution in order to derive indices of new snowmelt areas (NSAs). Estimates of NSA were then used to explain the NO3- flushing behavior for each basin over a 12 year period (1996-2007). To identify the optimal method for defining NSAs and elucidate mechanisms underlying catchment NO3- flushing, we conducted a series of regression analyses using multiple thresholds of snowmelt based on temporal and volumetric metrics. NSA indices defined by volume of snowmelt (e.g., snowmelt ≤ 30 cm) rather than snowmelt duration (e.g., snowmelt ≤ 9 days) were the best predictors of stream NO3- concentrations. The NSA indices were better correlated with stream NO3- concentration in TOK (average R2= 0.68) versus GLV4 (average R2= 0.44). Positive relationships between NSA and stream NO3- concentration were observed in TOK with peak stream NO3- concentration occurring on the rising limb of snowmelt. Positive and negative relationships between NSA and stream NO3- concentration were found in GLV4 with peak stream NO3- concentration occurring as NSA expands. Consistent with previous works, the contrasting NO3- flushing behavior suggests that streamflow in TOK was primarily influenced by overland flow and shallow subsurface flow, whereas GLV4 appeared to be more strongly influenced by deeper subsurface flow paths.

  11. Nitration of benzo[a]pyrene adsorbed on coal fly ash particles by nitrogen dioxide: role of thermal activation.

    Science.gov (United States)

    Kristovich, Robert L; Dutta, Prabir K

    2005-09-15

    Nitration of benzo[a]pyrene (BaP) by nitrogen dioxide (NO2) adsorbed on the surface of thermally activated coal fly ash and model aluminosilicate particles led to the formation of nitrobenzo[a]pyrenes as verified by extraction and gas chromatography/mass spectrometry (GC/MS). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was utilized to follow the nitration reaction on the surface of zeolite Y. Nitrobenzo[a]pyrene formation was observed along with the formation of nitrous acid and nitrate species. The formation of the BaP radical cation was also observed on thermally activated aluminosilicate particles by electron spin resonance (ESR) spectroscopy. On the basis of GC/MS, DRIFTS, and ESR spectroscopy results, a mechanism of nitration involving intermediate BaP radical cations generated on thermally activated aluminosilicate particles is proposed. These observations have led to the hypothesis that nitration of adsorbed polyaromatic hydrocarbons on coal fly ash by reaction with nitrogen oxides can occur in the smokestack, but with the aging of the fly ash particles, the extent of the nitration reaction will be diminished.

  12. Impact of cationic diffusion on properties of iron-bearing glass fibres

    DEFF Research Database (Denmark)

    Smedskjaer, Morten M.; Yue, Yuanzheng; Deubener, Joachim

    2010-01-01

    A silica-rich surface layer of Fe3+-containing aluminosilicate glass fibres is created by means of an inward diffusion process of divalent network modifying cations. The latter is caused by the reduction of Fe3+ to Fe2+ when the fibres undergo a heat treatment at temperatures around the glass...... transition temperature (Tg) in a reducing H2/N2 atmosphere. The thickness of the surface layer can be adjusted by varying the temperature or the duration of the heat treatment. The reduction process has a significant impact on the glass transition and crystallization behaviour, high temperature stability...

  13. Articles for high temperature service and methods for their manufacture

    Science.gov (United States)

    Sarrafi-Nour, Reza; Meschter, Peter Joel; Johnson, Curtis Alan; Luthra, Krishan Lal; Rosenzweig, Larry Steven

    2016-06-14

    An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer comprising an alkaline-earth aluminosilicate disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites. A method for making such articles is also presented. The method comprises providing a substrate; disposing a self-sealing alkaline-earth aluminosilicate layer over the substrate; and heating the sealing layer to a sealing temperature at which at least a portion of the sealing layer will flow.

  14. Evaluation of practicability of aluminosilicate additive fuel. Influence of aluminosilicate for reprocessing and corrosion of pellet

    International Nuclear Information System (INIS)

    Matsunaga, Junji; Kashibe, Shinji; Kinoshita, Mika; Ishimoto, Shinji; Harada, Kenichi

    2014-01-01

    Al-Si-O additive fuel is a modified pellet to improve the pellet-cladding interaction (PCI) resistance. This practicability assessment concerns the effect of Al-Si-O addition on the reprocessing and steam corrosion behavior. To address these concerns, a fuel dissolution test in nitric acid and a pellet corrosion test in humidified gas were carried out using the irradiated Al-Si-O additive fuel. Regardless of the Al-Si-O concentration, the dissolution rates of all Al-Si-O additive fuels were faster than that of the standard fuel. The morphology of the insoluble residue obtained from the irradiated Al-Si-O additive fuel could be considered as acceptable for retrieval by the clarification process using a conventional precipitation model. The corrosion resistance of the irradiated Al-Si-O additive fuel to high-temperature (at 1273 K) humidified gas was comparable to or better than that of the standard fuel. The result was interpreted as being due to a large grain size effect by Al-Si-O addition. (author)

  15. Lime-pozzolana mortars in Roman catacombs: composition, structures and restoration

    International Nuclear Information System (INIS)

    Sanchez-Moral, Sergio; Luque, Luis; Canaveras, Juan-Carlos; Soler, Vicente; Garcia-Guinea, Javier; Aparicio, Alfredo

    2005-01-01

    Analyses of microsamples collected from Roman catacombs and samples of lime-pozzolana mortars hardened in the laboratory display higher contents in carbonated binder than other subaerial Roman monuments. The measured environmental data inside the Saint Callistus and Domitilla catacombs show a constant temperature of 15-17 deg C, a high CO 2 content (1700 to 3500 ppm) and a relative humidity close to 100%. These conditions and particularly the high CO 2 concentration speed-up the lime calcitization roughly by 500% and reduce the cationic diffusion to form hydrous calcium aluminosilicates. The structure of Roman catacomb mortars shows (i) coarser aggregates and thicker beds on the inside, (ii) thin, smoothed, light and fine-grained external surfaces with low content of aggregates and (iii) paintings and frescoes on the outside. The observed high porosity of the mortars can be attributed to cracking after drying linked with the high binder content. Hardened lime lumps inside the binder denote low water/mortar ratios for slaking. The aggregate tephra pyroclasts rich in aluminosilicate phases with accessorial amounts of Ba, Sr, Rb, Cu and Pb were analysed through X-ray diffraction (XRD), electron microprobe analysis (EMPA) and also by environmental scanning electron microscopy (ESEM) to identify the size and distribution of porosity. Results support procedures using local materials, special mortars and classic techniques for restoration purposes in hypogeal backgrounds

  16. Toxicity of 91Y inhaled in a relatively insoluble form by Beagle dogs. IX

    International Nuclear Information System (INIS)

    Hobbs, C.H.; Hahn, F.F.; McClellan, R.O.; Mauderly, J.L.; Muggenburg, B.A.; Pickrell, J.A.

    1978-01-01

    Studies of the radiation hazards due to inhalation of 91 Y in fused aluminosilicate particles have been undertaken in Beagle dogs to assess the biological consequences of inhaling a relatively insoluble, energetic beta emitter with an intermediate effective half-life in the lung. A radiation-dose pattern study in which 30 dogs were serially sacrificed from 0 to 320 days after inhalation exposure to 91 Y in fused aluminosilicate particles has been completed. A longevity study is in progress in which 96 dogs were exposed to achieve initial lung burdens ranging from 11 to 300 μCi 91 Y in fused aluminosilicate particles/kg body weight and 12 dogs were exposed to stable yttrium in fused aluminosilicate particles. To date, 56 dogs have died in the longevity study between 113 and 2841 days after exposure. Forty of these dogs, with cumulative radiation doses to lung between 8,300 and 60,000 rads, died with clinicopathologic findings of radiation pneumonitis and/or pulmonary fibrosis at 113 to 1011 days after exposure. Fifteen dogs that died between 1115 and 2841 days after exposure with cumulative doses to lung ranging from 16,000 to 25,000 rads had pulmonary carcinomas. One dog that died at 1847 days after exposure with a cumulative dose to lung of 9,700 rads had a hemangiosarcoma of the spleen. Forty exposed dogs with doses to lung of 2,400 to 18,000 rads and 12 control dogs remain alive from 2563 to 3116 days after inhalation exposure and will continue to be studied throughout the remainder of their life span to determine the relationship between radiation dose, dose rate and biologic effects

  17. The use of amorphous silica-alumina-based additive in the adhesive dry mixes of building materials

    Directory of Open Access Journals (Sweden)

    Loganina VI

    2018-01-01

    Full Text Available Proved the possibility of using amorphous aluminosilicate as a modifying agent for the adhesive dry mixes. Are given the data on the microstructure and chemical composition of the amorphous aluminosilicates. Installed , that the microstructure of the synthetic additives is characterized by particles of round shape, dimensions 5,208-5,704 μm, Also there are particles of elongated shape in size 7.13-8.56 μm. Predominate chemical elements O, Si, Na, S, and Al in quantity 60.69%, 31.26%, 24.23%, 18.69% and 8.29% respectively. Described the character changes in the rheological properties of cement-sand mortar, depending on the percentage of additives. Determined, that the introduction in the cement-sand mortar the additive based on amorphous aluminosilicate leads to higher values of plastic strength. Are given the model of cement stone strength using synthetic additives in the formulation. The results of the evaluation of the frost resistance of cement-based tile adhesives with the use of amorphous aluminosilicates as a modifying additive are presented. In the article is determined the mark on frost resistance of tile glue and frost resistance of the contact zone of tile glue. The evaluation of the performance properties of the layer of tile adhesive on the basis of cement, dry mixes. The calculation of the value of displacement of the adhesive layer made on the basis of the developed recipes cement dry mixes applied to a vertical surface. Experimental data obtained values of displacement tiles relative to the substrate. Described the results of physical and mechanical properties of tile adhesive made on the basis of the developed adhesive dry mix formulations.

  18. Toxicity of 144Ce inhaled in a relatively insoluble form by beagle dogs

    International Nuclear Information System (INIS)

    Boecker, B.B.; Hahn, F.F.; Muggenburg, B.A.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1980-01-01

    The metabolism, dosimetry and effects of 144 Ce inhaled in fused aluminosilicate particles are being investigated in the beagle dog to assess the long-term biological consequences of release of relatively insoluble aerosol forms of 144 Ce that could occur in nuclear accidents. The effects resulting from the relatively protracted radiation dose patterns to the lung from this form of 144 Ce are being compared with effects of other radiation dose patterns to the lung. One hundred eleven dogs were exposed to aerosols of 144 Ce in fused aluminosilicate particles to yield initial lung burdens of 0.0024 to 210 μCi/kg body weight and 15 control dogs were exposed to nonradioactive fused aluminosilicate particles. To date, 65 144 Ce-exposed and 2 control dogs have died or were euthanized at 143 to 4578 days after inhalation of 144 Ce. Prominent findings in the 144 Ce-exposed dogs were radiation pneumonitis in 17 dogs that died at early times and neoplastic disease in 39 of the 48 dogs that died 750 days or later. Observations are continuing on the 46 144 Ce-exposed and 13 control dogs remaining alive at this time, at least 3337 days after exposure

  19. Pump-induced refractive index changes in Tb{sup 3+} doped glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, T.A.; Santos, J.F.M. dos; Auad, Y.M; Nunes, L.A.O. [Instituto de Física de São Carlos, Universidade de São Paulo, SP (Brazil); Astrath, N.G.C; Baesso, M.L. [Departamento de Física, Universidade Estadual de Maringá, PR (Brazil); Catunda, T., E-mail: tomaz@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, SP (Brazil)

    2016-01-15

    It now well known in laser materials, that a refractive index change appears when the active ions are pumped from ground to excited state due to the polarizability difference between ground and excited states (metastable). In this paper this effect was investigated in Tb{sup 3+} doped glasses: calcium alumino phosphate (CAP), low-silica calcium aluminosilicate (LSCAS) and calcium aluminosilicate (CAS). The measurements were performed using the time resolved Z-scan technique, with an Ar{sup +} laser at 488 nm, close to the resonance of {sup 7}F{sub 6}→{sup 5}D{sub 4} absorption line, where {sup 5}D{sub 4} is a metastable state. We obtained for low-silica calcium aluminosilicate glass Δα{sub p}~10{sup −24} cm{sup 3} which is the highest value ever reported for a RE doped material. - Highlights: • Time resolved Z-scan measurements in 3 different Tb{sup 3+} doped glass. • Very high polarizability difference (Δα{sub p}), typically 1 order of magnitude higher than other rare earth ions. • Observations of higher order nonlinearities, such as-third, fifth and senventh order effects.

  20. Sol-Gel Derived Active Material for Yb Thin-Disk Lasers.

    Science.gov (United States)

    Almeida, Rui M; Ribeiro, Tiago; Santos, Luís F

    2017-09-02

    A ytterbium doped active material for thin-disk laser was developed based on aluminosilicate and phosphosilicate glass matrices containing up to 30 mol% YbO 1.5 . Thick films and bulk samples were prepared by sol-gel processing. The structural nature of the base material was assessed by X-ray diffraction and Raman spectroscopy and the film morphology was evidenced by scanning electron microscopy. The photoluminescence (PL) properties of different compositions, including emission spectra and lifetimes, were also studied. Er 3+ was used as an internal reference to compare the intensities of the Yb 3+ PL peaks at ~ 1020 nm. The Yb 3+ PL lifetimes were found to vary between 1.0 and 0.5 ms when the Yb concentration increased from 3 to 30 mol%. Based on a figure of merit, the best active material selected was the aluminosilicate glass composition 71 SiO₂-14 AlO 1.5 -15 YbO 1.5 (in mol%). An active disk, ~ 36 μm thick, consisting of a Bragg mirror, an aluminosilicate layer doped with 15 mol% Yb and an anti-reflective coating, was fabricated.

  1. Effect of pressure on the short-range structure and speciation of carbon in alkali silicate and aluminosilicate glasses and melts at high pressure up to 8 GPa: 13C, 27Al, 17O and 29Si solid-state NMR study

    Science.gov (United States)

    Kim, Eun Jeong; Fei, Yingwei; Lee, Sung Keun

    2018-03-01

    Despite the pioneering efforts to explore the nature of carbon in carbon-bearing silicate melts under compression, experimental data for the speciation and the solubility of carbon in silicate melts above 4 GPa have not been reported. Here, we explore the speciation of carbon and pressure-induced changes in network structures of carbon-bearing silicate (Na2O-3SiO2, NS3) and sodium aluminosilicate (NaAlSi3O8, albite) glasses quenched from melts at high pressure up to 8 GPa using multi-nuclear solid-state NMR. The 27Al triple quantum (3Q) MAS NMR spectra for carbon-bearing albite melts revealed the pressure-induced increase in the topological disorder around 4 coordinated Al ([4]Al) without forming [5,6]Al. These structural changes are similar to those in volatile-free albite melts at high pressure, indicating that the addition of CO2 in silicate melts may not induce any additional increase in the topological disorder around Al at high pressure. 13C MAS NMR spectra for carbon-bearing albite melts show multiple carbonate species, including [4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, [4]Al(CO3)[4]Al, and free CO32-. The fraction of [4]Si(CO3)[4]Al increases with increasing pressure, while those of other bridging carbonate species decrease, indicating that the addition of CO2 may enhance mixing of Si and Al at high pressure. A noticeable change is not observed for 29Si NMR spectra for the carbon-bearing albite glasses with varying pressure at 1.5-6 GPa. These NMR results confirm that the densification mechanisms established for fluid-free, polymerized aluminosilicate melts can be applied to the carbon-bearing albite melts at high pressure. In contrast, the 29Si MAS NMR spectra for partially depolymerized, carbon-bearing NS3 glasses show that the fraction of [5,6]Si increases with increasing pressure at the expense of Q3 species ([4]Si species with one non-bridging oxygen as the nearest neighbor). The pressure-induced increase in topological disorder around Si is evident from an

  2. Needs, requirements and challenges for technical support to nuclear safety authority

    International Nuclear Information System (INIS)

    Madonna, A.; Orsini, G.

    2010-01-01

    To face the very broad range of technical matters on which the regulatory and licensing activity are based, and related research and development activity, the Nuclear Safety Authorities (NSA) may need to rely upon external technical and scientific support. In providing technical support to NSA, the experience shows, from one side, the importance to have technical support organizations (TSO) with recognized competence, independence and appropriate regulatory view, and from the other side, the importance to have within the NSAs well developed management and technical capability to address, coordinate and use the results of the external technical support. Retaining the NSA the full responsibility for the final decision. Under which conditions and modus operandi the external support shall be provided in order to comply with requirements of being independent, competent and timely provided, fulfilling the administrative procedures, is the subject of attention and consideration of TSO function today. The Italian regulatory body is currently going to be institutionally re-established according to new law approved in 2009 /1/ and it needs to be resourced and fully organized with necessary capacities in the nearest future. The perspective of a new nuclear program, recently launched by the government, with significant incoming tasks for regulation and licensing, against the existing limited resources, let foresee a substantial potential need for technical support and advice. ITER-Consult (Ltd), created in 2003 in Italy, has well developed capabilities to provide independent technical evaluation and support to NSAs, to maintain safety culture and updated knowledge, to transfer know how and to establish international cooperation and networking. This mission is guided assuming as values the independence, the professional competence, the transparency, the credibility and the establishment of respectful relationship with the partners. Challenges exist for funding and operational

  3. Improvement of Reliability of Diffusion Tensor Metrics in Thigh Skeletal Muscles.

    Science.gov (United States)

    Keller, Sarah; Chhabra, Avneesh; Ahmed, Shaheen; Kim, Anne C; Chia, Jonathan M; Yamamura, Jin; Wang, Zhiyue J

    2018-05-01

    Quantitative diffusion tensor imaging (DTI) of skeletal muscles is challenging due to the bias in DTI metrics, such as fractional anisotropy (FA) and mean diffusivity (MD), related to insufficient signal-to-noise ratio (SNR). This study compares the bias of DTI metrics in skeletal muscles via pixel-based and region-of-interest (ROI)-based analysis. DTI of the thigh muscles was conducted on a 3.0-T system in N = 11 volunteers using a fat-suppressed single-shot spin-echo echo planar imaging (SS SE-EPI) sequence with eight repetitions (number of signal averages (NSA) = 4 or 8 for each repeat). The SNR was calculated for different NSAs and estimated for the composite images combining all data (effective NSA = 48) as standard reference. The bias of MD and FA derived by pixel-based and ROI-based quantification were compared at different NSAs. An "intra-ROI diffusion direction dispersion angle (IRDDDA)" was calculated to assess the uniformity of diffusion within the ROI. Using our standard reference image with NSA = 48, the ROI-based and pixel-based measurements agreed for FA and MD. Larger disagreements were observed for the pixel-based quantification at NSA = 4. MD was less sensitive than FA to the noise level. The IRDDDA decreased with higher NSA. At NSA = 4, ROI-based FA showed a lower average bias (0.9% vs. 37.4%) and narrower 95% limits of agreement compared to the pixel-based method. The ROI-based estimation of FA is less prone to bias than the pixel-based estimations when SNR is low. The IRDDDA can be applied as a quantitative quality measure to assess reliability of ROI-based DTI metrics. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The structure of actinide ions exchanged into native and modified zeolites and clays

    International Nuclear Information System (INIS)

    Wasserman, S. R.; Soderholm, L.; Giaquinta, D. M.

    2000-01-01

    X-ray absorption spectroscopy (XAS) has been used to investigate the structure and valence of thorium (Th 4+ ) and uranyl (UO 2 2+ ) cations exchanged into two classes of microporous aluminosilicate minerals: zeolites and smectite clays. XAS is also employed to examine the fate of the exchanged cations after modification of the mineral surface using self-assembled organic films and/or exposure to hydrothermal conditions. These treatments serve as models for the forces that ultimately determine the chemical fate of the actinide cations in the environment. The speciation of the cations depends on the pore size of the aluminosilicate, which is fixed for the zeolites and variable for the smectites

  5. Thermal insulation coating based on water-based polymer dispersion

    Directory of Open Access Journals (Sweden)

    Panchenko Iuliia

    2018-01-01

    Full Text Available For Russia, due to its long winter period, improvement of thermal insulation properties of envelope structures by applying thermal insulation paint and varnish coating to its inner surface is considered perspective. Thermal insulation properties of such coatings are provided by adding aluminosilicate microspheres and aluminum pigment to their composition. This study was focused on defining the effect of hollow aluminosilicate microspheres and aluminum pigment on the paint thermal insulation coating based on water-based polymer dispersion and on its optimum filling ratio. The optimum filling ratio was determined using the method of critical pigment volume concentration (CPVC. The optimum filling ratio was found equal to 55%.

  6. Biological and chemical interactions excelerating the removal of impurities from fly ashes

    Directory of Open Access Journals (Sweden)

    Štyriaková Iveta

    2002-03-01

    Full Text Available The mesophilic bacteria were isolated from the deposit of fly ash in Chalmová (Slovakia and identified using the BBL identification system. Bacillus cereus was the dominant species in this deposit of aluminosilicate minerals. Under laboratory conditions , Bacillus cereus accelerated the extraction of major and trace impurities in fly ash during bioleaching processes. This process was dependent on bacterial adhesion and production of organic acids. The effect of organic acids produced by bacteria was detected especially in sites where impregnated metals were found in the aluminosilicate structure. Amorphous spherical aluminosilicate particles in allotriomorphic aluminosilicate grains represent a main mineral component of fly-ash in which also elements such as Fe, Ti, Mn, As are bound. The rate of mobilization of Al, Si and Ti from coal fly ash under biochemically relevant conditions in vitro was previously shown to depend on the quantity of the ash microspheres. The qualitative EDS analyse of leachates confirmed the extraction of toxic elements (As and Mn from the initial sample of fly ash.Heterotrophic bacteria of Bacillus genus are capable to remove impurities from deposited fly-ash. A long-term deposition of energy fly-ash causes chemical and mineralogical changes as a result of weathering processes. Depending on the composition of coal concentrate containing SiO2, Al2O3, Fe2O3, CaO, MgO and other oxides, fly ash can provide a useful preliminary batch for the preparation of glass-ceramics or zeolite after extracting of bacterially dissolved elements from it. The mobility of major impurities (Ca and Fe and heavy metals, caused by biochemical leaching of fly ash, suggests the possibility of the development of an alternative way of this raw material treatment. The advantage of bioleaching is relatively low cost and the subsequent low demand for energy compared with conventional technologies.

  7. Hydrothermal synthesis of silica rich zeolites and microporous martials

    International Nuclear Information System (INIS)

    Durrani, S.K.; Chughtai, N.A.; Akhtar, J.; Arif, M.; Ahmed, M.

    1999-01-01

    A fast crystallization method for synthesis of silica rich aluminosilicate and ferro silicate zeotype materials has been reported. The method also permits for the complete crystallization of silico alumino phosphate microporous materials. Aluminosilicate and ferro silicate silica rich zeotype materials and silico alumino phosphate microporous materials have been synthesized from the reaction mixture of colloidal silica sol, reactive aluminum, ferrous and phosphorous salts, and the essential organic templates at 373-473 K and were characterized by TG/DTA/DSC, X-ray diffraction, scanning electron microscopy and other analytical techniques. Crystallinity and unit cell parameters of the synthesized materials were found to be the function of Al and Fe content of zeolites. (author)

  8. Method for removing trace contaminants from multicurie amounts of 144Ce

    International Nuclear Information System (INIS)

    Wagner, J.A.; Kanapilly, G.M.

    1976-01-01

    Removal of contaminants from stock solutions of 144 Ce(III) was required for large quantities of 144 Ce prior to incorporation into fused aluminosilicate particles for inhalation toxicology studies. Since available procedures for purification of 144 Ce could not be readily adapted to our laboratory conditions and requirements, a simple procedure was developed to purify 144 Ce in multicurie quantities of 144 Ce(III). This procedure consists of separation of 144 Ce from contaminants by precipitation and filtrations at different pH. Its simplicity and efficacy in providing a stock solution that would readily exchange into montmorillonite clay was demonstrated when it was used during the preparation of large amounts of 144 Ce in fused aluminosilicate particles

  9. Flotation and screening recovery of titanium minerals from a monazite mineral sands circuit

    International Nuclear Information System (INIS)

    Bruckard, W.J.; Heyes, G.W.; Guy, P.J.

    2001-01-01

    Investigations were undertaken to assess the suitability of CSIRO flotation methods for improving the efficiency of separation of heavy minerals in the monazite circuit at the Westralian Sands Limited operations at Capel, Western Australia. Flotation work was conducted on two plant samples. The first was a high-titanium product containing considerable amounts of zircon and silica as quartz and aluminosilicates, and the second was a low monazite/zircon material containing high levels of silica. A three-stage process including reverse flotation was developed to treat the first sample. In this process monazite, zircon, quartz, and aluminosilicates were selectively concentrated by flotation and screening to produce a titanium-rich product. In the first stage, an acid amine float, monazite, zircon, and some non-zircon silica were recovered and in the second stage, an alkaline amine float using a fluoride activator, more quartz and staurolite were floated. The titanium minerals were thus concentrated in the unfloated fraction. In the third stage, the titanium-rich flotation tail was screened at 250 μm to remove the remaining coarse aluminosilicates. In a single pass, the three-stage process yielded a TiO 2 recovery of 64.0 per cent with the titanium-rich product assaying 70.3 per cent TiO 2

  10. Effect of silica fume on the characterization of the geopolymer materials

    Science.gov (United States)

    Khater, Hisham M.

    2013-12-01

    The influence of silica fume (SF) addition on properties of geopolymer materials produced from alkaline activation of alumino-silicates metakaolin and waste concrete produced from demolition works has been studied through the measurement of compressive strength, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy (SEM) analysis. Alumino-silicate materials are coarse aggregate included waste concrete and fired kaolin (metakaolin) at 800°C for 3 h, both passing a sieve of 90 μm. Mix specimens containing silica fume were prepared at water/binder ratios in a range of 0.30 under water curing. The used activators are an equal mix of sodium hydroxide and silicate in the ratio of 3:3 wt.%. The control geopolymer mix is composed of metakaolin and waste concrete in an equal mix (50:50, wt.%). Waste concrete was partially replaced by silica fume by 1 to 10 wt.%. The results indicated that compressive strengths of geopolymer mixes incorporating SF increased up to 7% substitution and then decreased up to 10% but still higher than that of the control mix. Results indicated that compressive strengths of geopolymer mixes incorporating SF increases up to 7% substitution and then decreases up to 10% but still higher than the control mix, where 7% SF-digested calcium hydroxide (CH) crystals, decreased the orientation of CH crystals, reduced the crystal size of CH gathered at the interface, and improved the interface more effectively.

  11. A new titanium-bearing calcium aluminosilicate phase. 2: Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminium-rich inclusions

    Science.gov (United States)

    Barber, David J.; Beckett, John R.; Paque, Julie M.; Stolper, Edward

    1994-01-01

    The crystallography and crystal chemistry of a new calcium- titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 +/- 0.02 nm and c = 0.492 +/- 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)(sub UNK) parallel (001)(sub mel) and zone axis group 1 0 -1 0(sub UNK) parallel zone axis group 1 0 0(sub mel). If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3m1 or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3-1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as Ca(sub 3)(sup VIII)(Ti,Al)(sup VI)(Al,Ti,Si)(sub 2)(sup IV)(Si,Al)(sub 3)(sup IV)O14 with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti

  12. Effects of Sodium Hydroxide and Sodium Aluminate on the Precipitation of Aluminum Containing Species in Tank Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David T.; Parker, Kent E.; McCready, David E.; Wang, Li Q.

    2006-01-01

    Aluminisilicate deposit buildup experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down. Studies were conducted at 80 C to identify the insoluble aluminosilicate phase(s) and to determine the kinetics of their formation and transformation. These tests were carried out under conditions more similar to those that occur in HLW tanks and evaporators. Comparison of our results with those reported from the site show very similar trends. Initially, an amorphous phase precipitates followed by a zeolite phase that transforms to sodalite and which finally converts to cancrinite. Our results also show the expected trend of an increased rate of transformation into denser aluminosilicate phases (sodalite and cancrinite) with time and increasing hydroxide concentrations

  13. An evaluation of electric melter refractories for contact with glass used for the immobilisation of nuclear waste

    International Nuclear Information System (INIS)

    Hayward, P.J.; George, I.M.

    1987-01-01

    Corrosion tests have been performed on twelve candidate refractories in contact with borosilicate, titanosilicate, and aluminosilicate melts, in order to rank them for use in an all-electric melter for the production of waste form materials suitable for immobilising nuclear fuel recycle wastes. Viscosities and electrical conductivities of the melts have also been measured to enable optimum processing conditions to be determined. Of the materials tested, the choice of glass contact refractory for the Joule heated melting of the borosilicate and titanosilicate compositions is Monofrax K3 or SEPR 2161, in conjunction with tin oxide electrodes. The aluminosilicate glass waste form would require an alternative method of production (sol-gel processing, or sintering of a precursor frit), because of its high viscosity. (author)

  14. Syntheses, characterizations, and catalytic activities of mesostructured aluminophosphates with tailorable acidity assembled with various preformed zeolite nanoclusters

    KAUST Repository

    Suo, Hongri; Zeng, Shangjing; Wang, Runwei; Zhang, Zongtao; Qiu, Shilun

    2015-01-01

    © 2015, Springer Science+Business Media New York. A series of ordered hexagonal mesoporous zeolites have been successfully synthesized by the assembly of various preformed aluminosilicates zeolite (MFI, FAU, BEA etc.) with surfactants

  15. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.; Unocic, Kinga A.; Bae, Tae-Hyun; Jones, Christopher W.; Nair, Sankar

    2012-01-01

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics

  16. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    Science.gov (United States)

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  17. Toxicity of 144Ce inhaled in a relatively insoluble form by immature Beagle dogs. XVII

    International Nuclear Information System (INIS)

    Boeker, B.B.; Muggenburg, B.A.; Hahn, F.F.; Mauderly, J.L.; McClellan, R.O.

    1988-01-01

    Immature Beagle dogs (3-mo old) received a single, brief inhalation exposure to 144 Ce in fused aluminosilicate particles as part of a series of studies designed to study the effects of age on dose response relationships for inhaled radionuclides. Forty-nine dogs inhaled graded levels of 144 Ce that resulted in initial lung burdens ranging from 0.004-140 μCi/kg 0.15-5200 kBq/kg) body weight. Five control dogs inhaled nonradioactive fused aluminosilicate particles. Forty-one of the 144 Ce-exposed dogs have died: 11 with lung tumors 4 with tumors of the tracheobronchial lymph nodes, with a nasal cavity tumor, and 9 with non neoplastic diseases of the respiratory tract. Observations are continuing on the 8 144 Ce-exposed dogs that are surviving at this time. (author)

  18. Comparative Potential Protect Effect of HSCAS, Diatomite and ...

    African Journals Online (AJOL)

    mdenli

    bentonite (Rosa et al., 2001), zeolite (Miazzo et al., 2000), hydrated sodium calcium aluminosilicate. (HSCAS) ... Due to these properties diatomite was selected for use in this experiment to compare ..... Aflatoxins in animal and human health.

