WorldWideScience

Sample records for altered anatomical network

  1. Altered cortical anatomical networks in temporal lobe epilepsy

    Science.gov (United States)

    Lv, Bin; He, Huiguang; Lu, Jingjing; Li, Wenjing; Dai, Dai; Li, Meng; Jin, Zhengyu

    2011-03-01

    Temporal lobe epilepsy (TLE) is one of the most common epilepsy syndromes with focal seizures generated in the left or right temporal lobes. With the magnetic resonance imaging (MRI), many evidences have demonstrated that the abnormalities in hippocampal volume and the distributed atrophies in cortical cortex. However, few studies have investigated if TLE patients have the alternation in the structural networks. In the present study, we used the cortical thickness to establish the morphological connectivity networks, and investigated the network properties using the graph theoretical methods. We found that all the morphological networks exhibited the small-world efficiency in left TLE, right TLE and normal groups. And the betweenness centrality analysis revealed that there were statistical inter-group differences in the right uncus region. Since the right uncus located at the right temporal lobe, these preliminary evidences may suggest that there are topological alternations of the cortical anatomical networks in TLE, especially for the right TLE.

  2. Alterations in Anatomical Covariance in the Prematurely Born.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R; Schneider, Karen C; Papademetris, Xenophon; Constable, R Todd; Ment, Laura R

    2017-01-01

    Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Peng Fang

    Full Text Available Magnetic resonance imaging studies have reported significant functional and structural differences between depressed patients and controls. Little attention has been given, however, to the abnormalities in anatomical connectivity in depressed patients. In the present study, we aim to investigate the alterations in connectivity of whole-brain anatomical networks in those suffering from major depression by using machine learning approaches. Brain anatomical networks were extracted from diffusion magnetic resonance images obtained from both 22 first-episode, treatment-naive adults with major depressive disorder and 26 matched healthy controls. Using machine learning approaches, we differentiated depressed patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified the most discriminating features that represent between-group differences. Classification results showed that 91.7% (patients=86.4%, controls=96.2%; permutation test, p<0.0001 of subjects were correctly classified via leave-one-out cross-validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers for major depressive disorder, but also suggest that abnormal cortical-limbic anatomical networks may contribute to the anatomical basis of emotional dysregulation and cognitive impairments associated with this disease.

  4. Anatomical alterations of the visual motion processing network in migraine with and without aura.

    Directory of Open Access Journals (Sweden)

    Cristina Granziera

    2006-10-01

    Full Text Available Patients suffering from migraine with aura (MWA and migraine without aura (MWoA show abnormalities in visual motion perception during and between attacks. Whether this represents the consequences of structural changes in motion-processing networks in migraineurs is unknown. Moreover, the diagnosis of migraine relies on patient's history, and finding differences in the brain of migraineurs might help to contribute to basic research aimed at better understanding the pathophysiology of migraine.To investigate a common potential anatomical basis for these disturbances, we used high-resolution cortical thickness measurement and diffusion tensor imaging (DTI to examine the motion-processing network in 24 migraine patients (12 with MWA and 12 MWoA and 15 age-matched healthy controls (HCs. We found increased cortical thickness of motion-processing visual areas MT+ and V3A in migraineurs compared to HCs. Cortical thickness increases were accompanied by abnormalities of the subjacent white matter. In addition, DTI revealed that migraineurs have alterations in superior colliculus and the lateral geniculate nucleus, which are also involved in visual processing.A structural abnormality in the network of motion-processing areas could account for, or be the result of, the cortical hyperexcitability observed in migraineurs. The finding in patients with both MWA and MWoA of thickness abnormalities in area V3A, previously described as a source in spreading changes involved in visual aura, raises the question as to whether a "silent" cortical spreading depression develops as well in MWoA. In addition, these experimental data may provide clinicians and researchers with a noninvasively acquirable migraine biomarker.

  5. Brain anatomical network and intelligence.

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2009-05-01

    Full Text Available Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.

  6. Disruption of brain anatomical networks in schizophrenia: A longitudinal, diffusion tensor imaging based study.

    Science.gov (United States)

    Sun, Yu; Chen, Yu; Lee, Renick; Bezerianos, Anastasios; Collinson, Simon L; Sim, Kang

    2016-03-01

    Despite convergent neuroimaging evidence indicating a wide range of brain abnormalities in schizophrenia, our understanding of alterations in the topological architecture of brain anatomical networks and how they are modulated over time, is still rudimentary. Here, we employed graph theoretical analysis of longitudinal diffusion tensor imaging data (DTI) over a 5-year period to investigate brain network topology in schizophrenia and its relationship with clinical manifestations of the illness. Using deterministic tractography, weighted brain anatomical networks were constructed from 31 patients experiencing schizophrenia and 28 age- and gender-matched healthy control subjects. Although the overall small-world characteristics were observed at both baseline and follow-up, a scan-point independent significant deficit of global integration was found in patients compared to controls, suggesting dysfunctional integration of the brain and supporting the notion of schizophrenia as a disconnection syndrome. Specifically, several brain regions (e.g., the inferior frontal gyrus and the bilateral insula) that are crucial for cognitive and emotional integration were aberrant. Furthermore, a significant group-by-longitudinal scan interaction was revealed in the characteristic path length and global efficiency, attributing to a progressive aberration of global integration in patients compared to healthy controls. Moreover, the progressive disruptions of the brain anatomical network topology were associated with the clinical symptoms of the patients. Together, our findings provide insights into the substrates of anatomical dysconnectivity patterns for schizophrenia and highlight the potential for connectome-based metrics as neural markers of illness progression and clinical change with treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Network of anatomical texts (NAnaTex), an open-source project for visualizing the interaction between anatomical terms.

    Science.gov (United States)

    Momota, Ryusuke; Ohtsuka, Aiji

    2018-01-01

    Anatomy is the science and art of understanding the structure of the body and its components in relation to the functions of the whole-body system. Medicine is based on a deep understanding of anatomy, but quite a few introductory-level learners are overwhelmed by the sheer amount of anatomical terminology that must be understood, so they regard anatomy as a dull and dense subject. To help them learn anatomical terms in a more contextual way, we started a new open-source project, the Network of Anatomical Texts (NAnaTex), which visualizes relationships of body components by integrating text-based anatomical information using Cytoscape, a network visualization software platform. Here, we present a network of bones and muscles produced from literature descriptions. As this network is primarily text-based and does not require any programming knowledge, it is easy to implement new functions or provide extra information by making changes to the original text files. To facilitate collaborations, we deposited the source code files for the network into the GitHub repository ( https://github.com/ryusukemomota/nanatex ) so that anybody can participate in the evolution of the network and use it for their own non-profit purposes. This project should help not only introductory-level learners but also professional medical practitioners, who could use it as a quick reference.

  8. Topological Alterations and Symptom-Relevant Modules in the Whole-Brain Structural Network in Semantic Dementia.

    Science.gov (United States)

    Ding, Junhua; Chen, Keliang; Zhang, Weibin; Li, Ming; Chen, Yan; Yang, Qing; Lv, Yingru; Guo, Qihao; Han, Zaizhu

    2017-01-01

    Semantic dementia (SD) is characterized by a selective decline in semantic processing. Although the neuropsychological pattern of this disease has been identified, its topological global alterations and symptom-relevant modules in the whole-brain anatomical network have not been fully elucidated. This study aims to explore the topological alteration of anatomical network in SD and reveal the modules associated with semantic deficits in this disease. We first constructed the whole-brain white-matter networks of 20 healthy controls and 19 patients with SD. Then, the network metrics of graph theory were compared between these two groups. Finally, we separated the network of SD patients into different modules and correlated the structural integrity of each module with the severity of the semantic deficits across patients. The network of the SD patients presented a significantly reduced global efficiency, indicating that the long-distance connections were damaged. The network was divided into the following four distinctive modules: the left temporal/occipital/parietal, frontal, right temporal/occipital, and frontal/parietal modules. The first two modules were associated with the semantic deficits of SD. These findings illustrate the skeleton of the neuroanatomical network of SD patients and highlight the key role of the left temporal/occipital/parietal module and the left frontal module in semantic processing.

  9. Altered resting-state whole-brain functional networks of neonates with intrauterine growth restriction.

    Science.gov (United States)

    Batalle, Dafnis; Muñoz-Moreno, Emma; Tornador, Cristian; Bargallo, Nuria; Deco, Gustavo; Eixarch, Elisenda; Gratacos, Eduard

    2016-04-01

    The feasibility to use functional MRI (fMRI) during natural sleep to assess low-frequency basal brain activity fluctuations in human neonates has been demonstrated, although its potential to characterise pathologies of prenatal origin has not yet been exploited. In the present study, we used intrauterine growth restriction (IUGR) as a model of altered neurodevelopment due to prenatal condition to show the suitability of brain networks to characterise functional brain organisation at neonatal age. Particularly, we analysed resting-state fMRI signal of 20 neonates with IUGR and 13 controls, obtaining whole-brain functional networks based on correlations of blood oxygen level-dependent (BOLD) signal in 90 grey matter regions of an anatomical atlas (AAL). Characterisation of the networks obtained with graph theoretical features showed increased network infrastructure and raw efficiencies but reduced efficiency after normalisation, demonstrating hyper-connected but sub-optimally organised IUGR functional brain networks. Significant association of network features with neurobehavioral scores was also found. Further assessment of spatiotemporal dynamics displayed alterations into features associated to frontal, cingulate and lingual cortices. These findings show the capacity of functional brain networks to characterise brain reorganisation from an early age, and their potential to develop biomarkers of altered neurodevelopment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Ni Shu

    2015-01-01

    Full Text Available The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.

  11. Congenital blindness is associated with large-scale reorganization of anatomical networks.

    Science.gov (United States)

    Hasson, Uri; Andric, Michael; Atilgan, Hicret; Collignon, Olivier

    2016-03-01

    Blindness is a unique model for understanding the role of experience in the development of the brain's functional and anatomical architecture. Documenting changes in the structure of anatomical networks for this population would substantiate the notion that the brain's core network-level organization may undergo neuroplasticity as a result of life-long experience. To examine this issue, we compared whole-brain networks of regional cortical-thickness covariance in early blind and matched sighted individuals. This covariance is thought to reflect signatures of integration between systems involved in similar perceptual/cognitive functions. Using graph-theoretic metrics, we identified a unique mode of anatomical reorganization in the blind that differed from that found for sighted. This was seen in that network partition structures derived from subgroups of blind were more similar to each other than they were to partitions derived from sighted. Notably, after deriving network partitions, we found that language and visual regions tended to reside within separate modules in sighted but showed a pattern of merging into shared modules in the blind. Our study demonstrates that early visual deprivation triggers a systematic large-scale reorganization of whole-brain cortical-thickness networks, suggesting changes in how occipital regions interface with other functional networks in the congenitally blind. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Anatomical study of minor alterations in neonate vocal folds.

    Science.gov (United States)

    Silva, Adriano Rezende; Machado, Almiro José; Crespo, Agrício Nubiato

    2014-01-01

    Minor structural alterations of the vocal fold cover are frequent causes of voice abnormalities. They may be difficult to diagnose, and are expressed in different manners. Cases of intracordal cysts, sulcus vocalis, mucosal bridge, and laryngeal micro-diaphragm form the group of minor structural alterations of the vocal fold cover investigated in the present study. The etiopathogenesis and epidemiology of these alterations are poorly known. To evaluate the existence and anatomical characterization of minor structural alterations in the vocal folds of newborns. 56 larynxes excised from neonates of both genders were studied. They were examined fresh, or defrosted after conservation via freezing, under a microscope at magnifications of 25× and 40×. The vocal folds were inspected and palpated by two examiners, with the aim of finding minor structural alterations similar to those described classically, and other undetermined minor structural alterations. Larynges presenting abnormalities were submitted to histological examination. Six cases of abnormalities were found in different larynges: one (1.79%) compatible with a sulcus vocalis and five (8.93%) compatible with a laryngeal micro-diaphragm. No cases of cysts or mucosal bridges were found. The observed abnormalities had characteristics similar to those described in other age groups. Abnormalities similar to sulcus vocalis or micro-diaphragm may be present at birth. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  13. Early adverse life events are associated with altered brain network architecture in a sex- dependent manner

    Directory of Open Access Journals (Sweden)

    Arpana Gupta, PhD

    2017-12-01

    Full Text Available Introduction: Early adverse life events (EALs increase the risk for chronic medical and psychiatric disorders by altering early neurodevelopment. The aim of this study was to examine associations between EALs and network properties of core brain regions in the emotion regulation and salience networks, and to test the influence of sex on these associations. Methods: Resting-state functional and diffusion tensor magnetic resonance imaging were obtained in healthy individuals (61 men, 63 women. Functional and anatomical network properties of centrality and segregation were calculated for the core regions of the two networks using graph theory. Moderator analyses were applied to test hypotheses. Results: The type of adversity experienced influences brain wiring differently, as higher general EALs were associated with decreased functional and anatomical centrality in salience and emotion regulation regions, while physical and emotional EALs were associated with increased anatomical centrality and segregation in emotion regulation regions. Sex moderated the associations between EALs and measures of centrality; with decreased centrality of salience and emotion regulation regions with increased general EALs in females, and increased centrality in salience regions with higher physical and emotional EALs in males. Increased segregation of salience regions was associated with increased general EALs in males. Centrality of the amygdala was associated with physical symptoms, and segregation of salience regions was correlated with higher somatization in men only. Conclusions: Emotion regulation and salience regions are susceptible to topological brain restructuring associated with EALs. The male and female brains appear to be differently affected by specific types of EALs. Keywords: Early adverse traumatic life events, Centrality, Segregation, Network metrics, Moderating effects of sex, Emotion regulation network, Salience network

  14. Brain anatomical networks in early human brain development.

    Science.gov (United States)

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  15. Resting state cortico-cerebellar functional connectivity networks: A comparison of anatomical and self-organizing map approaches

    Directory of Open Access Journals (Sweden)

    Jessica A Bernard

    2012-08-01

    Full Text Available The cerebellum plays a role in a wide variety of complex behaviors. In order to better understand the role of the cerebellum in human behavior, it is important to know how this structure interacts with cortical and other subcortical regions of the brain. To date, several studies have investigated the cerebellum using resting-state functional connectivity magnetic resonance imaging (fcMRI; Buckner et al., 2011; Krienen & Buckner, 2009; O’Reilly et al., 2009. However, none of this work has taken an anatomically-driven approach. Furthermore, though detailed maps of cerebral cortex and cerebellum networks have been proposed using different network solutions based on the cerebral cortex (Buckner et al., 2011, it remains unknown whether or not an anatomical lobular breakdown best encompasses the networks of the cerebellum. Here, we used fcMRI to create an anatomically-driven cerebellar connectivity atlas. Timecourses were extracted from the lobules of the right hemisphere and vermis. We found distinct networks for the individual lobules with a clear division into motor and non-motor regions. We also used a self-organizing map algorithm to parcellate the cerebellum. This allowed us to investigate redundancy and independence of the anatomically identified cerebellar networks. We found that while anatomical boundaries in the anterior cerebellum provide functional subdivisions of a larger motor grouping defined using our self-organizing map algorithm, in the posterior cerebellum, the lobules were made up of sub-regions associated with distinct functional networks. Together, our results indicate that the lobular boundaries of the human cerebellum are not indicative of functional boundaries, though anatomical divisions can be useful, as is the case of the anterior cerebellum. Additionally, driving the analyses from the cerebellum is key to determining the complete picture of functional connectivity within the structure.

  16. Altered Brain Network in Amyotrophic Lateral Sclerosis: A Resting Graph Theory-Based Network Study at Voxel-Wise Level.

    Science.gov (United States)

    Zhou, Chaoyang; Hu, Xiaofei; Hu, Jun; Liang, Minglong; Yin, Xuntao; Chen, Lin; Zhang, Jiuquan; Wang, Jian

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex-matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC), a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe, and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC's z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.

  17. Altered brain network in Amyotrophic Lateral Sclerosis: a resting graph theory-based network study at voxel-wise level

    Directory of Open Access Journals (Sweden)

    Chaoyang eZhou

    2016-05-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex- matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC, a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC’s z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.

