WorldWideScience

Sample records for aluminide weld overlays

  1. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Banovic, S.W.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  2. Iron aluminide weld overlay coatings for boiler tube protection in coal-fired low NOx boilers

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-12-01

    Iron aluminide weld overlay coatings are currently being considered for enhanced sulfidation resistance in coal-fired low NO{sub x} boilers. The use of these materials is currently limited due to hydrogen cracking susceptibility, which generally increases with an increase in aluminum concentration of the deposit. The overall objective of this program is to attain an optimum aluminum content with good weldability and improved sulfidation resistance with respect to conventional materials presently in use. Research has been initiated using Gas Tungsten Arc Welding (GTAW) in order to achieve this end. Under different sets of GTAW parameters (wire feed speed, current), both single and multiple pass overlays were produced. Characterization of all weldments was conducted using light optical microscopy, scanning electron microscopy, and electron probe microanalysis. Resultant deposits exhibited a wide range of aluminum contents (5--43 wt%). It was found that the GTAW overlays with aluminum contents above {approximately}10 wt% resulted in cracked coatings. Preliminary corrosion experiments of 5 to 10 wt% Al cast alloys in relatively simple H{sub 2}/H{sub 2}S gas mixtures exhibited corrosion rates lower than 304 stainless steel.

  3. Weld overlay cladding with iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The author has established a range of compositions for these alloys within which hot cracking resistance is very good, and within which cold cracking can be avoided in many instances by careful control of welding conditions, particularly preheat and postweld heat treatment. For example, crack-free butt welds have been produced for the first time in 12-mm thick wrought Fe{sub 3}Al plate. Cold cracking, however, still remains an issue in many cases. The author has developed a commercial source for composite weld filler metals spanning a wide range of achievable aluminum levels, and are pursuing the application of these filler metals in a variety of industrial environments. Welding techniques have been developed for both the gas tungsten arc and gas metal arc processes, and preliminary work has been done to utilize the wire arc process for coating of boiler tubes. Clad specimens have been prepared for environmental testing in-house, and a number of components have been modified and placed in service in operating kraft recovery boilers. In collaboration with a commercial producer of spiral weld overlay tubing, the author is attempting to utilize the new filler metals for this novel application.

  4. Investigation of Iron Aluminide Weld Overlays

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.B.; Levin, B.F.; Marder, A.R.

    1999-08-02

    Conventional fossil fired boilers have been retrofitted with low NO(sub)x burners in order for the power plants to comply with new clean air regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion typically has been enhanced resulting in premature tube failure. To protect the existing panels from accelerated attack, weld overlay coatings are typically being applied. By depositing an alloy that offers better corrosion resistance than the underlying tube material, the wastage rates can be reduced. While Ni-based and stainless steel compositions are presently providing protection, they are expensive and susceptible to failure via corrosion-fatigue due to microsegregation upon solidification. Another material system presently under consideration for use as a coating in the oxidation/sulfidation environments is iron-aluminum. These alloys are relatively inexpensive, exhibit little microsegregation, and show excellent corrosion resistance. However, their use is limited due to weldability issues and their lack of corrosion characterization in simulated low NO(sub)x gas compositions. Therefore a program was initiated in 1996 to evaluate the use of iron-aluminum weld overlay coatings for erosion/corrosion protection of boiler tubes in fossil fired boilers with low NO(sub)x burners. Investigated properties included weldability, corrosion behavior, erosion resistance, and erosion-corrosion performance.

  5. Welding and Joining of Titanium Aluminides

    Science.gov (United States)

    Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai

    2014-01-01

    Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials. PMID:28788113

  6. Welding and Joining of Titanium Aluminides

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-06-01

    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  7. Residual stress reduction in the penetration nozzle weld joint by overlay welding

    International Nuclear Information System (INIS)

    Jiang, Wenchun; Luo, Yun; Wang, B.Y.; Tu, S.T.; Gong, J.M.

    2014-01-01

    Highlights: • Residual stress reduction in penetration weld nozzle by overlay welding was studied. • The overlay weld can decrease the residual stress in the weld root. • Long overlay welding is proposed in the actual welding. • Overlay weld to decrease residual stress is more suitable for thin nozzle. - Abstract: Stress corrosion cracking (SCC) in the penetration nozzle weld joint endangers the structural reliability of pressure vessels in nuclear and chemical industries. How to decrease the residual stress is very critical to ensure the structure integrity. In this paper, a new method, which uses overlay welding on the inner surface of nozzle, is proposed to decrease the residual stresses in the penetration joint. Finite element simulation is used to study the change of weld residual stresses before and after overlay welding. It reveals that this method can mainly decrease the residual stress in the weld root. Before overlay welding, large tensile residual stresses are generated in the weld root. After overlay weld, the tensile hoop stress in weld root has been decreased about 45%, and the radial stress has been decreased to compressive stress, which is helpful to decrease the susceptibility to SCC. With the increase of overlay welding length, the residual stress in weld root has been greatly decreased, and thus the long overlay welding is proposed in the actual welding. It also finds that this method is more suitable for thin nozzle rather than thick nozzle

  8. Overlay welding of FeCrAl alloys

    OpenAIRE

    Rashid, Lezan

    2016-01-01

    In this master thesis different overlay welding methods suitable for boiler application has been investigated. The purpose of this project is to define advantages and disadvantages for each overlay welding methods and suggest some evaluation criteria on some commercial and experimental alloys aimed for overlay welding material. Many components in a boiler are made of low alloy steel and the atmosphere in the furnace region can be very complex; therefore many different types of corrosion can o...

  9. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G; Hulsizer, P [Welding Services Inc., Norcross, GA (United States); Brooks, R [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1999-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  10. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G.; Hulsizer, P. [Welding Services Inc., Norcross, GA (United States); Brooks, R. [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1998-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  11. Welding overlay analysis of dissimilar metal weld cracking of feedwater nozzle

    International Nuclear Information System (INIS)

    Tsai, Y.L.; Wang, Li. H.; Fan, T.W.; Ranganath, Sam; Wang, C.K.; Chou, C.P.

    2010-01-01

    Inspection of the weld between the feedwater nozzle and the safe end at one Taiwan BWR showed axial indications in the Alloy 182 weld. The indication was sufficiently deep that continued operation could not be justified considering the crack growth for one cycle. A weld overlay was decided to implement for restoring the structural margin. This study reviews the cracking cases of feedwater nozzle welds in other nuclear plants, and reports the lesson learned in the engineering project of this weld overlay repair. The overlay design, the FCG calculation and the stress analysis by FEM are presented to confirm that the Code Case structural margins are met. The evaluations of the effect of weld shrinkage on the attached feedwater piping are also included. A number of challenges encountered in the engineering and analysis period are proposed for future study.

  12. Robotic weld overlay coatings for erosion control

    Science.gov (United States)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  13. Plastic collapse moment for pipe repaired with weld overlay

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Shibuya, Akira; Deardorff, Arthur

    2009-01-01

    The Weld Overlay has been used in several countries as an effective method to repair the stress corrosion cracks in nuclear power plant piping. However, the method to evaluate the plastic collapse stress for the pipe repaired with Weld Overlay has not been proposed and the limit load criterion for single uniform material has been used to design its structure by now. In this paper, the equations to evaluate the plastic collapse moment for the pipe repaired with Weld Overlay have been derived considering two layer materials. Moreover, several numerical examples are given to show the validity of Weld Overlay. The equations given in this paper are simple to use like the limit load criterion showed in present standards such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI, and they can not only be used to evaluate the fracture of the pipe, but also be applied to design the weld structure. (author)

  14. Effect of constraint condition and internal medium on residual stress under overlay welding for dissimilar metal welding

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong; Kim, Jong Sung; Kim, Jin Weon

    2007-01-01

    In nuclear power plants, residual stress of dissimilar metal weld propagates cracks in the weld metal which is susceptible to stress corrosion cracking. Overlay welding is a process widely used to mitigate residual stress replacing inside tensile stress by compression stress. However, according to the result of this study the effect of overlay welding on residual stress depends on both internal medium and constraint condition. The purpose of this study is to maximize the positive effect of overlay welding by finite element analyses

  15. Modern methods of overlay welding for corrosion protection of power generating equipment

    International Nuclear Information System (INIS)

    Ershov, A.V.; Shul'man, I.E.; Potapov, N.N.

    1989-01-01

    Methods for overlay welding of inner surfaces of power equipment for corrosion protection are analysed. Various methods of electroslag overlay welding by a band electrode (overlay welding by two-electrode bands by a wide band with magnetic control, by an electrode band with high melting velocity) are marked to be the most perspective for cladding of NPP vessel equipment

  16. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  17. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment

  18. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment.

  19. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  20. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR

  1. Residual stress measurement in 304 stainless steel weld overlay pipes

    International Nuclear Information System (INIS)

    Yen, H.J.; Lin, M.C.C.; Chen, L.J.

    1996-01-01

    Welding overlay repair (WOR) is commonly employed to rebuild piping systems suffering from intergranular stress corrosion cracking (IGSCC). To understand the effects of this repair, it is necessary to investigate the distribution of residual stresses in the welding pipe. The overlay welding technique must induce compressive residual stress at the inner surface of the welded pipe to prevent IGSCC. To understand the bulk residual stress distribution, the stress profile as a function of location within wall is examined. In this study the full destructive residual stress measurement technique -- a cutting and sectioning method -- is used to determine the residual stress distribution. The sample is type 304 stainless steel weld overlay pipe with an outside diameter of 267 mm. A pipe segment is cut from the circular pipe; then a thin layer is removed axially from the inner to the outer surfaces until further sectioning is impractical. The total residual stress is calculated by adding the stress relieved by cutting the section away to the stress relieved by axially sectioning. The axial and hoop residual stresses are compressive at the inner surface of the weld overlay pipe. Compressive stress exists not only at the surface but is also distributed over most of the pipe's cross section. On the one hand, the maximum compressive hoop residual stress appears at the pipe's inner surface. The thermal-mechanical induced crack closure from significant compressive residual stress is discussed. This crack closure can thus prevent IGSCC very effectively

  2. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G.

    2017-01-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  3. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G., E-mail: wrcc@cdtn.br, E-mail: camilarezende.cr@gmail.com, E-mail: egr@cdtn.br, E-mail: vladimirsoler@hotmail.com, E-mail: ahfv02@outlook.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  4. Solidification paths in modified Inconel 625 weld overlay material

    DEFF Research Database (Denmark)

    Chandrasekaran, Karthik; Tiedje, Niels Skat; Hald, John

    2009-01-01

    Inconel 625 is commonly used for overlay welding to protect the base metal against high temperature corrosion. The efficiency of corrosion protection depends on effective mixing of the overlay weld with the base metal and the subsequent segregation of alloy elements during solidification....... Metallographic analysis of solidified samples of Inconel 625 with addition of selected elements is compared with thermodynamic modelling of segregation during solidification. The influence of changes in the melt chemistry on the formation of intermetallic phases during solidification is shown. In particular...

  5. Determination of welding parameters for execution of weld overlayer on PWR nuclear reactor nozzles

    International Nuclear Information System (INIS)

    Ribeiro, Gabriela M.; Lima, Luciana I.; Quinan, Marco A.; Schvartzman, Monica M.

    2009-01-01

    In the PWR reactors, nickel based dissimilar welds have been presented susceptibilities the stress corrosion (S C). For the mitigation the problem a deposition of weld layers on the external surface of the nozzle is an alternative, viewing to provoke the compression of the region subjected to S C. This paper presents a preliminary study on the determination of welding parameters to obtain these welding overlayers. Welding depositions were performed on a test piece welded with nickel 182 alloy, simulating the conditions of a nozzle used in a PWR nuclear power plant. The welding process was the GTAW (Gas Tungsten Arc Welding), and a nickel 52 alloy as addition material. The overlayers were performed on the base metals, carbon steel an stainless steel, changing the welding parameters and verifying the the time of each weld filet. After that, the samples were micro structurally characterized. The macro structures and the microstructures obtained through optical microscopy and Vickers microhardness are presented. The preliminary results make evident the good weld quality. However, a small weld parameters influence used in the base material microstructure (carbon steel and stainless steel). The obtained results in this study will be used as reference in the construction of a mock up which will simulate all the conditions of a pressurizer nozzle of PWR reactor

  6. Numerical evaluation of weld overlay applied to a pressurized water reactor nozzle mock-up

    Energy Technology Data Exchange (ETDEWEB)

    Rabello, Emerson G.; Silva, Luiz L.; Gomes, Paulo T.V., E-mail: egr@cdtn.b, E-mail: silvall@cdtn.b, E-mail: gomespt@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Integridade Estrutural

    2011-07-01

    The primary water stress corrosion cracking (PWSCC) is a major mechanism of failure in the primary circuit of PWR type nuclear power plants. The PWSCC is associated with the presence of corrosive environment, the susceptibility to corrosion cracking of the materials involved and the tensile stresses presence. Residual stresses generated during dissimilar materials welding can contribute to PWSCC. An alternative to the PWSCC mitigation is the application of external weld layers in the regions of greatest susceptibility to corrosion cracking. This process, called Weld Overlay (WOL), has been widely used in regions of dissimilar weld (low alloy steel and stainless steel with nickel alloy addition) of nozzles and pipes on the primary circuit in order to promote internal compressive stresses on the wall of these components. This paper presents the steps required to the numerical stress evaluation (by finite element method) during the dissimilar materials welding as well as application of Weld Overlay process in a nozzle mock-up. Thus, one can evaluate the effectiveness of the application of weld overlay process to internal compressive stress generation on the wall nozzle. (author)

  7. Numerical evaluation of weld overlay applied to a pressurized water reactor nozzle mock-up

    International Nuclear Information System (INIS)

    Rabello, Emerson G.; Silva, Luiz L.; Gomes, Paulo T.V.

    2011-01-01

    The primary water stress corrosion cracking (PWSCC) is a major mechanism of failure in the primary circuit of PWR type nuclear power plants. The PWSCC is associated with the presence of corrosive environment, the susceptibility to corrosion cracking of the materials involved and the tensile stresses presence. Residual stresses generated during dissimilar materials welding can contribute to PWSCC. An alternative to the PWSCC mitigation is the application of external weld layers in the regions of greatest susceptibility to corrosion cracking. This process, called Weld Overlay (WOL), has been widely used in regions of dissimilar weld (low alloy steel and stainless steel with nickel alloy addition) of nozzles and pipes on the primary circuit in order to promote internal compressive stresses on the wall of these components. This paper presents the steps required to the numerical stress evaluation (by finite element method) during the dissimilar materials welding as well as application of Weld Overlay process in a nozzle mock-up. Thus, one can evaluate the effectiveness of the application of weld overlay process to internal compressive stress generation on the wall nozzle. (author)

  8. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  9. Analysis of mechanical tensile properties of irradiated and annealed RPV weld overlay cladding

    Energy Technology Data Exchange (ETDEWEB)

    Novak, J [Czech Nuclear Society, Prague (Czech Republic)

    1994-12-31

    Mechanical tensile properties of irradiated and annealed outer layer of reactor pressure vessel weld overlay cladding, composed of Cr19Ni10Nb alloy, have been experimentally determined by conventional tensile testing and indentation testing. The constitutive properties of weld overlay cladding are then modelled with two homogenization models of the constitutive properties of elastic-plastic matrix-inclusion composites; numerical and experimental results are then compared. 10 refs., 4 figs., 4 tabs.

  10. Analysis of mechanical tensile properties of irradiated and annealed RPV weld overlay cladding

    International Nuclear Information System (INIS)

    Novak, J.

    1993-01-01

    Mechanical tensile properties of irradiated and annealed outer layer of reactor pressure vessel weld overlay cladding, composed of Cr19Ni10Nb alloy, have been experimentally determined by conventional tensile testing and indentation testing. The constitutive properties of weld overlay cladding are then modelled with two homogenization models of the constitutive properties of elastic-plastic matrix-inclusion composites; numerical and experimental results are then compared. 10 refs., 4 figs., 4 tabs

  11. FEM Analysis and Measurement of Residual Stress by Neutron Diffraction on the Dissimilar Overlay Weld Pipe

    International Nuclear Information System (INIS)

    Kim, Kang Soo; Lee, Ho Jin; Woo, Wan Chuck; Seong, Baek Seok; Byeon, Jin Gwi; Park, Kwang Soo; Jung, In Chul

    2010-01-01

    Much research has been done to estimate the residual stress on a dissimilar metal weld. There are many methods to estimate the weld residual stress and FEM (Finite Element Method) is generally used due to the advantage of the parametric study. And the X-ray method and a Hole Drilling technique for an experimental method are also usually used. The aim of this paper is to develop the appropriate FEM model to estimate the residual stresses of the dissimilar overlay weld pipe. For this, firstly, the specimen of the dissimilar overlay weld pipe was manufactured. The SA 508 Gr3 nozzle, the SA 182 safe end and SA376 pipe were welded by the Alloy 182. And the overlay weld by the Alloy 52M was performed. The residual stress of this specimen was measured by using the Neutron Diffraction device in the HANARO (High-flux Advanced Neutron Application ReactOr) research reactor, KAERI (Korea Atomic Energy Research Institute). Secondly, FEM Model on the dissimilar overlay weld pipe was made and analyzed by the ABAQUS Code (ABAQUS, 2004). Thermal analysis and stress analysis were performed, and the residual stress was calculated. Thirdly, the results of the FEM analysis were compared with those of the experimental methods

  12. Evaluation of the AISI 904L Alloy Weld Overlays Obtained by GMAW and Electro-Slag Welding Processes

    Science.gov (United States)

    Jorge, Jorge C. F.; Meira, O. G.; Madalena, F. C. A.; de Souza, L. F. G.; Araujo, L. S.; Mendes, M. C.

    2017-05-01

    The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural

  13. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    International Nuclear Information System (INIS)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun

    2016-01-01

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  14. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2016-08-15

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  15. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  16. Effects of titanium and zirconium on iron aluminide weldments

    Energy Technology Data Exchange (ETDEWEB)

    Burt, R.P.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    Iron aluminides form a coarse fusion zone microstructure when gas-tungsten arc welded. This microstructure is susceptible to hydrogen cracking when water vapor is present in the welding environment. Because fusion zone microstructural refinement can reduce the hydrogen cracking susceptibility, titanium was used to inoculate the weld pool in iron aluminide alloy FA-129. Although the fusion zone microstructure was significantly refined by this method, the fracture stress was found to decrease with titanium additions. This decrease is attributed to an increase in inclusions at the grain boundaries.

  17. Processing and structure of in situ Fe-Al alloys produced by gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-02-14

    Iron aluminide weld overlays are being investigated for corrosion and erosion protection of boiler tubes in low NOx burners. The primary objective of the research is to identify overlay compositions which can be deposited in a crack-free condition and provide corrosion protection in moderately reducing environments. In the current phase of work, Fe-Al alloy weld overlays were produced by depositing commercially pure aluminum wire on to low carbon steel substrates using Gas Tungsten Arc Welding. A systematic variation of the wire feed speed and current, two major factors affecting dilution, resulted in a variation in aluminum contents of the welds ranging from 3--42 wt% aluminum. The aluminum content was observed to increase with wire feed speed and a decrease in the current. The aluminum content was also found to affect the cracking susceptibility of the overlays. At 10wt% aluminum, few to no cracks were observed in the deposits. Above this value, cracking was prevalent throughout the weld. In addition, two types of microstructures were found correlating to different concentrations of aluminum. A homogeneous matrix with second phase particles consisting of coarse columnar grains was found for low aluminum concentrations. With higher aluminum contents, a two-phase constituent was observed to surround primary dendrites growing from the substrate. The transition of the microstructures occurred between 24 and 32 wt% Al.

  18. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    Science.gov (United States)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  19. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Mohammad J. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Ketabchi, Mostafa [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Mining and Metallurgical Engineering Dept.

    2016-02-01

    Nickel-based alloys are a crucial class of materials because of their excellent corrosion resistance. In the present study, single layer and two layers alloy 625 weld overlays were deposited by GTAW process on A516 grade 70 carbon steel. The dilution in terms of Fe, Ni, Mo and Nb content was calculated in 30 points of weld overlay. Microstructure observations showed that alloy 625 had austenitic structure with two types of Laves and NbC secondary phases. The uniform and pitting corrosion resistance of alloy 625 weld overlay as casted and as forged were evaluated in accordance with ASTM G48-2011 standard at different temperatures to determine the weight loss and critical pitting temperature. For achieving a better comparison, samples from alloy 625 as casted and as forged were tested under the same conditions. The results point out that single layer alloy 625 weld overlay is not suitable for chloride containing environments, two layers alloy 625 weld overlay and alloy 625 as casted have acceptable corrosion resistance and almost the same critical pitting temperature. Alloy 625 as forged has the best corrosion resistance and the highest critical pitting temperature among all test specimens. Also, the corrosion behavior was evaluated in accordance with ASTM G28 standard. The corrosion rate of single layer weld overlay was unacceptable. The average corrosion rate of two layers weld overlay and in casted condition were 35.82 and 33.01 mpy, respectively. [German] Nickellegierungen sind aufgrund ihres exzellenten Korrosionswiderstandes eine bedeutende Werkstoffklasse. In der diesem Beitrag zugrunde liegenden Studie wurden mittels WIG-Schweissens ein- und zweilagige Schweissplattierungen auf den Kohlenstoffstahl A516 (Grade 70) aufgebracht. Die Vermischung in Form des Fe-, Ni-, Mo- und Nb-Gehaltes wurde an 30 Punkten der Schweissplattierungen berechnet. Die mikrostrukturellen Untersuchungen ergaben, dass die Legierung 625 eine austenitische Struktur mit zwei Arten von

  20. Effect of Fe content on the friction and abrasion properties of copper base overlay on steel substrate by TIG welding

    Institute of Scientific and Technical Information of China (English)

    Lü Shixiong; Song Jianling; Liu Lei; Yang Shiqin

    2009-01-01

    Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the friction and abrasion properties of the overlay were measured. The results show that the Fe content increases in the overlay with increasing the welding current. And with the increase of Fe content in the overlay, the friction coefficient increases and the wear mechanism changes from oxidation wear to abrasive wear and plough wear, which is related to the size and quantity of Fe grains in the overlay. While with the increase of Fe content in the overlay, the protection of oxidation layer against the oxidation wear on the melted metal decreases.

  1. Analysis of weld solidification cracking in cast nickel aluminide alloys

    International Nuclear Information System (INIS)

    Santella, M.L.; Feng, Z.

    1995-01-01

    A study of the response of several nickel aluminide alloys to SigmaJig testing was done to examine their weld solidification cracking behavior and the effect of Zr concentration. The alloys were based on the Ni-8Al-7.7Cr-1.5Mo-0.003B wt% composition and contained Zr concentrations of 3, 4.5, and 6 wt%. Vacuum induction melted ingots with a diameter of 2.7 in and weight about 18 lb were made of each alloy, and were used to make 2 x 2 x 0.030 in specimens for the Sigmajig test. The gas tungsten arc welds were made at travel speeds of 10, 20, and 30 ipm with heat inputs of 2--2.5 kJ/in. When an arc was established before traveling onto the test specimen centerline cracking was always observed. This problem was overcome by initiating the arc directly on the specimens. Using this approach, the 3 wt% Zr alloy withstood an applied stress of 24 ksi without cracking at a welding speed of 10 ipm. This alloy cracked at 4 ksi applied at 20 ipm, and with no applied load at 30 ipm. Only limited testing was done on the remaining alloys, but the results indicate that resistance to solidification cracking increases with Zr concentration. Zirconium has limited solid solubility and segregates strongly to interdendritic regions during solidification where it forms a Ni solid solution-Ni 5 Zr eutectic. The volume fraction of the eutectic increases with Zr concentration. The solidification cracking behavior of these alloys is consistent with phenomenological theory, and is discussed in this context. The results from SigmaJig testing are analyzed using finite element modeling of the development of mechanical strains during solidification of welds. Experimental data from the test substantially agree with recent analysis results

  2. NDT with the structural weld overlay program. Recent field experience and lessons learned

    International Nuclear Information System (INIS)

    Rishel, R.; Lenz, H.; Turley, G.; Newton, B.

    2007-01-01

    Structural weld overlay (SWOL) has become a predominant mitigation technique within the Alloy 600 program. For the pressurizer nozzles, MRP-139 requires volumetric examination by year end 2007. Many nozzles are un-inspectable due to geometry and material limitations that preclude interrogation of the required examination volume. SWOL therefore is the mitigation technique which overcomes these limitations. SWOL of the pressurizer nozzles has been a challenge for all the vendors. Alloy 52 has proven to be difficult to weld under field conditions. The NDT technique chosen to demonstrate the integrity of the overlay needs to be adapted to the specific repair process and nozzle geometry. The purpose of this paper will be to present Westinghouse's integrated approach for SWOL with the focus on the NDT aspects. Topics will include main repair process steps, NDT qualification, recent field experience and lessons learned. (author)

  3. Corrosion performance of iron aluminides in fossil energy environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-12-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification and combustion is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S or SO{sub 2} and chlorine as HCl. This paper presents a comprehensive review of the current status of the corrosion performance of alumina scales that are thermally grown on Fe-base alloys, including iron aluminides, in multicomponent gas environments of typical coal-conversion systems. Mechanisms of scale development/breakdown, performance envelopes for long-term usage of these materials, approaches to modifying the surfaces of engineering alloys by cladding or coating them with intermetallics, and in-service experience with these materials are emphasized. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the electrospark deposition process or by weld overlay techniques.

  4. Field Investigation of Various Weld Overlays in a Waste Incineration Plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, O. H.

    2005-01-01

    A test waterwall was fabricated so that alternatives to alloy 625 could be exposed in the first pass of the waste incineration plant Haderslev. The difference between application method was also a parameter, such that manual welding, machine welding and arc spraycoating of alloy 625 were compared...... which was present in every test panel. It was observed that all the weld overlay test sections behaved similar to machined alloy 625 in that there was general corrosion and pitting corrosion. In addition, alloy 622 also exhibited preferential corrosion with respect to its dendrite structure........ In addition to the test waterwall exposure, the chemical environment from the waste incineration was also monitored by analyzing deposits and corrosion products from various locations in the boiler. These were analyzed with respect to morphology and composition using electron microscopy with EDS analysis...

  5. Automated ultrasonic testing of nuclear reactor welds and overlays in pre-service and in-service inspections

    International Nuclear Information System (INIS)

    Sladky, J.

    1988-01-01

    Since 1982, automatic pre-service and in-service checks are being made of welded joints and overlays on pressure vessels of WWER-440 nuclear reactors in Czechoslovakia. This is being done using the SKODA REACTORTEST TRC facility which is used for checking peripheral welded joints on the pressure vessel, neck joints, overlays in other selected areas of the cylindrical section of the pressure vessel, on radius transitions of the pressure vessel and of necks, and on the cylindrical part of necks, and also for checking the base material in selected parts of the pressure vessel and the base material of the neck extension piece. The tests are of two types, namely tests of peripheral welds and overlays of the cylindrical parts of the pressure vessel, and tests of the necks. Different ultrasonic probe holders are used for the tests, with totally different design. Ultrasonic probes which were initially used were of foreign make while at present, those of Czechoslovak make are used. For each pressure vessel a set of ultrasonic probes is used which should suffice for the life of the vessel. Experience gained so far is being used in work on the project of a new device for testing nuclear reactor presure vessels from the inside. (Z.M.)

  6. Effects of irradiation on the fracture properties of stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Corwin, W.R.; Nanstad, R.K.

    1989-01-01

    Stainless steel weld overlay cladding was fabricated using the submerged arc, single-wire, oscillating-electrode, and the three-wire, series-arc methods. Three layers of cladding were applied to a pressure vessel plate to provide adequate thickness for fabrication of test specimens, and irradiations were conducted at temperatures and to fluences relevant to power reactor operation. For the first single-wire method, the first layer was type 309, and the upper two layers were type 308 stainless steel. The type 309 was diluted considerably by excessive melting of the base plate. The three-wire method used various combinations of types 308, 309, and 304 stainless steel weld wires, and produced a highly controlled weld chemistry, microstructure, and fracture properties in all three layers of the weld. 14 refs., 15 figs., 4 tabs

  7. The effects of zirconium and carbon on the hot cracking resistance of iron aluminides. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, B.L.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States). Dept. of Metallurgical and Materials Engineering; David, S.A. [Oak Ridge National Lab., TN (United States)

    1998-02-01

    Iron aluminides have been of interest for about 60 years because of their good high temperature strengths (below 600{degrees}C) and excellent oxidation and sulfidation resistance, as well as their relatively low cost and conservation of strategic elements. These advantageous properties have driven the development of iron aluminides as potential structural materials. However, the industrial application of iron aluminides has been inhibited because of a sharp reduction in strength at temperatures higher than 600{degrees}C and low ductility at ambient temperatures due to hydrogen embrittlement. Oak Ridge National Laboratory has shown in recent years that room temperature properties of alloys containing 28% Al (all compositions are in atomic percent unless otherwise noted) can be improved through thermomechanical processing and alloying. Iron aluminides must have good weldability if they are to be used as structural materials. A coarse fusion zone microstructure is formed when iron aluminides are welded, increasing their susceptibility to cold cracking in water vapor. A recent study at Colorado School of Mines has shown that refining the fusion zone microstructure by weld pool oscillation effectively reduces cold cracking. Weld pool inoculation has been shown to refine fusion zone microstructures, but coarse carbide distribution caused this approach to reducing cold cracking to be ineffective.

  8. Microsegregation and Precipitates in Inconel 625 Arc Weld Overlay Coatings on Boiler Pipes / Mikrosegregacja I Wydzielenia W Powłokach Ze Stopu Inconel 625 Napawanych Łukowo Na Rury Kotłowe

    Directory of Open Access Journals (Sweden)

    Rozmus-Górnikowska M.

    2015-12-01

    Full Text Available The aim of this work was to investigate the microsegregation and precipitates formed due to segregation in Inconel 625 arc weld overlay coatings on boiler pipes. Examination of microsegregation and precipitates were carried out by means of a scanning electron microscope (SEM equipped with an EDS detector as well as a transmission electron microscope (TEM equipped with a HAADF (STEM and an EDS detectors. The presence of precipitations in the weld overlay was also confirmed with X-ray diffraction analysis (XRD of residue in the form of powder that remained after the electrolytic dissolution of weld overlay matrix.

  9. Development of weldable, corrosion-resistant iron-aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  10. Weld repair of helium degraded reactor vessel material

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.; Lohmeier, D.A.; Louthan, M.R. Jr.; Rankin, D.T.; Franco-Ferreira, E.A.; Bruck, G.J.; Madeyski, A.; Shogan, R.P.; Lessmann, G.G.

    1990-01-01

    Welding methods for modification or repair of irradiated nuclear reactor vessels are being evaluated at the Savannah River Site. A low-penetration weld overlay technique has been developed to minimize the adverse effects of irradiation induced helium on the weldability of metals and alloys. This technique was successfully applied to Type 304 stainless steel test plates that contained 3 to 220 appm helium from tritium decay. Conventional welding practices caused significant cracking and degradation in the test plates. Optical microscopy of weld surfaces and cross sections showed that large surface toe cracks formed around conventional welds in the test plates but did not form around overlay welds. Scattered incipient underbead cracks (grain boundary separations) were associated with both conventional and overlay test welds. Tensile and bend tests were used to assess the effect of base metal helium content on the mechanical integrity of the low-penetration overlay welds. The axis of tensile specimens was perpendicular to the weld-base metal interface. Tensile specimens were machined after studs were resistance welded to overlay surfaces

  11. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2011-08-15

    Highlights: > Microstructural changes in stainless steel electroslag weld-overlay cladding. > Thermal aging caused progress of spinodal decomposition and precipitation of G phases in the {delta}-ferrite phase. > The degree of the spinodal decomposition had a linear relationship to the hardness. - Abstract: The effect of thermal aging on microstructural changes was investigated in stainless steel weld-overlay cladding composed of 90% austenite and 10% {delta}-ferrite phases using atom probe tomography (APT). In as-received materials subjected to cooling process after post-welding heat treatments (PWHT), a slight fluctuation of the Cr concentration was already observed due to spinodal decomposition in the ferrite phase but not in the austenitic phase. Thermal aging at 400 deg. C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the ferrite phase. The chemical compositions of M{sub 23}C{sub 6} type carbides seemed to be formed at the austenite/ferrite interface were analyzed. The analyses of the magnitude of the spinodal decomposition and the hardness implied that the spinodal decomposition was the main cause of the hardening.

  12. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  13. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T.; Matsukawa, Y. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2012-06-15

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the {delta}-ferrite phase but not in the austenitic phase. Thermal aging at 400 Degree-Sign C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the {delta}-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the {gamma}-austenite and {delta}-ferrite interface. There were no Cr depleted zones around the carbide.

  14. Effects of titanium and zirconium on iron aluminide weldments

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, B.L.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States). Center for Welding, Joining, and Coatings Research; Burt, R.P. [Alumax Technical Center, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  15. Material development for waste to energy plants. Overlay welding and refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Hansson, A.

    2011-02-15

    Waste is an extremely corrosive fuel. In order to recover a higher percentage of the energy in waste, waste incineration plants have developed from purely heat producing units to heat and power producing units. The change in concept results in higher material temperatures and thereby faster material degradation. As a result material failures have been observed in many waste incineration plants. The purpose of this project was to develop materials with higher resistance to the corrosive elements, in order to reduce the cost of maintenance, increase the availability, and increase the efficiency. The focus is on overlay welding and refractory linings. Inconel 625, alloy 50, alloy 686, and Super 625 offer equivalent corrosion protection at panel walls. 100% overlay performs better than 50% overlay. The corrosion morphology changes with increasing temperature from pitting and general corrosion to pitting and selective corrosion (dendritic core or grain boundaries). The previously observed detrimental effect of Fe on the corrosion resistance was not confirmed. It probably depends on factors such as microstructure of the alloy and local metal temperature. Ni-overlay also reduces the corrosion rates on superheater tubes. However, the superheater environment is less aggressive than the water wall environment. Failure of refractory linings is linked to excess porosity, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, and thermal stress induced crack formation. Free water and not decomposition of hydrates causes spalling and cracking during the initial heating of refractory linings. Finite Element analysis confirms the stress levels between steel and refractory with the higher stress level at the top of the panel wall tube. A number of LCC mixes were formulated, adjusted and tested. Mixes with low open porosities ({approx} 10%) and state of the art resistance to KCl were achieved. (LN)

  16. Precipitation-strengthening effects in iron-aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; McKamey, C.G.; Goodwin, G.M. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this work is to produce precipitation to improve both high-temperature strength and room-temperature ductibility in FeAl-type(B2 phase) iron-aluminides. Previous work has focused on primarily wrought products, but stable precipitates can also refine the grain size and affect the properties of as-cast and/or welded material as well. New work began in FY 1994 on the properties of these weldable, strong FeAl alloys in the as-cast condition. Because the end product of this project is components for industry testing, simpler and better (cheaper, near-net-shape) processing methods must be developed for industrial applications of FeAl alloys.

  17. TEM Microstructure and Chemical Composition of Transition Zone Between Steel Tube and An Inconel 625 Weld Overlay Coating Produced by CMT Method

    Directory of Open Access Journals (Sweden)

    Rozmus-Górnikowska M.

    2017-06-01

    Full Text Available The aim of this work was to investigate the microstructure and chemical composition of the transition zone between 16Mo3 steel and Inconel 625 weld overlay coating produced by the Cold Metal Transfer (CMT method. Investigations were primarily carried out through transmission electron microscopy (TEM on thin foils prepared by FIB (Focus Ion Beam.

  18. Residual Stress Evaluation of Weld Inlay Process on Reactor Vessel Nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kihyun; Cho, Hong Seok [KEPCO KPS, Naju (Korea, Republic of)

    2015-10-15

    Weld overlay, weld inlay and stress improvement are mitigation technologies for butt joints. Weld overlay is done on pressurizer nozzles which are the highest potential locations occurring PWSCC due to high temperature in Korea. Reactor vessel nozzles are other big safety concerns for butt joints. Weld overlay and stress improvement should be so difficult to apply to those locations because space is too limited. Weld inlay should be one of the solutions. KEPCO KPS has developed laser welding system and process for reactor nozzles. Welding residual stress analysis is necessary for flaw evaluation. United States nuclear regulatory commission has calculated GTAW(Gas Tungsten Arc Welding) residual stress using ABAQUS. To confirm effectiveness of weld inlay process, welding residual stress analysis was performed. and difference between GTAW and LASER welding process was compared. Evaluation of weld inlay process using ANSYS and ABAQUS is performed. All of the both results are similar. The residual stress generated after weld inlay was on range of 450-500 MPa. Welding residual stresses are differently generated by GTAW and LASER welding. But regardless of welding process type, residual tensile stress is generated on inside surface.

  19. The improvement of ultrasonic characteristics in weld metal of austenitic stainless steel using magnetic stirring method

    International Nuclear Information System (INIS)

    Arakawa, T.; Tomisawa, Y.

    1988-01-01

    The magnetic stirring welding process was tested to save the difficulty of ultrasonic testing of austenitic stainless steel overlayed welds, due to grain refinement of weld solidification structure. The testing involved stirring the molten pool with Lorenz force induced by the interaction of welding current and alternative magnetic field applied from the outside magnetic coil. This report summarizes improvement of ultrasonic characteristic in austenitic stainless steel overlayed welds caused by magnetic stirring welding process

  20. Iron aluminide composites

    International Nuclear Information System (INIS)

    Schneibel, J.H.

    1999-01-01

    Iron aluminides with the B2 structure are highly oxidation and corrosion resistant. They are thermodynamically compatible with a wide range of ceramics such as TiC, WC, TiB 2 , and ZrB 2 . In addition, liquid iron aluminides wet these ceramics very well. Therefore, FeAl/ceramic composites may be produced by techniques such as liquid phase sintering of powder mixtures, or pressureless melt infiltration of ceramic powders with liquid FeAl. These techniques, the resulting microstructures, and their advantages as well as limitations are described. Iron aluminide composites can be very strong. Room temperature flexure strengths as high as 1.8 GPa have been observed for FeAl/WC. Substantial gains in strength of elevated temperatures (1,073 K) have also been demonstrated. Above 40 vol.% WC the room temperature flexure strength becomes flaw-limited. This is thought to be due to processing flaws and limited interfacial strength. The fracture toughness of FeAl/WC is unexpectedly high and follows a rule of mixtures. Interestingly, sufficiently thin (<1 microm) FeAl ligaments between adjacent WC particles fracture not by cleavage, but in a ductile manner. For these thin ligaments the dislocation pile-ups formed during deformation are not long enough to nucleate cleavage fracture, and their fracture mode is therefore ductile. For several reasons, this brittle-to-ductile size transition does not improve the fracture toughness of the composites significantly. However, since no cleavage cracks are nucleated in sufficiently thin FeAl ligaments, slow crack growth due to ambient water vapor does not occur. Therefore, as compared to monolithic iron aluminides, environmental embrittlement is dramatically reduced in iron aluminide composites

  1. Examination of overlay pipe weldments removed from the Hatch-2 reactor

    International Nuclear Information System (INIS)

    Park, J.Y.; Kupperman, D.S.; Shack, W.J.

    1985-02-01

    Laboratory ultrasonic examination (UT), dye penetrant examination (PT), metallography, and sensitization measurements were performed on Type 304 stainless steel overlay pipe weldments from the Hatch-2 BWR to determine the effectiveness of UT through overlays and the effects of the overlays on crack propagation in the weldments. Little correlation was observed between the results of earlier in-service ultrasonic inspection and the results of PT and destructive examination. Considerable difficulty was encountered in correctly detecting the presence of cracks by UT in the laboratory. Blunting of the crack tip by the weld overlay was observed, but there was no evidence of tearing or throughwall extension of the crack beyond the blunted region

  2. Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings

    International Nuclear Information System (INIS)

    Li, Y.; Soboyejo, W.; Rapp, R.A.

    1999-01-01

    The isothermal and cyclic oxidation behavior of a new class of damage-tolerant niobium aluminide (Nb 3 Al-xTi-yCr) intermetallics is studied between 650 C and 850 C. Protective diffusion coatings were deposited by pack cementation to achieve the siliciding or aluminizing of substrates with or without intervening Mo or Ni layers, respectively. The compositions and microstructures of the resulting coatings and oxidized surfaces were characterized. The isothermal and cyclic oxidation kinetics indicate that uncoated Nb-40Ti-15Al-based intermetallics may be used up to ∼750 C. Alloying with Cr improves the isothermal oxidation resistance between 650 C and 850 C. The most significant improvement in oxidation resistance is achieved by the aluminization of electroplated Ni interlayers. The results suggest that the high-temperature limit of niobium aluminide-based alloys may be increased to 800 C to 850 C by aluminide-based diffusion coatings on ductile Ni interlayers. Indentation fracture experiments also indicate that the ductile nickel interlayers are resistant to crack propagation in multilayered aluminide-based coatings

  3. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Nishiyama, Y.; Onizawa, K.

    2011-08-01

    The effect of thermal aging on microstructural changes was investigated in stainless steel weld-overlay cladding composed of 90% austenite and 10% δ-ferrite phases using atom probe tomography (APT). In as-received materials subjected to cooling process after post-welding heat treatments (PWHT), a slight fluctuation of the Cr concentration was already observed due to spinodal decomposition in the ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the ferrite phase. The chemical compositions of M 23C 6 type carbides seemed to be formed at the austenite/ferrite interface were analyzed. The analyses of the magnitude of the spinodal decomposition and the hardness implied that the spinodal decomposition was the main cause of the hardening.

  4. Isothermal deformation of gamma titanium aluminide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-01-01

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material

  5. Effects of heat input on the pitting resistance of Inconel 625 welds by overlay welding

    Science.gov (United States)

    Kim, Jun Seok; Park, Young IL; Lee, Hae Woo

    2015-03-01

    The objective of this study was to establish the relationship between the dilution ratio of the weld zone and pitting resistance depending on the heat input to welding of the Inconel alloy. Each specimen was produced by electroslag welding using Inconel 625 as the filler metal. In the weld zone of each specimen, dendrite grains were observed near the fusion line and equiaxed grains were observed on the surface. It was also observed that a melted zone with a high Fe content was formed around the fusion line, which became wider as the welding heat input increased. In order to evaluate the pitting resistance, potentiodynamic polarization tests and CPT tests were conducted. The results of these tests confirmed that there is no difference between the pitting resistances of each specimen, as the structures of the surfaces were identical despite the effect of the differences in the welding heat input for each specimen and the minor dilution effect on the surface.

  6. Microstructure evolution of electron beam welded Ti3Al-Nb joint

    International Nuclear Information System (INIS)

    Feng Jicai; Wu Huiqiang; He Jingshan; Zhang Bingang

    2005-01-01

    The microstructure evolution characterization in high containing Nb, low Al titanium aluminide alloy of electron beam welded joints was investigated by means of OM, SEM, XRD, TEM and microhardness analysis. The results indicated that the microstructure of the weld metal made with electron beam under the welding conditions employed in this work was predominantly metastable, retaining ordered β phase (namely B2 phase), and was independent of the welding parameters but independent of the size and the orientation of the weld solidification structures. As the heat input is decreased, the cellular structure zone is significantly reduced, and then the crystallizing morphology of fusion zone presented dendritically columnar structure. There existed grain growth coarsening in heat affected zone (HAZ) for insufficient polygonization. Both fusion zone (FZ) and the HAZ had higher microhardness than the base metal

  7. Development of iron aluminides

    International Nuclear Information System (INIS)

    McKamey, C.G.; Viswanathan, S.; Goodwin, G.M.; Sikka, V.K.

    1994-01-01

    Recent studies demonstrating that improved engineering ductility (to 10-15% in Fe 3 Al) can be achieved in wrought Fe 3 Al-based iron aluminide alloys through control of composition and microstructure are discussed. Accompanying this improvement has been an increased understanding of the causes for ambient temperature embrittlement in this system. Because of these advances, iron aluminide alloys are being considered for many structural uses, especially for applications where their excellent corrosion resistance is needed. The understanding and control of cast structures are important steps in making iron-aluminide alloys viable engineering materials. This includes understanding the various components of cast structure, their evolution, their properties, their behavior during further processing, and, finally, their effect on mechanical properties. The first phase of the study of cast Fe 3 Al-based alloys characterized the various components of the cast structure in the FA-129 alloy, while the current phase of the research involves characterizing the as-cast mechanical properties of Fe 3 Al-based alloys. The investigation of the room temperature mechanical properties of as-cast Fe 3 Al, including tensile tests in air, oxygen, and water vapor environments is described. Studies have begun to refine the grain size of the cast structure. An investigation of the effect of environmental hydrogen embrittlement on the weldability of wrought alloys was also initiated during this period with the aim of understanding the role of environment in the cold-cracking of iron aluminides

  8. Axial compression behavior of concrete masonry wallettes strengthened with cement mortar overlays

    Directory of Open Access Journals (Sweden)

    F. L. De Oliveira

    Full Text Available This paper presents the results of a series of axial compression tests on concrete block wallettes coated with cement mortar overlays. Different types of mortars and combinations with steel welded meshes and fibers were tested. The experimental results were discussed based on different theoretical approaches: analytical and Finite Element Method models. The main conclusions are: a the application of mortar overlays increases the wall strength, but not in a uniform manner; b the strengthening efficiency of wallettes loaded in axial compression is not proportional to the overlay mortar strength because it can be affected by the failure mechanisms of the wall; c steel mesh reinforced overlays in combination with high strength mortar show better efficiency, because the steel mesh mitigates the damage effects in the block wall and in the overlays themselves; d simplified theoretical methods of analysis as described in this paper can give satisfactory predictions of masonry wall behavior up to a certain level.

  9. Measured residual stresses in overlay pipe weldments removed from service

    International Nuclear Information System (INIS)

    Shack, W.J.

    1985-02-01

    Surface and throughwall residual stresses were measured on an elbow-to-pipe weldment that had been removed from the Hatch-2 reactor about a year after the application of a weld overlay. The results were compared with experimental measurements on three mock-up weldments and with finite-element calculations. The comparison shows that there are significant differences in the form and magnitude of the residual stress distributions. However, even after more than a year of service, the residual stresses over most of the inner surface of the actual plant weldment with an overlay were strongly compressive. 3 refs., 7 figs

  10. Improved Materials for Use as Components in Kraft Black Liquor Recovery Boilers; TOPICAL

    International Nuclear Information System (INIS)

    Keiser, J.R.