  19. Study of parameters of heat treatment in obtaining glass ceramic materials with addition of the industrial waste

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Martins, G.J.M.; Riella, H.G.; Matsinhe, Jonas; Kuhnen, N.C.

    2012-01-01

    The production of materials from crystallization of glass, called glass ceramic, have proved interesting by the possibility of development of different microstructures, with reduced grain size and the presence of residual amorphous phase in different quantities. The method that uses the differential thermal analysis (DTA) provides research on the material properties over a wide temperature range, it's widely applied to crystallization processes of glass ceramic materials. Within this context, this paper aims to study the kinetics of nucleation and crystal growth in glass ceramic materials in the system SiO 2 - Al 2 O 3 -Li 2 O, obtained with the addition of mineral coal bottom ash as source of aluminosilicates, through the technique of differential thermal analysis. (author)

  20. Assessment of the influences of groundwater colloids on the migration of technetium-99 at the Paducah Gaseous Diffusion Plant Site in Paducah, Kentucky

    International Nuclear Information System (INIS)

    Gu, B.; McDonald, J.A.; McCarthy, J.F.; Clausen, J.L.

    1994-07-01

    This short report summarizes the influences of groundwater colloids on the migration/transport of 99 Tc at the Paducah Gaseous Diffusion Plant (PGDP) site in Paducah, Kentucky. Limited data suggest that inorganic colloidal materials (e.g., aluminosilicate clay minerals) may not play a significant role in the retention and transport of Tc. Studies by size fractionation reveal that both Tc and natural organic matter (NOM) are largely present in the -8 mol/L or parts per billion), regardless of the redox conditions, Tc will stay in solution phase as TC(IV) or Tc(VII). The mechanisms of adsorption/association vs precipitation must be understood under reduced and low Tc conditions so that strategic plans for remediation of Tc contaminated soils and groundwaters can be developed

  1. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  2. Tin Valence and Local Environments in Silicate Glasses as Determined From X-ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    McKeown, D.; Buechele, A.; Gan, H.; Pegg, I.

    2008-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize the tin (Sn) environments in four borosilicate glass nuclear waste formulations, two silicate float glasses, and three potassium aluminosilicate glasses. Sn K-edge XAS data of most glasses investigated indicate Sn4+O6 units with average Sn-O distances near 2.03 Angstroms. XAS data for a float glass fabricated under reducing conditions show a mixture of Sn4+O6 and Sn2+O4 sites. XAS data for three glasses indicate Sn-Sn distances ranging from 3.43 to 3.53 Angstroms, that suggest Sn4+O6 units linking with each other, while the 4.96 Angstroms Sn-Sn distance for one waste glass suggests clustering of unlinked Sn4+O6 units.

  3. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie; Zhu, Yihan; Zhu, Liangkui; Rigutto, Marcello S.; Van Der Made, Alexander W.; Yang, Chengguang; Pan, Shuxiang; Wang, Liang; Zhu, Longfeng; Jin, Yinying; Sun, Qi; Wu, Qinming; Meng, Xiangju; Zhang, Daliang; Han, Yu; Li, Jixue; Chu, Yueying; Zheng, Anmin; Qiu, Shilun; Zheng, Xiaoming; Xiao, Fengshou

    2014-01-01

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a

  4. Understanding the structural origin of crystalline phase transformations in nepheline (NaAlSiO4)-based glass-ceramics

    Czech Academy of Sciences Publication Activity Database

    Deshkar, A.; Marcial, J.; Southern, S. A.; Kobera, Libor; Bryce, D. L.; McCloy, J. S.; Goel, A.

    2017-01-01

    Roč. 100, č. 7 (2017), s. 2859-2878 ISSN 0002-7820 Institutional support: RVO:61389013 Keywords : aluminosilicates * crystals/crystallization * glass Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.841, year: 2016

  5. AFRREV IJAH, Vol.3 (2) April, 2014

    African Journals Online (AJOL)

    Austin

    2014-04-10

    Apr 10, 2014 ... impingement resistance; resistance to slag, fumes etc; and good constructional ... high in aluminosilicate, silica and magnesite etc will be sourced. Test ..... Mortar was used to fill the gaps, between the bricks and hold them.

  6. Strength properties of cement slurries with lightweights applied in oil and gas wells

    International Nuclear Information System (INIS)

    Bubnov, A S; Drilling Mud and Cement Slurry (Russian Federation))" data-affiliation=" (Head of Laboratory Drilling Mud and Cement Slurry (Russian Federation))" >Boyko, I A; Drilling Mud and Cement Slurry (Russian Federation))" data-affiliation=" (PhD, Engineer, Laboratory Drilling Mud and Cement Slurry (Russian Federation))" >Khorev, V S

    2015-01-01

    The article is focused on the cement stone strength properties resulted from lightweight cement slurries that meet GOST-1581-96 (state Standards) requirements. Exfoliated vermiculite, hollow aluminosilicate microspheres (HAMs), diatomite and perlite were used as lightweighting additives

  7. Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    Different acidic heterogeneous catalysts like alumina, aluminosilicate, zirconium phosphate, niobic acid, ion-exchange resin Amberlyst-15, and zeolite MOR have been studied in fructose dehydration to 5-hydroxymethylfurfural (HMF). The acidity of these materials was characterized using

  8. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    Science.gov (United States)

    Mandal, A. K.; Sinha, O. P.

    2018-02-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  9. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    Science.gov (United States)

    Mandal, A. K.; Sinha, O. P.

    2018-06-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  10. Geopolymer obtained from coal ash

    International Nuclear Information System (INIS)

    Conte, V.; Bissari, E.S.; Uggioni, E.; Bernardin, A.M.

    2011-01-01

    Geopolymers are three-dimensional alumino silicates that can be rapidly formed at low temperature from naturally occurring aluminosilicates with a structure similar to zeolites. In this work coal ash (Tractebel Energy) was used as source of aluminosilicate according a full factorial design in eight formulations with three factors (hydroxide type and concentration and temperature) and two-levels. The ash was dried and hydroxide was added according type and concentration. The geopolymer was poured into cylindrical molds, cured (14 days) and subjected to compression test. The coal ash from power plants belongs to the Si-Al system and thus can easily form geopolymers. The compression tests showed that it is possible to obtain samples with strength comparable to conventional Portland cement. As a result, temperature and molarity are the main factors affecting the compressive strength of the obtained geopolymer. (author)

  11. Geopolymer obtained from coal ash; Geopolimeros obtidos a partir de cinzas de carvao mineral

    Energy Technology Data Exchange (ETDEWEB)

    Conte, V.; Bissari, E.S.; Uggioni, E.; Bernardin, A.M., E-mail: amb@unesc.net [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Grupo de Materiais Ceramicos e Vitreos

    2011-07-01

    Geopolymers are three-dimensional alumino silicates that can be rapidly formed at low temperature from naturally occurring aluminosilicates with a structure similar to zeolites. In this work coal ash (Tractebel Energy) was used as source of aluminosilicate according a full factorial design in eight formulations with three factors (hydroxide type and concentration and temperature) and two-levels. The ash was dried and hydroxide was added according type and concentration. The geopolymer was poured into cylindrical molds, cured (14 days) and subjected to compression test. The coal ash from power plants belongs to the Si-Al system and thus can easily form geopolymers. The compression tests showed that it is possible to obtain samples with strength comparable to conventional Portland cement. As a result, temperature and molarity are the main factors affecting the compressive strength of the obtained geopolymer. (author)

  12. Are the dynamics of silicate glasses and glass-forming liquids embedded in their elastic properties?

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, John C.

    According to the elastic theory of the glass transition, the dynamics of glasses and glass-forming liquids are controlled by the evolution of shear modulus. In particular, the elastic shoving model expresses dynamics in terms of an activation energy required to shove aside the surrounding atoms......, which is determined by the shear modulus. First, we here present an in situ high-temperature Brillouin spectroscopy test of the shoving model near the glass transition of eight aluminosilicate glass-forming systems. We find that the measured viscosity data agree qualitatively with the measured...... temperature dependence of shear moduli, as predicted by the shoving model. However, the model systematically underpredicts the values of fragility. Second, we also present a thorough test of the shoving model for predicting the low temperature dynamics of an aluminosilicate glass system. This is done...

  13. Low Temperature Waste Immobilization Testing Vol. I

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

    2006-09-14

    The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste forms—alkali-aluminosilicate hydroceramic cement, “Ceramicrete” phosphate-bonded ceramic, and “DuraLith” alkali-aluminosilicate geopolymer—were selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

  14. Toxicity of {sup 144}Ce inhaled in a relatively insoluble form by immature Beagle dogs. XVII

    Energy Technology Data Exchange (ETDEWEB)

    Boeker, B B; Muggenburg, B A; Hahn, F F; Mauderly, J L; McClellan, R O

    1988-12-01

    Immature Beagle dogs (3-mo old) received a single, brief inhalation exposure to {sup 144}Ce in fused aluminosilicate particles as part of a series of studies designed to study the effects of age on dose response relationships for inhaled radionuclides. Forty-nine dogs inhaled graded levels of {sup 144}Ce that resulted in initial lung burdens ranging from 0.004-140 {mu}Ci/kg 0.15-5200 kBq/kg) body weight. Five control dogs inhaled nonradioactive fused aluminosilicate particles. Forty-one of the {sup 144}Ce-exposed dogs have died: 11 with lung tumors 4 with tumors of the tracheobronchial lymph nodes, with a nasal cavity tumor, and 9 with non neoplastic diseases of the respiratory tract. Observations are continuing on the 8 {sup 144}Ce-exposed dogs that are surviving at this time. (author)

  15. Gehlenite and anorthite formation from fluid fly ash

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Šupová, Monika; Hanzlíček, Tomáš

    2018-01-01

    Roč. 1157, April (2018), s. 476-481 ISSN 0022-2860 Institutional support: RVO:67985891 Keywords : Phase changes * Fluid fly ash * Aluminosilicate * Gehlenite * Anorthite * Infrared analysis Subject RIV: DM - Solid Waste and Recycling Impact factor: 1.753, year: 2016

  16. Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren

    2008-01-01

    The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...

  17. Effect of curing time on microstructure and mechanical strength ...

    Indian Academy of Sciences (India)

    4 group is charge-balanced by alkali cations (typically Na. + and/or. K. +) available in the alkaline ... years, the use of different alumino-silicate materials have been performed: natural .... 48h of thermal treatment. After this curing age, the flexu-.

  18. Effect of fly ash composition on the sulfate resistance of concrete[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, R.D.; Thomas, M.D.A. [New Brunswick Univ., Fredericton, NB (Canada); Folliard, K.J.; Drimalas, T. [Texas Univ., Austin, TX (United States)

    2009-07-01

    Studies have shown that low-calcium Class F fly ashes obtained from burning coal in power stations can increase the sulfate resistance of Portland cement concrete. In many cases the sulfate resistance of concrete containing high-calcium Class C fly ash can be reduced compared to concrete without fly ash, due to the presence of crystalline C3A in the fly ash and calcium aluminate in the glass. This study investigated the differences in the glass composition and sulfate resistance of fly ashes with a range of calcium contents. The objective was to determine whether the behaviour of high-calcium fly ashes could be improved by blending with low-calcium fly ash. The sulfate resistance of cementitious systems consisting of a Type I Portland cement blended with Class F and Class C fly ashes of varying composition was evaluated by monitoring the length change of mortar bars stored in 5 per cent sodium sulfate solution. Scanning electron microscopy and electron dispersive X-ray analysis were used to characterize the glass phases of the fly ashes. The position occupied by the glass when plotted on a CaO-SiO{sub 2}-Al{sub 2}O{sub 3} ternary was identified as belonging to one of the fields occupied by the mineral phases mullite, anorthosite or gehlenite. The glass showed a transition from alumino-silicate in Class F fly ash to a calcium alumino-silicate or mixed calcium-aluminate/alumino-silicate in Class C fly ashes with higher calcium contents. Fly ashes with high amounts of calcium-aluminate glass had reduced sulfate resistance when tested in mortars. Blends of Class C and Class F fly ashes had better sulfate resistance than mixes made with only Class C fly ash. A relationship was established between the calcium oxide content of the blended fly ash and sulfate resistance of mortar. 8 refs., 5 tabs., 10 figs.

  19. Review of pump suction reducer selection: Eccentric or concentric reducers

    OpenAIRE

    Mahaffey, R M; van Vuuren, S J

    2014-01-01

    Eccentric reducers are traditionally recommended for the pump suction reducer fitting to allow for transportation of air through the fitting to the pump. The ability of a concentric reducer to provide an improved approach flow to the pump while still allowing air to be transported through the fitting is investigated. Computational fluid dynamics (CFD) were utilised to analyse six concentric and six eccentric reducer geometries at four different inlet velocities to determine the flow velocity ...

  20. Fluorescence properties of valence-controlled Eu2+ and Mn2+ ions in aluminosilicate glasses

    International Nuclear Information System (INIS)

    Van Tuyen, Ho; Nonaka, Takamasa; Yamanaka, Ken-ichi; Chau, Pham Minh; Quy Hai, Nguyen Thi; Quang, Vu Xuan; Nogami, Masayuki

    2017-01-01

    Controlling of valence states of metal ions doped in glasses has attracted considerable interest due to the possibility of looking toward optical applications. In this study, new Na 2 O-Al 2 O 3 -SiO 2 glasses were developed to dope Eu 2+ and Mn 2+ with well controlled valence states by heating in H 2 gas atmosphere, and the changes in the valence state of doped-ions and their fluorescence properties were investigated using visible and infrared optical absorption spectroscopies, X-ray absorption fine structure spectroscopy, and fluorescence spectroscopy. Among Eu 3+ , Mn 3+ and Mn 2+ ions incorporated in the as-prepared glasses, the Eu 3+ and Mn 3+ ions were reduced to Eu 2+ and Mn 2+ ions, respectively, by heating in H 2 gas and OH bonds were concurrently formed. The fluorescence spectra of glasses heated in H 2 exhibited broad emission bands at 450 and 630 nm wavelength, assigned to the Eu 2+ and Mn 2+ , respectively, ions, in which the fluorescence intensity at 450 nm was observed to decrease with increasing Mn 2+ ion content. The increased fluorescence intensities were analyzed as the energy transfer from Eu 2+ to Mn 2+ ions and the energy transfer efficiency was estimated with a concentration of Eu 2+ and Mn 2+ ions.

  1. The Gordian knot: managing herring (Clupea harengus) bridging across populations, fishery units, management areas, and politics

    DEFF Research Database (Denmark)

    Worsøe Clausen, Lotte; Mosegaard, Henrik; Berg, Casper Willestofte

    2012-01-01

    –24) and the North Sea (Division IIIa) by various EU—and in the latter case also non‐EU—fishing fleets. For the two separate management areas, TACs are set at different times in the yearly TACsetting process by the EU and negotiating counties, which often result in conflicts over quota allocations among different......The management of western Baltic spring spawning (WBSS) herring is challenged by the highly complex stock structure with a temporal and geographical distribution leading to conflicting interests among different stakeholder groups. The stock is exploited in the Baltic Sea (Subdivisions 22...... management units. The WBSS herring stock spawns in the western Baltic Sea and migrates into the Kattegat and Skagerrak areas, where it mixes with North Sea autumn spawning (NSAS) herring. Recent development of otolith shape analysis has enabled a high‐resolution separation of herring stocks in these waters...

  2. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  3. 8 Dissolution Kinetics

    African Journals Online (AJOL)

    user

    Experiments measuring the dissolution rates of stilbite (NaCa [Al Si O ].14H O) in pH-buffered ... The rate law was established as R = k (a ) , where k is ... crystalline hydrated aluminosilicate minerals ..... from the crushing process, thin edges or.

  4. Synthesis of MCM-41 nanomaterial from Algerian bentonite ...

    African Journals Online (AJOL)

    Mesoporous materials of the MCM-41 type were synthesized from Algerian bentonite as an aluminosilicate source without the addition of pure silica and aluminum reagents. The samples were synthesized under hydrothermal condition using cetyltrimithylammonium bromide (CTAB) as surfactant. The influence of initial ...

  5. Halloysite nanotube-magnetic iron oxide nanoparticle hybrids for the rapid catalytic decomposition of pentachlorophenol

    NARCIS (Netherlands)

    Tsoufis, T.; Katsaros, F.; Kooi, B. J.; Bletsa, E.; Papageorgiou, S.; Deligiannakis, Y.; Panagiotopoulos, I.

    2017-01-01

    Halloysite clay are a very attractive class of alumino-silicate based, natural nanotubes possessing high aspect ratio, significant thermal and mechanical stability, as well as tunable surface chemistry. We report a novel, facile, synthetic approach involving a modified wet-impregnation method for

  6. Novel family of solid acid catalysts: substantially amorphous or partially crystalline zeolitic materials

    CSIR Research Space (South Africa)

    Nicolaides, CP

    1999-01-01

    Full Text Available of the samples obtained at the various temperatures showed that for synthesis temperatures of up to 70 degrees C, X-ray amorphous aluminosilicates were obtained, whereas treatment at 90 degrees C produced a material exhibiting a 2% XRD crystallinity. Higher...

  7. Zeolite Chemistry Studied at the Level of Single Particles, Molecules and Atoms

    NARCIS (Netherlands)

    Ristanovic, Z.

    2016-01-01

    Zeolites are microporous aluminosilicates that find a wide-spread application as catalysts in the oil refining and petrochemical industries. Zeolite acidity and related chemistry play a major role in numerous catalytic processes and it is of significant practical interest to understand their

  8. Chemical Design of Functional Nanomaterials

    DEFF Research Database (Denmark)

    Egeblad, Kresten

    This thesis deals with a very specific class of functional nanomaterials known as mesoporous zeolites. Zeolites are a class of crystalline aluminosilicate minerals characterized by featuring pores or cavities of molecular dimensions as part of their crystal structure. Mesoporous zeolites are zeol...

  9. Optical absorption and photoluminescence properties of chromium in different host glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lachheb, R., E-mail: raouialach66@gmail.com [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Herrmann, A. [Otto-Schott-Institut, Jena University, Fraunhoferstraße 6, 07743 Jena (Germany); Damak, K. [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Rüssel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstraße 6, 07743 Jena (Germany); Maâlej, R. [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia)

    2017-06-15

    The optical absorption, excitation and fluorescence spectra, and emission lifetimes of chromium (III) were investigated in a wide variety of oxide glasses (aluminosilicate, aluminate and phosphate). For all glasses, weak crystal field strengths were deduced from the absorption spectra. The effect of the glass matrix and the Cr{sup 3+} concentration on the fluorescence properties of Cr{sup 3+} ions were investigated. An increased fluorescence intensity of Cr{sup 3+}was found for glasses of low optical basicity, the spectral position of the Cr{sup 3+} absorption and emission, however, was hardly influenced by the glass composition. The optical absorption spectra of the chromium doped aluminosilicate and aluminate glasses showed the presence of Cr{sup VI}, while in phosphate glasses most chromium occurred as Cr{sup 3+} ions. Furthermore, for the glass with the lowest basicity, the Cr{sup 3+}concentration was optimized in order to achieve maximum fluorescence emission intensity.

  10. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  11. FABRICATION OF CNTS BY TOLUENE DECOMPOSITION IN A NEW REACTOR BASED ON AN ATMOSPHERIC PRESSURE PLASMA JET COUPLED TO A CVD SYSTEM

    Directory of Open Access Journals (Sweden)

    FELIPE RAMÍREZ-HERNÁNDEZ

    2017-03-01

    Full Text Available Here, we present a method to produce carbon nanotubes (CNTs based on the coupling between two conventional techniques used for the preparation of nanostructures: an arc-jet as a source of plasma and a chemical vapour deposition (CVD system. We call this system as an “atmospheric pressure plasma (APP-enhanced CVD” (APPE-CVD. This reactor was used to grow CNTs on non-flat aluminosilicate substrates by the decomposition of toluene (carbon source in the presence of ferrocene (as a catalyst. Both, CNTs and by-products of carbon were collected at three different temperatures (780, 820 and 860 °C in different regions of the APPE-CVD system. These samples were analysed by thermogravimetric analysis (TGA and DTG, scanning electron microscopy (SEM and Raman spectroscopy in order to determine the effect of APP on the thermal stability of the as-grown CNTs. It was found that the amount of metal catalyst in the synthesised CNTs is reduced by applying APP, being 820 °C the optimal temperature to produce CNTs with a high yield and carbon purity (95 wt. %. In contrast, when the synthesis temperature was fixed at 780 °C or 860 °C, amorphous carbon or CNTs with different structural defects, respectively, was formed through APEE-CVD reactor. We recommended the use of non-flat aluminosilicate particles as supports to increase CNT yield and facilitate the removal of deposits from the substrate surface. The approach that we implemented (to synthesise CNTs by using the APPE-CVD reactor may be useful to produce these nanostructures on a gram-scale for use in basic studies. The approach may also be scaled up for mass production.

  12. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems

    International Nuclear Information System (INIS)

    Ildefonse, P.; Calas, G.; Flank, A.M.; Lagarde, P.

    1995-01-01

    Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaO-MgO-2SiO 2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mg-O distances of 2.01 A. In aluminosilicate gels, Al-K XANES has been used to investigate the [4]Al/Al total ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Si-K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si=1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels. (orig.)

  13. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems

    Science.gov (United States)

    Ildefonse, Ph.; Calas, G.; Flank, A. M.; Lagarde, P.

    1995-05-01

    Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaOsbnd MgOsbnd 2SiO2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mgsbnd O distances of 2.01Å. In aluminosilicate gels, Alsbnd K XANES has been used to investigate the [4]Al/Altotal ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Sisbnd K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si= 1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels.

  14. The CO2 system in rivers of the Australian Victorian Alps: CO2 evasion in relation to system metabolism and rock weathering on multi-annual time scales

    International Nuclear Information System (INIS)

    Hagedorn, Benjamin; Cartwright, Ian

    2010-01-01

    The patterns of dissolved inorganic C (DIC) and aqueous CO 2 in rivers and estuaries sampled during summer and winter in the Australian Victorian Alps were examined. Together with historical (1978-1990) geochemical data, this study provides, for the first time, a multi-annual coverage of the linkage between CO 2 release via wetland evasion and CO 2 consumption via combined carbonate and aluminosilicate weathering. δ 13 C values imply that carbonate weathering contributes ∼36% of the DIC in the rivers although carbonates comprise less than 5% of the study area. Baseflow/interflow flushing of respired C3 plant detritus accounts for ∼50% and atmospheric precipitation accounts for ∼14% of the DIC. The influence of in river respiration and photosynthesis on the DIC concentrations is negligible. River waters are supersaturated with CO 2 and evade ∼27.7 x 10 6 mol/km 2 /a to ∼70.9 x 10 6 mol/km 2 /a CO 2 to the atmosphere with the highest values in the low runoff rivers. This is slightly higher than the global average reflecting higher gas transfer velocities due to high wind speeds. Evaded CO 2 is not balanced by CO 2 consumption via combined carbonate and aluminosilicate weathering which implies that chemical weathering does not significantly neutralize respiration derived H 2 CO 3 . The results of this study have implications for global assessments of chemical weathering yields in river systems draining passive margin terrains as high respiration derived DIC concentrations are not directly connected to high carbonate and aluminosilicate weathering rates.

  15. Sorption of a nonionic surfactant Tween 80 by minerals and soils

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Soyoung, E-mail: soyoung@pusan.ac.kr; Jeong, Hoon Young, E-mail: hjeong@pusan.ac.kr

    2015-03-02

    Highlights: • Tween 80 sorption varies significantly among soil minerals. • Sorption mechanisms and atomic compositions explain to mineral-specific sorption. • Clay minerals and SOM in soils are the key contributors to Tween 80 sorption. • Hysteresis suggests the potential difficulty in removing residual surfactants. - Abstract: Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina–water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclase < vermiculite < kaolinite. This results from the relative reactivity among surface sites: ≡NaOH, ≡CaOH << ≡SiOH < ≡AlOH. Experiments using dry- and wet-sieved soils reveal that fine-grained clay minerals, difficult to separate by dry-sieving, contribute significantly to Tween 80 sorption. The greater sorption by untreated soils than H{sub 2}O{sub 2}-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization.

  16. A multinuclear static NMR study of geopolymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Favier, Aurélie, E-mail: aurelie.favier@epfl.ch [Univ Paris-Est, IFSTTAR, Materials Department, 14-20 bd Newton, F-77447 Marne la Vallée Cedex 2 (France); Habert, Guillaume [Institute for Construction and Infrastructure Management, ETH Zurich, CH-8093 Zurich (Switzerland); Roussel, Nicolas [Univ Paris-Est, IFSTTAR, Materials Department, 14-20 bd Newton, F-77447 Marne la Vallée Cedex 2 (France); D' Espinose de Lacaillerie, Jean-Baptiste [Ecole Supérieure de Physique et de Chimie Indusrtrielles de la Ville de Paris (ESPCI), ParisTech, PSL Research University, Soft Matter Sciences and Engineering Laboratory SIMM, CNRS UMR 7615, 10 rue Vauquelin, F-75005 Paris (France)

    2015-09-15

    Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with {sup 23}Na, {sup 27}Al and {sup 29}Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.

  17. Synthesis and properties of porous zeolite aluminosilicate adsorbents

    International Nuclear Information System (INIS)

    Shilina, A.S.; Milinchuk, V.K.; Burukhin, S.B.; Gordienko, A.B.

    2015-01-01

    Environmentally safe non-energy-intensive methods of the synthesis have been developed and the properties of solid inorganic nanostructured zeolite-like adsorbents of a broad spectrum have been studied. The sorption capacities of the adsorbents with respect to various components of water pollution have been determined [ru

  18. Untitled

    Indian Academy of Sciences (India)

    . Sodium metasilicate (2g), sodium aluminate (0.5g) and sodium hydroxide (0.7g) were mixed together and distilled water (50 ml) was added to the mixture to form a composite sodium aluminosilicate gel. Most of the runs were carried out by ...

  19. Hydrocarbon conversion with cracking catalyst having co-combustion promoters lanthanum and iron

    International Nuclear Information System (INIS)

    Csicsery, S.M.

    1979-01-01

    A composition useful in hydrocarbon conversion processes such as catalytic cracking comprises 0.05 to 10 weight percent lanthanum associated with a refractory support. The composition may also include 0.02 to 10 weight percent iron. The refractory support is a zeolitic crystalline aluminosilicate

  20. Distinguishing iron-reducing from sulfate-reducing conditions

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.

    2009-01-01

    Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.

  1. Learning to REDUCE: A Reduced Electricity Consumption Prediction Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Aman, Saima; Chelmis, Charalampos; Prasanna, Viktor

    2016-02-12

    Utilities use Demand Response (DR) to balance supply and demand in the electric grid by involving customers in efforts to reduce electricity consumption during peak periods. To implement and adapt DR under dynamically changing conditions of the grid, reliable prediction of reduced consumption is critical. However, despite the wealth of research on electricity consumption prediction and DR being long in practice, the problem of reduced consumption prediction remains largely un-addressed. In this paper, we identify unique computational challenges associated with the prediction of reduced consumption and contrast this to that of normal consumption and DR baseline prediction.We propose a novel ensemble model that leverages different sequences of daily electricity consumption on DR event days as well as contextual attributes for reduced consumption prediction. We demonstrate the success of our model on a large, real-world, high resolution dataset from a university microgrid comprising of over 950 DR events across a diverse set of 32 buildings. Our model achieves an average error of 13.5%, an 8.8% improvement over the baseline. Our work is particularly relevant for buildings where electricity consumption is not tied to strict schedules. Our results and insights should prove useful to the researchers and practitioners working in the sustainable energy domain.

  2. Synthesis, characterization and gas sensing performance

    Indian Academy of Sciences (India)

    For the first time, this study reports the gas sensing performance of aluminosilicate azide cancrinite. The effect of annealing andoperating temperature on gas sensing characteristic of azide cancrinite thick film is investigated systematically for various gases at different operating temperatures. This sensor was observed to be ...

  3. Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glass

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Thirion, Lynn M.; Youngman, Randall E.

    chamber to compress bulk glass samples isostatically up to 1 GPa at elevated temperature before or after the ion exchange treatment of an industrial sodium-magnesium aluminosilicate glass. Compression of the samples prior to ion exchange leads to a decreased Na+-K+ inter-diffusivity, increased compressive...

  4. High temperature flow behaviour of SiC reinforced lithium

    Indian Academy of Sciences (India)

    The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of crystalline ...

  5. Novel Galvanic Corrosion Inhibitors: Synthesis, Characterization, Fabrication and Testing

    Science.gov (United States)

    2007-09-30

    Polyimide Insulated Electrical Wire", SAMPE pp.16, Jan/Feb 1984. 11. Brown, S. R.; Deluccia, J.J., " Galvanic Corrosion Fatigue Testing of 7075-T6...Modified Microporous Aluminosilicate" Development of Adsorbents for Air and Water Treatment Conference, 226th American Chemical Society (ACS) National

  6. The hydroisomerization activity of nickel-substituted mica montmorillonite clay

    NARCIS (Netherlands)

    Santen, van R.A.; Röbschläger, K.H.W.; Emeis, C.A.; Grasselli, R.K.; Brazdil, J.F.

    1985-01-01

    Three-layer sheet aluminosilicates, when exchanged into the acidic form, are far less active as hydroisomerization catalysts than zeolites having a comparable surface proton density. However, introducing Ni2+ or Co2+ into the octahedral positions of the Al3+ layer in synthetic beidellite results in

  7. Structural and optical studies of Er3+-doped alkali/alkaline oxide containing zinc boro-aluminosilicate glasses for 1.5 μm optical amplifier applications

    Science.gov (United States)

    Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Lira, A.; Caldiño, U.; Meza-Rocha, A. N.; Falcony, C.; Kityk, I. V.; Taufiq-Yap, Y. H.; Halimah, M. K.; Mahdi, M. A.