  18. Brain anatomical networks in world class gymnasts: a DTI tractography study.

    Science.gov (United States)

    Wang, Bin; Fan, Yuanyuan; Lu, Min; Li, Shumei; Song, Zheng; Peng, Xiaoling; Zhang, Ruibin; Lin, Qixiang; He, Yong; Wang, Jun; Huang, Ruiwang

    2013-01-15

    The excellent motor skills of world class gymnasts amaze everyone. People marvel at the way they precisely control their movements and wonder how the brain structure and function of these elite athletes differ from those of non-athletes. In this study, we acquired diffusion images from thirteen world class gymnasts and fourteen matched controls, constructed their anatomical networks, and calculated the topological properties of each network based on graph theory. From a connectivity-based analysis, we found that most of the edges with increased connection density in the champions were linked to brain regions that are located in the sensorimotor, attentional, and default-mode systems. From graph-based metrics, we detected significantly greater global and local efficiency but shorter characteristic path length in the anatomical networks of the champions compared with the controls. Moreover, in the champions we found a significantly higher nodal degree and greater regional efficiency in several brain regions that correspond to motor and attention functions. These included the left precentral gyrus, left postcentral gyrus, right anterior cingulate gyrus and temporal lobes. In addition, we revealed an increase in the mean fractional anisotropy of the corticospinal tract in the champions, possibly in response to long-term gymnastic training. Our study indicates that neuroanatomical adaptations and plastic changes occur in gymnasts' brain anatomical networks either in response to long-term intensive gymnastic training or as an innate predisposition or both. Our findings may help to explain gymnastic skills at the highest levels of performance and aid in understanding the neural mechanisms that distinguish expert gymnasts from novices. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  20. Functional inference of complex anatomical tendinous networks at a macroscopic scale via sparse experimentation.

    Science.gov (United States)

    Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J

    2012-01-01

    In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16(th) century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines.

  1. Altered structural connectivity of pain-related brain network in burning mouth syndrome-investigation by graph analysis of probabilistic tractography.

    Science.gov (United States)

    Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu

    2017-05-01

    Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.

  2. An alter-centric perspective on employee innovation: The importance of alters' creative self-efficacy and network structure.

    Science.gov (United States)

    Grosser, Travis J; Venkataramani, Vijaya; Labianca, Giuseppe Joe

    2017-09-01

    While most social network studies of employee innovation behavior examine the focal employees' ("egos'") network structure, we employ an alter-centric perspective to study the personal characteristics of employees' network contacts-their "alters"-to better understand employee innovation. Specifically, we examine how the creative self-efficacy (CSE) and innovation behavior of employees' social network contacts affects their ability to generate and implement novel ideas. Hypotheses were tested using a sample of 144 employees in a U.S.-based product development organization. We find that the average CSE of alters in an employee's problem solving network is positively related to that employee's innovation behavior, with this relationship being mediated by these alters' average innovation behavior. The relationship between the alters' average innovation behavior and the employee's own innovation behavior is strengthened when these alters have less dense social networks. Post hoc results suggest that having network contacts with high levels of CSE also leads to an increase in ego's personal CSE 1 year later in cases where the employee's initial level of CSE was relatively low. Implications for theory and practice are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Multivariate pattern analysis reveals anatomical connectivity differences between the left and right mesial temporal lobe epilepsy.

    Science.gov (United States)

    Fang, Peng; An, Jie; Zeng, Ling-Li; Shen, Hui; Chen, Fanglin; Wang, Wensheng; Qiu, Shijun; Hu, Dewen

    2015-01-01

    Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE), but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right) mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE.

  4. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder.

    Science.gov (United States)

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-04-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.

  5. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder

    Science.gov (United States)

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-01-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772

  6. Altered structural and functional thalamocortical networks in secondarily generalized extratemporal lobe seizures

    Directory of Open Access Journals (Sweden)

    Syu-Jyun Peng

    2017-01-01

    Full Text Available Structural and functional abnormalities in the thalamocortical network in primary generalized epilepsies or mesial temporal lobe epilepsy have recently been identified by voxel-wise analyses of neuroimaging. However, evidence is needed regarding the profiles of the thalamocortical network in patients with secondarily generalized seizures from focal neocortical sources. We used high-resolution T1-weighted, diffusion-tensor and resting-state functional MR imaging (rs-fMRI to examine 16 patients with secondarily generalized extratemporal lobe seizures and 16 healthy controls. All the patients were medically effective and MRI-negative. Using whole brain voxel-based morphometry (VBM to compare the patients with the normal controls, we observed significantly decreased gray matter (GM density in the thalamus and 3 frontal gyri and significantly reduced white matter (WM fractional anisotropy (FA in the bilateral anterior corona radiata of the patients. Alterations in the thalamocortical functional connectivity with different cortices were identified by the rs-fMRI analysis seeding of the whole thalamus. The prefrontal gyri with the greatest functional connectivity were also traced by seeding a sub-thalamic region that is demarcated in an atlas, in which the thalamic parcellation is based on the WM connectivity to the cortices. This sub-thalamic region anatomically contains the mediodorsal thalamic nucleus where, concordantly, there was a significant decrease in thalamic GM density in the VBM study. In contrast to the negative correlation between the disease duration and reduced thalamic densities and subcortical FA values, the strength of the functional thalamocortical connectivity had a paradoxical correlation. Our results conclusively indicate that generalized seizures with a focal cortical source are associated with structural and functional alterations in the thalamocortical network.

  7. Altered resting-state frontoparietal control network in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Lin, Hsiang-Yuan; Tseng, Wen-Yih Isaac; Lai, Meng-Chuan; Matsuo, Kayako; Gau, Susan Shur-Fen

    2015-04-01

    The frontoparietal control network, anatomically and functionally interposed between the dorsal attention network and default mode network, underpins executive control functions. Individuals with attention-deficit/hyperactivity disorder (ADHD) commonly exhibit deficits in executive functions, which are mainly mediated by the frontoparietal control network. Involvement of the frontoparietal control network based on the anterior prefrontal cortex in neurobiological mechanisms of ADHD has yet to be tested. We used resting-state functional MRI and seed-based correlation analyses to investigate functional connectivity of the frontoparietal control network in a sample of 25 children with ADHD (7-14 years; mean 9.94 ± 1.77 years; 20 males), and 25 age-, sex-, and performance IQ-matched typically developing (TD) children. All participants had limited in-scanner head motion. Spearman's rank correlations were used to test the associations between altered patterns of functional connectivity with clinical symptoms and executive functions, measured by the Conners' Continuous Performance Test and Spatial Span in the Cambridge Neuropsychological Test Automated Battery. Compared with TD children, children with ADHD demonstrated weaker connectivity between the right anterior prefrontal cortex (PFC) and the right ventrolateral PFC, and between the left anterior PFC and the right inferior parietal lobule. Furthermore, this aberrant connectivity of the frontoparietal control network in ADHD was associated with symptoms of impulsivity and opposition-defiance, as well as impaired response inhibition and attentional control. The findings support potential integration of the disconnection model and the executive dysfunction model for ADHD. Atypical frontoparietal control network may play a pivotal role in the pathophysiology of ADHD.

  8. Multivariate pattern analysis reveals anatomical connectivity differences between the left and right mesial temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Peng Fang

    2015-01-01

    Full Text Available Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE, but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE.

  9. A large-scale perspective on stress-induced alterations in resting-state networks

    Science.gov (United States)

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-02-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.

  10. Altered Cerebral Blood Flow Covariance Network in Schizophrenia.

    Science.gov (United States)

    Liu, Feng; Zhuo, Chuanjun; Yu, Chunshui

    2016-01-01

    Many studies have shown abnormal cerebral blood flow (CBF) in schizophrenia; however, it remains unclear how topological properties of CBF network are altered in this disorder. Here, arterial spin labeling (ASL) MRI was employed to measure resting-state CBF in 96 schizophrenia patients and 91 healthy controls. CBF covariance network of each group was constructed by calculating across-subject CBF covariance between 90 brain regions. Graph theory was used to compare intergroup differences in global and nodal topological measures of the network. Both schizophrenia patients and healthy controls had small-world topology in CBF covariance networks, implying an optimal balance between functional segregation and integration. Compared with healthy controls, schizophrenia patients showed reduced small-worldness, normalized clustering coefficient and local efficiency of the network, suggesting a shift toward randomized network topology in schizophrenia. Furthermore, schizophrenia patients exhibited altered nodal centrality in the perceptual-, affective-, language-, and spatial-related regions, indicating functional disturbance of these systems in schizophrenia. This study demonstrated for the first time that schizophrenia patients have disrupted topological properties in CBF covariance network, which provides a new perspective (efficiency of blood flow distribution between brain regions) for understanding neural mechanisms of schizophrenia.

  11. 4D Flow Analysis of BAV-Related Fluid-Dynamic Alterations: Evidences of Wall Shear Stress Alterations in Absence of Clinically-Relevant Aortic Anatomical Remodeling

    Directory of Open Access Journals (Sweden)

    Filippo Piatti

    2017-06-01

    -dynamic alterations, no clinically relevant anatomical remodeling was observed in the BAV patients at 3-year follow-up. In light of previous evidence from the literature, our results suggest that WSS alterations may precede the onset of aortopathy and may contribute to its triggering, but WSS-driven anatomical remodeling, if any, is a very slow process.

  12. Altered resting state brain networks in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Martin Göttlich

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37 compared to healthy controls (n = 20. Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine, but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence

  13. Anatomical alterations of Phaseolus vulgaris L. mature leaves irradiated with X-rays.

    Science.gov (United States)

    De Micco, V; Arena, C; Aronne, G

    2014-01-01

    The cultivation of higher plants in Space involves not only the development of new agro-technologies for the design of ecologically closed Space greenhouses, but also understanding of the effects of Space factors on biological systems. Among Space factors, ionising radiation is one of the main constraints to the growth of organisms. In this paper, we analyse the effect of low-LET radiation on leaf histology and cytology in Phaseolus vulgaris L. plants subjected to increasing doses of X-rays (0.3, 10, 50, 100 Gy). Leaves irradiated at tissue maturity were compared with not-irradiated controls. Semi-thin sections of leaves were analysed through light and epi-fluorescence microscopy. Digital image analysis was applied to quantify anatomical parameters, with a specific focus on the occurrence of signs of structural damage as well as alterations at subcellular level, such as the accumulation of phenolic compounds and chloroplast size. Results showed that even at high levels of radiation, general anatomical structure was not severely perturbed. Slight changes in mesophyll density and cell enlargement were detected at the highest level of radiation. However, at 100 Gy, higher levels of phenolic compounds accumulated along chloroplast membranes: this accompanied an increase in number of chloroplasts. The reduced content of chlorophylls at high levels of radiation was associated with reduced size of the chloroplasts. All data are discussed in terms of the possible role of cellular modifications in the maintenance of high radioresistance and photosynthetic efficiency. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Sex differences in the influence of body mass index on anatomical architecture of brain networks.

    Science.gov (United States)

    Gupta, A; Mayer, E A; Hamadani, K; Bhatt, R; Fling, C; Alaverdyan, M; Torgerson, C; Ashe-McNalley, C; Van Horn, J D; Naliboff, B; Tillisch, K; Sanmiguel, C P; Labus, J S

    2017-08-01

    The brain has a central role in regulating ingestive behavior in obesity. Analogous to addiction behaviors, an imbalance in the processing of rewarding and salient stimuli results in maladaptive eating behaviors that override homeostatic needs. We performed network analysis based on graph theory to examine the association between body mass index (BMI) and network measures of integrity, information flow and global communication (centrality) in reward, salience and sensorimotor regions and to identify sex-related differences in these parameters. Structural and diffusion tensor imaging were obtained in a sample of 124 individuals (61 males and 63 females). Graph theory was applied to calculate anatomical network properties (centrality) for regions of the reward, salience and sensorimotor networks. General linear models with linear contrasts were performed to test for BMI and sex-related differences in measures of centrality, while controlling for age. In both males and females, individuals with high BMI (obese and overweight) had greater anatomical centrality (greater connectivity) of reward (putamen) and salience (anterior insula) network regions. Sex differences were observed both in individuals with normal and elevated BMI. In individuals with high BMI, females compared to males showed greater centrality in reward (amygdala, hippocampus and nucleus accumbens) and salience (anterior mid-cingulate cortex) regions, while males compared to females had greater centrality in reward (putamen) and sensorimotor (posterior insula) regions. In individuals with increased BMI, reward, salience and sensorimotor network regions are susceptible to topological restructuring in a sex-related manner. These findings highlight the influence of these regions on integrative processing of food-related stimuli and increased ingestive behavior in obesity, or in the influence of hedonic ingestion on brain topological restructuring. The observed sex differences emphasize the importance of

  15. Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma.

    Science.gov (United States)

    Gu, Yunyan; Wang, Hongwei; Qin, Yao; Zhang, Yujing; Zhao, Wenyuan; Qi, Lishuang; Zhang, Yuannv; Wang, Chenguang; Guo, Zheng

    2013-03-01

    The heterogeneity of genetic alterations in human cancer genomes presents a major challenge to advancing our understanding of cancer mechanisms and identifying cancer driver genes. To tackle this heterogeneity problem, many approaches have been proposed to investigate genetic alterations and predict driver genes at the individual pathway level. However, most of these approaches ignore the correlation of alteration events between pathways and miss many genes with rare alterations collectively contributing to carcinogenesis. Here, we devise a network-based approach to capture the cooperative functional modules hidden in genome-wide somatic mutation and copy number alteration profiles of glioblastoma (GBM) from The Cancer Genome Atlas (TCGA), where a module is a set of altered genes with dense interactions in the protein interaction network. We identify 7 pairs of significantly co-altered modules that involve the main pathways known to be altered in GBM (TP53, RB and RTK signaling pathways) and highlight the striking co-occurring alterations among these GBM pathways. By taking into account the non-random correlation of gene alterations, the property of co-alteration could distinguish oncogenic modules that contain driver genes involved in the progression of GBM. The collaboration among cancer pathways suggests that the redundant models and aggravating models could shed new light on the potential mechanisms during carcinogenesis and provide new indications for the design of cancer therapeutic strategies.

  16. Non-concomitant cortical structural and functional alterations in sensorimotor areas following incomplete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yu Pan

    2017-01-01

    Full Text Available Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury (SCI. The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI (mean age 40.94 ± 14.10 years old; male:female, 7:11 and 18 healthy subjects (37.33 ± 11.79 years old; male:female, 7:11 were studied by resting state functional magnetic resonance imaging. Gray matter volume (GMV and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex (BA1 and left primary motor cortex (BA4, and left BA1 and left somatosensory association cortex (BA5 was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI

  17. An anatomical substrate for integration among functional networks in human cortex.

    Science.gov (United States)

    van den Heuvel, Martijn P; Sporns, Olaf

    2013-09-04

    The human brain shows several characteristics of an efficient communication network architecture, including short communication paths and the existence of modules interlinked by a small set of highly connected regions. Studies of structural networks comprising macroscopic white matter projections have shown that these putative hubs are densely interconnected, giving rise to a spatially distributed and topologically central collective called the "rich club." In parallel, studies of intrinsic brain activity have consistently revealed distinct functional communities or resting-state networks (RSNs), indicative of specialized processing and segregation of neuronal information. However, the pattern of structural connectivity interconnecting these functional RSNs and how such inter-RSN structural connections might bring about functional integration between RSNs remain largely unknown. Combining high-resolution diffusion weighted imaging with resting-state fMRI, we present novel evidence suggesting that the rich club structure plays a central role in cross-linking macroscopic RSNs of the human brain. Rich club hub nodes were present in all functional networks, accounted for a large proportion of "connector nodes," and were found to coincide with regions in which multiple networks overlap. In addition, a large proportion of all inter-RSN connections were found to involve rich club nodes, and these connections participated in a disproportionate number of communication paths linking nodes in different RSNs. Our findings suggest that the brain's rich club serves as a macroscopic anatomical substrate to cross-link functional networks and thus plays an important role in the integration of information between segregated functional domains of the human cortex.

  18. Altered modular organization of structural cortical networks in children with autism.

    Directory of Open Access Journals (Sweden)

    Feng Shi

    Full Text Available Autism is a complex developmental disability that characterized by deficits in social interaction, language skills, repetitive stereotyped behaviors and restricted interests. Although great heterogeneity exists, previous findings suggest that autism has atypical brain connectivity patterns and disrupted small-world network properties. However, the organizational alterations in the autistic brain network are still poorly understood. We explored possible organizational alterations of 49 autistic children and 51 typically developing controls, by investigating their brain network metrics that are constructed upon cortical thickness correlations. Three modules were identified in controls, including cortical regions associated with brain functions of executive strategic, spatial/auditory/visual, and self-reference/episodic memory. There are also three modules found in autistic children with similar patterns. Compared with controls, autism demonstrates significantly reduced gross network modularity, and a larger number of inter-module connections. However, the autistic brain network demonstrates increased intra- and inter-module connectivity in brain regions including middle frontal gyrus, inferior parietal gyrus, and cingulate, suggesting one underlying compensatory mechanism associated with brain functions of self-reference and episodic memory. Results also show that there is increased correlation strength between regions inside frontal lobe, as well as impaired correlation strength between frontotemporal and frontoparietal regions. This alteration of correlation strength may contribute to the organization alteration of network structures in autistic brains.