    2001-01-01

    This Cooperative Research and Development Agreement (CRADA) was undertaken to evaluate current and improved materials and materials processing conditions for use as components in kraft black liquor recovery boilers and other unit processes. The main areas addressed were: (1) Improved Black Liquor Nozzles, (2) Weld Overlay of Composite Floor Tubes, and (3) Materials for Lime Kilns. Iron aluminide was evaluated as an alternate material for the nozzles used to inject an aqueous solution known as black liquor into recovery boilers as well for the uncooled lining in the ports used for the nozzles. Although iron aluminide is known to have much better sulfidation resistance in gases than low alloy and stainless steels, it did not perform adequately in the environment where it came into contact with molten carbonate, sulfide and sulfate salts. Weld overlaying carbon steel tubes with a layer of stainless weld metal was a proposed method of extending the life of recovery boiler floor tubes that have experienced considerable fireside corrosion. After exposure under service conditions, sections of weld overlaid floor tubes were removed from a boiler floor and examined metallographically. Examination results indicated satisfactory performance of the tubes. Refractory-lined lime kilns are a critical component of the recovery process in kraft pulp mills, and the integrity of the lining is essential to the successful operation of the kiln. A modeling study was performed to determine the cause of, and possible solutions for, the repeated loss of the refractory lining from the cooled end of a particular kiln. The evaluation showed that the temperature, the brick shape and the coefficient of friction between the bricks were the most important parameters influencing the behavior of the refractory lining

  11. Further contribution to the study of buffer layer on austenitic stainless stell overlays obtained by means of automatic submerged arc welding with electrode-wire

    International Nuclear Information System (INIS)

    Colla, G.

    1988-01-01

    The influence of several buffer layer types on a 308 type austenitic stainless steel surface overlay having a 19-21% chromium and 10-12% nikel content have been analysed. Cladding passes have been deposited on carbon steel test samples by using automatic submerged arc welding process with electrode-wire. The experimental tests have involved buffer layers having seven different chemical compositions and the obtained results are reported and discussed in the paper. The achieved experimetal results allow selecting the most suitable buffer layer to be deposited in order to reach the required cladding performance in service

  12. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    Science.gov (United States)

    Kothari, Kunal B.

    Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron

  13. Environmental effects in titanium aluminide alloys

    International Nuclear Information System (INIS)

    Thompson, A.W.

    1991-01-01

    Environmental effects on titanium aluminide alloys are potentially of great importance for engineering applications of these materials, although little has been published to date on such effects. The primary emphasis in this paper is on hydrogen effects, with a brief reference to oxygen effects. Hydrogen is readily absorbed at elevated temperature into all the titanium aluminide compositions studied to date, in amounts as large as 10 at.%, and on cooling virtually all this hydrogen is precipitated as a hydride phase or phases. The presence of these precipitated hydride plates affects mechanical properties in ways similar to what is observed in other hydride forming materials, although effects per unit volume of hydride are not particularly severe in the titanium aluminides. Microstructure, and thus thermal and mechanical history, plays a major role in controlling the severity of hydrogen effects

  14. Effect of welding process on microstructure, microhardness and composition chemistry of stainless steel coatings applied by welding; Efeito do processo de soldagem na microestrutura, microdureza e composicao quimica de revestimentos de aco inoxidavel aplicados por soldagem

    Energy Technology Data Exchange (ETDEWEB)

    Melo, R.H.F. de; Maciel, T.M., E-mail: raphael.engmec@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Mecanica; Costa, J.; Santa, R.A.C. [Universidade Federal de Campina Grande (UFCG), Cuite, PB (Brazil). Unidade Academica de Quimica

    2012-07-01

    This study evaluates the influence of welding parameters on the chemical composition of weld overlays of the AWS E 308-L T1 applied by the FCAW and SAW process, as well as their influence on the microstructure and microhardness of the weld overlays. The characterization of chemical composition was performed by EDX (Energy Dispersive X-ray Analysis), the microstructure was investigated by optical microscopy and Vickers microhardness. The contents of Cr, Ni, Mn, Mo, Nb and Si varied as a function of welding parameters, the microstructure and microhardness varied as a function of heat input and chemical composition. The resulting microstructure showed an austenitic matrix with lacy ferrite and ferrite FA, with an average hardness of 191.6 HV for the FCAW process and 210 HV for the SAW process. (author)

  15. Compatibility of aluminide-coated Hastelloy x and Inconel 617 in a simulated gas-cooled reactor environment

    International Nuclear Information System (INIS)

    Chin, J.; Johnson, W.R.; Chen, K.

    1982-03-01

    Commercially prepared aluminide coatings on Hastelloy X and Inconel 617 substrates were exposed to controlled-impurity helium at 850 0 and 950 0 C for 3000 h. Optical and scanning electron (SEM) microscopy, electron microprobe profiles, and SEM X-ray mapping were used to evaluate and compare exposed and unexposed control samples. Four coatings were evaluated: aluminide, aluminide with platinum, aluminide with chromium, and aluminide with rhodium. With extended time at elevated temperature, nickel diffused into the aluminide coatings to form epsilon-phase (Ni 3 Al). This diffusion was the primary cause of porosity formation at the aluminide/alloy interface

  16. Universal gas metal arc welding - a cost-effective and low dilution surfacing process

    International Nuclear Information System (INIS)

    Shahi, AS.; Pandey, Sunil

    2006-01-01

    This paper describes the use of a new variant of the gas metal arc welding (GMAW) process, termed u niversal gas metal arc welding (UGMAW), for the weld cladding of low carbon steels with stainless steel. The experimental work included single layer cladding of 12 mm thick low carbon steel with austenitic stainless steel 316L solid filler wire of 1.14 mm diameter. Low dilution conditions were employed using both mechanised GMAW and UGMAW processes. Metallurgical aspects of the as welded overlays were studied to evaluate the suitability of these processes for service conditions. It was found that UGMAW claddings contained higher ferrite content; higher concentrations of chromium, nickel and molybdenum; and lower carbon content compared to GMAW claddings. As a result, the UGMAW overlays exhibited superior mechanical and corrosion resistance properties. The findings of this study establish that the new process is technically superior and results in higher productivity, justifying its use for low cost surfacing applications

  17. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Cuiuri, Dominic; Hoye, Nicholas; Li, Huijun; Pan, Zengxi, E-mail: zengxi@uow.edu.au

    2015-04-17

    An innovative and low cost additive layer manufacturing (ALM) process is used to produce γ-TiAl based alloy wall components. Gas tungsten arc welding (GTAW) provides the heat source for this new approach, combined with in-situ alloying through separate feeding of commercially pure Ti and Al wires into the weld pool. This paper investigates the morphology, microstructure and mechanical properties of the additively manufactured TiAl material, and how these are affected by the location within the manufactured component. The typical additively layer manufactured morphology exhibits epitaxial growth of columnar grains and several layer bands. The fabricated γ-TiAl based alloy consists of comparatively large α{sub 2} grains in the near-substrate region, fully lamellar colonies with various sizes and interdendritic γ structure in the intermediate layer bands, followed by fine dendrites and interdendritic γ phases in the top region. Microhardness measurements and tensile testing results indicated relatively homogeneous mechanical characteristics throughout the deposited material. The exception to this homogeneity occurs in the near-substrate region immediately adjacent to the pure Ti substrate used in these experiments, where the alloying process is not as well controlled as in the higher regions. The tensile properties are also different for the vertical (build) direction and horizontal (travel) direction because of the differing microstructure in each direction. The microstructure variation and strengthening mechanisms resulting from the new manufacturing approach are analysed in detail. The results demonstrate the potential to produce full density titanium aluminide components directly using the new additive layer manufacturing method.

  18. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding

    International Nuclear Information System (INIS)

    Ma, Yan; Cuiuri, Dominic; Hoye, Nicholas; Li, Huijun; Pan, Zengxi

    2015-01-01

    An innovative and low cost additive layer manufacturing (ALM) process is used to produce γ-TiAl based alloy wall components. Gas tungsten arc welding (GTAW) provides the heat source for this new approach, combined with in-situ alloying through separate feeding of commercially pure Ti and Al wires into the weld pool. This paper investigates the morphology, microstructure and mechanical properties of the additively manufactured TiAl material, and how these are affected by the location within the manufactured component. The typical additively layer manufactured morphology exhibits epitaxial growth of columnar grains and several layer bands. The fabricated γ-TiAl based alloy consists of comparatively large α 2 grains in the near-substrate region, fully lamellar colonies with various sizes and interdendritic γ structure in the intermediate layer bands, followed by fine dendrites and interdendritic γ phases in the top region. Microhardness measurements and tensile testing results indicated relatively homogeneous mechanical characteristics throughout the deposited material. The exception to this homogeneity occurs in the near-substrate region immediately adjacent to the pure Ti substrate used in these experiments, where the alloying process is not as well controlled as in the higher regions. The tensile properties are also different for the vertical (build) direction and horizontal (travel) direction because of the differing microstructure in each direction. The microstructure variation and strengthening mechanisms resulting from the new manufacturing approach are analysed in detail. The results demonstrate the potential to produce full density titanium aluminide components directly using the new additive layer manufacturing method

  19. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  20. In-depth study of the mechanical properties for Fe_3Al based iron aluminide fabricated using the wire-arc additive manufacturing process

    International Nuclear Information System (INIS)

    Shen, Chen; Pan, Zengxi; Cuiuri, Dominic; Dong, Bosheng; Li, Huijun

    2016-01-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate iron aluminide alloy in-situ, through separate feeding of pure Fe and Al wires into a molten pool that is generated by the gas tungsten arc welding (GTAW) process. This paper investigates the morphologies, chemical compositions and mechanical properties of the as-fabricated 30 at% Al iron aluminide wall components, and how these properties vary at different locations within the buildup wall. The tensile properties are also measured in different loading orientations; as epitaxial growth of large columnar grains is observed in the microstructures. Fe_3Al is the only phase detected in the middle buildup section of the wall structure, which constitutes the majority of the deposited material. The bottom section of the structure contains a dilution affected region where some acicular Fe_3AlC_0_._5 precipitates can be observed, induced by carbon from the steel substrate that was used for fabrication. The microhardness and chemical composition indicate relatively homogeneous material properties throughout the buildup wall. However, the tensile properties are very different in the longitudinal direction and normal directions, due to epitaxial growth of large columnar grains. In general, the results have demonstrated that the WAAM process is capable of producing full density in-situ-alloyed iron aluminide components with tensile properties that are comparable to powder metallurgy methods.

  1. Shock response of a gamma titanium aluminide

    International Nuclear Information System (INIS)

    Shazly, Mostafa; Prakash, Vikas

    2008-01-01

    Potential use of γ-TiAl alloys in aerospace and other structural applications require knowledge of their impact behavior for better evaluation and modeling. In the present study plate impact experiments are conducted using a single-stage gas gun to better understand the shock behavior of the recently developed class of gamma titanium aluminide alloys--the Gamma-Met PX. The Gamma-Met PX showed superior shock properties when compared to the conventional titanium aluminide alloys. The spall strength of Gamma-Met PX is 1.8±0.09 GPa, which is four to six times higher than those reported for other gamma titanium aluminide alloys. Moreover, it has a Hugoniot elastic limit of 1.88 GPa at a target thickness of 3.86 mm, which drops to 1.15 GPa at target thickness of 15.8 mm. The decay in the elastic precursor is continuous without showing an asymptote to a constant level within the range of target thicknesses studied

  2. Peculiarities of formation of zirconium aluminides in hydride cycle mode

    International Nuclear Information System (INIS)

    Muradyan, G.N.

    2016-01-01

    The zirconium aluminides are promising structural materials in aerospace, mechanical engineering, chemical industry, etc. They are promising for manufacturing of heat-resistant wires, that will improve the reliability and efficiency of electrical networks. In the present work, the results of study of zirconium aluminides formation in the Hydride Cycle (HC) mode, developed in the Laboratory of high-temperature synthesis of the Institute of Chemical Physics of NAS RA, are described. The formation of zirconium aluminides in HC proceeded according to the reaction xZrH_2+(1-x)Al → alloy Zr_xAl(1-x)+H_2↑. The samples were certified using: chemical analysis to determine the content of hydrogen (pyrolysis method); differential thermal analysis (DTA, derivatograph Q-1500, T_heating = 1000°C, rate 20°C/min); X-ray analysis (XRD, diffractometer DRON-0.5). The influences of the ratio of powders ZrH_2/Al in the reaction mixture, compacting pressure, temperature and heating velocity on the characteristics of the synthesized aluminides were determined. In HC, the solid solutions of Al in Zr, single phase ZrAl_2 and ZrAl_3 aluminides and Zr_3AlH_4.49 hydride were synthesized. Formation of aluminides in HC mode took place by the solid-phase mechanism, without melting of aluminum. During processing, the heating of the initial charge up to 540°C resulted in the decomposition of zirconium hydride (ZrH_2) to HCC ZrH_1.5, that interacted with aluminum at 630°C forming FCC alumohydride of zirconium. Further increase of the temperature up to 800°C led to complete decomposition of the formed alumohydride of zirconium. The final formation of the zirconium aluminide occurred at 1000-1100°C in the end of HC process. Conclusion: in the synthesis of zirconium aluminides, the HC mode has several significant advantages over the conventional modes: lower operating temperatures (1000°C instead of 1800°C); shorter duration (1.5-2 hours instead of tens of hours); the availability of

  3. Overlay accuracy fundamentals

    Science.gov (United States)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  4. In-depth study of the mechanical properties for Fe{sub 3}Al based iron aluminide fabricated using the wire-arc additive manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Pan, Zengxi, E-mail: zengxi@uow.edu.au; Cuiuri, Dominic; Dong, Bosheng; Li, Huijun

    2016-07-04

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate iron aluminide alloy in-situ, through separate feeding of pure Fe and Al wires into a molten pool that is generated by the gas tungsten arc welding (GTAW) process. This paper investigates the morphologies, chemical compositions and mechanical properties of the as-fabricated 30 at% Al iron aluminide wall components, and how these properties vary at different locations within the buildup wall. The tensile properties are also measured in different loading orientations; as epitaxial growth of large columnar grains is observed in the microstructures. Fe{sub 3}Al is the only phase detected in the middle buildup section of the wall structure, which constitutes the majority of the deposited material. The bottom section of the structure contains a dilution affected region where some acicular Fe{sub 3}AlC{sub 0.5} precipitates can be observed, induced by carbon from the steel substrate that was used for fabrication. The microhardness and chemical composition indicate relatively homogeneous material properties throughout the buildup wall. However, the tensile properties are very different in the longitudinal direction and normal directions, due to epitaxial growth of large columnar grains. In general, the results have demonstrated that the WAAM process is capable of producing full density in-situ-alloyed iron aluminide components with tensile properties that are comparable to powder metallurgy methods.

  5. Aspectos metalúrgicos de revestimentos dissimilares com a superliga à base de níquel inconel 625 Metallurgical aspects of dissimilar weld overlays of inconel 625 nickel based superalloys

    Directory of Open Access Journals (Sweden)

    Cleiton Carvalho Silva

    2012-09-01

    Full Text Available Prolongar a vida útil e aumentar a confiabilidade de equipamentos e tubulações de plantas de produção e processamento de petróleo é uma busca constante no setor de petróleo e gás. Tais aspectos dependem essencialmente do uso de ligas resistentes à corrosão. Neste contexto, a soldagem de revestimento com superligas à base de níquel tem sido uma alternativa interessante, pois confere aos equipamentos uma alta resistência à corrosão com um custo inferior, se comparado à fabricação de componentes ou tubulações maciças com superligas. Assim, o objetivo do presente trabalho foi investigar o comportamento metalúrgico de revestimento de superliga à base de níquel do tipo Inconel 625 depositados pelo processo TIG com alimentação de arame frio. As soldagens foram realizadas em uma bancada robotizada, empregando uma fonte eletrônica de soldagem com sistema de aquisição de dados para o monitoramento dos sinais de corrente e tensão. A caracterização microestrutural foi realizada através das técnicas de microscopia eletrônica de varredura (MEV e transmissão (MET, espectroscopia de energia dispersiva de raios-X (EDS. Os resultados mostraram que a microestrutura do metal de solda foi constituída por uma matriz γ com fases secundárias ricas em Nb. Foi encontrada a formação de precipitados complexos de carbonetos/nitretos de Ti e Nb.To extend the life and reliability of pipes and equipment in oil & gas production and processing settings is a continuous demand. These aspects are essentially dependent on corrosion resistant alloys used. In this context, the weld overlay with Ni-based superalloys is a great interesting alternative, since improve the corrosion resistance without increase the cost of manufacture when compared to massive equipment. Thus, the objective of this study was to evaluate the metallurgical aspects of Inconel 625 weld overlays deposited by GTAW cold wire feed process. The welds were performed using a

  6. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.B. [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Yu, C.; Shiue, R.K. [Department of Materials Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsay, L.W., E-mail: b0186@mail.ntou.edu.tw [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-10-15

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  7. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    International Nuclear Information System (INIS)

    Cai, J.B.; Yu, C.; Shiue, R.K.; Tsay, L.W.

    2015-01-01

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  8. Structure and Properties of the Aluminide Coatings on the Inconel 625 Superalloy

    Science.gov (United States)

    Adamiak, Stanisław; Bochnowski, Wojciech; Dziedzic, Andrzej; Filip, Ryszard; Szeregij, Eugeniusz

    2016-01-01

    The research samples used in this study were based on the Inconel 625 alloy; the examined samples were coated with aluminide films deposited in a low-activity chemical vapor deposition (CVD) process. The samples' microstructure was investigated with optical and electron microscopy and energy dispersive X-ray spectroscopy analysis. Hardness measurements were performed using Vickers and Berkovich test methods. The adhesion of the aluminide coating was determined by fractography. It was shown that the fracture mechanism was different for the respective zones of the aluminide coating and the substrate material. The outer zone of the aluminide coating is characterized by an intercrystalline fracture, with a small contribution of transcrystalline fracture within individual grains (large crystallites in the bottom of the zone, composed of smaller crystallites, also show an intercrystalline fracture). The substrate material exhibited a ductile intercrystalline fracture. Based on this investigation, an increase of the microhardness of the material occurring at loads below 0.2 N was observed. When determining microhardness of aluminide coating it is necessary to take into account the optimal choice of the indentation tip.

  9. Seleção de parâmetros através do método Taguchi para soldagem de revestimento com ligas de níquel pelo processo MIG/MAG Using the Taguchi method to select welding parameters for weld overlay with nickel alloy through the GMAW process

    Directory of Open Access Journals (Sweden)

    Antonio Rodolfo Paulino Pessoa

    2010-12-01

    Full Text Available Neste trabalho utilizou-se o método Taguchi (planejamento Robusto de experimentos, para cumprir com um reduzido número de ensaios, dois objetivos: obter a influência dos fatores de controle sobre as variáveis respostas e determinar as condições ideais para aplicação das ligas de níquel nas soldagens de revestimentos através do processo MIG/MAG com transferência metálica por curto-circuito. Foram escolhidos seis fatores de controle com três níveis cada: Tensão de referência, Velocidade de soldagem, Tipo de tecimento, Técnica da tocha, Gás de proteção e o Material de adição. Por sua vez as variáveis respostas escolhidas foram: Diluição (D e Razão entre o reforço e a largura (R/L. As soldagens foram realizadas na posição plana por simples deposição sobre chapas de aço ASTM 516 Gr60 com dimensões de 200 x 50 x 12,7 mm. O uso do tecimento proporcionou cordões com baixos valores da razão R/L e obteve valores bastante baixos de diluição chegando à ordem de 5%. A combinação dos níveis dos fatores de controle apontados como ótimos pelo método Taguchi resultaram em valores para as variáveis repostas consideradas adequadas para a soldagem de revestimento.In this work aim the Taguchi method (Robust design of experiments was chosen to achieve with a limited number of tests two objectives: the first was to the influence of the control factors (welding parameters on quality characteristics (weld bead geometry and the second was to determine optimal conditions for weld overlay with nickel alloy through the GMAW process in a short circuiting transfer mode. Six control factors were employed with three levels each: Reference voltage, Welding speed, Arc oscillation, welding gun orientation (Perpendicular, forehand and backhand, Shielding gas and filler metal. Already the employed quality characteristics were: Percent dilution (D and the ration between reinforcement and bead width (R/L. The weldings were accomplished using

  10. Effect of preemptive weld overlay on residual stress of repaired weldment in surge nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chang Young; Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    In the welding process, weldments usually include repair weld during the manufacturing process. Repair welds is supposed to cause strong tensile residual stress. Moreover weldments, usually made by Alloy 82/182, is susceptible to PWSCC. Therefore, mitigation of welding residual stress in weldments is important for reliable operating. PWOL is one of the methods for mitigation and verified for over twenty years. In this paper, residual stress distribution of repaired weldments and the effect of PWOL on mitigation is examined for surge nozzle.

  11. Seleção dos parâmetros através dos custos de soldagem para aplicação de revestimento com ligas de níquel depositadas pelo processo MIG/MAG Using the welding costs to select welding parameters for Weld Overlay with nickel alloy through the GMAW process

    Directory of Open Access Journals (Sweden)

    Antonio Rodolfo Paulino Pessoa

    2011-03-01

    Full Text Available Neste trabalho foram calculados e comparados os custos de soldagem associados a cada um dos ensaios realizados, como forma de determinar parâmetros operacionais adequados e economicamente viáveis para soldagem com o processo MIG/MAG com transferência metálica por curto-circuito, visando uma correta deposição de revestimentos com ligas de níquel sobre um substrato de aço C-Mn. O número de ensaios a serem realizados, foi determinado pelo uso do método Taguchi que dividiu os ensaios em duas matrizes L9, resultando num total de 18 ensaios. Na comparação dos gastos despendidos em cada um dos ensaios foi utilizado o custo direto total da soldagem de um revestimento com 55 mm de largura e 190 mm de comprimento, utilizando uma sobreposição de 50%. Com base nos resultados dos ensaios foram pré-selecionados quatro ensaios (R7, R11, R12 e RC4, dentre os quais o ensaio R11 apresentou o menor custo. Mas vale ressaltar que nos quatro ensaios pré-selecionados o material de adição utilizado foi a liga 625, pois esta liga apresentar um custo do arame-eletrodo muito inferior as demais ligas (C-276 e 686. Assim a escolha do material de adição para aplicação do revestimento ficou restrita somente a liga 625.In this work were calculated and compared the welding costs for each of the tests performed to determine operational parameters and economically feasible for welding with GMAW process in a short circuiting transfer mode, aiming at a correct weld overlay with nickel alloy on a substrate of C-Mn steel. The number of tests to be performed was determined by using the Taguchi method that divided the tests into two L9 orthogonal arrays resulting in a total of 18 experiments. To compare the costs incurred in each of the tests we used the total direct cost of welding a layer with dimensions of 55 x 190 mm, using an overlap of 50%. Based on the results of the tests were pre-selected four tests (R7, R11, R12 and RC4, among which the test R11 has the

  12. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  13. Microstructure and oxidation performance of a γ–γ′ Pt-aluminide ...

    Indian Academy of Sciences (India)

    Microstructure and oxidation performance of a –' Pt-aluminide bond coat on directionally solidified superalloy CM-247LC ... Keywords. Platinum aluminide bond coat; coating; cyclic oxidation; superalloy; microstructure. ... Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058, India ...

  14. Overlay improvement methods with diffraction based overlay and integrated metrology

    Science.gov (United States)

    Nam, Young-Sun; Kim, Sunny; Shin, Ju Hee; Choi, Young Sin; Yun, Sang Ho; Kim, Young Hoon; Shin, Si Woo; Kong, Jeong Heung; Kang, Young Seog; Ha, Hun Hwan

    2015-03-01

    To accord with new requirement of securing more overlay margin, not only the optical overlay measurement is faced with the technical limitations to represent cell pattern's behavior, but also the larger measurement samples are inevitable for minimizing statistical errors and better estimation of circumstance in a lot. From these reasons, diffraction based overlay (DBO) and integrated metrology (IM) were mainly proposed as new approaches for overlay enhancement in this paper.

  15. The effect of individually-induced processes on image-based overlay and diffraction-based overlay

    Science.gov (United States)

    Oh, SeungHwa; Lee, Jeongjin; Lee, Seungyoon; Hwang, Chan; Choi, Gilheyun; Kang, Ho-Kyu; Jung, EunSeung

    2014-04-01

    In this paper, set of wafers with separated processes was prepared and overlay measurement result was compared in two methods; IBO and DBO. Based on the experimental result, theoretical approach of relationship between overlay mark deformation and overlay variation is presented. Moreover, overlay reading simulation was used in verification and prediction of overlay variation due to deformation of overlay mark caused by induced processes. Through this study, understanding of individual process effects on overlay measurement error is given. Additionally, guideline of selecting proper overlay measurement scheme for specific layer is presented.

  16. Formation of electrically insulating coatings on aluminided vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, G.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3-5 at.% dissolved aluminum in sealed capsules at temperatures between 775 and 880 degrees C. Reaction of the aluminide layer with dissolved nitrogen in liquid lithium provides a means of developing an in-situ electrical insulator coating on the surface of the alloys. The electrical resistivity of A1N coatings on aluminided V and V-20 wt.% Ti was determined in-situ

  17. Creep deformation mechanisms in a γ titanium aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, Zakaria [Institute of Structural Materials, College of Engineering, Bay Campus, Swansea University, Swansea SA18EN (United Kingdom); Ding, Rengen [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B152TT (United Kingdom); Martin, Nigel; Dixon, Mark [Rolls-Royce plc, P.O. Box 31, Derby DE248BJ (United Kingdom); Bache, Martin [Institute of Structural Materials, College of Engineering, Bay Campus, Swansea University, Swansea SA18EN (United Kingdom)

    2016-09-15

    Titanium aluminides (TiAl) are considered as potential alternatives to replace nickel-based alloys of greater density for selected components within future gas turbine aero-engines. This is attributed to the high specific strength as well as the good oxidation resistance at elevated temperatures. The gamma (γ) titanium aluminide system Ti-45Al-2Mn-2Nb has previously demonstrated promising performance in terms of its physical and mechanical properties. The main aim of the current study, which is a continuation of a previously published paper, aims at evaluating the performance of this titanium aluminide system under high temperature creep conditions. Of particular interest, the paper is strongly demonstrating the precise capability of the Wilshire Equations technique in predicting the long-term creep behaviour of this alloy. Moreover, it presents a physically meaningful understanding of the various creep mechanisms expected under various testing conditions. To achieve this, two creep specimens, tested under distinctly different stress levels at 700 °C have been extensively examined. Detailed microstructural investigations and supporting transmission electron microscopy (TEM) have explored the differences in creep mechanisms active under the two stress regimes, with the deformation mechanisms correlated to Wilshire creep life prediction curves.

  18. Laser welding study for further development in essential power plant part repairs

    Directory of Open Access Journals (Sweden)

    Isarawit Chaopanich

    2015-06-01

    Full Text Available The objective of this research work was to study the effects of laser welding when compared with shield metal arc welding (SMAW process on the heat input, welded deposit rate, residual stress, distortion, microstructure and micro hardness. The martensitic stainless steel grade 431 specimens were overlay welded with the stainless steel filler metals. From the results, the heat input of 0.26 kJ/mm in laser welding calculated was significantly lower than that of 1.66 kJ/mm in SMAW, and contributed to low level residual stress, minimal distortion, very small penetration depth and heat affected zone (HAZ of less than 100 µm. The micro hardness results indicated that the maximum value from laser welding in the HAZ was 370.2 HV lower than the value from SMAW of 525.5 HV. The welded deposit rate for laser welding was with 26.5 mm3 /min remarkably lower than the rate for SMAW of 1,800 mm3 /min.

  19. The interface microstructure, mechanical properties and corrosion resistance of dissimilar joints during multipass laser welding for nuclear power plants

    Science.gov (United States)

    Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong

    2018-05-01

    This study presents the interface microstructure, mechanical properties and corrosion resistance of dissimilar joints between Inconel 52M overlays and 316L stainless steel during multipass laser welding for nuclear power plants. The results indicate that the microstructure at the interface beside 316L stainless steel consists of cellular with the width of 30-40 μm, which also exhibits numerous Cr and Mo-rich precipitates like flocculent structure and in chains along grain boundaries as a mixed chemical solution for etching. Many dendritic structure with local melting characteristics and Nb-rich precipitates are exhibited at the interface beside Inconel 52M overlays. Such Nb-rich precipitates at the interface beside Inconel 52M overlays deteriorate the tensile strength and toughness of dissimilar joints at room temperature. The tensile strength of 316L stainless steel at 350 °C significantly decreases with the result that dissimilar joints are fractured in 316L stainless steel. The correlation between corrosion behavior and microstructure of weld metals is also discussed. The difference in high corrosion potential between Nb-rich precipitates and the matrix could result in establishing effective galvanic couples, and thus accelerating the corrosion of weld metals.

  20. Microstructural transformations and mechanical properties of cast NiAl bronze: Effects of fusion welding and friction stir processing

    International Nuclear Information System (INIS)

    Fuller, M.D.; Swaminathan, S.; Zhilyaev, A.P.; McNelley, T.R.

    2007-01-01

    A plate of as-cast NiAl bronze (NAB) material was sectioned from a large casting. A six-pass fusion weld overlay was placed in a machined groove; a portion of the weld reinforcement was removed by milling and a single friction stir processing (FSP) pass was conducted in a direction transverse to the axis of and over the weld overlay. A procedure was developed for machining of miniature tensile samples and the distributions of strength and ductility were evaluated for the fusion weld metal; for the stir zone (SZ) produced by the friction stir processing; and for a region wherein friction stir processing had taken place over the fusion weld. A region of low ductility in the heat affected zone (HAZ) of the fusion weld and in the thermomechanically affected zone (TMAZ) of friction stir processed material was attributed to partial reversion of an equilibrium lamellar eutectoid constituent upon local heating above ∼800 deg. C and formation of non-equilibrium transformation products upon subsequent cooling. The adverse effect on ductility is worse in the heat affected zone of the fusion weld than in the thermomechanically affected zone of friction stir processing due to the lower heat input of the latter process. The implications of this work to engineering applications of friction stir processing are discussed

  1. An investigation on microstructure and mechanical property of thermally aged stainless steel weld overlay cladding

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X.Y. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Zhu, P. [Suzhou Nuclear Power Research Institute Co. Ltd., 1788 Xihuan Road, 215004 Suzhou (China); Ding, X.F. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Lu, Y.H., E-mail: lu_yonghao@mater.ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Shoji, T. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Fracture and Reliability Research Institute, Tohoku University, 6-6-01 Aoba AramakiAobaku, 980-8579 Sendai (Japan)

    2017-04-01

    Microstructural evolution and mechanical property change of E308L stainless steel weld overlay cladding aged at 400 °C for 400, 1000 and 5000 h were investigated by transmission electron microscope (TEM) and small punch test (SPT). The results indicated that thermal aging had no obvious effect on the volume fraction of ferrite, but can cause microstructural evolution by spinodal decomposotion and G-phase precipitation in the ferrite phase. Spinodal decomposition took place after aging up to 1000 h, while G-phase formed along dislocations, and growed up to 2–11 nm after aging for 5000 h. The total energy for inducing deformation and fracture by the small punch tests decreased with the increase of thermal aging time, and this decline was associated with spinodal decomposition and G-phase precipitation. Plastic deformation of the aged ferrite proceeded via formation of curvilinear slip bands. Nucleation of microcracks occurred at the δ/γ interface along the slip bands. The hardening of the ferrite and high stress concentration on δ/γ phase interface resulted in brittle fracture and phase boundary separation after thermal aging. - Highlights: •Spinodal decomposition took place after long-term therml aging at 400 °C. •Dislocations were the preferable sites for G-phase formation aged at 400 °C for 5000 h. •Spinodal decomposition and G-phase precipitation induced reduction of small punch energy. •Thermal aging led to brittle fracture and phase boundary separation. •Nucleation of microcracks occurred at the δ/γ interface along the slip bands in the aged ferrite phase.

  2. An investigation on microstructure and mechanical property of thermally aged stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Cao, X.Y.; Zhu, P.; Ding, X.F.; Lu, Y.H.; Shoji, T.

    2017-01-01

    Microstructural evolution and mechanical property change of E308L stainless steel weld overlay cladding aged at 400 °C for 400, 1000 and 5000 h were investigated by transmission electron microscope (TEM) and small punch test (SPT). The results indicated that thermal aging had no obvious effect on the volume fraction of ferrite, but can cause microstructural evolution by spinodal decomposotion and G-phase precipitation in the ferrite phase. Spinodal decomposition took place after aging up to 1000 h, while G-phase formed along dislocations, and growed up to 2–11 nm after aging for 5000 h. The total energy for inducing deformation and fracture by the small punch tests decreased with the increase of thermal aging time, and this decline was associated with spinodal decomposition and G-phase precipitation. Plastic deformation of the aged ferrite proceeded via formation of curvilinear slip bands. Nucleation of microcracks occurred at the δ/γ interface along the slip bands. The hardening of the ferrite and high stress concentration on δ/γ phase interface resulted in brittle fracture and phase boundary separation after thermal aging. - Highlights: •Spinodal decomposition took place after long-term therml aging at 400 °C. •Dislocations were the preferable sites for G-phase formation aged at 400 °C for 5000 h. •Spinodal decomposition and G-phase precipitation induced reduction of small punch energy. •Thermal aging led to brittle fracture and phase boundary separation. •Nucleation of microcracks occurred at the δ/γ interface along the slip bands in the aged ferrite phase.

  3. Gamma titanium aluminide production using the Induction Skull Melting (ISM) process

    International Nuclear Information System (INIS)

    Reed, S.

    1995-01-01

    Since 1985, more than 2,000 titanium aluminide heats have been produced using the Induction Skull Melting (ISM) process. The history of ISM/Gamma production will be discussed in this paper. Gamma titanium aluminide processing with Induction Skull Melting offers many advantages over other types of reactive alloy melting methods. These advantages will be discussed as well as drawbacks. Also, potential markets and applications for ISM/Gamma will be presented

  4. Diffraction based overlay and image based overlay on production flow for advanced technology node

    Science.gov (United States)

    Blancquaert, Yoann; Dezauzier, Christophe

    2013-04-01

    One of the main challenges for lithography step is the overlay control. For the advanced technology node like 28nm and 14nm, the overlay budget becomes very tight. Two overlay techniques compete in our advanced semiconductor manufacturing: the Diffraction based Overlay (DBO) with the YieldStar S200 (ASML) and the Image Based Overlay (IBO) with ARCHER (KLA). In this paper we will compare these two methods through 3 critical production layers: Poly Gate, Contact and first metal layer. We will show the overlay results of the 2 techniques, explore the accuracy and compare the total measurement uncertainty (TMU) for the standard overlay targets of both techniques. We will see also the response and impact for the Image Based Overlay and Diffraction Based Overlay techniques through a process change like an additional Hardmask TEOS layer on the front-end stack. The importance of the target design is approached; we will propose more adapted design for image based targets. Finally we will present embedded targets in the 14 FDSOI with first results.

  5. The properties and microstructure of padding welds built up on the surface of forging dies

    Directory of Open Access Journals (Sweden)

    S. Pytel

    2010-07-01

    Full Text Available The study presents selected results of the examinations of the properties and microstructure of weld overlays built up with the UTOP38,F-812 and F-818 welding wires on a substrate of the 42CrMo4 structural steel. Among others, the following investigations were carriedout: bend tests, hardness measurements and determination of ferrite content in a bainitic-martensitic microstructure of UTOP38 and F-812layers.

  6. Nanostructure of vortex during explosion welding.

    Science.gov (United States)

    Rybin, V V; Greenberg, B A; Ivanov, M A; Patselov, A M; Antonova, O V; Elkina, O A; Inozemtsev, A V; Salishchev, G A

    2011-10-01

    The microstructure of a bimetallic joint made by explosion welding of orthorhombic titanium aluminide (Ti-30Al-16Nb-1Zr-1Mo) with commercially pure titanium is studied. It is found that the welded joint has a multilayered structure including a severely deformed zone observed in both materials, a recrystallized zone of titanium, and a transition zone near the interface. Typical elements of the transition zone-a wavy interface, macrorotations of the lattice, vortices and tracks of fragments of the initial materials-are determined. It is shown that the observed vortices are formed most probably due to local melting of the material near the contact surface. Evidence for this assumption is deduced from the presence of dipoles, which consist of two vortices of different helicity and an ultrafine duplex structure of the vortex. Also, high mixing of the material near the vortex is only possible by the turbulent transport whose coefficient is several orders of magnitude larger than the coefficient of atomic diffusion in liquids. The role played by fragmentation in both the formation of lattice macrorotations and the passage of coarse particles of one material through the bulk of the other is determined.

  7. VT Data - Overlay District 20170407, Burlington

    Data.gov (United States)

    Vermont Center for Geographic Information — The following Overlay District Data is included:Design Review OverlayInstitutional Core Campus OverlayRH Density Bonus OverlayNatural Resource Protection OverlayRL...

  8. Zirconium influence on microstructure of aluminide coatings ...

    Indian Academy of Sciences (India)

    Influence of Zr on the microstructure and phase characteristics of aluminide diffusion coatings deposited on the nickel .... of hydrogen gas into CVD reactor, where nickel samples .... presence of three phases: β-NiAl, γ -Ni3Al and γ-Ni(Al).

  9. Preliminary Study for Development of Welds Integrity Verification Equipment for the Small Bore Piping

    International Nuclear Information System (INIS)

    Choi, Geun Suk; Lee, Jong Eun; Ryu, Jung Hoon; Cho, Kyoung Youn; Sohn, Myoung Sung; Lee, Sanghoon; Sung, Gi Ho; Cho, Hong Seok

    2016-01-01

    It has been reported leakage accident of small-bore piping in Korea. Leakage accident of small-bore pipes are those that will increase due to the aging of the nuclear power plant. And if leakage of the pipe is repaired by using the clamping device when it occur accident, it is economically benefits. The clamping device is a fastening device used to hold or secure objects tightly together to prevent movement or separation through the application of inward pressure. However, when the accident occurs, it can't immediately respond because maintenance and repairing technology are not institutionalized in KEPIC. Thus it appears an economic loss. The technology for corresponding thereto is necessary for the safety of the operation of nuclear power plants. The purpose of this research is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe in the nuclear power plant. Specifically, detailed studies are as follows : • Development of weld overlay method of safety class socket welded connections • Development of Mechanical Clamping Devices for Safety Class 2, 3 small-bore pipe. The purpose of this study is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe, resulting in degraded plant systems. And it is necessary to institutionalize the technology. The fatigue crack testing of socket welded overlay will be performed and fatigue life evaluation method will be developed in second year. Also prototype fabrication of mechanical clamping device will be completed. Base on final goal, the intent is to propose practical evaluation tools, design and fabrication methods for socket welded connection integrity. And result of this study is to development of KEPIC code case approved technology for on-line repairing system of socket welded connection and fabrication of mechanical clamping device

  10. Photoelectron emission from thin overlayers

    International Nuclear Information System (INIS)

    Jablonski, A.

    2012-01-01

    Highlights: ► Weak influence of the support on photoemission from an overlayer. ► Accurate description of photoelectron intensity from overlayer by analytical theory. ► Method for overlayer thickness measurements based on analytical formalism. ► Influence of photoelectron elastic scattering on calculated thickness. -- Abstract: Photoelectron signal intensities calculated for a thin overlayer from theoretical models taking elastic photoelectron collisions into account are shown to be very weakly dependent on the substrate material. This result has been obtained for photoelectrons analyzed in XPS spectrometers equipped with typical X-ray sources, i.e. sources of Mg Kα and Al Kα radiation. Low sensitivity to the substrate material is due to the fact that trajectories of photoelectrons emitted in the overlayer and entering the substrate have a low probability to reach the analyzer without energy loss. On the other hand, the signal intensity of photoelectrons emitted in the overlayer is found to be distinctly affected by elastic photoelectron scattering. Consequently, a theoretical model that can accurately describe the photoelectron intensity from an overlayer deposited on any material (e.g. on a substrate of the same material as the overlayer) can be a useful basis for a universal and convenient method for determination of the overlayer thickness. It is shown that the formalism derived from the kinetic Boltzmann equation within the so-called transport approximation satisfies these requirements. This formalism is postulated for use in overlayer-thickness measurements to avoid time-consuming Monte Carlo simulations of photoelectron transport, and also to circumvent problems with determining the effective attenuation lengths for overlayer/substrate systems.

  11. VT Data - Overlay District 20170802, Shelburne

    Data.gov (United States)

    Vermont Center for Geographic Information — The following Overlay Districts are included in the data:Lakeshore Conservation OverlyNeighborhood OverlayVillage Design Review OverlayVillage Core OverlayWater...

  12. VT Data - Overlay District 20170228, Richmond

    Data.gov (United States)

    Vermont Center for Geographic Information — The following overlay districts are included in the data:Shoreline Protection OverlayFlood Hazard OverlayDetails about these overlay districts, as well as zoning...

  13. Critical issues in overlay metrology

    International Nuclear Information System (INIS)

    Sullivan, Neal T.

    2001-01-01

    In this paper, following an overview of overlay metrology, the difficult relationship of overlay with device performance and yield is discussed and supported with several examples. This is followed by a discussion of the impending collision of metrology equipment performance and 'real' process tolerances for sub 0.18 um technologies. This convergence of tolerance and performance is demonstrated to lead to the current emergence of real-time overlay modeling in a feed-forward/feedback process environment and the associated metrology/sampling implications. This modeling takes advantage of the wealth of understanding concerning the systematic behavior of overlay registration errors. Finally, the impact of new process technologies (RET, OAI, CPSM, CMP, and etc.) on the measurement target is discussed and shown to de-stabilize overlay performance on standard overlay measurement target designs

  14. Overlay metrology for double patterning processes

    Science.gov (United States)

    Leray, Philippe; Cheng, Shaunee; Laidler, David; Kandel, Daniel; Adel, Mike; Dinu, Berta; Polli, Marco; Vasconi, Mauro; Salski, Bartlomiej

    2009-03-01

    The double patterning (DPT) process is foreseen by the industry to be the main solution for the 32 nm technology node and even beyond. Meanwhile process compatibility has to be maintained and the performance of overlay metrology has to improve. To achieve this for Image Based Overlay (IBO), usually the optics of overlay tools are improved. It was also demonstrated that these requirements are achievable with a Diffraction Based Overlay (DBO) technique named SCOLTM [1]. In addition, we believe that overlay measurements with respect to a reference grid are required to achieve the required overlay control [2]. This induces at least a three-fold increase in the number of measurements (2 for double patterned layers to the reference grid and 1 between the double patterned layers). The requirements of process compatibility, enhanced performance and large number of measurements make the choice of overlay metrology for DPT very challenging. In this work we use different flavors of the standard overlay metrology technique (IBO) as well as the new technique (SCOL) to address these three requirements. The compatibility of the corresponding overlay targets with double patterning processes (Litho-Etch-Litho-Etch (LELE); Litho-Freeze-Litho-Etch (LFLE), Spacer defined) is tested. The process impact on different target types is discussed (CD bias LELE, Contrast for LFLE). We compare the standard imaging overlay metrology with non-standard imaging techniques dedicated to double patterning processes (multilayer imaging targets allowing one overlay target instead of three, very small imaging targets). In addition to standard designs already discussed [1], we investigate SCOL target designs specific to double patterning processes. The feedback to the scanner is determined using the different techniques. The final overlay results obtained are compared accordingly. We conclude with the pros and cons of each technique and suggest the optimal metrology strategy for overlay control in double

  15. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    Science.gov (United States)

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2000-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  16. Chemical vapor deposition of aluminide coatings on iron, nickel and superalloys

    International Nuclear Information System (INIS)

    John, John T.; De, P.K.; Dubey, Vivekanand; Srinivasa, Raman

    2009-08-01

    Aluminide coatings are a class of intermetallic coatings applied on nickel and cobalt base superalloys and steels to protect them from different forms of environmental degradation at high temperatures. In this report a CVD system that can produce the aluminide coatings on iron, nickel and nickel base alloys has been described and the result of chemical vapor deposition of aluminide coatings on iron specimens, their characterization, and property evaluation have been presented. The CVD system consists of an AlCl 3 bath, a stainless steel retort as a hot-wall reacto, cold traps and vacuum system. Aluminium chloride vapor was carried in a stream of hydrogen gas at a flow rate of 150 SCCM (standard cubic centimeter per minute) into the CVD reactor maintained in the temperature range of 1173 - 1373 K and at a pressure of 1.33 kPa (10 Torr). Aluminum deposition takes place from aluminium subchlorides produced by reaction between AlCl 3 and pure aluminum kept in the CVD reactor. The aluminum diffuses into the iron samples and iron aluminide phases are formed at the surface. The coatings were shining bright and showed good adherence to the substrate. The coatings consisted of FeAl phase over a wide range of experimental conditions. The growth kinetics of the coating followed a parabolic rate law and the mean activation energy was 212 ±16 kJ/mol. Optical microscopic studies on the transverse section of the coating showed that the aluminide coating on iron consisted of two layers. The top layer had a thickness in the range of 20-50 μm, and the under layer had thickness ranging from 35 to 250 μm depending on coating temperature in two hours. The thickness of the aluminide layer increased with coating duration and temperature. Electron microprobe studies (EPMA) showed that the aluminum concentration decreased steadily as distance from the surface increased. TEM studies showed that the outer most layer had a B2 order (of the FeAl phase), which extended even into the under

  17. Diffraction based overlay re-assessed

    Science.gov (United States)

    Leray, Philippe; Laidler, David; D'havé, Koen; Cheng, Shaunee

    2011-03-01

    In recent years, numerous authors have reported the advantages of Diffraction Based Overlay (DBO) over Image Based Overlay (IBO), mainly by comparison of metrology figures of merit such as TIS and TMU. Some have even gone as far as to say that DBO is the only viable overlay metrology technique for advanced technology nodes; 22nm and beyond. Typically the only reported drawback of DBO is the size of the required targets. This severely limits its effective use, when all critical layers of a product, including double patterned layers need to be measured, and in-die overlay measurements are required. In this paper we ask whether target size is the only limitation to the adoption of DBO for overlay characterization and control, or are there other metrics, which need to be considered. For example, overlay accuracy with respect to scanner baseline or on-product process overlay control? In this work, we critically re-assess the strengths and weaknesses of DBO for the applications of scanner baseline and on-product process layer overlay control. A comprehensive comparison is made to IBO. For on product process layer control we compare the performance on critical process layers; Gate, Contact and Metal. In particularly we focus on the response of the scanner to the corrections determined by each metrology technique for each process layer, as a measure of the accuracy. Our results show that to characterize an overlay metrology technique that is suitable for use in advanced technology nodes requires much more than just evaluating the conventional metrology metrics of TIS and TMU.

  18. Effects of thermal aging and neutron irradiation on the mechanical properties of three-wire stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Nanstad, R.K.