    2017-07-01

    In the present work, we report on the optical spectral properties of Er3+-doped zinc boro-aluminosilicate glasses with an addition of 10 mol % alkali/alkaline modifier regarding the fabrication of new optical materials for optical amplifiers. A total of 10 glasses were prepared using melt-quenching technique with the compositions (40-x)B2O3 - 10SiO2 - 10Al2O3 - 30ZnO - 10Li2O - xEr2O3 and (40-x)B2O3 - 10SiO2 - 10Al2O3 - 30ZnO - 10MgO - xEr2O3 (x = 0.1, 0.25, 0.5, 1.0, and 2.0 mol %). We confirm the amorphous-like structure for all the prepared glasses using X-ray diffraction (XRD). To study the functional groups of the glass composition after the melt-quenching process, Raman spectroscopy was used, and various structural units such as triangular and tetrahedral-borates (BO3 and BO4) have been identified. All the samples were characterized using optical absorption for UV, visible and NIR regions. Judd-Ofelt (JO) intensity parameters (Ωλ, λ = 2, 4 and 6) were calculated from the optical absorption spectra of two glasses LiEr 2.0 and MgEr 2.0 (doped with 2 mol % of Er3+). JO parameters for LiEr 2.0 and MgEr 2.0 glasses follow the trend as Ω6>Ω2>Ω4. Using Judd-Ofelt intensity parameters, we obtained radiative probability A (S-1), branching ratios (β), radiative decay lifetimes τrad (μs) of emissions from excited Er+3 ions in LiEr 2.0 and MgEr 2.0 to all lower levels. Quantum efficiency (η) of 4I13/2 and 4S3/2 levels for LiEr 2.0 and MgEr 2.0 with and without 4D7/2 level was calculated using the radiative decay lifetimes τrad. (μs) and measured lifetimes τexp. (μs). We measured the visible photoluminescence under 377 nm excitation for both LiEr and MgEr glass series within the region 390-580 nm. Three bands were observed in the visible region at 407 nm, 530 nm, and 554 nm, as a result of 2H9/2 → 4I15/2, 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions, respectively. Decay lifetimes for emissions at 407 nm, 530 nm, and 554 nm were measured and they show

  8. Applications of density functional theory calculations to selected problems in hydrocarbon processing

    Science.gov (United States)

    Nabar, Rahul

    Recent advances in theoretical techniques and computational hardware have made it possible to apply Density Functional Theory (DFT) methods to realistic problems in heterogeneous catalysis. Hydrocarbon processing is economically, and strategically, a very important industrial sector in today's world. In this thesis, we employ DFT methods to examine several important problems in hydrocarbon processing. Fischer Tropsch Synthesis (FTS) is a mature technology to convert synthesis gas derived from coal, natural-gas or biomass into liquid fuels, specifically diesel. Iron is an active FTS catalyst, but the absence of detailed reaction mechanisms make it difficult to maximize activity and optimize product distribution. We evaluate thermochemistry, kinetics and Rate Determining Steps (RDS) for Fischer Tropsch Synthesis on several models of Fe catalysts: Fe(110), Fe(211) and Pt promoted Fe(110). Our studies indicated that CO-dissociation is likely to be the RDS under most reaction conditions, but the DFT-calculated activation energy ( Ea) for direct CO dissociation was too large to explain the observed catalyst activity. Consequently we demonstrate that H-assisted CO-dissociation pathways are competitive with direct CO dissociation on both Co and Fe catalysts and could be responsible for a major fraction of the reaction flux (especially at high CO coverages). We then extend this alternative mechanistic model to closed-packed facets of nine transition metal catalysts (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt). H-assisted CO dissociation offers a kinetically easier route on each of the metals studied. DFT methods are also applied to another problem from the petroleum industry: discovery of poison-resistant, bimetallic, alloy catalysts (poisons: C, S, CI, P). Our systematic screening studies identify several Near Surface Alloys (NSAs) that are expected to be highly poison-resistant yet stable and avoiding adsorbate induced reconstruction. Adsorption trends are also correlated with

  9. Analysis and differentiation of mineral dust by single particle laser mass spectrometry

    International Nuclear Information System (INIS)

    Gallavardin, S. J.; Lohmann, U.; Cziczo, Daniel J.

    2008-01-01

    This study evaluates the potential of single particle laser desorption/ionization mass spectrometry for the analysis of atmospherically relevant mineral dusts. Samples of hematite, goethite, calcium carbonate, calcium sulfate, silica, quartz, montmorrillonite, kaolinite, illite, hectorite, wollastonite and nephelinsyenit were investigated in positive and negative ion mode with a monopolar time-of-flight mass spectrometer where the desorption/ionization step was performed with a 193 nm excimer laser (∼10 9 W/cm 2 ). Particle size ranged from 500 nm to 3 (micro)m. Positive mass spectra mainly provide elemental composition whereas negative ion spectra provide information on element speciation and of a structural nature. The iron oxide, calcium-rich and aluminosilicate nature of particles is established in positive ion mode. The differentiation of calcium materials strongly relies on the calcium counter-ions in negative mass spectra. Aluminosilicates can be differentiated in both positive and negative ion mode using the relative abundance of various aluminum and silicon ions

  10. Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation

    Science.gov (United States)

    Xu, Longhua; Peng, Tiefeng; Tian, Jia; Lu, Zhongyuan; Hu, Yuehua; Sun, Wei

    2017-12-01

    Aluminosilicate minerals (e.g., spodumene, albite) have complex crystal structures and similar surface chemistries, but they have poor selectivity compared to traditional fatty acid collectors, making flotation separation difficult. Previous research has mainly considered the mineral crystal structure as a whole. In contrast, the surface characteristics at the atomic level and the effects of different crystal interfaces on the flotation behavior have rarely been investigated. This study focuses on investigating the surface anisotropy quantitatively, including the chemical bond characteristics, surface energies, and broken bond densities, using density functional theory and classical theoretical calculations. In addition, the anisotropy of the surface wettability and adsorption characteristics were examined using contact angle, zeta potential, and Fourier-transform infrared measurements. Finally, these surface anisotropies with different flotation behaviors were investigated and interpreted using molecular dynamics simulations, scanning electron microscopy, and X-ray photoelectron spectroscopy. This systematic research offers new ideas concerning the selective grinding and stage flotation of aluminosilicate minerals based on the crystal characteristics.

  11. Speciation of major and selected trace elements in IGCC fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Font; Xavier Querol; Frank E. Huggins; Jose M. Chimenos; Ana I. Fernandez; Silvia Burgos; Francisco Garcia Pena [Institute of Earth Sciences ' Jaume Almera' , Barcelona (Spain)

    2005-08-01

    The speciation of Ga, Ge, Ni, V, S and Fe in fly ash from IGCC power plant were investigated for possible further extraction process by combining conventional mineral and chemical analysis, leaching tests, wet sequential extraction, Moessbauer and XAFS spectroscopies. The results shown that Ge occurs mainly as water-soluble species, GeS and/or GeS{sub 2} and hexagonal GeO{sub 2}. Ga is present as an oxide, Ni occurs mainly as nickeline (NiAs), with minor proportions of Ni arsenates and vanadium as V(III) with minor amounts of V(IV) in the aluminosilicate glass matrix. Pyrrhotite and wurtzite-sphalerite are sulfide species containing Fe and Zn, but an important fraction of iron is also present in the aluminosilicate glass. These clear differences between the speciation of the above elements in this material and those reported for fly ash from conventional PC combustion. 15 refs., 8 figs., 5 tabs.

  12. Characterization of the calcium-fluoroaluminosilicate glass prepared by a non-hydrolytic sol-gel route for future dental application as glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Alexandre Cestari

    2009-06-01

    Full Text Available Glass ionomer cements are widely employed in dentistry due to their physical, biological and mainly anti-caries properties. Glass ionomers consist of an aluminosilicate glass matrix modified with other elements, and they contain large quantities of fluorine. In this study, we report on the preparation of calcium-fluoroaluminosilicate glasses by a nonhydrolytic sol-gel route as an alternative approach to obtaining alumina-silica matrices. The glass powders were prepared via the non-hydrolytic sol-gel method, by mixing AlCl3, SiCl4, CaF2, AlF3, NaF, and AlPO4. The powders were studied by thermal analysis (TG/DTA/DSC, photoluminescence (PL, nuclear magnetic resonance (NMR27Al-29Si, and X ray diffraction (XRD. TG/DTA/DSC analyses revealed a constant mass loss due to structural changes during the heating process, which was confirmed by NMR and PL. A stable aluminosilicate matrix with potential future application as a glass ionomer base was obtained.

  13. Toxicity of 144Ce inhaled in a relatively insoluble form by aged Beagle dogs. X

    International Nuclear Information System (INIS)

    Boecker, B.B.; Hahn, F.F.; Muggenburg, B.A.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1981-01-01

    The toxicity of relatively insoluble 144 Ce inhaled by 8- to 10.5-year old Beagle dogs is being investigated to provide possible age-related differences in long-term biological responses. Forty-two dogs were exposed, nose-only, to aerosols of 144 Ce in fused aluminosilicate particles to yield initial lung burdens of 2.2 to 75 μCi 144 Ce/kg body weight, and 12 control dogs were exposed to nonradioactive fused aluminosilicate particles. To date, 39 144 Ce-exposed dogs and 10 control dogs have died or were euthanized between 197 and 2375 days after the inhalation exposure. Prominent findings in the 144 Ce-exposed dogs were radiation pneumonitis in 19 of the 23 dogs that died during the first 943 days after exposure and neoplastic disease in nine of the 16 dogs that died beyond 943 days after exposure. Pulmonary tumors were found in four of these dogs. Observations are continuing on the three surviving 144 Ce-exposed and two control dogs

  14. Thermochemical properties of gibbsite, bayerite, boehmite, diaspore, and the aluminate ion between 0 and 350/degree/C

    International Nuclear Information System (INIS)

    Apps, J.A.; Neil, J.M.; Jun, C.H.

    1989-01-01

    A requirement for modelling the chemical behavior of groundwater in a nuclear waste repository is accurate thermodynamic data pertaining to the participating minerals and aqueous species. In particular, it is important that the thermodynamic properties of the aluminate ion be accurately determined, because most rock forming minerals in the earth's crust are aluminosilicates, and most groundwaters are neutral to slightly alkaline, where the aluminate ion is the predominant aluminum species in solution. Without a precise knowledge of the thermodynamic properties of the aluminate ion aluminosilicate mineral solubilities cannot be determined. The thermochemical properties of the aluminate ion have been determined from the solubilities of the aluminum hydroxides and oxyhydroxides in alkaline solutions between 20 and 350/degree/C. An internally consistent set of thermodynamic properties have been determined for gibbsite, boehmite, diaspore and corundum. The thermodynamic properties of bayerite have been provisionally estimated and a preliminary value for ΔG/sub f, 298/ 0 of nordstrandite has been determined. 205 refs., 17 figs., 25 tabs

  15. Pipeline Drag Reducers

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Pipeline drag reducers have proven to be an extremely powerful tool in fluid transportation. High molecular weight polymers are used to reduce the frictional pressure loss ratio in crude oil pipelines, refined fuel and aqueous pipelines. Chemical structure of the main used pipeline drag reducers is one of the following polymers and copolymers classified according to the type of fluid to ; low density polyethylene, copolymer of I-hexane cross linked with divinyl benzene, polyacrylamide, polyalkylene oxide polymers and their copolymers, fluorocarbons, polyalkyl methacrylates and terpolymer of styrene, alkyl acrylate and acrylic acid. Drag reduction is the increase in pump ability of a fluid caused by the addition of small amounts of an additive to the fluid. The effectiveness of a drag reducer is normally expressed in terms of percent drag reduction. Frictional pressure loss in a pipeline system is a waste of energy and it costly. The drag reducing additive minimizes the flow turbulence, increases throughput and reduces the energy costs. The Flow can be increased by more than 80 % with existing assets. The effectiveness of the injected drag reducer in Mostorod to Tanta crude oil pipeline achieved 35.4 % drag reduction and 23.2 % flow increase of the actual performance The experimental application of DRA on Arab Petroleum Pipeline Company (Summed) achieved a flow increase ranging from 9-32 %

  16. Release of microspherolites and metals extraction from energetical fly ashes by Bacillus isolates

    Directory of Open Access Journals (Sweden)

    Štyriaková Iveta

    2000-09-01

    Full Text Available The amorphous secondary silicate mineral components formed in the process of coal combustion dominate in the composition of energy fly-ash. Depending on the composition of coal concentrate, this secondary raw material source also contains the industrially interesting components, e.g. titanium (eventually iron and aluminium and can be considered as a non-metallic material suitable for the construction industry.The main secondary mineral components of the energy fly-ash formed during the coal combustion were studied using SEM (scanning electronic microscope. They can be divided into four groups:1. Amorphous spherical alumocilicate particles in allotriomorphic aluminosilicate grains – they represent a main mineral component of fly-ash, which is formed from the accompanying rocks of coal containing silicate minerals,2. Quartz – which formed a substantial component of accompanying rocks of coal or accompanying accessory mineral of coal together with kaolinite and mica, was transformed into tridymite at the temperature exceeding 870°C and into cristobalite at the temperature exceeding 1470°C. The spherical particles are products of reaction between cristobalite and aluminosilicate, which is a frequent phenomenon occurring during the formation of volcanic rocks. These particles form together a main amorphous phase of fly-ash.3. Mullite – represents a secondary component of fly-ash, which is formed from accompanying clay minerals of coal (kaolinite, mica together with cristobalite under the effect of temperature exceeding 1150°C,4. Non-combusted residue – consists of organic substance, represents a non-combusted ratio of coal as a secondary component of fly-ash.Heterotrophic bacteria of Bacillus genus are capable to remove 66 % of titanium and 33 % of iron from non-deposited fly-ash from Opatovice after 35 days of leaching of samples. The content of solid phase in fly-ash influences the extraction of elements, mainly iron and titatnium, because

  17. Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method

    Science.gov (United States)

    Saini, Vipin K.; Pires, Joao

    2012-01-01

    Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…

  18. Bulk modulus of basic sodalite, Na8[AlSiO4]6(OH)2·2H2O, a possible zeolitic precursor in coal-fly-ash-based geopolymers

    KAUST Repository

    Oh, Jae Eun; Moon, Juhyuk; Mancio, Mauricio; Clark, Simon M.; Monteiro, Paulo J.M.

    2011-01-01

    Synthetic basic sodalite, Na8[AlSiO4] 6(OH)2•2H2O, cubic, P43n, (also known as hydroxysodalite hydrate) was prepared by the alkaline activation of amorphous aluminosilicate glass, obtained from the phase separation of Class F fly ash. The sample

  19. Crystallization of Nanocomposite Glasses Made by the SSG Process

    Science.gov (United States)

    1993-01-12

    network structures of aluminosilicate. aluminophosph- ate IALPO) and silicoaluminophosphate ( SAPO ) composition 2.4 g t mik Nalucompstes and are porous...the pores being in the range 2.8-10 A. Many of the highly siliceous. ALPO and SAPO zeolites have been Newnham and co-workers have developed a large

  20. Improvement in retention of solid fission products in HTGR fuel particles by ceramic kernel additives

    International Nuclear Information System (INIS)

    Foerthmann, R.; Groos, E.; Gruebmeier, H.

    1975-08-01

    Increased requirements concerning the retention of long-lived solid fission products in fuel elements for use in advanced High Temperature Gas-cooled Reactors led to the development of coated particles with improved fission product retention of the kernel, which represent an alternative to silicon carbide-coated fuel particles. Two irradiation experiments have shown that the release of strontium, barium, and caesium from pyrocarbon-coated particles can be reduced by orders of magnitude if the oxide kernel contains alumina-silica additives. It was detected by electron microprobe analysis that the improved retention of the mentioned fission products in the fuel kernel is caused by formation of the stable aluminosilicates SrAl 2 Si 2 O 8 , BaAl 2 Si 2 O 8 and CsAlSi 2 O 6 in the additional aluminasilica phase of the kernel. (orig.) [de

  1. Hydrothermal Diamond Anvil Cell Investigations Into the Alumina-Silica-Water System up to 1073 K and 4 GPa

    Science.gov (United States)

    Davis, M. K.; Stixrude, L. P.

    2004-12-01

    Understanding fluid chemistry in the subduction zone environment is key to unraveling the details of element transport from the slab to the surface. Solubility of different mineral assemblages in predominantly water-rich fluid along with pressure and temperature conditions control the chemical structure of the aqueous fluid and govern the transport opportunities for various chemical components away from the subducting slab. In-situ Raman experiments were performed in the alumina-silica-water system in an externally heated Bassett-type hydrothermal diamond anvil cell in the Department of Geological Sciences at the University of Michigan. Natural quartz samples (from the Owl Creek Mountains, Wyoming) were used as the silica source and synthetic ruby was used for the alumina source. Temperatures inside the diamond cell were monitored using type-K thermocouples wrapped around the diamonds and the pressure calibrated by the Raman shift of diamond or quartz or the fluorescence of ruby depending on conditions. Raman measurements of the aluminosilicate fluid show the presence of multiple alumina, silica, and mixed species. As predicted by calculations an aluminosilicate specie possibly of the form (HO)3SiOAl(OH)32- as well as the silica monomer and dimer specie were observed in the aluminosilicate fluid. There also appeared to be at least one hydrous alumina specie based on the presence of a Raman peaks at 228 cm-1, 339 cm-1 and 970 cm-1 in the fluid and a comparative analysis between Raman peaks in aqueous fluid in the silica-water, alumina-water, and alumina-silica-water systems. Solid phases formed during experiments (diaspore, kyanite) were confirmed with Raman spectroscopy.

  2. The CO{sub 2} system in rivers of the Australian Victorian Alps: CO{sub 2} evasion in relation to system metabolism and rock weathering on multi-annual time scales

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, Benjamin, E-mail: khagedor@hawaii.edu [School of Geosciences, Monash University, Melbourne Vic. 3800 (Australia); Cartwright, Ian [School of Geosciences, Monash University, Melbourne Vic. 3800 (Australia)

    2010-06-15

    The patterns of dissolved inorganic C (DIC) and aqueous CO{sub 2} in rivers and estuaries sampled during summer and winter in the Australian Victorian Alps were examined. Together with historical (1978-1990) geochemical data, this study provides, for the first time, a multi-annual coverage of the linkage between CO{sub 2} release via wetland evasion and CO{sub 2} consumption via combined carbonate and aluminosilicate weathering. {delta}{sup 13}C values imply that carbonate weathering contributes {approx}36% of the DIC in the rivers although carbonates comprise less than 5% of the study area. Baseflow/interflow flushing of respired C3 plant detritus accounts for {approx}50% and atmospheric precipitation accounts for {approx}14% of the DIC. The influence of in river respiration and photosynthesis on the DIC concentrations is negligible. River waters are supersaturated with CO{sub 2} and evade {approx}27.7 x 10{sup 6} mol/km{sup 2}/a to {approx}70.9 x 10{sup 6} mol/km{sup 2}/a CO{sub 2} to the atmosphere with the highest values in the low runoff rivers. This is slightly higher than the global average reflecting higher gas transfer velocities due to high wind speeds. Evaded CO{sub 2} is not balanced by CO{sub 2} consumption via combined carbonate and aluminosilicate weathering which implies that chemical weathering does not significantly neutralize respiration derived H{sub 2}CO{sub 3}. The results of this study have implications for global assessments of chemical weathering yields in river systems draining passive margin terrains as high respiration derived DIC concentrations are not directly connected to high carbonate and aluminosilicate weathering rates.

  3. Petrography and petrology of the Hamadan pegmatites

    International Nuclear Information System (INIS)

    Valizadeh, M.V.; Torkian, A.

    2000-01-01

    Petrological investigation on the pegmatites of Hamadan area was carried out for their abundance, mineralogical variations and their distribution. They reveal the genesis of Granitoid of Alvand in western parts of Iran in Sanandaj - Sirjan metamorphic belt. Field investigations show that pegmatites are mainly dispersed both on north and south of Alvand mass. They mainly consist of Graphic - pegmatites, Tourmaline Pegmatites, Aluminosilicate - pegmatites and Quartz veins. Muscovite - Aluminosilicate pegmatites are located only in south and outside of granitoid mass, for example near Dehnow Asad - Ol - llah - Khan and Manga villages. Regarding to field investigation, mineralogical characteristics and based on radiometric dating the age of biotites of granitoid is a bout 70-80 M.Y. and the age of Muscovite - pegmatites is about 100 M.Y. Therefore, pegmatites are prior to Alvand emplacement. This is in accordance with pegmatites genesis idea proposed by Winkler and von Platen. So, we suppose that pegmatites of Alvand are metamorphic and their formation do not follow normal magmatic trends. Our petrologic investigation shows that as a result of movement of Arabic plate towards Iranian pa lte (SW - NE), sedimentary rocks composing of metamorphed clays (meta-sediments) in 680-800 d eg C and 2-5 kbar was melted resulting in aplitic melt to come upwards. With the present of thermal dome, transportation of water and mineralizing gas large crystals of Muscovite and Tourmaline were formed slowly and gradually pegmatites were formed. In this condition a melt from sandstone-shale source began to move upward and in different T-P condition it formed aluminosilicate pegmatites. Each of these assemblages present specific conditions of formation

  4. Advances in 27Al MAS NMR studies of geopolymers

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Abbrent, Sabina; Kobera, Libor; Urbanová, Martina; Cuba, P.

    2016-01-01

    Roč. 88, č. 2016 (2016), s. 79-147 ISSN 0066-4103 R&D Projects: GA ČR(CZ) GA13-24155S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : geopolymers * aluminosilicates * solid-state NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.600, year: 2016

  5. Entrained Flow Reactor Study of K-Capture by Solid Additives

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    are collected from the cyclone and filter. The K-capture reaction is evaluated by determining the fraction of water-insoluble K in the products. The results showed that KCl can effectively be captured by kaolin and coal fly ash, forming water-insoluble K-aluminosilicates. The amount of K, captured per gram...

  6. Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene

    Science.gov (United States)

    Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk

    2017-07-01

    We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.

  7. Zeolite-derived hybrid materials with adjustable organic pillars

    Czech Academy of Sciences Publication Activity Database

    Opanasenko, Maksym; Shamzhy, Mariya; Yu, F.; Zhou, W.; Morris, R. E.; Čejka, Jiří

    2016-01-01

    Roč. 7, č. 6 (2016), s. 3589-3601 ISSN 2041-6520 R&D Projects: GA ČR GP13-17593P; GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : zeolites * inorganic aluminosilicate * nanoporous materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.668, year: 2016

  8. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  9. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  10. Quality of stroke care at an Irish Regional General Hospital and Stroke Rehabilitation Unit.

    LENUS (Irish Health Repository)

    Walsh, T

    2012-01-31

    BACKGROUND: Robust international data support the effectiveness of stroke unit (SU) care. Despite this, most stroke care in Ireland are provided outside of this setting. Limited data currently exist on the quality of care provided. AIM: The aim of this study is to examine the quality of care for patients with stroke in two care settings-Regional General Hospital (RGH) and Stroke Rehabilitation Unit (SRU). METHODS: A retrospective analysis of the stroke records of consecutive patients admitted to the SRU between May-November 2002 and April-November 2004 was performed applying the UK National Sentinel Audit of Stroke (NSAS) tool. RESULTS: The results of the study reveal that while SRU processes of care was 74% compliant with standards; compliance with stroke service organisational standards was only 15 and 43% in the RGH and SRU, respectively. CONCLUSION: The quality of stroke care in our area is deficient. Comprehensive reorganisation of stroke services is imperative.

  11. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    Science.gov (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  12. Examination of compression and resilience characteristics of fibrous insulation blankets

    International Nuclear Information System (INIS)

    Brislin, R.J.; Middleton, A.

    1979-08-01

    Load-deflection characteristics of alumina and alumino-silicate fibrous blankets were experimentally determined. Load retention and springback capability of combinations of these materials were measured in a 10,000-hour test at surface temperatures of 650 to 1000 0 C (1200 to 1832 0 F). Experimental results are presented and future testing plans are discussed

  13. Effect of curing time on microstructure and mechanical strength ...

    Indian Academy of Sciences (India)

    The aim of this paper is to study the influence of curing time on the microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS). Mechanical strength of alkali activated mortars cured at 65 °C was assessed for different curing times (4–168 h) using 10 ...

  14. Alkaline hydrothermal stabilization of Cr(VI) in soil using glass and aluminum from recycled municipal solid wastes.

    Science.gov (United States)

    Gattullo, Concetta Eliana; D'Alessandro, Caterina; Allegretta, Ignazio; Porfido, Carlo; Spagnuolo, Matteo; Terzano, Roberto

    2018-02-15

    Hexavalent chromium was stabilized in soil by using a mixture of glass and aluminum recovered from municipal solid wastes under alkaline hydrothermal conditions. Cr(VI) concentration was reduced by 94-98% already after 7days of treatment. After the same period, more than 90% of total Cr was stabilized in highly recalcitrant and scarcely mobile chemical forms, with 50% in the residual fraction (when the samples were treated at 1/10w/w mixture/soil ratio). Longer treatments increased Cr stabilization. X-ray microanalyses revealed that Cr was stabilized in geopolymeric structures within large aluminosilicate mineral aggregates (containing both amorphous and crystalline phases). 3D microstructural analyses showed a limited compaction of the soil with still a 20% internal porosity in the neoformed aggregates. Increased pH and salinity after the treatment can be restored by simple soil amendments and washing. Copyright © 2017. Published by Elsevier B.V.

  15. Improvement in retention of solid fission products in HTGR fuel particles by ceramic kernel additives

    Energy Technology Data Exchange (ETDEWEB)

    Foerthmann, R.; Groos, E.; Gruebmeier, H.

    1975-08-15

    Increased requirements concerning the retention of long-lived solid fission products in fuel elements for use in advanced High Temperature Gas-cooled Reactors led to the development of coated particles with improved fission product retention which represent an alternative to silicon carbide-coated fuel particles. Two irradiation experiments have shown that the release of strontium, barium, and caesium from pyrocarbon-coated particles can be reduced by orders of magnitude if the oxide kernel contains alumina-silica additives. It was detected by electron microprobe analysis that the improved retention of the mentioned fission products in the fuel kernel is caused by formation of the stable aluminosilicates SrAl2Si2O8, BaAl2Si2O8and CsAlSi2O6 in the additional alumina-silica phase of the kernel.

  16. Thermal stabilization of uranium mill tailings

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Williams, J.M.; Cokal, E.J.

    1981-01-01

    The sintering of tailings at high temperatures (1200 0 C) has shown promise as a conditioning approach that greatly reduces the 222 Rn emanation of uranium mill tailings. The structure of thermally stabilized tailings has been appreciably altered producing a material that will have minimal management requirements and will be applicable to on-site processing and disposal. The mineralogy of untreated tailings is presented to define the structure of the original materials. Quartz predominates in most tailings samples; however, appreciable quantities of gypsum, clay, illite, or albites are found in some tailings. Samples from the Durango and Shiprock sites have plagioclase-type aluminosilicates and non-aluminum silicates as major components. The iron-rich vanadium tailings from the Salt Lake City site contain appreciable quantities of α-hematite and chloroapatite. The reduction in radon emanation power and changes in mineralogy as a function of sintering temperature are presented

  17. ECOLOGICAL AND TECHNOLOGYCAL ASPECTS OF ASH AND SLAG WASTES UTILIZATION

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrova

    2017-07-01

    Full Text Available The article presents the results of investigation focused on the utilization of ash and slag wastes (ASW in Russia including investigation of chemical and physical properties of ASW and processing products. Many factors influence the technological properties of ash and slag materials: naturals, processes and environments. The integrated treatment of ash and slag wastes of both stored and re-formed types will allow obtaining the following commercial products: coal concentrate, iron concentrate, aluminosilicate cenospheres, aluminosilicate product. In this study we have analyzed the methods for separation of ASW iron-containing part using the different types of the magnetic separation from the ash and slag material from one of the combined heat and power plant (CHPP in the Russian Far East Federal District. The greatest interest is the dry magnetic separation with travelling electromagnetic field. The subject of research was a sample taken from one of ash dump of CHPP in the Far East. In the study iron concentrate containing Fetotal = 64% was obtained recovery 68% in the low intensity (up to 5 kOe travelling magnetic field.

  18. Ion sources for induction linac driven heavy ion fusion

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1993-08-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low-emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma types and the porous plug and hot alumino-silicate surface source are the thermal types. The hot alumino-silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented

  19. Biological effects of repeated inhalation exposure of beagle dogs to relatively insoluble aerosols of 144Ce

    International Nuclear Information System (INIS)

    Boecker, B.B.; Hahn, F.F.; Muggenburg, B.A.; McClellan, R.O.; Mauderly, J.L.; Pickrell, J.A.

    1980-01-01

    Beagle dogs were exposed repeatedly to a relatively insoluble form of 144 Ce (in fused aluminosilicate particles) to study the deposition, retention, and long-term biological effects for comparison with data from dogs that were exposed only once to a similar aerosol. Four groups of nine dogs each were exposed once every 8 weeks for 2 years (13 exposures) to achieve specified exposure goals. These goals were: to increase the lung burden by 2.5 μCi 144 Ce/kg body weight with each exposure; to reestablish lung burdens of 9 or 4.5 μCi 144 Ce/kg body weight and to expose controls to fused aluminosilicate particles containing nonradioactive cerium. To date, 19 exposed dogs and 2 control dogs have died or were euthanized. The most prevalent findings to date have been pulmonary carcinomas (7 dogs) and hemangiosarcomas in the tracheobronchial lymph nodes (3 dogs). Observations are continuing on the surviving 8 144 Ce-exposed and 7 control dogs who are now at approximately 2500 days (6.8 years) after the first exposure

  20. Toxicity of 144Ce inhaled in a relatively insoluble form by aged Beagle dogs. XII

    International Nuclear Information System (INIS)

    Boecker, B.B.; Hahn, F.F.; Muggenburg, B.A.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1983-01-01

    The toxicity of relatively insoluble 144 Ce inhaled by 8- to 10.5-year-old Beagle dogs is being investigated to determine possible age-related differences in long-term biological responses. Forty-two dogs were exposed to aerosols of 144 Ce in fused aluminosilicate particles to yield initial lung burdens of 2.2 to 75 μCi 144 Ce/kg body weight, and 12 control dogs were exposed to non-radioactive fused aluminosilicate particles. All 144 Ce-exposed and control dogs have died or were euthanized between 197 and 2726 days after the inhalation exposure. Prominent findings in the 144 Ce-exposed dogs were radiation pneumonitis in 19 of the 23 dogs that died during the first 943 days after exposure, and neoplastic disease in 13 of the 20 dogs that died beyond 904 days after exposure. Pulmonary tumors were found in five of these dogs. In contrast to the study with young adult dogs, in which pulmonary hemangiosarcomas were one of the prominent findings, all of these tumors were carcinomas

  1. Toxicity of 144Ce inhaled in a relatively insoluble form by aged Beagle dogs. XIII

    International Nuclear Information System (INIS)

    Boecker, B.B.; Hahn, F.F.; Muggenburg, B.A.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1984-01-01

    Toxicity of relatively insoluble 144 Ce inhaled by 8 to 10.5 year-old Beagle dogs is being investigated to determine possible age-related differences in long-term biological responses. Forty-two dogs were exposed to aerosols of 144 Ce in fused aluminosilicate particles to yield initial lung burdens of 2.2 to 75 μCi 144 Ce/kg (81-2800 kBq/kg) body weight, and 12 control dogs were exposed to non-radioactive fused aluminosilicate particles. All 144 Ce-exposed and control dogs have died or were euthanized between 197 and 2726 days after the inhalation exposure. Prominent findings in the 144 Ce-exposed dogs were radiation pneumonitis in 19 of the 23 dogs that died during the first 943 days after exposure, and neoplastic disease in 13 of the 20 dogs that died beyond 904 days after exposure. Pulmonary tumors were found in five of these dogs. In contrast to the study with young adult dogs, in which pulmonary hemangiosarcomas were one of the prominent findings, all of these tumors were carcinomas. 1 figure, 1 table

  2. Thermochemical properties of gibbsite, bayerite, boehmite, diaspore, and the aluminate ion between 0 and 350/degree/C

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.; Neil, J.M.; Jun, C.H.