  19. Altered causal connectivity of resting state brain networks in amnesic MCI.

    Directory of Open Access Journals (Sweden)

    Peipeng Liang

    Full Text Available Most neuroimaging studies of resting state networks in amnesic mild cognitive impairment (aMCI have concentrated on functional connectivity (FC based on instantaneous correlation in a single network. The purpose of the current study was to investigate effective connectivity in aMCI patients based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data--default mode network (DMN, hippocampal cortical memory network (HCMN, dorsal attention network (DAN and fronto-parietal control network (FPCN. Structural and functional MRI data were collected from 16 aMCI patients and 16 age, gender-matched healthy controls. Correlation-purged Granger causality analysis was used, taking gray matter atrophy as covariates, to compare the group difference between aMCI patients and healthy controls. We found that the causal connectivity between networks in aMCI patients was significantly altered with both increases and decreases in the aMCI group as compared to healthy controls. Some alterations were significantly correlated with the disease severity as measured by mini-mental state examination (MMSE, and California verbal learning test (CVLT scores. When the whole-brain signal averaged over the entire brain was used as a nuisance co-variate, the within-group maps were significantly altered while the between-group difference maps did not. These results suggest that the alterations in causal influences may be one of the possible underlying substrates of cognitive impairments in aMCI. The present study extends and complements previous FC studies and demonstrates the coexistence of causal disconnection and compensation in aMCI patients, and thus might provide insights into biological mechanism of the disease.

  20. Review of Evidence Suggesting That the Fascia Network Could Be the Anatomical Basis for Acupoints and Meridians in the Human Body

    Directory of Open Access Journals (Sweden)

    Yu Bai

    2011-01-01

    Full Text Available The anatomical basis for the concept of meridians in traditional Chinese medicine (TCM has not been resolved. This paper reviews the evidence supporting a relationship between acupuncture points/meridians and fascia. The reviewed evidence supports the view that the human body's fascia network may be the physical substrate represented by the meridians of TCM. Specifically, this hypothesis is supported by anatomical observations of body scan data demonstrating that the fascia network resembles the theoretical meridian system in salient ways, as well as physiological, histological, and clinical observations. This view represents a theoretical basis and means for applying modern biomedical research to examining TCM principles and therapies, and it favors a holistic approach to diagnosis and treatment.

  1. Anthropometric Renal Anatomic Alterations Between Supine and Prone Positions in Percutaneous Renal Ablation for Renal Cortical Neoplasms.

    Science.gov (United States)

    Lusch, Achim; Fujimoto, Scott; Findeiss, Laura K; Okhunov, Zhamshid; McDougall, Elspeth M; Landman, Jaime

    2016-02-01

    To establish patterns of anatomic changes relevant to the kidney and colon during positional change between the supine and prone positions as noted on CT scans performed during percutaneous cryoablation for renal cortical neoplasms (RCN). Nineteen patients undergoing percutaneous cryoablation for RCN with abdominal CT scan in both the supine and prone positions were included in the study. We documented the anterior/posterior, medial/lateral, and cranial/caudal anatomic changes of the kidney, kidney rotation, and the proportion of the kidney whose access was limited by the liver, spleen, and lung. We also calculated the length of the percutaneous access tract and the distance between the colon and kidney in hilar position as well as the anterior/posterior location of the colon relative to the kidney. In the prone position, the kidney lies significantly more anteriorly on both sides: 4.7 cm vs 4.3 cm (L) and 4.4 cm vs 4.1 cm (R) (p = 0.02 and p = 0.03, respectively). On prone CT images, both kidneys are more cranial when compared with the supine position: 80.4 mm vs 60.8 mm (L) and 87.2 mm vs 57.4 mm (R) (p = 0.002 and p anatomic alterations between supine and prone CT imaging. The changes associated with the prone position modify percutaneous access, particularly for right upper pole tumors. Prone imaging before surgery may be helpful in selected cases.

  2. How mutation alters the evolutionary dynamics of cooperation on networks

    Science.gov (United States)

    Ichinose, Genki; Satotani, Yoshiki; Sayama, Hiroki

    2018-05-01

    Cooperation is ubiquitous at every level of living organisms. It is known that spatial (network) structure is a viable mechanism for cooperation to evolve. A recently proposed numerical metric, average gradient of selection (AGoS), a useful tool for interpreting and visualizing evolutionary dynamics on networks, allows simulation results to be visualized on a one-dimensional phase space. However, stochastic mutation of strategies was not considered in the analysis of AGoS. Here we extend AGoS so that it can analyze the evolution of cooperation where mutation may alter strategies of individuals on networks. We show that our extended AGoS correctly visualizes the final states of cooperation with mutation in the individual-based simulations. Our analyses revealed that mutation always has a negative effect on the evolution of cooperation regardless of the payoff functions, fraction of cooperators, and network structures. Moreover, we found that scale-free networks are the most vulnerable to mutation and thus the dynamics of cooperation are altered from bistability to coexistence on those networks, undergoing an imperfect pitchfork bifurcation.

  3. Altered network communication following a neuroprotective drug treatment.

    Directory of Open Access Journals (Sweden)

    Kathleen Vincent

    Full Text Available Preconditioning is defined as a range of stimuli that allow cells to withstand subsequent anaerobic and other deleterious conditions. While cell protection under preconditioning is well established, this paper investigates the influence of neuroprotective preconditioning drugs, 4-aminopyridine and bicuculline (4-AP/bic, on synaptic communication across a broad network of in vitro rat cortical neurons. Using a permutation test, we evaluated cross-correlations of extracellular spiking activity across all pairs of recording electrodes on a 64-channel multielectrode array. The resulting functional connectivity maps were analyzed in terms of their graph-theoretic properties. A small-world effect was found, characterized by a functional network with high clustering coefficient and short average path length. Twenty-four hours after exposure to 4-AP/bic, small-world properties were comparable to control cultures that were not treated with the drug. Four hours following drug washout, however, the density of functional connections increased, while path length decreased and clustering coefficient increased. These alterations in functional connectivity were maintained at four days post-washout, suggesting that 4-AP/bic preconditioning leads to long-term effects on functional networks of cortical neurons. Because of their influence on communication efficiency in neuronal networks, alterations in small-world properties hold implications for information processing in brain systems. The observed relationship between density, path length, and clustering coefficient is captured by a phenomenological model where connections are added randomly within a spatially-embedded network. Taken together, results provide information regarding functional consequences of drug therapies that are overlooked in traditional viability studies and present the first investigation of functional networks under neuroprotective preconditioning.

  4. Connectomics and neuroticism : an altered functional network organization

    NARCIS (Netherlands)

    Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard; Ormel, Johan; Riese, Harriëtte; Aleman, André

    The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network

  5. Altered Synchronizations among Neural Networks in Geriatric Depression.

    Science.gov (United States)

    Wang, Lihong; Chou, Ying-Hui; Potter, Guy G; Steffens, David C

    2015-01-01

    Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression.

  6. Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer.

    Science.gov (United States)

    Kesler, Shelli R; Watson, Christa L; Blayney, Douglas W

    2015-08-01

    Breast cancer and its treatments are associated with mild cognitive impairment and brain changes that could indicate an altered or accelerated brain aging process. We applied diffusion tensor imaging and graph theory to measure white matter organization and connectivity in 34 breast cancer survivors compared with 36 matched healthy female controls. We also investigated how brain networks (connectomes) in each group responded to simulated neurodegeneration based on network attack analysis. Compared with controls, the breast cancer group demonstrated significantly lower fractional anisotropy, altered small-world connectome properties, lower brain network tolerance to systematic region (node), and connection (edge) attacks and significant cognitive impairment. Lower tolerance to network attack was associated with cognitive impairment in the breast cancer group. These findings provide further evidence of diffuse white matter pathology after breast cancer and extend the literature in this area with unique data demonstrating increased vulnerability of the post-breast cancer brain network to future neurodegenerative processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The modular organization of human anatomical brain networks: Accounting for the cost of wiring

    Directory of Open Access Journals (Sweden)

    Richard F. Betzel

    2017-02-01

    Full Text Available Brain networks are expected to be modular. However, existing techniques for estimating a network’s modules make it difficult to assess the influence of organizational principles such as wiring cost reduction on the detected modules. Here we present a modification of an existing module detection algorithm that allowed us to focus on connections that are unexpected under a cost-reduction wiring rule and to identify modules from among these connections. We applied this technique to anatomical brain networks and showed that the modules we detected differ from those detected using the standard technique. We demonstrated that these novel modules are spatially distributed, exhibit unique functional fingerprints, and overlap considerably with rich clubs, giving rise to an alternative and complementary interpretation of the functional roles of specific brain regions. Finally, we demonstrated that, using the modified module detection approach, we can detect modules in a developmental dataset that track normative patterns of maturation. Collectively, these findings support the hypothesis that brain networks are composed of modules and provide additional insight into the function of those modules.

  8. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.

    Science.gov (United States)

    Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan

    2015-01-01

    Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.

  9. Exploring brain function from anatomical connectivity

    Directory of Open Access Journals (Sweden)

    Gorka eZamora-López

    2011-06-01

    Full Text Available The intrinsic relationship between the architecture of the brain and the range of sensory and behavioral phenomena it produces is a relevant question in neuroscience. Here, we review recent knowledge gained on the architecture of the anatomical connectivity by means of complex network analysis. It has been found that corticocortical networks display a few prominent characteristics: (i modular organization, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Additionally, we present a novel classification of cortical areas of the cat according to the role they play in multisensory connectivity. All these properties represent an ideal anatomical substrate supporting rich dynamical behaviors, as-well-as facilitating the capacity of the brain to process sensory information of different modalities segregated and to integrate them towards a comprehensive perception of the real world. The result here exposed are mainly based in anatomical data of cats’ brain, but we show how further observations suggest that, from worms to humans, the nervous system of all animals might share fundamental principles of organization.

  10. Altered Network Oscillations and Functional Connectivity Dynamics in Children Born Very Preterm.

    Science.gov (United States)

    Moiseev, Alexander; Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Grunau, Ruth E

    2015-09-01

    Structural brain connections develop atypically in very preterm children, and altered functional connectivity is also evident in fMRI studies. Such alterations in brain network connectivity are associated with cognitive difficulties in this population. Little is known, however, about electrophysiological interactions among specific brain networks in children born very preterm. In the present study, we recorded magnetoencephalography while very preterm children and full-term controls performed a visual short-term memory task. Regions expressing task-dependent activity changes were identified using beamformer analysis, and inter-regional phase synchrony was calculated. Very preterm children expressed altered regional recruitment in distributed networks of brain areas, across standard physiological frequency ranges including the theta, alpha, beta and gamma bands. Reduced oscillatory synchrony was observed among task-activated brain regions in very preterm children, particularly for connections involving areas critical for executive abilities, including middle frontal gyrus. These findings suggest that inability to recruit neurophysiological activity and interactions in distributed networks including frontal regions may contribute to difficulties in cognitive development in children born very preterm.

  11. Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures.

    Directory of Open Access Journals (Sweden)

    Luping Zhou

    Full Text Available Owning to its clinical accessibility, T1-weighted MRI (Magnetic Resonance Imaging has been extensively studied in the past decades for prediction of Alzheimer's disease (AD and mild cognitive impairment (MCI. The volumes of gray matter (GM, white matter (WM and cerebrospinal fluid (CSF are the most commonly used measurements, resulting in many successful applications. It has been widely observed that disease-induced structural changes may not occur at isolated spots, but in several inter-related regions. Therefore, for better characterization of brain pathology, we propose in this paper a means to extract inter-regional correlation based features from local volumetric measurements. Specifically, our approach involves constructing an anatomical brain network for each subject, with each node representing a Region of Interest (ROI and each edge representing Pearson correlation of tissue volumetric measurements between ROI pairs. As second order volumetric measurements, network features are more descriptive but also more sensitive to noise. To overcome this limitation, a hierarchy of ROIs is used to suppress noise at different scales. Pairwise interactions are considered not only for ROIs with the same scale in the same layer of the hierarchy, but also for ROIs across different scales in different layers. To address the high dimensionality problem resulting from the large number of network features, a supervised dimensionality reduction method is further employed to embed a selected subset of features into a low dimensional feature space, while at the same time preserving discriminative information. We demonstrate with experimental results the efficacy of this embedding strategy in comparison with some other commonly used approaches. In addition, although the proposed method can be easily generalized to incorporate other metrics of regional similarities, the benefits of using Pearson correlation in our application are reinforced by the experimental

  12. Network, anatomical, and non-imaging measures for the prediction of ADHD diagnosis in individual subjects

    Directory of Open Access Journals (Sweden)

    Jason W Bohland

    2012-12-01

    Full Text Available Brain imaging methods have long held promise as diagnostic aids for neuropsychiatric conditions with complex behavioral phenotypes such as Attention-Deficit/Hyperactivity Disorder. This promise has largely been unrealized, at least partly due to the heterogeneity of clinical populations and the small sample size of many studies. A large, multi-center dataset provided by the ADHD-200 Consortium affords new opportunities to test methods for individual diagnosis based on MRI-observable structural brain attributes and functional interactions observable from resting state fMRI. In this study, we systematically calculated a large set of standard and new quantitative markers from individual subject datasets. These features (>12,000 per subject consisted of local anatomical attributes such as cortical thickness and structure volumes and both local and global resting state network measures. Three methods were used to compute graphs representing interdependencies between activations in different brain areas, and a full set of network features was derived from each. Of these, features derived from the inverse of the time series covariance matrix, under an L1-norm regularization penalty, proved most powerful. Anatomical and network feature sets were used individually, and combined with non-imaging phenotypic features from each subject. Machine learning algorithms were used to rank attributes, and performance was assessed under cross-validation and on a separate test set of 168 subjects for a variety of feature set combinations. While non-imaging features gave highest performance in cross-validation, the addition of imaging features in sufficient numbers led to improved generalization to new data. Stratification by gender also proved to be a fruitful strategy to improve classifier performance. We describe the overall approach used, compare the predictive power of different classes of features, and describe the most impactful features in relation to the

  13. Altered brain network integrity after childhood maltreatment: A structural connectomic DTI-study

    NARCIS (Netherlands)

    Puetz, V.B.; Parker, D.; Kohn, N.; Dahmen, B.; Verma, R.; Konrad, K.

    2017-01-01

    Childhood maltreatment is associated with alterations in neural architecture that potentially put these children at increased risk for psychopathology. Alterations in white matter (WM) tracts have been reported, however no study to date has investigated WM connectivity in brain networks in

  14. Altered network hub connectivity after acute LSD administration

    Directory of Open Access Journals (Sweden)

    Felix Müller

    Full Text Available LSD is an ambiguous substance, said to mimic psychosis and to improve mental health in people suffering from anxiety and depression. Little is known about the neuronal correlates of altered states of consciousness induced by this substance. Limited previous studies indicated profound changes in functional connectivity of resting state networks after the administration of LSD. The current investigation attempts to replicate and extend those findings in an independent sample. In a double-blind, randomized, cross-over study, 100 μg LSD and placebo were orally administered to 20 healthy participants. Resting state brain activity was assessed by functional magnetic resonance imaging. Within-network and between-network connectivity measures of ten established resting state networks were compared between drug conditions. Complementary analysis were conducted using resting state networks as sources in seed-to-voxel analyses. Acute LSD administration significantly decreased functional connectivity within visual, sensorimotor and auditory networks and the default mode network. While between-network connectivity was widely increased and all investigated networks were affected to some extent, seed-to-voxel analyses consistently indicated increased connectivity between networks and subcortical (thalamus, striatum and cortical (precuneus, anterior cingulate cortex hub structures. These latter observations are consistent with findings on the importance of hubs in psychopathological states, especially in psychosis, and could underlay therapeutic effects of hallucinogens as proposed by a recent model. Keywords: LSD, fMRI, Functional connectivity, Networks, Hubs

  15. Laryngeal spaces and lymphatics: current anatomic concepts

    International Nuclear Information System (INIS)

    Welsh, L.W.; Welsh, J.J.; Rizzo, T.A. Jr.

    1983-01-01

    This investigation evaluates the anatomic concepts of individual spaces or compartments within the larynx by isotope and dye diffusion. The authors identified continuity of spaces particularly within the submucosal planes and a relative isolation within the fixed structures resulting from the longitudinal pattern of fibroelastic tissues, muscle bands, and perichondrium. The historical data of anatomic resistance are refuted by the radioisotope patterns of dispersion and the histologic evidence of tissue permeability to the carbon particles. There is little clinical application of the compartment concept to the perimeter of growth and the configuration of extensive endolaryngeal cancers. The internal and extralaryngeal lymphatic network is presented and the regional associations are identified. The normal ipsilateral relationship is distorted by dispersion within the endolarynx supervening the anatomic midline. The effects of lymphatic obstruction caused by regional lymphadenectomy, tumor fixation, and irradiation-infection sequelae are illustrated; these result in widespread bilateral lymphatic nodal terminals. Finally, the evidence suggests that the internal network is modified by external interruption to accommodate an outflow system in continuity with the residual patent lymphatic channels

  16. Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes.