    1997-05-01

    Thermal aging of three-wire series-arc stainless steel weld overlay cladding at 288 degrees C for 1605 h resulted in an appreciable decrease (16%) in the Charpy V-notch (CVN) upper-shelf energy (USE), but the effect on the 41-J transition temperature shift was very small (3 degrees C). The combined effect of aging and neutron irradiation at 288 degrees C to a fluence of 5 x 10 19 neutrons/cm 2 (> 1 MeV) was a 22% reduction in the USE and a 29 degrees C shift in the 41-J transition temperature. The effect of thermal aging on tensile properties was very small. However, the combined effect of irradiation and aging was an increase in the yield strength (6 to 34% at test temperatures from 288 to -125 degrees C) but no apparent change in ultimate tensile strength or total elongation. Neutron irradiation reduced the initiation fracture toughness (J Ic ) much more than did thermal aging alone. Irradiation slightly decreased the tearing modulus, but no reduction was caused by thermal aging alone. Other results from tensile, CVN, and fracture toughness specimens showed that the effects of thermal aging at 288 or 343 degrees C for 20,000 h each were very small and similar to those at 288 degrees C for 1605 h. The effects of long-term thermal exposure time (50,000 h and greater) at 288 degrees C will be investigated as the specimens become available in 1996 and beyond

  19. Development of Preemptive Repair Technology for Alloy 600 J-Groove Welds of Reactor Vessel Upper Head CEDM Nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kwang Woon; Lee, Jang Wook; Cho, Ki Hyun; Choi, Kwang Min; Choi, Dong Chul; Cho, Sang Beum; Cho, Hong Seok [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    After 2000, PWSCC in numerous NPPs around the world has been generated, and recently, PWSCC in several CEDM nozzles of domestic NPP Hanbit Unit 3 and 4 was founded and repaired with embedded flaw repair(EFR) welding method by Westinghouse. In this study, development status of EFR equipment and basic experimental results for preventive PWSCC of RVUH CEDM nozzles will be introduced. The development of EFR seal welding equipment and welding process for the preemptive repair with original Alloy 600 J-Groove welds of RVUHP was conducted. The EFR welding equipment was tested to be possible seal welding to track J-Groove welds with three dimensional curved surfaces and OD penetration with vertical welding position. Through several BOP and overlay welding experiments, it was verified that good weld beads with no defects, such as cracks, spatter, undercut at the stable welding conditions with heat input of 27.4-32.5 KJ/in were well produced. Consequently, it is expected that the EFR seal welding technique will be applicable on the site.

  20. Overlay networks toward information networking

    CERN Document Server

    Tarkoma, Sasu

    2010-01-01

    With their ability to solve problems in massive information distribution and processing, while keeping scaling costs low, overlay systems represent a rapidly growing area of R&D with important implications for the evolution of Internet architecture. Inspired by the author's articles on content based routing, Overlay Networks: Toward Information Networking provides a complete introduction to overlay networks. Examining what they are and what kind of structures they require, the text covers the key structures, protocols, and algorithms used in overlay networks. It reviews the current state of th

  1. VT Data - Overlay District 20170710, South Burlington

    Data.gov (United States)

    Vermont Center for Geographic Information — Overlay data for the City of South Burlington included in this data:Flood Plain Overlay DistrictTraffic Overlay DistrictInterstate Highway Overlay DistrictScenic...

  2. Effects of thermomechanical processing on titanium aluminide strip cast by the melt overflow process

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, T.A. (Ribbon Technology Corporation, PO Box 30758, Columbus, OH 43230 (United States)); Hackman, L.E. (Ribbon Technology Corporation, PO Box 30758, Columbus, OH 43230 (United States)); Batawi, E. (Sulzer-Innotec, Division 1511, PO Box 65, Winterthur 8404 (Switzerland)); Peters, J.A. (Sulzer-Innotec, Division 1511, PO Box 65, Winterthur 8404 (Switzerland))

    1994-05-01

    The objective of this research project was to investigate the feasibility of producing titanium aluminide foils from direct cast strip using ribbon technology''s plasma melt overflow process. Niobium-modified Ti[sub 3]Al alloys were melted in a cold copper crucible using a transferred plasma arc and then direct cast into strip on a rotating chill roll.Samples cut from the as-cast Ti[sub 3]Al-Nb ([alpha][sub 2]) titanium aluminide strip were encapsulated into a pack. The packs were heated to the rolling temperature and then hot rolled at low strain rates. Foils 70 [mu]m (0.003 in) thick, having a uniform [alpha][sub 2]-B2 microstructure with oxygen contents as low as 900 wt.ppm were obtained after pack rolling. The strips and foils were characterized in terms of microstructure and chemical composition in the as-received, heat-treated and pack-rolled conditions.The results indicated that it was technically feasible to produce foils from direct cast titanium aluminide strip using pack-rolling technology. The advantage of this technology lies in its cost-effectiveness, since the relatively low cost direct-cast titanium aluminide strip was thermomechanically processed into foil with the desired microstructure without any intermediate processing steps. ((orig.))

  3. Advanced overlay analysis through design based metrology

    Science.gov (United States)

    Ji, Sunkeun; Yoo, Gyun; Jo, Gyoyeon; Kang, Hyunwoo; Park, Minwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Maruyama, Kotaro; Park, Byungjun; Yamamoto, Masahiro

    2015-03-01

    As design rule shrink, overlay has been critical factor for semiconductor manufacturing. However, the overlay error which is determined by a conventional measurement with an overlay mark based on IBO and DBO often does not represent the physical placement error in the cell area. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion caused by etching or CMP also can be a source of the mismatch. In 2014, we have demonstrated that method of overlay measurement in the cell area by using DBM (Design Based Metrology) tool has more accurate overlay value than conventional method by using an overlay mark. We have verified the reproducibility by measuring repeatable patterns in the cell area, and also demonstrated the reliability by comparing with CD-SEM data. We have focused overlay mismatching between overlay mark and cell area until now, further more we have concerned with the cell area having different pattern density and etch loading. There appears a phenomenon which has different overlay values on the cells with diverse patterning environment. In this paper, the overlay error was investigated from cell edge to center. For this experiment, we have verified several critical layers in DRAM by using improved(Better resolution and speed) DBM tool, NGR3520.

  4. The oxidation of aluminide diffusion coatings containing platinum used for the protection of IN738 superalloy

    International Nuclear Information System (INIS)

    Hanna, M.D.; Haworth, C.W.

    1993-01-01

    Aluminide coatings, as used for the protection against oxidation of most nickel-base superalloy components in modern jet engines, have been formed by a diffusion process on IN738 to give a coating that is essentially NiAl containing Al-rich precipitates. Aluminide coatings containing platinum have also been produced by initially depositing a thin layer (several microns thick) of Pt on the superalloy prior to the aluminisation process. Depending upon the details of the processing (such as the thickness of the Pt or the Al flux during the diffusion process) the structure of the coating on being formed was essentially either PtAl/sub 2/, PtAl or NiAl, or a mixture of these phases, but after some hours heat treatment at a high temperature (equivalent to service) was converted to either NiAl (containing Pt), or PtAl (containing Ni) or a mixture of PtAl and NiAl. The oxidation rate of these coatings at different temperatures between 800 and 1000 deg. C was studied using an automatic recording micro-balance and compared with the oxidation rate of a simple aluminide coating and of uncoated IN738. Further longer-term oxidation tests, including cyclic tests, were also undertaken. The Pt containing coatings gave approximately the same performance, and some were slightly better than the simple aluminide coatings, (and much better than the uncoated IN738). Both sections through the oxidised surface of the Al/sub 2/O/sub 3/ scale formed on the coatings were examined using optical microscopy and the SEM. The coating/scale interface on the platinum aluminide was seen to be slightly convoluted. It was more adherent and showed less tendency to spall than that formed on the simple aluminide coating. (author)

  5. Ion-plasma diffusion aluminide coatings for gas turbine blades (structure and properties)

    International Nuclear Information System (INIS)

    Muboyadzhyan, S.A.; Budinovskij, S.A.; Terekhova, V.V.

    2003-01-01

    A consideration is given to the ion-plasma method of heart resisting alloy diffusion coating with alloyed aluminides offering some advantages over routine techniques. Specific features of ion-plasma diffusion coatings production at the surface of heart resisting alloys using one- and multistage techniques are studied. The process of formation of coatings (Al-Si-Y, Al-Si-Ni-B, Al-Si-Cr-Y) along with coating effects on long-term heat resistance of nickel base alloys (ZhS6U, VZhL12U, ZhS26VNK) is investigated. The advantages of the new method of diffusion aluminide coatings are reported [ru

  6. Saturated bonds and anomalous electronic transport in transition-metal aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.

    2006-05-22

    This thesis deals with the special electronic properties of the transition-metal aluminides. Following quasicrystals and their approximants it is shown that even materials with small elementary cells exhibit the same surprising effects. So among the transition-metal aluminides also semi-metallic and semiconducting compounds exist, although if they consist of classic-metallic components like Fe, Al, or Cr. These properties are furthermore coupled with a deep pseusogap respectively gap in the density of states and strongly covalent bonds. Bonds are described in this thesis by two eseential properties. First by the bond charge and second by the energetic effect of the bond. It results that in the caes of semiconducting transition-metal aluminides both a saturation of certain bonds and a bond-antibond alteration in the Fermi level is present. By the analysis of the near-order in form of the so-calles coordination polyeders it has been succeeded to establish a simple rule for semiconductors, the five-fold coordination for Al. This rule states that aluminium atoms with their three valence electrons are not able to build more than five saturated bonds to their nearest transition-metal neighbours. In excellent agreement with the bond angles predicted theoretically under assumption of equal-type bonds it results that all binary transition-element aluminide semiconductors exhibit for the Al atoms the same near order. Typical values for specific resistances of the studied materials at room temperature lie in the range of some 100 {mu}{omega}cm, which is farly larger than some 10 {mu}{omega}cm as in the case of the unalloyed metals. SUrprising is furthermore a high transport anisotropy with a ratio of the specific resistances up to 3.0. An essential result of this thesis can be seen in the coupling of the properties of the electronic transport and the bond properties. The small conducitivities could be explained by small values in the density of states and a bond

  7. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    Science.gov (United States)

    Deevi, Seetharama C.; Lilly, Jr., A. Clifton; Sikka, Vinod K.; Hajaligol, Mohammed R.

    2000-01-01

    A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  8. Simulation of uranium aluminide dissolution in a continuous aluminum dissolver system

    International Nuclear Information System (INIS)

    Evans, D.R.; Farman, R.F.; Christian, J.D.

    1990-01-01

    This paper reports on the Idaho Chemical Processing Plant (ICPP) which recovers highly-enriched uranium (uranium that contains at least 20 atom percent 235 U) from spent nuclear reactor fuel by dissolution of the fuel elements and extraction of the uranium from the aqueous dissolver product. Because the uranium is highly-enriched, consideration must be given to whether a critical mass can form at any stage of the process. In particular, suspended 235 U-containing particles are of special concern, due to their high density (6.8 g/cm 3 ) and due to the fact that they can settle into geometrically unfavorable configurations when not adequately mixed. A portion of the spent fuel is aluminum-alloy-clad uranium aluminide (UAl 3 ) particles, which dissolve more slowly than the cladding. As the aluminum alloy cladding dissolves in mercury-catalyzed nitric acid, UAl 3 is released. Under standard operating conditions, the UAl 3 dissolves rapidly enough to preclude the possibility of forming a critical mass anywhere in the system. However, postulated worst-case abnormal operating conditions retard uranium aluminide dissolution, and thus require evaluation. To establish safety limits for operating parameters, a computerized simulation model of uranium aluminide dissolution in the aluminum fuel dissolver system was developed

  9. A Review on the Properties of Iron Aluminide Intermetallics

    Directory of Open Access Journals (Sweden)

    Mohammad Zamanzade

    2016-01-01

    Full Text Available Iron aluminides have been among the most studied intermetallics since the 1930s, when their excellent oxidation resistance was first noticed. Their low cost of production, low density, high strength-to-weight ratios, good wear resistance, ease of fabrication and resistance to high temperature oxidation and sulfurization make them very attractive as a substitute for routine stainless steel in industrial applications. Furthermore, iron aluminides allow for the conservation of less accessible and expensive elements such as nickel and molybdenum. These advantages have led to the consideration of many applications, such as brake disks for windmills and trucks, filtration systems in refineries and fossil power plants, transfer rolls for hot-rolled steel strips, and ethylene crackers and air deflectors for burning high-sulfur coal. A wide application for iron aluminides in industry strictly depends on the fundamental understanding of the influence of (i alloy composition; (ii microstructure; and (iii number (type of defects on the thermo-mechanical properties. Additionally, environmental degradation of the alloys, consisting of hydrogen embrittlement, anodic or cathodic dissolution, localized corrosion and oxidation resistance, in different environments should be well known. Recently, some progress in the development of new micro- and nano-mechanical testing methods in addition to the fabrication techniques of micro- and nano-scaled samples has enabled scientists to resolve more clearly the effects of alloying elements, environmental items and crystal structure on the deformation behavior of alloys. In this paper, we will review the extensive work which has been done during the last decades to address each of the points mentioned above.

  10. Aluminide Coating on Stainless Steel for Nuclear Reactor Application: A Preliminary Study

    International Nuclear Information System (INIS)

    Hishamuddin Husain; Zaifol Samsu; Yusof Abdullah; Muhamad Daud

    2015-01-01

    Stainless steels have been used as structural materials in the nuclear reactor since its first generation. Stainless steels type 304 and 316 are commonly used in structural components. Since the first generation materials, improvements were made on Stainless steels. This includes addition of stabilizing elements and by modification of metallurgical structure. This study investigates the formation of aluminide coating on Stainless steels by diffusion to help improve corrosion resistance. Stainless steels type 304 and 316 substrates were immersed in molten aluminium at 750 degree Celsius for 5 minutes. Interaction between molten aluminium and solid to form the outer aluminide coating by hot dipped aluminizing is studied. (Author)

  11. Effect of cerium addition on the corrosion behaviour of carbon-alloyed iron aluminides

    International Nuclear Information System (INIS)

    Sriram, S.; Balasubramaniam, R.; Mungole, M.N.; Bharagava, S.; Baligidad, R.G.

    2006-01-01

    The effect of Ce addition on the microstructure and corrosion behavior of carbon-alloyed iron aluminides Fe-20.0Al-2.0C, Fe-18.5Al-3.6C and Fe-19.2Al-3.3C-0.07Ce (in at.%) has been studied. The potentiodynamic polarization behaviour of the alloys was evaluated in freely aerated 0.25 mol/l H 2 SO 4 . A 0.05% C steel was used for comparison purposes. All the alloys exhibited active-passive behaviour in the acidic solution. The addition of Ce destroyed passivity as indicated by lower breakdown potentials in polarization studies. This has been related to the finer distribution of the carbides in the microstructure. Corrosion rates were evaluated by immersion testing. The iron aluminide with Ce addition exhibited a lower corrosion rate compared to the aluminides without Ce addition. This has been attributed to modifications in surface film with Ce addition. Scanning electron microscopy of corroded surfaces indicated that the carbon-alloyed intermetallics were susceptible to localized galvanic corrosion due to the presence of carbides in the microstructure

  12. Effects of stop–start features on residual stresses in a multipass austenitic stainless steel weld

    International Nuclear Information System (INIS)

    Turski, M.; Francis, J.A.; Hurrell, P.R.; Bate, S.K.; Hiller, S.; Withers, P.J.

    2012-01-01

    In this article we describe experiments that characterise and quantify the localised perturbations in residual stress associated with both ramped and abrupt stop–start features in a multipass weld. Residual stress distributions in AISI Grade 304L/308L stainless steel groove-welded specimens, containing weld interruptions that were introduced in a controlled manner, have been characterised using both neutron diffraction and the incremental deep hole drilling method. The extent to which the localised stresses associated with the interruptions were annealed by overlayed passes was also assessed. The results suggest that, regardless of the type of interruption, there can be significant localised increases in residual stress if the stop–start feature is left exposed. If further weld passes are deposited, then the localised increases in stress are likely to persist if the interruption was abrupt, whereas for a ramped interruption they may be dissipated. - Highlights: ► In this study the residual stress-field surrounding weld interruptions was measured. ► Localised stresses were found to increase at weld interruptions. ► Both ramped and abrupt weld interruptions were investigated. ► After subsequent weld passes, localised stresses persisted for abrupt interruptions. ► After subsequent weld passes, localised stresses dissipated for ramped interruptions.

  13. Overlay accuracy with respect to device scaling

    Science.gov (United States)

    Leray, Philippe; Laidler, David; Cheng, Shaunee

    2012-03-01

    Overlay metrology performance is usually reported as repeatability, matching between tools or optics aberrations distorting the measurement (Tool induced shift or TIS). Over the last few years, improvement of these metrics by the tool suppliers has been impressive. But, what about accuracy? Using different target types, we have already reported small differences in the mean value as well as fingerprint [1]. These differences make the correctables questionable. Which target is correct and therefore which translation, scaling etc. values should be fed back to the scanner? In this paper we investigate the sources of these differences, using several approaches. First, we measure the response of different targets to offsets programmed in a test vehicle. Second, we check the response of the same overlay targets to overlay errors programmed into the scanner. We compare overlay target designs; what is the contribution of the size of the features that make up the target? We use different overlay measurement techniques; is DBO (Diffraction Based Overlay) more accurate than IBO (Image Based Overlay)? We measure overlay on several stacks; what is the stack contribution to inaccuracy? In conclusion, we offer an explanation for the observed differences and propose a solution to reduce them.

  14. A comparative study on laser processing of commercially available titanium aluminide (TI-48AL-2CR-2NB) and in-situ alloying of titanium aluminide

    CSIR Research Space (South Africa)

    Hoosain, Shaik E

    2017-11-01

    Full Text Available Titanium aluminides (TiAl) are acknowledged as promising high temperature structural materials due to their high melting point, high strength to density, high elastic modulus and high creep strength. Due to their low ductility, it is difficult...

  15. Effect of microstructures on the hydrogen attack to gamma titanium aluminide at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, E. [Faculty of Mechanical Engineering, Universiti Technologi Malaysia 81310, Johor Bahru (Malaysia)]. E-mail: esah@fkm.utm.my; Suardi, K. [Faculty of Mechanical Engineering, Universiti Technologi Malaysia 81310, Johor Bahru (Malaysia); Ourdjini, A. [Faculty of Mechanical Engineering, Universiti Technologi Malaysia 81310, Johor Bahru (Malaysia)

    2005-04-25

    Intermetallic alloys based on gamma titanium aluminide are now regarded as promising candidates for high temperature applications such as for aerospace, marine and automotive engine components, due to their high specific strength and modulus. Their oxidation resistance is good, especially at intermediate and high temperature; oxidation resistance can be obtained up to 800 deg. C. One critical area of application is in combustion engines in aerospace vehicles such as hypersonic airplanes and high-speed civil transport airplanes. This entails the use of hydrogen as a fuel component and it has been widely reported by researchers that these materials exhibit corrosion in the form of environment embrittlement in the presence of hydrogen. A fair amount of research has been carried out to investigate the influence of hydrogen in {gamma}-titanium aluminide. Some researchers reported that {alpha}{sub 2} and lamellar phases had major influence in the susceptible of hydrogen to alloys, while hydrogen is too low to penetrate the {gamma}-phases. This research focused on the effect of different microstructures of {gamma}-titanium aluminide to the diffusion coefficient of hydrogen (D) and the corrosion product after hydrogen attack. Modification of {gamma}-titanium aluminide can be achieved by heat treatment of as-cast binary samples Ti-45% Al and Ti-48% Al. All samples were then subjected to corrosion attack under cathodically charged with galvanostatic mode for 6 h. The potential variation with time was monitored from these data the values of the diffusion coefficient of hydrogen (D) to {gamma}-titanium aluminide was obtained. D was calculated based on Fick's second Law. These results were compared with that obtained from micro-Vickers hardness profiling, which was measured at cross-section area per depth from the top corroded surface. The hardness values were calculated using the error function equation. An image analyzer; X-ray diffraction (XRD); scanning electron

  16. Effect of microstructures on the hydrogen attack to gamma titanium aluminide at low temperature

    International Nuclear Information System (INIS)

    Hamzah, E.; Suardi, K.; Ourdjini, A.

    2005-01-01

    Intermetallic alloys based on gamma titanium aluminide are now regarded as promising candidates for high temperature applications such as for aerospace, marine and automotive engine components, due to their high specific strength and modulus. Their oxidation resistance is good, especially at intermediate and high temperature; oxidation resistance can be obtained up to 800 deg. C. One critical area of application is in combustion engines in aerospace vehicles such as hypersonic airplanes and high-speed civil transport airplanes. This entails the use of hydrogen as a fuel component and it has been widely reported by researchers that these materials exhibit corrosion in the form of environment embrittlement in the presence of hydrogen. A fair amount of research has been carried out to investigate the influence of hydrogen in γ-titanium aluminide. Some researchers reported that α 2 and lamellar phases had major influence in the susceptible of hydrogen to alloys, while hydrogen is too low to penetrate the γ-phases. This research focused on the effect of different microstructures of γ-titanium aluminide to the diffusion coefficient of hydrogen (D) and the corrosion product after hydrogen attack. Modification of γ-titanium aluminide can be achieved by heat treatment of as-cast binary samples Ti-45% Al and Ti-48% Al. All samples were then subjected to corrosion attack under cathodically charged with galvanostatic mode for 6 h. The potential variation with time was monitored from these data the values of the diffusion coefficient of hydrogen (D) to γ-titanium aluminide was obtained. D was calculated based on Fick's second Law. These results were compared with that obtained from micro-Vickers hardness profiling, which was measured at cross-section area per depth from the top corroded surface. The hardness values were calculated using the error function equation. An image analyzer; X-ray diffraction (XRD); scanning electron microscope (SEM) and secondary ion mass

  17. Microstructural and mechanical property characterization of ingot metallurgy ODS iron aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Howell, C.R. [Oak Ridge National Lab., TN (United States); Hall, F.; Valykeo, J. [Hoskins Mfg. Co., Hamburg, MI (United States)

    1997-12-01

    This paper deals with a novel, lower cost method of producing a oxide dispersion strengthened (ODS) iron-aluminide alloy. A large 250-kg batch of ODS iron-aluminide alloy designated as FAS was produced by Hoskins Manufacturing Company (Hoskins) [Hamburg, Michigan] using the new process. Plate and bar stock of the ODS alloy were the two major products received. Each of the products was characterized for its microstructure, including grain size and uniformity of oxide dispersion. Tensile tests were completed from room temperature to 1100 C. Only 100-h creep tests were completed at 800 and 1000 C. The results of these tests are compared with the commercial ODS alloy designated as MA-956. An assessment of these data is used to develop future plans for additional work and identifying applications.

  18. Reaching for the true overlay in advanced nodes

    Science.gov (United States)

    Koay, Chiew-seng; Hamieh, Bassem; Felix, Nelson; Gaudiello, John

    2017-03-01

    Traditionally, the total measurement uncertainty (TMU) of overlay metrology focuses on dynamic precision, toolinduced-shift, and matching, while rarely examining inaccuracy. However, some researchers have recently shown that measurement inaccuracy can still be large despite optimized small TMU. Moreover, this inaccuracy can consume a significant portion of the overlay budget in the advanced nodes. In addition to qualifying the overlay error of inline wafers, overlay metrology is also used for improving on-product overlay as it provides corrective feedback to the lithography scanner. The accuracy of the correction terms as a result depends directly upon the measurement accuracy. As such, enhanced overlay accuracy will improve the overlay performance of reworked wafers, or subsequently exposed wafers. We have previously shown that a segmented Blossom target is more prone to asymmetry-induced inaccuracy than a nonsegmented target is [1]. Since target segmentation is inevitable for SADP and SAQP patterning processes, their resulting overlay performance leaves a lot to be desired. In our quest to reach for the true overlay, this paper reports our investigations on accuracy enhancement techniques for image-based targets, such as redundancy and self-calibration, and on the use of simulation-optimized scatterometry-based targets.

  19. Performance of ASML YieldStar μDBO overlay targets for advanced lithography nodes C028 and C014 overlay process control

    Science.gov (United States)

    Blancquaert, Yoann; Dezauzier, Christophe; Depre, Jerome; Miqyass, Mohamed; Beltman, Jan

    2013-04-01

    Continued tightening of overlay control budget in semiconductor lithography drives the need for improved metrology capabilities. Aggressive improvements are needed for overlay metrology speed, accuracy and precision. This paper is dealing with the on product metrology results of a scatterometry based platform showing excellent production results on resolution, precision, and tool matching for overlay. We will demonstrate point to point matching between tool generations as well as between target sizes and types. Nowadays, for the advanced process nodes a lot of information is needed (Higher order process correction, Reticle fingerprint, wafer edge effects) to quantify process overlay. For that purpose various overlay sampling schemes are evaluated: ultra- dense, dense and production type. We will show DBO results from multiple target type and shape for on product overlay control for current and future node down to at least 14 nm node. As overlay requirements drive metrology needs, we will evaluate if the new metrology platform meets the overlay requirements.

  20. Enhacement of intrafield overlay using a design based metrology system

    Science.gov (United States)

    Jo, Gyoyeon; Ji, Sunkeun; Kim, Shinyoung; Kang, Hyunwoo; Park, Minwoo; Kim, Sangwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Maruyama, Kotaro; Park, Byungjun

    2016-03-01

    As the scales of the semiconductor devices continue to shrink, accurate measurement and control of the overlay have been emphasized for securing more overlay margin. Conventional overlay analysis methods are based on the optical measurement of the overlay mark. However, the overlay data obtained from these optical methods cannot represent the exact misregistration between two layers at the circuit level. The overlay mismatch may arise from the size or pitch difference between the overlay mark and the real pattern. Pattern distortion, caused by CMP or etching, could be a source of the overlay mismatch as well. Another issue is the overlay variation in the real circuit pattern which varies depending on its location. The optical overlay measurement methods, such as IBO and DBO that use overlay mark on the scribeline, are not capable of defining the exact overlay values of the real circuit. Therefore, the overlay values of the real circuit need to be extracted to integrate the semiconductor device properly. The circuit level overlay measurement using CDSEM is time-consuming in extracting enough data to indicate overall trend of the chip. However DBM tool is able to derive sufficient data to display overlay tendency of the real circuit region with high repeatability. An E-beam based DBM(Design Based Metrology) tool can be an alternative overlay measurement method. In this paper, we are going to certify that the overlay values extracted from optical measurement cannot represent the circuit level overlay values. We will also demonstrate the possibility to correct misregistration between two layers using the overlay data obtained from the DBM system.

  1. Overlay leaves litho: impact of non-litho processes on overlay and compensation

    Science.gov (United States)

    Ruhm, Matthias; Schulz, Bernd; Cotte, Eric; Seltmann, Rolf; Hertzsch, Tino

    2014-10-01

    According to the ITRS roadmap [1], the overlay requirement for the 28nm node is 8nm. If we compare this number with the performance given by tool vendors for their most advanced immersion systems (which is emerging. Mask contributions and so-called non-linear wafer distortions are known effects that can impact overlay quite significantly. Furthermore, it is often forgotten that downstream (post-litho) processes can impact the overlay as well. Thus, it can be required to compensate for the effects of subsequent processes already at the lithography operation. Within our paper, we will briefly touch on the wafer distortion topic and discuss the limitations of lithography compensation techniques such as higher order corrections versus solving the root cause of the distortions. The primary focus will be on the impact of the etch processes on the pattern placement error. We will show how individual layers can get affected differently by showing typical wafer signatures. However, in contrast to the above-mentioned wafer distortion topic, lithographic compensation techniques can be highly effective to reduce the placement error significantly towards acceptable levels (see Figure 1). Finally we will discuss the overall overlay budget for a 28nm contact to gate case by taking the impact of the individual process contributors into account.

  2. Advanced diffraction-based overlay for double patterning

    Science.gov (United States)

    Li, Jie; Liu, Yongdong; Dasari, Prasad; Hu, Jiangtao; Smith, Nigel; Kritsun, Oleg; Volkman, Catherine

    2010-03-01

    Diffraction based overlay (DBO) technologies have been developed to address the tighter overlay control challenges as the dimensions of integrated circuit continue to shrink. Several studies published recently have demonstrated that the performance of DBO technologies has the potential to meet the overlay metrology budget for 22nm technology node. However, several hurdles must be cleared before DBO can be used in production. One of the major hurdles is that most DBO technologies require specially designed targets that consist of multiple measurement pads, which consume too much space and increase measurement time. A more advanced spectroscopic ellipsometry (SE) technology-Mueller Matrix SE (MM-SE) is developed to address the challenge. We use a double patterning sample to demonstrate the potential of MM-SE as a DBO candidate. Sample matrix (the matrix that describes the effects of the sample on the incident optical beam) obtained from MM-SE contains up to 16 elements. We show that the Mueller elements from the off-diagonal 2x2 blocks respond to overlay linearly and are zero when overlay errors are absent. This superior property enables empirical DBO (eDBO) using two pads per direction. Furthermore, the rich information in Mueller matrix and its direct response to overlay make it feasible to extract overlay errors from only one pad per direction using modeling approach (mDBO). We here present the Mueller overlay results using both eDBO and mDBO and compare the results with image-based overlay (IBO) and CD-SEM results. We also report the tool induced shifts (TIS) and dynamic repeatability.

  3. PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL

    Directory of Open Access Journals (Sweden)

    Milena Voděrová

    2013-07-01

    Full Text Available Intermediary phases Ni-Al and Fe-Al are promising materials due to their superior properties such as hardness and good resistance against oxidation at high temperatures. Moreover, Fe-Al phases are resistant in sulphur - containing atmospheres. Because of these characteristics, the above mentioned intermetallic phases seem to be prospective for the use in many technical applications such as energetics, chemical or automotive industry in a form of a bulk material or coatings. Presently, the protective aluminide layer is usually prepared by thermal spraying. Nevertheless, this method is not suitable for complex-shaped components. Therefore, the aim of this work was to find an alternative way to prepare layers consisting of nickel or iron aluminides by other technique than thermal spraying. At first, carbon steel samples were coated using galvanic or electroless nickel plating. Coated samples were subsequently submerged into molten aluminium at various temperatures and process durations. The influence of the temperature and duration on the intermetallic phase growth was studied by scanning electron and light microscopy. Thickness and microhardness of the intermetallic layer was also measured.

  4. PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL

    Directory of Open Access Journals (Sweden)

    Milena Voderova

    2013-05-01

    Full Text Available Intermediary phases Ni-Al and Fe-Al are promising materials due to their superior properties such as hardness and good resistance against oxidation at high temperatures. Moreover, Fe-Al phases are resistant in sulphur - containing atmospheres. Because of these characteristics, the above mentioned intermetallic phases seem to be prospective for the use in many technical applications such as energetics, chemical or automotive industry in a form of a bulk material or coatings. Presently, the protective aluminide layer is usually prepared by thermal spraying. Nevertheless, this method is not suitable for complex-shaped components. Therefore, the aim of this work was to find an alternative way to prepare layers consisting of nickel or iron aluminides by other technique than thermal spraying. At first, carbon steel samples were coated using galvanic or electroless nickel plating. Coated samples were subsequently submerged into molten aluminium at various temperatures and process durations. The influence of the temperature and duration on the intermetallic phase growth was studied by scanning electron and light microscopy. Thickness and microhardness of the intermetallic layer was also measured.

  5. Advances in the Systems and Processes for the Production of Gamma Titanium Aluminide Bars and Powder

    Science.gov (United States)

    Haun, Robert E.

    2017-12-01

    A historical look at the melt processing of gamma titanium aluminides is presented first, followed by recent advances in melting equipment design by Retech to produce 50-mm and 100-mm-diameter ingots up to 1000 mm long. Equipment design for the economical production of gamma titanium aluminide powder is then discussed. The focus in industry has shifted away from basic research to cost-effective production of these titanium alloys for aerospace and automotive engine applications.

  6. Diffraction-based overlay metrology for double patterning technologies

    Science.gov (United States)

    Dasari, Prasad; Korlahalli, Rahul; Li, Jie; Smith, Nigel; Kritsun, Oleg; Volkman, Cathy

    2009-03-01

    The extension of optical lithography to 32nm and beyond is made possible by Double Patterning Techniques (DPT) at critical levels of the process flow. The ease of DPT implementation is hindered by increased significance of critical dimension uniformity and overlay errors. Diffraction-based overlay (DBO) has shown to be an effective metrology solution for accurate determination of the overlay errors associated with double patterning [1, 2] processes. In this paper we will report its use in litho-freeze-litho-etch (LFLE) and spacer double patterning technology (SDPT), which are pitch splitting solutions that reduce the significance of overlay errors. Since the control of overlay between various mask/level combinations is critical for fabrication, precise and accurate assessment of errors by advanced metrology techniques such as spectroscopic diffraction based overlay (DBO) and traditional image-based overlay (IBO) using advanced target designs will be reported. A comparison between DBO, IBO and CD-SEM measurements will be reported. . A discussion of TMU requirements for 32nm technology and TMU performance data of LFLE and SDPT targets by different overlay approaches will be presented.

  7. Real cell overlay measurement through design based metrology

    Science.gov (United States)

    Yoo, Gyun; Kim, Jungchan; Park, Chanha; Lee, Taehyeong; Ji, Sunkeun; Jo, Gyoyeon; Yang, Hyunjo; Yim, Donggyu; Yamamoto, Masahiro; Maruyama, Kotaro; Park, Byungjun

    2014-04-01

    Until recent device nodes, lithography has been struggling to improve its resolution limit. Even though next generation lithography technology is now facing various difficulties, several innovative resolution enhancement technologies, based on 193nm wavelength, were introduced and implemented to keep the trend of device scaling. Scanner makers keep developing state-of-the-art exposure system which guarantees higher productivity and meets a more aggressive overlay specification. "The scaling reduction of the overlay error has been a simple matter of the capability of exposure tools. However, it is clear that the scanner contributions may no longer be the majority component in total overlay performance. The ability to control correctable overlay components is paramount to achieve the desired performance.(2)" In a manufacturing fab, the overlay error, determined by a conventional overlay measurement: by using an overlay mark based on IBO and DBO, often does not represent the physical placement error in the cell area of a memory device. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion, caused by etching or CMP, also can be a source of the mismatch. Therefore, the requirement of a direct overlay measurement in the cell pattern gradually increases in the manufacturing field, and also in the development level. In order to overcome the mismatch between conventional overlay measurement and the real placement error of layer to layer in the cell area of a memory device, we suggest an alternative overlay measurement method utilizing by design, based metrology tool. A basic concept of this method is shown in figure1. A CD-SEM measurement of the overlay error between layer 1 and 2 could be the ideal method but it takes too long time to extract a lot of data from wafer level. An E-beam based DBM tool provides high speed to cover the whole wafer with high repeatability. It is enabled by using the design as a

  8. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-01-01

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  9. A comparison of advanced overlay technologies

    Science.gov (United States)

    Dasari, Prasad; Smith, Nigel; Goelzer, Gary; Liu, Zhuan; Li, Jie; Tan, Asher; Koh, Chin Hwee

    2010-03-01

    The extension of optical lithography to 22nm and beyond by Double Patterning Technology is often challenged by CDU and overlay control. With reduced overlay measurement error budgets in the sub-nm range, relying on traditional Total Measurement Uncertainty (TMU) estimates alone is no longer sufficient. In this paper we will report scatterometry overlay measurements data from a set of twelve test wafers, using four different target designs. The TMU of these measurements is under 0.4nm, within the process control requirements for the 22nm node. Comparing the measurement differences between DBO targets (using empirical and model based analysis) and with image-based overlay data indicates the presence of systematic and random measurement errors that exceeds the TMU estimate.

  10. Hybrid overlay metrology for high order correction by using CDSEM

    Science.gov (United States)

    Leray, Philippe; Halder, Sandip; Lorusso, Gian; Baudemprez, Bart; Inoue, Osamu; Okagawa, Yutaka

    2016-03-01

    Overlay control has become one of the most critical issues for semiconductor manufacturing. Advanced lithographic scanners use high-order corrections or correction per exposure to reduce the residual overlay. It is not enough in traditional feedback of overlay measurement by using ADI wafer because overlay error depends on other process (etching process and film stress, etc.). It needs high accuracy overlay measurement by using AEI wafer. WIS (Wafer Induced Shift) is the main issue for optical overlay, IBO (Image Based Overlay) and DBO (Diffraction Based Overlay). We design dedicated SEM overlay targets for dual damascene process of N10 by i-ArF multi-patterning. The pattern is same as device-pattern locally. Optical overlay tools select segmented pattern to reduce the WIS. However segmentation has limit, especially the via-pattern, for keeping the sensitivity and accuracy. We evaluate difference between the viapattern and relaxed pitch gratings which are similar to optical overlay target at AEI. CDSEM can estimate asymmetry property of target from image of pattern edge. CDSEM can estimate asymmetry property of target from image of pattern edge. We will compare full map of SEM overlay to full map of optical overlay for high order correction ( correctables and residual fingerprints).

  11. Preparation of aluminide coatings on the inner surface of tubes by heat treatment of Al coatings electrodeposited from an ionic liquid

    International Nuclear Information System (INIS)

    Xue, Dongpeng; Chen, Yimin; Ling, Guoping; Liu, Kezhao; Chen, Chang’an; Zhang, Guikai

    2015-01-01

    Highlights: • Al coating is prepared on the inner surface of one-meter tube. • Al coating shows good adherence to the substrate. • The thickness of Al coating is uniform along the tube. • Aluminide coating is obtained by heat treating Al coating. • Structure of aluminide coating is regulated by different thickness of Al coating. - Abstract: Aluminide coatings were prepared on the inner surface of 316L stainless steel tubes with size of Ø 12 mm × 1000 mm by heat-treating Al coatings electrodeposited from AlCl 3 -1-ethyl-3-methyl-imidazolium chloride (AlCl 3 –EMIC) ionic liquid at room temperature. Studies on the electrolytic etching pretreatment of stainless tubes before Al coating electrodeposition were carried out. The Al coating showed good adherence to the substrate after electrolytic etching at 10 mA/cm 2 for 10 min. The thickness of Al coatings was uniform along the tube. The structure of prepared aluminide coatings can be regulated by different thickness of Al coating. The outer layer of aluminide coatings was FeAl, Fe 2 Al 5 and FeAl 3 for the samples of 1-μm, 5-μm and 10-μm thick Al coatings, respectively.

  12. Diffraction-based overlay for spacer patterning and double patterning technology

    Science.gov (United States)

    Lee, Byoung Hoon; Park, JeongSu; Lee, Jongsu; Park, Sarohan; Lim, ChangMoon; Yim, Dong-Gyu; Park, Sungki; Ryu, Chan-Ho; Morgan, Stephen; van de Schaar, Maurits; Fuchs, Andreas; Bhattacharyya, Kaustuve

    2011-03-01

    Overlay performance will be increasingly important for Spacer Patterning Technology (SPT) and Double Patterning Technology (DPT) as various Resolution Enhancement Techniques are employed to extend the resolution limits of lithography. Continuous shrinkage of devices makes overlay accuracy one of the most critical issues while overlay performance is completely dependent on exposure tool. Image Based Overlay (IBO) has been used as the mainstream metrology for overlay by the main memory IC companies, but IBO is not suitable for some critical layers due to the poor Tool Induced Shift (TIS) values. Hence new overlay metrology is required to improve the overlay measurement accuracy. Diffraction Based Overlay (DBO) is regarded to be an alternative metrology to IBO for more accurate measurements and reduction of reading errors. Good overlay performances of DBO have been reported in many articles. However applying DBO for SPT and DPT layers poses extra challenges for target design. New vernier designs are considered for different DPT and SPT schemes to meet overlay target in DBO system. In this paper, we optimize the design of the DBO target and the performance of DBO to meet the overlay specification of sub-3x nm devices which are using SPT and DPT processes. We show that the appropriate vernier design yields excellent overlay performance in residual and TIS. The paper also demonstrated the effects of vernier structure on overlay accuracy from SEM analysis.

  13. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    Energy Technology Data Exchange (ETDEWEB)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  14. High-throughput electrical characterization for robust overlay lithography control

    Science.gov (United States)

    Devender, Devender; Shen, Xumin; Duggan, Mark; Singh, Sunil; Rullan, Jonathan; Choo, Jae; Mehta, Sohan; Tang, Teck Jung; Reidy, Sean; Holt, Jonathan; Kim, Hyung Woo; Fox, Robert; Sohn, D. K.

    2017-03-01

    Realizing sensitive, high throughput and robust overlay measurement is a challenge in current 14nm and advanced upcoming nodes with transition to 300mm and upcoming 450mm semiconductor manufacturing, where slight deviation in overlay has significant impact on reliability and yield1). Exponentially increasing number of critical masks in multi-patterning lithoetch, litho-etch (LELE) and subsequent LELELE semiconductor processes require even tighter overlay specification2). Here, we discuss limitations of current image- and diffraction- based overlay measurement techniques to meet these stringent processing requirements due to sensitivity, throughput and low contrast3). We demonstrate a new electrical measurement based technique where resistance is measured for a macro with intentional misalignment between two layers. Overlay is quantified by a parabolic fitting model to resistance where minima and inflection points are extracted to characterize overlay control and process window, respectively. Analyses using transmission electron microscopy show good correlation between actual overlay performance and overlay obtained from fitting. Additionally, excellent correlation of overlay from electrical measurements to existing image- and diffraction- based techniques is found. We also discuss challenges of integrating electrical measurement based approach in semiconductor manufacturing from Back End of Line (BEOL) perspective. Our findings open up a new pathway for accessing simultaneous overlay as well as process window and margins from a robust, high throughput and electrical measurement approach.

  15. New low-viscosity overlay medium for viral plaque assays

    Directory of Open Access Journals (Sweden)

    Garten Wolfgang

    2006-08-01

    Full Text Available Abstract Background Plaque assays in cell culture monolayers under solid or semisolid overlay media are commonly used for quantification of viruses and antiviral substances. To overcome the pitfalls of known overlays, we tested suspensions of microcrystalline cellulose Avicel RC/CL™ as overlay media in the plaque and plaque-inhibition assay of influenza viruses. Results Significantly larger plaques were formed under Avicel-containing media, as compared to agar and methylcellulose (MC overlay media. The plaque size increased with decreasing Avicel concentration, but even very diluted Avicel overlays (0.3% ensured formation of localized plaques. Due to their low viscosity, Avicel overlays were easier to use than methylcellulose overlays, especially in the 96-well culture plates. Furthermore, Avicel overlay could be applied without prior removal of the virus inoculum thus facilitating the assay and reducing chances of cross-contamination. Using neuraminidase inhibitor oseltamivir carboxylate, we demonstrated applicability of the Avicel-based plaque reduction assay for testing of antiviral substances. Conclusion Plaque assay under Avicel-containing overlay media is easier, faster and more sensitive than assays under agar- and methylcellulose overlays. The assay can be readily performed in a 96-well plate format and seems particularly suitable for high-throughput virus titrations, serological studies and experiments on viral drug sensitivity. It may also facilitate work with highly pathogenic agents performed under hampered conditions of bio-safety labs.

  16. THE USE OF COATINGS FOR HOT CORROSION AND EROSION PROTECTION IN TURBINE HOT SECTION COMPONENTS

    Directory of Open Access Journals (Sweden)

    Hayrettin AHLATCI

    1999-01-01

    Full Text Available High pressure turbine components are subjected to a wide variety of thermal and mechanical loading during service. In addition, the components are exposed to a highly oxidizing atmosphere which may contain contaminants such as sulphates, chlorides and sulphuorous gases along with erosive media. So the variety of surface coatings and deposition processes available for the protection of blade and vane components in gas turbines are summarised in this study. Coating types range from simple diffusion aluminides to modified aluminides and a CoCrAlY overlayer. The recommendations for corrosion-resistant coatings (for low temperature and high temperature hot corrosion environments are as follows: silicon aluminide and platinumchromium aluminide for different gas turbine section superalloys substrates. Platinum metal additions are used to improve the properties of coatings on turbine components. Inorganic coatings based on ceramic films which contain aluminium or aluminium and silicon are very effective in engines and gas turbines. Diffusion, overlayer and thermal barrier coatings which are deposited on superalloys gas turbine components by pack cementation, plasma spraying processes and a number of chemical vapour deposition, physical vapour deposition processes (such as electron beam, sputtering, ion plating are described. The principles underlying the development of protective coatings serve as a useful guide in the choice of coatings for other high temperature applications.

  17. Synthesis and characterisation of pack cemented aluminide coatings on metals

    International Nuclear Information System (INIS)

    Houngninou, C.; Chevalier, S.; Larpin, J.P.

    2004-01-01

    The exposition of metallic materials to high temperature environments leads to their corrosion because of oxidation or sulphidation. One way to protect such materials is to produce an Al 2 O 3 layer which needs to be continuous enough to limit diffusion of oxygen or metallic elements, and withstand this corrosion. Since a few years, it has been proved that aluminide compounds are one of the most effective materials to achieve this goal. Indeed, they possess sufficient Al and many beneficial mechanical properties when exposed to high temperature conditions to make possible the formation of a protective Al 2 O 3 scale. This study is aimed at the elaboration of iron, nickel and molybdenum aluminides by modification of the surface of the base materials by a pack cementation process. The as-cemented alloys were analysed by means of SEM coupled with EDX and by XRD. Cross-section examinations showed, in each case, a progressive diffusion of aluminium through the substrates. The diffusion thickness layer was more or less important depending on the base material and on the coating conditions

  18. SEM based overlay measurement between resist and buried patterns

    Science.gov (United States)

    Inoue, Osamu; Okagawa, Yutaka; Hasumi, Kazuhisa; Shao, Chuanyu; Leray, Philippe; Lorusso, Gian; Baudemprez, Bart

    2016-03-01

    With the continuous shrink in pattern size and increased density, overlay control has become one of the most critical issues in semiconductor manufacturing. Recently, SEM based overlay of AEI (After Etch Inspection) wafer has been used for reference and optimization of optical overlay (both Image Based Overlay (IBO) and Diffraction Based Overlay (DBO)). Overlay measurement at AEI stage contributes monitor and forecast the yield after formation by etch and calibrate optical measurement tools. however those overlay value seems difficult directly for feedback to a scanner. Therefore, there is a clear need to have SEM based overlay measurements of ADI (After Develop Inspection) wafers in order to serve as reference for optical overlay and make necessary corrections before wafers go to etch. Furthermore, to make the corrections as accurate as possible, actual device like feature dimensions need to be measured post ADI. This device size measurement is very unique feature of CDSEM , which can be measured with smaller area. This is currently possible only with the CD-SEM. This device size measurement is very unique feature of CD-SEM , which can be measured with smaller area. In this study, we assess SEM based overlay measurement of ADI and AEI wafer by using a sample from an N10 process flow. First, we demonstrate SEM based overlay performance at AEI by using dual damascene process for Via 0 (V0) and metal 1 (M1) layer. We also discuss the overlay measurements between litho-etch-litho stages of a triple patterned M1 layer and double pattern V0. Second, to illustrate the complexities in image acquisition and measurement we will measure overlay between M1B resist and buried M1A-Hard mask trench. Finally, we will show how high accelerating voltage can detect buried pattern information by BSE (Back Scattering Electron). In this paper we discuss the merits of this method versus standard optical metrology based corrections.