    1989-01-01

    A requirement for modelling the chemical behavior of groundwater in a nuclear waste repository is accurate thermodynamic data pertaining to the participating minerals and aqueous species. In particular, it is important that the thermodynamic properties of the aluminate ion be accurately determined, because most rock forming minerals in the earth's crust are aluminosilicates, and most groundwaters are neutral to slightly alkaline, where the aluminate ion is the predominant aluminum species in solution. Without a precise knowledge of the thermodynamic properties of the aluminate ion aluminosilicate mineral solubilities cannot be determined. The thermochemical properties of the aluminate ion have been determined from the solubilities of the aluminum hydroxides and oxyhydroxides in alkaline solutions between 20 and 350/degree/C. An internally consistent set of thermodynamic properties have been determined for gibbsite, boehmite, diaspore and corundum. The thermodynamic properties of bayerite have been provisionally estimated and a preliminary value for ..delta..G/sub f, 298//sup 0/ of nordstrandite has been determined. 205 refs., 17 figs., 25 tabs.

  3. Ion sources for induction linac driven heavy ion fusion

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1994-01-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma-types and the porous plug and hot alumino--silicate surface source are the thermal types. The hot alumino--silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented

  4. Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers

    International Nuclear Information System (INIS)

    Charnovych, S.; Nemec, P.; Nazabal, V.; Csik, A.; Allix, M.; Matzen, G.; Kokenyesi, S.

    2011-01-01

    Highlights: → Amorphous chalcogenides were investigated in this work. → Photo-induced effects were investigated in the created thin films. → Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers have been studied. - Abstract: Photo induced changes in amorphous As 20 Se 80 /alumino-silicate nanomultilayers (NML) produced by pulsed laser deposition (PLD) method have been studied in this work. The aim was to investigate the photo induced optical and surface relief changes due to the band gap illumination under the size- and hard cover limited conditions. It was observed that the hard cover layer on the surface of the uniform film or alumino-silicate sub-layers in the NML structure influences the photo darkening and restricts surface relief formations in As 20 Se 80 film or in the related NML compared with this effect in a pure chalcogenide layer. The influence of hard layers is supposed to be connected with limiting the free volume formation at the initial stage of the transformation process, which in turn limits the atomic movement and so the surface relief formation.

  5. Kaolinite removal from bauxite by flotation

    Directory of Open Access Journals (Sweden)

    Otávia Martins Silva Rodrigues

    Full Text Available Abstract This paper presents a potential condition to separate kaolinite through flotation when it is present in bauxite ore. This research anticipates a Brazilian industry requirement, considering the tendency towards the need for aluminosilicates removal from bauxite ores, as has already occurred in China. Kaolinite is the most abundant aluminosilicate, and gibbsite is the main aluminum bearing mineral in Brazilian bauxite ores. The first step was a fundamental study involving microflotation experiments with pure samples of kaolinite and gibbsite. Ammonium quaternary salts and amines were used as the collector and corn starch as the depressant. In a fundamental study, the best conditions determined in the first step were evaluated for the flotation of kaolinite from bauxite ore using laboratory scale experiments. Tests with AQ142/starch (pH 10 and CTAB (pH 7 led to satisfactory results. In general, the highest values of alumina/silica mass ratio were obtained with AQ142/starch and the highest values of mass recovery and metallurgical recovery were achieved with CTAB.

  6. Influence of flooding and metal immobilising soil amendments on availability of metals for willows and earthworms in calcareous dredged sediment-derived soils

    Energy Technology Data Exchange (ETDEWEB)

    Vandecasteele, Bart, E-mail: bart.vandecasteele@ilvo.vlaanderen.b [Institute for Agricultural and Fisheries Research (ILVO), Scientific Institute of the Flemish Government, Burg. Van Gansberghelaan 109, B-9820 Merelbeke (Belgium); Du Laing, Gijs [Ghent University, Department of Applied Analytical and Physical Chemistry, Coupure 653, B-9000 Ghent (Belgium); Lettens, Suzanna [Research Institute for Nature and Forest (INBO), Scientific Institute of the Flemish Government, Gaverstraat 4, B-9500 Geraardsbergen (Belgium); Jordaens, Kurt [Department of Biology, Evolutionary Biology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Tack, Filip M.G. [Ghent University, Department of Applied Analytical and Physical Chemistry, Coupure 653, B-9000 Ghent (Belgium)

    2010-06-15

    Soil amendments previously shown to be effective in reducing metal bioavailability and/or mobility in calcareous metal-polluted soils were tested on a calcareous dredged sediment-derived soil with 26 mg Cd/kg dry soil, 2200 mg Cr/kg dry soil, 220 mg Pb/kg dry soil, and 3000 mg Zn/kg dry soil. The amendments were 5% modified aluminosilicate (AS), 10% w/w lignin, 1% w/w diammonium phosphate (DAP, (NH{sub 4}){sub 2}HPO{sub 4}), 1% w/w MnO, and 5% w/w CaSO{sub 4}. In an additional treatment, the contaminated soil was submerged. Endpoints were metal uptake in Salix cinerea and Lumbricus terrestris, and effect on oxidation-reduction potential (ORP) in submerged soils. Results illustrated that the selected soil amendments were not effective in reducing ecological risk to vegetation or soil inhabiting invertebrates, as metal uptake in willows and earthworms did not significantly decrease following their application. Flooding the polluted soil resulted in metal uptake in S. cinerea comparable with concentrations for an uncontaminated soil. - Some soil amendments resulted in higher metal uptake by earthworms and willows than when the polluted soil was not amended but submersion of the polluted soil resulted in reduced Cd and Zn uptake in Salix cinerea.

  7. Direct oxide reducing method

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu.

    1995-01-01

    Calcium oxides and magnetic oxides as wastes generated upon direct reduction are subjected to molten salt electrolysis, and reduced metallic calcium and magnesium are separated and recovered. Then calcium and magnesium are used recyclically as the reducing agent upon conducting direct oxide reduction. Even calcium oxides and magnesium oxides, which have high melting points and difficult to be melted usually, can be melted in molten salts of mixed fluorides or chlorides by molten-salt electrolysis. Oxides are decomposed by electrolysis, and oxygen is removed in the form of carbon monoxide, while the reduced metallic calcium and magnesium rise above the molten salts on the side of a cathode, and then separated. Since only carbon monoxide is generated as radioactive wastes upon molten salt electrolysis, the amount of radioactive wastes can be greatly reduced, and the amount of the reducing agent used can also be decreased remarkably. (N.H.)

  8. Preparation of Al-SBA-15 Pellets with Low Amount of Additives: Effect of Binder Content on Texture and Mechanical Properties. Application to Friedel-Crafts Alkylation

    Czech Academy of Sciences Publication Activity Database

    Topka, Pavel; Karban, Jindřich; Soukup, Karel; Jirátová, Květa; Šolcová, Olga

    2011-01-01

    Roč. 168, č. 1 (2011), s. 433-440 ISSN 1385-8947 R&D Projects: GA ČR GA104/09/0694; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : mesoporous aluminosilicates * pellets * Al-SBA-15 Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.461, year: 2011

  9. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    OpenAIRE

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-01-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins w...

  10. Fluorescence properties of valence-controlled Eu{sup 2+} and Mn{sup 2+} ions in aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Van Tuyen, Ho [Duy Tan University, 3 Quang Trung, Hai Chau, Da Nang (Viet Nam); Nonaka, Takamasa; Yamanaka, Ken-ichi [Toyota Central R& D Labs., Inc., Nagakute, Aichi (Japan); Chau, Pham Minh; Quy Hai, Nguyen Thi; Quang, Vu Xuan [Duy Tan University, 3 Quang Trung, Hai Chau, Da Nang (Viet Nam); Nogami, Masayuki, E-mail: mnogami@mtj.biglobe.ne.jp [Toyota Physical and Chemical Research Institute, Nagakute, Aichi (Japan); Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Duy Tan University, 3 Quang Trung, Hai Chau, Da Nang (Viet Nam)

    2017-04-15

    Controlling of valence states of metal ions doped in glasses has attracted considerable interest due to the possibility of looking toward optical applications. In this study, new Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2} glasses were developed to dope Eu{sup 2+} and Mn{sup 2+} with well controlled valence states by heating in H{sub 2} gas atmosphere, and the changes in the valence state of doped-ions and their fluorescence properties were investigated using visible and infrared optical absorption spectroscopies, X-ray absorption fine structure spectroscopy, and fluorescence spectroscopy. Among Eu{sup 3+}, Mn{sup 3+} and Mn{sup 2+} ions incorporated in the as-prepared glasses, the Eu{sup 3+} and Mn{sup 3+} ions were reduced to Eu{sup 2+} and Mn{sup 2+} ions, respectively, by heating in H{sub 2} gas and OH bonds were concurrently formed. The fluorescence spectra of glasses heated in H{sub 2} exhibited broad emission bands at 450 and 630 nm wavelength, assigned to the Eu{sup 2+} and Mn{sup 2+}, respectively, ions, in which the fluorescence intensity at 450 nm was observed to decrease with increasing Mn{sup 2+} ion content. The increased fluorescence intensities were analyzed as the energy transfer from Eu{sup 2+} to Mn{sup 2+} ions and the energy transfer efficiency was estimated with a concentration of Eu{sup 2+}and Mn{sup 2+} ions.

  11. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  12. Comportement de l’uranium et de ses simulants dans les verres d’aluminosilicates en contact avec des métaux fondus

    OpenAIRE

    Chevreux , Pierrick

    2016-01-01

    This study concerns an innovative process used for conditioning nuclear waste that contain metallic parts contaminated with actinides. High actinides concentrations are expected to be incorporated in the glass melt in contact with the molten metals. Among these metals, aluminum and/or stainless steel impose a strongly reducing environment to the glass melt involving redox reactions. These reactions modify actinides oxidation states and therefore change their solubilities in the glass and coul...

  13. Reducing infant mortality.

    Science.gov (United States)

    Johnson, T R

    1994-01-01

    Public health and social policies at the population level (e.g., oral rehydration therapy and immunization) are responsible for the major reduction in infant mortality worldwide. The gap in infant mortality rates between developing and developed regions is much less than that in maternal mortality rates. This indicates that maternal and child health (MCH) programs and women's health care should be combined. Since 1950, 66% of infant deaths occur in the 1st 28 days, indicating adverse prenatal and intrapartum events (e.g., congenital malformation and birth injuries). Infection, especially pneumonia and diarrhea, and low birth weight are the major causes of infant mortality worldwide. An estimated US$25 billion are needed to secure the resources to control major childhood diseases, reduce malnutrition 50%, reduce child deaths by 4 million/year, provide potable water and sanitation to all communities, provide basic education, and make family planning available to all. This cost for saving children's lives is lower than current expenditures for cigarettes (US$50 billion in Europe/year). Vitamin A supplementation, breast feeding, and prenatal diagnosis of congenital malformations are low-cost strategies that can significantly affect infant well-being and reduce child mortality in many developing countries. The US has a higher infant mortality rate than have other developed countries. The American College of Obstetricians and Gynecologists and the US National Institutes of Health are focusing on prematurity, low birth weight, multiple pregnancy, violence, alcohol abuse, and poverty to reduce infant mortality. Obstetricians should be important members of MCH teams, which also include traditional birth attendants, community health workers, nurses, midwives, and medical officers. We have the financial resources to allocate resources to improve MCH care and to reduce infant mortality.

  14. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  15. Characterization of Samples from the Effluent Treatment Facility Evaporator Waste Concentrate Tank

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, W.R. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-01-31

    During October 1997, the ETF Evaporator Waste Concentrate Tank No. 2 was discovered to contain a significant accumulation of solid deposits. SRTC performed destructive and nondestructive examination of solid samples from the tank. The results of these tests indicate that the solids contain mixtures of sodium oxalate (65 percent), the sulfide enclathrated sodium aluminosilicate (30 percent), and iron oxide (5 percent).

  16. Characterization of Samples from the Effluent Treatment Facility Evaporator Waste Concentrate Tank

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    1998-01-01

    During October 1997, the ETF Evaporator Waste Concentrate Tank No. 2 was discovered to contain a significant accumulation of solid deposits. SRTC performed destructive and nondestructive examination of solid samples from the tank. The results of these tests indicate that the solids contain mixtures of sodium oxalate (65 percent), the sulfide enclathrated sodium aluminosilicate (30 percent), and iron oxide (5 percent)

  17. Determination of the crystalline structure of scale solids from the 16H evaporator gravity drain line to tank 38H

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    August 2015, scale solids from the 16H Evaporator Gravity Drain Line (GDL) to the Tank 38H were delivered to SRNL for analysis. The desired analytical goal was to identify and confirm the crystalline structure of the scale material and determine if the form of the aluminosilicate mineral was consistent with previous analysis of the scale material from the GDL.

  18. Effect of gley formation on leaching of radionuclides and toxic metals from soils

    International Nuclear Information System (INIS)

    Legin, E.K.; Trifonov, Yu.I.; Khokhlov, M.L.; Legina, E.E.; Strukov, V.N.; Kuznetsov, Yu.V.

    2002-01-01

    Radionuclides and toxic metals, entering the soil as a result of technogenic contamination, are not uniformly distributed throughout the soil body, but preferentially fixed on so-called gel films. The gel films represent colloid formations consisting of primarily amorphous iron hydroxides, coordination polymers of mixed Ca,Fe,Al fulvates and humates, and amorphous silica fixed on the muddy aluminosilicate fraction ( 238 U, 239,240 Pu, 152 Eu, 232 Th, 60 Co) and stable elements (Co, Eu) leached from soil samples directly correlates with that of iron, suggesting that under reducing conditions the drainage solution contains a mixture of iron, radionuclides, and microelements of nearly constant composition. This result is consistent with the existing views that radionuclides and microelements in soils are concentrated in the gel films. Furthermore, it reveal that in the investigated system solubilisation of the gel films is accompanied by a combined transfer of radionuclides and stable microelements to the aqueous phase. The most significant effect of leaching was observed for plutonium. (author)

  19. X-ray analysis of aerosol samples from a therapeutic cave

    Energy Technology Data Exchange (ETDEWEB)

    Alfoeldy, B. E-mail: alfi@sunserv.kfki.hu; Toeroek, Sz.; Kocsonya, A.; Szokefalvi-Nagy, Z.; Balla, Md.I

    2001-04-01

    Cave therapy is an efficient therapeutic method to cure asthma, the exact healing effect, however, is not clarified, yet. This study is motivated by the basic assumption that aerosols do play the key role in the cave therapy. This study is based on measurements of single aerosol particles originating from a therapeutic cave of Budapest, Hungary (Szemlohegyi cave). Aerosol particles have been collected in the regions arranged for the therapeutic treatment. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition. Three particle classes have been detected based on major element concentration: alumino-silicate, quartz and calcium carbonate. Calcium ions have well-known physiological influence: anti-spastic, anti-inflammation and excretion reducing effects. Inflammation, accompanying spasm and extreme excretion production cause the smothering stigma, the so-called asthma. Therefore it could be assumed that calcium ions present in high concentration in the cave's atmosphere is the major cause of the healing effect.

  20. The effect of coal sulfur on the behavior of alkali metals during co-firing biomass and coal

    Energy Technology Data Exchange (ETDEWEB)

    Tianhua Yang; Xingping Kai; Yang Sun; Yeguang He; Rundong Li [Shenyang Aerospace University, Liaoning (China). Liaoning Key Laboratory of Clean Energy and Institute of Clean Energy and Environmental Engineering

    2011-07-15

    Biomass contains high amounts of volatile alkali metals and chlorine, which can cause deposition, corrosion and agglomeration during combustion. Meanwhile coal contains a certain amount of sulfur that produces serious environmental pollution following combustion. To investigate the effects of sulfur on the migration of alkali metals during biomass and coal co-combustion, thermodynamic equilibrium calculations were applied and experiments were performed in a laboratory scale reactor combining with a scanning electron microscope (SEM), X-ray powder diffraction (XRD) and other analytical approaches. The results indicate that inorganic sulfur FeS{sub 2} addition significantly enhanced the formation of potassium sulfate when the S/K molar ratio was less than 2. Meanwhile increasing FeS{sub 2} dosage reduced the formation of KCl(g) and KOH(g) and increased the release of HCl(g). In addition potassium sulfate can react with silica and aluminum to form potassium aluminosilicates and release HCl at the S/K molar ratio above 4. 18 refs., 9 figs., 1 tab.

  1. X-ray analysis of aerosol samples from a therapeutic cave

    International Nuclear Information System (INIS)

    Alfoeldy, B.; Toeroek, Sz.; Kocsonya, A.; Szokefalvi-Nagy, Z.; Balla, Md.I.

    2001-01-01

    Cave therapy is an efficient therapeutic method to cure asthma, the exact healing effect, however, is not clarified, yet. This study is motivated by the basic assumption that aerosols do play the key role in the cave therapy. This study is based on measurements of single aerosol particles originating from a therapeutic cave of Budapest, Hungary (Szemlohegyi cave). Aerosol particles have been collected in the regions arranged for the therapeutic treatment. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition. Three particle classes have been detected based on major element concentration: alumino-silicate, quartz and calcium carbonate. Calcium ions have well-known physiological influence: anti-spastic, anti-inflammation and excretion reducing effects. Inflammation, accompanying spasm and extreme excretion production cause the smothering stigma, the so-called asthma. Therefore it could be assumed that calcium ions present in high concentration in the cave's atmosphere is the major cause of the healing effect

  2. Effects of Glasswort (Salicornia herbacea L.) Hydrates on Quality Characteristics of Reduced-salt, Reduced-fat Frankfurters

    Science.gov (United States)

    Choi, Yun-Sang

    2015-01-01

    This study evaluated the effects of adding glasswort hydrate containing non-meat ingredient (GM, carboxy methyl cellulose; GC, carrageenan; GI, isolated soy protein; GS, sodium caseinate) on the quality characteristics of reduced-salt, reduced-fat frankfurters. The pH and color evaluation showed significant differences, depending on the type of glasswort hydrate added (p<0.05). In the raw batters and cooked frankfurters, the addition of glasswort hydrate decreased the redness and increased the yellowness in comparison with frankfurters without glasswort hydrate. The reduction in salt and fat content significantly increased cooking loss and decreased hardness, tenderness and juiciness (p<0.05). Glasswort hydrate containing non-meat ingredient improved cooking loss, water holding capacity, emulsion stability, hardness, and viscosity of reduced-salt, reduced-fat frankfurters. The GM treatment had the highest myofibiliar protein solubility among all treatments, which was associated with emulsion stability and viscosity. The GC treatment had higher values for all texture parameters than the control. In the sensory evaluation, the addition of glasswort hydrate with non-meat ingredient improved tenderness and juiciness of reduced-salt, reduced-fat frankfurters. GM, GC, and GI treatments improved not only the physicochemical properties but also the sensory characteristics of reduced-salt, reduced-fat frankfurters. The results indicated that the use of glasswort hydrate containing non-meat ingredient was improved the quality characteristics of reduced-salt, reduced-fat frankfurters. PMID:26877638

  3. Reducing costs by reducing size

    International Nuclear Information System (INIS)

    Hayns, M.R.; Shepherd, J.

    1991-01-01

    The present paper discusses briefly the many factors, including capital cost, which have to be taken into account in determining whether a series of power stations based on a small nuclear plant can be competitive with a series based on traditional large unit sizes giving the guaranteed level of supply. The 320 MWe UK/US Safe Integral Reactor is described as a good example of how the factors discussed can be beneficially incorporated into a design using proven technology. Finally it goes on to illustrate how the overall costs of a generating system can indeed by reduced by use of the 320 MWe Safe Integral Reactor rather than conventional units of around 1200 MWe. (author). 9 figs

  4. Endogenous mobility-reducing norms

    NARCIS (Netherlands)

    Haagsma, R.; Koning, N.B.J.

    2002-01-01

    We present a model where a mobility-reducing norm arises in response to adverse economic conditions. Our example is the classical farm problem of low returns. A temporary transition barrier induces cognitive dissonance in farm youths, which they try to reduce by developing a belief that revalues

  5. Modulation wave approach to the structural parameterization and Rietveld refinement of low carnegieite

    International Nuclear Information System (INIS)

    Withers, R.L.; Thompson, J.G.

    1993-01-01

    The crystal structure of low carnegieite, NaAlSiO 4 [M r =142.05, orthorhombic, Pb2 1 a, a=10.261(1), b=14.030(2), c=5.1566(6) A, D x =2.542 g cm -3 , Z=4, Cu Kα 1 , λ=1.5406 A, μ=77.52 cm -1 , F(000)=559.85], is determined via Rietveld refinement from powder data, R p =0.057, R wp =0.076, R Bragg =0.050. Given that there are far too many parameters to be determined via unconstrained Rietveld refinement, a group theoretical or modulation wave approach is used in order to parameterize the structural deviation of low carnegieite from its underlying C9 aristotype. Appropriate crystal chemical constraints are applied in order to provide two distinct plausible starting models for the structure of the aluminosilicate framework. The correct starting model for the aluminosilicate framework as well as the ordering and positions of the non-framework Na atoms are then determined via Rietveld refinement. At all stages, chemical plausibility is checked via the use of the bond-length-bond-valence formalism. The JCPDS file number for low carnegieite is 44-1496. (orig.)

  6. Toxicity of 144Ce inhaled in a relatively insoluble form by aged beagle dogs

    International Nuclear Information System (INIS)

    Boecker, B.B.; Hahn, F.F.; Muggenburg, B.A.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1980-01-01

    The toxicity of relatively insoluble 144 Ce inhaled by 8- to 10.5-year-old beagle dogs is being investigated to provide information on possible age-related differences in the resulting long-term biological responses. Forty-two dogs were exposed, nose-only, to aerosols of 144 Ce in fused aluminosilicate particles to yield initial lung burdens of 2.2 to 75 μCi 144 Ce/kg body weight, and 12 control dogs were exposed to nonradioactive fused aluminosilicate particles. To date, 38 144 Ce-exposed dogs and 10 control dogs have died or were euthanized between 197 and 2375 days after inhalation of the 144 Ce. Prominent findings in the 144 Ce-exposed dogs were radiation pneumonitis in 19 dogs that died during the first 943 days post-exposure and neoplastic disease in seven of the 15 dogs. However, only one of these tumors killed the dog. No hemangiosarcomas have been observed in this study, although they were a prominent finding in immature or young adult dogs exposed to 144 Ce. Observations are continuing on the four surviving 144 Ce-exposed and two control dogs

  7. Coal fly ash as a source of iron in atmospheric dust.

    Science.gov (United States)

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A; Scherer, Michelle M; Grassian, Vicki H

    2012-02-21

    Anthropogenic coal fly ash (FA) aerosol may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made that compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report here an investigation of iron dissolution for three FA samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust (AZTD), a reference material for mineral dust. The effects of pH, simulated cloud processing, and solar radiation on iron solubility have been explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provides the predominant component of dissolved iron. Iron solubility of FA is substantially higher than of the crystalline minerals comprising AZTD. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology of aluminosilicate glass, a dominant material in FA particles. Iron is continuously released into the aqueous solution as FA particles break up into smaller fragments. These results suggest that the assessment of dissolved atmospheric iron deposition fluxes and their effect on the biogeochemistry at the ocean surface should be constrained by the source, environmental pH, iron speciation, and solar radiation.

  8. Use of a cranium-vessel determined by means of compound analysis; Uso de una vasija-craneo determinada por medio de analisis de compuesto

    Energy Technology Data Exchange (ETDEWEB)

    Leboreiro, I.; Pijoan, C.M.; Mansilla, J. [Direccion de Antropologia Fisica, INAH, Gandhi s/n, Polanco, 11560 Mexico D. F. (Mexico); Bosch, P. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2004-07-01

    Many human remains as bones, skin, teeth and others, were used in pre-hispanic cultures as tools or ritual objects. A human cranial vault filed in the Direccion de Antropologia Fisica presented particular and interesting cultural modifications. There are twelve drills used to restore by sewing the crane, in this way the piece resembles a pot. It has been established that it comes from North Mexico where such restoration work has been reported (Aveleyra, 1956) for containers made of vegetables (guaje). As the utilization of this kind of archaeological remain is unknown, the study of dust samples from the inside and the outside of the crane should provide hints on the products stored into it. In this study we present the X-ray diffraction results which show that the outer dusts are mainly constituted by albite, andesite and quartz, whereas in the inside the substances were mainly aluminosilicates and magnesium compounds. Hence, most probably, this crane was not used as a conventional container and it is linked to the concoction of magnesium and aluminosilicates containing products. This conclusion has to be correlated to that even nowadays, in both alternative and conventional medicine. (Author) 7 refs., 7 figs.

  9. Study on fused/cast AZS refractories for deployment in vitrification of radioactive waste effluents

    Science.gov (United States)

    Sengupta, Pranesh; Mishra, R. K.; Soudamini, N.; Sen, D.; Mazumder, S.; Kaushik, C. P.; Ajithkumar, T. G.; Banerjee, K.

    2015-12-01

    'Fused/cast Al2O3-ZrO2-SiO2 (FC-AZS)' is being considered as 'glass contact refractory' within ceramic melters, to be used for nuclear waste immobilization. Microstructural analyses reveal random distributions of baddeleyite (ZrO2) within aluminosilicate (Al2SiO5) matrix. 27Al and 29Si NMR data suggest that within aluminosilicate matrix Al occurs in both 4- and 6-fold co-ordinations whereas Si prefers a 4-fold environment. Polydispersity of pores has been studied with small-angle neutron scattering (SANS) technique. Corrosion rates of FC-AZS within 6 M HNO3, simulated wastes (500 h exposure), and borosilicate melt (975 °C, 800 h exposure) are found to be 0.38 × 103 μmy-1, 0.13 × 103 μmy-1 and 4.75 × 103 μmy-1 respectively. A comparison of chemical interaction data clearly suggests that FC-AZS exhibits better chemical durability than AZC refractory (Al2O3-ZrO2-Cr2O3, also used for similar purpose). Thermal cycling studies indicate that FC-AZS retains structural integrity (including compressive strength and density) even up to 20 cycles.

  10. Use of a cranium-vessel determined by means of compound analysis

    International Nuclear Information System (INIS)

    Leboreiro, I.; Pijoan, C.M.; Mansilla, J.; Bosch, P.

    2004-01-01

    Many human remains as bones, skin, teeth and others, were used in pre-hispanic cultures as tools or ritual objects. A human cranial vault filed in the Direccion de Antropologia Fisica presented particular and interesting cultural modifications. There are twelve drills used to restore by sewing the crane, in this way the piece resembles a pot. It has been established that it comes from North Mexico where such restoration work has been reported (Aveleyra, 1956) for containers made of vegetables (guaje). As the utilization of this kind of archaeological remain is unknown, the study of dust samples from the inside and the outside of the crane should provide hints on the products stored into it. In this study we present the X-ray diffraction results which show that the outer dusts are mainly constituted by albite, andesite and quartz, whereas in the inside the substances were mainly aluminosilicates and magnesium compounds. Hence, most probably, this crane was not used as a conventional container and it is linked to the concoction of magnesium and aluminosilicates containing products. This conclusion has to be correlated to that even nowadays, in both alternative and conventional medicine. (Author) 7 refs., 7 figs

  11. Shrinkage Reducing Admixture for Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Concrete shrinkage cracking is a common problem in all types of concrete structures, especially for structures and environments where the cracks are prevalent and the repercussions are most severe. A liquid shrinkage reducing admixture for concrete, developed by GRACE Construction Products and ARCO Chemical Company, that reduces significantly the shrinkage during concrete drying and potentially reduces overall cracking over time.

  12. Design of Geopolymeric Materials Based on Nanostructural Characterization and Modeling

    Science.gov (United States)

    2006-04-01

    basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid ... hydrothermal treatment of solid precursors. Of particular interest to researchers has been the synthesis of low-calcium cements by geopolymerisation of fly...proposed that this structure is related to the aluminosilicate precursor gels from which zeolites are hydrothermally generated. Due primarily to the

  13. Synthesis and characterization of submicron-sized mesoporous ...

    Indian Academy of Sciences (India)

    Unknown

    values of the pore diameters being in the range 15–20 Å (table 1). The pore size of the aluminosilicate spheres is smaller than that of the pure silica spheres. We could estimate the diameter of the pores from the low-angle XRD peaks by making use of the relation ao = (2d100)/(3)1/2. The values of the diameter obtained are ...

  14. Filtering reducer of flushing fluid

    Energy Technology Data Exchange (ETDEWEB)

    Secu, P; Apostu, M; Basarabescu, T; Popescu, F

    1981-02-28

    This is a patent of a filtering reducer of flushing fluid on a water base with low content of solid particles used at temperatures of roughly 200/sup 0/C. With the use of the proposed filtering reducer, there is no excessive increase in viscosity and gelatinization of the flushing fluids without restriction in the quantity of reducer needed to guarantee the required filtering. There is a possibility of recovering the polyalkylphenol vat residues obtained in the production of nonyl phenol. It is possible to reduce the time of treatment and dissolving of the product; there is no danger of plugging of the productive oil beds. The process of hydration of clay is excluded.

  15. The geomicrobiology of bauxite deposits

    Directory of Open Access Journals (Sweden)

    Xiluo Hao

    2010-10-01

    Full Text Available Bauxite deposits are studied because of their economic value and because they play an important role in the study of paleoclimate and paleogeography of continents. They provide a rare record of the weathering and evolution of continental surfaces. Geomicrobiological analysis makes it possible to verify that microorganisms have played a critical role during the formation of bauxite with the possibility already intimated in previous studies. Ambient temperature, abundance of water, organic carbon and bioavailable iron and other metal substrates provide a suitable environment for microbes to inhabit. Thiobacillus, Leptospirilum, Thermophilic bacteria and Heterotrophs have been shown to be able to oxidize ferrous iron and to reduce sulfate-generating sulfuric acid, which can accelerate the weathering of aluminosilicates and precipitation of iron oxyhydroxides. Microorganisms referred to the genus Bacillus can mediate the release of alkaline metals. Although the dissimilatory iron-reducing and sulfate-reducing bacteria in bauxites have not yet been identified, some recorded authigenic carbonates and “bacteriopyrites” that appear to be unique in morphology and grain size might record microbial activity. Typical bauxite minerals such as gibbsite, kaolinite, covellite, galena, pyrite, zircon, calcium plagioclase, orthoclase, and albite have been investigated as part of an analysis of microbial mediation. The paleoecology of such bauxitic microorganisms inhabiting continental (sub surfaces, revealed through geomicrobiological analysis, will add a further dimension to paleoclimatic and paleoenvironmental studies.

  16. [Effect of sodium carbonate assisted hydrothermal process on heavy metals stabilization in medical waste incinerator fly ash].