    Science.gov (United States)

    Hosseini, S M Hadi; Mazaika, Paul; Mauras, Nelly; Buckingham, Bruce; Weinzimer, Stuart A; Tsalikian, Eva; White, Neil H; Reiss, Allan L

    2016-11-01

    Type 1 diabetes mellitus (T1D), one of the most frequent chronic diseases in children, is associated with glucose dysregulation that contributes to an increased risk for neurocognitive deficits. While there is a bulk of evidence regarding neurocognitive deficits in adults with T1D, little is known about how early-onset T1D affects neural networks in young children. Recent data demonstrated widespread alterations in regional gray matter and white matter associated with T1D in young children. These widespread neuroanatomical changes might impact the organization of large-scale brain networks. In the present study, we applied graph-theoretical analysis to test whether the organization of structural covariance networks in the brain for a cohort of young children with T1D (N = 141) is altered compared to healthy controls (HC; N = 69). While the networks in both groups followed a small world organization-an architecture that is simultaneously highly segregated and integrated-the T1D network showed significantly longer path length compared with HC, suggesting reduced global integration of brain networks in young children with T1D. In addition, network robustness analysis revealed that the T1D network model showed more vulnerability to neural insult compared with HC. These results suggest that early-onset T1D negatively impacts the global organization of structural covariance networks and influences the trajectory of brain development in childhood. This is the first study to examine structural covariance networks in young children with T1D. Improving glycemic control for young children with T1D might help prevent alterations in brain networks in this population. Hum Brain Mapp 37:4034-4046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Altered brain network modules induce helplessness in major depressive disorder.

    Science.gov (United States)

    Peng, Daihui; Shi, Feng; Shen, Ting; Peng, Ziwen; Zhang, Chen; Liu, Xiaohua; Qiu, Meihui; Liu, Jun; Jiang, Kaida; Fang, Yiru; Shen, Dinggang

    2014-10-01

    The abnormal brain functional connectivity (FC) has been assumed to be a pathophysiological aspect of major depressive disorder (MDD). However, it is poorly understood, regarding the underlying patterns of global FC network and their relationships with the clinical characteristics of MDD. Resting-state functional magnetic resonance imaging data were acquired from 16 first episode, medication-naïve MDD patients and 16 healthy control subjects. The global FC network was constructed using 90 brain regions. The global topological patterns, e.g., small-worldness and modularity, and their relationships with depressive characteristics were investigated. Furthermore, the participant coefficient and module degree of MDD patients were measured to reflect the regional roles in module network, and the impairment of FC was examined by network based statistic. Small-world property was not altered in MDD. However, MDD patients exhibited 5 atypically reorganized modules compared to the controls. A positive relationship was also found among MDD patients between the intra-module I and helplessness factor evaluated via the Hamilton Depression Scale. Specifically, eight regions exhibited the abnormal participant coefficient or module degree, e.g., left superior orbital frontal cortex and right amygdala. The decreased FC was identified among the sub-network of 24 brain regions, e.g., frontal cortex, supplementary motor area, amygdala, thalamus, and hippocampus. The limited size of MDD samples precluded meaningful study of distinct clinical characteristics in relation to aberrant FC. The results revealed altered patterns of brain module network at the global level in MDD patients, which might contribute to the feelings of helplessness. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain

    Institute of Scientific and Technical Information of China (English)

    田允; 黄继云; 王锐; 陶蓉蓉; 卢应梅; 廖美华; 陆楠楠; 李静; 芦博; 韩峰

    2012-01-01

    Autism is a highly heritable neurodevelopmental condition characterized by impaired social interaction and communication. However, the role of synaptic dysfunction during development of autism remains unclear. In the present study, we address the alterations of biochemical signaling in hippocampal network following induction of the autism in experimental animals. Here, the an- imal disease model and DNA array being used to investigate the differences in transcriptome or- ganization between autistic and normal brain by gene co--expression network analysis.

  19. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy.

    Science.gov (United States)

    Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C; Rasskin-Gutman, Diego

    2015-01-01

    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues

  20. Intelligent IPv6 based iot network monitoring and altering system on ...

    African Journals Online (AJOL)

    Intelligent IPv6 based iot network monitoring and altering system on Cooja framework. ... Journal of Fundamental and Applied Sciences. Journal Home · ABOUT THIS ... Keywords: IoT; Cooja framework; Contiki OS; packet monitoring.

  1. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism.

    Science.gov (United States)

    Hou, Entai; Li, Xian; Liu, Zerong; Zhang, Fuchang; Tian, Zhongmin

    2018-04-01

    Fumarase catalyzes the interconversion of fumarate and l-malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased levels of fumarate, decreased levels of malate and exacerbated salt-induced hypertension. To gain insights into the metabolism profiles induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC-MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient human umbilical vein endothelial cells (HUVEC) and negative controls. A total of 24 altered metabolites involved in seven metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, l-malic acid, l-aspartic acid, glycine and l-glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. Alanine aminotransferase and glutamate dehydrogenase activities increased significantly in fumarase deficiency HUVEC. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Altered cortical hubs in functional brain networks in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ma, Xujing; Zhang, Jiuquan; Zhang, Youxue; Chen, Heng; Li, Rong; Wang, Jian; Chen, Huafu

    2015-11-01

    Cortical hubs are highly connected nodes in functional brain networks that play vital roles in the efficient transfer of information across brain regions. Although altered functional connectivity has been found in amyotrophic lateral sclerosis (ALS), the changing pattern in functional network hubs in ALS remains unknown. In this study, we applied a voxel-wise method to investigate the changing pattern of cortical hubs in ALS. Through resting-state fMRI, we constructed whole-brain voxel-wise functional networks by measuring the temporal correlations of each pair of brain voxels and identified hubs using the graph theory method. Specifically, a functional connectivity strength (FCS) map was derived from the data on 20 patients with ALS and 20 healthy controls. The brain regions with high FCS values were regarded as functional network hubs. Functional hubs were found mainly in the bilateral precuneus, parietal cortex, medial prefrontal cortex, and in several visual regions and temporal areas in both groups. Within the hub regions, the ALS patients exhibited higher FCS in the prefrontal cortex compared with the healthy controls. The FCS value in the significantly abnormal hub regions was correlated with clinical variables. Results indicated the presence of altered cortical hubs in the ALS patients and could therefore shed light on the pathophysiology mechanisms underlying ALS.

  3. Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction.

    Science.gov (United States)

    Eixarch, Elisenda; Muñoz-Moreno, Emma; Bargallo, Nuria; Batalle, Dafnis; Gratacos, Eduard

    2016-06-01

    Intrauterine growth restriction is associated with short- and long-term neurodevelopmental problems. Structural brain changes underlying these alterations have been described with the use of different magnetic resonance-based methods that include changes in whole structural brain networks. However, evaluation of specific brain circuits and its correlation with related functions has not been investigated in intrauterine growth restriction. In this study, we aimed to investigate differences in tractography-related metrics in cortico-striatal-thalamic and motor networks in intrauterine growth restricted children and whether these parameters were related with their specific function in order to explore its potential use as an imaging biomarker of altered neurodevelopment. We included a group of 24 intrauterine growth restriction subjects and 27 control subjects that were scanned at 1 year old; we acquired T1-weighted and 30 directions diffusion magnetic resonance images. Each subject brain was segmented in 93 regions with the use of anatomical automatic labeling atlas, and deterministic tractography was performed. Brain regions included in motor and cortico-striatal-thalamic networks were defined based in functional and anatomic criteria. Within the streamlines that resulted from the whole brain tractography, those belonging to each specific circuit were selected and tractography-related metrics that included number of streamlines, fractional anisotropy, and integrity were calculated for each network. We evaluated differences between both groups and further explored the correlation of these parameters with the results of socioemotional, cognitive, and motor scales from Bayley Scale at 2 years of age. Reduced fractional anisotropy (cortico-striatal-thalamic, 0.319 ± 0.018 vs 0.315 ± 0.015; P = .010; motor, 0.322 ± 0.019 vs 0.319 ± 0.020; P = .019) and integrity cortico-striatal-thalamic (0.407 ± 0.040 vs 0.399 ± 0.034; P = .018; motor, 0.417 ± 0.044 vs 0

  4. How has climate change altered network connectivity in a mountain stream network?

    Science.gov (United States)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.; Johnson, S.

    2017-12-01

    Connectivity along river networks is broadly recognized as dynamic, with seasonal and event-based expansion and contraction of the network extent. Intermittently flowing streams are particularly important as they define a crucial threshold for continuously connected waters that enable migration by aquatic species. In the Pacific northwestern U.S., changes in atmospheric circulation have been found to alter rainfall patterns and result in decreased summer low-flows in the region. However, the impact of this climate dynamic on network connectivity is heretofore unstudied. Thus, we ask: How has connectivity in the riparian corridor changed in response to observed changes in climate? In this study we take the well-studied H.J. Andrews Experimental Forest as representative of mountain river networks in the Pacific northwestern U.S. First, we analyze 63 years of stream gauge information from a network of 11 gauges to document observed changes in timing and magnitude of stream discharge. We found declining magnitudes of seasonal low-flows and shifting seasonality of water export from the catchment, both of which we attribute to changes in precipitation timing and storage as snow vs. rainfall. Next, we use these discharge data to drive a reduced-complexity model of the river network to simulate network connectivity over 63 years. Model results show that network contraction (i.e., minimum network extent) has decreased over the past 63 years. Unexpectedly, the increasing winter peak flows did not correspond with increasing network expansion, suggesting a geologic control on maximum flowing network extent. We find dynamic expansion and contraction of the network primarily occurs during period of catchment discharge less than about 1 m3/s at the outlet, whereas the network extent is generally constant for discharges from 1 to 300 m3/s. Results of our study are of interest to scientists focused on connectivity as a control on ecological processes both directly (e.g., fish

  5. Dysregulation of Pain- and Emotion-Related Networks in Trigeminal Neuralgia

    Directory of Open Access Journals (Sweden)

    Yanyang Zhang

    2018-03-01

    Full Text Available Classical trigeminal neuralgia (TN is a severe neuropathic facial pain disorder associated with increased risks of anxiety and depression. Converging evidence suggests that chronic pain pathophysiology involves dysfunctional pain-related and emotion-related networks. However, whether these systems are also among the culprit networks for TN remains unclear. Here, we aimed to assess TN-related anatomical and functional brain anomalies in pain-related and emotion-related networks. We investigated differences in gray matter (GM volume and the related resting-state functional connectivity (rsFC between 29 classical TN patients and 34 matched healthy controls. Relationships between brain measurement alterations, clinical pain and emotional states were identified. A longitudinal observation was further conducted to determine whether alterations in the brain could renormalize following pain relief. Reduced GM volumes in the bilateral amygdala, periaqueductal gray (PAG and right insula were found in TN patients compared with healthy control subjects. Whole-brain rsFC analyses with the four above-mentioned anatomical regions as seeds identified three significantly altered functional circuits, including amygdala-DLPFC, amygdala-mPFC and amygdala-thalamus/putamen circuitry. The amygdala-DLPFC and amygdala-mPFC circuits were associated with clinical pain duration and emotional state ratings, respectively. Further longitudinal analysis found that rsFC strength abnormalities in two fronto-limbic circuits (left amygdala/left DLPFC and right amygdala/right PFC were resolved after pain relief. Together, structural and functional deficits in pain-related and emotion-related networks were associated with TN patients, as demonstrated by our multimodal results. Pain relief had protective effects on brain functional connectivity within fronto-limbic circuits. Our study provides novel insights into the pathophysiology of TN, which may ultimately facilitate advances in

  6. Connectomics and neuroticism: an altered functional network organization.

    Science.gov (United States)

    Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard C; Ormel, Johan; Riese, Harriëtte; Aleman, André

    2015-01-01

    The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network organization in neuroticism. To this end, we applied graph theory on resting-state functional magnetic resonance imaging (fMRI) data in 120 women selected based on their neuroticism score. Binary and weighted brain-wide graphs were constructed to examine changes in the functional network structure and functional connectivity strength. Furthermore, graphs were partitioned into modules to specifically investigate connectivity within and between functional subnetworks related to emotion processing and cognitive control. Subsequently, complex network measures (ie, efficiency and modularity) were calculated on the brain-wide graphs and modules, and correlated with neuroticism scores. Compared with low neurotic individuals, high neurotic individuals exhibited a whole-brain network structure resembling more that of a random network and had overall weaker functional connections. Furthermore, in these high neurotic individuals, functional subnetworks could be delineated less clearly and the majority of these subnetworks showed lower efficiency, while the affective subnetwork showed higher efficiency. In addition, the cingulo-operculum subnetwork demonstrated more ties with other functional subnetworks in association with neuroticism. In conclusion, the 'neurotic brain' has a less than optimal functional network organization and shows signs of functional disconnectivity. Moreover, in high compared with low neurotic individuals, emotion and salience subnetworks have a more prominent role in the information exchange, while sensory(-motor) and cognitive control subnetworks have a less prominent role.

  7. White matter integrity in brain networks relevant to anxiety and depression: evidence from the human connectome project dataset.

    Science.gov (United States)

    De Witte, Nele A J; Mueller, Sven C

    2017-12-01

    Anxiety and depression are associated with altered communication within global brain networks and between these networks and the amygdala. Functional connectivity studies demonstrate an effect of anxiety and depression on four critical brain networks involved in top-down attentional control (fronto-parietal network; FPN), salience detection and error monitoring (cingulo-opercular network; CON), bottom-up stimulus-driven attention (ventral attention network; VAN), and default mode (default mode network; DMN). However, structural evidence on the white matter (WM) connections within these networks and between these networks and the amygdala is lacking. The current study in a large healthy sample (n = 483) observed that higher trait anxiety-depression predicted lower WM integrity in the connections between amygdala and specific regions of the FPN, CON, VAN, and DMN. We discuss the possible consequences of these anatomical alterations for cognitive-affective functioning and underscore the need for further theory-driven research on individual differences in anxiety and depression on brain structure.

  8. [The alteration of Japanese anatomical terminology in the early Showa period and the Japanese language reform campaign].

    Science.gov (United States)

    Sawai, Tadashi; Sakai, Tatsuo

    2010-03-01

    In the second decade of the Showa period, great changes were made in the Japanese anatomical terms. It has been proposed that the presentation of JNA (Jenaer nomina anatomica) was one of the factors leading to the change. The Japanese language reform campaign, however, played an important role. The party kokugoaigo doumei and its successor kokugo kyokai required concise and unified technical terms. The anatomical nomenclature committee of the Japanese Association of Anatomists worked to satisfy this requirement. The committee consulted with nomenclature committees of other medical associations and took account of their opinions. The anatomical nomenclature committee abandoned the literal translation from Latin to Japanese and shaped a succinct Japanese terminology. Modern Japanese anatomical terms are based on this terminology.

  9. Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM.

    Science.gov (United States)

    Li, Wan; Yang, Chunlan; Shi, Feng; Wang, Qun; Wu, Shuicai; Lu, Wangsheng; Li, Shaowu; Nie, Yingnan; Zhang, Xin

    2018-04-16

    Normal aging has been linked with the decline of cognitive functions, such as memory and executive skills. One of the prominent approaches to investigate the age-related alterations in the brain is by examining the cortical brain connectome. IBASPM is a toolkit to realize individual atlas-based volume measurement. Hence, this study seeks to determine what further alterations can be revealed by cortical brain networks formed by IBASPM-extracted regional gray matter volumes. We found the reduced strength of connections between the superior temporal pole and middle temporal pole in the right hemisphere, global hubs as the left fusiform gyrus and right Rolandic operculum in the young and aging groups, respectively, and significantly reduced inter-module connection of one module in the aging group. These new findings are consistent with the phenomenon of normal aging mentioned in previous studies and suggest that brain network built with the IBASPM could provide supplementary information to some extent. The individualization of morphometric features extraction deserved to be given more attention in future cortical brain network research.

  10. Anatomical differences in the mirror neuron system and social cognition network in autism.

    Science.gov (United States)

    Hadjikhani, Nouchine; Joseph, Robert M; Snyder, Josh; Tager-Flusberg, Helen

    2006-09-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with impaired social and emotional skills, the anatomical substrate of which is still unknown. In this study, we compared a group of 14 high-functioning ASD adults with a group of controls matched for sex, age, intelligence quotient, and handedness. We used an automated technique of analysis that accurately measures the thickness of the cerebral cortex and generates cross-subject statistics in a coordinate system based on cortical anatomy. We found local decreases of gray matter in the ASD group in areas belonging to the mirror neuron system (MNS), argued to be the basis of empathic behavior. Cortical thinning of the MNS was correlated with ASD symptom severity. Cortical thinning was also observed in areas involved in emotion recognition and social cognition. These findings suggest that the social and emotional deficits characteristic of autism may reflect abnormal thinning of the MNS and the broader network of cortical areas subserving social cognition.