  19. Formation of alumina-aluminide coatings on ferritic-martensitic T91 steel

    Directory of Open Access Journals (Sweden)

    Choudhary R.K.

    2014-01-01

    Full Text Available In this work, alumina-aluminide coatings were formed on ferritic-martensitic T91 steel substrate. First, coatings of aluminum were deposited electrochemically on T91 steel in a room temperature AlCl3-1-ethyl-3-methyl imidazolium chloride ionic liquid, then the obtained coating was subjected to a two stage heat treatment procedure consisting of prolonged heat treatment of the sample in vacuum at 300 ○C followed by oxidative heat treatment in air at 650 ○C for 16 hours. X-ray diffraction measurement of the oxidatively heat treated samples indicated formation of Fe-Al and Cr-Al intermetallics and presence of amorphous alumina. Energy dispersive X-ray spectroscopy measurement confirmed 50 wt- % O in the oxidized coating. Microscratch adhesion test conducted on alumina-aluminide coating formed on T91 steel substrate showed no major adhesive detachment up to 20 N loads. However, adhesive failure was observed at a few discrete points on the coating along the scratch track.

  20. Analysis of microstructure and mechanical properties of aluminium-copper joints welded by FSW process

    Science.gov (United States)

    Iordache, M.; Sicoe, G.; Iacomi, D.; Niţu, E.; Ducu, C.

    2017-08-01

    The research conducted in this article aimed to check the quality of joining some dissimilar materials Al-Cu by determining the mechanical properties and microstructure analysis. For the experimental measurements there were used tin alloy Al - EN-AW-1050A with a thickness of 2 mm and Cu99 sheet with a thickness of 2 mm, joined by FSW weld overlay. The main welding parameters were: rotating speed of the rotating element 1400 rev/min, speed of the rotating element 50 mm/min. The experimental results were determined on samples specially prepared for metallographic analysis. In order to prepare samples for their characterization, there was designed and built a device that allowed simultaneous positioning and fixing for grinding. The characteristics analyzed in the joint welded samples were mictrostructure, microhardness and residual stresses. The techniques used to determine these characteristics were optical microscopy, electron microscopy with fluorescence radioactive elemental analysis (EDS), Vickers microhardness line - HV0.3 and X-ray diffractometry.

  1. Image-based overlay measurement using subsurface ultrasonic resonance force microscopy

    Science.gov (United States)

    Tamer, M. S.; van der Lans, M. J.; Sadeghian, H.

    2018-03-01

    Image Based Overlay (IBO) measurement is one of the most common techniques used in Integrated Circuit (IC) manufacturing to extract the overlay error values. The overlay error is measured using dedicated overlay targets which are optimized to increase the accuracy and the resolution, but these features are much larger than the IC feature size. IBO measurements are realized on the dedicated targets instead of product features, because the current overlay metrology solutions, mainly based on optics, cannot provide sufficient resolution on product features. However, considering the fact that the overlay error tolerance is approaching 2 nm, the overlay error measurement on product features becomes a need for the industry. For sub-nanometer resolution metrology, Scanning Probe Microscopy (SPM) is widely used, though at the cost of very low throughput. The semiconductor industry is interested in non-destructive imaging of buried structures under one or more layers for the application of overlay and wafer alignment, specifically through optically opaque media. Recently an SPM technique has been developed for imaging subsurface features which can be potentially considered as a solution for overlay metrology. In this paper we present the use of Subsurface Ultrasonic Resonance Force Microscopy (SSURFM) used for IBO measurement. We used SSURFM for imaging the most commonly used overlay targets on a silicon substrate and photoresist. As a proof of concept we have imaged surface and subsurface structures simultaneously. The surface and subsurface features of the overlay targets are fabricated with programmed overlay errors of +/-40 nm, +/-20 nm, and 0 nm. The top layer thickness changes between 30 nm and 80 nm. Using SSURFM the surface and subsurface features were successfully imaged and the overlay errors were extracted, via a rudimentary image processing algorithm. The measurement results are in agreement with the nominal values of the programmed overlay errors.

  2. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.P., E-mail: thpfys@126.com [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L. [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Qian, M., E-mail: ma.qian@rmit.edu.au [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Centre for Additive Manufacturing, Melbourne, VIC 3001 (Australia)

    2015-06-11

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways.

  3. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    International Nuclear Information System (INIS)

    Tang, H.P.; Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L.; Qian, M.

    2015-01-01

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways

  4. Scatterometry or imaging overlay: a comparative study

    Science.gov (United States)

    Hsu, Simon C. C.; Pai, Yuan Chi; Chen, Charlie; Yu, Chun Chi; Hsing, Henry; Wu, Hsing-Chien; Kuo, Kelly T. L.; Amir, Nuriel

    2015-03-01

    Most fabrication facilities today use imaging overlay measurement methods, as it has been the industry's reliable workhorse for decades. In the last few years, third-generation Scatterometry Overlay (SCOL™) or Diffraction Based Overlay (DBO-1) technology was developed, along another DBO technology (DBO-2). This development led to the question of where the DBO technology should be implemented for overlay measurements. Scatterometry has been adopted for high volume production in only few cases, always with imaging as a backup, but scatterometry overlay is considered by many as the technology of the future. In this paper we compare imaging overlay and DBO technologies by means of measurements and simulations. We outline issues and sensitivities for both technologies, providing guidelines for the best implementation of each. For several of the presented cases, data from two different DBO technologies are compared as well, the first with Pupil data access (DBO-1) and the other without pupil data access (DBO-2). Key indicators of overlay measurement quality include: layer coverage, accuracy, TMU, process robustness and robustness to process changes. Measurement data from real cases across the industry are compared and the conclusions are also backed by simulations. Accuracy is benchmarked with reference OVL, and self-consistency, showing good results for Imaging and DBO-1 technology. Process sensitivity and metrology robustness are mostly simulated with MTD (Metrology Target Designer) comparing the same process variations for both technologies. The experimental data presented in this study was done on ten advanced node layers and three production node layers, for all phases of the IC fabrication process (FEOL, MEOL and BEOL). The metrology tool used for most of the study is KLA-Tencor's Archer 500LCM system (scatterometry-based and imaging-based measurement technologies on the same tool) another type of tool is used for DBO-2 measurements. Finally, we conclude that

  5. Development of an Overlay Design Procedure for Composite Pavements

    Science.gov (United States)

    2017-09-01

    The composite overlay design procedure currently used by ODOT sometimes produces very large overlay thicknesses that are deemed structurally unnecessary, especially for composite pavements already with thick asphalt overlays. This study was initiated...

  6. BASIC overlay for CAMAC data and command handling

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, O [Istanbul Technical Univ. (Turkey). Inst. for Nuclear Energy

    1979-11-15

    A BASIC overlay has been developed for the BASIC language run in the PDP-11 series of computers. The overlay has particularly been wirtten for a dedicated Camac Crate Controller DC-011 from Ortec. By means of the overlay, any command comprising C, N, A, F information can easily be issued by the host system to communicate with the peripherals connected to the CAMAC system, through the CAMAC interface. The overlay is particularly useful for rather slow control systems and data handling between two different operating systems with incompatible formats for the data files having the CAMAC system as a mutual system component controllable by each of the operating systems individually. The overlay can easily be modified to be used for a Standard controller (type A-1) or any other type of dedicated controller.

  7. Characterization of the Interface of an Alloy 625 Overlay on Steels Using Nanoindentation

    Science.gov (United States)

    Dai, Tao; Lippold, John

    2018-06-01

    Industry standards require postweld heat treatment (PWHT) to reduce the heat-affected zone hardness of steels such as F22 (2.25Cr-1Mo) and AISI 8630 overlaid (clad) with Alloy 625 weld metal. PWHT results in carbon diffusion and accumulation at the interface between the steel and overlay. The accumulation of carbon in a planar solidification growth zone adjacent to the fusion boundary results in high hardness and the potential for hydrogen-assisted cracking. The planar growth zone (PGZ) is so narrow that normal Vickers hardness testing cannot fully reveal the hardness distribution in this zone. This study focused on the application of nanoindentation to characterize the hardness in the narrow microstructural regions adjacent to the fusion boundary. The development of nanohardness maps revealed that the PGZ is not necessarily the region that exhibits peak hardness after PWHT. The highest hardness values were associated with clusters of M7C3 carbides in specific subregions in the PGZ and also in the partially-mixed zone adjacent to the fusion boundary or in steel "swirl" structures. It was also confirmed in this study that nanohardness has a linear correlation with Vickers hardness values. The results presented here provide new insight into the role of carbon diffusion during PWHT and its effect on interface embrittlement associated with Alloy 625 overlays on steel.

  8. In situ corrosion testing of various nickel alloys at Måbjerg waste incineration plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Hansson, A. N.; Jensen, S. A.

    2013-01-01

    overlay material currently being used to give improved corrosion resistance. In order to assess the use of alternative nickel alloys, test panels have been manufactured and inserted into Måbjerg waste incineration plant. Inconel 625 as a 50% weld overlay, two layered weld overlay and as a spiral weld......The majority of waste in Denmark is disposed via waste to energy (WTE) incineration plants which are fabricated from carbon steel. However, due to the increasing corrosiveness of waste over the years, more corrosion resistant alloys are required. In Denmark, Inconel 625 (UNSN06625) is the weld...... overlay was exposed. Other nickel materials exposed were weld overlay Alloy 686, Alloy 50 and Sumitomo Super 625 coextruded tube. Exposure has been undertaken from 2003 to 2009 in the first pass and 2005–2009 in the second pass, and sections have been removed and investigated during this period...

  9. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  10. Plasma electrolytic oxidation of Titanium Aluminides

    International Nuclear Information System (INIS)

    Morgenstern, R; Sieber, M; Lampke, T; Grund, T; Wielage, B

    2016-01-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na 2 SiO 3 ·5H 2 O and K 4 P 2 O 7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum. (paper)

  11. Colors, colored overlays, and reading skills

    Directory of Open Access Journals (Sweden)

    Arcangelo eUccula

    2014-07-01

    Full Text Available In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e. who experience eyestrain and/or visual distortions – e.g. color, shape or movement illusions – while reading. This condition would interest the 12-14% of the general population and up to the 46% of the dyslexic population. Thus, colored overlays have been largely employed as a remedy for some aspects of the difficulties in reading experienced by dyslexic individuals, as fluency and speed. Despite the wide use of colored overlays, how they exert their effects has not been made clear yet. Also, according to some researchers, the results supporting the efficacy of colored overlays as a tool for helping readers are at least controversial. Furthermore, the very nature of the Meares-Irlen syndrome has been questioned. Here we provide a concise, critical review of the literature.

  12. Microstructural Study on Oxidation Resistance of Nonmodified and Platinum Modified Aluminide Coating

    Science.gov (United States)

    Zagula-Yavorska, Maryana; Sieniawski, Jan

    2014-03-01

    Platinum electroplating layers (3 and 7 μm thick) were deposited on the surface of the Inconel 713 LC, CMSX 4, and Inconel 625 Ni-base superalloys. Diffusion treatment at 1050°C for 2 h under argon atmosphere was performed after electroplating. Diffusion treated samples were aluminized according to the low activity CVD process at 1050°C for 8 h. The nonmodified aluminide coatings consist of NiAl phase. Platinum modification let to obtain the (Ni,Pt)Al phase in coatings. The coated samples were subjected to cyclic oxidation testing at 1100°C. It was discovered that increase of the platinum electroplating thickness from 3 to 7 μm provides the improvement of oxidation resistance of aluminide coatings. Increase of the platinum thickness causes decreases in weight change and decreases in parabolic constant during oxidation. The platinum provides the pure Al2O3 oxide formation, slow growth oxide layer, and delay the oxide spalling during heating-cooling thermal cycles.

  13. In-cell overlay metrology by using optical metrology tool

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Park, Hyowon; Liang, Waley; Choi, DongSub; Kim, Nakyoon; Lee, Jeongpyo; Pandev, Stilian; Jeon, Sanghuck; Robinson, John C.

    2018-03-01

    Overlay is one of the most critical process control steps of semiconductor manufacturing technology. A typical advanced scheme includes an overlay feedback loop based on after litho optical imaging overlay metrology on scribeline targets. The after litho control loop typically involves high frequency sampling: every lot or nearly every lot. An after etch overlay metrology step is often included, at a lower sampling frequency, in order to characterize and compensate for bias. The after etch metrology step often involves CD-SEM metrology, in this case in-cell and ondevice. This work explores an alternative approach using spectroscopic ellipsometry (SE) metrology and a machine learning analysis technique. Advanced 1x nm DRAM wafers were prepared, including both nominal (POR) wafers with mean overlay offsets, as well as DOE wafers with intentional across wafer overlay modulation. After litho metrology was measured using optical imaging metrology, as well as after etch metrology using both SE and CD-SEM for comparison. We investigate 2 types of machine learning techniques with SE data: model-less and model-based, showing excellent performance for after etch in-cell on-device overlay metrology.

  14. Hybrid overlay metrology with CDSEM in a BEOL patterning scheme

    Science.gov (United States)

    Leray, Philippe; Jehoul, Christiane; Inoue, Osamu; Okagawa, Yutaka

    2015-03-01

    Overlay metrology accuracy is a major concern for our industry. Advanced logic process require more tighter overlay control for multipatterning schemes. TIS (Tool Induced Shift) and WIS (Wafer Induced Shift) are the main issues for IBO (Image Based Overlay) and DBO (Diffraction Based Overlay). Methods of compensation have been introduced, some are even very efficient to reduce these measured offsets. Another related question is about the overlay target designs. These targets are never fully representative of the design rules, strong efforts have been achieved, but the device cannot be completely duplicated. Ideally, we would like to measure in the device itself to verify the real overlay value. Top down CDSEM can measure critical dimensions of any structure, it is not dependent of specific target design. It can also measure the overlay errors but only in specific cases like LELE (Litho Etch Litho Etch) after final patterning. In this paper, we will revisit the capability of the CDSEM at final patterning by measuring overlay in dedicated targets as well as inside a logic and an SRAM design. In the dedicated overlay targets, we study the measurement differences between design rules gratings and relaxed pitch gratings. These relaxed pitch which are usually used in IBO or DBO targets. Beyond this "simple" LELE case, we will explore the capability of the CDSEM to measure overlay even if not at final patterning, at litho level. We will assess the hybridization of DBO and CDSEM for reference to optical tools after final patterning. We will show that these reference data can be used to validate the DBO overlay results (correctables and residual fingerprints).

  15. Evaluating diffraction-based overlay

    Science.gov (United States)

    Li, Jie; Tan, Asher; Jung, JinWoo; Goelzer, Gary; Smith, Nigel; Hu, Jiangtao; Ham, Boo-Hyun; Kwak, Min-Cheol; Kim, Cheol-Hong; Nam, Suk-Woo

    2012-03-01

    We evaluate diffraction-based overlay (DBO) metrology using two test wafers. The test wafers have different film stacks designed to test the quality of DBO data under a range of film conditions. We present DBO results using traditional empirical approach (eDBO). eDBO relies on linear response of the reflectance with respect to the overlay displacement within a small range. It requires specially designed targets that consist of multiple pads with programmed shifts. It offers convenience of quick recipe setup since there is no need to establish a model. We measure five DBO targets designed with different pitches and programmed shifts. The correlations of five eDBO targets and the correlation of eDBO to image-based overlay are excellent. The targets of 800nm and 600nm pitches have better dynamic precision than targets of 400nm pitch, which agrees with simulated results on signal/noise ratio. 3σ of less than 0.1nm is achieved for both wafers using the best configured targets. We further investigate the linearity assumption of eDBO algorithm. Simulation results indicate that as the pitch of DBO targets gets smaller, the nonlinearity error, i.e., the error in the overlay measurement results caused by deviation from ideal linear response, becomes bigger. We propose a nonlinearity correction (NLC) by including higher order terms in the optical response. The new algorithm with NLC improves measurement consistency for DBO targets of same pitch but different programmed shift, due to improved accuracy. The results from targets with different pitches, however, are improved marginally, indicating the presence of other error sources.

  16. Irradiation effects on low-friction coatings for LMFBR applications

    International Nuclear Information System (INIS)

    Ward, A.L.; Johnson, R.N.; Guthrie, G.L.; Aungst, R.C.

    1975-11-01

    A variety of wear-resistant low-friction materials has been irradiated in the EBR-II in order to assess their reponse to LMFBR environments. Pre- and postirradiation testing and examination efforts have concentrated on candidate materials for application to the wear pads on FTR ducts (fuel, control, and reflector assemblies), and a significant result has been qualification of a proprietary detonation-gun-applied chromium carbide coating which employs a Ni Cr binder. Additional materials such as Inconel-718, Haynes-273, aluminides, and various chromium carbide/binder combinations, and other application processes such as plasma-spray, weld-overlays, diffusion bonding and explosive bonding, have also been studied. The most detailed examinations were conducted on selected chromium carbide coatings and included visual inspection, weight and dimensional measurements, metallography, electron microprobe, epoxy-lift-off, and x-ray diffraction analysis. Chromium carbide coatings applied by the detonation-gun process have demonstrated a marked superiority to those applied by plasma-spray techniques

  17. Perceived effects of coloured overlays on reading material in persons with albinism

    Directory of Open Access Journals (Sweden)

    N. T. Makgaba

    2008-12-01

    Full Text Available Persons with albinism often complain of glare when reading. They may therefore benefit from coloured filter overlays just as they benefit from tinted lenses. The purpose of this study was to assess the effectof coloured overlays on print perception in persons with oculocutaneous albinism (OCA.   Fifty subjects were included in this study, their ages ranged from 12 to 31 years with a mean of 16.12 years (SD = ± 4.56 years.  Following refraction and subsequent compensation for refractive errors, subjective perception of print was examined with the subject looking at the Wilkins® reading rate test chart with and without colored filter overlay/s.  The subjects were asked to respond to questions previously used in a questionnaire by Wilkins (2001. The percentage frequencies of positive (beneficial responses were used to decide whether or not a particular overlay would enhance reading performance.  McNemar’s test was used to establish significant differences between responses to questions without and with overlays. All single overlays gave greater percentages of positive responses (92.0-97.2% than without overlay (85.2%.  The single overlay that provided the highest positive responses was blue (97.2% and the least was purple (92.0%. All double overlays, except grey/grey (82.0% gave greater positive responses than without overlay (85.2%. Aqua/blue gave the greatest positive responses (possible benefits (97.2%, followed by rose/rose (96.8%.  Comparing the responses without overlay with single and double overlays, the difference in responses to the five questions was only significant (p < 0.05 with regard to brightness of the surface. The results suggest that overlays provided a more glare-free reading surface than without an overlay. It was, therefore concluded that the best advantage of the coloured overlays was in glare reduction.  Although this study showed that there were more subjects who preferred single blue and aqua/blue double

  18. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    Science.gov (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  19. Effects of high temperature surface oxides on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, R.A.; Perrin, R.L.

    1996-09-01

    Studies were conducted to determine the effects of high-temperature surface oxides, produced during thermomechanical processing, heat treatment (750 {degrees}C in air, one hour) or simulated in-service-type oxidation (1000{degrees}C in air, 24 hours) on the room-temperature aqueous-corrosion and environmental-embrittlement characteristics of iron aluminides. Materials evaluated included the Fe{sub 3}Al-based iron aluminides, FA-84, FA-129, FAL and FAL-Mo, a FeAl-based iron aluminide, FA-385, and a disordered low-aluminum Fe-Al alloy, FAPY. Tests were performed in a mild acid-chloride solution to simulate aggressive atmospheric corrosion. Cyclic-anodic-polarization tests were employed to evaluate resistances to localized aqueous corrosion. The high-temperature oxide surfaces consistently produced detrimental results relative to mechanically or chemically cleaned surfaces. Specifically, the pitting corrosion resistances were much lower for the as-processed and 750{degrees} C surfaces, relative to the cleaned surfaces, for FA-84, FA-129, FAL-Mo, FA-385 and FAPY. Furthermore, the pitting corrosion resistances were much lower for the 1000{degrees}C surfaces, relative to cleaned surfaces, for FA-129, FAL and FAL-Mo.

  20. Titanium Aluminide Casting Technology Development

    Science.gov (United States)

    Bünck, Matthias; Stoyanov, Todor; Schievenbusch, Jan; Michels, Heiner; Gußfeld, Alexander

    2017-12-01

    Titanium aluminide alloys have been successfully introduced into civil aircraft engine technology in recent years, and a significant order volume increase is expected in the near future. Due to its beneficial buy-to-fly ratio, investment casting bears the highest potential for cost reduction of all competing production technologies for TiAl-LPTB. However, highest mechanical properties can be achieved by TiAl forging. In view of this, Access e.V. has developed technologies for the production of TiAl investment cast parts and TiAl die cast billets for forging purposes. While these parts meet the highest requirements, establishing series production and further optimizing resource and economic efficiency are present challenges. In order to meet these goals, Access has recently been certified according to aircraft standards, aiming at qualifying parts for production on technology readiness level 6. The present work gives an overview of the phases of development and certification.

  1. Effect of Nb on phase transformations and microstructure in high Nb titanium aluminides

    International Nuclear Information System (INIS)

    Bean, Glenn E.; Kesler, Michael S.; Manuel, Michele V.

    2014-01-01

    Highlights: • Thermodynamically-guided design of heat treatment schedules. • Linking chemistry and heat treatment to phase morphology. • Strong dependence of phase transformation behavior on Nb concentration. - Abstract: Titanium aluminides are of interest due to their high specific strength and performance up to 750 °C. Research into high-Nb γ-TiAl based titanium aluminides has shown promising improvements in performance by introduction of the σ-Nb 2 Al phase. However, one current challenge is improving mechanical properties at room and elevated temperatures in order to enable their further implementation. These properties are closely tied with microstructural refinement, and thus phase evolution and microstructural development is the focus of this work. Phase transformation temperatures and stability ranges were determined experimentally through DSC analysis of arc melted alloys, then compared with predictions based upon computational models, and investigated through heat treatment of experimental alloys to develop an ultrafine γ + σ microstructure

  2. Effect of Nb on phase transformations and microstructure in high Nb titanium aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Glenn E.; Kesler, Michael S.; Manuel, Michele V., E-mail: mmanuel@mse.ufl.edu

    2014-11-15

    Highlights: • Thermodynamically-guided design of heat treatment schedules. • Linking chemistry and heat treatment to phase morphology. • Strong dependence of phase transformation behavior on Nb concentration. - Abstract: Titanium aluminides are of interest due to their high specific strength and performance up to 750 °C. Research into high-Nb γ-TiAl based titanium aluminides has shown promising improvements in performance by introduction of the σ-Nb{sub 2}Al phase. However, one current challenge is improving mechanical properties at room and elevated temperatures in order to enable their further implementation. These properties are closely tied with microstructural refinement, and thus phase evolution and microstructural development is the focus of this work. Phase transformation temperatures and stability ranges were determined experimentally through DSC analysis of arc melted alloys, then compared with predictions based upon computational models, and investigated through heat treatment of experimental alloys to develop an ultrafine γ + σ microstructure.

  3. Ablative overlays for Space Shuttle leading edge ascent heat protection

    Science.gov (United States)

    Strauss, E. L.

    1975-01-01

    Ablative overlays were evaluated via a plasma-arc simulation of the ascent pulse on the leading edge of the Space Shuttle Orbiter. Overlay concepts included corkboard, polyisocyanurate foam, low-density Teflon, epoxy, and subliming salts. Their densities ranged from 4.9 to 81 lb per cu ft, and the thicknesses varied from 0.107 to 0.330 in. Swept-leading-edge models were fabricated from 30-lb per cu ft silicone-based ablators. The overlays were bonded to maintain the surface temperature of the base ablator below 500 F during ascent. Foams provided minimum-weight overlays, and subliming salts provided minimum-thickness overlays. Teflon left the most uniform surface after ascent heating.

  4. Aluminide protective coatings on high–temperature creep resistant cast steel

    OpenAIRE

    J. Kubicki; A. Kochmańska

    2009-01-01

    This paper presents the results of research on aluminide protective coatings manufactured on high–temperature creep resistant cast steel. The main purpose of these coatings is protection against the high temperature corrosion, especially at high carburizing potential atmosphere. Coatings were obtained on cast steel type G–XNiCrSi36–18 with the following methods: pack cementation, paste method, cast method and slurry cementation. The phase composition, thickness and morphology of coatings were...

  5. Oxidation-sulfidation behavior of Ni aluminide in oxygen-sulfur mixed-gas atmospheres

    International Nuclear Information System (INIS)

    Natesan, K.

    1988-01-01

    Oxidation-sulfidation studies were conducted with sheet samples of nickel aluminide, containing 23.5 at. % Al, 0.5 at. % Hf, and 0.2 at. % B, in an annealed condition and after preoxidation treatments. Continuous weight-change measurements were made by a thermogravimetric technique in exposure atmospheres of air, a low-pO/sub 2/ gas mixture, and low-pO/sub 2/ gas mixtures with several levels of sulfur. The air-exposed specimens developed predominantly nickel oxide; the specimen exposed to a low-pO/sub 2/ environment developed an aluminum oxide scale. As the sulfur content of the gas mixture increased, the alumina scale exhibited spallation and the alloy tended to form nickel sulfide as the reaction phase. The results indicated that the sulfidation reaction of nickel aluminide specimens (both bare and preoxidized) was determined by the rate of transport of nickel from the substrate through the scale to the gas/alumina scale interface, the mechanical integrity of the oxide scale, and the H/sub 2/S concentration in the exposure environment

  6. High-velocity-oxidation performance of metal-chromium-aluminum (MCrAl), cermet, and modified aluminide coatings on IN-100 and type VIA alloys at 1093 C

    Science.gov (United States)

    Deadmore, D. L.

    1974-01-01

    Cermet, MCrAl, and modified aluminide types of coatings applied to IN-100 and NASA-TRW-VIA alloy specimens were cyclically oxidation tested in a high velocity (Mach 1) gas flame at 1093 C. Several coating compositions of each type were evaluated for oxidation resistance. The modified aluminide coating, Pt-Al, applied to alloy 6A proved to be the best, providing oxidation protection to approximately 750 hours based on weight change measurements. The second best, a CoCrAlY coating applied to 6A, provided protection to 450 hours. The third best was a cermet + aluminide coating on 6A with a protection time to 385 hours.

  7. Tack coat optimization for HMA overlays laboratory testing.

    Science.gov (United States)

    2008-09-01

    Interface bonding between hot-mix asphalt (HMA) overlays and Portland cement concrete (PCC) pavements can be one of the most : significant factors affecting overlay service life. Various factors may affect the bonding condition at the interface, incl...

  8. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Science.gov (United States)

    Kilinc, B.; Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe12Nb5B3 and Fe2NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe2B, NbB2, NbFeB and Fe0,2 Nb0,8 phases. The hardness of the presence phases are changing between 1689±85 HV0.01, and 181±7 HV0.1. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe12Nb5B3 and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  9. Optimization of laboratory hot rolling of brittle Fe-40at.%Al-Zr-B aluminide

    Czech Academy of Sciences Publication Activity Database

    Schindler, I.; Hadasik, E.; Kopeček, Jaromír; Kawulok, P.; Fabík, R.; Opěla, P.; Rusz, S.; Kawulok, R.; Jabłońska, M.

    2015-01-01

    Roč. 60, č. 3 (2015), s. 1693-1701 ISSN 1733-3490 R&D Projects: GA ČR(CZ) GAP107/10/0438 Institutional support: RVO:68378271 Keywords : iron aluminides * EBSD * textures * modelling Subject RIV: JG - Metallurgy Impact factor: 1.090, year: 2014

  10. Accuracy optimization with wavelength tunability in overlay imaging technology

    Science.gov (United States)

    Lee, Honggoo; Kang, Yoonshik; Han, Sangjoon; Shim, Kyuchan; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, Dongyoung; Oh, Eungryong; Choi, Ahlin; Kim, Youngsik; Marciano, Tal; Klein, Dana; Hajaj, Eitan M.; Aharon, Sharon; Ben-Dov, Guy; Lilach, Saltoun; Serero, Dan; Golotsvan, Anna

    2018-03-01

    As semiconductor manufacturing technology progresses and the dimensions of integrated circuit elements shrink, overlay budget is accordingly being reduced. Overlay budget closely approaches the scale of measurement inaccuracies due to both optical imperfections of the measurement system and the interaction of light with geometrical asymmetries of the measured targets. Measurement inaccuracies can no longer be ignored due to their significant effect on the resulting device yield. In this paper we investigate a new approach for imaging based overlay (IBO) measurements by optimizing accuracy rather than contrast precision, including its effect over the total target performance, using wavelength tunable overlay imaging metrology. We present new accuracy metrics based on theoretical development and present their quality in identifying the measurement accuracy when compared to CD-SEM overlay measurements. The paper presents the theoretical considerations and simulation work, as well as measurement data, for which tunability combined with the new accuracy metrics is shown to improve accuracy performance.

  11. Multi-level Reconfigurable Self-organization in Overlay Services

    NARCIS (Netherlands)

    Pournaras, E.

    2013-01-01

    Large-scale decentralized systems organized in overlay networks are complex to manage. Such systems integrate organizational complexity in the application-level resulting in low abstraction and modularity in their services. This thesis introduces a multi-level conceptual architecture for overlay

  12. Strategic intelligence on emerging technologies: Scientometric overlay mapping

    NARCIS (Netherlands)

    Rotolo, D.; Rafols, I.; Hopkins, M.M.; Leydesdorff, L.

    This paper examines the use of scientometric overlay mapping as a tool of “strategic intelligence” to aid the governing of emerging technologies. We develop an integrative synthesis of different overlay mapping techniques and associated perspectives on technological emergence across geographical,

  13. A Plan to Optimize the Management of Weld ID SSN Numbering System for Nuclear Power Plants in Korea

    International Nuclear Information System (INIS)

    Yoo, Hyun Ju; Cho, Chan Hee; Kim, Jin Hoi; Park, Dong Min

    2016-01-01

    Summary Sheet Number(SSN) in the current LTP is an ID which means a weldment in a nuclear power plant. However, the SSN ID, which is unique on in a nuclear power plant, is not unique one if the weldments of entire nuclear power plant in Korea are treated in one system. Therefore, it is hard to manage the data during life time using the existing SSN ID system. It is also hard to configure the characteristics of weldment in mind because IDs implying Alloy600 and overlay weld do not exist in the existing SSN ID System. An optimized SSN numbering system managing weldments for the life time is introduced in this paper. Moreover, it is explained how to manage the SSN numbering system in the computer program system, too. The problem, which the weld is not harmoniously managed, would be solved provided adapting the new SSN ID introduced in this paper. A weld is managed during its life time from creation to extinction. The inquiry of inspection history of a concerned weld and the reference of statistics would be performed easily and rightly because the concerned weld can be accessed from anywhere connected to KHNP network such as KHNP headquater, plants and CRI

  14. Microstructures and superplasticity in near-gamma titanium aluminide alloys

    International Nuclear Information System (INIS)

    Bampton, C.C.; Martin, P.L.

    1993-01-01

    Microstructure control by thermomechanical processing in near-gamma titanium aluminide alloys has recently progressed to a point where the authors are able to reliably produce a wide range of microstructures in a single alloy. The authors are now studying the basic superplastic deformation microstructures. Correlations are made between microstructural details and flow stress, strain hardening, strain-rate hardening, necking, cavitation and failure. Special emphasis is given to the cavitation behavior since this phenomenon may constitute a major limitation to the useful application of superplastic forming for gamma TiAl structures

  15. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  16. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  17. Structural formation of aluminide phases on titanium alloy during annealing

    International Nuclear Information System (INIS)

    Mamaeva, A.A.; Romankov, S.E.; Sagdoldina, Zh.

    2006-01-01

    Full text: The aluminum layer on the surface of titanium alloy has been formed by thermal deposition. The structural formation of aluminide phases on the surface has been studied. The sequence of structural transformations at the Ti/Al interface is limited by the reaction temperature and time. The sequence of aluminide phase formation is occurred in compliance with Ti-Al equilibrium phase diagram. At the initial stages at the Ti/Al interface the Al3Ti alloy starts forming as a result of interdiffusion, and gradually the whole aluminum films is spent on the formation of this layer. The Al3Ti layer decomposes with the increase of temperature (>600C). At 800C the two-phase (Ti3Al+TiAl) layer is formed on the titanium surface. The TiAl compound is unstable and later on with the increase of the exposure time at 800C gradually transforms into the Ti3Al. The chain of these successive transformations leads to the formation of the continuous homogeneous layer consisting of the Ti3Al compound on the surface. At temperatures exceeding the allotropic transformation temperature (>900C) the Ti3Al compound starts decomposing. All structural changes taking place at the Ti/Al interface are accompanied by considerable changes in micro hardness. The structure of initial substrate influences on kinetics of phase transformation and microstructure development. (author)

  18. RADAR PPI Scope Overlay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  19. Exploring overlay journals: the RIOJA project

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Researchers in cosmology and astrophysics depend on the arXiv repository for the registration and dissemination of their work, as well as for current awareness, yet they continue to submit papers to journals for review. Could rapid quality certification be overlaid directly onto the arXiv repository? This presentation introduces the RIOJA (Repository Interface to Overlaid Journal Archives) project, on which a group of cosmology researchers from the UK is working with UCL Library Services and Cornell University. The project is creating a tool to support the overlay of journals onto repositories, and will demonstrate a cosmology journal overlaid on top of arXiv. RIOJA will also work with the cosmology community to explore the social and economic aspects of journal overlay in this discipline: what other value, besides the quality stamp, does journal publication typically add? What are the costs of the ideal overlay journal for this community, and how could those costs be recovered? Would researchers real...

  20. Titanium Aluminide Scramjet Inlet Flap Subelement Benchmark Tested

    Science.gov (United States)

    Krause, David L.; Draper, Susan L.

    2005-01-01

    A subelement-level ultimate strength test was completed successfully at the NASA Glenn Research Center (http://www.nasa.gov/glenn/) on a large gamma titanium aluminide (TiAl) inlet flap demonstration piece. The test subjected the part to prototypical stress conditions by using unique fixtures that allowed both loading and support points to be located remote to the part itself (see the photograph). The resulting configuration produced shear, moment, and the consequent stress topology proportional to the design point. The test was conducted at room temperature, a harsh condition for the material because of reduced available ductility. Still, the peak experimental load-carrying capability exceeded original predictions.

  1. Overlay improvements using a real time machine learning algorithm

    Science.gov (United States)

    Schmitt-Weaver, Emil; Kubis, Michael; Henke, Wolfgang; Slotboom, Daan; Hoogenboom, Tom; Mulkens, Jan; Coogans, Martyn; ten Berge, Peter; Verkleij, Dick; van de Mast, Frank

    2014-04-01

    While semiconductor manufacturing is moving towards the 14nm node using immersion lithography, the overlay requirements are tightened to below 5nm. Next to improvements in the immersion scanner platform, enhancements in the overlay optimization and process control are needed to enable these low overlay numbers. Whereas conventional overlay control methods address wafer and lot variation autonomously with wafer pre exposure alignment metrology and post exposure overlay metrology, we see a need to reduce these variations by correlating more of the TWINSCAN system's sensor data directly to the post exposure YieldStar metrology in time. In this paper we will present the results of a study on applying a real time control algorithm based on machine learning technology. Machine learning methods use context and TWINSCAN system sensor data paired with post exposure YieldStar metrology to recognize generic behavior and train the control system to anticipate on this generic behavior. Specific for this study, the data concerns immersion scanner context, sensor data and on-wafer measured overlay data. By making the link between the scanner data and the wafer data we are able to establish a real time relationship. The result is an inline controller that accounts for small changes in scanner hardware performance in time while picking up subtle lot to lot and wafer to wafer deviations introduced by wafer processing.

  2. Mechanisms of defect complex formation and environmental-assisted fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Muratov, L.S.; Kang, B.S.J.; Li, K.Z. [West Virginia Univ., Morgantown, WV (United States)

    1997-12-01

    Iron aluminide has excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperature with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides is being undertaken. The modeling and the experimental work will connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component at this point is on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}A{ell} and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}A{ell}. These calculations include lattice relaxation effects which are quite large. This has significant implications for vacancy clustering effects with consequences to be explored for hydrogen diffusion. The experimental work at this stage has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior. For this reason, comparative crack growth tests of FA-186, FA-187, and FA-189 iron aluminides (all with basic composition of Fe-28A{ell}-5Cr, at % with micro-alloying additives of Zr, C or B) under, air, oxygen, or water environment have been performed. These tests showed that the alloys are susceptible to room temperature hydrogen embrittlement in both B2 and DO{sub 3} conditions. Test results indicated that FA-187, and FA-189 are intrinsically more brittle than FA-186.

  3. Relationship of interaction of titanium aluminides with alloying elements as a basis for design of high-temperature alloys and composites

    International Nuclear Information System (INIS)

    Povarova, K.B.; Bannykh, O.A.; Antonova, A.V.

    2002-01-01

    One analyzed the available ternary phase diagrams of Ti-Al-AE where AE - alloying metal or metalloid. Nature of interaction of titanium aluminides, in particular, α 2 -Ti 3 Al, γ-TiAl and TiAl 3 with alloying elements (AE) in the uninvestigated systems was hypothesized with regard to the available binary and ternary phase diagrams and data on electron structure of AE. One determined that structure of Ti-Al-AE ternary phase diagrams, namely, position of domains of γ-TiAl and α 2 -Ti 3 Al base solid solutions, nature of substitution for AE positions in Ti or Al sublattices and position of (α 2 +γ)/γ domain boundary were governed by likeness or difference of electron structure of AE and of the substituted metal (Ti or Al) in titanium aluminide lattice and by value of dimension factor (difference of atomic radii of Al and Ti or Al). One analyzed promises offered by application of solid solution alloying and microalloying of aluminides by I-VIII group metals of the Periodic System [ru

  4. Improving concrete overlay construction.

    Science.gov (United States)

    2010-03-01

    Several road construction projects involving concrete overlays at the state and county levels in Iowa in 2009 were studied for : construction techniques and methods. The projects that were evaluated consisted of sites in four Iowa counties: Osceola, ...

  5. Wafer edge overlay control solution for N7 and beyond

    Science.gov (United States)

    van Haren, Richard; Calado, Victor; van Dijk, Leon; Hermans, Jan; Kumar, Kaushik; Yamashita, Fumiko

    2018-03-01

    Historically, the on-product overlay performance close to the wafer edge is lagging with respect to the inner part of the wafer. The reason for this is that wafer processing is less controlled close to the wafer edge as opposed to the rest of the wafer. It is generally accepted that Chemical Vapor Deposition (CVD) of stressed layers that cause wafer warp, wafer table contamination, Chemical Mechanical Polishing (CMP), and Reactive Ion Etch (RIE) may deteriorate the overlay performance and/or registration close to the wafer edge. For the N7 technology node and beyond, it is anticipated that the tight on-product overlay specification is required across the full wafer which includes the edge region. In this work, we highlight one contributor that may negatively impact the on-product overlay performance, namely the etch step. The focus will be mainly on the wafer edge region but the remaining part of the wafer is considered as well. Three use-cases are examined: multiple Litho-Etch steps (LEn), contact hole layer etch, and the copper dual damascene etch. We characterize the etch contribution by considering the overlay measurement after resist development inspect (ADI) and after etch inspect (AEI). We show that the Yieldstar diffraction based overlay (μDBO) measurements can be utilized to characterize the etch contribution to the overlay budget. The effects of target asymmetry as well as overlay shifts are considered and compared with SEM measurements. Based on the results above, we propose a control solution aiming to reduce or even eliminate the delta between ADI and AEI. By doing so, target/mark to device offsets due to etch might be avoided.

  6. Fundamentals of overlay measurement and inspection using scanning electron-microscope

    Science.gov (United States)

    Kato, T.; Okagawa, Y.; Inoue, O.; Arai, K.; Yamaguchi, S.

    2013-04-01

    Scanning electron-microscope (SEM) has been successfully applied to CD measurement as promising tools for qualifying and controlling quality of semiconductor devices in in-line manufacturing process since 1985. Furthermore SEM is proposed to be applied to in-die overlay monitor in the local area which is too small to be measured by optical overlay measurement tools any more, when the overlay control limit is going to be stringent and have un-ignorable dependence on device pattern layout, in-die location, and singular locations in wafer edge, etc. In this paper, we proposed new overlay measurement and inspection system to make an effective use of in-line SEM image, in consideration of trade-off between measurement uncertainty and measurement pattern density in each SEM conditions. In parallel, we make it clear that the best hybrid overlay metrology is in considering each tool's technology portfolio.

  7. 64nm pitch metal1 double patterning metrology: CD and OVL control by SEMCD, image based overlay and diffraction based overlay

    Science.gov (United States)

    Ducoté, Julien; Dettoni, Florent; Bouyssou, Régis; Le-Gratiet, Bertrand; Carau, Damien; Dezauzier, Christophe

    2015-03-01

    Patterning process control of advanced nodes has required major changes over the last few years. Process control needs of critical patterning levels since 28nm technology node is extremely aggressive showing that metrology accuracy/sensitivity must be finely tuned. The introduction of pitch splitting (Litho-Etch-Litho-Etch) at 14FDSOInm node requires the development of specific metrologies to adopt advanced process control (for CD, overlay and focus corrections). The pitch splitting process leads to final line CD uniformities that are a combination of the CD uniformities of the two exposures, while the space CD uniformities are depending on both CD and OVL variability. In this paper, investigations of CD and OVL process control of 64nm minimum pitch at Metal1 level of 14FDSOI technology, within the double patterning process flow (Litho, hard mask etch, line etch) are presented. Various measurements with SEMCD tools (Hitachi), and overlay tools (KT for Image Based Overlay - IBO, and ASML for Diffraction Based Overlay - DBO) are compared. Metrology targets are embedded within a block instanced several times within the field to perform intra-field process variations characterizations. Specific SEMCD targets were designed for independent measurement of both line CD (A and B) and space CD (A to B and B to A) for each exposure within a single measurement during the DP flow. Based on those measurements correlation between overlay determined with SEMCD and with standard overlay tools can be evaluated. Such correlation at different steps through the DP flow is investigated regarding the metrology type. Process correction models are evaluated with respect to the measurement type and the intra-field sampling.

  8. An Evaluation on the Residual Stresses Induced by EFR Welding of CEDM Nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Ho; Park, Gi Yeol; Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    In this paper, carried out the welding analysis to use the SYSWELD as welding interpretation code based on the reactor upper head nozzle. In this paper, evaluated the residual stress in CEDM nozzle by EFR through the SYSWELD which is the welding interpretation code. The conclusion are same as below. 1) When comparing with Hoop Stress and Axial Stress by J-Groove and EFR, after welding residual stress by EFR is lower than after J-Groove. 2) After EFR, it was confirmed that the tensile stress is reduced after increasing over the point3. The PWSCC of Dissimilar Metal Zone of reactor can degrade the integrity of the main device in nuclear power plant, and according to the power plant stopped for inspection, it can cause an enormous amount of lost sales when the crack is occurred. Various methods have been developed to reduce residual stress to prevent the PWSCC like Weld Overlay (WOL), Mechanical Stress Improvement Process (Msp), Laser Peening, Inlay Weld, etc. Among them, Wol is the most commonly used welding method in nuclear power plant. When performing a Wol, structure rigidity will be increase, and residual stress of welding zone will be changed into compressive stress from the tensile stress. This has the advantage that improved resistance to PWSCC. The most commonly used material in nuclear power plant is Inconel 600. Inconel 600 consist of a Ni-Cr-Fe and it has 14-17% of Cr content, 10% of Fe content and susceptible to PWSCC. The more Cr content is more stronger against PWSCC. Inconel 690 which has 2 times more Cr content than Inconel 600 has very strong resistance to PWSCC than Inconel 600. Embedded Flaw Repair (EFR) has been developed in Westinghouse by 1994. The welding metal with high corrosion resistance is embedded on the surface of component, and could protect cracking part from the PWSCC. It is permanent repair method that isolates the flaw from the environment, eliminating further crack propagation due to PWSCC. EFR method is that at least three layers

  9. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method

    Directory of Open Access Journals (Sweden)

    Victor Gostishchev

    2018-06-01

    Full Text Available This paper deals with the investigation of complex-alloyed nickel aluminides obtained from oxide compounds by aluminothermic reduction. The aim of the work was to study and develop the physicochemical basis for obtaining complex-alloyed nickel aluminides and their application for enhancing the properties of coatings made by electrospark deposition (ESD on steel castings, as well as their use as grain refiners for tin bronze. The peculiarities of microstructure formation of master alloys based on the Al–TM (transition metal system were studied using optical, electronic scanning microscopy and X-ray spectral microanalysis. There were regularities found in the formation of structural components of aluminum alloys (Ni–Al, Ni-Al-Cr, Ni-Al-Mo, Ni-Al-W, Ni-Al-Ti, Ni-Cr-Mo-W, Ni-Al-Cr-Mo-W-Ti, Ni-Al-Cr-V, Ni-Al-Cr-V-Mo and changes in their microhardness, depending on the composition of the charge, which consisted of oxide compounds, and on the amount of reducing agent (aluminum powder. It is shown that all the alloys obtained are formed on the basis of the β phase (solid solution of alloying elements in nickel aluminide and quasi-eutectic, consisting of the β′ phase and intermetallics of the alloying elements. The most effective alloys, in terms of increasing microhardness, were Al-Ni-Cr-Mo-W (7007 MPa and Al-Ni-Cr-V-Mo (7914 MPa. The perspective is shown for applying the synthesized intermetallic master alloys as anode materials for producing coatings by electrospark deposition on steel of C1030 grade. The obtained coatings increase the heat resistance of steel samples by 7.5 times, while the coating from NiAl-Cr-Mo-W alloy remains practically nonoxidized under the selected test conditions. The use of NiAl intermetallics as a modifying additive (0.15 wt. % in tin bronze allows increasing the microhardness of the α-solid solution by 1.9 times and the microhardness of the eutectic (α + β phase by 2.7 times.

  10. Electronic structure of uranium overlayers on magnesium and aluminium

    Science.gov (United States)

    Gouder, T.