    Science.gov (United States)

    Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-04-01

    A sodium carbonate assisted hydrothermal process was induced to stabilize the fly ash from medical waste incinerator. The results showed that sodium carbonate assisted hydrothermal process reduced the heavy metals leachability of fly ash, and the heavy metal waste water from the process would not be a secondary pollution. The leachability of heavy metals studied in this paper were Cd 1.97 mg/L, Cr 1.56 mg/L, Cu 2.56 mg/L, Mn 17.30 mg/L, Ni 1.65 mg/L, Pb 1.56 mg/L and Zn 189.00 mg/L, and after hydrothermal process with the optimal experimental condition (Na2CO3/fly ash dosage = 5/20, reaction time = 8 h, L/S ratio = 10/1) the leachability reduced to < 0.02 mg/L for Cd, Cr, Cu, Mn, Ni, Pb, and 0.05 mg/L for Zn, according to GB 5085.3-2007. Meanwhile, the concentrations of heavy metals in effluent after hydrothermal process were less than 0.8 mg/L. The heavy metals leachability and concentration in effluent reduced with prolonged reaction time. Prolonged aging can affect the leachability of metals as solids become more crystalline, and heavy metals transferred inside of crystalline. The mechanism of heavy metal stabilization can be concluded to the co precipitation and adsorption effect of aluminosilicates formation, crystallization and aging process.

  17. Effect of additives in reducing ash sintering and slagging in biomass combustion applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang

    2012-07-01

    marble sludge was considered as the main reason to prevent sintering of two biomass ashes. Addition of sewage sludge enhanced contents of inert minerals and reduced melted fraction in two biomass ashes. These inert minerals are (1) directly from the added sludge and (2) formed due to reaction between aluminosilicates in sludge and K containing species in the biomass ashes. Therefore, sintering degrees of the two biomass ashes were reduced upon sewage sludge addition. Clay sludge addition resulted in more severe sintering behaviors of the wood waste ash, as a result of formation of more Si rich melts upon heating. Effects of additives on ash slagging behaviors were further investigated during combustion of wood waste pellets in an industry scale boiler. It was found that the wood waste ash had a high slagging tendency and silicate-alkali chemistry played a dominating role during the ash sintering process. The addition of marble sludge significantly reduced the slag formation during wood waste pellets combustion. This occurred because marble sludge restrained accumulation of melted ash and contributed to formation of high temperature melting potassium/sodium calcium silicates. The sewage sludge addition gave a less pronounced anti-slagging effect on wood waste pellets combustion. The composition of the formed slag was changed from low temperature melting silicates to high temperature melting mineral phases. In addition, the size and sintering degree of the formed slag decreased considerably, improving the operation conditions of the boiler.(Author)

  18. Radioactive Cs in the Severely Contaminated Soils Near the Fukushima Daiichi Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Makoto; Iwata, Hajime; Shiotsu, Hiroyuki; Masaki, Shota; Kawamoto, Yuji; Yamasaki, Shinya; Nakamatsu, Yuki; Imoto, Junpei; Furuki, Genki; Ochiai, Asumi [Department of Chemistry, Kyushu University, Fukuoka (Japan); Nanba, Kenji [Department of Environmental Management, Faculty of Symbiotic System Science, Fukushima University, Fukushima (Japan); Ohnuki, Toshihiko [Advanced Science Research Center Japan Atomic Energy Agency, Tokai (Japan); Ewing, Rodney C. [Department of Geological Sciences, Center for International Security and Cooperation, Stanford University, Stanford, CA (United States); Utsunomiya, Satoshi, E-mail: utsunomiya.satoshi.998@m.kyushu-u.ac.jp [Department of Chemistry, Kyushu University, Fukuoka (Japan)

    2015-09-01

    Radioactive Cs isotopes ({sup 137}Cs, t{sub 1/2} = 30.07 years and {sup 134}Cs, t{sub 1/2} = 2.062 years) occur in severely contaminated soils within a few kilometer of the Fukushima Daiichi nuclear power plant at concentrations that range from 4 × 10{sup 5} to 5 × 10{sup 7} Bq/kg. In order to understand the mobility of Cs in these soils, both bulk and submicron-sized particles elutriated from four surface soils have been investigated using a variety of analytical techniques, including powder X-ray diffraction analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and analysis of the amount of radioactivity in sequential chemical extractions. Major minerals in bulk soil samples were quartz, feldspar, and minor clays. The submicron-sized particles elutriated from the same soil consist mainly of mica, vermiculite, and smectite and occasional gibbsite. Autoradiography in conjunction with SEM analysis confirmed the association of radioactive Cs mainly with the submicron-sized particles. Up to ~3 MBq/kg of {sup 137}Cs are associated with the colloidal size fraction (<1 μm), which accounts for ~78% of the total radioactivity. Sequential extraction of the bulk sample revealed that most Cs was retained in the residual fraction, confirming the high binding affinity of Cs to clays, aluminosilicate sheet structures. The chemistry of the fraction containing submicron-sized particles from the same bulk sample showed a similar distribution to that of the bulk sample, again confirming that the Cs is predominantly adsorbed onto submicron-sized sheet aluminosilicates, even in the bulk soil samples. Despite the very small particle size, aggregation of the particles prevents migration in the vertical direction, resulting in the retention of >98% of Cs within top ~5 cm of the soil. These results suggest that the mobility of the aggregates of submicron-sized sheet aluminosilicate in the surface environment is a key factor controlling the current Cs

  19. Long-term product consistency test of simulated 90-19/Nd HLW glass

    International Nuclear Information System (INIS)

    Gan, X.Y.; Zhang, Z.T.; Yuan, W.Y.; Wang, L.; Bai, Y.; Ma, H.

    2011-01-01

    Chemical durability of 90-19/Nd glass, a simulated high-level waste (HLW) glass in contact with the groundwater was investigated with a long-term product consistency test (PCT). Generally, it is difficult to observe the long term property of HLW glass due to the slow corrosion rate in a mild condition. In order to overcome this problem, increased contacting surface (S/V = 6000 m -1 ) and elevated temperature (150 o C) were employed to accelerate the glass corrosion evolution. The micro-morphological characteristics of the glass surface and the secondary minerals formed after the glass alteration were analyzed by SEM-EDS and XRD, and concentrations of elements in the leaching solution were determined by ICP-AES. In our experiments, two types of minerals, which have great impact on glass dissolution, were found to form on 90-19/Nd HLW glass surface when it was subjected to a long-term leaching in the groundwater. One is Mg-Fe-rich phyllosilicates with honeycomb structure; the other is aluminosilicates (zeolites). Mg and Fe in the leaching solution participated in the formation of phyllosilicates. The main components of phyllosilicates in alteration products of 90-19/Nd HLW glass are nontronite (Na 0.3 Fe 2 Si 4 O 10 (OH) 2 .4H 2 O) and montmorillonite (Ca 0.2 (Al,Mg) 2 Si 4 O 10 (OH) 2 .4H 2 O), and those of aluminosilicates are mordenite ((Na 2 ,K 2 ,Ca)Al 2 Si 10 O 24 .7H 2 O)) and clinoptilolite ((Na,K,Ca) 5 Al 6 Si 30 O 72 .18H 2 O). Minerals like Ca(Mg)SO 4 and CaCO 3 with low solubility limits are prone to form precipitant on the glass surface. Appearance of the phyllosilicates and aluminosilicates result in the dissolution rate of 90-19/Nd HLW glass resumed, which is increased by several times over the stable rate. As further dissolution of the glass, both B and Na in the glass were found to leach out in borax form.

  20. Paramagnetic centers in ternary coordinated oxygen in beryllium aluminosilicate glasses

    International Nuclear Information System (INIS)

    Blaginina, L.A.; Zatsepin, A.F.; Dmitriev, I.A.

    1988-01-01

    Glasses of the composition 3BeO-Al 2 O 3 -6SiO 2 containing a homogenizing additive of MgF 2 were synthesized. The ESR spectra of x-ray and gamma irradiated specimens were determined. A complex ESR spectrum arose in the original glass. The ESR spectrum of the gamma-irradiated polycrystalline Be 2 SiO 4 glass was almost identical to the crystallized glass. It was shown that the presence of beryllium atoms in the composition of silicate glasses created the conditions for the formation of structural fragments with ternary coordinated oxygen

  1. Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance

    Science.gov (United States)

    Zhang, Yi; Fu, Liangjie; Shu, Zhan; Yang, Huaming; Tang, Aidong; Jiang, Tao

    2017-07-01

    Substitutional doping is a strategy in which atomic impurities are optionally added to a host material to promote its properties, while the geometric and electronic structure evolution of natural nanoclay mineral upon substitutional metal doping is still ambiguous. This paper first designed an efficient lanthanum (La) doping strategy for nanotubular clay (halloysite nanotube, HNT) through the dynamic equilibrium of a substitutional atom in the presence of saturated AlCl3 solution, and systematic characterization of the samples was performed. Further density functional theory (DFT) calculations were carried out to reveal the geometric and electronic structure evolution upon metal doping, as well as to verify the atom-level effect of the La doping. The CdS loading and its corresponding water splitting performance could demonstrate the effect of La doping. CdS nanoparticles (11 wt.%) were uniformly deposited on the surface of La-doped halloysite nanotube (La-HNT) with the average size of 5 nm, and the notable photocatalytic hydrogen evolution rate of CdS/La-HNT reached up to 47.5 μmol/h. The results could provide a new strategy for metal ion doping and constructive insight into the substitutional doping mechanism.

  2. Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices

    Science.gov (United States)

    Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III

    1991-01-01

    Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glass transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder X ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structural transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.

  3. Salinity-Dependent Adhesion Response Properties of Aluminosilicate (K-Feldspar) Surfaces

    DEFF Research Database (Denmark)

    Lorenz, Bärbel; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    is composed predominantly of quartz with some clay, but feldspar grains are often also present. While the wettability of quartz and clay surfaces has been thoroughly investigated, little is known about the adhesion properties of feldspar. We explored the interaction of model oil compounds, molecules...... in well sorted sandstone. Adhesion forces, measured with the chemical force mapping (CFM) mode of atomic force microscopy (AFM), showed a low salinity effect on the fresh feldspar surfaces. Adhesion force, measured with -COO(H)-functionalized tips, was 60% lower in artificial low salinity seawater (LS......, ∼1500 ppm total dissolved solids) than in the high salinity solution, artificial seawater (HS, ASW, ∼35 600 ppm). Adhesion with the -CH3 tips was as much as 30% lower in LS than in HS. Density functional theory calculations indicated that the low salinity response resulted from expansion of the electric...

  4. SiC-based refractory paints prepared with alkali aluminosilicate binders

    Czech Academy of Sciences Publication Activity Database

    Medri, V.; Fabbri, S.; Ruffini, A.; Dědeček, Jiří; Vaccari, A.

    2011-01-01

    Roč. 31, č. 12 (2011), s. 2155-2165 ISSN 0955-2219 Institutional research plan: CEZ:AV0Z40400503 Keywords : C.corrosion * C.thermal properties * D.SiC Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.353, year: 2011

  5. Process for reducing the pertechnetate anion

    International Nuclear Information System (INIS)

    Ruddock, C.F.

    1980-01-01

    Process for reducing the 'pertechnetate' ion TcO 4 - , whereby an aqueous solution of 'pertechnetate' is mixed with tin metal or a tin alloy as 'pertechnetate' reducing agent, and a soluble salt of a metal below tin in the electro-chemical tension scale, as activator for the reducing tin. This reduced 'pertechnetate' is used for forming usable complexes in medical diagnosis exploration [fr

  6. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  7. Using REDUCE in high energy physics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1997-01-01

    This book describes the use of the symbolic manipulation language REDUCE in particle physics. There are several general purpose mathematics packages available to physicists, including Mathematica, Maple, and REDUCE. Each has advantages and disadvantages, but REDUCE has been found to be both powerful and convenient in solving a wide range of problems. This book introduces the reader to REDUCE and demonstrates its utility as a mathematical tool in physics. The first chapter of the book describes the REDUCE system, including some library packages. The following chapters show the use of REDUCE in examples from classical mechanics, hydrodynamics, general relativity, and quantum mechanics. The rest of the book systematically presents the Standard Model of particle physics (QED, weak interactions, QCD). A large number of scattering and decay processes are calculated with REDUCE. All example programs from the book can be downloaded via Internet. The emphasis throughout is on learning through worked examples. This will be an essential introduction and reference for high energy and theoretical physicists. (author)

  8. Progress Towards Achieving the Challenge of Indian Summer Monsoon Climate Simulation in a Coupled Ocean-Atmosphere Model

    Science.gov (United States)

    Hazra, Anupam; Chaudhari, Hemantkumar S.; Saha, Subodh Kumar; Pokhrel, Samir; Goswami, B. N.

    2017-10-01

    Simulation of the spatial and temporal structure of the monsoon intraseasonal oscillations (MISOs), which have effects on the seasonal mean and annual cycle of Indian summer monsoon (ISM) rainfall, remains a grand challenge for the state-of-the-art global coupled models. Biases in simulation of the amplitude and northward propagation of MISOs and related dry rainfall bias over ISM region in climate models are limiting the current skill of monsoon prediction. Recent observations indicate that the convective microphysics of clouds may be critical in simulating the observed MISOs. The hypothesis is strongly supported by high fidelity in simulation of the amplitude and space-time spectra of MISO by a coupled climate model, when our physically based modified cloud microphysics scheme is implemented in conjunction with a modified new Simple Arakawa Schubert (nSAS) convective parameterization scheme. Improved simulation of MISOs appears to have been aided by much improved simulation of the observed high cloud fraction and convective to stratiform rain fractions and resulted into a much improved simulation of the ISM rainfall, monsoon onset, and the annual cycle.

  9. Reducing elevator energy use: A comparison of posted feedback and reduced elevator convenience

    Science.gov (United States)

    Houten, Ron Van; Nau, Paul A.; Merrigan, Michael

    1981-01-01

    The effects of two different procedures for reducing elevator energy use were assessed using a multiple-baseline design. In the first procedure, feedback about the amount of energy consumed by the elevators each week was posted on each elevator door. Later, signs advocating the use of stairs to save energy and improve health were posted next to the feedback signs. In the second procedure, the time required to travel between floors was increased by adding a delay to the elevator door closing mechanisms. Results indicated that neither feedback alone nor feedback plus educational signs reduced the amount of energy consumed by the elevators. However, use of the door delay reduced consumption by one-third in all elevators. A second experiment replicated the effect of the door delay on energy consumption and, in addition, demonstrated that the door delay also produced a reduction in the number of persons using the elevator. The second experiment also showed that, following an initial period during which a full delay was in effect, a gradual reduction of the delay interval resulted in continued energy conservation. Reduced convenience as a general strategy for energy conservation is discussed. PMID:16795648

  10. Reducing The Nuclear Danger

    Science.gov (United States)

    1995-10-01

    off convention • Eliminate the civil use of HEU (includes RERTR ) • Reduce stockpiles of civil HEU and plutonium • Promote alternatives to the...these countries. ANL supports the Department’s Reduced Enrichment for Research and Test Reactor ( RERTR ) Program by providing the technical means to...scientists and engineers at 60 institutes in Russia, Ukraine, Kazakhstan and Belarus. The United States and Russia have agreed to pursue a joint RERTR

  11. Servo Reduces Friction In Flexure Bearing

    Science.gov (United States)

    Clingman, W. Dean

    1991-01-01

    Proposed servocontrol device reduces such resistive torques as stiction, friction, ripple, and cogging in flexure bearing described in LAR-14348, "Flexure Bearing Reduces Startup Friction". Reduces frictional "bump" torque encountered when bearing ball runs into buildup of grease on bearing race. Also used as cable follower to reduce torque caused by cable and hoses when they bend because of motion of bearing. New device includes torquer across ball race. Torquer controlled by servo striving to keep flexure at null, removing torque to outer ring. In effect, device is inner control loop reducing friction, but does not control platforms or any outer-control-loop functions.

  12. Holonomy-reduced dynamics of triatomic molecules

    International Nuclear Information System (INIS)

    Ciftci, Uenver; Waalkens, Holger

    2011-01-01

    Whereas it is easy to reduce the translational symmetry of a molecular system using, e.g., Jacobi coordinates, the situation is much more involved for rotational symmetry. In this paper, we address the latter problem using holonomy reduction. We suggest that the configuration space may be considered as the reduced holonomy bundle with a connection induced by the mechanical connection. Using the fact that for the special case of the three-body problem the holonomy group is SO(2) (as opposed to SO(3) like in systems with more than three bodies), we obtain a holonomy-reduced configuration space of topology R + 3 xS 1 . The dynamics then takes place on the cotangent bundle over the holonomy-reduced configuration space. On this phase space, there is an S 1 symmetry action coming from the conserved reduced angular momentum which can be reduced using the standard symplectic reduction method. Using a theorem by Arnold it follows that the resulting symmetry-reduced phase space is again a natural mechanical phase space, i.e. a cotangent bundle. This is different from what is obtained from the usual approach where symplectic reduction is used from the outset. This difference is discussed in some detail, and a connection between the reduced dynamics of a triatomic molecule and the motion of a charged particle in a magnetic field is established.

  13. Holonomy-reduced dynamics of triatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, Uenver [Department of Mathematics, Namik Kemal University, 59030 Tekirdag (Turkey); Waalkens, Holger, E-mail: uciftci@nku.edu.tr, E-mail: h.waalkens@rug.nl [Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, PO Box 407, 9700 AK Groningen (Netherlands)

    2011-04-22

    Whereas it is easy to reduce the translational symmetry of a molecular system using, e.g., Jacobi coordinates, the situation is much more involved for rotational symmetry. In this paper, we address the latter problem using holonomy reduction. We suggest that the configuration space may be considered as the reduced holonomy bundle with a connection induced by the mechanical connection. Using the fact that for the special case of the three-body problem the holonomy group is SO(2) (as opposed to SO(3) like in systems with more than three bodies), we obtain a holonomy-reduced configuration space of topology R{sub +}{sup 3}xS{sup 1}. The dynamics then takes place on the cotangent bundle over the holonomy-reduced configuration space. On this phase space, there is an S{sup 1} symmetry action coming from the conserved reduced angular momentum which can be reduced using the standard symplectic reduction method. Using a theorem by Arnold it follows that the resulting symmetry-reduced phase space is again a natural mechanical phase space, i.e. a cotangent bundle. This is different from what is obtained from the usual approach where symplectic reduction is used from the outset. This difference is discussed in some detail, and a connection between the reduced dynamics of a triatomic molecule and the motion of a charged particle in a magnetic field is established.

  14. Using reduce in supersymmetry

    International Nuclear Information System (INIS)

    Santos, R.P. dos.

    1987-01-01

    A procedure which allows one to do Supersymmetry calculus in REDUCE is described. Using the concept of an eight-dimensional 'superspace' (spanned by four space-time and four anticommuting coordinates) and of 'superfields' (which represent an entire supermultiplet of particles that transform among themselves), covariant derivatives with respect to supersymmetry are defined. Then, combining the vector facility and LET statement in REDUCE, spinors are simulated in a way to control the algebraic manipulation. (G.D.F.) [pt

  15. Les zéolithes comme catalyseurs "verts" pour la synthèse organique : de leur synthèse à façon à leurs applications en chimie organique

    OpenAIRE

    Bernardon , Claire

    2016-01-01

    Zeolites are crystalline porous aluminosilicates and useful heterogeneous catalysts in chemical industries. They represent one of the significant solutions to main environmental concerns. Thanks to their particular properties like shape selectivity and intrinsic acidities of Lewis and Brønsted, zeolites offer unbeatable abilities in organic synthesis. More than 230 structures have already been discovered, which afford thousands discovery and offer a lot of possibilities.This work was focused ...

  16. European Science Notes Information Bulletin. Reports on Current European and Middle Eastern Science

    Science.gov (United States)

    1993-01-01

    actuators, windshield wipers, and aircraft instru- ment displays. The concept of operation is that a flat array of piezoelectric elements forms the "stator...Inorganiques - "* Aluminosilicate Fractal Aerogels J. C. Bernier "* Sol-gel Transition and Aging of Silica-based * Ceramic Powders Gels * Sols and Colloidal...34* Structural and Vibration Modes of Aerogels * Colloidal Precursors for Ceramic Materials "* Mechanical Properties of Silica Gels and Aerogels Centre

  17. Method and container for reducing pertechnetate

    International Nuclear Information System (INIS)

    Ruddock, C.F.

    1980-01-01

    A method of reducing the pertechnetate in TcO 4 - comprises mixing together an aqueous solution of pertechnetate, e.g. the eluant from a technetium generator, metallic tin or an alloy thereof as a reducing agent for the pertechnetate, and a soluble salt of a metal below tin in the electrochemical series, e.g. copper, as an activator for the tin metal reducing agent. A complexing agent for the reduced technetium or a colloid stabiliser may also be included. The pH is preferably 3 to 12. Also claimed is a closed container containing the tin reducing agent, the activator, and the complexant or colloid stabiliser if used, preferably in a freeze-dried sterile state, to which the pertechnetate solution may be added. (author)

  18. Reducing Employment Insecurity

    Directory of Open Access Journals (Sweden)

    Florence Lebert

    2016-10-01

    Full Text Available The perception of job insecurity is known to be a stressful condition for employees. Less is known about employment insecurity and the ways employees and their families deal with it. This study investigates whether participation in further training is a strategy that employees adopt to reduce perceived employment insecurity. As participation in further training is often costly and time-consuming, we assume that the family context is of importance for the decision to take part in further training. To take account of possible self-selection, we apply a propensity score matching procedure on longitudinal data from the Swiss Household Panel (2004-2013. Three main findings can be emphasized: first, participation in further training is not a strategy adopted particularly by employees who perceive high employment insecurity as they are less likely to train than their secure counterparts. Second, even though further training is not a strategy that is actively adopted, employees who train subsequently report lower levels of perceived employment insecurity. Third, the family context indeed influences the likelihood to train: partnered employees are more likely to train and preschool-aged children act as a constraint on women’s but enhance men’s participation in further training. Yet, in the context of high perceived employment insecurity, children generally reduce their parents’ likelihood to train as the parents may turn to other strategies that reduce perceived employment insecurity.

  19. Reducing Pesticide Drift

    Science.gov (United States)

    Provides information about pesticide spray drift, including problems associated with drift, managing risks from drift and the voluntary Drift Reduction Technology program that seeks to reduce spray drift through improved spray equipment design.

  20. Sleep can reduce proactive interference.

    Science.gov (United States)

    Abel, Magdalena; Bäuml, Karl-Heinz T

    2014-01-01

    Sleep has repeatedly been connected to processes of memory consolidation. While extensive research indeed documents beneficial effects of sleep on memory, little is yet known about the role of sleep for interference effects in episodic memory. Although two prior studies reported sleep to reduce retroactive interference, no sleep effect has previously been found for proactive interference. Here we applied a study format differing from that employed by the prior studies to induce a high degree of proactive interference, and asked participants to encode a single list or two interfering lists of paired associates via pure study cycles. Testing occurred after 12 hours of diurnal wakefulness or nocturnal sleep. Consistent with the prior work, we found sleep in comparison to wake did not affect memory for the single list, but reduced retroactive interference. In addition we found sleep reduced proactive interference, and reduced retroactive and proactive interference to the same extent. The finding is consistent with the view that arising benefits of sleep are caused by the reactivation of memory contents during sleep, which has been suggested to strengthen and stabilise memories. Such stabilisation may make memories less susceptible to competition from interfering memories at test and thus reduce interference effects.

  1. Reduced turning frequency and delayed poultry manure addition reduces N loss from sugarcane compost.

    Science.gov (United States)

    Bryndum, S; Muschler, R; Nigussie, A; Magid, J; de Neergaard, A

    2017-07-01

    Composting is an effective method to recycle biodegradable waste as soil amendment in smallholder farming systems. Although all essential plant nutrients are found in compost, a substantial amount of nitrogen is lost during composting. This study therefore investigated the potential of reducing N losses by (i) delaying the addition of nitrogen-rich substrates (i.e. poultry manure), and (ii) reducing the turning frequency during composting. Furthermore, we tested the effect of compost application method on nitrogen mineralization. Sugarcane-waste was composted for 54days with addition of poultry manure at the beginning (i.e. early addition) or after 21days of composting (delayed addition). The compost pile was then turned either every three or nine days. Composts were subsequently applied to soil as (i) homogeneously mixed, or (ii) stratified, and incubated for 28days to test the effect of compost application on nitrogen mineralization. The results showed that delayed addition of poultry manure reduced total nitrogen loss by 33% and increased mineral nitrogen content by >200% compared with early addition. Similarly, less frequent turning reduced total N loss by 12% compared with frequent turning. Stratified placement of compost did not enhance N mineralization compared to a homogeneous mixing. Our results suggested that simple modifications of the composting process (i.e. delayed addition and/or turning frequency) could significantly reduce N losses and improve the plant-nutritional value of compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Reduced Numerical Approximation of Reduced Fluid-Structure Interaction Problems With Applications in Hemodynamics

    Directory of Open Access Journals (Sweden)

    Claudia M. Colciago

    2018-06-01

    Full Text Available This paper deals with fast simulations of the hemodynamics in large arteries by considering a reduced model of the associated fluid-structure interaction problem, which in turn allows an additional reduction in terms of the numerical discretisation. The resulting method is both accurate and computationally cheap. This goal is achieved by means of two levels of reduction: first, we describe the model equations with a reduced mathematical formulation which allows to write the fluid-structure interaction problem as a Navier-Stokes system with non-standard boundary conditions; second, we employ numerical reduction techniques to further and drastically lower the computational costs. The non standard boundary condition is of a generalized Robin type, with a boundary mass and boundary stiffness terms accounting for the arterial wall compliance. The numerical reduction is obtained coupling two well-known techniques: the proper orthogonal decomposition and the reduced basis method, in particular the greedy algorithm. We start by reducing the numerical dimension of the problem at hand with a proper orthogonal decomposition and we measure the system energy with specific norms; this allows to take into account the different orders of magnitude of the state variables, the velocity and the pressure. Then, we introduce a strategy based on a greedy procedure which aims at enriching the reduced discretization space with low offline computational costs. As application, we consider a realistic hemodynamics problem with a perturbation in the boundary conditions and we show the good performances of the reduction techniques presented in the paper. The results obtained with the numerical reduction algorithm are compared with the one obtained by a standard finite element method. The gains obtained in term of CPU time are of three orders of magnitude.

  3. Reducing Childhood Obesity

    Science.gov (United States)

    ... Bar Home Current Issue Past Issues Reducing Childhood Obesity Past Issues / Summer 2007 Table of Contents For ... Ga. were the first three We Can! cities. Obesity Research: A New Approach The percentage of children ...

  4. System for actively reducing sound

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2005-01-01

    A system for actively reducing sound from a primary noise source, such as traffic noise, comprising: a loudspeaker connector for connecting to at least one loudspeaker for generating anti-sound for reducing said noisy sound; a microphone connector for connecting to at least a first microphone placed

  5. FLUIDIZED BED STEAM REFORMER (FBSR) PRODUCT: MONOLITH FORMATION AND CHARACTERIZATION

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    The most important requirement for Hanford's low activity waste (LAW) form for shallow land disposal is the chemical durability of the product. A secondary, but still essential specification, is the compressive strength of the material with regards to the strength of the material under shallow land disposal conditions, e.g. the weight of soil overburden and potential intrusion by future generations, because the term ''near-surface disposal'' indicates disposal in the uppermost portion, or approximately the top 30 meters, of the earth's surface. The THOR(reg s ign) Treatment Technologies (TTT) mineral waste form for LAW is granular in nature because it is formed by Fluidized Bed Steam Reforming (FBSR). As a granular product it has been shown to be as durable as Hanford's LAW glass during testing with ASTM C-1285-02 known as the Product Consistency Test (PCT) and with the Single Pass Flow Through Test (SPFT). Hanford Envelope A and Envelope C simulants both performed well during PCT and SPFT testing and during subsequent performance assessment modeling. This is partially due to the high aluminosilicate content of the mineral product which provides a natural aluminosilicate buffering mechanism that inhibits leaching and is known to occur in naturally occurring aluminosilicate mineral analogs. In order for the TTT Na-Al-Si (NAS) granular mineral product to meet the compressive strength requirements (ASTM C39) for a Hanford waste form, the granular product needs to be made into a monolith or disposed of in High Integrity Containers (HIC's). Additionally, the Hanford intruder scenario for disposal in the Immobilized Low Activity Waste (ILAW) trench is mitigated as there is reduced intruder exposure when a waste form is in a monolithic form. During the preliminary testing of a monolith binder for TTT's FBSR mineral product, four parameters were monitored: (1) waste loading (not optimized for each waste form tested); (2) density; (3) compressive strength; and (4

  6. Why reduce health inequalities?

    Science.gov (United States)

    Woodward, A; Kawachi, I

    2000-12-01

    It is well known that social, cultural and economic factors cause substantial inequalities in health. Should we strive to achieve a more even share of good health, beyond improving the average health status of the population? We examine four arguments for the reduction of health inequalities.1 Inequalities are unfair. Inequalities in health are undesirable to the extent that they are unfair, or unjust. Distinguishing between health inequalities and health inequities can be contentious. Our view is that inequalities become "unfair" when poor health is itself the consequence of an unjust distribution of the underlying social determinants of health (for example, unequal opportunities in education or employment).2 Inequalities affect everyone. Conditions that lead to marked health disparities are detrimental to all members of society. Some types of health inequalities have obvious spillover effects on the rest of society, for example, the spread of infectious diseases, the consequences of alcohol and drug misuse, or the occurrence of violence and crime.3 Inequalities are avoidable. Disparities in health are avoidable to the extent that they stem from identifiable policy options exercised by governments, such as tax policy, regulation of business and labour, welfare benefits and health care funding. It follows that health inequalities are, in principle, amenable to policy interventions. A government that cares about improving the health of the population ought therefore to incorporate considerations of the health impact of alternative options in its policy setting process.3 Interventions to reduce health inequalities are cost effective. Public health programmes that reduce health inequalities can also be cost effective. The case can be made to give priority to such programmes (for example, improving access to cervical cancer screening in low income women) on efficiency grounds. On the other hand, few programmes designed to reduce health inequalities have been formally

  7. 40 CFR 141.623 - Reduced monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Reduced monitoring. 141.623 Section....623 Reduced monitoring. (a) You may reduce monitoring to the level specified in the table in this paragraph (a) any time the LRAA is ≤0.040 mg/L for TTHM and ≤0.030 mg/L for HAA5 at all monitoring locations...

  8. Permanganate gel (PG) for groundwater remediation: compatibility, gelation, and release characteristics.

    Science.gov (United States)

    Lee, Eung Seok; Olson, Pamela R; Gupta, Neha; Solpuker, Utku; Schwartz, Franklin W; Kim, Yongje

    2014-02-01

    Permanganate (MnO4(-)) is a strong oxidant that is widely used for treating chlorinated ethylenes in groundwater. This study aims to develop hyper-saline MnO4(-) solution (MnO4(-) gel; PG) that can be injected into aquifers via wells, slowly gelates over time, and slowly release MnO4(-) to flowing water. In this study, compatibility and miscibility of gels, such as chitosan, aluminosilicate, silicate, and colloidal silica gels, with MnO4(-) were tested. Of these gels, chitosan was reactive with MnO4(-). Aluminosilicates were compatible but not readily miscible with MnO4(-). Silicates and colloidal silica were both compatible and miscible with MnO4(-), and gelated with addition of KMnO4 granules. Colloidal silica has low initial viscosity (<15cP), exhibited delayed gelation characteristics with the lag times ranging from 0 to 200min. Release of MnO4(-) from the colloidal silica-based PG gel occurred in a delayed fashion, with maximum duration of 24h. These results suggested that colloidal silica can be used to create PG or delayed-gelling forms containing other oxidants which can be used for groundwater remediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Toxicity of 144Ce inhaled in a relatively insoluble form by aged beagle dogs. VI

    International Nuclear Information System (INIS)

    Hahn, F.F.; Hanika-Rebar, C.; Boecker, B.B.; Hobbs, C.H.; McClellan, R.O.; Pickrell, J.A.