  11. Exploring patterns of alteration in Alzheimer’s disease brain networks: a combined structural and functional connectomics analysis

    Directory of Open Access Journals (Sweden)

    Fulvia Palesi

    2016-09-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder characterized by a severe derangement of cognitive functions, primarily memory, in elderly subjects. As far as the functional impairment is concerned, growing evidence supports the disconnection syndrome hypothesis. Recent investigations using fMRI have revealed a generalized alteration of resting state networks in patients affected by AD and mild cognitive impairment (MCI. However, it was unclear whether the changes in functional connectivity were accompanied by corresponding structural network changes. In this work, we have developed a novel structural/functional connectomic approach: resting state fMRI was used to identify the functional cortical network nodes and diffusion MRI to reconstruct the fiber tracts to give a weight to internodal subcortical connections. Then, local and global efficiency were determined for different networks, exploring specific alterations of integration and segregation patterns in AD and MCI patients compared to healthy controls (HC. In the default mode network (DMN, that was the most affected, axonal loss and reduced axonal integrity appeared to compromise both local and global efficiency along posterior-anterior connections. In the basal ganglia network (BGN, disruption of white matter integrity implied that main alterations occurred in local microstructure. In the anterior insular network (AIN, neuronal loss probably subtended a compromised communication with the insular cortex. Cognitive performance, evaluated by neuropsychological examinations, revealed a dependency on integration and segregation of brain networks. These findings are indicative of the fact that cognitive deficits in AD could be associated not only with cortical alterations (revealed by fMRI but also with subcortical alterations (revealed by diffusion MRI that extend beyond the areas primarily damaged by neurodegeneration, towards the support of an emerging concept of AD as a

  12. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits.

    Science.gov (United States)

    Paulesu, Eraldo; Shallice, Tim; Danelli, Laura; Sberna, Maurizio; Frackowiak, Richard S J; Frith, Chris D

    2017-01-01

    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H 2 15 O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of

  13. Altered small-world properties of gray matter networks in breast cancer

    Directory of Open Access Journals (Sweden)

    Hosseini S M

    2012-05-01

    Full Text Available Abstract Background Breast cancer survivors, particularly those treated with chemotherapy, are at significantly increased risk for long-term cognitive and neurobiologic impairments. These deficits tend to involve skills that are subserved by distributed brain networks. Additionally, neuroimaging studies have shown a diffuse pattern of brain structure changes in chemotherapy-treated breast cancer survivors that might impact large-scale brain networks. Methods We therefore applied graph theoretical analysis to compare the gray matter structural networks of female breast cancer survivors with a history of chemotherapy treatment and healthy age and education matched female controls. Results Results revealed reduced clustering coefficient and small-world index in the brain network of the breast cancer patients across a range of network densities. In addition, the network of the breast cancer group had less highly interactive nodes and reduced degree/centrality in the frontotemporal regions compared to controls, which may help explain the common impairments of memory and executive functioning among these patients. Conclusions These results suggest that breast cancer and chemotherapy may decrease regional connectivity as well as global network organization and integration, reducing efficiency of the network. To our knowledge, this is the first report of altered large-scale brain networks associated with breast cancer and chemotherapy.

  14. The clinical importance of the anatomic variations in the paranasal sinuses

    International Nuclear Information System (INIS)

    Teixeira Junior, Francisco Ribeiro; Bretas, Elisa Almeida Sathler; Madeira, Ivana Andrade; Diniz, Renata Furletti; Ribeiro, Marcelo Almeida; Motta, Emilia Guerra Pinto Coelho; Moreira, Wanderval

    2008-01-01

    The anatomic variations of the paranasal sinuses are common findings. The importance of such variations predisposing disease through the obstruction of the drainage pathway has been discussed by several authors, although it is not yet a matter of agreement. The literature was reviewed and a iconographic assay was prepared aiming the discussion of the importance of the main anatomic variations of the paranasal sinuses. The prevalence of anatomic variations of the paranasal sinuses varies largely amongst studies and its role in sinus disease is controversial. In this article, it is described the different variations associated to paranasal disease and how they relate to pathologic conditions. Most studies confirm the concept that anatomic variations of the paranasal sinuses are related to disease when they obstruct the drainage pathways. The knowledge of such alterations and its relations to pathologic conditions is expected from the general radiologist. (author)

  15. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model.

    Science.gov (United States)

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V, Oliver C

    2015-01-01

    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov-Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities.

  16. Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks

    Science.gov (United States)

    Trépanier, Sylvain; Mathieu, Lucie; Daigneault, Réal; Faure, Stéphane

    2016-04-01

    This study proposes an artificial neural networks-based method for predicting the unaltered (precursor) chemical compositions of hydrothermally altered volcanic rock. The method aims at predicting precursor's major components contents (SiO2, FeOT, MgO, CaO, Na2O, and K2O). The prediction is based on ratios of elements generally immobile during alteration processes; i.e. Zr, TiO2, Al2O3, Y, Nb, Th, and Cr, which are provided as inputs to the neural networks. Multi-layer perceptron neural networks were trained on a large dataset of least-altered volcanic rock samples that document a wide range of volcanic rock types, tectonic settings and ages. The precursors thus predicted are then used to perform mass balance calculations. Various statistics were calculated to validate the predictions of precursors' major components, which indicate that, overall, the predictions are precise and accurate. For example, rank-based correlation coefficients were calculated to compare predicted and analysed values from a least-altered test dataset that had not been used to train the networks. Coefficients over 0.87 were obtained for all components, except for Na2O (0.77), indicating that predictions for alkali might be less performant. Also, predictions are performant for most volcanic rock compositions, except for ultra-K rocks. The proposed method provides an easy and rapid solution to the often difficult task of determining appropriate volcanic precursor compositions to rocks modified by hydrothermal alteration. It is intended for large volcanic rock databases and is most useful, for example, to mineral exploration performed in complex or poorly known volcanic settings. The method is implemented as a simple C++ console program.

  17. Impaired small-world network efficiency and dynamic functional distribution in patients with cirrhosis.

    Directory of Open Access Journals (Sweden)

    Tun-Wei Hsu

    Full Text Available Hepatic encephalopathy (HE is a complex neuropsychiatric syndrome and a major complication of liver cirrhosis. Dysmetabolism of the brain, related to elevated ammonia levels, interferes with intercortical connectivity and cognitive function. For evaluation of network efficiency, a 'small-world' network model can quantify the effectiveness of information transfer within brain networks. This study aimed to use small-world topology to investigate abnormalities of neuronal connectivity among widely distributed brain regions in patients with liver cirrhosis using resting-state functional magnetic resonance imaging (rs-fMRI. Seventeen cirrhotic patients without HE, 9 with minimal HE, 9 with overt HE, and 35 healthy controls were compared. The interregional correlation matrix was obtained by averaging the rs-fMRI time series over all voxels in each of the 90 regions using the automated anatomical labeling model. Cost and correlation threshold values were then applied to construct the functional brain network. The absolute and relative network efficiencies were calculated; quantifying distinct aspects of the local and global topological network organization. Correlations between network topology parameters, ammonia levels, and the severity of HE were determined using linear regression and ANOVA. The local and global topological efficiencies of the functional connectivity network were significantly disrupted in HE patients; showing abnormal small-world properties. Alterations in regional characteristics, including nodal efficiency and nodal strength, occurred predominantly in the association, primary, and limbic/paralimbic regions. The degree of network organization disruption depended on the severity of HE. Ammonia levels were also significantly associated with the alterations in local network properties. Results indicated that alterations in the rs-fMRI network topology of the brain were associated with HE grade; and that focal or diffuse lesions

  18. Bayesian network analysis reveals alterations to default mode network connectivity in individuals at risk for Alzheimer's disease.

    Science.gov (United States)

    Li, Rui; Yu, Jing; Zhang, Shouzi; Bao, Feng; Wang, Pengyun; Huang, Xin; Li, Juan

    2013-01-01

    Alzheimer's disease (AD) is associated with abnormal functioning of the default mode network (DMN). Functional connectivity (FC) changes to the DMN have been found in patients with amnestic mild cognitive impairment (aMCI), which is the prodromal stage of AD. However, whether or not aMCI also alters the effective connectivity (EC) of the DMN remains unknown. We employed a combined group independent component analysis (ICA) and Bayesian network (BN) learning approach to resting-state functional MRI (fMRI) data from 17 aMCI patients and 17 controls, in order to establish the EC pattern of DMN, and to evaluate changes occurring in aMCI. BN analysis demonstrated heterogeneous regional convergence degree across DMN regions, which were organized into two closely interacting subsystems. Compared to controls, the aMCI group showed altered directed connectivity weights between DMN regions in the fronto-parietal, temporo-frontal, and temporo-parietal pathways. The aMCI group also exhibited altered regional convergence degree in the right inferior parietal lobule. Moreover, we found EC changes in DMN regions in aMCI were correlated with regional FC levels, and the connectivity metrics were associated with patients' cognitive performance. This study provides novel sights into our understanding of the functional architecture of the DMN and adds to a growing body of work demonstrating the importance of the DMN as a mechanism of aMCI.

  19. Altered intrinsic connectivity of the auditory cortex in congenital amusia.

    Science.gov (United States)

    Leveque, Yohana; Fauvel, Baptiste; Groussard, Mathilde; Caclin, Anne; Albouy, Philippe; Platel, Hervé; Tillmann, Barbara

    2016-07-01

    Congenital amusia, a neurodevelopmental disorder of music perception and production, has been associated with abnormal anatomical and functional connectivity in a right frontotemporal pathway. To investigate whether spontaneous connectivity in brain networks involving the auditory cortex is altered in the amusic brain, we ran a seed-based connectivity analysis, contrasting at-rest functional MRI data of amusic and matched control participants. Our results reveal reduced frontotemporal connectivity in amusia during resting state, as well as an overconnectivity between the auditory cortex and the default mode network (DMN). The findings suggest that the auditory cortex is intrinsically more engaged toward internal processes and less available to external stimuli in amusics compared with controls. Beyond amusia, our findings provide new evidence for the link between cognitive deficits in pathology and abnormalities in the connectivity between sensory areas and the DMN at rest. Copyright © 2016 the American Physiological Society.

  20. Action Video Game Experience Related to Altered Large-Scale White Matter Networks.

    Science.gov (United States)

    Gong, Diankun; Ma, Weiyi; Gong, Jinnan; He, Hui; Dong, Li; Zhang, Dan; Li, Jianfu; Luo, Cheng; Yao, Dezhong

    2017-01-01

    With action video games (AVGs) becoming increasingly popular worldwide, the cognitive benefits of AVG experience have attracted continuous research attention over the past two decades. Research has repeatedly shown that AVG experience can causally enhance cognitive ability and is related to neural plasticity in gray matter and functional networks in the brain. However, the relation between AVG experience and the plasticity of white matter (WM) network still remains unclear. WM network modulates the distribution of action potentials, coordinating the communication between brain regions and acting as the framework of neural networks. And various types of cognitive deficits are usually accompanied by impairments of WM networks. Thus, understanding this relation is essential in assessing the influence of AVG experience on neural plasticity and using AVG experience as an interventional tool for impairments of WM networks. Using graph theory, this study analyzed WM networks in AVG experts and amateurs. Results showed that AVG experience is related to altered WM networks in prefrontal networks, limbic system, and sensorimotor networks, which are related to cognitive control and sensorimotor functions. These results shed new light on the influence of AVG experience on the plasticity of WM networks and suggested the clinical applicability of AVG experience.

  1. Action Video Game Experience Related to Altered Large-Scale White Matter Networks

    Directory of Open Access Journals (Sweden)

    Diankun Gong

    2017-01-01

    Full Text Available With action video games (AVGs becoming increasingly popular worldwide, the cognitive benefits of AVG experience have attracted continuous research attention over the past two decades. Research has repeatedly shown that AVG experience can causally enhance cognitive ability and is related to neural plasticity in gray matter and functional networks in the brain. However, the relation between AVG experience and the plasticity of white matter (WM network still remains unclear. WM network modulates the distribution of action potentials, coordinating the communication between brain regions and acting as the framework of neural networks. And various types of cognitive deficits are usually accompanied by impairments of WM networks. Thus, understanding this relation is essential in assessing the influence of AVG experience on neural plasticity and using AVG experience as an interventional tool for impairments of WM networks. Using graph theory, this study analyzed WM networks in AVG experts and amateurs. Results showed that AVG experience is related to altered WM networks in prefrontal networks, limbic system, and sensorimotor networks, which are related to cognitive control and sensorimotor functions. These results shed new light on the influence of AVG experience on the plasticity of WM networks and suggested the clinical applicability of AVG experience.

  2. An extensive assessment of network alignment algorithms for comparison of brain connectomes.

    Science.gov (United States)

    Milano, Marianna; Guzzi, Pietro Hiram; Tymofieva, Olga; Xu, Duan; Hess, Christofer; Veltri, Pierangelo; Cannataro, Mario

    2017-06-06

    Recently the study of the complex system of connections in neural systems, i.e. the connectome, has gained a central role in neurosciences. The modeling and analysis of connectomes are therefore a growing area. Here we focus on the representation of connectomes by using graph theory formalisms. Macroscopic human brain connectomes are usually derived from neuroimages; the analyzed brains are co-registered in the image domain and brought to a common anatomical space. An atlas is then applied in order to define anatomically meaningful regions that will serve as the nodes of the network - this process is referred to as parcellation. The atlas-based parcellations present some known limitations in cases of early brain development and abnormal anatomy. Consequently, it has been recently proposed to perform atlas-free random brain parcellation into nodes and align brains in the network space instead of the anatomical image space, as a way to deal with the unknown correspondences of the parcels. Such process requires modeling of the brain using graph theory and the subsequent comparison of the structure of graphs. The latter step may be modeled as a network alignment (NA) problem. In this work, we first define the problem formally, then we test six existing state of the art of network aligners on diffusion MRI-derived brain networks. We compare the performances of algorithms by assessing six topological measures. We also evaluated the robustness of algorithms to alterations of the dataset. The results confirm that NA algorithms may be applied in cases of atlas-free parcellation for a fully network-driven comparison of connectomes. The analysis shows MAGNA++ is the best global alignment algorithm. The paper presented a new analysis methodology that uses network alignment for validating atlas-free parcellation brain connectomes. The methodology has been experimented on several brain datasets.

  3. Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis.

    Science.gov (United States)

    Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John A; Lui, Su

    2018-03-01

    Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN

  4. Different alterations in brain functional networks according to direct and indirect topological connections in patients with schizophrenia.

    Science.gov (United States)

    Park, Chang-Hyun; Lee, Seungyup; Kim, Taewon; Won, Wang Yeon; Lee, Kyoung-Uk

    2017-10-01

    Schizophrenia displays connectivity deficits in the brain, but the literature has shown inconsistent findings about alterations in global efficiency of brain functional networks. We supposed that such inconsistency at the whole brain level may be due to a mixture of different portions of global efficiency at sub-brain levels. Accordingly, we considered measuring portions of global efficiency in two aspects: spatial portions by considering sub-brain networks and topological portions by considering contributions to global efficiency according to direct and indirect topological connections. We proposed adjacency and indirect adjacency as new network parameters attributable to direct and indirect topological connections, respectively, and applied them to graph-theoretical analysis of brain functional networks constructed from resting state fMRI data of 22 patients with schizophrenia and 22 healthy controls. Group differences in the network parameters were observed not for whole brain and hemispheric networks, but for regional networks. Alterations in adjacency and indirect adjacency were in opposite directions, such that adjacency increased, but indirect adjacency decreased in patients with schizophrenia. Furthermore, over connections in frontal and parietal regions, increased adjacency was associated with more severe negative symptoms, while decreased adjacency was associated with more severe positive symptoms of schizophrenia. This finding indicates that connectivity deficits associated with positive and negative symptoms of schizophrenia may involve topologically different paths in the brain. In patients with schizophrenia, although changes in global efficiency may not be clearly shown, different alterations in brain functional networks according to direct and indirect topological connections could be revealed at the regional level. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Altered default mode network activity in patient with anxiety disorders: An fMRI study

    International Nuclear Information System (INIS)

    Zhao Xiaohu; Wang Peijun; Li Chunbo; Hu Zhenghui; Xi Qian; Wu Wenyuan; Tang Xiaowei

    2007-01-01

    Anxiety disorder, a common mental disorder in our clinical practice, is characterized by unprovoked anxiety. Medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC), which closely involved in emotional processing, are critical regions in the default mode network. We used functional magnetic resonance imaging (fMRI) to investigate whether default mode network activity is altered in patients with anxiety disorder. Ten anxiety patients and 10 healthy controls underwent fMRI while listening to emotionally neutral words alternating with rest (Experiment 1) and threat-related words alternating with emotionally neutral words (Experiment 2). In Experiment 1, regions of deactivation were observed in patients and controls. In Experiment 2, regions of deactivation were observed only in patients. The observed deactivation patterns in the two experiments, which included MPFC, PCC, and inferior parietal cortex, were similar and consistent with the default model network. Less deactivation in MPFC and greater deactivation in PCC were observed for patients group comparing to controls in Experiment 1. Our observations suggest that the default model network is altered in anxiety patients and dysfunction in MPFC and PCC may play an important role in anxiety psychopathology

  6. Brain anatomy alterations associated with Social Networking Site (SNS) addiction

    OpenAIRE

    He, Qinghua; Turel, Ofir; Bechara, Antoine

    2017-01-01

    This study relies on knowledge regarding the neuroplasticity of dual-system components that govern addiction and excessive behavior and suggests that alterations in the grey matter volumes, i.e., brain morphology, of specific regions of interest are associated with technology-related addictions. Using voxel based morphometry (VBM) applied to structural Magnetic Resonance Imaging (MRI) scans of twenty social network site (SNS) users with varying degrees of SNS addiction, we show that SNS addic...