    1997-06-01

    We studied U overlayers on polycrystalline Mg and Al by X-ray and ultra-violet photoelectron spectroscopies (XPS and UPS, respectively), and compared the mode of growth and the evolution of the electronic structure as a function of coverage. The goal of this work was to detect localization, or at least correlation effects, in U overlayers and U substrate near surface alloys, which were expected to occur because of the reduced U 5f bandwidth in these systems. On Mg, U deposits as a pure overlayer without any interdiffusion, while on Al spontaneous interdiffusion takes place. The U 4f spectra of {U}/{Mg} show only weak correlation satellites. Nevertheless, the asymmetrical shape of the U 4f peak indicates 5f band narrowing. On Al, strong correlation satellites are observed in addition to plasmon loss features. It seems that U-substrate interactions promote correlation effects, while the reduced coordination in overlayers plays a less important role. UPS valence-band (VB) spectra of the two systems look remarkably similar. They do not show any correlation satellites. With decreasing overlayer thickness the 5f peak narrows, which is attributed to 5f band narrowing at the surface.

  11. High-volume manufacturing device overlay process control

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Woo, Jaeson; Lee, DongYoung; Song, ChangRock; Heo, Hoyoung; Brinster, Irina; Choi, DongSub; Robinson, John C.

    2017-03-01

    Overlay control based on DI metrology of optical targets has been the primary basis for run-to-run process control for many years. In previous work we described a scenario where optical overlay metrology is performed on metrology targets on a high frequency basis including every lot (or most lots) at DI. SEM based FI metrology is performed ondevice in-die as-etched on an infrequent basis. Hybrid control schemes of this type have been in use for many process nodes. What is new is the relative size of the NZO as compared to the overlay spec, and the need to find more comprehensive solutions to characterize and control the size and variability of NZO at the 1x nm node: sampling, modeling, temporal frequency and control aspects, as well as trade-offs between SEM throughput and accuracy.

  12. Research on 16Mo3 (16M Steel Pipes Overlaid with Haynes Nicro625 Alloy Using MIG (131 Method / Badania Rur Ze Stali 16Mo3 (16M Napawanych Metodą MIG (131 Stopem Haynes Nicro625

    Directory of Open Access Journals (Sweden)

    Golański G.

    2015-12-01

    Full Text Available The paper presents the research on the microstructure and mechanical properties of a pipe made of 16Mo3 steel, overlaid with superalloy based on Haynes NiCro625 nickel. The overlay weld was overlaid using the MIG (131 method. The performed macro - and microscopic tests have shown the correct structure of the overlay weld without any welding unconformities. The examined overlay weld was characterized by a dendritic structure of the primary crystals accumulating towards the heat removal. It has been proved that the content of iron in the surface zone does not exceed 7%, and the steel-superalloy joint shows the highest properties in comparison with the materials joined.

  13. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, SakaryaUniversity, Esentepe Campus, 54187Sakarya (Turkey); Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B, NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  14. Weld Bead Geometry of Ni-Based Alloy Deposited by PTA Process for Pipe Conduction of Shale Gas

    Science.gov (United States)

    Echavarria-Figueroa, C.; García-Vázquez, F.; Ruiz-Mondragón, J.; Hernández-García, H. M.; González-González, D.; Vargas, A.

    The transportation of shale gas has the problem that the piping used for the extraction does not resist the erosion generated by the amount of solids causing cracks over the surface and it is necessary to extend the life of the pipelines. Plasma transferred arc (PTA) welded coatings are used to improve the surface properties of mechanical parts. Therefore, in this paper is studied the use of Ni-based filler metal as weld bead deposits on A36 steel substrates by PTA. In order to determine the suitable conditions to ensure coating quality on the substrate a design of experiments (DOE) was determined. Welding current, feed rate, and travel speed were used as input parameters and the dilution percentage as the response variable. The composition and properties of hardfacing or overlay deposited are strongly influenced by the dilution obtained. Control of dilution is important, where typically low dilution is desirable. When the dilution is low, the final deposit composition will be closer to that of the filler metal, and the wear and corrosion resistance of the hardfacing will also be maintained. To evaluate the features on the weld beads/substrate interface a microstructural characterization was performed by using scanning electron microscopy and to evaluate the mechanical properties was carried out hardness test.

  15. Location-Aware Cross-Layer Design Using Overlay Watermarks

    Directory of Open Access Journals (Sweden)

    Paul Ho

    2007-04-01

    Full Text Available A new orthogonal frequency division multiplexing (OFDM system embedded with overlay watermarks for location-aware cross-layer design is proposed in this paper. One major advantage of the proposed system is the multiple functionalities the overlay watermark provides, which includes a cross-layer signaling interface, a transceiver identification for position-aware routing, as well as its basic role as a training sequence for channel estimation. Wireless terminals are typically battery powered and have limited wireless communication bandwidth. Therefore, efficient collaborative signal processing algorithms that consume less energy for computation and less bandwidth for communication are needed. Transceiver aware of its location can also improve the routing efficiency by selective flooding or selective forwarding data only in the desired direction, since in most cases the location of a wireless host is unknown. In the proposed OFDM system, location information of a mobile for efficient routing can be easily derived when a unique watermark is associated with each individual transceiver. In addition, cross-layer signaling and other interlayer interactive information can be exchanged with a new data pipe created by modulating the overlay watermarks. We also study the channel estimation and watermark removal techniques at the physical layer for the proposed overlay OFDM. Our channel estimator iteratively estimates the channel impulse response and the combined signal vector from the overlay OFDM signal. Cross-layer design that leads to low-power consumption and more efficient routing is investigated.

  16. Covalent bonding and band-gap formation in ternary transition-metal di-aluminides: Al4MnCo and related compounds

    International Nuclear Information System (INIS)

    Krajci, M.; Hafner, J.

    2002-01-01

    In this paper we extend our previous study of the electronic structure of and bonding mechanism in transition-metal (TM) di-aluminides to ternary systems. We have studied the character of the bonding in Al 4 MnCo and related TM di-aluminides in the C11 b (MoSi 2 ) and C54 (TiSi 2 ) crystal structures. A peculiar feature of the electronic structure of these TM di-aluminides is the existence of a semiconducting gap at the Fermi level. In our previous work we predicted a gap in Al 2 TM compounds where the TM atoms have eight valence electrons. Here we demonstrate that the semiconducting gap does not disappear if the TM sites are occupied by two different TMs, provided that the electron-per-atom ratio is conserved. Such a replacement substantially increases the class of possibly semiconducting TM di-aluminides. Substitution for 3d TMs of 4d or 5d TMs enhances the width of the gap. From the analysis of the charge density distribution and the crystal orbital overlap population, we conclude that the bonding between atoms has dominantly covalent character. This is confirmed not only by the enhanced charge density halfway between atoms, but also by the clear bonding-antibonding splitting of the electronic states. If the gaps between split states that correspond to all bonding configurations in the crystal have a common overlap at the Fermi level, the intermetallic compound becomes a semiconductor. However, the results of the total-energy calculations suggest that the existence of a band gap does not necessarily imply a stable structure. Strong covalent bonds can exist also in Al-TM structures where no band gap is observed. (author)

  17. Management of the acceptance process of RTR aluminide type spent fuel

    International Nuclear Information System (INIS)

    Auziere, P.; Thomasson, J.

    2002-01-01

    A wide range of Research Test Reactor aluminide type spent fuel is already received for treatment conditioning at the La Hague reprocessing complex. Such a diversity calls for an utmost attention to be paid to all safety-related systems and technical aspects, to all regulatory and administrative constraints. Despite of such multiple data inputs and rigid constraints, a close cooperation between the Research Reactor operator and COGEMA enables to reach adequate and cost effective solutions also relevant to spent fuel having had an uneven history. The acceptance process is primarily based on the client descriptive data and status declaration issued by the Research Reactor (RR) operator under QA. This acceptance process is a key step, to be keenly scheduled as it is directly interactive with the RR evacuation plans and the La Hague industrial plant program. It is also governed by the reviews conducted by the French Safety Authority and generally translated into operational authorisations. Concerned by maintaining high safety standards, reliable and proven operational levels of its nuclear services performed in the La Hague facilities COGEMA includes, all through this acceptance process, the operating, regulatory and administrative requirements. This paper sets forth an overview of the approach implemented in the COGEMA organisation for the management of the acceptance process of RTR aluminide type spent fuel. (author)

  18. Evaluation of the intrinsic and extrinsic fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Kang, B.S. [West Virginia Univ., Morgantown, WV (United States)

    1998-07-27

    Iron aluminides have excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperatures with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides has been undertaken. The modeling and the experimental work connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component has been on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}Al and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}Al. These calculations include lattice relaxation effects which are quite large for one of the two types of iron sites. This has significant implications for vacancy clustering effects with consequences for hydrogen diffusion. Indeed, the ab-initio-based estimate of the divacancy binding energy indicates a likely tendency toward such clustering for iron vacancies on the sites with large lattice relaxation. The experimental work has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior.

  19. Analysis of an Orthotropic Deck Stiffened with a Cement-Based Overlay

    DEFF Research Database (Denmark)

    Walter, Rasmus; Olesen, John Forbes; Stang, Henrik

    2007-01-01

    decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes......Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge...... the finite-element method. The stiffness of the steel deck reinforced with an overlay depends highly on the composite action. The composite action is closely related to cracking of the overlay and interfacial cracking between the overlay and underlying steel plate (debonding). As an example, a real size...

  20. Effect of grit blasting on the thermal cycling behavior of diffusion aluminide/YSZ TBCs

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com; Huang, Guanghong; He, Limin; Mu, Rende; Wang, Kai; Dai, Jianwei

    2014-02-15

    Highlights: • TBCs including of CVD NiAl bond coat and EB-PVD YSZ ceramic coating with and without grit blasting process. • Grain boundary ridges are the sites for spallation damage initiation in aluminide/YSZ TBCs. • Ridges are removed, and no cavity formation and this damage initiation mode are suppressed. • Damage initiation and progression occurs at the bond coat to TGO interface leading to a buckling failure behavior. -- Abstract: Thermal barrier coating system (TBCs) including of chemical vapor deposited NiAl bond coat and electron beam physical vapor deposited Y{sub 2}O{sub 3}–stabilized-ZrO{sub 2} (YSZ) ceramic coating with and without grit blasting process were investigated. The phase structures, surface and cross-sectional morphologies, cyclic oxidation behaviors of these coatings were studied in detail. Grain boundary ridges form on the surface of aluminide bond coat prior to the deposition of the ceramic coating by EB-PVD, which are shown to be the sites for spallation damage initiation in aluminide/YSZ TBCs. When these ridges are removed, there is no cavity formation and this damage initiation mode is suppressed. Damage initiation and progression occurs at the bond coat to TGO interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface with additional cycling. From the result of thermal cycling, an averaged four folds lifetime improvement can be achieved with samples after grit blasting of bond coat surface as compared with those samples existence in ridges on the bond coats’ surface.

  1. Virtual overlay metrology for fault detection supported with integrated metrology and machine learning

    Science.gov (United States)

    Lee, Hong-Goo; Schmitt-Weaver, Emil; Kim, Min-Suk; Han, Sang-Jun; Kim, Myoung-Soo; Kwon, Won-Taik; Park, Sung-Ki; Ryan, Kevin; Theeuwes, Thomas; Sun, Kyu-Tae; Lim, Young-Wan; Slotboom, Daan; Kubis, Michael; Staecker, Jens

    2015-03-01

    While semiconductor manufacturing moves toward the 7nm node for logic and 15nm node for memory, an increased emphasis has been placed on reducing the influence known contributors have toward the on product overlay budget. With a machine learning technique known as function approximation, we use a neural network to gain insight to how known contributors, such as those collected with scanner metrology, influence the on product overlay budget. The result is a sufficiently trained function that can approximate overlay for all wafers exposed with the lithography system. As a real world application, inline metrology can be used to measure overlay for a few wafers while using the trained function to approximate overlay vector maps for the entire lot of wafers. With the approximated overlay vector maps for all wafers coming off the track, a process engineer can redirect wafers or lots with overlay signatures outside the standard population to offline metrology for excursion validation. With this added flexibility, engineers will be given more opportunities to catch wafers that need to be reworked, resulting in improved yield. The quality of the derived corrections from measured overlay metrology feedback can be improved using the approximated overlay to trigger, which wafers should or shouldn't be, measured inline. As a development or integration engineer the approximated overlay can be used to gain insight into lots and wafers used for design of experiments (DOE) troubleshooting. In this paper we will present the results of a case study that follows the machine learning function approximation approach to data analysis, with production overlay measured on an inline metrology system at SK hynix.

  2. Effect of Hf Additions to Pt Aluminide Bond Coats on EB-PVD TBC Life

    Science.gov (United States)

    Nesbitt, James; Nagaraj, Ben; Williams, Jeffrey

    2000-01-01

    Small Hf additions were incorporated into a Pt aluminide coating during chemical vapor deposition (CVD) on single crystal RENE N5 substrates. Standard yttria-stabilized zirconia top coats were subsequently deposited onto the coated substrates by electron beam-physical vapor deposition (EB-PVD). The coated substrates underwent accelerated thermal cycle testing in a furnace at a temperature in excess of 1121 C (2050 F) (45 minute hot exposure, 15 minute cool to approximately 121 C (250 F)) until the thermal barrier coating (TBC) failed by spallation. Incorporating Hf in the bond coat increased the TBC life by slightly more than three times that of a baseline coating without added Hf. Scanning electron microscopy of the spalled surfaces indicated that the presence of the Hf increased the adherence of the thermally grown alumina to the Pt aluminide bond coat. The presence of oxide pegs growing into the coating from the thermally grown alumina may also partially account for the improved TBC life by creating a near-surface layer with a graded coefficient of thermal expansion.

  3. In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Douglas L. Porter; James R. Parry; Heng Ban

    2010-06-01

    A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.

  4. Ferrous alloy metallurgy - liquid lithium corrosion and welding. Progress report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Olson, D.L.; Matlock, D.K.

    1980-01-01

    Fatigue crack growth has been used to evaluate the interaction between liquid lithium and an imposed stress. Fatigue crack growth data on type 304L stainless steel at 700C and 2 1/4Cr-1Mo steel between 500 and 700C show that for all imposed test conditions (i.e. frequency, temperature, and nitrogen content in the lithium) the interaction of lithium with the strain at the crack tip results in enhanced crack growth rates. The enhanced growth rates result from the effects of either enhanced grain boundary penetration or a change in crack propagation mechanism due to liquid metal embrittlement. Auger spectroscopy of grain boundary penetrated specimen shows that a lithium-oxygen compound forms at the grain boundary. Moessbauer evaluations of the ferrite layer of corroded type 304 stainless steel are being used to develop a model for weight loss in liquid lithium. The welding research in progress is directed to characterize the influence of variations of the austenitic weld metal composition on the microstructural and mechanical properties of dissimilar metal weldments. Weldments of 2 1/4Cr-1Mo steel to 316 stainless steel have been investigated for fusion microstructure, thermal expansion impact strength and characterization of specific long time in-service failures. Modification of weld metal microstructures by microalloy additions is being investigated as a concept to improve weld metal properties. The behavior of a strip electrode in a gas metal arc is being investigated to determine the feasibility of gas metal arc weld strip overlay cladding

  5. Application of Interfacial Propagation and Kinking Crack Concept to ECC/Concrete Overlay Repair System

    Directory of Open Access Journals (Sweden)

    Yaw ChiaHwan

    2014-01-01

    Full Text Available Research on the application of ultraductile engineered cementitious composite (ECC as overlay in the repair of deteriorated concrete structures is performed in this paper. Also, interfacial crack kinking and trapping mechanism experimentally observed in ECC/concrete overlay repair system are described by comparison of toughness and energy release rate. The mechanism involves cycles of extension, kinking, and arrest of interfacial crack into the overlay. Experimental testing of overlay repair system reveals significant improvements in load carrying capacity and ductility over conventional concrete overlay. The commonly observed overlay system failure mode of delamination or spalling is eliminated when ECC is applied. These failure modes are suppressed when ECC is used as an ideal and durable candidate overlay repair material.

  6. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    Energy Technology Data Exchange (ETDEWEB)

    Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo

    2013-11-15

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing was found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.

  7. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    International Nuclear Information System (INIS)

    Beushausen, Hans; Chilwesa, Masuzyo

    2013-01-01

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing was found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking

  8. Joining of Gamma Titanium Aluminides

    National Research Council Canada - National Science Library

    Baeslack, William

    2002-01-01

    .... Although organized and presented by joining process, many of the observations made and relationships developed, particularly those regarding the weldability and welding metallurgy of gamma titanium...

  9. On Adding Structure to Unstructured Overlay Networks

    Science.gov (United States)

    Leitão, João; Carvalho, Nuno A.; Pereira, José; Oliveira, Rui; Rodrigues, Luís

    Unstructured peer-to-peer overlay networks are very resilient to churn and topology changes, while requiring little maintenance cost. Therefore, they are an infrastructure to build highly scalable large-scale services in dynamic networks. Typically, the overlay topology is defined by a peer sampling service that aims at maintaining, in each process, a random partial view of peers in the system. The resulting random unstructured topology is suboptimal when a specific performance metric is considered. On the other hand, structured approaches (for instance, a spanning tree) may optimize a given target performance metric but are highly fragile. In fact, the cost for maintaining structures with strong constraints may easily become prohibitive in highly dynamic networks. This chapter discusses different techniques that aim at combining the advantages of unstructured and structured networks. Namely we focus on two distinct approaches, one based on optimizing the overlay and another based on optimizing the gossip mechanism itself.

  10. Development of new engine bearings with overlay consisting of solid lubricants; Kotai junkatsu overlay tsuki engine yo suberi jikuuke zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, H; Kawakami, S; Gohara, C [Taiho Kogyo Co. Ltd., Aichi (Japan); Fuwa, Y; Michioka, H [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    Recently, modern engines have a tendency for higher output and longer periods. As a result , higher bearing performance is required. For this reason, we have developed the new conceptual overlay consisting of solid lubricants and thermosetting plastics. This paper describes the performance of engine bearings with the new overlay. 5 refs., 13 figs., 5 tabs.

  11. Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition.

    Science.gov (United States)

    Campomanes-Álvarez, B Rosario; Ibáñez, O; Navarro, F; Alemán, I; Botella, M; Damas, S; Cordón, O

    2014-12-01

    Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull-face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull-face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull-face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull-face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull-face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Achieving optimum diffraction based overlay performance

    Science.gov (United States)

    Leray, Philippe; Laidler, David; Cheng, Shaunee; Coogans, Martyn; Fuchs, Andreas; Ponomarenko, Mariya; van der Schaar, Maurits; Vanoppen, Peter

    2010-03-01

    Diffraction Based Overlay (DBO) metrology has been shown to have significantly reduced Total Measurement Uncertainty (TMU) compared to Image Based Overlay (IBO), primarily due to having no measurable Tool Induced Shift (TIS). However, the advantages of having no measurable TIS can be outweighed by increased susceptibility to WIS (Wafer Induced Shift) caused by target damage, process non-uniformities and variations. The path to optimum DBO performance lies in having well characterized metrology targets, which are insensitive to process non-uniformities and variations, in combination with optimized recipes which take advantage of advanced DBO designs. In this work we examine the impact of different degrees of process non-uniformity and target damage on DBO measurement gratings and study their impact on overlay measurement accuracy and precision. Multiple wavelength and dual polarization scatterometry are used to characterize the DBO design performance over the range of process variation. In conclusion, we describe the robustness of DBO metrology to target damage and show how to exploit the measurement capability of a multiple wavelength, dual polarization scatterometry tool to ensure the required measurement accuracy for current and future technology nodes.

  13. KML Super Overlay to WMS Translator

    Science.gov (United States)

    Plesea, Lucian

    2007-01-01

    This translator is a server-based application that automatically generates KML super overlay configuration files required by Google Earth for map data access via the Open Geospatial Consortium WMS (Web Map Service) standard. The translator uses a set of URL parameters that mirror the WMS parameters as much as possible, and it also can generate a super overlay subdivision of any given area that is only loaded when needed, enabling very large areas of coverage at very high resolutions. It can make almost any dataset available as a WMS service visible and usable in any KML application, without the need to reformat the data.

  14. Microstructural characterization of silicon added titanium aluminide

    International Nuclear Information System (INIS)

    Khan, A.N.

    2009-01-01

    Titanium aluminides intermetallic compounds have received great attention during the past decade, since they have the potential, in aircraft and automotive engines, to replace the high density Ni-base superalloys However, these intermetallics possess poor oxidation properties at high temperatures. Previous studies showed that protective alumina scale formation on gamma-TiAl can be obtained by small additions (around 2 at.%) of Ag. In the present study, a number of cast Ti-Al-Si alloys were investigated in relation to transient oxide formation in air at 1300 deg. C. After various oxidation times the oxide composition, microstructure and morphology were studied by combining a number of analysis techniques. The TiAl-Si alloys appear to form Al Ti and Si oxides. However, the formation of silicon oxide at the interface of base metal and scale slows down the oxidation rate significantly. (author)

  15. Longer Lasting Bridge Deck Overlays

    Science.gov (United States)

    2018-04-01

    The objective of this report is to determine the most effective method for bridge deck overlay construction and repair by assessing current practices; examining new products and technologies; and reviewing NCHRP (National Cooperative Highway Research...

  16. Diffraction-based overlay measurement on dedicated mark using rigorous modeling method

    Science.gov (United States)

    Lu, Hailiang; Wang, Fan; Zhang, Qingyun; Chen, Yonghui; Zhou, Chang

    2012-03-01

    Diffraction Based Overlay (DBO) is widely evaluated by numerous authors, results show DBO can provide better performance than Imaging Based Overlay (IBO). However, DBO has its own problems. As well known, Modeling based DBO (mDBO) faces challenges of low measurement sensitivity and crosstalk between various structure parameters, which may result in poor accuracy and precision. Meanwhile, main obstacle encountered by empirical DBO (eDBO) is that a few pads must be employed to gain sufficient information on overlay-induced diffraction signature variations, which consumes more wafer space and costs more measuring time. Also, eDBO may suffer from mark profile asymmetry caused by processes. In this paper, we propose an alternative DBO technology that employs a dedicated overlay mark and takes a rigorous modeling approach. This technology needs only two or three pads for each direction, which is economic and time saving. While overlay measurement error induced by mark profile asymmetry being reduced, this technology is expected to be as accurate and precise as scatterometry technologies.

  17. Influência da energia de soldagem na microestrutura e na microdureza de revestimentos de aço inoxidável duplex Influence of the heat input on the microstructure and microhardness of weld overlay of duplex stainless steel

    Directory of Open Access Journals (Sweden)

    Everton Barbosa Nunes

    2012-06-01

    influence of the heat input on the microstructure and the microhardness of the weld metal of the DSS. The weld overlay were performed with deposition of two layers on the structural steel ASTM A516 Gr.60, using as filler metal the AWS E2209-17 coated electrode. Three energy levels (15, 20 and 24 kJ/ cm were used, varying the welding current and speed. It was verified that for energy levels used didn't have significant difference on the ferrite content, but the first bead deposited had a higher austenite content in relation to other beads. All conditions got microhardness below the critical value.

  18. Tack coat optimization for HMA overlays : accelerated pavement test report.

    Science.gov (United States)

    2009-02-01

    Interface bonding between hot-mix asphalt (HMA) overlays and Portland cement concrete (PCC) pavements is one : of the most significant factors affecting overlay service life. This study was performed to quantify the effects of HMA type, : tack coat t...

  19. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  20. VT Data - Overlay District 20170419, Colchester

    Data.gov (United States)

    Vermont Center for Geographic Information — The following Overlay Districts are included in the data:General Development Four Commercial DistrictGeneral Development Four Openspace DistrictShoreland...

  1. Hydrogen permeation rate reduction by post-oxidation of aluminide coatings on DIN 1.4914 martensitic steel (MANET)

    International Nuclear Information System (INIS)

    Perujo, A.; Sample, T.

    1996-01-01

    In a previous work, it has been shown that lower aluminium content aluminide, having the same permeation rate reduction as the higher aluminium content, exhibited a lower hardness and greater ductility and therefore greater crack resistance than the higher aluminium content. In this work we combine this characteristic with a post-oxidation to obtain a further deuterium permeation reduction. The post-oxidation was performed in air at 1023 K for 15 h and at 1223 K for 10 h and 1 h. The maximum deuterium permeation rate reduction obtained is very moderate (maximum of a factor 500 for 1 h at 1223 K) as compared to that of the non-oxidised aluminide specimen (two orders of magnitude) and is constant in the temperature range studied (573-800 K). This method has the technological appeal of using air rather than the controlled environment used by other authors. (orig.)

  2. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    Science.gov (United States)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  3. Overlay Spectrum Sharing using Improper Gaussian Signaling

    KAUST Repository

    Amin, Osama

    2016-11-30

    Improper Gaussian signaling (IGS) scheme has been recently shown to provide performance improvements in interference limited networks as opposed to the conventional proper Gaussian signaling (PGS) scheme. In this paper, we implement the IGS scheme in overlay cognitive radio system, where the secondary transmitter broadcasts a mixture of two different signals. The first signal is selected from the PGS scheme to match the primary message transmission. On the other hand, the second signal is chosen to be from the IGS scheme in order to reduce the interference effect on the primary receiver. We then optimally design the overlay cognitive radio to maximize the secondary link achievable rate while satisfying the primary network quality of service requirements. In particular, we consider full and partial channel knowledge scenarios and derive the feasibility conditions of operating the overlay cognitive radio systems. Moreover, we derive the superiority conditions of the IGS schemes over the PGS schemes supported with closed form expressions for the corresponding power distribution and the circularity coefficient and parameters. Simulation results are provided to support our theoretical derivations.

  4. Interface-related deformation phenomena in intermetallic γ-titanium aluminides

    International Nuclear Information System (INIS)

    Appel, F.; Wagner, R.

    1993-01-01

    The development of titanium aluminides towards higher ductility concentrates on Ti-rich alloys which are composed of the intermetallic phases γ(TiAl) and α 2 (Ti 3 Al). The two phases form a lamellar microstructure with various types of interfaces. The deformation behaviour of these materials was investigated by compression tests, which were performed for different orientations of the interfacial boundaries with respect to the sample axis. With regard to the mechanical properties the structure of the interfaces and the micromechanisms of deformation were studied by conventional and high resolution electron microscopy. Accordingly, the interfacial boundaries impede the propagation of slip across the lamellae, leading to an athermal contribution to the flow stress. (orig.)

  5. Interface-related deformation phenomena in intermetallic γ-titanium aluminides

    Science.gov (United States)

    Appel, F.; Wagner, R.

    1993-01-01

    The development of titanium aluminides towards higher ductility concentrates on Ti-rich alloys which are composed of the intermetallic phases γ(TiAl) and α2(Ti3Al). The two phases form a lamellar microstructure with various types of interfaces. The deformation behaviour of these materials was investigated by compression tests, which were performed for different orientations of the interfacial boundaries with respect to the sample axis. With regard to the mechanical properties the structure of the interfaces and the micromechanisms of deformation were studied by conventional and high resolution electron microscopy. Accordingly, the interfacial boundaries impede the propagation of slip across the lamellae, leading to an athermal contribution to the flow stress.

  6. Application of advanced diffraction based optical metrology overlay capabilities for high-volume manufacturing

    Science.gov (United States)

    Chen, Kai-Hsiung; Huang, Guo-Tsai; Hsieh, Hung-Chih; Ni, Wei-Feng; Chuang, S. M.; Chuang, T. K.; Ke, Chih-Ming; Huang, Jacky; Rao, Shiuan-An; Cumurcu Gysen, Aysegul; d'Alfonso, Maxime; Yueh, Jenny; Izikson, Pavel; Soco, Aileen; Wu, Jon; Nooitgedagt, Tjitte; Ottens, Jeroen; Kim, Yong Ho; Ebert, Martin

    2017-03-01

    On-product overlay requirements are becoming more challenging with every next technology node due to the continued decrease of the device dimensions and process tolerances. Therefore, current and future technology nodes require demanding metrology capabilities such as target designs that are robust towards process variations and high overlay measurement density (e.g. for higher order process corrections) to enable advanced process control solutions. The impact of advanced control solutions based on YieldStar overlay data is being presented in this paper. Multi patterning techniques are applied for critical layers and leading to additional overlay measurement demands. The use of 1D process steps results in the need of overlay measurements relative to more than one layer. Dealing with the increased number of overlay measurements while keeping the high measurement density and metrology accuracy at the same time presents a challenge for high volume manufacturing (HVM). These challenges are addressed by the capability to measure multi-layer targets with the recently introduced YieldStar metrology tool, YS350. On-product overlay results of such multi-layers and standard targets are presented including measurement stability performance.

  7. VT Data - Overlay District 20070306, Marlboro

    Data.gov (United States)

    Vermont Center for Geographic Information — Cartographic version of overlay district (surface water buffer), Marlboro, Vermont. Base zoning districts are in a separate shapefile. Data were originally created...

  8. Visualization of Disciplinary Profiles: Enhanced Science Overlay Maps

    Directory of Open Access Journals (Sweden)

    Stephen Carley

    2017-08-01

    Full Text Available Purpose: The purpose of this study is to modernize previous work on science overlay maps by updating the underlying citation matrix, generating new clusters of scientific disciplines, enhancing visualizations, and providing more accessible means for analysts to generate their own maps. Design/methodology/approach: We use the combined set of 2015 Journal Citation Reports for the Science Citation Index (n of journals = 8,778 and the Social Sciences Citation Index (n = 3,212 for a total of 11,365 journals. The set of Web of Science Categories in the Science Citation Index and the Social Sciences Citation Index increased from 224 in 2010 to 227 in 2015. Using dedicated software, a matrix of 227 × 227 cells is generated on the basis of whole-number citation counting. We normalize this matrix using the cosine function. We first develop the citing-side, cosine-normalized map using 2015 data and VOSviewer visualization with default parameter values. A routine for making overlays on the basis of the map (“wc15.exe” is available at http://www.leydesdorff.net/wc15/index.htm. Findings: Findings appear in the form of visuals throughout the manuscript. In Figures 1–9 we provide basemaps of science and science overlay maps for a number of companies, universities, and technologies. Research limitations: As Web of Science Categories change and/or are updated so is the need to update the routine we provide. Also, to apply the routine we provide users need access to the Web of Science. Practical implications: Visualization of science overlay maps is now more accurate and true to the 2015 Journal Citation Reports than was the case with the previous version of the routine advanced in our paper. Originality/value: The routine we advance allows users to visualize science overlay maps in VOSviewer using data from more recent Journal Citation Reports.

  9. Microstructure and mechanical properties of Al/Fe-aluminide in-situ composite prepared by reactive stir casting route

    International Nuclear Information System (INIS)

    Chatterjee, Subhranshu; Sinha, Arijit; Das, Debdulal; Ghosh, Sumit; Basumallick, Amitava

    2013-01-01

    Iron aluminide particulate reinforced aluminium composites were prepared by a simple liquid metal stir casting route. The particulate intermetallic reinforcements were formed by in-situ reaction between molten aluminium and a rotating mild steel stirrer at 800 °C. X-ray diffraction studies were carried out to identify the types of iron aluminide particulates present in the as cast composite. Compositional variations of the composite samples were estimated with the aid of energy dispersive spectroscopy. The microstructural features of the composite were studied with respect to different heat treatment schedules and deformation conditions. Microhardness and nanoindentation measurements were also carried out to assess the micromechanical behaviour e.g., hardness and elastic modulus in micrometric length scale of the composite samples. Tensile tests and fractographic analysis were performed to estimate the mechanical properties and determine the mode of failure of the samples. The microstructure and mechanical properties of the composite samples were correlated and discussed

  10. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  11. Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.

    Science.gov (United States)

    1993-06-01

    Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...

  12. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  13. A Persistent Structured Hierarchical Overlay Network to Counter Intentional Churn Attack

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2016-01-01

    Full Text Available The increased use of structured overlay network for a variety of applications has attracted a lot of attention from both research community and attackers. However, the structural constraints, open nature (anybody can join and anybody may leave, and unreliability of its participant nodes significantly affect the performance of these applications and make it vulnerable to a variety of attacks such as eclipse, Sybil, and churn. One attack to compromise the service availability in overlay network is intentional churn (join/leave attack, where a large number of malicious users will join and leave the overlay network so frequently that the entire structure collapses and becomes unavailable. The focus of this paper is to provide a new robust, efficient, and scalable hierarchical overlay architecture that will counter these attacks by providing a structure that can accommodate the fleeting behaviour of nodes without causing much structural inconsistencies. The performance evaluation showed that the proposed architecture has more failure resilience and self-organization as compared to chord based architecture. Experimental results have demonstrated that the effect of failures on an overlay is proportional to the size of failure.

  14. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, David; Warringham, Robbie [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guidi, Tatiana [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Parker, Stewart F., E-mail: stewart.parker@stfc.ac.uk [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2013-12-12

    Highlights: • Inelastic neutron scattering spectroscopy of a commercial dehydrogenation catalyst. • The overlayer present on the catalyst is predominantly aliphatic. • A population of strongly hydrogen bonded hydroxyls is also present. - Abstract: The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al{sub 2}O{sub 3} catalyst. Inelastic neutron scattering studies show that the C–H stretching mode ranges from 2850 to 3063 cm{sup −1}, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al{sub 2}O{sub 3} catalysts during methane reforming.

  15. Weld controller for automated nuclear service welding

    International Nuclear Information System (INIS)

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-01-01

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied

  16. Use of servo controlled weld head for end closure welding

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, S.K.; Setty, D.S.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2010-07-01

    In the PHWR fuel fabrication line resistance welding processes are used for joining various zirconium based alloy components to fuel tube of similar material. The quality requirement of these welding processes is very stringent and has to meet all the product requirements. At present these welding processes are being carried out by using standard resistance welding machines. In the resistance welding process in addition to current and time, force is one of the critical and important parameter, which influences the weld quality. At present advanced feed back type fast response medium frequency weld controllers are being used. This has upslope/down slope, constant and repetitive weld pattern selection features makes this critical welding process more reliable. Compared to weld controllers, squeeze force application devices are limited and normally standard high response pneumatic cylinders are used in the welding process. With this type of devices the force is constant during welding process and cannot be varied during welding process as per the material deformation characteristics. Similarly due to non-availability of feed back systems in the squeeze force application systems restricts the accuracy and quality of the welding process. In the present paper the influence of squeeze force pattern on the weld quality using advanced feed back type servo based force control system was studied. Different squeeze forces were used during pre and post weld heat periods along with constant force and compared with the weld quality. (author)

  17. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  18. PTA Overlaying Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.; Chang, J.C.; Kim, J.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    This study is concerned with the development of reuse technology for 1100 deg.C class major component of gas turbine. To get the fundamental understanding for the repair techniques by PTAW, the physical properties and microstructures of welding metal and the effect of individual welding parameters are reviewed. Moreover, by extensive analysis on the various problems following the PTAW and try to figure out the solutions, the study will help us to apply the PTAW technology on the repair works of used turbine blades. (author). 11 refs., 2 tabs.

  19. The obtainment of highly concentrated uranium pellets for plate type (MTR) fuel by dispersion of uranium aluminides in aluminium

    International Nuclear Information System (INIS)

    Morando, R.A.; Raffaeli, H.A.; Balzaretti, D.E.

    1980-01-01

    The use of the intermetallic UAl 3 for manufacturing plate type MTR fuel with 20% U 235 enriched uranium and a density of about 20 kg/m 3 is analyzed. The technique used is the dispersion of UAl 3 particles in aluminium powder. The obtainment of the UAl 3 intermetallic was performed by fusion in an induction furnace in an atmosphere of argon at a pressure of 0.7 BAR (400 mm) using an alumina melting pot. To make the aluminide powder and attain the wished granulometry a cutting and a rotating crusher were used. Aluminide powders of different granulometries and different pressures of compactation were analyzed. In each case the densities were measured. The compacts were colaminated with the 'Picture Frame' technique at temperatures of 490 and 0 deg C with excellent results from the manufacturing view point. (M.E.L.) [es

  20. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  1. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  2. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Vernieres, Jerome, E-mail: Jerome.vernieres@oist.jp; Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E. [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Bobo, Jean-François [Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Sowwan, Mukhles, E-mail: Mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, P.O. Box 51000, East Jerusalem, Palestine (Country Unknown)

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  3. On cooperative and efficient overlay network evolution based on a group selection pattern.

    Science.gov (United States)

    Nakao, Akihiro; Wang, Yufeng

    2010-04-01

    In overlay networks, the interplay between network structure and dynamics remains largely unexplored. In this paper, we study dynamic coevolution between individual rational strategies (cooperative or defect) and the overlay network structure, that is, the interaction between peer's local rational behaviors and the emergence of the whole network structure. We propose an evolutionary game theory (EGT)-based overlay topology evolution scheme to drive a given overlay into the small-world structure (high global network efficiency and average clustering coefficient). Our contributions are the following threefold: From the viewpoint of peers' local interactions, we explicitly consider the peer's rational behavior and introduce a link-formation game to characterize the social dilemma of forming links in an overlay network. Furthermore, in the evolutionary link-formation phase, we adopt a simple economic process: Each peer keeps one link to a cooperative neighbor in its neighborhood, which can slightly speed up the convergence of cooperation and increase network efficiency; from the viewpoint of the whole network structure, our simulation results show that the EGT-based scheme can drive an arbitrary overlay network into a fully cooperative and efficient small-world structure. Moreover, we compare our scheme with a search-based economic model of network formation and illustrate that our scheme can achieve the experimental and analytical results in the latter model. In addition, we also graphically illustrate the final overlay network structure; finally, based on the group selection model and evolutionary set theory, we theoretically obtain the approximate threshold of cost and draw the conclusion that the small value of the average degree and the large number of the total peers in an overlay network facilitate the evolution of cooperation.

  4. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  5. Overlay control methodology comparison: field-by-field and high-order methods

    Science.gov (United States)

    Huang, Chun-Yen; Chiu, Chui-Fu; Wu, Wen-Bin; Shih, Chiang-Lin; Huang, Chin-Chou Kevin; Huang, Healthy; Choi, DongSub; Pierson, Bill; Robinson, John C.

    2012-03-01

    Overlay control in advanced integrated circuit (IC) manufacturing is becoming one of the leading lithographic challenges in the 3x and 2x nm process nodes. Production overlay control can no longer meet the stringent emerging requirements based on linear composite wafer and field models with sampling of 10 to 20 fields and 4 to 5 sites per field, which was the industry standard for many years. Methods that have emerged include overlay metrology in many or all fields, including the high order field model method called high order control (HOC), and field by field control (FxFc) methods also called correction per exposure. The HOC and FxFc methods were initially introduced as relatively infrequent scanner qualification activities meant to supplement linear production schemes. More recently, however, it is clear that production control is also requiring intense sampling, similar high order and FxFc methods. The added control benefits of high order and FxFc overlay methods need to be balanced with the increased metrology requirements, however, without putting material at risk. Of critical importance is the proper control of edge fields, which requires intensive sampling in order to minimize signatures. In this study we compare various methods of overlay control including the performance levels that can be achieved.

  6. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  7. Faster diffraction-based overlay measurements with smaller targets using 3D gratings

    Science.gov (United States)

    Li, Jie; Kritsun, Oleg; Liu, Yongdong; Dasari, Prasad; Volkman, Catherine; Hu, Jiangtao

    2012-03-01

    Diffraction-based overlay (DBO) technologies have been developed to address the overlay metrology challenges for 22nm technology node and beyond. Most DBO technologies require specially designed targets that consist of multiple measurement pads, which consume too much space and increase measurement time. The traditional empirical approach (eDBO) using normal incidence spectroscopic reflectometry (NISR) relies on linear response of the reflectance with respect to overlay displacement within a small range. It offers convenience of quick recipe setup since there is no need to establish a model. However it requires three or four pads per direction (x or y) which adds burden to throughput and target size. Recent advances in modeling capability and computation power enabled mDBO, which allows overlay measurement with reduced number of pads, thus reducing measurement time and DBO target space. In this paper we evaluate the performance of single pad mDBO measurements using two 3D targets that have different grating shapes: squares in boxes and L-shapes in boxes. Good overlay sensitivities are observed for both targets. The correlation to programmed shifts and image-based overlay (IBO) is excellent. Despite the difference in shapes, the mDBO results are comparable for square and L-shape targets. The impact of process variations on overlay measurements is studied using a focus and exposure matrix (FEM) wafer. Although the FEM wafer has larger process variations, the correlation of mDBO results with IBO measurements is as good as the normal process wafer. We demonstrate the feasibility of single pad DBO measurements with faster throughput and smaller target size, which is particularly important in high volume manufacturing environment.

  8. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  9. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  10. Driving imaging and overlay performance to the limits with advanced lithography optimization

    Science.gov (United States)

    Mulkens, Jan; Finders, Jo; van der Laan, Hans; Hinnen, Paul; Kubis, Michael; Beems, Marcel

    2012-03-01

    Immersion lithography is being extended to 22-nm and even below. Next to generic scanner system improvements, application specific solutions are needed to follow the requirements for CD control and overlay. Starting from the performance budgets, this paper discusses how to improve (in volume manufacturing environment) CDU towards 1-nm and overlay towards 3-nm. The improvements are based on deploying the actuator capabilities of the immersion scanner. The latest generation immersion scanners have extended the correction capabilities for overlay and imaging, offering freeform adjustments of lens, illuminator and wafer grid. In order to determine the needed adjustments the recipe generation per user application is based on a combination wafer metrology data and computational lithography methods. For overlay, focus and CD metrology we use an angle resolved optical scatterometer.

  11. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  12. Alternate Welding Processes for In-Service Welding

    Science.gov (United States)

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  13. A study of swing-curve physics in diffraction-based overlay

    Science.gov (United States)

    Bhattacharyya, Kaustuve; den Boef, Arie; Storms, Greet; van Heijst, Joost; Noot, Marc; An, Kevin; Park, Noh-Kyoung; Jeon, Se-Ra; Oh, Nang-Lyeom; McNamara, Elliott; van de Mast, Frank; Oh, SeungHwa; Lee, Seung Yoon; Hwang, Chan; Lee, Kuntack

    2016-03-01

    With the increase of process complexity in advanced nodes, the requirements of process robustness in overlay metrology continues to tighten. Especially with the introduction of newer materials in the film-stack along with typical stack variations (thickness, optical properties, profile asymmetry etc.), the signal formation physics in diffraction-based overlay (DBO) becomes an important aspect to apply in overlay metrology target and recipe selection. In order to address the signal formation physics, an effort is made towards studying the swing-curve phenomena through wavelength and polarizations on production stacks using simulations as well as experimental technique using DBO. The results provide a wealth of information on target and recipe selection for robustness. Details from simulation and measurements will be reported in this technical publication.

  14. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  15. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  16. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2017-12-01

    Full Text Available The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding parameters and micro-jet cooling parameters is very important to achieve a proper steel structure. In this study, the metallographic structure, tensile results and impact toughness of welded joints have been analysed in terms of welding parameters.

  17. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    Science.gov (United States)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  18. Microstructure and hot corrosion behaviors of two Co modified aluminide coatings on a Ni-based superalloy at 700 °C

    International Nuclear Information System (INIS)

    Fan, Q.X.; Jiang, S.M.; Yu, H.J.; Gong, J.; Sun, C.

    2014-01-01

    Highlights: • Microstructures of two Co modified NiAl coatings have been studied. • The addition of Co improves the corrosion resistance in sulfate salts at 700 °C. • For the sulfide and its eutectic of Co are more stable than those of Ni. • In chloride salts coating with medium Co content has best corrosion resistance. - Abstract: Two Co modified aluminide coatings with different Co contents were prepared by pack cementation process and above-the-pack process. The hot corrosion tests of the two coatings were performed in mixed salts of 75 wt.% Na 2 SO 4 + 25 wt.% K 2 SO 4 and 75 wt.% Na 2 SO 4 + 25 wt.% NaCl at 700 °C, with a simple aluminide coating as the reference coating. X-Ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM) with energy dispersive X-ray spectrometer (EDS) were used to characterize the coatings and the corrosion scales. Results indicate that the addition of Co improves the hot corrosion resistance of the simple aluminide coating in the mixed sulfate salts, for the sulfide as well as its eutectic of cobalt are more stable, and possess higher melting points than those of nickel. While in the mixed salt containing chloride, the coating with medium Co content possesses the best corrosion resistance, primarily because the nitrides formed in the deposition process deteriorate the corrosion resistance of the coating with highest Co content

  19. Microstructure and hot corrosion behaviors of two Co modified aluminide coatings on a Ni-based superalloy at 700 °C

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Q.X., E-mail: qxfan@imr.ac.cn; Jiang, S.M., E-mail: smjiang@imr.ac.cn; Yu, H.J.; Gong, J.; Sun, C.

    2014-08-30

    Highlights: • Microstructures of two Co modified NiAl coatings have been studied. • The addition of Co improves the corrosion resistance in sulfate salts at 700 °C. • For the sulfide and its eutectic of Co are more stable than those of Ni. • In chloride salts coating with medium Co content has best corrosion resistance. - Abstract: Two Co modified aluminide coatings with different Co contents were prepared by pack cementation process and above-the-pack process. The hot corrosion tests of the two coatings were performed in mixed salts of 75 wt.% Na{sub 2}SO{sub 4} + 25 wt.% K{sub 2}SO{sub 4} and 75 wt.% Na{sub 2}SO{sub 4} + 25 wt.% NaCl at 700 °C, with a simple aluminide coating as the reference coating. X-Ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM) with energy dispersive X-ray spectrometer (EDS) were used to characterize the coatings and the corrosion scales. Results indicate that the addition of Co improves the hot corrosion resistance of the simple aluminide coating in the mixed sulfate salts, for the sulfide as well as its eutectic of cobalt are more stable, and possess higher melting points than those of nickel. While in the mixed salt containing chloride, the coating with medium Co content possesses the best corrosion resistance, primarily because the nitrides formed in the deposition process deteriorate the corrosion resistance of the coating with highest Co content.