    1977-01-01

    The toxicity of 144 Ce inhaled in fused aluminosilicate particles by 8 to 10.5-year-old dogs is being investigated to provide information on age-related differences in the response of older members of the human population to accidental inhalation of radioactive aerosols. These data on aged dogs will be compared to the results of similar studies of dogs exposed at approximately 3 months or 12 to 14 months of age. Six blocks of five female dogs each have been divided into four exposure levels with mean initial lung burdens of 7.2, 14, 28 and 57 μCi 144 Ce/kg body weight. Six blocks of four male dogs each have been divided into three exposure levels with mean initial lung burdens of 7.2, 14 and 28 μCi 144 Ce/kg body weight. Controls in each block were exposed to fused aluminosilicate particles containing stable cerium. Eighteen dogs with initial lung burdens ranging from 14 to 75 μCi 144 Ce/kg body weight and cumulative doses to lung of from 22,000 to 74,000 rads have died or were euthanized 197 to 1207 days after exposure with clinicopathologic findings of radiation pneumonitis and pulmonary fibrosis

  10. Compressive strength and hydrolytic stability of fly ash based geopolymers

    Directory of Open Access Journals (Sweden)

    Nikolić Irena

    2013-01-01

    Full Text Available The process of geopolymerization involves the reaction of solid aluminosilicate materials with highly alkaline silicate solution yielding an aluminosilicate inorganic polymer named geopolymer, which may be successfully applied in civil engineering as a replacement for cement. In this paper we have investigated the influence of synthesis parameters: solid to liquid ratio, NaOH concentration and the ratio of Na2SiO3/NaOH, on the mechanical properties and hydrolytic stability of fly ash based geopolymers in distilled water, sea water and simulated acid rain. The highest value of compressive strength was obtained using 10 mol dm-3 NaOH and at the Na2SiO3/NaOH ratio of 1.5. Moreover, the results have shown that mechanical properties of fly ash based geopolymers are in correlation with their hydrolytic stability. Factors that increase the compressive strength also increase the hydrolytic stability of fly ash based geopolymers. The best hydrolytic stability of fly ash based geopolymers was shown in sea water while the lowest stability was recorded in simulated acid rain. [Projekat Ministarstva nauke Republike Srbije, br. 172054 i Nanotechnology and Functional Materials Center, funded by the European FP7 project No. 245916

  11. Sorption of radioactive cobalt with sepiolite and erionite

    International Nuclear Information System (INIS)

    Bonifacio M, G.

    1994-01-01

    60 Co present in aqueous solutions may be sorbed in clays or zeolites. If the solids are suspended in aqueous solutions, the cations of the solids may be exchanged with 60 Co 2+ ions present in the solutions. Natural aluminosilicate are used for separation of radioactive cations which are present in waste liquids from radiochemical laboratories. The natural sepiolite lattice is almost neutral, having a cation exchange capacity in the order of 0.05 meg/g. It is shown that mild treatment with NaOH solution (2M) results in partial substitution by cations present in the natural sepiolite, in the other hand, during treatment with NaAlO 2 in a 6N NaOH solution at 90 Centigrade degrees it has been produced an aluminated sepiolite resulting in partial Mg-by-Al substitution in the octahedral layer. The crystallinity of the samples before and after the ion exchange was studied by X-ray diffraction. The aim of this paper is to study the Co 2+ ion exchange behavior in this aluminosilicate and to compare it with natural mexican erionite. The natural sepiolite from Vallecas, Spain is recommended as 60 Co adsorbent. This clay is directly obtained from the mineral field without any treatment. (Author)

  12. Analysis of rare earth elements in coal fly ash using laser ablation inductively coupled plasma mass spectrometry and scanning electron microscopy

    Science.gov (United States)

    Thompson, Robert L.; Bank, Tracy; Montross, Scott; Roth, Elliot; Howard, Bret; Verba, Circe; Granite, Evan

    2018-05-01

    Reference standard NIST SRM 1633b and FA 345, a fly ash sample from an eastern U.S. coal power plant, were analyzed to determine and quantify the mineralogical association of rare earth elements (REE). These analyses were completed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer (SEM-EDS). Internal standardization was avoided by quantifying elemental concentrations by normalizing to 100% oxides. Mineral grains containing elevated REE concentrations were found in diverse chemical environments, but were most commonly found in regions where Al and Si were predominant. Dividing the spot analyses into time segments yielded plots that showed the REE content changing over time as individual mineral grains were being ablated. SEM-EDS images of FA 345 confirmed the trends that were found in the LA-ICP-MS results. Small grains of apatite, monazite, or zircon were frequently observed as free mineral grains or embedded in amorphous aluminosilicate glass and were not associated with ferrous particles. This finding is consistent with previous reports that magnetic enrichment may be an effective way of concentrating non-magnetic REE phases. Furthermore, aggressive mechanical and chemical-based separation schemes will be required to separate and recover REE from aluminosilicate glass.

  13. Influence of Aerogel Morphology and Reinforcement Architecture on Gas Convection in Aerogel Composites

    Science.gov (United States)

    Hurwitz, Frances I.; Meyer, Matthew; Guo, Haiquan; Rogers, Richard B.; DeMange, Jeffrey J.; Richardson, Hayley

    2016-01-01

    A variety of thermal protection applications require lightweight insulation capable of withstanding temperatures well above 900 C. Aerogels offer extremely low-density thermal insulation due to their mesoporous structure, which inhibits both gas convection and solid conduction. Silica aerogel systems are limited to use temperatures of 600-700 C, above which they sinter. Alumina aerogels maintain a porous structure to higher temperatures than silica, before transforming to -alumina and densifying. We have synthesized aluminosilicate aerogels capable of maintaining higher surface areas at temperatures above 1100 C than an all-alumina aerogel using -Boehmite as the aluminum source and tetraethoxysilane (TEOS) as the silicon source. The pore structure of these aerogels varies with thermal exposure temperature and time, as the aluminosilicate undergoes a variety of phase changes to form transition aluminas. Transformation to -alumina is inhibited by incorporation of silica into the alumina lattice. The aerogels are fragile, but can be reinforced using a large variety of ceramic papers, felts or fabrics. The objective of the current study is to characterize the influence of choice of reinforcement and architecture on gas permeability of the aerogel composites in both the as fabricated condition and following thermal exposure, as well as understand the effects of incorporating hydrophobic treatments in the composites.

  14. CAD/CAM glass ceramics for single-tooth implant crowns: a finite element analysis.

    Science.gov (United States)

    Akça, Kvanç; Cavusoglu, Yeliz; Sagirkaya, Elcin; Aybar, Buket; Cehreli, Murat Cavit

    2013-12-01

    To evaluate the load distribution of CAD/CAM mono-ceramic crowns supported with single-tooth implants in functional area. A 3-dimensional numerical model of a soft tissue-level implant was constructed with cement-retained abutment to support glass ceramic machinable crown. Implant-abutment complex and the retained crown were embedded in a Ø 1.5 × 1.5 cm geometric matrix for evaluation of mechanical behavior of mono-ceramic CAD/CAM aluminosilicate and leucite glass crown materials. Laterally positioned axial load of 300 N was applied on the crowns. Resulting principal stresses in the mono-ceramic crowns were evaluated in relation to different glass ceramic materials. The highest compressive stresses were observed at the cervical region of the buccal aspect of the crowns and were 89.98 and 89.99 MPa, for aluminosilicate and leucite glass ceramics, respectively. The highest tensile stresses were observed at the collar of the lingual part of the crowns and were 24.54 and 25.39 MPa, respectively. Stresses induced upon 300 N static loading of CAD/CAM aluminosalicate and leucite glass ceramics are below the compressive strength of the materials. Impact loads may actuate the progress to end failure of mono-ceramic crowns supported by metallic implant abutments.

  15. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    Science.gov (United States)

    Bansal, Narottam P.; Hyatt, Mark J.

    1989-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  16. The isolation of water-soluble radionuclides from deteriorating spent nuclear fuel in zeolite cartridge

    International Nuclear Information System (INIS)

    Hassan, N.M.; Thompson, M.C.

    1996-01-01

    A method of isolating water-soluble radionuclides leaching from deteriorating spent nuclear fuel by ion-exchange in zeolite cartridges has been studied. Design calculations of two zeolite cartridges to be incorporated in typical spent fuel storage bundle have been provided. Equilibrium exchange data obtained at several temperatures have shown that the maximum exchange capacity of total cesium in sodium titanium aluminosilicate was 114 mg/g zeolite and the capacity at 95% exchange for radioactive isotope Cs-137 was calculated as 55.2 mg/g zeolite. The kinetic data suggest that the rate of exchange of Cs + in sodium titanium aluminosilicate zeolite takes place by a fast initial exchange step followed by slow diffusion of cesium cations. Design calculations based on the equilibrium exchange data show that water-soluble radionuclides leaching from Mk 31 slugs can be isolated using two zeolite cartridges, each 3.7 inches in inside diameter and 2.5 inches in length. The cartridges are designed to isolate 95% of the Cs + leaching from the spent fuel storage bundle. The results from the thermal induced convective flow tests indicate that the system will provide necessary cooling to the spent fuel by convective currents while isolating the Cs + leaching from spent fuel storage bundle in the cartridges

  17. Implementing Parallel Google Map-Reduce in Eden

    DEFF Research Database (Denmark)

    Berthold, Jost; Dieterle, Mischa; Loogen, Rita

    2009-01-01

    Recent publications have emphasised map-reduce as a general programming model (labelled Google map-reduce), and described existing high-performance implementations for large data sets. We present two parallel implementations for this Google map-reduce skeleton, one following earlier work, and one...... of the Google map-reduce skeleton in usage and performance, and deliver runtime analyses for example applications. Although very flexible, the Google map-reduce skeleton is often too general, and typical examples reveal a better runtime behaviour using alternative skeletons....

  18. Reduced waste generation technical work plan

    International Nuclear Information System (INIS)

    1987-05-01

    The United States Department of Energy has established policies for avoiding plutonium losses to the waste streams and minimizing the generation of wastes produced at its nuclear facilities. This policy is evidenced in DOE Order 5820.2, which states ''Technical and administrative controls shall be directed towards reducing the gross volume of TRU waste generated and the amount of radioactivity in such waste.'' To comply with the DOE directive, the Defense Transuranic Waste Program (DTWP) supports and provides funding for specific research and development tasks at the various DOE sites to reduce the generation of waste. This document has been prepared to give an overview of current and past Reduced Waste Generation task activities which are to be based on technical and cost/benefit factors. The document is updated annually, or as needed, to reflect the status of program direction. Reduced Waste Generation (RWG) tasks encompass a wide range of goals which are basically oriented toward (1) avoiding the generation of waste, (2) changing processes or operations to reduce waste, (3) converting TRU waste into LLW by sorting or decontamination, and (4) reducing volumes through operations such as incineration or compaction

  19. Microprocessor Protection of Power Reducing Transformers

    OpenAIRE

    F. A. Romanuk; S. P. Korolev; M. S. Loman

    2011-01-01

    The paper contains analysis of advantages and disadvantages of existing differential protection terminals of power reducing transformers. The paper shows that there are good reasons to develop microprocessor protection of power reducing transformer which contains required functions and settings and which is based on Belarusian principles of relay protection system construction. The paper presents functional structure of microprocessor terminal of power reducing transformer which is developed. 

  20. Reducing Lookups for Invariant Checking

    DEFF Research Database (Denmark)

    Thomsen, Jakob Grauenkjær; Clausen, Christian; Andersen, Kristoffer Just

    2013-01-01

    This paper helps reduce the cost of invariant checking in cases where access to data is expensive. Assume that a set of variables satisfy a given invariant and a request is received to update a subset of them. We reduce the set of variables to inspect, in order to verify that the invariant is still...

  1. Microprocessor Protection of Power Reducing Transformers

    Directory of Open Access Journals (Sweden)

    F. A. Romanuk

    2011-01-01

    Full Text Available The paper contains analysis of advantages and disadvantages of existing differential protection terminals of power reducing transformers. The paper shows that there are good reasons to develop microprocessor protection of power reducing transformer which contains required functions and settings and which is based on Belarusian principles of relay protection system construction. The paper presents functional structure of microprocessor terminal of power reducing transformer which is developed. 

  2. IHadoop: Asynchronous iterations for MapReduce

    KAUST Repository

    Elnikety, Eslam Mohamed Ibrahim

    2011-11-01

    MapReduce is a distributed programming frame-work designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop\\'s task scheduler exploits inter-iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application\\'s latency. This paper also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches

  3. IHadoop: Asynchronous iterations for MapReduce

    KAUST Repository

    Elnikety, Eslam Mohamed Ibrahim; El Sayed, Tamer S.; Ramadan, Hany E.

    2011-01-01

    MapReduce is a distributed programming frame-work designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop's task scheduler exploits inter-iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application's latency. This paper also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches

  4. Syntheses of 18F-labeled reduced haloperidol and 11C-labeled reduced 3-N-methylspiperone

    International Nuclear Information System (INIS)

    Ravert, H.T.; Dannals, R.F.; Wilson, A.A.; Wong, D.F.; Wagner, H.N. Jr.

    1991-01-01

    18 F-Labeled reduced haloperidol and 11 C-labeled reduced 3-N-methylspiperone were synthesized in a convenient and quantitative one step reduction from 18 F-labeled haloperidol and 11 C-labeled N-methylspiperone, respectively. Both products were purified by semipreparative HPLC and were obtained at high specific activity and radiochemical purity. (author)

  5. Séquestration des matières organiques des sols par les nanominéraux : approche expérimentale de la formation de complexes organo-minéraux à partir des produits d'altération de la biotite

    OpenAIRE

    Tamrat , Wuhib Zewde

    2017-01-01

    Among soil organic matter (SOM) stabilization mechanisms, molecular scale organo-mineral interactions are thought to play a major role in stabilizing organic compounds. Because of their large surface area and reactivity, nanometric-size soil mineral phases have a high potential for SOM stabilization. In the literature, Fe and Al phases have been the main targets of batch-synthesized nanomineral studies while nano-aluminosilicates (phases in which Al is associated with Si) have been mainly stu...

  6. Zeolites: promising candidates for drug delivery systems (DDSs)

    OpenAIRE

    Vilaça, Natália; Amorim, Ricardo; Baltazar, Fátima; Fonseca, António Manuel; Neves, Isabel C.

    2012-01-01

    [Excerpt] The aim of controlled drug delivery systems (DDSs) is to administer the necessary amount of drug safely and effectively to specific sites in the human body and to regulate the temporal drug profile for maximum therapeutic benefits.[1] Zeolites are crystalline aluminosilicates solids with very regular microporous structures and they have been recently considered for medical use due to their biological properties and stability in biological environments.[1,2] The large variety in ...

  7. Study on high-silicon boron-containing zeolite by thermogravimetric and IR-spectroscopy techniques

    International Nuclear Information System (INIS)

    Chukin, G.D.; Nefedov, B.K.; Surin, S.A.; Polinina, E.V.; Khusid, B.L.; Sidel'kovskaya, V.G.

    1985-01-01

    The structure identity of initial Na-forms of boron-containing and aluminosilicate high-silicon zeolites is established by thermogravimetric and IR-spectroscopy methods. The presence of boron in Na-forms of high-silicon zeolites is shown to lead to reduction of structure thermal stability. It is noted that thermal stability of the H-form of both high-silicon boron-containing and boron-free zeolites is practically equal and considerably higher than that of Na-forms

  8. An experimentally validated DEM study of powder mixing in a paddle blade mixer

    OpenAIRE

    Pantaleev, Stefan; Yordanova, Slavina; Janda, Alvaro; Marigo, Michele; Ooi, Jin

    2017-01-01

    An investigation on the predictive capabilities of Discrete Element Method simulations of a powder mixing process in a laboratory scale paddle blade mixer is presented. The visco-elasto-plastic frictional adhesive DEM contactmodel of Thakur et al. (2014) was used to represent the cohesive behaviour of an aluminosilicate powder in which the model parameters were determined using experimental flow energy measurements from the FT4powder rheometer. DEM simulations of the mixing process using the ...

  9. X-ray absorption spectroscopic studies on novel microporous copper containing catalytic systems

    International Nuclear Information System (INIS)

    Bhargava, Suresh K.; Akolekar, Deepak B.; Foran, Garry

    2006-01-01

    Novel copper metal modified microporous aluminosilicate and aluminophosphate catalysts with the high phase purity were synthesized and characterized. CuK-edge XAS measurements were carried out over a series of copper containing SAPO-34 and ZSM-5 catalysts. EXAFS technique was used to obtain specific climacteric information related to the copper atomic distances, coordination and near neighbour environments. EXAFS studies indicated the presence of different of Cu species on ZSM-5/SAPO34 catalysts

  10. Tank closure reducing grout

    International Nuclear Information System (INIS)

    Caldwell, T.B.

    1997-01-01

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr 90 , the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel

  11. 5 CFR 831.631 - Post-retirement election of fully reduced annuity or partially reduced annuity to provide a...

    Science.gov (United States)

    2010-01-01

    ... annuity or partially reduced annuity to provide a current spouse annuity. 831.631 Section 831.631...) RETIREMENT Survivor Annuities Post-Retirement Elections § 831.631 Post-retirement election of fully reduced annuity or partially reduced annuity to provide a current spouse annuity. (a) Except as provided in...

  12. 5 CFR 831.632 - Post-retirement election of fully reduced annuity or partially reduced annuity to provide a...

    Science.gov (United States)

    2010-01-01

    ... annuity or partially reduced annuity to provide a former spouse annuity. 831.632 Section 831.632...) RETIREMENT Survivor Annuities Post-Retirement Elections § 831.632 Post-retirement election of fully reduced annuity or partially reduced annuity to provide a former spouse annuity. (a)(1) Except as provided in...

  13. Development of a low-cost cement free polymer concrete using industrial by-products and dune sand

    Directory of Open Access Journals (Sweden)

    Ismail Najif

    2017-01-01

    Full Text Available Alkali-activated polymer concrete (APC can potentially reduce CO2 emissions associated to concrete production by 84%. The binder in APC herein was synthesized using a combined sodium silicate-sodium hydroxide solution (i.e., alkali activator, alumino-silicate rich precursor (fly ash and slag. Light weight expanded clay and desert dune sand were used as aggregates. An overview of an experimental program was presented, which involved evaluation of fresh and mechanical properties of the produced APC and counterpart mortar (APM. Variables investigated were the fly ash to slag ratio and curing conditions. The curing regimes adopted herein included 24 hours of curing at ambient conditions, 30°C, and 60°C. The experimental program was undertaken in two stages, of these the first stage involved physical and chemical testing of constituent materials and the second stage involved testing or produced APM/APC. Reported were the setting times, workability, compression strength, strength development, flexural strength, tensile splitting strength, and plastic shrinkage strains. Relationship between strength results were investigated and effectiveness of codified predictive equations was evaluated.

  14. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1994-01-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation

  15. Reducing rotor weight

    Energy Technology Data Exchange (ETDEWEB)

    Cheney, M.C. [PS Enterprises, Inc., Glastonbury, CT (United States)

    1997-12-31

    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  16. Design meeting on reduced technical objectives/reduced cost ITER options

    International Nuclear Information System (INIS)

    Spears, W.

    1999-01-01

    At this meeting, which took place at Garching, Germany in January 1999, means of reducing the overall cost for ITER to 50% where discussed. It was felt that a smaller plasma of high elongation and high triangularity was a step in the right direction. Further steps would include cheaper magnetic field coils, cheaper in-vessel components and also costly buildings

  17. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0

  18. Reuse, Reduce, Recycle.

    Science.gov (United States)

    Briscoe, Georgia

    1991-01-01

    Discussion of recycling paper in law libraries is also applicable to other types of libraries. Results of surveys of law libraries that investigated recycling practices in 1987 and again in 1990 are reported, and suggestions for reducing the amount of paper used and reusing as much as possible are offered. (LRW)

  19. Reducing Sugar in Children's Diets: Why? How?

    Science.gov (United States)

    Rogers, Cosby S.; Morris, Sandra S.

    1986-01-01

    Maintains that sugar intake should be reduced in young children's diets because of its link to dental cavities, poor nutrition, and obesity. Reducing the focus on sweetness, limiting sugar consumption, and using natural sources of sweetness and other treats are ways to help reduce sugar intake. (BB)

  20. Reduced chemical kinetic mechanisms for hydrocarbon fuels

    International Nuclear Information System (INIS)

    Montgomery, C.J.; Cremer, M.A.; Heap, M.P.; Chen, J-Y.; Westbrook, C.K.; Maurice, L.Q.

    1999-01-01

    Using CARM (Computer Aided Reduction Method), a computer program that automates the mechanism reduction process, a variety of different reduced chemical kinetic mechanisms for ethylene and n-heptane have been generated. The reduced mechanisms have been compared to detailed chemistry calculations in simple homogeneous reactors and experiments. Reduced mechanisms for combustion of ethylene having as few as 10 species were found to give reasonable agreement with detailed chemistry over a range of stoichiometries and showed significant improvement over currently used global mechanisms. The performance of reduced mechanisms derived from a large detailed mechanism for n-heptane was compared to results from a reduced mechanism derived from a smaller semi-empirical mechanism. The semi-empirical mechanism was advantageous as a starting point for reduction for ignition delay, but not for PSR calculations. Reduced mechanisms with as few as 12 species gave excellent results for n-heptane/air PSR calculations but 16-25 or more species are needed to simulate n-heptane ignition delay

  1. Crystallization Kinetics of Barium and Strontium Aluminosilicate Glasses of Feldspar Composition

    Science.gov (United States)

    Hyatt, Mark J.; Bansal, Narottam P.

    1994-01-01

    Crystallization kinetics of BaO.Al2O3.2SiO2 (BAS) and SrO.Al2O3.2SiO2 (SAS) glasses in bulk and powder forms have been studied by non-isothermal differential scanning calorimetry (DSC). The crystal growth activation energies were evaluated to be 473 and 451 kJ/mol for bulk samples and 560 and 534 kJ/mol for powder specimens in BAS and SAS glasses, respectively. Development of crystalline phases on thermal treatments of glasses at various temperatures has been followed by powder x-ray diffraction. Powder samples crystallized at lower temperatures than the bulk and the crystallization temperature was lower for SAS glass than BAS. Crystallization in both glasses appeared to be surface nucleated. The high temperature phase hexacelsian, MAl2Si2O8 (M = Ba or Sr), crystallized first by nucleating preferentially on the glass surface. Also, monoclinic celsian does not nucleate directly in the glass, but is formed at higher temperatures from the transformation of the metastable hexagonal phase. In SAS the transformation to monoclinic celsian occurred rapidly after 1 h at 1100 C. In contrast, in BAS this transformation is sluggish and difficult and did not go to completion even after 10 h heat treatment at 1400 C. The crystal growth morphologies in the glasses have been observed by optical microscopy. Some of the physical properties of the two glasses are also reported.

  2. Adsorption of guanidinium collectors on aluminosilicate minerals - a density functional study.

    Science.gov (United States)

    Nulakani, Naga Venkateswara Rao; Baskar, Prathab; Patra, Abhay Shankar; Subramanian, Venkatesan

    2015-10-07

    In this density functional theory based investigation, we have modelled and studied the adsorption behaviour of guanidinium cations and substituted (phenyl, methoxy phenyl, nitro phenyl and di-nitro phenyl) guanidinium cationic collectors on the basal surfaces of kaolinite and goethite. The adsorption behaviour is assessed in three different media, such as gas, explicit water and pH medium, to understand the affinity of GC collectors to the SiO4 tetrahedral and AlO6 octahedral surfaces of kaolinite. The tetrahedral siloxane surface possesses a larger binding affinity to GC collectors than the octahedral sites due to the presence of surface exposed oxygen atoms that are active in the intermolecular interactions. Furthermore, the inductive electronic effects of substituted guanidinium cations also play a key role in the adsorption mechanism. Highly positive cations result in a stronger electrostatic interaction and preferential adsorption with the kaolinite surfaces than low positive cations. Computed interaction energies and electron densities at the bond critical points suggest that the adsorption of guanidinium cations on the surfaces of kaolinite and goethite is due to the formation of intra/inter hydrogen bonding networks. Also, the electrostatic interaction favours the high adsorption ability of GC collectors in the pH medium than gas phase and water medium. The structures and energies of GC collectors pave an intuitive view for future experimental studies on mineral flotation.

  3. Potential Applications of Alkali-Activated Alumino-Silicate Binders in Military Operations

    Science.gov (United States)

    1985-11-01

    portland 14 cement clinker) are to be blended, they are generally not ground together. However, some plasticizers (such as alkali lignosulphonate ) have a...34--- 31. Activators may also contain wetting agents (plasticizers) to re- duce the amount of water needed and to assist in mixing. Lignosulphonates ...or sulphonated lignins, have proven to be more effective than melamine or naphthalene-based superplastiCizers (Forss 1981, 1982). Lignosulphonates can

  4. Fluids of the lower crust and upper mantle: deep is different

    Science.gov (United States)

    Manning, C. E.

    2017-12-01

    Deep fluids are important for the evolution and properties of the lower crust and upper mantle in tectonically active settings. Uncertainty about their chemistry has led past workers to use upper crustal fluids as analogues. However, recent results show that fluids at >15 km differ fundamentally from shallow fluids and help explain high-pressure metasomatism and resistivity patterns. Deep fluids are comprised of four components: H2O, non-polar gases (chiefly CO2), salts (mostly alkali chlorides), and rock-derived solutes (dominated by aluminosilicates and related components). The first three generally define the solvent properties of the fluid, and models must account for observations that H2O activity may be quite low. The contrasting behavior of H2O-gas and H2O-salt mixtures yields immiscibility in the ternary system, which can lead to separation of two phases with fundamentally different chemical and transport properties. Thermodynamic modeling of equilibrium between rocks and H2O using simple ionic species known from shallow-crustal systems yields solutions possessing total dissolved solids and ionic strength that are too low to be consistent with experiments and resistivity surveys. Addition of CO2 further lowers bulk solubility and conductivity. Therefore, additional species must be present in H2O, and H2O-salt solutions likely explain much of the evidence for fluid action in high-P settings. At low salinity, H2O-rich fluids are powerful solvents for aluminosilicate rock components that are dissolved as previously unrecognized polymerized clusters. Experiments show that, near H2O-saturated melting, Al-Si polymers comprise >80% of solutes. The stability of these species facilitates critical critical mixing in rock-H2O systems. Addition of salt (e.g., NaCl) changes solubility patterns, but aluminosilicate contents remain high. Thermodynamic models indicate that the ionic strength of fluids with Xsalt = 0.05 to 0.4 and equilibrated with model crustal rocks have

  5. La/Yb and Th/Sc in settling particles: vertical and horizontal transport of lithogenic material in the western North Pacific

    International Nuclear Information System (INIS)

    Otosaka, Shigeyoshi; Noriki, Shinichiro; Honda, Makio C.

    2004-01-01

    In order to understand the origins and transport processes of lithogenic aluminosilicate in the western North Pacific, time-series traps were deployed at Stn. KNOT at 44degN 155degE (water depth: 5320 m). Annual mean content of aluminum (Al) which is a proxy of lithogenic material in settling particles was 0.38% at 1 km depth, 0.78% at 3 km depth and 1.14% at 5 km depth, respectively. Mass fluxes were corrected by 230 Th and 231 Pa activities in particles and seawater. Annual mean corrected Al fluxes at 1, 3 and 5 km depths were calculated to 0.45, 0.46 and 0.33 g/m 2 /year, respectively. Lanthanum/ytterbium (La/Yb) and thorium/scandium (Th/Sc) ratios were used as proxies for estimating the origin of lithogenic aluminosilicate in settling particles. Both La/Yb and Th/Sc ratios in settling particles increased with depth, and the seasonal variation was the smallest at 5 km depth. It was considered that variations of La/Yb and Th/Sc ratios in settling particles reflected the change of source material of lithogenic aluminosilicates. Origins of lithogenic materials in the settling particles were summarized using two end-members, loess from central Asian continent (AL) and basalts from the Kurile-Kamchatka Islands (KEK). Contributions of end-members in settling particles were estimated from the La/Yb and Th/Sc ratios. The contribution of KK particles in lithogenic materials was calculated to be 84% at 1 km depth, and 61% at 3 and 5 km depths, respectively. Although the KK material was the dominant constituent of the terrigenous component in settling particles at Stn. KNOT, the KK flux decreased with depth. On the other hand, the AL flux increased with depth and the significant increase of the AL flux was presumably due to the lateral import of AL particles to the deep layer at Stn. KNOT. From these results we conclude that the distribution of lithogenic materials recorded in sediments in the western North Pacific are influenced by the northward transport of AL within the

  6. Zeolites and clays behavior in presence of radioactive solutions

    International Nuclear Information System (INIS)

    Carrera Garcia, L.M.

    1991-01-01

    Natural aluminosilicates have found application as selective ion exchangers for radioactive cations, present in liquid wastes arising from nuclear facilities. Among severals cations and complex mixtures of them, Co is a common constituent of liquid radioactive wastes. Two types of zeolites (Y zeolite, and natural mexican erionite), and two types of clays (natural bentonite, and Al-expanded bentonite (Al-B) were used. Previous to the experiments, the zeolites and the natural bentonite were stabilized to their respective Na + form using 5N NaCl solution. 2Na + → 60 Co 2+ ion exchange kinetics in zeolites and clays was followed by gamma spectrometry using a NaCl-Co(NO 3 ) 2 isonormal solution (0.1N) labeled with 60 Co-Co(NO 3 ) 2 (100 μ Ci). Before and after experiments, the structural changes in the cristallinity of aluminosilicates were determined by X-ray diffraction. XRD analyzes show that the cristallinity of the aluminosilicates was not affected by ion exchange. After Co exchange the cell parameters were determined in all samples. The efficiency of zeolites, natual clays and expanded clays to remove cobalt ions from solutions depends on the ion echange capacity of the material. Results for long contacts time, 18 days, show that Co is more effectively removed by Y zeolite ( 4.07 wt %), followed by erionite (3.09 wt %), then bentonite ( 2.36 wt %) and finally expanded bentonite ( 0.70 wt %). In Y zeolite an unusual fast soportion uptake of 4.51 % wt Co was observed followed by a desorption process to 4.07 %. This effect is due to the different hydration degree of zeolites during the contact time between the zeolite and the 60 Co solution. In erionite the exchange is lower than in Y-zeolite, frist because the Si/Al ratio is higher for erionite than for Y-zeolite and second because K ions in erionite cannot be exchanged during the stabilization of erionite in 5N NaCl solution. The low exchange in expanded bentonite was expected because its cation exchange

  7. Reduced Braginskii equations

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.