  7. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits

    Directory of Open Access Journals (Sweden)

    Eraldo Paulesu

    2017-05-01

    Full Text Available Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971, a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H215O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain

  8. Anatomical and functional brain imaging in adult attention-deficit/hyperactivity disorder (ADHD)--a neurological view.

    Science.gov (United States)

    Schneider, Marc; Retz, Wolfgang; Coogan, Andrew; Thome, Johannes; Rösler, Michael

    2006-09-01

    In this review, we discuss current structural and functional imaging data on ADHD in a neurological and neuroanatomical framework. At present, the literature on adult ADHD is somewhat sparse, and so results from imaging have to therefore be considered mainly from the childhood or adolescence perspective. Most work has considered the impairment of executive functions (motor execution, inhibition, working memory), and as such a number of attention networks and their anatomical correlates are discussed in this review (e.g. the cerebello-(thalamo-)-striato-cortical network seems to play a pivotal role in ADHD pathology from childhood to adulthood). The core findings in ADHD imaging are alterations in the architecture and function of prefrontal cortex and cerebellum. The dorsal part of anterior cingulated cortex (dACC) is an important region for decision making, and executive control is impaired in adult ADHD. Finally, dysfunction of basal ganglia is a consistent finding in childhood and adulthood ADHD, reflecting dysregulation of fronto-striatal circuitry. The cerebellum, and its role in affect and cognition, is also persistently implicated in the pathology of ADHD.

  9. Altered temporal features of intrinsic connectivity networks in boys with combined type of attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Wang, Xun-Heng; Li, Lihua

    2015-01-01

    Highlights: • Temporal patterns within ICNs provide new way to investigate ADHD brains. • ADHD exhibits enhanced temporal activities within and between ICNs. • Network-wise ALFF influences functional connectivity between ICNs. • Univariate patterns within ICNs are correlated to behavior scores. - Abstract: Purpose: Investigating the altered temporal features within and between intrinsic connectivity networks (ICNs) for boys with attention-deficit/hyperactivity disorder (ADHD); and analyzing the relationships between altered temporal features within ICNs and behavior scores. Materials and methods: A cohort of boys with combined type of ADHD and a cohort of age-matched healthy boys were recruited from ADHD-200 Consortium. All resting-state fMRI datasets were preprocessed and normalized into standard brain space. Using general linear regression, 20 ICNs were taken as spatial templates to analyze the time-courses of ICNs for each subject. Amplitude of low frequency fluctuations (ALFFs) were computed as univariate temporal features within ICNs. Pearson correlation coefficients and node strengths were computed as bivariate temporal features between ICNs. Additional correlation analysis was performed between temporal features of ICNs and behavior scores. Results: ADHD exhibited more activated network-wise ALFF than normal controls in attention and default mode-related network. Enhanced functional connectivities between ICNs were found in ADHD. The network-wise ALFF within ICNs might influence the functional connectivity between ICNs. The temporal pattern within posterior default mode network (pDMN) was positively correlated to inattentive scores. The subcortical network, fusiform-related DMN and attention-related networks were negatively correlated to Intelligence Quotient (IQ) scores. Conclusion: The temporal low frequency oscillations of ICNs in boys with ADHD were more activated than normal controls during resting state; the temporal features within ICNs could

  10. Altered temporal features of intrinsic connectivity networks in boys with combined type of attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xun-Heng, E-mail: xhwang@hdu.edu.cn [College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Li, Lihua [College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-05-15

    Highlights: • Temporal patterns within ICNs provide new way to investigate ADHD brains. • ADHD exhibits enhanced temporal activities within and between ICNs. • Network-wise ALFF influences functional connectivity between ICNs. • Univariate patterns within ICNs are correlated to behavior scores. - Abstract: Purpose: Investigating the altered temporal features within and between intrinsic connectivity networks (ICNs) for boys with attention-deficit/hyperactivity disorder (ADHD); and analyzing the relationships between altered temporal features within ICNs and behavior scores. Materials and methods: A cohort of boys with combined type of ADHD and a cohort of age-matched healthy boys were recruited from ADHD-200 Consortium. All resting-state fMRI datasets were preprocessed and normalized into standard brain space. Using general linear regression, 20 ICNs were taken as spatial templates to analyze the time-courses of ICNs for each subject. Amplitude of low frequency fluctuations (ALFFs) were computed as univariate temporal features within ICNs. Pearson correlation coefficients and node strengths were computed as bivariate temporal features between ICNs. Additional correlation analysis was performed between temporal features of ICNs and behavior scores. Results: ADHD exhibited more activated network-wise ALFF than normal controls in attention and default mode-related network. Enhanced functional connectivities between ICNs were found in ADHD. The network-wise ALFF within ICNs might influence the functional connectivity between ICNs. The temporal pattern within posterior default mode network (pDMN) was positively correlated to inattentive scores. The subcortical network, fusiform-related DMN and attention-related networks were negatively correlated to Intelligence Quotient (IQ) scores. Conclusion: The temporal low frequency oscillations of ICNs in boys with ADHD were more activated than normal controls during resting state; the temporal features within ICNs could

  11. Long-duration transcutaneous electric acupoint stimulation alters small-world brain functional networks.

    Science.gov (United States)

    Zhang, Yue; Jiang, Yin; Glielmi, Christopher B; Li, Longchuan; Hu, Xiaoping; Wang, Xiaoying; Han, Jisheng; Zhang, Jue; Cui, Cailian; Fang, Jing

    2013-09-01

    Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    Science.gov (United States)

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  13. Alcohol Dependence and Altered Engagement of Neural Networks in Risky Decisions

    Directory of Open Access Journals (Sweden)

    Xi eZhu

    2016-03-01

    Full Text Available Alcohol dependence is associated with heightened risk tolerance and altered decision- making. This raises the question as to whether alcohol dependent patients (ADP are incapable of proper risk assessment. We investigated how healthy controls (HC and ADP engage neural networks to cope with the increased cognitive demands of risky decisions. We collected fMRI data while 34 HC and 16 ADP played a game that included safe and risky trials. In safe trials, participants accrued money at no risk of a penalty. In risky trials, reward and risk simultaneously increased as participants were instructed to decide when to stop a reward accrual period. If the participant failed to stop before an undisclosed time, the trial would bust and participants would not earn the money from that trial. Independent Component Analysis was used to identify networks engaged during the anticipation and the decision execution of risky compared with safe trials. Like HC, ADP demonstrated distinct network engagement for safe and risky trials at anticipation. However, at decision execution, ADP exhibited severely reduced discrimination in network engagement between safe and risky trials. Although ADP behaviorally responded to risk they failed to appropriately modify network engagement as the decision continued, leading ADP to assume similar network engagement regardless of risk prospects. This may reflect disorganized network switching and a facile response strategy uniformly adopted by ADP across risk conditions. We propose that aberrant salience network (SN engagement in ADP might contribute to ineffective network switching and that the role of the SN in risky decisions warrants further investigation.

  14. Disrupted topological organization of brain structural network associated with prior overt hepatic encephalopathy in cirrhotic patients

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Jun [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); The First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing (China); Shi, Hai-Bin [The First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing (China); Jiang, Long-Feng [The First Affiliated Hospital of Nanjing Medical University, Department of Infectious Diseases, Nanjing (China); Li, Lan [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); Chen, Rong [University of Maryland School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Baltimore, MD (United States); Beijing Institute of Technology, Advanced Innovation Center for Intelligent Robots and Systems, Beijing (China)

    2018-01-15

    To investigate structural brain connectome alterations in cirrhotic patients with prior overt hepatic encephalopathy (OHE). Seventeen cirrhotic patients with prior OHE (prior-OHE), 18 cirrhotic patients without prior OHE (non-prior-OHE) and 18 healthy controls (HC) underwent diffusion tensor imaging. Neurocognitive functioning was assessed with Psychometric Hepatic Encephalopathy Score (PHES). Using a probabilistic fibre tracking approach, we depicted the whole-brain structural network as a connectivity matrix of 90 regions (derived from the Automated Anatomic Labeling atlas). Graph theory-based analyses were performed to analyse topological properties of the brain network. The analysis of variance showed significant group effects on several topological properties, including network strength, global efficiency and local efficiency. A progressive decrease trend for these metrics was found from non-prior-OHE to prior-OHE, compared with HC. Among the three groups, the regions with altered nodal efficiency were mainly distributed in the frontal and occipital cortices, paralimbic system and subcortical regions. The topological metrics, such as network strength and global efficiency, were correlated with PHES among cirrhotic patients. The cirrhotic patients developed structural brain connectome alterations; this is aggravated by prior OHE episode. Disrupted topological organization of the brain structural network may account for cognitive impairments related to prior OHE. (orig.)

  15. Disrupted topological organization of brain structural network associated with prior overt hepatic encephalopathy in cirrhotic patients

    International Nuclear Information System (INIS)

    Chen, Hua-Jun; Shi, Hai-Bin; Jiang, Long-Feng; Li, Lan; Chen, Rong

    2018-01-01

    To investigate structural brain connectome alterations in cirrhotic patients with prior overt hepatic encephalopathy (OHE). Seventeen cirrhotic patients with prior OHE (prior-OHE), 18 cirrhotic patients without prior OHE (non-prior-OHE) and 18 healthy controls (HC) underwent diffusion tensor imaging. Neurocognitive functioning was assessed with Psychometric Hepatic Encephalopathy Score (PHES). Using a probabilistic fibre tracking approach, we depicted the whole-brain structural network as a connectivity matrix of 90 regions (derived from the Automated Anatomic Labeling atlas). Graph theory-based analyses were performed to analyse topological properties of the brain network. The analysis of variance showed significant group effects on several topological properties, including network strength, global efficiency and local efficiency. A progressive decrease trend for these metrics was found from non-prior-OHE to prior-OHE, compared with HC. Among the three groups, the regions with altered nodal efficiency were mainly distributed in the frontal and occipital cortices, paralimbic system and subcortical regions. The topological metrics, such as network strength and global efficiency, were correlated with PHES among cirrhotic patients. The cirrhotic patients developed structural brain connectome alterations; this is aggravated by prior OHE episode. Disrupted topological organization of the brain structural network may account for cognitive impairments related to prior OHE. (orig.)

  16. Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions.

    Science.gov (United States)

    Kügler, Philipp; Yang, Wei

    2014-06-01

    Model building of biochemical reaction networks typically involves experiments in which changes in the behavior due to natural or experimental perturbations are observed. Computational models of reaction networks are also used in a systems biology approach to study how transitions from a healthy to a diseased state result from changes in genetic or environmental conditions. In this paper we consider the nonlinear inverse problem of inferring information about the Jacobian of a Langevin type network model from covariance data of steady state concentrations associated to two different experimental conditions. Under idealized assumptions on the Langevin fluctuation matrices we prove that relative alterations in the network Jacobian can be uniquely identified when comparing the two data sets. Based on this result and the premise that alteration is locally confined to separable parts due to network modularity we suggest a computational approach using hybrid stochastic-deterministic optimization for the detection of perturbations in the network Jacobian using the sparsity promoting effect of [Formula: see text]-penalization. Our approach is illustrated by means of published metabolomic and signaling reaction networks.

  17. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks.

    Science.gov (United States)

    Labus, Jennifer S; Dinov, Ivo D; Jiang, Zhiguo; Ashe-McNalley, Cody; Zamanyan, Alen; Shi, Yonggang; Hong, Jui-Yang; Gupta, Arpana; Tillisch, Kirsten; Ebrat, Bahar; Hobel, Sam; Gutman, Boris A; Joshi, Shantanu; Thompson, Paul M; Toga, Arthur W; Mayer, Emeran A

    2014-01-01

    Alterations in gray matter (GM) density/volume and cortical thickness (CT) have been demonstrated in small and heterogeneous samples of subjects with differing chronic pain syndromes, including irritable bowel syndrome (IBS). Aggregating across 7 structural neuroimaging studies conducted at University of California, Los Angeles, Los Angeles, CA, USA, between August 2006 and April 2011, we examined group differences in regional GM volume in 201 predominantly premenopausal female subjects (82 IBS, mean age: 32±10 SD, 119 healthy controls [HCs], 30±10 SD). Applying graph theoretical methods and controlling for total brain volume, global and regional properties of large-scale structural brain networks were compared between the group with IBS and the HC group. Relative to HCs, the IBS group had lower volumes in the bilateral superior frontal gyrus, bilateral insula, bilateral amygdala, bilateral hippocampus, bilateral middle orbital frontal gyrus, left cingulate, left gyrus rectus, brainstem, and left putamen. Higher volume was found in the left postcentral gyrus. Group differences were no longer significant for most regions when controlling for the Early Trauma Inventory global score, with the exception of the right amygdala and the left postcentral gyrus. No group differences were found for measures of global and local network organization. Compared to HCs, in patients with IBS, the right cingulate gyrus and right thalamus were identified as being significantly more critical for information flow. Regions involved in endogenous pain modulation and central sensory amplification were identified as network hubs in IBS. Overall, evidence for central alterations in patients with IBS was found in the form of regional GM volume differences and altered global and regional properties of brain volumetric networks. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. Hierarchical organization of brain functional networks during visual tasks.

    Science.gov (United States)

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  19. Altered intrinsic organisation of brain networks implicated in attentional processes in adult attention-deficit/hyperactivity disorder: a resting-state study of attention, default mode and salience network connectivity.

    Science.gov (United States)

    Sidlauskaite, Justina; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R

    2016-06-01

    Deficits in task-related attentional engagement in attention-deficit/hyperactivity disorder (ADHD) have been hypothesised to be due to altered interrelationships between attention, default mode and salience networks. We examined the intrinsic connectivity during rest within and between these networks. Six-minute resting-state scans were obtained. Using a network-based approach, connectivity within and between the dorsal and ventral attention, the default mode and the salience networks was compared between the ADHD and control group. The ADHD group displayed hyperconnectivity between the two attention networks and within the default mode and ventral attention network. The salience network was hypoconnected to the dorsal attention network. There were trends towards hyperconnectivity within the dorsal attention network and between the salience and ventral attention network in ADHD. Connectivity within and between other networks was unrelated to ADHD. Our findings highlight the altered connectivity within and between attention networks, and between them and the salience network in ADHD. One hypothesis to be tested in future studies is that individuals with ADHD are affected by an imbalance between ventral and dorsal attention systems with the former playing a dominant role during task engagement, making individuals with ADHD highly susceptible to distraction by salient task-irrelevant stimuli.

  20. Evaluation of the anatomical alterations of lower molars mesial root?s apical third

    OpenAIRE

    FRÖNER Izabel Cristina; IMPERADOR Cristina Aparecida; SOUZA Luiz Gustavo de

    1999-01-01

    The anatomical apex of the mesial root of the lower molars presents a morphological complexity related to the number and shape of the root canals as well as of the apical foramen and isthmus presence. The knowledge of the complexity of the endodontic system of the molar root area is essencial to select more carefully the best instrumentation and obturation technique, to obtain a more successful endodontic therapy.

  1. Evaluation of the anatomical alterations of lower molars mesial root?s apical third

    Directory of Open Access Journals (Sweden)

    FRÖNER Izabel Cristina

    1999-01-01

    Full Text Available The anatomical apex of the mesial root of the lower molars presents a morphological complexity related to the number and shape of the root canals as well as of the apical foramen and isthmus presence. The knowledge of the complexity of the endodontic system of the molar root area is essencial to select more carefully the best instrumentation and obturation technique, to obtain a more successful endodontic therapy.

  2. Sustained NMDA receptor hypofunction induces compromised neural systems integration and schizophrenia-like alterations in functional brain networks.