  20. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  1. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  2. Simultaneous overlay and CD measurement for double patterning: scatterometry and RCWA approach

    Science.gov (United States)

    Li, Jie; Liu, Zhuan; Rabello, Silvio; Dasari, Prasad; Kritsun, Oleg; Volkman, Catherine; Park, Jungchul; Singh, Lovejeet

    2009-03-01

    As optical lithography advances to 32 nm technology node and beyond, double patterning technology (DPT) has emerged as an attractive solution to circumvent the fundamental optical limitations. DPT poses unique demands on critical dimension (CD) uniformity and overlay control, making the tolerance decrease much faster than the rate at which critical dimension shrinks. This, in turn, makes metrology even more challenging. In the past, multi-pad diffractionbased overlay (DBO) using empirical approach has been shown to be an effective approach to measure overlay error associated with double patterning [1]. In this method, registration errors for double patterning were extracted from specially designed diffraction targets (three or four pads for each direction); CD variation is assumed negligible within each group of adjacent pads and not addressed in the measurement. In another paper, encouraging results were reported with a first attempt at simultaneously extracting overlay and CD parameters using scatterometry [2]. In this work, we apply scatterometry with a rigorous coupled wave analysis (RCWA) approach to characterize two double-patterning processes: litho-etch-litho-etch (LELE) and litho-freeze-litho-etch (LFLE). The advantage of performing rigorous modeling is to reduce the number of pads within each measurement target, thus reducing space requirement and improving throughput, and simultaneously extract CD and overlay information. This method measures overlay errors and CDs by fitting the optical signals with spectra calculated from a model of the targets. Good correlation is obtained between the results from this method and that of several reference techniques, including empirical multi-pad DBO, CD-SEM, and IBO. We also perform total measurement uncertainty (TMU) analysis to evaluate the overall performance. We demonstrate that scatterometry provides a promising solution to meet the challenging overlay metrology requirement in DPT.

  3. VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast.

    Directory of Open Access Journals (Sweden)

    Weidong Gu

    Full Text Available Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member's departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs, i.e., multicast VMs (MVMs and compensation VMs (CVMs. MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD, and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast. The results show that it can obviously enhance the stability of the data distribution.

  4. Effects of Spectral Overlays on Reading Performance of Brazilian Elementary School Children.

    Science.gov (United States)

    Garcia, Ana Carla Oliveira; Momensohn-Santos, Teresa Maria; Vilhena, Douglas de Araújo

    2018-03-20

    To investigate the effects of spectral overlays on reading performance of Brazilian elementary school children. Sixty-eight children (aged 9-12 years) enrolled in the 5th and 6th grade were included in the study. The Rate of Reading Test (RRT - Brazilian Portuguese version) was used to evaluate reading speed and the Irlen Reading Perceptual Scale was used to allocate the sample according to reading difficulty/discomfort symptoms and to define the optimal spectral overlays. A total of 13% of the children presented an improvement of at least 15% in reading speed with the use of spectral overlays. Pupils with severe reading difficulties tended to have more improvement in RRT with spectral overlays. Children with severe reading discomfort obtained the highest gains in RRT, with an average of 9.6% improvement with intervention, compared to a decrease of -8.2% in the control group. Participants with severe discomfort had an odds ratio of 3.36 to improve reading speed with intervention compared to the control group. The use of spectral overlays can improve reading performance, particularly in those children with severe visual discomfort. © 2018 S. Karger AG, Basel.

  5. Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray

    Directory of Open Access Journals (Sweden)

    Chia-Hao Hsu

    2017-02-01

    Full Text Available 304 stainless steels (SS were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC. Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group.

  6. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  7. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  8. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  9. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  10. Holistic metrology qualification extension and its application to characterize overlay targets with asymmetric effects

    Science.gov (United States)

    Dos Santos Ferreira, Olavio; Sadat Gousheh, Reza; Visser, Bart; Lie, Kenrick; Teuwen, Rachel; Izikson, Pavel; Grzela, Grzegorz; Mokaberi, Babak; Zhou, Steve; Smith, Justin; Husain, Danish; Mandoy, Ram S.; Olvera, Raul

    2018-03-01

    Ever increasing need for tighter on-product overlay (OPO), as well as enhanced accuracy in overlay metrology and methodology, is driving semiconductor industry's technologists to innovate new approaches to OPO measurements. In case of High Volume Manufacturing (HVM) fabs, it is often critical to strive for both accuracy and robustness. Robustness, in particular, can be challenging in metrology since overlay targets can be impacted by proximity of other structures next to the overlay target (asymmetric effects), as well as symmetric stack changes such as photoresist height variations. Both symmetric and asymmetric contributors have impact on robustness. Furthermore, tweaking or optimizing wafer processing parameters for maximum yield may have an adverse effect on physical target integrity. As a result, measuring and monitoring physical changes or process abnormalities/artefacts in terms of new Key Performance Indicators (KPIs) is crucial for the end goal of minimizing true in-die overlay of the integrated circuits (ICs). IC manufacturing fabs often relied on CD-SEM in the past to capture true in-die overlay. Due to destructive and intrusive nature of CD-SEMs on certain materials, it's desirable to characterize asymmetry effects for overlay targets via inline KPIs utilizing YieldStar (YS) metrology tools. These KPIs can also be integrated as part of (μDBO) target evaluation and selection for final recipe flow. In this publication, the Holistic Metrology Qualification (HMQ) flow was extended to account for process induced (asymmetric) effects such as Grating Imbalance (GI) and Bottom Grating Asymmetry (BGA). Local GI typically contributes to the intrafield OPO whereas BGA typically impacts the interfield OPO, predominantly at the wafer edge. Stack height variations highly impact overlay metrology accuracy, in particular in case of multi-layer LithoEtch Litho-Etch (LELE) overlay control scheme. Introducing a GI impact on overlay (in nm) KPI check quantifies the

  11. Effectiveness of polymer bridge deck overlays in highway noise reduction : technical paper.

    Science.gov (United States)

    2016-04-01

    The Kansas Department of Transportation (KDOT) began placing multi-layer polymer bridge deck overlays in 1999 and at the present time have over 200 in service. A few years after placing the overlays, individuals indicated that they noticed how quiet ...

  12. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    OpenAIRE

    Jan PIWNIK; Bożena SZCZUCKA-LASOTA; Tomasz WĘGRZYN; Wojciech MAJEWSKI

    2017-01-01

    The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding paramet...

  13. Intermittent-contact scanning capacitance microscopy imaging and modeling for overlay metrology

    International Nuclear Information System (INIS)

    Mayo, S.; Kopanski, J. J.; Guthrie, W. F.

    1998-01-01

    Overlay measurements of the relative alignment between sequential layers are one of the most critical issues for integrated circuit (IC) lithography. We have implemented on an AFM platform a new intermittent-contact scanning capacitance microscopy (IC-SCM) mode that is sensitive to the tip proximity to an IC interconnect, thus making it possible to image conductive structures buried under planarized dielectric layers. Such measurements can be used to measure IC metal-to-resist lithography overlay. The AFM conductive cantilever probe oscillating in a vertical plane was driven at frequency ω, below resonance. By measuring the tip-to-sample capacitance, the SCM signal is obtained as the difference in capacitance, ΔC(ω), at the amplitude extremes. Imaging of metallization structures was obtained with a bars-in-bars aluminum structure embedded in a planarized dielectric layer 1 μm thick. We have also modeled, with a two-dimensional (2D) electrostatic field simulator, IC-SCM overlay data of a metallization structure buried under a planarized dielectric having a patterned photoresist layer deposited on it. This structure, which simulates the metal-to-resist overlay between sequential IC levels, allows characterization of the technique sensitivity. The capacitance profile across identical size electrically isolated or grounded metal lines embedded in a dielectric was shown to be different. The floating line shows capacitance enhancement at the line edges, with a minimum at the line center. The grounded line shows a single capacitance maximum located at the line center, with no edge enhancement. For identical line dimensions, the capacitance is significantly larger for grounded lines making them easier to image. A nonlinear regression algorithm was developed to extract line center and overlay parameters with approximately 3 nm resolution at the 95% confidence level, showing the potential of this technique for sub-micrometer critical dimension metrology. Symmetric test

  14. The Effects of Oxidation-Induced Failures on Thermal Barrier Coatings with Platinum Aluminide and NiCoCrAlY Bond Coats

    National Research Council Canada - National Science Library

    Yanar, N

    2001-01-01

    ...) deposited via electron beam vapor deposition (EBPVD). This TBC was deposited on both platinum aluminide and NiCoCrA1Y bond coats which in turn were deposited on superalloy substrates of Rare N5...

  15. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  16. Dynamics of a metal overlayer on metallic substrates: High temperature effects

    International Nuclear Information System (INIS)

    Rahman, T.S.; Black, J.E.; Tian, Zeng Ju

    1992-01-01

    We have explored the structure and the dynamics of a bimetallic system consisting of a hexagonal (almost) overlayer of Ag on a square lattice (Ni(100) and Cu(100)), as a function of the surface temperature. In each case the structure is ''nearly'' incommensurate giving rise to a low frequency Goldstone mode. Also, the overlayer atoms slosh back and forth over the substrate in a corrugated fashion. The calculated dispersion of the Ag/metal vertical mode, at room temperature, is in excellent agreement with experimental data. At higher temperatures floater atoms appear on top of the overlayer displaying a variety of cluster formations and also exchanges with the substrate atoms leading to surface disordering, interdiffusion and melting

  17. Sustainability of Welding Process through Bobbin Friction Stir Welding

    Science.gov (United States)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  18. Enabling high speed friction stir welding of aluminum tailor welded blanks

    Science.gov (United States)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  19. Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments

    Science.gov (United States)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2009-12-01

    Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.

  20. Mitigation of stress corrosion cracking in pressurized water reactor (PWR) piping systems using the mechanical stress improvement process (MSIPR) or underwater laser beam welding

    International Nuclear Information System (INIS)

    Rick, Grendys; Marc, Piccolino; Cunthia, Pezze; Badlani, Manu

    2009-01-01

    A current issue facing pressurized water reactors (PWRs) is primary water stress corrosion cracking (PWSCC) of bi metallic welds. PWSCC in a PWR requires the presence of a susceptible material, an aggressive environment and a tensile stress of significant magnitude. Reducing the potential for SCC can be accomplished by eliminating any of these three elements. In the U.S., mitigation of susceptible material in the pressurizer nozzle locations has largely been completed via the structural weld overlay (SWOL) process or NuVision Engineering's Mechanical Stress Improvement Process (MSIP R) , depending on inspectability. The next most susceptible locations in Westinghouse designed power plants are the Reactor Vessel (RV) hot leg nozzle welds. However, a full SWOL Process for RV nozzles is time consuming and has a high likelihood of in process weld repairs. Therefore, Westinghouse provides two distinctive methods to mitigate susceptible material for the RV nozzle locations depending on nozzle access and utility preference. These methods are the MSIP and the Underwater Laser Beam Welding (ULBW) process. MSIP applies a load to the outside diameter of the pipe adjacent to the weld, imposing plastic strains during compression that are not reversed after unloading, thus eliminating the tensile stress component of SCC. Recently, Westinghouse and NuVision successfully applied MSIP on all eight RV nozzles at the Salem Unit 1 power plant. Another option to mitigate SCC in RV nozzles is to place a barrier between the susceptible material and the aggressive environment. The ULBW process applies a weld inlay onto the inside pipe diameter. The deposited weld metal (Alloy 52M) is resistant to PWSCC and acts as a barrier to prevent primary water from contacting the susceptible material. This paper provides information on the approval and acceptance bases for MSIP, its recent application on RV nozzles and an update on ULBW development

  1. Multi-wavelength approach towards on-product overlay accuracy and robustness

    Science.gov (United States)

    Bhattacharyya, Kaustuve; Noot, Marc; Chang, Hammer; Liao, Sax; Chang, Ken; Gosali, Benny; Su, Eason; Wang, Cathy; den Boef, Arie; Fouquet, Christophe; Huang, Guo-Tsai; Chen, Kai-Hsiung; Cheng, Kevin; Lin, John

    2018-03-01

    Success of diffraction-based overlay (DBO) technique1,4,5 in the industry is not just for its good precision and low toolinduced shift, but also for the measurement accuracy2 and robustness that DBO can provide. Significant efforts are put in to capitalize on the potential that DBO has to address measurement accuracy and robustness. Introduction of many measurement wavelength choices (continuous wavelength) in DBO is one of the key new capabilities in this area. Along with the continuous choice of wavelengths, the algorithms (fueled by swing-curve physics) on how to use these wavelengths are of high importance for a robust recipe setup that can avoid the impact from process stack variations (symmetric as well as asymmetric). All these are discussed. Moreover, another aspect of boosting measurement accuracy and robustness is discussed that deploys the capability to combine overlay measurement data from multiple wavelength measurements. The goal is to provide a method to make overlay measurements immune from process stack variations and also to report health KPIs for every measurement. By combining measurements from multiple wavelengths, a final overlay measurement is generated. The results show a significant benefit in accuracy and robustness against process stack variation. These results are supported by both measurement data as well as simulation from many product stacks.

  2. The Influence of Friction Stir Weld Tool Form and Welding Parameters on Weld Structure and Properties: Nugget Bulge in Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.

    2010-01-01

    Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.

  3. The dependence of tensile ductility on investment casting parameters in gamma titanium aluminides

    International Nuclear Information System (INIS)

    Raban, R.; Rishel, L.L.; Pollock, T.M.

    1999-01-01

    Plates of three gamma titanium aluminide alloys have been investment cast with a wide variety of casting conditions designed to influence cooling rates. These alloys include Ti-48Al-2Cr-2Nv, Ti-47Al-2Cr-2Nb+0.5at%B and Ti-45Al-2Cr-2Nb+0.9at%B. Cooling rates have been estimated with the use of thermal data from casting experiments, along with the UES ProCAST simulation package. Variations in cooling rate significantly influenced the microstructure and tensile properties of all three alloys

  4. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    Science.gov (United States)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  5. Phase stability and electronic structure of transition-metal aluminides

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll 2 -DO 22 competition in Al 3 T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al 12 W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal's magnetic behavior

  6. Influence of Welding Process and Post Weld Heat Treatment on Microstructure and Pitting Corrosion Behavior of Dissimilar Aluminium Alloy Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    Welding of dissimilar Aluminum alloy welds is becoming important in aerospace, shipbuilding and defence applications. In the present work, an attempt has been made to weld dissimilar aluminium alloys using conventional gas tungsten arc welding (GTAW) and friction stir welding (FSW) processes. An attempt was also made to study the effect of post weld heat treatment (T4 condition) on microstructure and pitting corrosion behaviour of these welds. Results of the present investigation established the differences in microstructures of the base metals in T4 condition and in annealed conditions. It is evident that the thickness of the PMZ is relatively more on AA2014 side than that of AA6061 side. In FS welds, lamellar like shear bands are well noticed on the top of the stir zone. The concentration profile of dissimilar friction stir weld in T4 condition revealed that no diffusion has taken place at the interface. Poor Hardness is observed in all regions of FS welds compared to that of GTA welds. Pitting corrosion resistance of the dissimilar FS welds in all regions was improved by post weld heat treatment.

  7. A control system for uniform bead in fillet arc welding on tack welds

    International Nuclear Information System (INIS)

    Kim, Jae Woong; Lee, Jun Young

    2008-01-01

    Positioning a workpiece accurately and preventing weld distortion, tack welding is often adopted before main welding in the construction of welded structures. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually performed for a uniform weld bead profile. In this study, a control system for uniform weld bead is proposed for the fillet arc welding on tack welds. The system consists of GMA welding machine, torch manipulator, laser vision sensor for measuring the tack weld size and the database for optimal welding conditions. Experiments have been performed for constructing the database and for evaluating the control capability of the system. It has been shown that the system has the capability to smooth the bead at the high level of quality

  8. Torque Measurement of Welding of Endplug-Endplate using Multi-pin Remote Welding System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae-Seo; Kim, Soo-Sung; Park, Geun-Il; Lee, Jung-Won; Song, Kee-Chan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    As fuel bundles in PHWR irradiates, inner pressure in claddings of fuel rods increases owing to outer pressure and fission products of nuclear fissions. Because of leak possibility of welding between cladding and end plug, this welding part connects with safety of nuclear fuel rods. Because of importance of this welding part, weldability of end plug-cladding of nuclear fuel rods is continually researched. Welding method for research and commercialization is classified as melting, solid type welding or resistance welding. End plug cladding welding of nuclear fuel rods in PHWR takes advantage of resistance upset butt welding using multicycle mode. This method makes weld flash and shapes re-entrant corner owing to welding heat due to resistivity, contact resistance of cladding-end plug, and inelasticity deformation due to pressure. Welding part between cladding and end plug receives stresses and makes small cracks. In this study, remote welding system for multi-pin assembly was designed, fabricated and welding specimens of end plug-endplate were made using electrical resistance method. The torques of welding between end plug and endplate were measured. These results on welding current, pressure of main electrode and pressure of branch electrode were analyzed. Weldability between end plug and endplate was confirmed through metallographic examinations. In the future, optimal welding examinations due to welding current, welding pressure and welding time will be performed to improve weldability of end plug-endplate.

  9. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2013-01-01

    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  10. A hybrid solution using computational prediction and measured data to accurately determine process corrections with reduced overlay sampling

    Science.gov (United States)

    Noyes, Ben F.; Mokaberi, Babak; Mandoy, Ram; Pate, Alex; Huijgen, Ralph; McBurney, Mike; Chen, Owen

    2017-03-01

    Reducing overlay error via an accurate APC feedback system is one of the main challenges in high volume production of the current and future nodes in the semiconductor industry. The overlay feedback system directly affects the number of dies meeting overlay specification and the number of layers requiring dedicated exposure tools through the fabrication flow. Increasing the former number and reducing the latter number is beneficial for the overall efficiency and yield of the fabrication process. An overlay feedback system requires accurate determination of the overlay error, or fingerprint, on exposed wafers in order to determine corrections to be automatically and dynamically applied to the exposure of future wafers. Since current and future nodes require correction per exposure (CPE), the resolution of the overlay fingerprint must be high enough to accommodate CPE in the overlay feedback system, or overlay control module (OCM). Determining a high resolution fingerprint from measured data requires extremely dense overlay sampling that takes a significant amount of measurement time. For static corrections this is acceptable, but in an automated dynamic correction system this method creates extreme bottlenecks for the throughput of said system as new lots have to wait until the previous lot is measured. One solution is using a less dense overlay sampling scheme and employing computationally up-sampled data to a dense fingerprint. That method uses a global fingerprint model over the entire wafer; measured localized overlay errors are therefore not always represented in its up-sampled output. This paper will discuss a hybrid system shown in Fig. 1 that combines a computationally up-sampled fingerprint with the measured data to more accurately capture the actual fingerprint, including local overlay errors. Such a hybrid system is shown to result in reduced modelled residuals while determining the fingerprint, and better on-product overlay performance.

  11. Evaluation of the Intrinsic and Extrinsic Fracture Behavior of Iron Aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.

    2001-01-11

    In this paper, we first present the status of our computational modeling study of the thermal expansion coefficient of Fe/Al over a wide range of temperature and evaluate its dependence on selected additives. This will be accomplished by applying an isobaric Monte Carlo technique. The required total energy of the sample will be computed by using a tight-binding (TB) method that allows us to significantly increase the size of the computational data base without reducing the accuracy of the calculations. The parameters of the TB Hamiltonian are fitted to reproduce the band structure obtained by our quantum mechanical full-potential LMTO calculations. The combination of the three methods mentioned above creates an effective approach to the computation of the physical properties of the transition-metal aluminides and it can be extended to alloys with more than two components. At present, we are using a simplified approach for a first-round of results; and as a test of the simplified approach, have obtained excellent agreement with experiment for aluminum. Our previous experimental results showed that, because of their smaller grain size, FA-187 and FA-189 are extrinsically more susceptible to environmental embrittlement than FA-186 under low strain loading condition. To further investigate the grain boundary size effect as related to the susceptibility of hydrogen embrittlement, we conducted comparative finite element modeling simulations of initial intergranular fracture of two iron aluminides (FA186 and FA189) due to hydrogen embrittlement. Sequentially coupled stress and mass diffusion analyses are carried out to determine crack-tip stress state and the extent of hydrogen diffusion at the crack tip region, and a proper failure criteria is then adopted to simulate the intergranular fracture. Good qualitative agreement between the modeling predictions and experimental results is observed.

  12. TECHNOLOGICAL ISSUES IN MECHANISED FEED WIG/TIG WELDING SURFACING OF WELDING

    Directory of Open Access Journals (Sweden)

    BURCA Mircea

    2016-09-01

    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  13. Effect of Welding Heat Input on Microstructure and Texture of Inconel 625 Weld Overlay Studied Using the Electron Backscatter Diffraction Method

    Science.gov (United States)

    Kim, Joon-Suk; Lee, Hae-Woo

    2016-12-01

    The grain size and the texture of three specimens prepared at different heat inputs were determined using optical microscopy and the electron backscatter diffraction method of scanning electron microscopy. Each specimen was equally divided into fusion line zone (FLZ), columnar dendrite zone (CDZ), and surface zone (SZ), according to the location of the weld. Fine dendrites were observed in the FLZ, coarse dendrites in the CDZ, and dendrites grew perpendicular to the FLZ and CDZ. As the heat input increased, the melted zone in the vicinity of the FLZ widened due to the higher Fe content. A lower image quality value was observed for the FLZ compared to the other zones. The results of grain size measurement in each zone showed that the grain size of the SZ became larger as the heat input increased. From the inverse pole figure (IPF) map in the normal direction (ND) and the rolling direction (RD), as the heat input increased, a specific orientation was formed. However, a dominant [001] direction was observed in the RD IPF map.

  14. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  15. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  16. Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally,a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.

  17. Approaches of multilayer overlay process control for 28nm FD-SOI derivative applications

    Science.gov (United States)

    Duclaux, Benjamin; De Caunes, Jean; Perrier, Robin; Gatefait, Maxime; Le Gratiet, Bertrand; Chapon, Jean-Damien; Monget, Cédric

    2018-03-01

    Derivative technology like embedded Non-Volatile Memories (eNVM) is raising new types of challenges on the "more than Moore" path. By its construction: overlay is critical across multiple layers, by its running mode: usage of high voltage are stressing leakages and breakdown, and finally with its targeted market: Automotive, Industry automation, secure transactions… which are all requesting high device reliability (typically below 1ppm level). As a consequence, overlay specifications are tights, not only between one layer and its reference, but also among the critical layers sharing the same reference. This work describes a broad picture of the key points for multilayer overlay process control in the case of a 28nm FD-SOI technology and its derivative flows. First, the alignment trees of the different flow options have been optimized using a realistic process assumptions calculation for indirect overlay. Then, in the case of a complex alignment tree involving heterogeneous scanner toolset, criticality of tool matching between reference layer and critical layers of the flow has been highlighted. Improving the APC control loops of these multilayer dependencies has been studied with simulations of feed-forward as well as implementing new rework algorithm based on multi-measures. Finally, the management of these measurement steps raises some issues for inline support and using calculations or "virtual overlay" could help to gain some tool capability. A first step towards multilayer overlay process control has been taken.

  18. Precise X-ray and video overlay for augmented reality fluoroscopy.

    Science.gov (United States)

    Chen, Xin; Wang, Lejing; Fallavollita, Pascal; Navab, Nassir

    2013-01-01

    The camera-augmented mobile C-arm (CamC) augments any mobile C-arm by a video camera and mirror construction and provides a co-registration of X-ray with video images. The accurate overlay between these images is crucial to high-quality surgical outcomes. In this work, we propose a practical solution that improves the overlay accuracy for any C-arm orientation by: (i) improving the existing CamC calibration, (ii) removing distortion effects, and (iii) accounting for the mechanical sagging of the C-arm gantry due to gravity. A planar phantom is constructed and placed at different distances to the image intensifier in order to obtain the optimal homography that co-registers X-ray and video with a minimum error. To alleviate distortion, both X-ray calibration based on equidistant grid model and Zhang's camera calibration method are implemented for distortion correction. Lastly, the virtual detector plane (VDP) method is adapted and integrated to reduce errors due to the mechanical sagging of the C-arm gantry. The overlay errors are 0.38±0.06 mm when not correcting for distortion, 0.27±0.06 mm when applying Zhang's camera calibration, and 0.27±0.05 mm when applying X-ray calibration. Lastly, when taking into account all angular and orbital rotations of the C-arm, as well as correcting for distortion, the overlay errors are 0.53±0.24 mm using VDP and 1.67±1.25 mm excluding VDP. The augmented reality fluoroscope achieves an accurate video and X-ray overlay when applying the optimal homography calculated from distortion correction using X-ray calibration together with the VDP.

  19. Two Dimensional Array Based Overlay Network for Balancing Load of Peer-to-Peer Live Video Streaming

    International Nuclear Information System (INIS)

    Ibrahimy, Abdullah Faruq Ibn; Rafiqul, Islam Md; Anwar, Farhat; Ibrahimy, Muhammad Ibn

    2013-01-01

    The live video data is streaming usually in a tree-based overlay network or in a mesh-based overlay network. In case of departure of a peer with additional upload bandwidth, the overlay network becomes very vulnerable to churn. In this paper, a two dimensional array-based overlay network is proposed for streaming the live video stream data. As there is always a peer or a live video streaming server to upload the live video stream data, so the overlay network is very stable and very robust to churn. Peers are placed according to their upload and download bandwidth, which enhances the balance of load and performance. The overlay network utilizes the additional upload bandwidth of peers to minimize chunk delivery delay and to maximize balance of load. The procedure, which is used for distributing the additional upload bandwidth of the peers, distributes the additional upload bandwidth to the heterogeneous strength peers in a fair treat distribution approach and to the homogeneous strength peers in a uniform distribution approach. The proposed overlay network has been simulated by Qualnet from Scalable Network Technologies and results are presented in this paper

  20. Two Dimensional Array Based Overlay Network for Balancing Load of Peer-to-Peer Live Video Streaming

    Science.gov (United States)

    Faruq Ibn Ibrahimy, Abdullah; Rafiqul, Islam Md; Anwar, Farhat; Ibn Ibrahimy, Muhammad

    2013-12-01

    The live video data is streaming usually in a tree-based overlay network or in a mesh-based overlay network. In case of departure of a peer with additional upload bandwidth, the overlay network becomes very vulnerable to churn. In this paper, a two dimensional array-based overlay network is proposed for streaming the live video stream data. As there is always a peer or a live video streaming server to upload the live video stream data, so the overlay network is very stable and very robust to churn. Peers are placed according to their upload and download bandwidth, which enhances the balance of load and performance. The overlay network utilizes the additional upload bandwidth of peers to minimize chunk delivery delay and to maximize balance of load. The procedure, which is used for distributing the additional upload bandwidth of the peers, distributes the additional upload bandwidth to the heterogeneous strength peers in a fair treat distribution approach and to the homogeneous strength peers in a uniform distribution approach. The proposed overlay network has been simulated by Qualnet from Scalable Network Technologies and results are presented in this paper.

  1. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  2. Overlay field application program, Pennsylvania US-119.

    Science.gov (United States)

    2010-11-01

    The Concrete Overly Filed Application program is administered by FHWA and the National Concrete Pavement Technology Center (CP Tech Center). The overall objective of this program is to increase the awareness and knowledge of concrete overlay applicat...

  3. Fusion welding process

    Science.gov (United States)

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  4. Implementation and benefits of advanced process control for lithography CD and overlay

    Science.gov (United States)

    Zavyalova, Lena; Fu, Chong-Cheng; Seligman, Gary S.; Tapp, Perry A.; Pol, Victor

    2003-05-01

    Due to the rapidly reduced imaging process windows and increasingly stingent device overlay requirements, sub-130 nm lithography processes are more severely impacted than ever by systamic fault. Limits on critical dimensions (CD) and overlay capability further challenge the operational effectiveness of a mix-and-match environment using multiple lithography tools, as such mode additionally consumes the available error budgets. Therefore, a focus on advanced process control (APC) methodologies is key to gaining control in the lithographic modules for critical device levels, which in turn translates to accelerated yield learning, achieving time-to-market lead, and ultimately a higher return on investment. This paper describes the implementation and unique challenges of a closed-loop CD and overlay control solution in high voume manufacturing of leading edge devices. A particular emphasis has been placed on developing a flexible APC application capable of managing a wide range of control aspects such as process and tool drifts, single and multiple lot excursions, referential overlay control, 'special lot' handling, advanced model hierarchy, and automatic model seeding. Specific integration cases, including the multiple-reticle complementary phase shift lithography process, are discussed. A continuous improvement in the overlay and CD Cpk performance as well as the rework rate has been observed through the implementation of this system, and the results are studied.

  5. Reduction of image-based ADI-to-AEI overlay inconsistency with improved algorithm

    Science.gov (United States)

    Chen, Yen-Liang; Lin, Shu-Hong; Chen, Kai-Hsiung; Ke, Chih-Ming; Gau, Tsai-Sheng

    2013-04-01

    In image-based overlay (IBO) measurement, the measurement quality of various measurement spectra can be judged by quality indicators and also the ADI-to-AEI similarity to determine the optimum light spectrum. However we found some IBO measured results showing erroneous indication of wafer expansion from the difference between the ADI and the AEI maps, even after their measurement spectra were optimized. To reduce this inconsistency, an improved image calculation algorithm is proposed in this paper. Different gray levels composed of inner- and outer-box contours are extracted to calculate their ADI overlay errors. The symmetry of intensity distribution at the thresholds dictated by a range of gray levels is used to determine the particular gray level that can minimize the ADI-to-AEI overlay inconsistency. After this improvement, the ADI is more similar to AEI with less expansion difference. The same wafer was also checked by the diffraction-based overlay (DBO) tool to verify that there is no physical wafer expansion. When there is actual wafer expansion induced by large internal stress, both the IBO and the DBO measurements indicate similar expansion results. The scanning white-light interference microscope was used to check the variation of wafer warpage during the ADI and AEI stages. It predicts a similar trend with the overlay difference map, confirming the internal stress.

  6. The effect of aluminium on the creep behavior of titanium aluminide alloys

    International Nuclear Information System (INIS)

    Nandy, T.K.; Mishra, R.S.; Gogia, A.K.; Banerjee, D.

    1995-01-01

    Small increases in the Al content of Ti 3 Al-Nb alloys are known to improve creep resistance at the expense of the room temperature ductility. Though considerable work has been done on the creep behavior of titanium aluminide alloys, a systematic investigation involving the role of Al on the creep of aluminides is lacking. In the present study the authors have therefore carried out a complete investigation on stress and temperature effects on two alloys with differing Al contents, Ti-24Al-15Nb and Ti-26Al-15Nb (nominal composition in at%) in order to understand the effect of Al in terms of power law creep behavior. The following conclusions are made: (1) A strong Al effect on the creep resistance of O phase alloys in the Ti-Al-Nb systems has been confirmed, through a study of stress and temperature effects on the creep behavior of the Ti-24Al-15Nb and the Ti-26Al-15Nb compositions. (2) It has been shown, however, that the small differences in Al do not affect either the activation energies for creep (∼370 kJ/mole) or the creep mechanism (climb controlled creep with a stress exponent of 4). The activation energies and stress exponents are similar to that observed in single phase O alloys. (3) It is suggested that Al influences creep strength through an intrinsic effect on the pre-exponential term AD o in the power law creep equation. It is possible that this effect is related to a higher ordering energy of the O phase with increasing Al content

  7. VT Data - Cons/Rec Overlay District 20110301, Winhall

    Data.gov (United States)

    Vermont Center for Geographic Information — Conservation and Recreatioal Protection overaly districts for the Town of Winhall, Vermont. Other overlay districts (Transfer of Development Rights, and Scenic...

  8. Effects of concrete moisture on polymer overlay bond over new concrete : [technical summary].

    Science.gov (United States)

    2015-06-01

    Epoxy polymer overlays have been used for decades on existing bridge decks to protect : the deck and extend its service life. The polymer overlays ability to seal a bridge deck : is now being specified for new construction. Questions exist about t...

  9. Bandwidth and power allocation for two-way relaying in overlay cognitive radio systems

    KAUST Repository

    Alsharoa, Ahmad M.; Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim

    2014-01-01

    In this paper, the problem of both bandwidth and power allocation for two-way multiple relay systems in overlay cognitive radio (CR) setup is investigated. In the CR overlay mode, primary users (PUs) cooperate with cognitive users (CUs) for mutual

  10. Performance of thin bonded epoxy overlays on asphalt and concrete bridge deck surfaces.

    Science.gov (United States)

    2014-06-01

    This study is the evaluation of two thin bonded epoxy overlays: SafeLane (marketed by Cargill), and Flexogrid : (developed by PolyCarb). SafeLane is advertised as an anti-skid/anti-icing overlay that stores deicing chemicals for : release during wint...

  11. Rhodium and Hafnium Influence on the Microstructure, Phase Composition, and Oxidation Resistance of Aluminide Coatings

    OpenAIRE

    Maryana Zagula-Yavorska; Małgorzata Wierzbińska; Jan Sieniawski

    2017-01-01

    A 0.5 μm thick layer of rhodium was deposited on the CMSX 4 superalloy by the electroplating method. The rhodium-coated superalloy was hafnized and aluminized or only aluminized using the Chemical vapour deposition method. A comparison was made of the microstructure, phase composition, and oxidation resistance of three aluminide coatings: nonmodified (a), rhodium-modified (b), and rhodium- and hafnium-modified (c). All three coatings consisted of two layers: the additive layer and the interdi...

  12. MAG narrow gap welding - an economic way to minimize welding expenses

    International Nuclear Information System (INIS)

    Kast, W.; Scholz, E.; Weyland, F.

    1982-01-01

    The thicker structural components are, the more important it is to take measures to reduce the volume of the weld. The welding process requiring the smallest possible weld section is the so-called narrow gap process. In submerged arc narrow gap welding as well as in MAG narrow gap welding different variants are imaginable, some of them already in practical use. With regard to efficiency and weld quality an optimum variant of the MAG narrow gap welding process is described. It constitutes a two wire system in which two wire electrodes of 1.2 mm diameter are arranged one behind the other. In order to avoid lack of fusion, the wire guides are slightly pointed towards each groove face. Thus, by inclining the two arcs burning one behind the other in the direction of weld progress, it is achieved that two separately solidifying weld pools and two beads per layer are simultaneously formed. Welding parameters are selected in such a way that a heat input of 16-20 kJ/cm and a deposition rate of 11-16 kgs/h are obtained. In spite of this comparatively high deposition rate, good impact values are found both in the weld and HAZ (largely reduced coarse-grain zone) which is due to an optimum weld build-up. With the available welding equipment the process can be applied to structural members having a thickness of 40-400 mm. The width of gap is 13 mm (root section) with a bevel angle of 1 0 . As filler metal, basic flux-cored wires are used which, depending on the base metal to be welded and the required tensile properties, can be of the Mn-, MnMo-, MnCrMo-, MnNi-, or MnNiMo-alloyed types. (orig.)

  13. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  14. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  15. Combination of Bayesian Network and Overlay Model in User Modeling

    Directory of Open Access Journals (Sweden)

    Loc Nguyen

    2009-12-01

    Full Text Available The core of adaptive system is user model containing personal information such as knowledge, learning styles, goals… which is requisite for learning personalized process. There are many modeling approaches, for example: stereotype, overlay, plan recognition… but they don’t bring out the solid method for reasoning from user model. This paper introduces the statistical method that combines Bayesian network and overlay modeling so that it is able to infer user’s knowledge from evidences collected during user’s learning process.

  16. Friction stir welding tool and process for welding dissimilar materials

    Science.gov (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  17. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  18. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  19. Ultrasonic testing of austenitic welds and its dependency on the welding process

    International Nuclear Information System (INIS)

    Tabatabaeipour, S.M.; Honarvar, F.

    2009-01-01

    This paper describes the ultrasonic testing of austenitic welds prepared by two different welding processes. The tests were carried out by the ultrasonic Time-of-Flight Diffraction (ToFD) technique. Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) are the welding processes used for preparing the specimens. Identical artificial defects were implanted in both welds during the welding process. Both specimens were examined by the ToFD technique under similar conditions. Metallographic images were also obtained from the cross sectional plane of both the SMA and GTA welds. These images show that the grain orientation in the two welded specimens are different. D-scan images obtained by the ToFD technique from these welds indicates that inspecting the specimens prepared by the SMAW process is easier than the one made by the GTAW process. The results also show that the D-scan images cannot reveal the small vertical drilled holes implanted in the specimens. (author)

  20. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, R.L.; Buchanan, R.A. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  1. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    Science.gov (United States)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  2. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  3. Overlay Spectrum Sharing using Improper Gaussian Signaling

    KAUST Repository

    Amin, Osama; Abediseid, Walid; Alouini, Mohamed-Slim

    2016-01-01

    in overlay cognitive radio system, where the secondary transmitter broadcasts a mixture of two different signals. The first signal is selected from the PGS scheme to match the primary message transmission. On the other hand, the second signal is chosen

  4. On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys

    International Nuclear Information System (INIS)

    Imam, Murshid; Biswas, Kajal; Racherla, Vikranth

    2013-01-01

    Highlights: • FSWs for 6063-T4 AA are done at different process parameters and sheet thicknesses. • Weld nugget zone and heat affected zone temperatures are monitored for each case. • Microstructural and mechanical characterisation of welds is done in all cases. • Weld ductility is found to be particularly sensitive to weld zone temperatures. • Strong correlation is found between WNZ and HAZ temperatures and weld properties. - Abstract: 6063-T4 aluminium alloy sheets of 3 and 6 mm thicknesses were friction stir butt welded using a square tool pin at a wide range of tool rotational speeds. Properties of obtained welds were characterised using tensile tests, optical micrographs, X-ray diffraction, and transmission electron microscopy. Shape, size, and distribution of precipitates in weld zones, and strength and ductility of welds were seen to directly correlate with peak temperatures in weld nugget and heat affected zones, independent of sheet thickness. In addition, fluctuations in measured temperature profiles, for 3 mm sheets, were seen to correlate with an increase in scatter of weld nugget zone properties for 3 mm sheets. Optimal weld strength and ductility were obtained for peak weld nugget zone temperatures of around 450 °C and corresponding peak heat affected zone temperatures of around 360–380 °C. Results obtained suggest that, at least for naturally aged aluminium alloys, nature of temperature evolution and magnitudes of peak temperatures in weld nugget and heat affected zones provide information on uniformity of properties in weld zones, overaging of heat affected zones, and formation of tunnel defects from improper material mixing at low weld zone temperatures

  5. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  6. The effect of post-welding conditions in friction stir welds: From weld simulation to Ductile Failure

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Nielsen, Kim Lau; Tutum, Cem Celal

    2012-01-01

    software ANSYS, a thermo-mechanical model is employed to predict the thermally induced stresses and strains during welding, while an in-house finite element code is used to study the plastic flow localization and failure in a subsequent structural analysis. The coupling between the two models is made......The post-welding stress state, strain history and material conditions of friction stir welded joints are often strongly idealized when used in subsequent modeling analyses, typically by neglecting one or more of the features above. But, it is obvious that the conditions after welding do influence......, showed the largest influence of the post-welding conditions, even though significant relaxation of the residual stress state was predicted....

  7. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-06-01

    Full Text Available Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of nitrogen and oxygen amount in WMD (weld metal deposit.

  8. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    International Nuclear Information System (INIS)

    Al-Sarraf, Z; Lucas, M

    2012-01-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  9. Welding and cutting

    International Nuclear Information System (INIS)

    Drews, P.; Schulze Frielinghaus, W.

    1978-01-01

    This is a survey, with 198 literature references, of the papers published in the fields of welding and cutting within the last three years. The subjects dealt with are: weldability of the materials - Welding methods - Thermal cutting - Shaping and calculation of welded joints - Environmental protection in welding and cutting. (orig.) [de

  10. Simplified welding distortion analysis for fillet welding using composite shell elements

    Directory of Open Access Journals (Sweden)

    Mingyu Kim

    2015-05-01

    Full Text Available This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

  11. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  12. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  13. Orbital welding technique

    International Nuclear Information System (INIS)

    Hoeschen, W.

    2003-01-01

    The TIG (Tungsten-inert gas) orbital welding technique is applied in all areas of pipe welding. The process is mainly used for austenitic and ferritic materials but also for materials like aluminium, nickel, and titanium alloys are commonly welded according to this technique. Thin-walled as well as thick-walled pipes are welded economically. The application of orbital welding is of particular interest in the area of maintenance of thick-walled pipes that is described in this article. (orig.) [de

  14. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  15. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    Science.gov (United States)

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  16. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    Science.gov (United States)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  17. Estimation of weld nugget temperature by thermography method in resistance projection welding process

    International Nuclear Information System (INIS)

    Setty, D.S.; Rameswara Roa, A.; Hemantha Rao, G.V.S.; Jaya Raj, R.N.

    2008-01-01

    In the Pressurized Heavy Water Reactor (PHWR) fuel manufacturing, zirconium alloy appendages like spacer and bearing pads are welded to the thin wall zirconium alloy fuel tubes by using resistance projection welding process. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. In the fuel assembly, spacer pads are used to get the required inter-element spacing and Bearing pads are used to get the required load-bearing surface for the fuel assembly. Performance of the fuel assembly in the reactor is greatly influenced by these weld joint's quality. Phase transformation from α to β phase is not acceptable while welding these tiny appendages. At present only destructive metallography test is available for this purpose. This can also be achieved by measuring weld nugget temperature where in the phase transformation temperature for zirconium alloy material is 853 o C. The temperature distribution during resistance welding of tiny parts cannot be measured by conventional methods due to very small space and short weld times involved in the process. Shear strength, dimensional accuracy and weld microstructures are some of the key parameters used to measure the quality of appendage weld joints. Weld parameters were optimized with the help of industrial experimentation methodology. Individual projection welding by split electrode concept, and during welding on empty tube firm support is achieved on inner side of the tube by using expandable pneumatic mandrel. In the present paper, an attempt was made to measure the weld nugget temperature by thermography technique and is correlated with standard microstructures of zirconium alloy material. The temperature profiles in the welding process are presented for different welding conditions. This technique has helped in measuring the weld nugget temperature more accurately. It was observed that in the present appendage welding

  18. Influence of Loading Direction and Weld Reinforcement on Fatigue Performance of TIG Weld Seam

    Directory of Open Access Journals (Sweden)

    HUI Li

    2018-02-01

    Full Text Available The influence of loading direction and weld reinforcement on fatigue performance of TC2 titanium alloy TIG weld seam was investigated via fatigue experiments and SEM fracture observation. The results show that the fatigue life of retaining weld reinforcement specimens is lower than that of removing one in the same weld direction. The fatigue life of oblique weld specimens is higher than that of straight one with the same weld reinforcement treatment. The initiation of removing weld reinforcement specimens' fatigue crack sources is in the hole defect, but the weld reinforcement specimen initiate at the weld toes. During the early stage of fatigue crack propagation, the cracks all grow inside the weld seam metal with obvious fatigue striation. And the fatigue cracks of oblique weld specimens pass through the weld seam into the base with a typical toughness fatigue striation during the last stage of fatigue crack propagation. The dimple of straight weld specimens is little and shallow in the final fracture zone. The oblique weld specimens broke in the base metal area, and the dimple is dense.

  19. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.

    2015-01-01

    Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was pr...

  20. Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling

    Directory of Open Access Journals (Sweden)

    Liya Ye

    2018-02-01

    Full Text Available Platinum aluminide coatings with different Hf contents were fabricated by using HfCl4. The oxidation kinetics and the rumpling behavior of oxide scale were investigated. After thermal cycling, the coating with 0.46 wt% Hf showed least weight gain. With the increase of Hf content, rumpling extent of the scale decreased. Meanwhile, HfO2 preferentially formed in the scale resulting in the increase of scale thickness. The oxidation of excessive Hf even caused the spallation of the scale. The results in the present study indicate that although Hf plays an important role in decreasing rumpling extent of TGO, the oxidation of Hf decreases the adhesion of the scale. Keywords: Pt-Al coating, Hf, Oxidation, Rumpling

  1. A Novel Low-Temperature Fiffusion Aluminide Coating for Ultrasupercritical Coal-Fried Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying

    2009-12-31

    An ultrasupercritical (USC) boiler with higher steam temperature and pressure is expected to increase the efficiency of the coal-fired power plant and also decrease emissions of air pollutants. Ferritic/martensitic alloys have been developed with good creep strength for the key components in coal-fired USC plants. However, they typically suffer excessive steam-side oxidation, which contributes to one of main degradation mechanisms along with the fire-side corrosion in coal-fired boilers. As the steam temperature further increases in USC boilers, oxidation of the tube internals becomes an increasing concern, and protective coatings such as aluminide-based diffusion coatings need to be considered. However, conventional aluminizing processes via pack cementation or chemical vapor deposition are typically carried out at elevated temperatures (1000-1150 C). Thermochemical treatment of ferritic/martensitic alloys at such high temperatures could severely degrade their mechanical properties, particularly the alloy's creep resistance. The research focus of this project was to develop an aluminide coating with good oxidation resistance at temperatures {le} 700 C so that the coating processing would not detrimentally alter the creep performance of the ferritic/martensitic alloys. Nevertheless, when the aluminizing temperature is lowered, brittle Al-rich intermetallic phases, such as Fe{sub 2}Al{sub 5} and FeAl{sub 3}, tend to form in the coating, which may reduce the resistance to fatigue cracking. Al-containing binary masteralloys were selected based on thermodynamic calculations to reduce the Al activity in the pack cementation process and thus to prevent the formation of brittle Al-rich intermetallic phases. Thermodynamic computations were carried out using commercial software HSC 5.0 for a series of packs containing various Cr-Al binary masteralloys. The calculation results indicate that the equilibrium partial pressures of Al halides at 700 C were a function of Al

  2. OVERLAY DENTURES: A REVIEW AND REPORT OF FOUR CASES

    Directory of Open Access Journals (Sweden)

    Deeksha SHARMA

    2013-12-01

    Full Text Available Patients with ectodermal dysplasia or having under‑ gone cleft surgery with anodontia or hypodontia, hypo‑ plastic conical teeth and patients with severely worn dentition are difficult to treat because of the poor remaining tooth structure. These patients often exhibit loss of vertical dimension of occlusion and aesthetic problems and usually need complex prosthetic treatments. Financial constraints or other priorities often restrict one from choosing the most desirable treatment. The overlay removable denture is a covering prosthesis partially supported by natural teeth, tooth roots, or dental implants, providing an efficient alter‑ native of treatment. Clinical reports describe the various applications of overlay dentures.

  3. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  4. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  5. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  6. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  7. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  8. [New welding processes and health effects of welding].