  8. Programming MapReduce with Scalding

    CERN Document Server

    Chalkiopoulos, Antonios

    2014-01-01

    This book is an easy-to-understand, practical guide to designing, testing, and implementing complex MapReduce applications in Scala using the Scalding framework. It is packed with examples featuring log-processing, ad-targeting, and machine learning. This book is for developers who are willing to discover how to effectively develop MapReduce applications. Prior knowledge of Hadoop or Scala is not required; however, investing some time on those topics would certainly be beneficial.

  9. Interference, reduced action, and trajectories

    OpenAIRE

    Floyd, Edward R.

    2006-01-01

    Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichroma...

  10. Reduced Vlasov-Maxwell simulations

    International Nuclear Information System (INIS)

    Helluy, P.; Navoret, L.; Pham, N.; Crestetto, A.

    2014-01-01

    The Maxwell-Vlasov system is a fundamental model in physics. It can be applied to plasma simulations, charged particles beam, astrophysics, etc. The unknowns are the electromagnetic field, solution to the Maxwell equations and the distribution function, solution to the Vlasov equation. In this paper we review two different numerical methods for Vlasov-Maxwell simulations. The first method is based on a coupling between a Discontinuous Galerkin (DG) Maxwell solver and a Particle-In-Cell (PIC) Vlasov solver. The second method only uses a DG approach for the Vlasov and Maxwell equations. The Vlasov equation is first reduced to a space-only hyperbolic system thanks to the finite-element method. The two numerical methods are implemented using OpenCL in order to achieve high performance on recent Graphic Processing Units (GPU). We obtained interesting speedups, but we also observe that the PIC method is the most expensive part of the computation. Therefore we propose another fully Eulerian approach. Thanks to a decomposition of the distribution function on velocity basis functions, we obtain a reduced Vlasov model, which appears to be a hyperbolic system of conservation laws written only in the (x,t) space. We can thus adapt very easily our DG solver to the reduced model

  11. Solid oxide fuel cells fueled with reducible oxides

    Science.gov (United States)

    Chuang, Steven S.; Fan, Liang Shih

    2018-01-09

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing the solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.

  12. Acid-reducing vagotomy is associated with reduced risk of subsequent ischemic heart disease in complicated peptic ulcer

    Science.gov (United States)

    Wu, Shih-Chi; Fang, Chu-Wen; Chen, William Tzu-Liang; Muo, Chih-Hsin

    2016-01-01

    Abstract Persistent exacerbation of a peptic ulcer may lead to a complicated peptic ulcer (perforation or/and bleeding). The management of complicated peptic ulcers has shifted from acid-reducing vagotomy, drainage, and gastrectomy to simple local suture or non-operative (endoscopic/angiographic) hemostasis. We were interested in the long-term effects of this trend change. In this study, complicated peptic ulcer patients who received acid-reducing vagotomy were compared with those who received simple suture/hemostasis to determine the risk of ischemic heart disease (IHD). This retrospective cohort study analyzed 335,680 peptic ulcer patients recorded from 2000 to 2006 versus 335,680 age-, sex-, comorbidity-, and index-year matched comparisons. Patients with Helicobacter pylori (HP) infection were excluded. In order to identify the effect of vagus nerve severance, patients who received gastrectomy or antrectomy were also excluded. The incidence of IHD in both cohorts, and in the complicated peptic ulcer patients who received acid-reducing vagotomy versus those who received simple suture or hemostasis was evaluated. The overall incidence of IHD was higher in patients with peptic ulcer than those without peptic ulcer (17.00 vs 12.06 per 1000 person-years), with an adjusted hazard ratio (aHR) of 1.46 based on multivariable Cox proportional hazards regression analysis controlling for age, sex, Charlson's comorbidity index, and death (competing risk). While comparing peptic ulcer patients with acid-reducing vagotomy to those with simple suture/hemostasis or those without surgical treatment, the aHR (0.58) was the lowest in the acid-reducing vagotomy group. Patients with peptic ulcer have an elevated risk of IHD. However, complicated peptic ulcer patients who received acid-reducing vagotomy were associated with reduced risk of developing IHD. PMID:27977613

  13. Solar Cels With Reduced Contact Areas

    Science.gov (United States)

    Daud, T.; Crotty, G. T.; Kachare, A. H.; Lewis, J. T.

    1987-01-01

    Efficiency of silicon solar cells increased about 20 percent using smaller metal-contact area on silicon at front and back of each cell. Reduction in contact area reduces surface recombination velocity under contact and thus reduces reverse saturation current and increases opencircuit voltage..

  14. Reduced multiplication modules

    Indian Academy of Sciences (India)

    if M is a von Neumann regular module (VNM); i.e., every principal submodule of M is a summand submodule. Also if M is an injective R-module, then M is a VNM. Keywords. Multiplication module; reduced module; minimal prime submodule;. Zariski topology; extremally disconnected. 1. Introduction. In this paper all rings are ...

  15. Stabilities of nuclear waste forms and their geochemical interactions in repositories

    International Nuclear Information System (INIS)

    White, W.B.

    1980-01-01

    The stabilities of high-level nuclear waste forms in a repository environment are briefly discussed. The advantages and disadvantages of such waste forms as borosilicate glass, supercalcine ceramics, and synthetic minerals are presented in context with the different rock types which have been proposed as possible host rocks for repositories. It is concluded that the growing geochemical evidence favors the use of a silicate rock repository because of the effectiveness of aluminosilicate rocks as chemical barriers for most radionuclides

  16. Influence of zeolite nanofillers on properties of polymeric materials

    OpenAIRE

    Kopcová, M.; Ondrušová, D.; Krmela, J.; Průša, P.; Pajtášová, M.; Jankurová, Z.

    2012-01-01

    The present work deals with the preparation and study of modified polymeric materials with the replacement of carbon black by nanofillers on the basis of zeolite that is environmentally friendly. Natural zeolites from a group of aluminosilicate nanoporous materials have wide range of possibilities for applications that are environmentally friendly. Zeolites can be used in the role of fillers into the polymer materials too [1]. The given work deals with the preparation and study of modif...

  17. Why are carbon molecular sieves interesting?

    Directory of Open Access Journals (Sweden)

    Oliveira Erica C. de

    2006-01-01

    Full Text Available This paper describes the production methods and the prospective uses of carbon molecular sieves. The main route to these materials is replication synthesis, where a silica or aluminosilicate molecular sieve is used as template to grow the carbonaceous phase in the voids. These materials may have applications as varied as in separation, adsorption and storage of gases, as electrodes in batteries, and as catalyst supports, all of them highly dependent on the molecular sieve porosity.

  18. Design and Synthesis of Hybrid Ceramic Foams with Tailored Porosity

    OpenAIRE

    Capasso, Ilaria

    2017-01-01

    Alkali activated ceramic foams have been produced by using metakaolin and/or diatomite as aluminosilicate source, an aqueous sodium silicate solution as alkali activator and Na2SiF6 as a catalyst that promotes the gelification of the entire system. Two different techniques of direct foaming have been coupled, one based on chemical reactions with gas production and the other one based on a mechanical foaming. Then, other levels of hierarchical porosity (nanometric and macrometric scale) have b...

  19. On the potential of positron lifetime spectroscopy for the study of early stages of zeolites formation from their amorphous precursors

    International Nuclear Information System (INIS)

    Bosnar, S.; Kosanovic, C.; Subotic, B.; Bosnar, D.; Kajcsos, Zs.; Liszkay, L.; Lohonyai, L.; Molnar, B.; Lazar, K.

    2007-01-01

    The applicability of positron lifetime (LT) spectroscopy to the study of progress of formation of Secondary Building Units (SBU) in gels yielding in FAU and LTA type zeolites was investigated. Samples were prepared from aluminosilicate gels with various degrees of local structural order. LT measurements were performed at room temperature in air and in vacuum. Coexistence of annihilation modi with long lifetime components was shown; a correlation with precursors of nucleation and type of exchanged ions was also indicated

  20. CTAB as a soft template for modified clay as filler in active packaging

    Directory of Open Access Journals (Sweden)

    Kajonpop Rittirong

    2015-06-01

    Full Text Available The role of modified clay has been employed in many areas of engineering research. Structure of clay was mainly focused on alumino-silicate layer and its form was presented as pillar layer. It composed of many ion exchanges inside. In industry, in order to use clay with higher efficiency, modification on surface and porosity has been developed. CTAB, one of the most effective cationic surfactant, was employed to modify the surface and porosity of clay.

  1. Thermodynamics of the interaction of UO2 with carbon in the presence of the additives Al2O3XSiO2, SiC, and UC2

    International Nuclear Information System (INIS)

    Khromov, Y.F.; Suistunov, D.E.; Zhmurov, S.A.

    1986-01-01

    The authors investigate the thermodynamics of the interaction of UO 2 with C in the presence of the additives, viz., aluminosilicate Al 2 O 3 XSiO 2 , silicon carbide, and uranium dicarbide. The studies were carried out according to the Knudsen method. The characteristics of the components and the experimental systems in contact with carbon are presented. The obtained experimental and calculated thermodynamic data permit one to describe the interaction process of uranium-dioxide-containing additives with carbon

  2. Obstetric outcomes in reduced and non-reduced twin pregnancies. A single hospital experience

    Directory of Open Access Journals (Sweden)

    UmmKulthoum E. AlShelaly

    2015-09-01

    Full Text Available Objectives: To compare pregnancy outcomes between high-order multiple pregnancies resulting from assisted reproductive technology (ART reduced to twins and non-reduced pregnancies, and to evaluate indications for using ART. Methods: This is a descriptive retrospective review of women with high-order multiple pregnancies reduced to twin carried out at the Department of Obstetrics & Gynecology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia between December 2010 and December 2013. The control group consisted of subjects with twin pregnancies who received their fertility treatment at the same hospital during the same period. Results: One hundred and twelve women were included in this study. Of women reaching fetal viability, significantly more women delivered before the thirtieth week in the study group (50% versus 12%, p<0.004. Miscarriage/delivery prior to fetal viability, chorioamnionitis, and preterm premature rupture of membranes were statistically higher in the study group. A total of 83% of the miscarriages in the study group were in women carrying 4 or more fetuses initially, and 50% of women in the study group were multiparous with no clear indication for fertility treatment. Conclusion: Although fetal reduction is a safe procedure, it is associated with complications. Primary prevention of high-order multiple pregnancy is recommended.

  3. Reduced Pain Sensation and Reduced BOLD Signal in Parietofrontal Networks during Religious Prayer.

    Science.gov (United States)

    Elmholdt, Else-Marie; Skewes, Joshua; Dietz, Martin; Møller, Arne; Jensen, Martin S; Roepstorff, Andreas; Wiech, Katja; Jensen, Troels S

    2017-01-01

    Previous studies suggest that religious prayer can alter the experience of pain via expectation mechanisms. While brain processes related to other types of top-down modulation of pain have been studied extensively, no research has been conducted on the potential effects of active religious coping. Here, we aimed at investigating the neural mechanisms during pain modulation by prayer and their dependency on the opioidergic system. Twenty-eight devout Protestants performed religious prayer and a secular contrast prayer during painful electrical stimulation in two fMRI sessions. Naloxone or saline was administered prior to scanning. Results show that pain intensity was reduced by 11% and pain unpleasantness by 26% during religious prayer compared to secular prayer. Expectancy predicted large amounts (70-89%) of the variance in pain intensity. Neuroimaging results revealed reduced neural activity during religious prayer in a large parietofrontal network relative to the secular condition. Naloxone had no significant effect on ratings or neural activity. Our results thus indicate that, under these conditions, pain modulation by prayer is not opioid-dependent. Further studies should employ an optimized design to explore whether reduced engagement of the frontoparietal system could indicate that prayer may attenuate pain through a reduction in processing of pain stimulus saliency and prefrontal control rather than through known descending pain inhibitory systems.

  4. Filter apparatus for actively reducing noise

    NARCIS (Netherlands)

    Berkhoff, Arthur P.; Nijsse, G.

    2010-01-01

    A filter apparatus for reducing noise from a primary noise source, comprising a secondary source signal connector for generating secondary noise to reduce said primary noise and a sensor connector for connecting to a sensor for measuring said primary and secondary noise as an error signal. A first

  5. REDUCE system in elementary particle physics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1990-01-01

    This preprint is the first part of the problem book on using REDUCE for calculations of cross sections and decay probabilities in elementary particle physics. It contains the review of the necessary formulae and examples of using REDUCE for calculations with vectors and Dirac matrices. 5 refs.; 11 figs

  6. Flow Boiling Critical Heat Flux in Reduced Gravity

    Science.gov (United States)

    Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

    2004-01-01

    This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

  7. Surgical Procedures of the Elbow: A Nationwide Cross-Sectional Observational Study in the United States

    Directory of Open Access Journals (Sweden)

    Ahmet Kinaci

    2015-01-01

    Full Text Available Background:  Elbow surgery is shared by several subspecialties. We were curious about the most common elbow surgeries and their corresponding diagnoses in the United States.   Methods:  We used the National Hospital Discharge Survey (NHDS and the National Survey of Ambulatory Surgery (NSAS data gathered in 2006-databases that together provide an estimate of all inpatient and ambulatory surgical care in the US.  Results:  An estimated 150,000 elbow surgeries were performed in the US in 2006, 75% in an outpatient setting. The most frequent diagnosis treated operative was enthesopathy (e.g. lateral epicondylitis and it was treated with several different procedures. More than three quarters of all elbow surgeries treated enthesopathy, cubital tunnel syndrome, or fracture (radial head in particular. Arthroscopy and arthroplasty accounted for less than 10% of all elbow surgeries.  Conclusions:  Elbow surgery in the United States primarily addresses enthesopathies such as tennis elbow, cubital tunnel syndrome, and trauma. It is notable that some of the most common elbow surgeries (those that address enthesopathy and radial head fracture are some of the most variably utilized and debated.

  8. A Negative Selection Immune System Inspired Methodology for Fault Diagnosis of Wind Turbines.

    Science.gov (United States)

    Alizadeh, Esmaeil; Meskin, Nader; Khorasani, Khashayar

    2017-11-01

    High operational and maintenance costs represent as major economic constraints in the wind turbine (WT) industry. These concerns have made investigation into fault diagnosis of WT systems an extremely important and active area of research. In this paper, an immune system (IS) inspired methodology for performing fault detection and isolation (FDI) of a WT system is proposed and developed. The proposed scheme is based on a self nonself discrimination paradigm of a biological IS. Specifically, the negative selection mechanism [negative selection algorithm (NSA)] of the human body is utilized. In this paper, a hierarchical bank of NSAs are designed to detect and isolate both individual as well as simultaneously occurring faults common to the WTs. A smoothing moving window filter is then utilized to further improve the reliability and performance of the FDI scheme. Moreover, the performance of our proposed scheme is compared with another state-of-the-art data-driven technique, namely the support vector machines (SVMs) to demonstrate and illustrate the superiority and advantages of our proposed NSA-based FDI scheme. Finally, a nonparametric statistical comparison test is implemented to evaluate our proposed methodology with that of the SVM under various fault severities.

  9. The sensory quality of allergen-controlled, fat-reduced, salt-reduced pork-ostrich sausages during storage.

    Science.gov (United States)

    Guzek, Dominika; Głąbska, Dominika; Brodowska, Marta; Godziszewska, Jolanta; Górska-Horczyczak, Elżbieta; Pogorzelska, Ewelina; Wojtasik-Kalinowska, Iwona; Wierzbicka, Agnieszka

    2017-12-01

    New meat products tailored to consumer health should be characterised by reduced sodium, fat and cholesterol contents and other health-promoting benefits. However, the food sector's greatest challenge is allergen-free production. Consumers are not willing to compromise the sensory quality of meat products for health. The aim of the present study was to analyse the influence of the storage time on the physical properties and consumer acceptance of allergen-controlled, fat-reduced, salt-reduced pork-ostrich sausages. The study focused on pork-ostrich sausages produced in accordance with a new patented technology, which focused on eliminating cross-contamination on-line in the plant, eliminating cross-contamination after preparation, and eliminating spices with high allergy potential. The production was focused on reducing fat (by approximately 50%) and salt (by approximately 30%) levels. No changes in the texture parameters of the sausage were observed during storage time; however, some changes in colour were observed. There were no significant differences in sensory consumer acceptability of pork-ostrich sausage after 14 days of storage; thus, it may be stated that the instrumentally assessed differences in colour did not influence consumer acceptance. The applied fat and NaCl reduction in the pork-ostrich sausages contributed to high consumer ratings and was not correlated with saltiness acceptability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Reduced Worktime: Tool to Fight Umemployment

    Science.gov (United States)

    Levitan, Sar A.; Belous, Richard S.

    1978-01-01

    Discusses the use of reduced worktime, including work sharing, as a strategy in combating unemployment. Covers the experiences of Western European countries in using this strategy to reduce unemployment. It also covers the negative aspects of work sharing, Americans' desires for increased leisure time, and, finally, some issues and answers. (EM)

  11. Six ways to reduce inventory.

    Science.gov (United States)

    Lunn, T

    1996-05-01

    The purpose of this presentation is to help you reduce the inventory in your operation. We will accomplish that task by discussing six specific methods that companies have used successfully to reduce their inventory. One common attribute of these successes is that they also build teamwork among the people. Every business operation today is concerned with methods to improve customer service. The real trick is to accomplish that task without increasing inventory. We are all concerned with improving our skills at keeping inventory low.

  12. Why the CDM can reduce carbon leakage

    International Nuclear Information System (INIS)

    Kallbekken, S.

    2006-04-01

    Carbon leakage is an important concern because it can reduce the environmental effectiveness of the Kyoto Protocol. The Clean Development Mechanism, one of the flexibility mechanisms allowed under the protocol, has the potential to reduce carbon leakage significantly because it reduces the relative competitive disadvantage to Annex B countries of restricting greenhouse gas emissions. The economic intuition behind this mechanism is explored in a theoretical analysis. It is then analyzed numerically using a CGE model. The results indicate that, assuming appropriate accounting for leakage and under realistic assumptions on CDM activity, the CDM has the potential to reduce the magnitude of carbon leakage by around three fifths

  13. States reducing solar's soft costs

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, Chris

    2012-07-01

    In 2012 the costs of modules will drop below the balance of system costs or 'soft costs' of solar in the US. Federal policy that nationalizes permitting processes could reduce some of the soft costs, but is unlikely. That's why states like California, Colorado, Connecticut and Vermont passed own laws to reduce soft costs by speeding solar permitting and reducing fees. (orig.)

  14. Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition

    Science.gov (United States)

    Lestari, W. W.; Hasanah, D. N.; Putra, R.; Mukti, R. R.; Nugrahaningtyas, K. D.

    2018-04-01

    Natural zeolite is abundantly available in Indonesia and well distributed especially in the volcano area like Java, Sumatera, and Sulawesi. So far, natural zeolite from Klaten, Central Java is one of the most interesting zeolites has been widely studied. This research aims to know the effect of seed-assisted synthesis under a hydrothermal condition at 120 °C for 24 hours of Klaten’s zeolite toward the structural change and phase transformation of the original structure. According to XRD and XRF analysis, seed-assisted synthesis through the addition of aluminosilicate mother solution has transformed Klaten’s zeolite which contains (mordenite and clinoptilolite) into analcime type with decreasing Si/Al ratio from 4.51 into 1.38. Morphological analysis using SEM showed the shape changes from irregular into spherical looks like takraw ball in the range of 0.3 to 0.7 micrometer. Based on FTIR data, structure of TO4 site (T = Si or Al) was observed in the range of 300-1300 cm-1 and the occupancy of Brønsted acid site as OH stretching band from silanol groups was detected at 3440-3650 cm-1. Nitrogen adsorption-desorption analysis confirmed that transformation Klaten’s zeolite into analcime type has decreased the surface area from 55.41 to 22.89 m2/g and showed inhomogeneous pore distribution which can be classified as micro-mesoporous aluminosilicate materials.

  15. Theoretical studies of Cu(I) sites in faujasite and their interaction with carbon monoxide.

    Science.gov (United States)

    Rejmak, Pawel; Sierka, Marek; Sauer, Joachim

    2007-10-28

    Sitting, coordination, and properties of Cu(I) cations in zeolite faujasite are investigated using a combined quantum mechanics-interatomic potential function method. The coordination of Cu(I) ions depends on their location within the zeolite lattice. Cu(I) located inside the hexagonal prisms (site I') and in the plane of six-membered aluminosilicate rings on the walls of sodalite units (site II) is threefold coordinated, whereas Cu(I) located in the supercages (site III) is twofold coordinated. In agreement with available experimental data Cu(I) appears to be more strongly bound in sites I' and II than in site III. The binding energy of site II Cu(I) ions increases with the number of Al atoms, but only closest Al atoms have a substantial influence. The CO molecule binds more strongly onto sites with weaker bound cations and lower coordination. We assign the two CO stretching IR bands observed for Cu(I)-Y zeolites to sites II with one Al (2157-2161 cm(-1)) and two Al atoms (2140-2148 cm(-1)) in the six-membered aluminosilicate ring. For Cu(I)-X we tentatively assign the high frequency band to site III (2156-2168 cm(-1)) and the low-frequency band to site II with three Al atoms in the six-membered ring (2136-2138 cm(-1)).

  16. N-(6-(hydroxyamino)-6-oxohexyl) decanamide collector: Flotation performance and adsorption mechanism to diaspore

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lanqing [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Yueyang Chinese Herbal Utilization, Yueyang Vocational Technical College, Yueyang 414000 (China); Wang, Shuai [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Zhong, Hong, E-mail: zhongh@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu, Guangyi, E-mail: guangyiliu@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2015-08-30

    Graphical abstract: The potential absorption model of NHOD on diaspore surface. - Highlights: • A novel surfactant NHOD was first introduced as diaspore flotation collector. • NHOD exhibited superior collecting power to diaspore against gangue. • NHOD's has double active centers to mineral surfaces and double hydrophobic groups. • NHOD molecules formed intermolecular hydrogen bonds on diaspore surfaces. - Abstract: In this paper, a novel surfactant, N-(6-(hydroxyamino)-6-oxohexyl)decanamide (NHOD) was synthesized and used as a collector for flotation separation of diaspore and aluminosilicate minerals. The adsorption mechanism of NHOD onto diaspore was also investigated by FTIR spectra, zeta potential measurement and XPS. The flotation results demonstrated that NHOD exhibited superior collecting power to diaspore and selectivity against kaolinite and illite and could effectively realize flotation recovery of diaspore from bauxite ores contained aluminosilicate minerals under neutral conditions. The results of XPS, FTIR spectra and zeta potential illustrated that at around pH 7.0, NHOD might chemisorb on diaspore surfaces through Al−O coordination bonds formed by binding its −C(=O)NHOH or −C(=O)NH− chelate groups with aluminum atoms on diaspore surfaces. NHOD's unique properties, such as characteristic bond patterns onto diaspore surfaces, two hydrophobic groups, and intermolecular hydrogen bonds between neighboring NHOD molecules coated on diaspore surfaces, rendered it to be a superior flotation collector for diaspore.

  17. N-(6-(hydroxyamino)-6-oxohexyl) decanamide collector: Flotation performance and adsorption mechanism to diaspore

    International Nuclear Information System (INIS)

    Deng, Lanqing; Wang, Shuai; Zhong, Hong; Liu, Guangyi

    2015-01-01

    Graphical abstract: The potential absorption model of NHOD on diaspore surface. - Highlights: • A novel surfactant NHOD was first introduced as diaspore flotation collector. • NHOD exhibited superior collecting power to diaspore against gangue. • NHOD's has double active centers to mineral surfaces and double hydrophobic groups. • NHOD molecules formed intermolecular hydrogen bonds on diaspore surfaces. - Abstract: In this paper, a novel surfactant, N-(6-(hydroxyamino)-6-oxohexyl)decanamide (NHOD) was synthesized and used as a collector for flotation separation of diaspore and aluminosilicate minerals. The adsorption mechanism of NHOD onto diaspore was also investigated by FTIR spectra, zeta potential measurement and XPS. The flotation results demonstrated that NHOD exhibited superior collecting power to diaspore and selectivity against kaolinite and illite and could effectively realize flotation recovery of diaspore from bauxite ores contained aluminosilicate minerals under neutral conditions. The results of XPS, FTIR spectra and zeta potential illustrated that at around pH 7.0, NHOD might chemisorb on diaspore surfaces through Al−O coordination bonds formed by binding its −C(=O)NHOH or −C(=O)NH− chelate groups with aluminum atoms on diaspore surfaces. NHOD's unique properties, such as characteristic bond patterns onto diaspore surfaces, two hydrophobic groups, and intermolecular hydrogen bonds between neighboring NHOD molecules coated on diaspore surfaces, rendered it to be a superior flotation collector for diaspore

  18. Three-dimensionally interconnected Si frameworks derived from natural halloysite clay: a high-capacity anode material for lithium-ion batteries.

    Science.gov (United States)

    Wan, Hao; Xiong, Hao; Liu, Xiaohe; Chen, Gen; Zhang, Ning; Wang, Haidong; Ma, Renzhi; Qiu, Guanzhou

    2018-05-23

    On account of its high theoretical capacity, silicon (Si) has been regarded as a promising anode material for Li-ion batteries. Extracting Si content from earth-abundant and low-cost aluminosilicate minerals, rather than from artificial silica (SiO2) precursors, is a more favorable and practical method for the large-scale application of Si anodes. In this work, three-dimensionally interconnected (3D-interconnected) Si frameworks with a branch diameter of ∼15 nm are prepared by the reduction of amorphous SiO2 nanotubes derived from natural halloysite clay. Benefiting from their nanostructure, the as-prepared 3D-interconnected Si frameworks yield high reversible capacities of 2.54 A h g-1 at 0.1 A g-1 after 50 cycles, 1.87 A h g-1 at 0.5 A g-1 after 200 cycles, and 0.97 A h g-1 at 2 A g-1 after a long-term charge-discharge process of 500 cycles, remarkably outperforming the commercial Si material. Further, when the as-prepared Si frameworks and commercial LiCoO2 cathodes are paired in full cells, a high anode capacity of 0.98 A h g-1 is achieved after 100 cycles of rapid charge/discharge at 2 A g-1. This work provides a new strategy for the synthesis of high-capacity Si anodes derived from natural aluminosilicate clay.

  19. Single-particle characterization of urban aerosol particles collected in three Korean cites using low-Z electron probe X-ray microanalysis.

    Science.gov (United States)

    Ro, Chul-Un; Kim, HyeKyeong; Oh, Keun-Young; Yea, Sun Kyung; Lee, Chong Bum; Jang, Meongdo; Van Grieken, René

    2002-11-15

    A recently developed single-particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA), was applied to characterize urban aerosol particles collected in three cities of Korea (Seoul, CheongJu, and ChunCheon) on single days in the winter of 1999. In this study, it is clearly demonstrated that the low-Z EPMA technique can provide detailed and quantitative information on the chemical composition of particles in the urban atmosphere. The collected aerosol particles were analyzed and classified on the basis of their chemical species. Various types of particles were identified, such as soil-derived, carbonaceous, marine-originated, and anthropogenic particles. In the sample collected in Seoul, carbonaceous, aluminosilicates, silicon dioxide, and calcium carbonate aerosol particles were abundantly encountered. In the CheongJu and ChunCheon samples, carbonaceous, aluminosilicates, reacted sea salts, and ammonium sulfate aerosol particles were often seen. However, in the CheongJu sample, ammonium sulfate particles were the most abundant in the fine fraction. Also, calcium sulfate and nitrate particles were significantly observed. In the ChunCheon sample, organic particles were the most abundant in the fine fraction. Also, sodium nitrate particles were seen at high levels. The ChunCheon sample seemed to be strongly influenced by sea-salt aerosols originating from the Yellow Sea, which is located about 115 km away from the city.

  20. Quantification of mineral matter in commercial cokes and their parent coals

    Energy Technology Data Exchange (ETDEWEB)

    Sakurovs, Richard; French, David; Grigore, Mihaela [CRC for Coal in Sustainable Development, CSIRO Energy Technology, PO Box 330 Newcastle 2300 (Australia)

    2007-10-01

    The nature of mineral matter in coke is an important factor in determining the behaviour of coke in the blast furnace. However, there have been few quantitative determinations of the types of mineral matter in coke and the feed coal. Here we use a technique of quantitative X-ray diffraction - SIROQUANT trademark - to determine the nature and quantity of mineral matter in eleven cokes and their parent materials, using samples of coals and their cokes utilised commercially in blast furnaces around the world. In some of these coals a considerable proportion of the phosphorus was present as goyazite, an aluminium phosphate. In the cokes, most of the iron was incorporated into amorphous aluminosilicate material; metallic iron accounted for about 15% of the iron present, and a similar amount was present as sulfides. Potassium and sodium were largely present as amorphous aluminosilicate material. Most of the quartz in the coal was unaffected by the coking, but a small fraction was transformed into other minerals. Quartz is not completely inert during coking. The amount of the catalytic forms of iron in the coke - iron, iron oxides and iron sulfides - was not related to the amount of pyrite and siderite in the starting coal, indicating that estimation of catalytic iron requires investigation of the mineral matter in coke directly and cannot be estimated from the minerals in the coal. (author)

  1. Influence of pozzolana on C4AF hydratio n and the effects of chloride and sulfate io ns on the hydrates formed

    Directory of Open Access Journals (Sweden)

    RIMVYDAS KAMINSKAS

    2011-09-01

    Full Text Available This study investigated the influence of natural pozzolana additive on the hydration of C4AF (aluminoferrite and the effects of chloride and sulfate ions on the hydrates formed. In the samples, 25% (by weight of the C4AF was replaced with pozzolana. The mixture was then hardened for 28 days in water, soaked in a saturated NaCl solution for 3 months, and then soaked in a 5% Na2SO4 solution for 3 months at 20°C. It is estimated that under normal conditions, pozzolana additive accelerates the formation of CO32-–AFm (monocarboaluminate and gibbsite, however, impede the formation of cubic aluminum hydrates. Also, part of the amorphous SiO2 penetrates into the structure of hydrates of C4AF and initiates the formation of hydrated alumino-silicate (gismondine. Monocarboaluminate affected by NaCl becomes unstable and takes part in reactions producing Ca2Al(OH6Cl·2H2O (hydrocalumite-M. After samples were transferred from a saturated NaCl solution to a 5% Na2SO4 solution, hydrocalumite-M was the source of aluminates for the formation of ettringite. In samples with pozzolana additive, the hydrated alumino-silicate and gibbsite compounds that were formed remained stable in an environment containing chloride and sulfate ions and retarded the corrosion reaction of C4AF hydrates.