    Science.gov (United States)

    Dawson, Neil; Xiao, Xiaolin; McDonald, Martin; Higham, Desmond J; Morris, Brian J; Pratt, Judith A

    2014-02-01

    Compromised functional integration between cerebral subsystems and dysfunctional brain network organization may underlie the neurocognitive deficits seen in psychiatric disorders. Applying topological measures from network science to brain imaging data allows the quantification of complex brain network connectivity. While this approach has recently been used to further elucidate the nature of brain dysfunction in schizophrenia, the value of applying this approach in preclinical models of psychiatric disease has not been recognized. For the first time, we apply both established and recently derived algorithms from network science (graph theory) to functional brain imaging data from rats treated subchronically with the N-methyl-D-aspartic acid (NMDA) receptor antagonist phencyclidine (PCP). We show that subchronic PCP treatment induces alterations in the global properties of functional brain networks akin to those reported in schizophrenia. Furthermore, we show that subchronic PCP treatment induces compromised functional integration between distributed neural systems, including between the prefrontal cortex and hippocampus, that have established roles in cognition through, in part, the promotion of thalamic dysconnectivity. We also show that subchronic PCP treatment promotes the functional disintegration of discrete cerebral subsystems and also alters the connectivity of neurotransmitter systems strongly implicated in schizophrenia. Therefore, we propose that sustained NMDA receptor hypofunction contributes to the pathophysiology of dysfunctional brain network organization in schizophrenia.

  3. Functional connectivity in task-negative network of the Deaf: effects of sign language experience

    Directory of Open Access Journals (Sweden)

    Evie Malaia

    2014-06-01

    Full Text Available Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain’s anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud et al., 2013 inter alia. We report the first investigation of the task-negative network in Deaf signers and its functional connectivity—the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG, but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal.

  4. Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP

    Directory of Open Access Journals (Sweden)

    Jason J. Kutch

    2015-01-01

    Full Text Available Brain network activity associated with altered motor control in individuals with chronic pain is not well understood. Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS is a debilitating condition in which previous studies have revealed altered resting pelvic floor muscle activity in men with CP/CPPS compared to healthy controls. We hypothesized that the brain networks controlling pelvic floor muscles would also show altered resting state function in men with CP/CPPS. Here we describe the results of the first test of this hypothesis focusing on the motor cortical regions, termed pelvic-motor, that can directly activate pelvic floor muscles. A group of men with CP/CPPS (N = 28, as well as group of age-matched healthy male controls (N = 27, had resting state functional magnetic resonance imaging scans as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP Research Network study. Brain maps of the functional connectivity of pelvic-motor were compared between groups. A significant group difference was observed in the functional connectivity between pelvic-motor and the right posterior insula. The effect size of this group difference was among the largest effect sizes in functional connectivity between all pairs of 165 anatomically-defined subregions of the brain. Interestingly, many of the atlas region pairs with large effect sizes also involved other subregions of the insular cortices. We conclude that functional connectivity between motor cortex and the posterior insula may be among the most important markers of altered brain function in men with CP/CPPS, and may represent changes in the integration of viscerosensory and motor processing.

  5. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Kim, Ho Sung; Kim, Sang Joon; Shim, Woo Hyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-Gu, Seoul (Korea, Republic of); Kim, Jeong Hoon [University of Ulsan College of Medicine, Department of Neurosurgery, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  6. Extensive video-game experience alters cortical networks for complex visuomotor transformations.

    Science.gov (United States)

    Granek, Joshua A; Gorbet, Diana J; Sergio, Lauren E

    2010-10-01

    Using event-related functional magnetic resonance imaging (fMRI), we examined the effect of video-game experience on the neural control of increasingly complex visuomotor tasks. Previously, skilled individuals have demonstrated the use of a more efficient movement control brain network, including the prefrontal, premotor, primary sensorimotor and parietal cortices. Our results extend and generalize this finding by documenting additional prefrontal cortex activity in experienced video gamers planning for complex eye-hand coordination tasks that are distinct from actual video-game play. These changes in activation between non-gamers and extensive gamers are putatively related to the increased online control and spatial attention required for complex visually guided reaching. These data suggest that the basic cortical network for processing complex visually guided reaching is altered by extensive video-game play. Crown Copyright © 2009. Published by Elsevier Srl. All rights reserved.

  7. Converging models of schizophrenia - Network alterations of prefrontal cortex underlying cognitive impairments

    Science.gov (United States)

    Sakurai, Takeshi; Gamo, Nao J; Hikida, Takatoshi; Kim, Sun-Hong; Murai, Toshiya; Tomoda, Toshifumi; Sawa, Akira

    2015-01-01

    The prefrontal cortex (PFC) and its connections with other brain areas are crucial for cognitive function. Cognitive impairments are one of the core symptoms associated with schizophrenia, and manifest even before the onset of the disorder. Altered neural networks involving PFC contribute to cognitive impairments in schizophrenia. Both genetic and environmental risk factors affect the development of the local circuitry within PFC as well as development of broader brain networks, and make the system vulnerable to further insults during adolescence, leading to the onset of the disorder in young adulthood. Since spared cognitive functions correlate with functional outcome and prognosis, a better understanding of the mechanisms underlying cognitive impairments will have important implications for novel therapeutics for schizophrenia focusing on cognitive functions. Multidisciplinary approaches, from basic neuroscience to clinical studies, are required to link molecules, circuitry, networks, and behavioral phenotypes. Close interactions among such fields by sharing a common language on connectomes, behavioral readouts, and other concepts are crucial for this goal. PMID:26408506

  8. Secondary Progressive and Relapsing Remitting Multiple Sclerosis Leads to Motor-Related Decreased Anatomical Connectivity

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Siebner, Hartwig R.; Sørensen, Per S.

    2014-01-01

    Multiple sclerosis (MS) damages central white matter pathways which has considerable impact on disease-related disability. To identify disease-related alterations in anatomical connectivity, 34 patients (19 with relapsing remitting MS (RR-MS), 15 with secondary progressive MS (SP-MS) and 20 healthy...

  9. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  10. Evaluation of the anatomical alterations of lower molars mesial root’s apical third

    OpenAIRE

    FRÖNER, Izabel Cristina; IMPERADOR, Cristina Aparecida; SOUZA, Luiz Gustavo de

    1999-01-01

    The anatomical apex of the mesial root of the lower molars presents a morphological complexity related to the number and shape of the root canals as well as of the apical foramen and isthmus presence. The knowledge of the complexity of the endodontic system of the molar root area is essencial to select more carefully the best instrumentation and obturation technique, to obtain a more successful endodontic therapy. A presente pesquisa analisa in vitro as alterações anatômicas dos 4 mm apic...

  11. Using photoshop filters to create anatomic line-art medical images.

    Science.gov (United States)

    Kirsch, Jacobo; Geller, Brian S

    2006-08-01

    There are multiple ways to obtain anatomic drawings suitable for publication or presentations. This article demonstrates how to use Photoshop to alter digital radiologic images to create line-art illustrations in a quick and easy way. We present two simple to use methods; however, not every image can adequately be transformed and personal preferences and specific changes need to be applied to each image to obtain the desired result. There are multiple ways to obtain anatomic drawings suitable for publication or to prepare presentations. Medical illustrators have always played a major role in the radiology and medical education process. Whether used to teach a complex surgical or radiologic procedure, to define typical or atypical patterns of the spread of disease, or to illustrate normal or aberrant anatomy, medical illustration significantly affects learning (). However, if you are not an accomplished illustrator, the alternatives can be expensive (contacting a professional medical illustrator or buying an already existing stock of digital images) or simply not necessarily applicable to what you are trying to communicate. The purpose of this article is to demonstrate how using Photoshop (Adobe Systems, San Jose, CA) to alter digital radiologic images we can create line-art illustrations in a quick, inexpensive, and easy way in preparation for electronic presentations and publication.

  12. Functional and anatomical connectivity abnormalities in left inferior frontal gyrus in schizophrenia.

    Science.gov (United States)

    Jeong, Bumseok; Wible, Cynthia G; Hashimoto, Ryu-ichiro; Kubicki, Marek

    2009-12-01

    Functional studies in schizophrenia demonstrate prominent abnormalities within the left inferior frontal gyrus (IFG) and also suggest the functional connectivity abnormalities in language network including left IFG and superior temporal gyrus during semantic processing. White matter connections between regions involved in the semantic network have also been indicated in schizophrenia. However, an association between functional and anatomical connectivity disruptions within the semantic network in schizophrenia has not been established. Functional (using levels of processing paradigm) as well as diffusion tensor imaging data from 10 controls and 10 chronic schizophrenics were acquired and analyzed. First, semantic encoding specific activation was estimated, showing decreased activation within the left IFG in schizophrenia. Second, functional time series were extracted from this area, and left IFG specific functional connectivity maps were produced for each subject. In an independent analysis, tract-based spatial statistics (TBSS) was used to compare fractional anisotropy (FA) values between groups, and to correlate these values with functional connectivity maps. Schizophrenia patients showed weaker functional connectivity within the language network that includes left IFG and left superior temporal sulcus/middle temporal gyrus. FA was reduced in several white matter regions including left inferior frontal and left internal capsule. Finally, left inferior frontal white matter FA was positively correlated with connectivity measures of the semantic network in schizophrenics, but not in controls. Our results indicate an association between anatomical and functional connectivity abnormalities within the semantic network in schizophrenia, suggesting further that the functional abnormalities observed in this disorder might be directly related to white matter disruptions. 2009 Wiley-Liss, Inc.

  13. Reorganization of Anatomical Connectome following Electroconvulsive Therapy in Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Jinkun Zeng

    2015-01-01

    Full Text Available Objective. Electroconvulsive therapy (ECT is considered one of the most effective and fast-acting treatment options for depressive episodes. Little is known, however, about ECT’s enabling brain (neuroplasticity effects, particular for plasticity of white matter pathway. Materials and Methods. We collected longitudinal diffusion tensor imaging in the first-episode, drug-naïve major depressive disorder (MDD patients n=24 before and after a predefined time window ECT treatment. We constructed large-scale anatomical networks derived from white matter fiber tractography and evaluated the topological reorganization using graph theoretical analysis. We also assessed the relationship between topological reorganization with improvements in depressive symptoms. Results. Our investigation revealed three main findings: (1 the small-worldness was persistent after ECT series; (2 anatomical connections changes were found in limbic structure, temporal and frontal lobes, in which the connection changes between amygdala and parahippocampus correlate with depressive symptom reduction; (3 significant nodal strength changes were found in right paralimbic network. Conclusions. ECT elicits neuroplastic processes associated with improvements in depressive symptoms that act to specific local ventral frontolimbic circuits, but not small-world property. Overall, ECT induced topological reorganization in large-scale brain structural network, opening up new avenues to better understand the mode of ECT action in MDD.

  14. Graph theoretical analysis reveals the reorganization of the brain network pattern in primary open angle glaucoma patients

    International Nuclear Information System (INIS)

    Wang, Jieqiong; Li, Ting; Xian, Junfang; Wang, Ningli; He, Huiguang

    2016-01-01

    Most previous glaucoma studies with resting-state fMRI have focused on the neuronal activity in the individual structure of the brain, yet ignored the functional communication of anatomically separated structures. The purpose of this study is to investigate the efficiency of the functional communication change or not in glaucoma patients. We applied the resting-state fMRI data to construct the connectivity network of 25 normal controls and 25 age-gender-matched primary open angle glaucoma patients. Graph theoretical analysis was performed to assess brain network pattern differences between the two groups. No significant differences of the global network measures were found between the two groups. However, the local measures were radically reorganized in glaucoma patients. Comparing with the hub regions in normal controls' network, we found that six hub regions disappeared and nine hub regions appeared in the network of patients. In addition, the betweenness centralities of two altered hub regions, right fusiform gyrus and right lingual gyrus, were significantly correlated with the visual field mean deviation. Although the efficiency of functional communication is preserved in the brain network of the glaucoma at the global level, the efficiency of functional communication is altered in some specialized regions of the glaucoma. (orig.)

  15. Graph theoretical analysis reveals the reorganization of the brain network pattern in primary open angle glaucoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jieqiong [Chinese Academy of Sciences, State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing (China); Li, Ting; Xian, Junfang [Capital Medical University, Department of Radiology, Beijing Tongren Hospital, Beijing (China); Wang, Ningli [Capital Medical University, Department of Ophthalmology, Beijing Tongren Hospital, Beijing (China); He, Huiguang [Chinese Academy of Sciences, State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing (China); Chinese Academy of Sciences, Research Center for Brain-Inspired Intelligence, Institute of Automation, Beijing (China)

    2016-11-15

    Most previous glaucoma studies with resting-state fMRI have focused on the neuronal activity in the individual structure of the brain, yet ignored the functional communication of anatomically separated structures. The purpose of this study is to investigate the efficiency of the functional communication change or not in glaucoma patients. We applied the resting-state fMRI data to construct the connectivity network of 25 normal controls and 25 age-gender-matched primary open angle glaucoma patients. Graph theoretical analysis was performed to assess brain network pattern differences between the two groups. No significant differences of the global network measures were found between the two groups. However, the local measures were radically reorganized in glaucoma patients. Comparing with the hub regions in normal controls' network, we found that six hub regions disappeared and nine hub regions appeared in the network of patients. In addition, the betweenness centralities of two altered hub regions, right fusiform gyrus and right lingual gyrus, were significantly correlated with the visual field mean deviation. Although the efficiency of functional communication is preserved in the brain network of the glaucoma at the global level, the efficiency of functional communication is altered in some specialized regions of the glaucoma. (orig.)

  16. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions

    Directory of Open Access Journals (Sweden)

    Kerstin Pannek

    2014-01-01

    Conclusion: This study shows that network-based analysis of structural connectivity can identify alterations in FA in unilateral CP, and that these alterations in FA are related to clinical function. Application of this connectome-based analysis to investigate alterations in connectivity following treatment may elucidate the neurological correlates of improved functioning due to intervention.

  17. Automatic detection of anatomical regions in frontal x-ray images: comparing convolutional neural networks to random forest

    Science.gov (United States)

    Olory Agomma, R.; Vázquez, C.; Cresson, T.; De Guise, J.

    2018-02-01

    Most algorithms to detect and identify anatomical structures in medical images require either to be initialized close to the target structure, or to know that the structure is present in the image, or to be trained on a homogeneous database (e.g. all full body or all lower limbs). Detecting these structures when there is no guarantee that the structure is present in the image, or when the image database is heterogeneous (mixed configurations), is a challenge for automatic algorithms. In this work we compared two state-of-the-art machine learning techniques in order to determine which one is the most appropriate for predicting targets locations based on image patches. By knowing the position of thirteen landmarks points, labelled by an expert in EOS frontal radiography, we learn the displacement between salient points detected in the image and these thirteen landmarks. The learning step is carried out with a machine learning approach by exploring two methods: Convolutional Neural Network (CNN) and Random Forest (RF). The automatic detection of the thirteen landmarks points in a new image is then obtained by averaging the positions of each one of these thirteen landmarks estimated from all the salient points in the new image. We respectively obtain for CNN and RF, an average prediction error (both mean and standard deviation in mm) of 29 +/-18 and 30 +/- 21 for the thirteen landmarks points, indicating the approximate location of anatomical regions. On the other hand, the learning time is 9 days for CNN versus 80 minutes for RF. We provide a comparison of the results between the two machine learning approaches.

  18. Alteration in intrinsic and extrinsic functional connectivity of resting state networks associated with subclinical hypothyroid.

    Science.gov (United States)

    Kumar, Mukesh; Modi, Shilpi; Rana, Poonam; Kumar, Pawan; Kanwar, Ratnesh; Sekhri, Tarun; D'souza, Maria; Khushu, Subash

    2018-03-05

    Subclinical hypothyroidism (SCH) is characterized by mild elevation of thyroid stimulating hormone (TSH) (range 5-10 μIU/ml) and normal free triiodothyronine (FT3) and free thyroxine (FT4). The cognitive function impairment is well known in thyroid disorders such as hypothyroidism and hyperthyroidism, but little is known about deficits in brain functions in SCH subjects. Also, whether hormone-replacement treatment is necessary or not in SCH subjects is still debatable. In order to have an insight into the cognition of SCH subjects, intrinsic and extrinsic functional connectivity (FC) of the resting state networks (RSNs) was studied. For resting state data analysis we used an unbiased, data-driven approach based on Independent Component Analysis (ICA) and dual-regression that can emphasize widespread changes in FC without restricting to a set of predefined seeds. 28 SCH subjects and 28 matched healthy controls (HC) participated in the study. RSN analysis showed significantly decreased intrinsic FC in somato-motor network (SMN) and right fronto-parietal attention network (RAN) and increased intrinsic FC in default mode network (DMN) in SCH subjects as compared to control subjects. The reduced intrinsic FC in the SMN and RAN suggests neuro-cognitive alterations in SCH subjects in the corresponding functions which were also evident from the deficit in the neuropsychological performance of the SCH subjects on behavioural tests such as digit span, delayed recall, visual retention, recognition, Bender Gestalt and Mini-Mental State Examination (MMSE). We also found a significant reduction in extrinsic network FC between DMN and RAN; SMN and posterior default mode network (PDMN); and increased extrinsic FC between SMN and anterior default mode network (ADMN) in SCH subjects as compared to controls. An altered extrinsic FC in SCH suggests functional reorganization in response to neurological disruption. The partial correlation analysis between intrinsic and extrinsic RSNs

  19. The Role of Small Impoundments on Flow Alteration Within River Networks

    Science.gov (United States)

    Brogan, C. O.; Keys, T.; Scott, D.; Burgholzer, R.; Kleiner, J.