    Science.gov (United States)

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  9. Plug-welding of ODS cladding tube for BOR-60 irradiation. Welding condition setting. Device remodeling and welding

    International Nuclear Information System (INIS)

    Seki, Masayuki; Ishibashi, Fujio; Kono, Syusaku; Hirako, Kazuhito; Tsukada, Tatsuya

    2003-04-01

    Irradiation test in BOR-60 at RIAR to judge practical use prospect of ODS cladding tube at early stage is planned as Japan-Russia a joint research. RIAR does fuel design of fuel pin used for this joint research. JNC manufactures ODS cladding tube and bar materials (two steel kind of martensite and ferrite), upper endplug production. They are welded by pressurized resistance welding, and are inspected in JNC Tokai, transported to RIAR. And RIAR manufactures vibration packing fuel pin. On the upper endplug welding by pressurized resistance welding method, we worded on the problems such as decision of welding condition by changing the size and crystallization of cladding tube and the design of endplug, and the chucking device remodeling to correspond to the long scale cladding tube welding system (included handling) and of quality assurance method. Especially, use of long scale cladding tube caused problem that bending transformation occurred in cladding tube by welding pressure. However, we solved this problem by shortening the distance of cladding tube colette chuck and pressure receiving, and by putting the sleeve in an internal space of welding machine, losing the bending of cladding tube. Moreover, welding defects were occurred by the difference of an inside state, an inside defect and recrystallization of cladding tube. We solved the problem by inside grinding for the edge of tube, angle beam method by ultrasonic wave, and ultrasonic wave form confirmation. Manufacturing process with long scale cladding tube including heat-treatment to remove combustion return and remaining stress was established besides, Afterwards, welding of ODS cladding tube and upper endplug. As the quality assurance system, we constructed [Documented procedure (referred to JOYO)] based on [Document of the QA plan] by OEC. Welding and inspection were executed by the document procedure. It is thought that the quality assurance method become references for the irradiation test in JOYO in the

  10. Weld analysis and control system

    Science.gov (United States)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  11. Aluminide protective coatings on high–temperature creep resistant cast steel

    Directory of Open Access Journals (Sweden)

    J. Kubicki

    2009-10-01

    Full Text Available This paper presents the results of research on aluminide protective coatings manufactured on high–temperature creep resistant cast steel. The main purpose of these coatings is protection against the high temperature corrosion, especially at high carburizing potential atmosphere. Coatings were obtained on cast steel type G–XNiCrSi36–18 with the following methods: pack cementation, paste method, cast method and slurry cementation. The phase composition, thickness and morphology of coatings were determined. Coatings capacity of carbon diffusion inhibition and thermal shocks resistance of coatings were determined with different methods. It was found, that all of the coatings reduce carbon diffusion in different degree and all coatings liable to degradation in consequence cracking and oxidation. Coating life time is mainly dependent on morphology, phase composition and service condition (thermal shocks first of all.

  12. Fine tuning of dwelling time in friction stir welding for preventing material overheating, weld tensile strength increase and weld nugget size decrease

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2016-01-01

    Full Text Available After successful welding, destructive testing into test samples from Al 2024-T351 friction stir butt welds showed that tensile strength of the weld improve along the joint line, while dimensions of the weld nugget decrease. For those welds, both the base material and the welding tool constantly cool down during the welding phase. Obviously, the base material became overheated during the long dwelling phase what made conditions for creation of joints with the reduced mechanical properties. Preserving all process parameters but varying the dwelling time from 5-27 seconds a new set of welding is done to reach maximal achievable tensile strength. An analytical-numerical-experimental model is used for optimising the duration of the dwelling time while searching for the maximal tensile strength of the welds

  13. Control of the development of residual stresses and heat affected zone (HAZ) microstructure during welding of low alloy steels and influence on stress relieve cracking

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, J.; Rui Wu; Sandstroem, R.; von Walden, E. [Swedish Inst. for Metals Research, Stockholm (Sweden)

    1990-12-31

    Creep resistant 1 Cr 0.5 Mo steels are frequently used as steam pipes at operating temperature of 450 degree C to 500 degrees C. Welded joints have been post weld heat treated (PWHT). The results show: - In fully refined microstructures close to the fusion boundary of the weldments a reduction of the grain size by a factor of 3-4 was measured. The impact transition temperature was up to 27 degree C lower for test series notched in the refined HAZ (Heat Affected Zone) than in the coarse grained HAZ of the as welded condition. The overlay heat treatments were not observed to significantly influence the hardness and the room temperature tensile properties of the weldments. - The influence of refinement on impact transition temperature (ITT) and upper shelf energy was beneficial. In the coarse grained HAZ, for which the ITT was significantly higher than for weld metal and base metal, the refinement resulted in a 30 degrees C lower value of the ITT. The influence of PWHT on impact properties was also studied. The PWHT raised the upper shelf energy greatly. The effect on the ITT was smaller than that of refinement. - For cross welds in the as-welded (AW) condition refinement improved the creep properties. After PWHT the creep ductility was significantly increased at the same as a considerable reduction of life was observed. At lower stresses the effects of refinement and especially PWHT were less pronounced. Beneficial influence of refinement in inhibiting the formation of creep cavitation was apparent regardless stress level in both AW and PWHT conditions. (K.A.E).

  14. Opportunistic transmitter selection for selfless overlay cognitive radios

    KAUST Repository

    Shaqfeh, Mohammad; Zafar, Ammar; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim

    2013-01-01

    We propose an opportunistic strategy to grant channel access to the primary and secondary transmitters in causal selfless overlay cognitive radios over block-fading channels. The secondary transmitter helps the primary transmitter by relaying

  15. Optimum welding condition of 2017 aluminum similar alloy friction welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Tsujino R.; Ochi, H. [Osaka Inst. of Tech., Osaka (Japan); Morikawa, K. [Osaka Sangyo Univ., Osaka (Japan); Yamaguchi, H.; Ogawa, K. [Osaka Prefecture Univ., Osaka (Japan); Fujishiro, Y.; Yoshida, M. [Sumitomo Metal Technology Ltd., Hyogo (Japan)

    2002-07-01

    Usefulness of the statistical analysis for judging optimization of the friction welding conditions was investigated by using 2017 aluminum similar alloy, where many samples under fixed welding conditions were friction welded and analyzed statistically. In general, selection of the optimum friction welding conditions for similar materials is easy. However, it was not always the case for 2017 aluminum alloy. For optimum friction welding conditions of this material, it is necessary to apply relatively larger upset pressure to obtain high friction heating. Joint efficiencies obtained under the optimum friction welding conditions showed large shape parameter (m value) of Weibull distribution as well as in the dissimilar materials previously reported. The m value calculated on the small number of data can be substituted for m value on the 30 data. Therefore, m value is useful for practical use in the factory for assuming the propriety of the friction welding conditions. (orig.)

  16. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  17. TIG welding method and TIG welding device

    International Nuclear Information System (INIS)

    Yoneda, Eishi

    1998-01-01

    The present invention provides a method of TIG welding for members having different heat capacities including a cladding tube and an end plug of a fuel rod to be used, for example, in a reactor, and a device therefor. Namely, in the TIG welding method, the flow rate of a sealed gas to the side of a member having smaller heat capacity is made greater than that on the side of the member having greater heat capacity bordered on the top end of a welding electrode. Since the sealed gas is jetted being localized relative to the welding electrode, arc is restricted in a region of the member having smaller heat capacity and is increased at a region having a larger heat capacity. As a result, the arc is localized, so that the heat input amount to the region having a large heat capacity is increased, and then a plurality of members at the abutting portion are melted uniformly thereby capable of obtaining a uniform molten pool. A bead is formed at the abutting portion thereby capable of obtaining a welded portion with less unevenness and having large strength. (I.S.)

  18. Effects of irradiation on initiation and crack-arrest toughness of two high-copper welds and on stainless steel cladding

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; Haggag, F.M.

    1990-01-01

    The objective of the study on the high-copper welds is to determine the effect of neutron irradiation on the shift and shape of the ASME K Ic and K Ia toughness curves. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Compact specimens fabricated from these welds were irradiated at a nominal temperature of 288 degree C to fluences from 1.5 to 1.9 x 10 19 neutrons/cm 2 (>1 MeV). The fracture toughness test results show that the irradiation-induced shifts at 100 MPa/m were greater than the Charpy 41-J shifts by about 11 and 18 degree C. Mean curve fits indicate mixed results regarding curve shape changes, but curves constructed as lower boundaries to the data do indicate curves of lower slopes. A preliminary evaluation of the crack-arrest results shows that the neutron-irradiation induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower bound curves (for the range of test temperatures covered), compared to those of the ASME K Ia curve did not appear to have been altered by the irradiation. Three-wire stainless steel weld overlay cladding was irradiated at 288 degree C to fluences of 2 and 5 x 10 19 neutrons/cm 2 (>1 MeV). Charpy 41-J temperature shifts of 13 and 28 degree C were observed, respectively. For the lower fluence only, 12.7-mm thick compact specimens showed decreases in both J Ic and the tearing modulus. Comparison of the fracture toughness results with typical plate and a low upper-shelf weld reveals that the irradiated stainless steel cladding possesses low ductile initiation fracture toughness comparable to the low upper-shelf weld. 8 refs., 12 figs., 2 tabs

  19. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  20. Advancements of diffraction-based overlay metrology for double patterning

    Science.gov (United States)

    Li, Jie; Kritsun, Oleg; Liu, Yongdong; Dasari, Prasad; Weher, Ulrich; Volkman, Catherine; Mazur, Martin; Hu, Jiangtao

    2011-03-01

    As the dimensions of integrated circuit continue to shrink, diffraction based overlay (DBO) technologies have been developed to address the tighter overlay control challenges. Previously data of high accuracy and high precision were reported for litho-etch-litho-etch double patterning (DP) process using normal incidence spectroscopic reflectometry on specially designed targets composed of 1D gratings in x and y directions. Two measurement methods, empirical algorithm (eDBO) using four pads per direction (2x4 target) and modeling based algorithm (mDBO) using two pads per direction (2x2 target) were performed. In this work, we apply DBO techniques to measure overlay errors for a different DP process, litho-freeze-litho-etch process. We explore the possibility of further reducing number of pads in a DBO target using mDBO. For standard targets composed of 1D gratings, we reported results for eDBO 2x4 targets, mDBO 2x2 targets, and mDBO 2x1 target. The results of all three types of targets are comparable in terms of accuracy, dynamic precision, and TIS. TMU (not including tool matching) is less than 0.1nm. In addition, we investigated the possibility of measuring overlay with one single pad that contains 2D gratings. We achieved good correlation to blossom measurements. TMU (not including tool matching) is ~ 0.2nm. To our best knowledge, this is the first time that DBO results are reported on a single pad. eDBO allows quick recipe setup but takes more space and measurement time. Although mDBO needs details of optical properties and modeling, it offers smaller total target size and much faster throughput, which is important in high volume manufacturing environment.

  1. A Measurement Study of the Structured Overlay Network in P2P File-Sharing Systems

    Directory of Open Access Journals (Sweden)

    Mo Zhou

    2007-01-01

    Full Text Available The architecture of P2P file-sharing applications has been developing to meet the needs of large scale demands. The structured overlay network, also known as DHT, has been used in these applications to improve the scalability, and robustness of the system, and to make it free from single-point failure. We believe that the measurement study of the overlay network used in the real file-sharing P2P systems can provide guidance for the designing of such systems, and improve the performance of the system. In this paper, we perform the measurement in two different aspects. First, a modified client is designed to provide view to the overlay network from a single-user vision. Second, the instances of crawler programs deployed in many nodes managed to crawl the user information of the overlay network as much as possible. We also find a vulnerability in the overlay network, combined with the character of the DNS service, a more serious DDoS attack can be launched.

  2. Automatization of welding

    International Nuclear Information System (INIS)

    Iwabuchi, Masashi; Tomita, Jinji; Nishihara, Katsunori.

    1978-01-01

    Automatization of welding is one of the effective measures for securing high degree of quality of nuclear power equipment, as well as for correspondence to the environment at the site of plant. As the latest ones of the automatic welders practically used for welding of nuclear power apparatuses in factories of Toshiba and IHI, those for pipes and lining tanks are described here. The pipe welder performs the battering welding on the inside of pipe end as the so-called IGSCC countermeasure and the succeeding butt welding through the same controller. The lining tank welder is able to perform simultaneous welding of two parallel weld lines on a large thin plate lining tank. Both types of the welders are demonstrating excellent performance at the shops as well as at the plant site. (author)

  3. Electric arc welding gun

    Science.gov (United States)

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  4. Image-based overlay and alignment metrology through optically opaque media with sub-surface probe microscopy

    Science.gov (United States)

    van Es, Maarten H.; Mohtashami, Abbas; Piras, Daniele; Sadeghian, Hamed

    2018-03-01

    Nondestructive subsurface nanoimaging through optically opaque media is considered to be extremely challenging and is essential for several semiconductor metrology applications including overlay and alignment and buried void and defect characterization. The current key challenge in overlay and alignment is the measurement of targets that are covered by optically opaque layers. Moreover, with the device dimensions moving to the smaller nodes and the issue of the so-called loading effect causing offsets between between targets and product features, it is increasingly desirable to perform alignment and overlay on product features or so-called on-cell overlay, which requires higher lateral resolution than optical methods can provide. Our recently developed technique known as SubSurface Ultrasonic Resonance Force Microscopy (SSURFM) has shown the capability for high-resolution imaging of structures below a surface based on (visco-)elasticity of the constituent materials and as such is a promising technique to perform overlay and alignment with high resolution in upcoming production nodes. In this paper, we describe the developed SSURFM technique and the experimental results on imaging buried features through various layers and the ability to detect objects with resolution below 10 nm. In summary, the experimental results show that the SSURFM is a potential solution for on-cell overlay and alignment as well as detecting buried defects or voids and generally metrology through optically opaque layers.

  5. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    Science.gov (United States)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  6. Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths

    International Nuclear Information System (INIS)

    Park, Chiyong; Lee, Hweesueng; Huh, Namsu

    2014-01-01

    In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding

  7. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  8. Microstructure evaluation and mechanical behavior of high-niobium containing titanium aluminides

    Science.gov (United States)

    Bean, Glenn Estep, Jr.

    Ti-Al-Nb-based alloys with gamma(TiAl)+sigma(Nb2Al) microstructure have shown promise for potential high temperature applications due to their high specific strength. Recent research has been aimed towards increasing strength and operating temperatures through microstructural refinement and control. Alloys with 10 - 30% sigma-phase have been investigated, exploring relationships between chemistry, microstructure development, and flow behavior. Alloys with composition Ti-45Al-xNb-5Cr-1Mo (where x = 15, 20, 25 at%) have been produced, characterized, and tested at high temperature under compression. Processing, microstructure and mechanical property relationships are thoroughly investigated to reveal a significant connection between phase stability, morphology and their resultant effects on mechanical properties. Phase transformation temperatures and stability ranges were predicted using the ThermoCalc software program and a titanium aluminide database, investigated through thermal analysis, and alloys were heat treated to develop an ultrafine gamma+sigma microstructure. It has been demonstrated that microstructural development in these alloys is sensitive to composition and processing parameters, and heating and cooling rates are vital to the modification of gamma+sigma microstructure in these alloys. Towards the goal of designing a high-Nb titanium aluminide with ultrafine, disconnected gamma+sigma morphology, it has been established that microstructural control can be accomplished in alloys containing 15-25at% Nb through targeted chemistry and processing controls. The strength and flow softening characteristics show strain rate sensitivity that is also affected by temperature. From the standpoint of microstructure development and mechanical behavior at elevated temperature, the most favorable results are obtained with the 20 at% Nb alloy, which produces a combination of high strength and fine disconnected gamma+sigma microstructure. Microstructural analysis reveals

  9. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  10. Process for quality assurance of welded joints for electrical resistance point welding

    International Nuclear Information System (INIS)

    Schaefer, R.; Singh, S.

    1977-01-01

    In order to guarantee the reproducibility of welded joints of even quality (above all in the metal working industry), it is proposed that before starting resistance point welding, a preheating current should be allowed to flow at the site of the weld. A given reduction of the total resistance at the site of the weld should effect the time when the preheating current is switched over to welding current. This value is always predetermined empirically. Further possibilities of controlling the welding process are described, where the measurement of thermal expansion of the parts is used. A standard welding time is given. The rated course of electrode movement during the process can be predicted and a running comparison of nominal and actual values can be carried out. (RW) [de

  11. Weld nugget formation in resistance spot welding of new lightweight sandwich material

    DEFF Research Database (Denmark)

    Sagüés Tanco, J.; Nielsen, Chris Valentin; Chergui, Azeddine

    2015-01-01

    Weldability of a new lightweight sandwich material, LITECOR®, by resistance spot welding is analyzed by experiments and numerical simulations. The spot welding process is accommodated by a first pulse squeezing out the non-conductive polymer core of the sandwich material locally to allow metal......–metal contact. This is facilitated by the use of a shunt tool and is followed by a second pulse for the actual spot welding and nugget formation. A weldability lobe in the time-current space of the second pulse reveals a process window of acceptable size for automotive assembly lines. Weld growth curves...... with experimental results in the range of welding parameters leading to acceptable weld nugget sizes. The validated accuracy of the commercially available software proves the tool useful for assisting the choice of welding parameters....

  12. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  13. Cluster-assembled overlayers and high-temperature superconductors

    International Nuclear Information System (INIS)

    Ohno, T.R.; Yang, Y.; Kroll, G.H.; Krause, K.; Schmidt, L.D.; Weaver, J.H.; Kimachi, Y.; Hidaka, Y.; Pan, S.H.; de Lozanne, A.L.

    1991-01-01

    X-ray photoemission results for interfaces prepared by cluster assembly with nanometer-size clusters deposited on high-T c superconductors (HTS's) show a reduction in reactivity because atom interactions with the surface are replaced by cluster interactions. Results for conventional atom deposition show the formation of overlayer oxides that are related to oxygen depletion and disruption of the near-surface region of the HTS's. For cluster assembly of Cr and Cu, there is a very thin reacted region on single-crystal Bi 2 Sr 2 CaCu 2 O 8 . Reduced reactivity is observed for Cr cluster deposition on single-crystal YBa 2 Cu 3 O 7 -based interfaces. There is no evidence of chemical modification of the surface for Ge and Au cluster assembly on Bi 2 Sr 2 CaCu 2 O 8 (100). The overlayer grown by Au cluster assembly on Bi 2 Sr 2 CaCu 2 O 8 covers the surface at low temperature but roughening occurs upon warming to 300 K. Scanning-tunneling-microscopy results for the Au(cluster)/Bi 2 Sr 2 CaCu 2 O 8 system warmed to 300 K shows individual clusters that have coalesced into large clusters. These results offer insight into the role of surface energies and cluster interactions in determining the overlayer morphology. Transmission-electron-microscopy results for Cu cluster assembly on silica show isolated irregularly shaped clusters that do not interact at low coverage. Sintering and labyrinth formation is observed at intermediate coverage and, ultimately, a continuous film is achieved at high coverage. Silica surface wetting by Cu clusters demonstrates that dispersive force are important for these small clusters

  14. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  15. Boosting Active Contours for Weld Pool Visual Tracking in Automatic Arc Welding

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor

    2015-01-01

    Detecting the shape of the non-rigid molten metal during welding, so-called weld pool visual sensing, is one of the central tasks for automating arc welding processes. It is challenging due to the strong interference of the high-intensity arc light and spatters as well as the lack of robust...... approaches to detect and represent the shape of the nonrigid weld pool. We propose a solution using active contours including an prior for the weld pool boundary composition. Also, we apply Adaboost to select a small set of features that captures the relevant information. The proposed method is applied...... to weld pool tracking and the presented results verified its feasibility....

  16. Analysis of welding distortion due to narrow-gap welding of upper port plug

    International Nuclear Information System (INIS)

    Biswas, Pankaj; Mandal, N.R.; Vasu, Parameswaran; Padasalag, Shrishail B.

    2010-01-01

    Narrow-gap welding is a low distortion welding process. This process allows very thick plates to be joined using fewer weld passes as compared to conventional V-groove or double V-groove welding. In case of narrow-gap arc welding as the heat input and weld volume is low, it reduces thermal stress leading to reduction of both residual stress and distortion. In this present study the effect of narrow-gap welding was studied on fabrication of a scaled down port plug in the form of a trapezoidal box made of 10 mm thick mild steel (MS) plates using gas tungsten arc welding (GTAW). Inherent strain method was used for numerical prediction of resulting distortions. The numerical results compared well with that of the experimentally measured distortion. The validated numerical scheme was used for prediction of weld induced distortion due to narrow-gap welding of full scale upper port plug made of 60 mm thick SS316LN material as is proposed for use in ITER project. It was observed that it is feasible to fabricate the said port plug keeping the distortions minimum within about 7 mm using GTAW for root pass welding followed by SMAW for filler runs.

  17. Performance polymeric concrete with synthetic fiber reinforcement against reflective cracking in rigid pavement overlay

    International Nuclear Information System (INIS)

    Khan, N.U.; Khan, B.

    2012-01-01

    Cement concrete pavements are used for heavy traffic loads throughout the world owing to its better and economical performance. Placing of a concrete overlay on the existing pavement is the most prevalent rehabilitating method for such pavements, however, the problem associated with the newly placed overlay is the occurrence of reflective cracking. This paper presents an assessment of the performance of polymeric concrete with synthetic fiber reinforcement against reflective cracking in an overlay system. The performance of polymeric concrete with synthetic fibers as an overlay material is measured in terms of the load-deflection, strain-deflection and load-strain behavior of beams of the polymeric concrete. For this purpose, five types of beams having different number of fiber wires and position are tested for flexure strength. Deflection/strains for each increment of load are recorded. In addition, cubes of plain concrete and of concrete with synthetic fiber needles were tested after 7 and 28 days for compressive strengths. Finite element models in ANSYS software for the beams have also been developed. Beams with greater number of longitudinal fiber wires displayed relatively better performance against deflection whilst beams with synthetic fiber needles showed better performance against strains. Thus, polymeric concrete overlay with fiber reinforcement will serve relatively better against occurrence of reflective cracking. (author)

  18. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2003-01-01

    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  19. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  20. Release of fission products from irradiated aluminide fuel at high temperature

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Kanda, Keiji; Mishima, Kaichiro; Tamai, Tadaharu; Hayashi, Masatoshi; Snelgrove, James L.; Stahl, David; Matos, James E.; Travelli, Armando; Case, F. Neil; Posey, John C.

    1983-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel cladding material. The release of fission products from the fuel plate at temperature below 500 deg. C was found negligible. The first rapid release of fission products was observed with the occurrence of blistering at 561±1 deg. C on the plates. The next release at 585. C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640 deg. C of U-Al x . The released material was mostly xenon, but small amounts of iodine and cesium were observed. (author)

  1. Release of fission products from irradiated aluminide fuel at high temperature

    International Nuclear Information System (INIS)

    Shibata, T.; Kanda, K.; Mishima, K.

    1982-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel-cladding material. The release of fission products from the fuel plate at temperature below 500 0 C was found negligible. The firist rapid release of fission products was observed with the occurrence of blistering at 561 +- 1 0 C on the plates. The next release at 585 0 C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640 0 C of U-Al/sub x/. The released material was mostly xenon, but small amounts of iodine and cesium were observed

  2. The effects of welded joint characteristics on its properties in HDPE thermal fusion welding

    Science.gov (United States)

    Dai, Hongbin; Peng, Jun

    2017-05-01

    In this paper, PE100 pipes with the diameter of 200 mm and the thickness of 11.9 mm were used as material. The welded joints were obtained in different welding pressures with the optimal welding temperature of 220∘C. Reheating process on the welded joints with the temperature of 130∘C was carried out. The joints exhibited X-type, and the cause of X-type joints was discussed. The temperature field in the forming process of welded joints was measured, and tensile and bending tests on welded joints were carried out. The fracture surface of welded joints was observed by scanning electron microscopy (SEM), and crystallinity calculation was taken by X-ray diffraction (XRD). The mechanism of X-type weld profile effects on welded joints properties was analyzed. It was concluded that the mechanical properties of welded joints decrease with the reduced X distance between lines.

  3. Recent advances in the TIG welding process and the application of the welding of nuclear components

    International Nuclear Information System (INIS)

    Lucas, W.; Males, B.O.

    1982-01-01

    Recent advances in the field of precision arc welding techniques and infacilities for production of nuclear power plant components arc presented. Of the precision welding techniques, pulsed TIG welding, pulsed plasma arc welding, hot-wire TIG welding, and pulsed inert-gas metal-arc welding. In the field of weld cladding, GMA plasma welding is cited as an alternative to submerged-arc welding with a strip electrode. Transistors and computer-controlled welding systems get a special mention. Applications of TIG welding in the UK are cited, e.g. welding of components for the AGR nuclear power plant and construction of equipment for repair work in feedwater pipes of the MAGNOX reactor. (orig.) [de

  4. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  5. Welding procedure specification for arc welding of St 52-3N steel plates with covered electrodes

    International Nuclear Information System (INIS)

    Cvetkovski, S.; Slavkov, D.; Magdeski, J.

    2003-01-01

    In this paper the results of approval welding technology for arc welding of plates made of St 52-3N steel are presented. Metal arc welding with covered electrode is used welding process. Test specimens are butt welded in different welding positions P A , P F , P C and P D . Before start welding preliminary welding procedure was prepared. After welding of test specimens non destructive and destructive testing was performed. Obtained results were compared with standard DIN 17100 which concerns to chemical composition and mechanical properties of base material. It was confirmed that in all cases mechanical properties of welded joint are higher than those of base material, so preliminary welding procedure (pWTS) can be accepted as welding procedure specification WPS for metal arc welding of St52-3N steel. (Original)

  6. Variant selection of martensites in steel welded joints with low transformation temperature weld metals

    International Nuclear Information System (INIS)

    Takahashi, Masaru; Yasuda, Hiroyuki Y.

    2013-01-01

    Highlights: ► We examined the variant selection of martensites in the weld metals. ► We also measured the residual stress developed in the butt and box welded joints. ► 24 martensite variants were randomly selected in the butt welded joint. ► High tensile residual stress in the box welded joint led to the strong variant selection. ► We discussed the rule of the variant selection focusing on the residual stress. -- Abstract: Martensitic transformation behavior in steel welded joints with low transformation temperature weld (LTTW) metal was examined focusing on the variant selection of martensites. The butt and box welded joints were prepared with LTTW metals and 980 MPa grade high strength steels. The residual stress of the welded joints, which was measured by a neutron diffraction technique, was effectively reduced by the expansion of the LTTW metals by the martensitic transformation during cooling after the welding process. In the LTTW metals, the retained austenite and martensite phases have the Kurdjumov–Sachs (K–S) orientation relationship. The variant selection of the martensites in the LTTW metals depended strongly on the type of welded joints. In the butt welded joint, 24 K–S variants were almost randomly selected while a few variants were preferentially chosen in the box welded joint. This suggests that the high residual stress developed in the box welded joint accelerated the formation of specific variants during the cooling process, in contrast to the butt welded joint with low residual stress

  7. Corrosion resistance of «tube – tubesheet» weld joint obtained by friction welding

    Directory of Open Access Journals (Sweden)

    RIZVANOV Rif Garifovich

    2017-08-01

    Full Text Available Shell-and-tube heat exchangers are widely applied for implementation of various processes at ventures of fuel and energy complex. Cost of production and reliability of heat exchangers of this type is to a wide extent determined by corresponding characteristics of tube bundle, «tube – tubesheet» is its typical joint in particular when welding operations are used in order to attach tubes to tubesheet in addition to expansion. When manufacturing such equipment of heat-resistant chrome-bearing or chromium-molybdenum steels including steel 15H5M, the process of fixed joint manufacturing gets significantly more complicated and costly due to the necessity to use thermal treatment before, during and after welding (this problem is particularly applicable for manufacturing of large-size equipment. One of the options to exclude thermal treatment from manufacturing process is to use «non-arc» welding methods – laser welding, explosion welding as well as friction welding. Use of each of the welding methods mentioned above during production of heat-exchange equipment has its process challenges and peculiarities. This article gives a comparative analysis of weld structure and distribution of electrode potentials of welded joints and parent metal of the joints simulating welding of tube to tubesheet of steel 15H5M using the following welding methods: shielded manual arc welding, tungsten-arc inert-gas welding and friction welding. Comparative analysis of macro- and microstructures of specific zones of the studied welded joints showed that the joints produced by arc welding methods do not exhibit evident inhomogeneity of the structure after application of thermal treatment which is explained by the correctness of thermal treatment. Joints obtained via friction welding are characterized by structural inhomogeneity of the welded joint zone metal microstructure. The ultra-fine-grained structure obtained as a result of friction welding makes it possible to

  8. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading.

    Science.gov (United States)

    Araque, Oscar; Arzola, Nelson; Hernández, Edgar

    2018-04-12

    This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe.

  9. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  10. Arc-weld pool interactions

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-08-01

    The mechanisms involved in arc-weld pool interactions are extremely complex and no complete theory is presently available to describe much of the phenomena observed during welding. For the past several years, experimental and analytical studies have been undertaken at the Bettis Atomic Power Laboratory to increase basic understanding of the gas tungsten arc welding process. These studies have included experimental spectral analysis of the arc in order to determine arc temperature and analytical modeling of the arc and weld puddle. The investigations have been directed toward determining the cause and effects of variations in the energy distribution incident upon the weldment. In addition, the effect of weld puddle distortion on weld penetration was investigated, and experimental and analytical studies of weld process variables have been undertaken to determine the effects of the variables upon weld penetration and configuration. A review of the results and analysis of these studies are presented

  11. Welding electrode for peripheral welds of A-1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Lakatos, L.

    1975-01-01

    The properties are outlined of the VUZ-AC1-52 welding electrode used in welding the Bohunice A-1 reactor pressure vessel. The mechanical properties of welded joints after the final thermal treatment are summed up. (J.K.)

  12. Final Assessment of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Doctor, Steven R.

    2014-03-24

    PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industry’s Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected as a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.

  13. Quantification of Microtexture at Weld Nugget of Friction Stir-Welded Carbon Steel

    Science.gov (United States)

    Husain, Md M.; Sarkar, R.; Pal, T. K.; Ghosh, M.; Prabhu, N.

    2017-05-01

    Friction stir welding of C-Mn steel was carried out under 800-1400 rpm tool rotation. Tool traversing speed of 50 mm/min remained same for all joints. Effect of thermal state and deformation on texture and microstructure at weld nugget was investigated. Weld nugget consisted of ferrite + bainite/Widmanstatten ferrite with different matrix grain sizes depending on peak temperature. A texture around ( ϕ 2 = 0°, φ = 30°, ϕ 2 = 45°) was developed at weld nugget. Grain boundary misorientation at weld nugget indicated that continuous dynamic recrystallization influenced the development of fine equiaxed grain structure. Pole figures and orientation distribution function were used to determine crystallographic texture at weld nugget and base metal. Shear texture components D1, D2 and F were present at weld nugget. D1 shear texture was more prominent among all. Large number of high-angle grain boundaries ( 60-70%) was observed at weld nugget and was the resultant of accumulation of high amount of dislocation, followed by subgrain formation.

  14. Effect of weld spacing on microstructure and mechanical properties of CLAM electron beam welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yutao; Huang, Bo, E-mail: aufa0007@163.com; Zhang, Junyu; Zhang, Baoren; Liu, Shaojun; Huang, Qunying

    2016-11-15

    Highlights: • The welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding, and a simplified model of CLAM sheet was proposed. • The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). • The effect of the welding thermal cycle was significantly when the weld spacings were smaller than 4 mm. • When the weld spacing was small enough, the original microstructures would be fragmented with the high heat input. - Abstract: China low activation martensitic (CLAM) steel has been chosen as the primary structural material in the designs of dual function lithium-lead (DFLL) blanket for fusion reactors, China helium cooled ceramic breeder (HCCB) test blanket module (TBM) for ITER and China fusion engineering test reactor (CFETR) blanket. The cooling components of the blankets are designed with high density cooling channels (HDCCs) to remove the high nuclear thermal effectively. Hence, the welding spacing among the channels are small. In this paper, the welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding (EBW). The weld spacing was designed to be 2 mm, 3 mm, 4 mm, 6 mm and 8 mm. The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). The PWHT is tempering at 740 °C for 120 min. The results showed that the grain size in the heat affected zone (HAZ) increased with the increasing weld spacing, and the joint with small weld spacing had a better performance after PWHT. This work would give useful guidance to improve the preparation of the cooling components of blanket.

  15. Capabilities of infrared weld monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  16. Multi-physics modeling and numerical simulation of weld pool in GTA welding

    International Nuclear Information System (INIS)

    Nguyen, Minh-Chien

    2015-01-01

    In this work, we develop a 3D physical and numerical model of the GTA (Gas Tungsten Arc) welding process in order to predict, for given welding parameters, useful quantities for the designer of welded assembly: weld bead shape, fluid flow in the weld pool as well as thermal distribution in the work piece. The model is developed in the Cast3M (http://www-cast3m.cea.fr/) finite element software and takes into account the main physical phenomena acting in the work piece and particularly in the weld pool, subject to source terms modeling the arc part of the welding process. A steady solution of this model is thought for and involves the coupling of the nonlinear thermohydraulics and electromagnetic equations together with the displacement of the deformable free surface of the weld pool. A first step in the development consisted in modeling the electromagnetic phenomena with two different numerical methods, in comparing the numerical results obtained with those of the literature and in quantifying the importance of the Lorentz force and the Joule effect compared to the other mechanical and thermal sources by computing power balances. Then, in order to assess the predictive capability of the model, simulations of various welding configurations are performed: variation in the chemical composition of the material, of the welding speed, of the prescribed arc pressure and of the welding positions, which is a focus of this work, are studied. A good agreement is obtained between the results of our model and other experimental and numerical results of the literature. Eventually, a model accounting for metal filling is proposed and its results are discussed. Thus, our complete model can be seen as a solid foundation towards future totally-coupled 3D welding models including the arc and it will be included in WPROCESS the in-house CEA software dedicated to the numerical simulation of welding. (author) [fr

  17. Detecting flaws in welds

    International Nuclear Information System (INIS)

    Woodacre, A.; Lawton, H.

    1979-01-01

    An apparatus and a method for detecting flaws in welds in a workpiece, the portion of the workpiece containing the weld is maintained at a constant temperature and the weld is scanned by an infra red detector. The weld is then scanned again with the workpiece in contact with a cooling probe to produce a steeper temperature gradient across the weld. Comparison of the signals produced by each scan reveals the existence of defects in the welds. The signals may be displayed on an oscilloscope and the display may be observed by a TV camera and recorded on videotape. (UK)

  18. Using the overlay assay to qualitatively measure bacterial production of and sensitivity to pneumococcal bacteriocins.

    Science.gov (United States)

    Maricic, Natalie; Dawid, Suzanne

    2014-09-30

    Streptococcus pneumoniae colonizes the highly diverse polymicrobial community of the nasopharynx where it must compete with resident organisms. We have shown that bacterially produced antimicrobial peptides (bacteriocins) dictate the outcome of these competitive interactions. All fully-sequenced pneumococcal strains harbor a bacteriocin-like peptide (blp) locus. The blp locus encodes for a range of diverse bacteriocins and all of the highly conserved components needed for their regulation, processing, and secretion. The diversity of the bacteriocins found in the bacteriocin immunity region (BIR) of the locus is a major contributor of pneumococcal competition. Along with the bacteriocins, immunity genes are found in the BIR and are needed to protect the producer cell from the effects of its own bacteriocin. The overlay assay is a quick method for examining a large number of strains for competitive interactions mediated by bacteriocins. The overlay assay also allows for the characterization of bacteriocin-specific immunity, and detection of secreted quorum sensing peptides. The assay is performed by pre-inoculating an agar plate with a strain to be tested for bacteriocin production followed by application of a soft agar overlay containing a strain to be tested for bacteriocin sensitivity. A zone of clearance surrounding the stab indicates that the overlay strain is sensitive to the bacteriocins produced by the pre-inoculated strain. If no zone of clearance is observed, either the overlay strain is immune to the bacteriocins being produced or the pre-inoculated strain does not produce bacteriocins. To determine if the blp locus is functional in a given strain, the overlay assay can be adapted to evaluate for peptide pheromone secretion by the pre-inoculated strain. In this case, a series of four lacZ-reporter strains with different pheromone specificity are used in the overlay.

  19. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  20. Visualization of disciplinary profiles: Enhanced science overlay maps

    NARCIS (Netherlands)

    Carley, S.; Porter, A.L.; Rafols, I.; Leydesdorff, L.

    Purpose The purpose of this study is to modernize previous work on science overlay maps by updating the underlying citation matrix, generating new clusters of scientific disciplines, enhancing visualizations, and providing more accessible means for analysts to generate their own maps.

  1. Effect of SiO2 Overlayer on WO3 Sensitivity to Ammonia

    Directory of Open Access Journals (Sweden)

    Vibha Srivastava

    2010-06-01

    Full Text Available Ammonia gas sensing properties of tungsten trioxide thick film sensor was investigated. The doping of noble catalysts such as Pt, Pd, Au enhanced the gas sensitivity. Platinum doping was found to result in highest sensitivity. Remarkable sensitivity enhancement was realized by coating WO3 thick film sensors with SiO2 overlayer. Sol gel process derived silica overlayer increased ammonia gas sensitivity for doped as well as undoped sensor.

  2. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    Science.gov (United States)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  3. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    International Nuclear Information System (INIS)

    Toropchin, A; Frolov, V; Pipa, A V; Kozakov, R; Uhrlandt, D

    2014-01-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results

  4. Numerical weld modeling - a method for calculating weld-induced residual stresses

    International Nuclear Information System (INIS)

    Fricke, S.; Keim, E.; Schmidt, J.

    2001-01-01

    In the past, weld-induced residual stresses caused damage to numerous (power) plant parts, components and systems (Erve, M., Wesseling, U., Kilian, R., Hardt, R., Bruemmer, G., Maier, V., Ilg, U., 1994. Cracking in Stabilized Austenitic Stainless Steel Piping of German Boiling Water Reactors - Characteristic Features and Root Causes. 20. MPA-Seminar 1994, vol. 2, paper 29, pp.29.1-29.21). In the case of BWR nuclear power plants, this damage can be caused by the mechanism of intergranular stress corrosion cracking in austenitic piping or the core shroud in the reactor pressure vessel and is triggered chiefly by weld-induced residual stresses. One solution of this problem that has been used in the past involves experimental measurements of residual stresses in conjunction with weld optimization testing. However, the experimental analysis of all relevant parameters is an extremely tedious process. Numerical simulation using the finite element method (FEM) not only supplements this method but, in view of modern computer capacities, is also an equally valid alternative in its own right. This paper will demonstrate that the technique developed for numerical simulation of the welding process has not only been properly verified and validated on austenitic pipe welds, but that it also permits making selective statements on improvements to the welding process. For instance, numerical simulation can provide information on the starting point of welding for every weld bead, the effect of interpass cooling as far as a possible sensitization of the heat affected zone (HAZ) is concerned, the effect of gap width on the resultant weld residual stresses, or the effect of the 'last pass heat sink welding' (welding of the final passes while simultaneously cooling the inner surface with water) producing compressive stresses in the root area of a circumferential weld in an austenitic pipe. The computer program FERESA (finite element residual stress analysis) was based on a commercially

  5. Automatic welding of fuel elements

    International Nuclear Information System (INIS)

    Briola, J.

    1958-01-01

    The welding process depends on the type of fuel element, the can material and the number of cartridges to be welded: - inert-gas welding (used for G2 and the 1. set of EL3), - inert atmosphere arc welding (used for welding uranium and zirconium), - electronic welding (used for the 2. set of EL3 and the tank of Proserpine). (author) [fr

  6. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding

    Science.gov (United States)

    Luo, Masiyang; Shin, Yung C.

    2015-01-01

    In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.

  7. Automatic welding machine for piping

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.

    1978-01-01

    A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)

  8. Digitizing geographic data with GRIDOT; a generalized program for drawing overlay grids in various map projections

    International Nuclear Information System (INIS)

    Edwards, R.G.; Durfee, R.C.

    1976-09-01

    The GRIDOT computer program draws overlay grids on a Calcomp plotter for use in digitizing information from maps, rectified aerial photographs, and other sources of spatially distributed data related to regional environmental problems. The options of the program facilitate use of the overlays with standard maps and map projections of the continental United States. The overlay grid may be defined as a latitude-longitude grid (geodetic grid), a Universal Transverse Mercator Grid, or one of the standard state-plane coordinate system grids. The map for which the overlay is intended may be in an Albers Equal Area projection, a Lambert Conformal projection, a Polyconic projection, a Transverse Mercator projection, a Universal Transverse Mercator projection, or any of the standard state-plane projections

  9. Laser welding to expand the allowable gap in bore welding for ITER blanket hydraulic connection

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hisashi, E-mail: tanigawa.hisashi@jaea.go.jp; Maruyama, Takahito; Noguchi, Yuto; Takeda, Nobukazu; Kakudate, Satoshi

    2015-10-15

    For application to bore welding of hydraulic connection in the ITER blanket module, laser welding presents the following benefits: low weld heat input is preferred for re-welding of the irradiated material. Its contactless process can intrinsically avoid a failure mode of the tool sticking on the weld. The exact requirements for pipe alignment were assessed in comparison with the assembly tolerance. The groove geometry was modified to expand the allowable initial gap. The groove was machined to be partially thick to obviate the filler wire. First, plates with partially thick grooves were welded to elucidate the preferred groove geometry and welding conditions. With the modified groove, the plates were welded for the initial gap of 1.0 mm. Then the groove geometry and welding conditions were adjusted based on results of pipe welding tests. By application of the additional 0.5-mm-thick and 2.5-mm-wide metal in the groove, pipes with an initial gap of 0.7 mm were welded successfully.

  10. Grinding Parts For Automatic Welding

    Science.gov (United States)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  11. Welding repair of a dissimilar weld and respective consequences for other German plants

    International Nuclear Information System (INIS)

    Brummer, G.; Dauwel, W.; Wesseling, U.; Ilg, U.; Lauer, P.; Widera, M.; Wachter, O.

    2002-01-01

    During a regular refueling outage in a German nuclear power plant in year 2000, additional non-destructive examinations have been performed on request of the Authority, to fulfill some recommendations of the independent experts with regard to the retrospective application of the Basic Safety Concept for the ferritic main coolant piping of this plant. During these inspections, indications were found in a dissimilar weld between one of the fifteen MCL (main coolant lines) nozzles and the ECC (emergency core cooling) system piping. By means of on-site metallography and laboratory investigations on three boat samples taken from this weld, it could be shown that the indications were due to hot cracking in the surface layer of the weld. In the course of these investigations, at three locations at the circumference of the weld, dis-bonding defects were found between the ferritic base metal of the nozzle and the austenitic weld butter, which has been applied to join the nozzle to the austenitic safe-end. According to the results of the extensive investigations, the dis-bonding occurred during the manufacturing process after stress-relief heat-treatment of the buttering during the welding of the austenitic safe-end to the butter material. There was no evidence for any crack growth during operation of the plant. Due to the large size of the boat-samples, a weld repair was mandatory. This repair has been performed using the so-called temper-bead technique as specified in the ASME Code, without subsequent stress relief heat treatment, using an advanced automatic orbital TIG welding process. The welding has been successfully performed without the need of further repair work. For those dissimilar welds, all other plants, except one, had used Inconel welding material for buttering the ferritic nozzle instead of stainless steel welding metal. For metallurgical reasons, dis-bonding along the fusion line for Inconel buttered dissimilar welds is unlikely to occur. Nevertheless all

  12. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  13. Research on the Effects of Technical Parameters on the Molding of the Weld by A-TIG Welding

    OpenAIRE

    Shi, Kai; Pan, Wu

    2012-01-01

    The effects of welding parameters on the molding of weld by A-TIG welding of a 4mm thickness mild steel plate is studied in the present paper. The results obtained show that: as welding current increases A-TIG welding penetration gets deeper than TIG welding; size and shape of HAZ has remarkable change; A-TIG welding has the narrower weld pool width than TIG welding.

  14. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  15. Recent developments in pipeline welding practice

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen chapters are included: overview of pipeline welding systems and quality assurance, CRC automatic welding system, H.C. Price Co. automatic welding system, semi-automatic MIG-welding process, partial penetration welding of steel pipes for gas distribution, construction procedures and quality control in offshore pipeline construction, welding in repair and maintenance of gas transmission pipelines, British Gas studies of welding on pressurized gas transmission pipelines, hot tapping pipelines, underwater welding for offshore pipelines and associated equipment, radial friction welding, material composition vs weld properties, review of NDT of pipeline welds, and safety assurance in pipeline construction. A bibliography of approximately 150 references is included, arranged according to subject and year.

  16. X-ray radiography of Ti6Al4V welded by plasma tungsten arc (PTA) welding

    Energy Technology Data Exchange (ETDEWEB)

    Dikbas, Halil; Caligulu, Ugur; Taskin, Mustafa; Turkmen, Mustafa [Firat Univ., Elazig (Turkey). Metallurgy Dept.

    2013-03-01

    In this study, X-ray radiographic tests of Ti6Al4V alloys welded by plasma tungsten arc welding (PTA) were investigated. PTA welding experiments were carried out under argon shielding gas atmosphere, at 1400-1600 W and 1800 W welding powers as well as 1 m/min, 0.75 m/min, and 0.50 m/min welding speeds. After this process, radiography of the welded joints was performed by X-ray diffraction. The result of the radiographic tests indicated that by increasing welding power the widths of deep penetration increased in all specimens. On the contrary, increasing welding speeds decreases the widths deep penetration. The best properties of Ti6Al4V joints were observed for specimens welded at 1800 W welding power and at 0.50 m/min welding speed. (orig.)

  17. Visually assessed colour overlay features in shear-wave elastography for breast masses: quantification and diagnostic performance.

    Science.gov (United States)

    Gweon, Hye Mi; Youk, Ji Hyun; Son, Eun Ju; Kim, Jeong-Ah

    2013-03-01

    To determine whether colour overlay features can be quantified by the standard deviation (SD) of the elasticity measured in shear-wave elastography (SWE) and to evaluate the diagnostic performance for breast masses. One hundred thirty-three breast lesions in 119 consecutive women who underwent SWE before US-guided core needle biopsy or surgical excision were analysed. SWE colour overlay features were assessed using two different colour overlay pattern classifications. Quantitative SD of the elasticity value was measured with the region of interest including the whole breast lesion. For the four-colour overlay pattern, the area under the ROC curve (Az) was 0.947; with a cutoff point between pattern 2 and 3, sensitivity and specificity were 94.4 % and 81.4 %. According to the homogeneity of the elasticity, the Az was 0.887; with a cutoff point between reasonably homogeneous and heterogeneous, sensitivity and specificity were 86.1 % and 82.5 %. For the SD of the elasticity, the Az was 0.944; with a cutoff point of 12.1, sensitivity and specificity were 88.9 % and 89.7 %. The colour overlay features showed significant correlations with the quantitative SD of the elasticity (P < 0.001). The colour overlay features and the SD of the elasticity in SWE showed excellent diagnostic performance and showed good correlations between them.