  2. Geochemical characteristics of late Quaternary sediments from the southern Aegean Sea (Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    A. SIOULAS

    2000-12-01

    Full Text Available Ten cores from the southern Aegean Sea have been logged for their lithological composition and seventy-three sub-samples were analysed for the determination of major and trace elements concentrations. Four lithological units were identified, namely, mud, volcanic, turbidite and sapropel. On the basis of the “Z-2” Minoan ash layer radiocarbon age sedimentation rates for the southern Aegean Sea were estimated at 3.26 to 4.15 cm kyr -1. Simple correlation analysis revealed three groups of elements associated with: (1 biogenic carbonates; (2 terrigenous alumino-silicates and (3 sapropelic layers. R-mode factor analysis applied on the carbonate-free corrected data-set defined four significant factors: (1 the “detrital alumino-silicate factor” represented by Si, Al, Na, K, Rb, Zr, Pb and inversely related to Ca, Mg, and Sr; (2 a “hydrothermal factor” loaded with Cr, Ni, Co, Cu, Fe; (3 the “volcanic ash factor” with high loadings for Ti, Al, Fe, Na and (4 a “sapropel factor” represented by Ba, Mo, and Zn. High factor scores for the “hydrothermal factor” were observed in sediment samples proximal to Nisyros Isl., suggesting a potential hydrothermal influence. Red-brown oxides and crusts dredged from this area support further this possibility. The use of factor analysis enabled for a better understanding of the chemical elements associations that remained obscured by correlation analysis.

  3. Particulate matter analysis at elementary schools in Curitiba, Brazil.

    Science.gov (United States)

    Avigo, Devanir; Godoi, Ana F L; Janissek, Paulo R; Makarovska, Yaroslava; Krata, Agnieszka; Potgieter-Vermaak, Sanja; Alfoldy, Balint; Van Grieken, René; Godoi, Ricardo H M

    2008-06-01

    The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels.

  4. Is lowering reducing sugars concentration in French fries an effective measure to reduce acrylamide concentration in food service establishments?

    Science.gov (United States)

    Sanny, M; Jinap, S; Bakker, E J; van Boekel, M A J S; Luning, P A

    2012-12-01

    The objective of this study was to obtain insight into the actual effectiveness of lowering reducing sugars concentration in par-fried potato strips on the concentration and variation of acrylamide in French fries prepared in real-life situations in food service establishments. Acrylamide, frying time, frying temperature, and reducing sugars were measured and characteristics of fryers were recorded. Data showed that the use of par-fried potato strips with lower concentrations of reducing sugars than the commonly used potato strips was an effective measure to reduce acrylamide concentrations in French fries prepared under standardised frying conditions. However, there was still large variation in the acrylamide concentrations in French fries, although the variation in reducing sugars concentrations in low and normal types of par-fried potato strips was very small and the frying conditions were similar. Factors that could affect the temperature-time profile of frying oil were discussed, such as setting a lower frying temperature at the end than at the start of frying, product/oil ratio and thawing practice. These need to be controlled in daily practice to reduce variation in acrylamide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Characterization of Fe (III)-reducing enrichment culture and isolation of Fe (III)-reducing bacterium Enterobacter sp. L6 from marine sediment.

    Science.gov (United States)

    Liu, Hongyan; Wang, Hongyu

    2016-07-01

    To enrich the Fe (III)-reducing bacteria, sludge from marine sediment was inoculated into the medium using Fe (OH)3 as the sole electron acceptor. Efficiency of Fe (III) reduction and composition of Fe (III)-reducing enrichment culture were analyzed. The results indicated that the Fe (III)-reducing enrichment culture with the dominant bacteria relating to Clostridium and Enterobacter sp. had high Fe (III) reduction of (2.73 ± 0.13) mmol/L-Fe (II). A new Fe (III)-reducing bacterium was isolated from the Fe (III)-reducing enrichment culture and identified as Enterobacter sp. L6 by 16S rRNA gene sequence analysis. The Fe (III)-reducing ability of strain L6 under different culture conditions was investigated. The results indicated that strain L6 had high Fe (III)-reducing activity using glucose and pyruvate as carbon sources. Strain L6 could reduce Fe (III) at the range of NaCl concentrations tested and had the highest Fe (III) reduction of (4.63 ± 0.27) mmol/L Fe (II) at the NaCl concentration of 4 g/L. This strain L6 could reduce Fe (III) with unique properties in adaptability to salt variation, which indicated that it can be used as a model organism to study Fe (III)-reducing activity isolated from marine environment. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. The Gambling Reducing Slot Machine

    DEFF Research Database (Denmark)

    Callesen, Mette Buhl; Thomsen, Kristine Rømer; Linnet, Jakob

    2007-01-01

      The Gambling Reducing Slot Machine - Preliminary results Mette Buhl Callesen, Kristine Rømer Thomsen, Jakob Linnet and Arne Møller The PET Centre, Aarhus University Hospital and Centre of Functionally Integrative Neuroscience, Aarhus, Denmark   Slot machines are among the most addictive forms...... and willingness to continue gambling. The results may have important implications for understanding how to reduce gambling behavior in pathological gamblers.   [1] Griffiths, M. 1999. Gambling Technologies: Prospects for Problem Gambling. Journal of Gambling Studies, vol. 15(3), pp. 265-283.    ...

  7. Reduced Pain Sensation and Reduced BOLD Signal in Parietofrontal Networks during Religious Prayer

    DEFF Research Database (Denmark)

    Elmholdt, Else-Marie; Skewes, Joshua Charles; Dietz, Martin

    2017-01-01

    Previous studies suggest that religious prayer can alter the experience of pain via expectation mechanisms. While brain processes related to other types of top-down modulation of pain have been studied extensively, no research has been conducted on the potential effects of active religious coping....... Here, we aimed at investigating the neural mechanisms during pain modulation by prayer and their dependency on the opioidergic system. Twenty-eight devout Protestants performed religious prayer and a secular contrast prayer during painful electrical stimulation in two fMRI sessions. Naloxone or saline...... was administered prior to scanning. Results show that pain intensity was reduced by 11% and pain unpleasantness by 26% during religious prayer compared to secular prayer. Expectancy predicted large amounts (70–89%) of the variance in pain intensity. Neuroimaging results revealed reduced neural activity during...

  8. Reduced kinetic equations: An influence functional approach

    International Nuclear Information System (INIS)

    Wio, H.S.

    1985-01-01

    The author discusses a scheme for obtaining reduced descriptions of multivariate kinetic equations based on the 'influence functional' method of Feynmann. It is applied to the case of Fokker-Planck equations showing the form that results for the reduced equation. The possibility of Markovian or non-Markovian reduced description is discussed. As a particular example, the reduction of the Kramers equation to the Smoluchwski equation in the limit of high friction is also discussed

  9. XANES- and EXAFS-Investigations on Chromium-Doped Mullite Precursors

    OpenAIRE

    Arzberger , I.; Küper , G.; Pantelouris , A.; Peitz , B.; Hormes , J.; Schneider , H.; Saruhan , B.

    1997-01-01

    Chromium-doped non-crystalline mullite precursors for ceramics were investigated with x-ray absorption spectroscopy at the Cr K edge. They were prepared using a sol-gel-route. 3 wt% Cr2O3 were added to partially substitute aluminium by chromium in the aluminosilicate network. The aim of the study was to characterize the development of the electronic and geometric structure of the precursor at different temperatures prior to its crystallization to mullite. The x-ray absorption spectra of the p...

  10. Fixation of radioactive waste by reaction with clays: progress report

    International Nuclear Information System (INIS)

    Delegard, C.H.; Barney, G.S.

    1975-07-01

    Reactions of clay with Hanford-type radioactive wastes (liquids, salt cake, and sludge) were studied as a means of immobilization of radionuclides contained in the waste. Products of these reactions were identified as the crystalline sodium aluminosilicates, cancrinite and nepheline. Radionuclides are entrapped in these crystalline minerals. Conceptual flow diagrams for conversion of high-salt wastes to cancrinite and nepheline were defined and tested. The mineral products were evaluated for use as forms for long-term storage of radioactive waste

  11. Hydrothermal synthesis of magnetic reduced graphene oxide sheets

    International Nuclear Information System (INIS)

    Shen, Jianfeng; Shi, Min; Ma, Hongwei; Yan, Bo; Li, Na; Ye, Mingxin

    2011-01-01

    Graphical abstract: An environmental friendly and efficient route for preparation of magnetic reduced graphene oxide composite with a one-step hydrothermal method was demonstrated. The reducing process was accompanied by generation of magnetic nanoparticles. Highlights: → A one-step hydrothermal method for preparation of MN-CCG was demonstrated. → Glucose was used as the 'green' reducing agent. → The reducing process was accompanied by generation of magnetic nanoparticles. → The prepared MN-CCG is highly water suspendable and sensitive to magnetic field. -- Abstract: We demonstrated an environmental friendly and efficient route for preparation of magnetic reduced graphene oxide composite (MN-CCG). Glucose was used as the reducing agent in this one-step hydrothermal method. The reducing process was accompanied by generation of magnetic nanoparticles. The structure and composition of the nanocomposite was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, thermal gravimetric analysis, atomic force microscopy and transmission electron microscopy. It was found that the prepared MN-CCG is highly water suspendable and sensitive to magnetic field.

  12. Generalized Reduced Order Model Generation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — M4 Engineering proposes to develop a generalized reduced order model generation method. This method will allow for creation of reduced order aeroservoelastic state...

  13. Patient experiences with interventions to reduce surgery cancellations

    DEFF Research Database (Denmark)

    Hovlid, Einar; von Plessen, Christian; Haug, Kjell

    2013-01-01

    The cancellation of planned surgery harms patients, increases waiting times and wastes scarce health resources. Previous studies have evaluated interventions to reduce cancellations from medical and management perspectives; these have focused on cost, length of stay, improved efficiency......, and reduced post-operative complications. In our case a hospital had experienced high cancellation rates and therefore redesigned their pathway for elective surgery to reduce cancelations. We studied how patients experienced interventions to reduce cancellations....

  14. Evolution of technetium speciation in reducing grout

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, Wayne W.; Bucher, Jerome J.; Shuh, David K.; Edelstein,Norman M.

    2003-11-24

    Cementitious waste forms (CWFs) are an important component of the strategy to immobilize high-level nuclear waste resulting from plutonium production by the U.S. Department of Energy (DOE). Technetium (99Tc) is an abundant fission product of particular concern in CWFs due to the high solubility and mobility of pertechnetate, TcO4-, the stable form of technetium in aerobic environments. CWFs can more effectively immobilize 99Tc if they contain additives that reduce mobile TcO4- to immobile Tc(IV) species. Leaching of 99Tc from reducing CWFs that contain Tc(IV) is much slower than for CWFs containing TcO4-. Previous X-ray absorption fine structure (XAFS) studies showed that the Tc(IV) species were oxidized to TcO4- in reducing grout samples prepared on a laboratory scale. Whether the oxidizer was atmospheric O2 or NO3- in the waste simulant was not determined. In actual CWFs, rapid oxidation of Tc(IV) by NO3- would be a concern, whereas oxidation by atmospheric O2 would be of less concern due to the slow diffusion and reaction of O2 with the reducing CWF. To address this uncertainty, two series of reducing grouts were prepared using TcO4- containing waste simulants with and without NO3-. In the first series of samples, the TcO4- was completely reduced using Na2S, and the samples were placed in containers that permitted O2 diffusion. In these samples, all of the technetium was initially present as aTc(IV) sulfide compound, TcSx, which was characterized using extended X-ray absorption fine structure (EXAFS) spectroscopy, and is likely Tc2S7. The TcSx initially present in the grout samples was steadily oxidized over 4 years. In the second series of samples, all of the TcO4- was not initially reduced, and the grout samples were placed in airtight containers. In these samples, the remaining TcO4- continued to be reduced as the samples aged, presumably due to the presence of reducing blast furnace slag. When samples in the second series were exposed to atmosphere, the

  15. Syntheses of sup 18 F-labeled reduced haloperidol and sup 11 C-labeled reduced 3-N-methylspiperone

    Energy Technology Data Exchange (ETDEWEB)

    Ravert, H T; Dannals, R F; Wilson, A A; Wong, D F; Wagner, Jr, H N [Johns Hopkins Medical Institutions, Baltimore, MD (USA)

    1991-03-01

    {sup 18}F-Labeled reduced haloperidol and {sup 11}C-labeled reduced 3-N-methylspiperone were synthesized in a convenient and quantitative one step reduction from {sup 18}F-labeled haloperidol and {sup 11}C-labeled N-methylspiperone, respectively. Both products were purified by semipreparative HPLC and were obtained at high specific activity and radiochemical purity. (author).

  16. Quantum Entanglement and Reduced Density Matrices

    Science.gov (United States)

    Purwanto, Agus; Sukamto, Heru; Yuwana, Lila

    2018-05-01

    We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.

  17. Reduced-activation steels: present status and future development

    International Nuclear Information System (INIS)

    Klueh, R.L.

    2007-01-01

    Full text of publication follows: Reduced-activation steels for fusion reactor applications were developed in the 1980's to replace the commercial elevated- temperature steels first considered. In the United States, this involved replacing Sandvik HT9 and modified 9Cr-1Mo steels. Reduced-activation steels, which were developed for more rapid radioactivity decay following exposure in a fusion neutron environment, were patterned after the commercial steels they were to replace. The objective for the reduced-activation steels was that they have strengths (yield stress and ultimate tensile strength from room temperature to 600 deg. C) and impact toughness (measured in a Charpy test) comparable to or better than the steels they were replacing. That objective was achieved in reduced-activation steels developed in Japan, Europe, and the United States. Since the reduced-activation steels were developed in the 1980's, reactor designers have been interested designs for increased efficiency of future fusion plants. This means reactors will need to operate at higher temperatures-above 550 deg. C, which is the upper-temperature limit for the reduced-activation steels. Although the tensile and impact toughness of the reduced-activation steels exceed those of the commercial steels they were patterned after, their creep-rupture properties are inferior to some of the commercial steels they replaced. furthermore, they are much inferior to commercial steels that have been developed since the 1980's. Reasons for why the creep-rupture properties for the new commercial ferritic/martensitic steels are superior to the earlier commercial steels and the reduced-activation steels were examined. The reasons involve compositional changes that were made in the earlier commercial steels to give the new commercial steels their superior properties. Computational thermodynamics calculations were carried out to compare the expected equilibrium phases. It appears that similar changes in composition

  18. Quasi-equilibria in reduced Liouville spaces.

    Science.gov (United States)

    Halse, Meghan E; Dumez, Jean-Nicolas; Emsley, Lyndon

    2012-06-14

    The quasi-equilibrium behaviour of isolated nuclear spin systems in full and reduced Liouville spaces is discussed. We focus in particular on the reduced Liouville spaces used in the low-order correlations in Liouville space (LCL) simulation method, a restricted-spin-space approach to efficiently modelling the dynamics of large networks of strongly coupled spins. General numerical methods for the calculation of quasi-equilibrium expectation values of observables in Liouville space are presented. In particular, we treat the cases of a time-independent Hamiltonian, a time-periodic Hamiltonian (with and without stroboscopic sampling) and powder averaging. These quasi-equilibrium calculation methods are applied to the example case of spin diffusion in solid-state nuclear magnetic resonance. We show that there are marked differences between the quasi-equilibrium behaviour of spin systems in the full and reduced spaces. These differences are particularly interesting in the time-periodic-Hamiltonian case, where simulations carried out in the reduced space demonstrate ergodic behaviour even for small spins systems (as few as five homonuclei). The implications of this ergodic property on the success of the LCL method in modelling the dynamics of spin diffusion in magic-angle spinning experiments of powders is discussed.

  19. Reduced intrinsic heart rate is associated with reduced arrhythmic susceptibility in guinea-pig heart.

    Science.gov (United States)

    Osadchii, Oleg E

    2014-12-01

    In the clinical setting, patients with slower resting heart rate are less prone to cardiovascular death compared with those with elevated heart rate. However, electrophysiological adaptations associated with reduced cardiac rhythm have not been thoroughly explored. In this study, relationships between intrinsic heart rate and arrhythmic susceptibility were examined by assessments of action potential duration (APD) rate adaptation and inducibility of repolarization alternans in sinoatrial node (SAN)-driven and atrioventricular (AV)-blocked guinea-pig hearts perfused with Langendorff apparatus. Electrocardiograms, epicardial monophasic action potentials, and effective refractory periods (ERP) were assessed in normokalemic and hypokalemic conditions. Slower basal heart rate in AV-blocked hearts was associated with prolonged ventricular repolarization during spontaneous beating, and with attenuated APD shortening at increased cardiac activation rates during dynamic pacing, when compared with SAN-driven hearts. During hypokalemic perfusion, the inducibility of repolarization alternans and tachyarrhythmia by rapid pacing was found to be lower in AV-blocked hearts. This difference was ascribed to prolonged ERP in the setting of reduced basal heart rate, which prevented ventricular capture at critically short pacing intervals required to induce arrhythmia. Reduced basal heart rate is associated with electrophysiological changes that prevent electrical instability upon an abrupt cardiac acceleration.

  20. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.

    Science.gov (United States)

    Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin

    2017-12-01

    Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE -/- ) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE -/- mice overexpressing the mitochondrial helicase Twinkle (Tw + /ApoE -/- ). Tw + /ApoE -/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw + /ApoE -/- mice had decreased necrotic core and increased fibrous cap areas, and Tw + /ApoE -/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in

  1. Experimental knee pain reduces muscle strength

    DEFF Research Database (Denmark)

    Henriksen, Marius; Mortensen, Sara Rosager; Aaboe, Jens

    2011-01-01

    Pain is the principal symptom in knee pathologies and reduced muscle strength is a common observation among knee patients. However, the relationship between knee joint pain and muscle strength remains to be clarified. This study aimed at investigating the changes in knee muscle strength following...... experimental knee pain in healthy volunteers, and if these changes were associated with the pain intensities. In a crossover study, 18 healthy subjects were tested on 2 different days. Using an isokinetic dynamometer, maximal muscle strength in knee extension and flexion was measured at angular velocities 0....... Knee pain reduced the muscle strength by 5 to 15% compared to the control conditions (P knee extension and flexion at all angular velocities. The reduction in muscle strength was positively correlated to the pain intensity. Experimental knee pain significantly reduced knee extension...

  2. Sucralfate significantly reduces ciprofloxacin concentrations in serum.

    OpenAIRE

    Garrelts, J C; Godley, P J; Peterie, J D; Gerlach, E H; Yakshe, C C

    1990-01-01

    The effect of sucralfate on the bioavailability of ciprofloxacin was evaluated in eight healthy subjects utilizing a randomized, crossover design. The area under the concentration-time curve from 0 to 12 h was reduced from 8.8 to 1.1 micrograms.h/ml by sucralfate (P less than 0.005). Similarly, the maximum concentration of ciprofloxacin in serum was reduced from 2.0 to 0.2 micrograms/ml (P less than 0.005). We conclude that concurrent ingestion of sucralfate significantly reduces the concentr...

  3. Low Nonfasting Triglycerides and Reduced All-Cause Mortality

    DEFF Research Database (Denmark)

    Thomsen, Mette; Varbo, Anette; Tybjærg-Hansen, Anne

    2014-01-01

    BACKGROUND: Increased nonfasting plasma triglycerides marking increased amounts of cholesterol in remnant lipoproteins are important risk factors for cardiovascular disease, but whether lifelong reduced concentrations of triglycerides on a genetic basis ultimately lead to reduced all......-cause mortality is unknown. We tested this hypothesis. METHODS: Using individuals from the Copenhagen City Heart Study in a mendelian randomization design, we first tested whether low concentrations of nonfasting triglycerides were associated with reduced all-cause mortality in observational analyses (n = 13 957......); second, whether genetic variants in the triglyceride-degrading enzyme lipoprotein lipase, resulting in reduced nonfasting triglycerides and remnant cholesterol, were associated with reduced all-cause mortality (n = 10 208). RESULTS: During a median 24 and 17 years of 100% complete follow-up, 9991...

  4. Reducing consumption through communal living

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Horace [The Open Univ., Milton Keynes (United Kingdom). Energy and Environment Research Unit

    2003-07-01

    This paper examines ways consumers and communities can voluntarily adopt a low consumption (or low carbon) lifestyle, often termed 'voluntary simplicity' or a policy of 'sufficiency'. There is an increasing academic literature within Europe in the last five years on the whole question of 'sustainable consumption', and the relationship between income levels and consumption particularly at the household. This debate has moved beyond 'green consumerism' to look at building 'new concepts of prosperity' through local community actions, or reducing working time to allow more time for the creation of social capital. The paper will concentrate on one aspect of the quest for sustainable communities, the relevance of communal living to reducing consumption through examining energy consumption (both direct and indirect) in one such community in the UK. The results from this preliminary study reveal that it is not the sharing of resources that reduces consumption but the mutual reinforcement of attitudes towards a low consumption lifestyle. Thus it is the creation of social capital in a community that is its key to its ecological lifestyle.

  5. Boiler burden reduced at Bedford site.

    Science.gov (United States)

    Horsley, Chris

    2011-10-01

    With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation.

  6. Boundaries, injective envelopes, and reduced crossed products

    DEFF Research Database (Denmark)

    Bryder, Rasmus Sylvester

    In this dissertation, we study boundary actions, equivariant injective envelopes, as well as theideal structure of reduced crossed products. These topics have recently been linked to thestudy of C-simple groups, that is, groups with simple reduced group C-algebras.In joint work with Matthew Kennedy......, we consider reduced twisted crossed products overC-simple groups. For any twisted C-dynamical system over a C-simple group, we provethat there is a one-to-one correspondence between maximal invariant ideals in the underlyingC-algebra and maximal ideals in the reduced crossed product. When......*-algebras, and relate the intersection property for group actions on unital C*-algebras to the intersection property for theequivariant injective envelope. Moreover, we also prove that the equivariant injective envelopeof the centre of the injective envelope of a unital C*-algebra can be regarded as a C...

  7. Synthesis of battery grade reduced silver powder

    International Nuclear Information System (INIS)

    Qadeer, R.; Hameed, M.; Ikram, S.; Munir, A.

    2002-01-01

    Process for production of battery grade reduced silver powder, an active positive material for zinc-silver oxide batteries, having specific characteristics has been optimized and the synthesized reduced silver powder was characterized. Results reveal that the values of bulk density (1.25 0.1 g/cm3) and activity (73.27 %) of synthesized reduced silver powder lies within the recommended range for use as battery material. It has purity ≥ 98% and contains Fe and Cu as traces in the concentration range of 30 5 ppm and 15 7 ppm respectively. Others determined values of surface and pores parameters are: surface area 2.6 .4 m2/g: pore volume 3.10 cm3/g: pore diameter 0.043 mu m and porosity 20%. XRD studies reveal that reduced silver powder has a cubic structure. (author)

  8. Synthesis of Highly Reactive Subnano-sized Zero-valent Iron using Smectite Clay Templates

    Science.gov (United States)

    Gu, Cheng; Jia, Hanzhang; Li, Hui; Teppen, Brian J.; Boyd, Stephen A.

    2010-01-01

    A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH4, resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of discrete regions of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of ~ 5 Å. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the XRD results since the diameter of elemental Fe is 2.5 Å. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene:non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnano-scale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, e.g. as components of constructed reactive domains such as reactive caps for contaminated sediments. PMID:20446730

  9. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates.

    Science.gov (United States)

    Gu, Cheng; Jia, Hanzhong; Li, Hui; Teppen, Brian J; Boyd, Stephen A

    2010-06-01

    A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH(4), resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of approximately 5 A. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the X-ray diffraction (XRD) results since the diameter of elemental Fe is 2.5 A. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene/non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnanoscale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, for example, as components of constructed reactive domains such as reactive caps for contaminated sediments.

  10. Reiki Reduces Burnout Among Community Mental Health Clinicians.

    Science.gov (United States)

    Rosada, Renee M; Rubik, Beverly; Mainguy, Barbara; Plummer, Julie; Mehl-Madrona, Lewis

    2015-08-01

    Clinicians working in community mental health clinics are at high risk for burnout. Burnout is a problem involving emotional exhaustion, depersonalization, and reduced personal accomplishment. Reiki is a holistic biofield energy therapy beneficial for reducing stress. The purpose of this study was to determine if 30 minutes of healing touch could reduce burnout in community mental health clinicians. We utilized a crossover design to explore the efficacy of Reiki versus sham Reiki, a pseudo treatment designed to mimic true Reiki, as a means to reduce symptoms of burnout. Subjects were randomized to whether they started with Reiki or sham. The Maslach Burnout Inventory-Human Services Survey (MBI-HSS) and the Measure Your Medical Outcome Profile Version 2 (MYMOP-2) were used as outcome measures. Multilevel modeling was used to represent the relations among variables. Reiki was statistically significantly better than sham Reiki in reducing burnout among community mental health clinicians (p=0.011). Reiki was significant in reducing depersonalization (pReiki reduced the primary symptom on the MYMOP also only among single people (p=0.03). The effects of Reiki were differentiated from sham Reiki. Reiki could be helpful in community mental health settings for the mental health of the practitioners.

  11. Reduced-density-matrix theory and algebraic structures

    International Nuclear Information System (INIS)

    Kryachko, E.S.

    1978-01-01

    A survey of recent work on algebraic structures and reduced-density-matrix theory is presented. The approach leads to a method of classifying reduced density matrices and generalizes the notion of open and closed shells in many-body theory. 6 references

  12. Reducing methane emissions from ruminant animals

    Energy Technology Data Exchange (ETDEWEB)

    Mathison, G.W.; Okine, E.K.; McAllister, T.A.; Dong, Y.; Galbraith, J.; Dmytruk, O.I.N. [University of Alberta, Edmonton, AB (Canada). Dept. of Agriculture, Food and Nutrition Science

    1998-09-01

    In 1992 it was estimated that 30 x 10{sup 12}g more methane was emitted into the atmosphere than was removed, with animals being considered the largest single anthropogenic source. Ruminants produce 97% of the methane generated in enteric fermentation by animals. Estimates for methane emissions from animal wastes vary between 6 and 31% of that produced directly by the animal, with the most likely value being between 5 and 10% globally. Methane inhibitors can reduce methane emissions to zero in the short term but due to microbial adaptation the effects of these compounds are quickly neutralized and feed intake is often depressed. Methane emissions per unit of feed consumed from sheep and cattle fed hay diets appear to be quite similar but differences between other ruminants have been measured. The most practical way of influencing methane emissions per unit product is to increase productivity level since the proportion of feed energy required to just maintain the animal will be reduced, methane production falls with increased intake level, and the animal may go to market sooner. The most promising avenues for future research for reducing methanogenesis are the development of new products for reducing protozoal numbers in the rumen and the use of bacterocins or other compounds which specifically target methanogenic bacteria.

  13. Reducing the risk of nuclear terrorism

    International Nuclear Information System (INIS)

    Hibbs, R.

    2005-01-01

    Full text: The March 2005 'International conference on nuclear security, global directions for the future' noted that nuclear terrorism is one of the greatest threats to society. Eminent members of a multi-national panel stated that there is no one principal activity to reduce the risk of nuclear terrorism and that a combination of activities is required. This paper seeks to identify those activities by analyzing the elements that comprise the risk of nuclear terrorism. For the purpose of the analysis, risk is the product of the probability of a terrorist attack (A p ), the success of a terrorist act (S p ) and the consequence (C) of the attack: R=A p * S p * C. The paper examines each of these three elements of risk with the objective of identifying what we are doing and what else we could be doing to reduce risk. It takes into consideration some historic catastrophes, examines how they might have been prevented or their consequences reduced, and if there are lessons that are applicable to reducing the risk of nuclear terrorism. The paper demonstrates that we have concentrated on only one of the three elements of risk and offer suggestions for diminishing the risk of nuclear terrorism by addressing all the elements. (author)

  14. Do Workplace Smoking Bans Reduce Smoking?

    OpenAIRE

    Matthew C. Farrelly; William N. Evans; Edward Montgomery

    1999-01-01

    In recent years there has been a heightened public concern over the potentially harmful effects of environmental tobacco smoke (ETS). In response, smoking has been banned on many jobs. Using data from the 1991 and 1993 National Health Interview Survey and smoking supplements to the September 1992 and May 1993 Current Population Survey, we investigate whether these workplace policies reduce smoking prevalence and smoking intensity among workers. Our estimates suggest that workplace bans reduce...

  15. 21 CFR 184.1979a - Reduced lactose whey.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Reduced lactose whey. 184.1979a Section 184.1979a... Listing of Specific Substances Affirmed as GRAS § 184.1979a Reduced lactose whey. (a) Reduced lactose whey is the substance obtained by the removal of lactose from whey. The lactose content of the finished...

  16. 21 CFR 184.1979b - Reduced minerals whey.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Reduced minerals whey. 184.1979b Section 184.1979b... Listing of Specific Substances Affirmed as GRAS § 184.1979b Reduced minerals whey. (a) Reduced minerals whey is the substance obtained by the removal of a portion of the minerals from whey. The dry product...

  17. Synthesis and characterization of nanohybrid of montmorillonite and zinc oxide

    International Nuclear Information System (INIS)

    Chagas, Beatriz S.; Mendes, Luis C.; Brito, Alice S.

    2009-01-01

    Zinc oxide-aluminosilicate nanohybrids through a hydrothermal reaction of a colloidal suspension of exfoliated montmorillonite nanosheets and zinc oxide in acid solution, performed in three different routes, were synthesized. The products were characterized by wide angle X-ray diffraction (WAXD). In all routes, it was found that the intercalation of zinc oxide into the host montmorillonite gallery was successfully performed so that the crystalline peaks of the montmorillonite and zinc oxide were suppressed from the X-ray patterns. The use of ultrasound decreased the reaction time.(author)

  18. Prevention of solids formation: Results of the FY 1999 studies

    International Nuclear Information System (INIS)

    Hunt, R.D.; Beahm, E.C.; Chase, C.W.; Collins, J.L.; Dillow, T.A.; Weber, C.F.

    1999-01-01

    Tank farm operations at Hanford and Savannah River have been adversely affected by unintentional solids formations. At Hanford, a new cross-site transfer line had to be built because nearly all the original transfer lines were no longer operational due to plugs. At Savannah River, operations at its evaporator system were suspended while a plug in the gravity drain line was physically removed at considerable expense. The plugs as Hanford and Savannah River, which have been characterized, were primarily due to sodium phosphate and sodium aluminosilicate, respectively

  19. K-capture by Al-Si based Additives in an Entrained Flow Reactor

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    A water slurry, consisting of KCl and Al-Si based additives (kaolin and coal fly ash) was fed into an entrained flow reactor (EFR) to study the K-capturing reaction of the additives at suspension-fired conditions. Solid products collected from the reactor were analysed with respect to total...... of KCl to K-aluminosilicate decreased. When reaction temperature increased from 1100 °C to 1450 °C, the conversion of KCl does not change significantly, which differs from the trend observed in fixed-bed reactor....

  20. Progress in development of a source term for sphene glass-ceramic dissolution under vault conditions

    International Nuclear Information System (INIS)

    Hayward, P.J.; Tait, J.C.; George, I.M.; Carmichael, A.A.; Ross, J.M.P.

    1986-01-01

    This report describes the results of ongoing leaching experiments, involving aluminosilicate glass and sphene (CaTiSiO/sub 5/) ceramics, doped with /sup 22/Na or /sup 45/Ca, and leached in a simulated Ca-NA-Cl brine at 25 0 or 100 0 C. The experiments are designed to aid development of separate models for the dissolution of the glass and the ceramic phase in a sphene glass-ceramic, and to help evaluate a composite model for the dissolution of the glass-ceramic