  18. Effects of welding parameters on friction stir spot welding of high density polyethylene sheets

    International Nuclear Information System (INIS)

    Bilici, Mustafa Kemal; Yukler, Ahmet Irfan

    2012-01-01

    Graphical abstract: (a) Schematic illustration of the cross section of a friction stir spot weld and (b) Geometry of the weld bonded area, x: nugget thickness and y: the thickness of the upper sheet. Highlights: → Welding parameters affect the FSSW nugget formation and the strength of the joint. → Melting of polyethylene occurred in the vicinity of the tool pin. → The joint that fractures with a pull nugget failure mode has a higher strength. -- Abstract: Friction stir spot welding parameters affect the weld strength of thermoplastics, such as high density polyethylene (HDPE) sheets. The effects of the welding parameters on static strength of friction stir spot welds of high density polyethylene sheets were investigated. For maximizing the weld strength, the selection of welding parameters is very important. In lap-shear tests two fracture modes were observed; cross nugget failure and pull nugget failure. The tool rotational speed, tool plunge depth and dwell time were determined to be important in the joint formation and its strength. The joint which had a better strength fails with a pull nugget failure morphology. Weld cross section image analysis of the joints were done with a video spectral comparator. The plunge rate of the tool was determined to have a negligible effect on friction stir spot welding.

  19. On the influence of latency estimation on dynamic group communication using overlays

    Science.gov (United States)

    Vik, Knut-Helge; Griwodz, Carsten; Halvorsen, Pål

    2009-01-01

    Distributed interactive applications tend to have stringent latency requirements and some may have high bandwidth demands. Many of them have also very dynamic user groups for which all-to-all communication is needed. In online multiplayer games, for example, such groups are determined through region-of-interest management in the application. We have investigated a variety of group management approaches for overlay networks in earlier work and shown that several useful tree heuristics exist. However, these heuristics require full knowledge of all overlay link latencies. Since this is not scalable, we investigate the effects that latency estimation techqniues have ton the quality of overlay tree constructions. We do this by evaluating one example of our group management approaches in Planetlab and examing how latency estimation techqniues influence their quality. Specifically, we investigate how two well-known latency estimation techniques, Vivaldi and Netvigator, affect the quality of tree building.

  20. Welding problems in nuclear power engineering

    International Nuclear Information System (INIS)

    Zubchenko, A.S.

    1986-01-01

    The problems of welding industry in nuclear power plant engineering, mainly related to the improvement of molten bath protection, are considered. Development of new materials for welding electrodes, for cladding and welding fluxes, is pointed out. Production of the following equipment is brought to a commercial level: welding heads and welding machines for branch pipe welding, anticorrosion cladding, zonal thermal treatment, electron beam welding facilities for the welding and maintenance of turbineblades, equipment for nondestructive testing of welded joints

  1. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool

  2. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  3. Analysis of weld-cracking and improvement of the weld-repair process of superplastic forming tools

    International Nuclear Information System (INIS)

    Duchosal, A.; Deschaux-Beaume, F.; Lours, P.; Haro, S.; Fras, G.

    2013-01-01

    Highlights: ► Characterisation of the microstructure of a heat-resistant austenitic cast steel. ► Failure analysis using in situ tensile tests and isothermal fatigue tests. ► Analyses of weld cracking mechanism during shielded metal arc welding process. ► Improvement of weld-repair method by re-melting of the base material surface with GTAW process. - Abstract: Superplastic forming (SPF) dies are generally made of using heat resistant cast steels, which are very sensitive to weld cracking. In order to improve the weld-repair process of such dies to prevent weld-cracking, the microstructure and the mechanical behaviour of a typical heat-resistant cast steel was first studied, using isothermal low-cycle fatigue tests and in situ tensile tests. The welding behaviour of such steel was also investigated, using a shielded metal arc welding (SMAW) process and welding conditions similar to those employed for weld repair industrial dies. The comparison of the aspect of weld-cracking with the fracture mechanisms observed at room temperature or during isothermal low-cycle fatigue tests suggests a similar brittle failure mechanism, due to the presence of large interdendritic carbides in the cast steel. The melting of the cast steel surface using a gas tungsten arc welding (GTAW) process allowed to refine the primary carbides, and then to reduce the weld-cracking sensitivity. The refining method with GTAW before welding has been successfully tested to weld-repair a sample representative of SPF dies, and is recommended for subsequent repairs of such dies

  4. Real weld geometry determining mechanical properties of high power laser welded medium plates

    Science.gov (United States)

    Liu, Sang; Mi, Gaoyang; Yan, Fei; Wang, Chunming; Li, Peigen

    2018-06-01

    Weld width is commonly used as one of main factors to assess joint performances in laser welding. However, it changes significantly through the thickness direction in conditions of medium or thick plates. In this study, high-power autogenous laser welding was conducted on 7 mm thickness 201 stainless steel to elucidate the factor of whole weld transverse shape critically affecting the mechanical properties with the aim of predicting the performance visually through the weld appearance. The results show that single variation of welding parameters could result in great changes of weld pool figures and subsequently weld transverse shapes. All the obtained welds are composed of austenite containing small amount of cellular dendritic δ-Ferrite. The 0.2% proof stresses of Nail- and Peanut-shaped joint reach 458 MPa and 454 MPa, 88.2% and 87.5% of the base material respectively, while that of Wedge-shaped joint only comes to 371 MPa, 71.5% of the base material. The deterioration effect is believed to be caused by the axial grain zone in the weld center. The fatigue strength of joint P is a bit lower than N, but much better than W. Significant deformation incompatibility through the whole thickness and microstructure resistance to crack initiation should be responsible for the poor performance of W-shaped joints.

  5. Tailoring weld geometry during keyhole mode laser welding using a genetic algorithm and a heat transfer model

    International Nuclear Information System (INIS)

    Rai, R; DebRoy, T

    2006-01-01

    Tailoring of weld attributes based on scientific principles remains an important goal in welding research. The current generation of unidirectional laser keyhole models cannot determine sets of welding variables that can lead to a particular weld attribute such as specific weld geometry. Here we show how a computational heat transfer model of keyhole mode laser welding can be restructured for systematic tailoring of weld attributes based on scientific principles. Furthermore, the model presented here can calculate multiple sets of laser welding variables, i.e. laser power, welding speed and beam defocus, with each set leading to the same weld pool geometry. Many sets of welding variables were obtained via a global search using a real number-based genetic algorithm, which was combined with a numerical heat transfer model of keyhole laser welding. The reliability of the numerical heat transfer calculations was significantly improved by optimizing values of the uncertain input parameters from a limited volume of experimental data. The computational procedure was applied to the keyhole mode laser welding of the 5182 Al-Mg alloy to calculate various sets of welding variables to achieve a specified weld geometry. The calculated welding parameter sets showed wide variations of the values of welding parameters, but each set resulted in a similar fusion zone geometry. The effectiveness of the computational procedure was examined by comparing the computed weld geometry for each set of welding parameters with the corresponding experimental geometry. The results provide hope that systematic tailoring of weld attributes via multiple pathways, each representing alternative welding parameter sets, is attainable based on scientific principles

  6. Weld defect identification in friction stir welding using power spectral density

    Science.gov (United States)

    Das, Bipul; Pal, Sukhomay; Bag, Swarup

    2018-04-01

    Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.

  7. Residual stresses and their mechanisms of production at circumferential weld by heat-sink welding

    International Nuclear Information System (INIS)

    Ueda, Yukio; Nakacho, Keiji; Ohkubo, Katsumi; Shimizu, Tsubasa.

    1983-01-01

    In the previous report, the authors showed effectiveness of the heat-sink welding (water cooling) to accomplish this end by conducting theoretical analysis and an experiment on residual stresses in the 4B pipe of SUS 304 by the conventional welding and the heat-sink welding at a certain standard heat-input condition. In this research, different pipe sizes and varied heat-input are applied. The welding residual stresses by the conventional welding and the heat-sink welding are obtained by the theoretical analysis and their production mechanisms are clarified. Hence the influence of the above changes of conditions on effectiveness of the heat-sink welding is investigated. The main results are summarized as follow. (1) In case of this pipes such as 2B and 4B pipes, it is important to minimize heat-input per one pass (especially for latter half passes) in order to improve the effectiveness of the heat-sink welding. The effectiveness can be predicted either by theoretical analysis of the temperature distribution history with consideration of the characteristic of heat transfer under spray-watering or by experimental measurement. (2) In case of 24B pipes, thick pipes, it is desirable to minimize heat-input for the first half passes, by which the heat-sink welding becomes more effective. In addition, no matter whether the conventional welding or the heat-sink welding, it is important to prevent angular distorsion which produces tensile axial stresses on the inner surface of the pipe in the weld zone. Possible measures to meet these requirements are to apply restraining jigs, to minimize the section area of the groove (ex. application of the narrow gap arc welding), and to change continuous welding to skip one. (J.P.N.)

  8. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  9. Welding process

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    For the final chapter of this book, there is basic introduction on welding process. The good radiography must know somehow on welding process so that they can know what kind of welding that must rejected or not. All of the exposure technique that mention in earlier chapter almost applicable in this field because welding process is critical problem if there is no inspection will be done. So, for this chapter, all the discontinuity that usually appeared will be discussed and there is another discontinuity maybe not to important and do not give big impact if found it, do not described here. On top of that, the decision to accept or reject based on code, standard and specification that agreed by both to make sure that decision that agreed is corrected and more meaningful.

  10. Welding quality evaluation of resistance spot welding using the time-varying inductive reactance signal

    Science.gov (United States)

    Zhang, Hongjie; Hou, Yanyan; Yang, Tao; Zhang, Qian; Zhao, Jian

    2018-05-01

    In the spot welding process, a high alternating current is applied, resulting in a time-varying electromagnetic field surrounding the welder. When measuring the welding voltage signal, the impedance of the measuring circuit consists of two parts: dynamic resistance relating to weld nugget nucleation event and inductive reactance caused by mutual inductance. The aim of this study is to develop a method to acquire the dynamic reactance signal and to discuss the possibility of using this signal to evaluate the weld quality. For this purpose, a series of experiments were carried out. The reactance signals under different welding conditions were compared and the results showed that the morphological feature of the reactance signal was closely related to the welding current and it was also significantly influenced by some abnormal welding conditions. Some features were extracted from the reactance signal and combined to construct weld nugget strength and diameter prediction models based on the radial basis function (RBF) neural network. In addition, several features were also used to monitor the expulsion in the welding process by using Fisher linear discriminant analysis. The results indicated that using the dynamic reactance signal to evaluate weld quality is possible and feasible.

  11. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless steel weld metal

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Mannan, S.L.; Rodriguez, P.

    1994-01-01

    Detailed investigations have been performed for assessing the importance of weld discontinuities in strain controlled low cycle fatigue (LCF) behavior of 308 stainless steel (SS) welds. The LCF behavior of 308 SS welds containing defects was compared with that of type 304 SS base material and 308 SS sound weld metal. Weld pads were prepared by shielded metal arc welding process. Porosity and slag inclusions were introduced deliberately into the weld metal by grossly exaggerating the conditions normally causing such defects. Total axial strain controlled LCF tests have been conducted in air at 823 K on type 304 SS base and 308 SS sound weld metal employing strain amplitudes in the range from ±0.25 to ±0.8 percent. A single strain amplitude of ±0.25 percent was used for all the tests conducted on weld samples containing defects. The results indicated that the base material undergoes cyclic hardening whereas sound and defective welds experience cyclic softening. Base metal showed higher fatigue life than sound weld metal at all strain amplitudes. The presence of porosity and slag inclusions in the weld metal led to significant reduction in life. Porosity on the specimen surface has been found to be particularly harmful and caused a reduction in life by a factor of seven relative to sound weld metal

  12. Improving Overlay in Nanolithography with a Deformable Mask Holder

    National Research Council Canada - National Science Library

    Harriott, L. R

    2004-01-01

    In very fine-line VLSI photolithography, alignment and overlay errors due to distortion in the projected image of a photomask relative to an existing pattern on a silicon wafer are becoming such serious problems...

  13. Utilizing Lab Tests to Predict Asphalt Concrete Overlay Performance

    Science.gov (United States)

    2017-12-01

    A series of five experimental projects and three demonstration projects were constructed to better understand the performance of pavement overlays using various levels of asphalt binder replacement (ABR) from reclaimed asphalt pavement (RAP), recycle...

  14. Development of resistance welding process. 6. Evaluation test of welding properties of martensitic ODS steel)

    International Nuclear Information System (INIS)

    Kono, Shusaku; Seki, Masayuki; Ishibashi, Fujio

    2003-05-01

    The welding condition and the heat-treatment condition were optimized to evaluate welding properties of the martensitic ODS steel cladding tube. The test pieces for evaluation of strength properties of the welded zone were produced by the optimized welding condition. In order to evaluate the strength of the welded zone, the internal creep rapture test, the single axis creep rapture test, the burst test and the tensile test were conducted. Following results were obtained in these tests. (1) Weld ability: An excellent welding characteristic was observed. The micro cracks, etc. were not served at the joint starting point. The joint starting points were connected uniformly with errors less than 0.05 mm. It is considered that an excellent welding characteristic was result of homogeneous micro structure of cladding material. (2) End plug material: In case of the material of end plug was martensitic ODS steel as same as that of cladding tube, the micro structure and the precipitation state carbide near the welded zone were found to be almost same as that of cladding tube. (3) Optimization of heat-treatment condition: The heat treatments of normalizing (1050degC) and tempering (780degC) were performed after welding and the micro structure near the welded zone was the isometric structure with low dislocation density, the precipitation state of carbide was uniform as same as that of cladding tube. These heat treatments can relax the residual stress accumulated when welding; it is considered that these heat treatments after welding are indispensable. (4) Strength of welded zone: The strength of the welded zone was found to be equal to that of cladding tube in all the strength tests. Therefore, it is concluded that the welding technology for the martensitic ODS steel is completed. (author)

  15. Welding method by remote handling

    International Nuclear Information System (INIS)

    Hashinokuchi, Minoru.

    1994-01-01

    Water is charged into a pit (or a water reservoir) and an article to be welded is placed on a support in the pit by remote handling. A steel plate is disposed so as to cover the article to be welded by remote handling. The welding device is positioned to the portion to be welded and fixed in a state where the article to be welded is shielded from radiation by water and the steel plate. Water in the pit is drained till the portion to be welded is exposed to the atmosphere. Then, welding is conducted. After completion of the welding, water is charged again to the pit and the welding device and fixing jigs are decomposed in a state where the article to be welded is shielded again from radiation by water and the steel plate. Subsequently, the steel plate is removed by remote handling. Then, the article to be welded is returned from the pit to a temporary placing pool by remote handling. This can reduce operator's exposure. Further, since the amount of the shielding materials can be minimized, the amount of radioactive wastes can be decreased. (I.N.)

  16. Comparison of orthorhombic and alpha-two titanium aluminides as matrices for continuous SiC-reinforced composites

    International Nuclear Information System (INIS)

    Smith, P.R.; Graves, J.A.; Rhodes, C.G.

    1994-01-01

    The attributes of an orthorhombic Ti aluminide alloy, Ti-21Al-22Nb (at. pct), and an alpha-two Ti aluminide alloy, Ti-24Al-11Nb (at. pct), for use as a matrix with continuous SiC (SCS-6) fiber reinforcement have been compared. Foil-fiber-foil processing was used to produce both unreinforced (''neat'') and unidirectional ''SCS-6'' reinforced panels. Microstructure of the Ti-24Al-11Nb matrix consisted of ordered Ti 3 Al (α 2 ) + disordered beta (β), while the Ti-21Al-22Nb matrix contained three phases: α 2 , ordered beta (β 0 ), and ordered orthorhombic (O). Fiber/matrix interface reaction zone growth kinetics at 982 C were examined for each composite system. Although both systems exhibited similar interface reaction products (i.e., mixed Ti carbides, silicides, and Ti-Al carbides), growth kinetics in the α 2 + β matrix composite were much more rapid than in the O + β 0 + α 2 matrix composite. Additionally, interfacial reaction in the α 2 + β composite resulted in a relatively large brittle matrix zone, depleted of beta phase, which was not present in the O + β 0 + α 2 matrix composite. Mechanical property measurements included room and elevated temperature tensile, thermal stability, thermal fatigue, thermomechanical fatigue (TMF), and creep. The three-phase orthorhombic-based alloy outperformed the α 2 + β alloy in all of these mechanical behavioral areas, on both an absolute and a specific (i.e., density corrected) basis

  17. Weld pool boundary and weld bead shape reconstruction based on passive vision in P-GMAW

    Institute of Scientific and Technical Information of China (English)

    Yan Zhihong; Zhang Guangjun; Gao Hongming; Wu Lin

    2006-01-01

    A passive visual sensing system is established in this research, and clear weld pool images in pulsed gas metal arc welding ( P-GMA W) can be captured with this system. The three-dimensional weld pool geometry, especially the weld height,is not only a crucial factor in determining workpiece mechanical properties, but also an important parameter for reflecting the penetration. A new three-dimensional (3D) model is established to describe the weld pool geometry in P-GMAW. Then, a series of algorithms are developed to extract the model geometrical parameters from the weld pool images. Furthermore, the method to reconstruct the 3D shape of weld pool boundary and weld bead from the two-dimensional images is investigated.

  18. Welding Course Curriculum.

    Science.gov (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  19. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Science.gov (United States)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  20. Welding for the CRBRP steam generators

    International Nuclear Information System (INIS)

    Spalaris, C.N.; Ring, P.J.; Durand, R.E.; Wright, E.A.

    1979-01-01

    The rationale for selecting weld design, welding procedures and inspection methods was based upon the desire to obtain the highest reliability welds for the CRBRP steam generators. To assure the highest weld reliability, heavy emphasis was placed on the control of material cleanliness and composition substantially exceeding the requirements of the ASME Code for 2-1/4Cr--1Mo. The high tube/tubesheet weld quality was achieved through close material control, an extensive weld development program and the selection of high reliability welding equipment. Shell and nozzle weld fabrication using TIG, MIG, and submerged arc procedures are also being controlled through precise specifications, including preheat and postheat programs, together with radiography and ultrasonic inspection to ascertain the weld quality desired. Details of the tube/tubesheet welding and shell welding are described and results from the weld testing program are discussed

  1. Performance of mesh seam welds in tailor welded blanks; Terado blank yo mash seam yosetsubu no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uchihara, M; Takahashi, M; Kurita, M; Hirose, Y; Fukui, K [Sumitomo Metal Industries, Ltd., Osaka (Japan)

    1997-10-01

    Formability, fatigue properties and corrosion behavior of mash seam welded steel sheets were investigated and the results were compared with laser weld. The stretch formability of mash seam weld and laser weld were same level. Mash seam weld however, showed slightly smaller formability in hole expansion test. The fatigue strength of mash seam welds was lower than that of laser welds in case of differential thickness joints. Corrosion was apt to initiate at weld in both mash seam and laser weld with E-coat. The corrosion resistance of welds was improved by using zinc coated steel. 3 refs., 14 figs., 2 tabs.

  2. Resistance Spot Welding of dissimilar Steels

    Directory of Open Access Journals (Sweden)

    Ladislav Kolařík

    2012-01-01

    Full Text Available This paper presents an analysis of the properties of resistance spot welds between low carbon steel and austenitic CrNi stainless steel. The thickness of the welded dissimilar materials was 2 mm. A DeltaSpot welding gun with a process tape was used for welding the dissimilar steels. Resistance spot welds were produced with various welding parameters (welding currents ranging from 7 to 8 kA. Light microscopy, microhardness measurements across the welded joints, and EDX analysis were used to evaluate the quality of the resistance spot welds. The results confirm the applicability of DeltaSpot welding for this combination of materials.

  3. Using Taguchi method to optimize welding pool of dissimilar laser welded components

    OpenAIRE

    Anawa, E.; Olabi, Abdul-Ghani

    2008-01-01

    In the present work CO2 continuous laser welding process was successfully applied and optimized for joining a dissimilar AISI 316 stainless steel and AISI 1009 low carbon steel plates. Laser power, welding speed, and defocusing distance combinations were carefully selected with the objective of producing welded joint with complete penetration, minimum fusion zone size and acceptable welding profile. Fusion zone area and shape of dissimilar austenitic stainless steel with ferritic low carbon s...

  4. Welding, Bonding and Fastening, 1984

    Science.gov (United States)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  5. Selected Welding Techniques, Part 2

    National Research Council Canada - National Science Library

    1964-01-01

    Partial contents: CONVENTIONAL WELD JOINTS VERSUS BUTT JOINTS IN 1-INCH ALUMINUM PLATE, SPECIAL WELD JOINT PREPARATION, UPSET METAL EDGES FOR INCREASED WELD JOINT STRENGTH, OUT-OF-POSITION WELDING OF HEAVY GAGE...

  6. Influence of curing time, overlay material and thickness on three light-curing composites used for luting indirect composite restorations.

    Science.gov (United States)

    D'Arcangelo, Camillo; De Angelis, Francesco; Vadini, Mirco; Carluccio, Fabio; Vitalone, Laura Merla; D'Amario, Maurizio

    2012-08-01

    To assess the microhardness of three resin composites employed in the adhesive luting of indirect composite restorations and examine the influence of the overlay material and thickness as well as the curing time on polymerization rate. Three commercially available resin composites were selected: Enamel Plus HRI (Micerium) (ENA), Saremco ELS (Saremco Dental) (SAR), Esthet-X HD (Dentsply/DeTrey) (EST-X). Post-polymerized cylinders of 6 different thicknesses were produced and used as overlays: 2 mm, 3 mm, 3.5 mm, 4 mm, 5 mm, and 6 mm. Two-mm-thick disks were produced and employed as underlays. A standardized amount of composite paste was placed between the underlay and the overlay surfaces which were maintained at a fixed distance of 0.5 mm. Light curing of the luting composite layer was performed through the overlays for 40, 80, or 120 s. For each specimen, the composite to be cured, the cured overlay, and the underlay were made out of the same batch of resin composite. All specimens were assigned to three experimental groups on the basis of the resin composite used, and to subgroups on the basis of the overlay thickness and the curing time, resulting in 54 experimental subgroups (n = 5). Forty-five additional specimens, 15 for each material under investigation, were produced and subjected to 40, 80, or 120 s of light curing using a microscope glass as an overlay; they were assigned to 9 control subgroups (n = 5). Three Vicker's hardness (VH) indentations were performed on each specimen. Means and standard deviations were calculated. Data were statistically analyzed using 3-way ANOVA. Within the same material, VH values lower than 55% of control were not considered acceptable. The used material, the overlay thickness, and the curing time significantly influenced VH values. In the ENA group, acceptable hardness values were achieved with 3.5-mm or thinner overlays after 120 or 80 s curing time (VH 41.75 and 39.32, respectively), and with 2-mm overlays after 40 s (VH 54

  7. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  8. Performance Evaluation of Cognitive Interference Channels Using a Spectrum Overlay Strategy

    Science.gov (United States)

    Knoblock, Eric J.

    2018-01-01

    The use of cognitive radios (CR) and cooperative communications techniques may assist in interference mitigation via sensing of the environment and dynamically altering communications parameters through the use of various mechanisms - one of which is the overlay technique. This report provides a performance analysis of an interference channel with a cognitive transceiver operating in an overlay configuration to evaluate the gains from using cognition. As shown in this report, a cognitive transceiver can simultaneously share spectrum while enhancing performance of non-cognitive nodes via knowledge of the communications channel as well as knowledge of neighboring users' modulation and coding schemes.

  9. Optimization of process parameters in welding of dissimilar steels using robot TIG welding

    Science.gov (United States)

    Navaneeswar Reddy, G.; VenkataRamana, M.

    2018-03-01

    Robot TIG welding is a modern technique used for joining two work pieces with high precision. Design of Experiments is used to conduct experiments by varying weld parameters like current, wire feed and travelling speed. The welding parameters play important role in joining of dissimilar stainless steel SS 304L and SS430. In this work, influences of welding parameter on Robot TIG Welded specimens are investigated using Response Surface Methodology. The Micro Vickers hardness tests of the weldments are measured. The process parameters are optimized to maximize the hardness of the weldments.

  10. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    Science.gov (United States)

    Chen, Yanbin; Lei, Zhenglong; Li, Liqun; Wu, Lin

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and the droplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stable hybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  11. Welding technologies for nuclear machinery and equipment

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro; Yokono, Tomomi.

    1991-01-01

    The main welding methods applied to nuclear machinery and equipment are shielded metal arc welding, submerged arc welding, MAG welding and TIG welding. But in the last 10 years, in order to improve the reliability required for the welding of nuclear machinery and equipment, the welding technologies aiming at the reduction of heat input, the decrease of the number of welding pass and the automatic control of welding factors have been applied for the main purpose of bettering the quality and excluding human errors. The merits and the technology of narrow gap, pulsed MAG welding and melt-through welding are explained. As the automation of TIG welding, image processing type narrow gap, hot wire TIG welding and remote control type automatic TIG welding are described. For the longitudinal welding of active metal sheet products, plasma key-hole welding is applied. Since the concentration of its arc is good, high speed welding with low heat input can be done. For the stainless steel cladding by welding, electroslag welding has become to be employed in place of conventional submerged arc welding. Arc is not generated in the electroslag welding, and the penetration into base metal is small. (K.I.)

  12. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  13. Electron beam welding of aluminium components

    International Nuclear Information System (INIS)

    Maajid, Ali; Vadali, S.K.; Maury, D.K.

    2015-01-01

    Aluminium is one of the most widely used materials in industries like transportation, shipbuilding, manufacturing, aerospace, nuclear, etc. The challenges in joining of aluminium are distortion, cleanliness and quality. Main difficulties faced during fusion welding of aluminium components are removal of surface oxide layer, weld porosity, high heat input requirement, distortion, hot cracking, etc. Physical properties of aluminium such as its high thermal conductivity, high coefficient of thermal expansion, no change in colour at high temperature, large difference in the melting points of the metal and its oxide (∼ 1400 °C) compound the difficulties faced during welding. Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Plasma Arc Welding (PAW), etc are generally used in industries for fusion welding of aluminium alloys. However in case of thicker jobs the above processes are not suitable due to requirements of elaborate edge preparation, preheating of jobs, fixturing to prevent distortion, etc. Moreover, precise control over the heat input during welding and weld bead penetration is not possible with above processes. Further, if heat sensitive parts are located near the weld joint then high energy density beam welding process like Electron Beam Welding (EBW) is the best possible choice for aluminium welding.This paper discusses EB welding of aluminium components, typical geometry of components, selection/optimization of welding parameters, problems faced during standardization of welding and process parameters and their remedies etc.

  14. Investigation of Tensile Creep of a Normal Strength Overlay Concrete.

    Science.gov (United States)

    Drexel, Martin; Theiner, Yvonne; Hofstetter, Günter

    2018-06-12

    The present contribution deals with the experimental investigation of the time-dependent behavior of a typical overlay concrete subjected to tensile stresses. The latter develop in concrete overlays, which are placed on existing concrete structures as a strengthening measure, due to the shrinkage of the young overlay concrete, which is restrained by the substrate concrete. Since the tensile stresses are reduced by creep, creep in tension is investigated on sealed and unsealed specimens, loaded at different concrete ages. The creep tests as well as the companion shrinkage tests are performed in a climatic chamber at constant temperature and constant relative humidity. Since shrinkage depends on the change of moisture content, the evolution of the mass water content is determined at the center of each specimen by means of an electrolytic resistivity-based system. Together with the experimental results for compressive creep from a previous study, a consistent set of time-dependent material data, determined for the same composition of the concrete mixture and on identical specimens, is now available. It consists of the hygral and mechanical properties, creep and shrinkage strains for both sealed and drying conditions, the respective compliance functions, and the mass water contents in sealed and unsealed, loaded and load-free specimens.

  15. Waste canister closure welding using the inertia friction welding process

    International Nuclear Information System (INIS)

    Klein, R.F.; Siemens, D.H.; Kuruzar, D.L.

    1986-02-01

    Liquid radioactive waste presently stored in underground tanks is to undergo a vitrifying process which will immobilize it in a solid form. This solid waste will be contained in a stainless steel canister. The canister opening requires a positive seal weld, the properties and thickness of which are at least equal to those of the canister material. This paper describes the inertia friction welding process and a proposed equipment design concept that will provide a positive, reliable, inspectable, and full thickness seal weld while providing easily maintainable equipment, even though the weld is made in a highly contaminated hot cell. All studies and tests performed have shown the concept to be highly feasible. 2 refs., 6 figs

  16. Spot weld arrangement effects on the fatigue behavior of multi-spot welded joints

    International Nuclear Information System (INIS)

    Hassanifard, Soran; Zehsaz, Mohammad; Esmaeili, Firooz

    2011-01-01

    In the present study, the effects of spot weld arrangements in multi-spot welded joints on the fatigue behavior of the joints are studied. Three different four-spot welded joints are considered: one-row four-spot parallel to the loading direction, one-row four-spot perpendicular to the loading direction and two-row four-spot weld specimens. The experimental fatigue test results reveal that the differences between the fatigue lives of three spot welded types in the low cycle regime are more considerable than those in the high cycle regime. However, all kinds of spot weld specimens have similar fatigue strength when approaching a million cycles. A non-linear finite element analysis is performed to obtain the relative stress gradients, effective distances and notch strength reduction factors based on the volumetric approach. The work here shows that the volumetric approach does a very good job in predicting the fatigue life of the multi-spot welded joints

  17. Investigate The Effect Of Welding Parameters On Mechanical Properties During The Welding Of Al-6061 Alloy

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    2017-10-01

    Full Text Available Friction welding is a solid state welding technique which is being used in recent times to weld similar as well as dissimilar metals for getting defect free weld. Many combinations like low carbon to stainless steel austenitic to ferrite stainless steel aluminium to copper and titanium to aluminium or steel have been tried out by various solid state welding processes with quite good results. In the present work the 3 level full factorial design has been employed to investigate the effect of welding parameters on tensile strength toughness and heat generation during the welding of Al-6061 alloy. Mathematical relationships between friction welding parameters and mechanical properties like heat generation tensile strength and toughness have also been developed. An attempt has also been made to examine the fracture surfaces of test specimens using SEM. It has been found that welding speed is the most significant parameter thats affect the heat generation tensile strength and toughness. it has been found that tensile strength and toughness during welding increases with increased in welding speed while tensile strength and toughness initially increased as the welding time increases after that it decreased with increase in welding time. The difference in weight of alloying elements can be clearly seen by analyzing spectrum of elements.

  18. Mechanical and electrochemical characteristics with welding materials in robotic MIG welding of dissimilar Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jong; Han, Min Su; Woo, Yong Bin [Mokpo Maritime Univ., Mokpo (Korea, Republic of)

    2013-05-15

    In this study, mechanical and electrochemical characteristics with welding material in MIG welded with ROBOT for dissimilar Al alloys were investigated using various experiment methods. The MIG welding by ROBOT with ER5183 and ER5556 for the 5456-H116 and 6061-T6 Al alloy were carried out. The hardness of welding zone was lower than that of base metal. In electrochemical experiment, ER5183 welding material presented excellent characteristics. The yield strength and maximum tensile strength in welding with welding material of ER5183 presented lower value than those of ER5556. The elongation and time-to-fracture showed the opposite results.

  19. Microstructure and toughness of ferritic weld metal of hyperbaric welded joints

    International Nuclear Information System (INIS)

    Mueller, L.

    1988-01-01

    In the present work ferritic weld metals of hyperbaric MIG/MAG welds with pressures up to 100 bar were examined. As a result of the pressure, interactions with the shielding gas, the filler metal as well as with the welding parameters had to be expected and were consequently included in the analysis. Investigation was focused on the influence of these parameters on the chemical composition of the weld metals, the microstructure and toughness behaviour, including fracture mechanics test. Using quantitative microstructural analysis as well as fractography a correlation between microstructure and toughness has been shown. (orig.) [de

  20. Structural integrity and fatigue crack propagation life assessment of welded and weld-repaired structures

    Science.gov (United States)

    Alam, Mohammad Shah

    2005-11-01

    Structural integrity is the science and technology of the margin between safety and disaster. Proper evaluation of the structural integrity and fatigue life of any structure (aircraft, ship, railways, bridges, gas and oil transmission pipelines, etc.) is important to ensure the public safety, environmental protection, and economical consideration. Catastrophic failure of any structure can be avoided if structural integrity is assessed and necessary precaution is taken appropriately. Structural integrity includes tasks in many areas, such as structural analysis, failure analysis, nondestructive testing, corrosion, fatigue and creep analysis, metallurgy and materials, fracture mechanics, fatigue life assessment, welding metallurgy, development of repairing technologies, structural monitoring and instrumentation etc. In this research fatigue life assessment of welded and weld-repaired joints is studied both in numerically and experimentally. A new approach for the simulation of fatigue crack growth in two elastic materials has been developed and specifically, the concept has been applied to butt-welded joint in a straight plate and in tubular joints. In the proposed method, the formation of new surface is represented by an interface element based on the interface potential energy. This method overcomes the limitation of crack growth at an artificial rate of one element length per cycle. In this method the crack propagates only when the applied load reaches the critical bonding strength. The predicted results compares well with experimental results. The Gas Metal Arc welding processes has been simulated to predict post-weld distortion, residual stresses and development of restraining forces in a butt-welded joint. The effect of welding defects and bi-axial interaction of a circular porosity and a solidification crack on fatigue crack propagation life of butt-welded joints has also been investigated. After a weld has been repaired, the specimen was tested in a universal

  1. Analysis of the Corrosion Behavior of an A-TIG Welded SS 409 Weld Fusion Zone

    Science.gov (United States)

    Vidyarthy, R. S.; Dwivedi, D. K.

    2017-11-01

    AISI 409 (SS 409) ferritic stainless steel is generally used as the thick gauge section in freight train wagons, in ocean containers, and in sugar refinery equipment. Activating the flux tungsten inert gas (A-TIG) welding process can reduce the welding cost during fabrication of thick sections. However, corrosion behavior of the A-TIG weld fusion zone is a prime concern for this type of steel. In the present work, the effect of the A-TIG welding process parameters on the corrosion behavior of a weld fusion zone made of 8-mm-thick AISI 409 ferritic stainless-steel plate has been analyzed. Potentiodynamic polarization tests were performed to evaluate the corrosion behavior. The maximum corrosion potential ( E corr) was shown by the weld made using a welding current of 215 A, a welding speed of 95 mm/min, and a flux coating density of 0.81 mg/cm2. The minimum E corr was observed in the weld made using a welding current of 190 A, a welding speed of 120 mm/min, and a flux coating density of 1.40 mg/cm2. The current study also presents the inclusive microstructure-corrosion property relationships using the collective techniques of scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction.

  2. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld.

    Science.gov (United States)

    Shen, Changbin; Zhang, Jiayan; Ge, Jiping

    2011-06-01

    By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  3. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  4. Tailor-welded blanks and their production

    Science.gov (United States)

    Yan, Qi

    2005-01-01

    Tailor welded blanks had been widely used in the automobile industry. A tailor welded blank consists of several flat sheets that were laser welded together before stamping. A combination of different materials, thickness, and coatings could be welded together to form a blank for stamping car body panels. As for the material for automobile industry, this technology was one of the development trend for automobile industry because of its weight reduction, safety improvement and economical use of materials. In this paper, the characters and production of tailor welded blanks in the market were discussed in detail. There had two major methods to produce tailor welded blanks. Laser welding would replace mesh seam welding for the production of tailor welded blanks in the future. The requirements on the edge preparation of unwelded blanks for tailor welded blanks were higher than the other steel processing technology. In order to produce the laser welded blank, there had the other process before the laser welding in the factory. In the world, there had three kinds of patterns for the large volume production of tailor welded blanks. In China, steel factory played the important role in the promotion of the application of tailor welded blanks. The competition for the supply of tailor welded blanks to the automobile industry would become fierce in the near future. As a result, the demand for the quality control on the production of tailor welded blanks would be the first priority concern for the factory.

  5. Characterizing the Global Impact of P2P Overlays on the AS-Level Underlay

    Science.gov (United States)

    Rasti, Amir Hassan; Rejaie, Reza; Willinger, Walter

    This paper examines the problem of characterizing and assessing the global impact of the load imposed by a Peer-to-Peer (P2P) overlay on the AS-level underlay. In particular, we capture Gnutella snapshots for four consecutive years, obtain the corresponding AS-level topology snapshots of the Internet and infer the AS-paths associated with each overlay connection. Assuming a simple model of overlay traffic, we analyze the observed load imposed by these Gnutella snapshots on the AS-level underlay using metrics that characterize the load seen on individual AS-paths and by the transit ASes, illustrate the churn among the top transit ASes during this 4-year period, and describe the propagation of traffic within the AS-level hierarchy.

  6. The Effect of Welding Energy on the Microstructural and Mechanical Properties of Ultrasonic-Welded Copper Joints

    Science.gov (United States)

    Yang, Jingwei; Cao, Biao; Lu, Qinghua

    2017-01-01

    The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed. PMID:28772553

  7. Influence of the welding temperature and the welding speed on the mechanical properties of friction stir welds in EN AW-2219-T87

    Science.gov (United States)

    Bachmann, A.; Krutzlinger, M.; Zaeh, M. F.

    2018-06-01

    Friction Stir Welding (FSW) is an innovative joining technique, which has proven to produce high quality joints in high strength aluminum alloys. Consequently, it is commonly used to manufacture lightweight aerospace structures with stringent requirements. For these structures, it is necessary to ensure a high ultimate tensile strength (UTS). Various studies have reported that the UTS is significantly influenced by the welding parameters. Samples welded with different parameter sets showed a considerably different UTS, despite being free from detectable welding defects (e.g. tunnel defect, voids, or lack of penetration). Based on the observations in the literature, a hypothesis was posed. The welding temperature along with the welding speed determine the UTS of the weld. This study aims to prove this hypothesis experimentally by using temperature-controlled FSW to join plates of EN AW-2219-T87 in butt joint configuration. The welded samples were examined using visual inspection, metallography, X-ray imaging, and uniaxial tensile tests. Finally, a statistical analysis was conducted. Hereby, the hypothesis was confirmed.

  8. On-demand Overlay Networks for Large Scientific Data Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Guok, Chin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jackson, Keith [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kissel, Ezra [Univ. of Delaware, Newark, DE (United States); Swany, D. Martin [Univ. of Delaware, Newark, DE (United States); Agarwal, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-10-12

    Large scale scientific data transfers are central to scientific processes. Data from large experimental facilities have to be moved to local institutions for analysis or often data needs to be moved between local clusters and large supercomputing centers. In this paper, we propose and evaluate a network overlay architecture to enable highthroughput, on-demand, coordinated data transfers over wide-area networks. Our work leverages Phoebus and On-demand Secure Circuits and AdvanceReservation System (OSCARS) to provide high performance wide-area network connections. OSCARS enables dynamic provisioning of network paths with guaranteed bandwidth and Phoebus enables the coordination and effective utilization of the OSCARS network paths. Our evaluation shows that this approach leads to improved end-to-end data transfer throughput with minimal overheads. The achievedthroughput using our overlay was limited only by the ability of the end hosts to sink the data.

  9. Dynamic Fracture Initiation Toughness at Elevated Temperatures With Application to the New Generation of Titanium Aluminide Alloys. Chapter 8

    Science.gov (United States)

    Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)

    2006-01-01

    Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.

  10. Plasma Processes of Cutting and Welding

    Science.gov (United States)

    1976-02-01

    TIG process. 2.2.2 Keyhole Welding In plasma arc welding , the term...Cutting 3 3 4 4 4 2.2 Plasma Arc Welding 5 2.2.1 Needle Arc Welding 2.2.2 Keyhole Welding 5 6 3. Applications 8 93.1 Economics 4. Environmental Aspects of...Arc Lengths III. Needle Arc Welding Conditions IV. Keyhole Welding Conditions v. Chemical Analyses of Plates Used - vii - 1. 2. 3. 4. 5. 6. 7. 8.

  11. 10,170 flawless welds

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The welding of tubes containing the principal current-carrying busbars in the LHC magnets was one of the main activities of the SMACC project. After a year of preparation and another of intense activity in the tunnel, the last weld was completed on Wednesday 14 May. Over 10,170 welds have been inspected and not a single fault has been found.    The welder (above) creates the weld using an orbital welding machine (below) specifically designed for CERN. Each of the eight sectors of the LHC contains around 210 interconnects between the superconducting magnets. Consolidating these interconnections was the SMACC project’s primary objective. One of the last jobs before closing the interconnects is the welding of the M lines: each has a 104 mm diameter and a radial clearance of just 45 mm. In total: 10,170 welds carried out in a single year of activities. A true challenge, which was carried out by a team of 30 highly specialised welders, working under the supervision o...

  12. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds

    Science.gov (United States)

    Lin, Hsuan-Liang; Wu, Tong-Min; Cheng, Ching-Min

    2014-01-01

    The purpose of this study is to investigate the effect of activating flux on the depth-to-width ratio (DWR) and hot cracking susceptibility of Inconel 718 alloy tungsten inert gas (TIG) welds. The Taguchi method is employed to investigate the welding parameters that affect the DWR of weld bead and to achieve optimal conditions in the TIG welds that are coated with activating flux in TIG (A-TIG) process. There are eight single-component fluxes used in the initial experiment to evaluate the penetration capability of A-TIG welds. The experimental results show that the Inconel 718 alloy welds precoated with 50% SiO2 and 50% MoO3 flux were provided with better welding performance such as DWR and hot cracking susceptibility. The experimental procedure of TIG welding process using mixed-component flux and optimal conditions not only produces a significant increase in DWR of weld bead, but also decreases the hot cracking susceptibility of Inconel 718 alloy welds.

  13. Effect of rotation speed and welding speed on Friction Stir Welding of AA1100 Aluminium alloy

    Science.gov (United States)

    Raja, P.; Bojanampati, S.; Karthikeyan, R.; Ganithi, R.

    2018-04-01

    Aluminum AA1100 is the most widely used grade of Aluminium due to its excellent corrosion resistance, high ductility and reflective finish, the selected material was welded with Friction Stir Welding (FSW) process on a CNC machine, using a combination of different tool rotation speed (1500 rpm, 2500 rpm, 3500 rpm) and welding speed (10 mm/min, 30 mm/min, 50 mm/min) as welding parameters. The effect of FSW using this welding parameter was studied by measuring the ultimate tensile strength of the welded joints. A high-speed steel tool was prepared for welding the Aluminium AA1100 alloy having an 8mm shoulder diameter and pin dimension of 4mm diameter and 2.8 mm length. The welded joints were tested using the universal testing machine. It was found that Ultimate Tensile Strength of FSW specimen was highest with a value of 98.08 MPa when the weld was performed at rotation speed of 1500 RPM and welding speed of 50 mm/min.

  14. New process for weld metal reliability

    International Nuclear Information System (INIS)

    Hebel, A.G.

    1985-01-01

    The industry-wide nature of weld cracking alerts one to the possibility that there is a fundamental law being overlooked. And in overlooking this law, industry is unable to counteract it. That law mandates that restraint during welding causes internal stress; internal stress causes weld metal to crack. Component restraint during welding, according to the welding standard, is the major cause of weld metal failures. When the metal working industry accepts this fact and begins to counter the effects of restraint, the number of weld failures experienced fall dramatically. Bonal Technologies, inc., of Detroit, has developed the first consistently effective non-thermal process to relieve stress caused by restraint during welding. Bonal's patented Mets-Lax sub-resonant stress relief acts as a restraint neutralizer when used during welding. Meta-Lax weld conditioning produces a finer more uniform weld grain structure. A finer, more uniform grain structure is a clear metallurgical indication of improved mechanical weld properties. Other benefits like less internal stress, and less warpage are also achieved

  15. Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper

    Science.gov (United States)

    Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan

    2018-06-01

    Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.

  16. Nondestructive testing: welding industry

    International Nuclear Information System (INIS)

    Raj, Baldev; Subramanian, C.V.

    1992-01-01

    This chapter highlights various conventional and advanced nondestructive testing (NDT) techniques that have been used for weld evaluation. Welding Codes and Standards of International and National organisations that have been followed in India for various weld evaluation purposes are also included. The chapter also emphasises the importance of NDT by way of a few case studies that have been carried out on important critical welded components. (author). 12 refs., 17 figs., 1 appendix

  17. Finite element simulation of the welding process and structural behaviour of welded components

    International Nuclear Information System (INIS)

    Locci, J.M.; Rouvray, A. de; Barbe, B.; Poirier, J.

    1977-01-01

    In the field of inelastic analysis of nuclear metal structures, the computation of residual stresses in welds, and their effects on the strength of welded components is of major importance. This paper presents an experimentally checked finite element simulation with the general nonlinear program PAM NEP-D, of the electron beam welding of two thick hemispherical shells, and the behaviour of the welded sphere under various additional thermomechanical sollicitations. (Auth.)

  18. Development of aluminide coatings on vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, D.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3/5 at.% dissolved aluminum in sealed V and V-20 wt.% Ti capsules at temperatures between 775 and 880 degrees C. After each test, the capsules were opened and the samples were examined by optical microscopy and scanning electron microscopy (SEM), and analyzed by electron-energy-dispersive spectroscopy (EDS) and X-ray diffraction. Hardness of the coating layers and bulk alloys was determined by microidentation techniques. The nature of the coatings, i.e., surface coverage, thickness, and composition, varied with exposure time and temperature, solute concentration in lithium, and alloy composition. Solute elements that yielded adherent coatings on various substrates can provide a means of developing in-situ electrical insulator coatings by reaction of the reactive layers with dissolved nitrogen in liquid lithium

  19. Plastic flow and microstructure of cast nickel aluminides at 1273 K

    Science.gov (United States)

    Schneibel, J. H.; Porter, W. D.; Horton, J. A.

    1987-12-01

    Chill-cast nickel aluminides based on Ni3Al were compression-tested in vacuum at 1273 K at strain rates ranging from 10-5 s-1 to 10-1 s-1. As the strain rate increases, the propensity for intergranular cracking increases. The ductile-to-brittle transition strain rate (DBTS) of as-cast Ni-22.5Al-0.5Hf-0.1B (at. pct) is approximately 10-1 s-1. Homogenization lowers this value by three orders of magnitude, to 10-4 s-1 (a homogenized specimen disintegrated completely at a rate of 10-3 s-1). The fine-grained structure of the as-cast alloy plays an important role in its relatively high DBTS. A hafnium-free alloy, Ni-24A1-0.1B, on the other hand, shows only a weak dependence of the DBTS on prior homogenization, and possible reasons for this finding are discussed.

  20. Corrosion Behavior of Arc Weld and Friction Stir Weld in Al 6061-T6 Alloys

    International Nuclear Information System (INIS)

    Yoon, Byoung Hyun; Kim, Heung Ju; Chang, Woong Seong; Kweon, Young Gak

    2006-01-01

    For the evaluation of corrosion resistance of Al 6061-T6 Alloy, Tafel method and immersion test was performed with Friction Stir Weld(FSW) and Gas Metal Arc Weld(GMAW). The Tafel and immersion test results indicated that GMA weld was severely attacked compared with those of friction stir weld. It may be mainly due to the galvanic corrosion mechanism act on the GMA weld