    2017-12-01

    Numerous water quality and quantity models have been established to illustrate the ecologic and hydrologic effects of large reservoirs. Smaller, unregulated ponds are often assumed to have a negligible impact on watershed flow regimes even though they overwhelmingly outnumber larger waterbodies. Individually, these small impoundments impart merely a fraction of the flow alteration larger reservoirs do; however, a network of ponds may act cumulatively to alter the flow regime. Many models have attempted to study smaller impoundments but rely on selectively available rating curves or bathymetry surveys. This study created a generalized process to model impoundments of varying size across a 58 square mile watershed exclusively using satellite imagery and publicly available information as inputs. With information drawn from public Army Corps of Engineers databases and LiDAR surveys, it was found that impoundment surface and drainage area served as useful explanatory variables, capable of predicting both pond bathymetry and outlet structure area across the 37 waterbodies modeled within the study area. Working within a flow routing model with inputs from the Chesapeake Bay HSPF model and verified with USGS gauge data, flow simulations were conducted with increasing number of impoundments to quantify how small ponds affect the overall flow regime. As the total impounded volume increased, simulations showed a notable reduction in both low and peak flows. Medium-sized floods increased as the network of ponds and reservoirs stabilized the catchment's streamflow. The results of this study illustrate the importance of including ponded waters into river corridor models to improve downstream management of both water quantity and quality.

  20. Altered topological organization of white matter structural networks in patients with neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Yaou Liu

    Full Text Available OBJECTIVE: To investigate the topological alterations of the whole-brain white-matter (WM structural networks in patients with neuromyelitis optica (NMO. METHODS: The present study involved 26 NMO patients and 26 age- and sex-matched healthy controls. WM structural connectivity in each participant was imaged with diffusion-weighted MRI and represented in terms of a connectivity matrix using deterministic tractography method. Graph theory-based analyses were then performed for the characterization of brain network properties. A multiple linear regression analysis was performed on each network metric between the NMO and control groups. RESULTS: The NMO patients exhibited abnormal small-world network properties, as indicated by increased normalized characteristic path length, increased normalized clustering and increased small-worldness. Furthermore, largely similar hub distributions of the WM structural networks were observed between NMO patients and healthy controls. However, regional efficiency in several brain areas of NMO patients was significantly reduced, which were mainly distributed in the default-mode, sensorimotor and visual systems. Furthermore, we have observed increased regional efficiency in a few brain regions such as the orbital parts of the superior and middle frontal and fusiform gyri. CONCLUSION: Although the NMO patients in this study had no discernible white matter T2 lesions in the brain, we hypothesize that the disrupted topological organization of WM networks provides additional evidence for subtle, widespread cerebral WM pathology in NMO.

  1. Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    NARCIS (Netherlands)

    Schaub, Franz X.; Dhankani, Varsha; Berger, Ashton C.; Trivedi, Mihir; Richardson, Anne B.; Shaw, Reid; Zhao, Wei; Zhang, Xiaoyang; Ventura, Andrea; Liu, Yuexin; Ayer, Donald E.; Hurlin, Peter J.; Cherniack, Andrew D.; Eisenman, Robert N.; Bernard, Brady; Grandori, Carla; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Angulo Gonzalez, Ana Maria; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Mora Pinero, Edna M.; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz

    2018-01-01

    Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic

  2. Altered functional connectivity within the central reward network in overweight and obese women

    Science.gov (United States)

    Coveleskie, K; Gupta, A; Kilpatrick, L A; Mayer, E D; Ashe-McNalley, C; Stains, J; Labus, J S; Mayer, E A

    2015-01-01

    Background/Objectives: Neuroimaging studies in obese subjects have identified abnormal activation of key regions of central reward circuits, including the nucleus accumbens (NAcc), in response to food-related stimuli. We aimed to examine whether women with elevated body mass index (BMI) show structural and resting state (RS) functional connectivity alterations within regions of the reward network. Subjects/Methods: Fifty healthy, premenopausal women, 19 overweight and obese (high BMI=26–38 kg m−2) and 31 lean (BMI=19–25 kg m−2) were selected from the University of California Los Angeles' Oppenheimer Center for Neurobiology of Stress database. Structural and RS functional scans were collected. Group differences in grey matter volume (GMV) of the NAcc, oscillation dynamics of intrinsic brain activity and functional connectivity of the NAcc to regions within the reward network were examined. Results: GMV of the left NAcc was significantly greater in the high BMI group than in the lean group (P=0.031). Altered frequency distributions were observed in women with high BMI compared with lean group in the left NAcc (P=0.009) in a medium-frequency (MF) band, and in bilateral anterior cingulate cortex (ACC) (P=0.014, ingestive behaviors. PMID:25599560

  3. Altered intrinsic hippocmapus declarative memory network and its association with impulsivity in abstinent heroin dependent subjects.

    Science.gov (United States)

    Zhai, Tian-Ye; Shao, Yong-Cong; Xie, Chun-Ming; Ye, En-Mao; Zou, Feng; Fu, Li-Ping; Li, Wen-Jun; Chen, Gang; Chen, Guang-Yu; Zhang, Zheng-Guo; Li, Shi-Jiang; Yang, Zheng

    2014-10-01

    Converging evidence suggests that addiction can be considered a disease of aberrant learning and memory with impulsive decision-making. In the past decades, numerous studies have demonstrated that drug addiction is involved in multiple memory systems such as classical conditioned drug memory, instrumental learning memory and the habitual learning memory. However, most of these studies have focused on the contributions of non-declarative memory, and declarative memory has largely been neglected in the research of addiction. Based on a recent finding that hippocampus, as a core functioning region of declarative memory, was proved biased the decision-making process based on past experiences by spreading associated reward values throughout memory. Our present study focused on the hippocampus. By utilizing seed-based network analysis on the resting-state functional MRI datasets with the seed hippocampus we tested how the intrinsic hippocampal memory network altered toward drug addiction, and examined how the functional connectivity strength within the altered hippocampal network correlated with behavioral index 'impulsivity'. Our results demonstrated that HD group showed enhanced coherence between hippocampus which represents declarative memory system and non-declarative reward-guided learning memory system, and also showed attenuated intrinsic functional link between hippocampus and top-down control system, compared to the CN group. This alteration was furthered found to have behavioral significance over the behavioral index 'impulsivity' measured with Barratt Impulsiveness Scale (BIS). These results provide insights into the mechanism of declarative memory underlying the impulsive behavior in drug addiction. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Altered Effective Connectivity of Hippocampus-Dependent Episodic Memory Network in mTBI Survivors

    Directory of Open Access Journals (Sweden)

    Hao Yan

    2016-01-01

    Full Text Available Traumatic brain injuries (TBIs are generally recognized to affect episodic memory. However, less is known regarding how external force altered the way functionally connected brain structures of the episodic memory system interact. To address this issue, we adopted an effective connectivity based analysis, namely, multivariate Granger causality approach, to explore causal interactions within the brain network of interest. Results presented that TBI induced increased bilateral and decreased ipsilateral effective connectivity in the episodic memory network in comparison with that of normal controls. Moreover, the left anterior superior temporal gyrus (aSTG, the concept forming hub, left hippocampus (the personal experience binding hub, and left parahippocampal gyrus (the contextual association hub were no longer network hubs in TBI survivors, who compensated for hippocampal deficits by relying more on the right hippocampus (underlying perceptual memory and the right medial frontal gyrus (MeFG in the anterior prefrontal cortex (PFC. We postulated that the overrecruitment of the right anterior PFC caused dysfunction of the strategic component of episodic memory, which caused deteriorating episodic memory in mTBI survivors. Our findings also suggested that the pattern of brain network changes in TBI survivors presented similar functional consequences to normal aging.

  5. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes

    Directory of Open Access Journals (Sweden)

    Yuting eLiang

    2016-02-01

    Full Text Available With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001. Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential keystone genes, defined as either hubs or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.

  6. Anatomic variation and orgasm: Could variations in anatomy explain differences in orgasmic success?

    Science.gov (United States)

    Emhardt, E; Siegel, J; Hoffman, L

    2016-07-01

    Though the public consciousness is typically focused on factors such as psychology, penis size, and the presence of the "G-spot," there are other anatomical and neuro-anatomic differences that could play an equal, or more important, role in the frequency and intensity of orgasms. Discovering these variations could direct further medical or procedural management to improve sexual satisfaction. The aim of this study is to review the available literature of anatomical sexual variation and to explain why this variation may predispose some patients toward a particular sexual experience. In this review, we explored the available literature on sexual anatomy and neuro-anatomy. We used PubMed and OVID Medline for search terms, including orgasm, penile size variation, clitoral variation, Grafenberg spot, and benefits of orgasm. First we review the basic anatomy and innervation of the reproductive organs. Then we describe several anatomical variations that likely play a superior role to popular known variation (penis size, presence of g-spot, etc). For males, the delicate play between the parasympathetic and sympathetic nervous systems is vital to achieve orgasm. For females, the autonomic component is more complex. The clitoris is the primary anatomical feature for female orgasm, including its migration toward the anterior vaginal wall. In conclusions, orgasms are complex phenomena involving psychological, physiological, and anatomic variation. While these variations predispose people to certain sexual function, future research should explore how to surgically or medically alter these. Clin. Anat. 29:665-672, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Anatomical Peculiarities in Wheat (Triticum Aestivum L.) varieties Under Copper Stress

    International Nuclear Information System (INIS)

    Atabayeva, S.; Nurmahanova, A.; Akhmetova, A.; Narmuratova, M.; Asrandina, S.; Alybayeva, R.

    2016-01-01

    The effect of different concentrations (0.25 mM, 0.5 mM) of Cu/sup 2+/ on anatomical parameters of leaves and roots was investigated in hydroponically grown five wheat (Triticum aestivum L.) varieties (Kazakhstanskaya rannaya, Kazakhstanskaya-3, Melturn, Kaiyr and Shagala). The results showed that wheat varieties exposed to 0.5 mM Cu/sup 2+/ exhibited significant alterations in anatomical structure of leaves and roots. The thickness of the upper and lower epidermis, diameter of vascular bundles of leaves of almost all varieties showed a tendency to decrease under copper stress. Our experiments showed an activation of defense responses in the root anatomical structure like exodermis thickening in some varieties in the presence of copper in growth medium as compared to the control. This indicates that copper ions increase the thickness of exodermis, which reduce the absorption of toxic elements by root cells. Copper stress caused a decrease in the thickness of the lower and upper epidermis to varying degrees and reduction in the diameter of vascular bundles of wheat leaves. Copper stress caused a reduction in endodermis thickness thereby decreasing the diameter of the central cylinder of wheat roots. (author)

  8. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    Science.gov (United States)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  9. The Laplacian spectrum of neural networks

    Science.gov (United States)

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  10. Alteration and reorganization of functional networks: a new perspective in brain injury study

    Directory of Open Access Journals (Sweden)

    Nazareth P. Castellanos

    2011-09-01

    Full Text Available Plasticity is the mechanism underlying brain’s potential capability to compensate injury. Recently several studies have shown that functional connections among brain areas are severely altered by brain injury and plasticity leading to a reorganization of the networks. This new approach studies the impact of brain injury by means of alteration of functional interactions. The concept of functional connectivity refers to the statistical interdependencies between physiological time series simultaneously recorded in various brain areas and it could be an essential tool for brain function studies, being its deviation from healthy reference an indicator for damage. In this article, we review studies investigating functional connectivity changes after brain injury and subsequent recovery, providing an accessible introduction to common mathematical methods to infer functional connectivity, exploring their capabilities, future perspectives and clinical uses in brain injury studies.

  11. Disruption of structural covariance networks for language in autism is modulated by verbal ability.

    Science.gov (United States)

    Sharda, Megha; Khundrakpam, Budhachandra S; Evans, Alan C; Singh, Nandini C

    2016-03-01

    The presence of widespread speech and language deficits is a core feature of autism spectrum disorders (ASD). These impairments have often been attributed to altered connections between brain regions. Recent developments in anatomical correlation-based approaches to map structural covariance offer an effective way of studying such connections in vivo. In this study, we employed such a structural covariance network (SCN)-based approach to investigate the integrity of anatomical networks in fronto-temporal brain regions of twenty children with ASD compared to an age and gender-matched control group of twenty-two children. Our findings reflected large-scale disruption of inter and intrahemispheric covariance in left frontal SCNs in the ASD group compared to controls, but no differences in right fronto-temporal SCNs. Interhemispheric covariance in left-seeded networks was further found to be modulated by verbal ability of the participants irrespective of autism diagnosis, suggesting that language function might be related to the strength of interhemispheric structural covariance between frontal regions. Additionally, regional cortical thickening was observed in right frontal and left posterior regions, which was predicted by decreasing symptom severity and increasing verbal ability in ASD. These findings unify reports of regional differences in cortical morphology in ASD. They also suggest that reduced left hemisphere asymmetry and increased frontal growth may not only reflect neurodevelopmental aberrations but also compensatory mechanisms.

  12. Probabilistic anatomical labeling of brain structures using statistical probabilistic anatomical maps

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Dong Soo; Lee, Byung Il; Lee, Jae Sung; Shin, Hee Won; Chung, June Key; Lee, Myung Chul

    2002-01-01

    The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal neurological institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the statistical probabilistic anatomical map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for the easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was performed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. These programs will be useful for the result interpretation of the image analysis performed on MNI coordinate, as done in SPM program

  13. Radio-guided sentinel lymph node identification by lymphoscintigraphy fused with an anatomical vector profile: clinical applications.

    Science.gov (United States)

    Niccoli Asabella, A; Antonica, F; Renna, M A; Rubini, D; Notaristefano, A; Nicoletti, A; Rubini, G

    2013-12-01

    To develop a method to fuse lymphoscintigraphic images with an adaptable anatomical vector profile and to evaluate its role in the clinical practice. We used Adobe Illustrator CS6 to create different vector profiles, we fused those profiles, using Adobe Photoshop CS6, with lymphoscintigraphic images of the patient. We processed 197 lymphoscintigraphies performed in patients with cutaneous melanomas, breast cancer or delayed lymph drainage. Our models can be adapted to every patient attitude or position and contain different levels of anatomical details ranging from external body profiles to the internal anatomical structures like bones, muscles, vessels, and lymph nodes. If needed, more new anatomical details can be added and embedded in the profile without redrawing them, saving a lot of time. Details can also be easily hidden, allowing the physician to view only relevant information and structures. Fusion times are about 85 s. The diagnostic confidence of the observers increased significantly. The validation process showed a slight shift (mean 4.9 mm). We have created a new, practical, inexpensive digital technique based on commercial software for fusing lymphoscintigraphic images with built-in anatomical reference profiles. It is easily reproducible and does not alter the original scintigraphic image. Our method allows a more meaningful interpretation of lymphoscintigraphies, an easier recognition of the anatomical site and better lymph node dissection planning.

  14. Attentional network task in schizophrenic patients and theirs unaffected first degree relatives: a potential endofenotype.

    Science.gov (United States)

    López, S Guerra; Fuster, J Iglesias; Reyes, M Martín; Collazo, T M Bravo; Quiñones, R Mendoza; Berazain, A Reyes; Rodríguez, M A Pedroso; Días de Villarvilla, T; Bobés, M Antonieta; Valdés-Sosa, M

    2011-01-01

    In recent years, reports of attentional deficits in schizophrenic patients and in their biological relatives have rapidly increased, including an important effort to search for the endophenotypes in order to link specific genes to this illness. Posner et al. developed a test, the Attention Network Test (ANT), to study the neural networks. This test provides a separate measure for each one of the three anatomically-defined attention networks (alerting, orienting and executive control). In this paper, we investigate the attentional performance in 32 schizophrenic patients, 29 unaffected first degree relatives and 29 healthy controls using the ANT through a study of family association. We have studied the efficiency of the segregated executive control, alerting and orienting networks by measuring how response latencies (reaction time) were modified by the cue position and the flanking stimuli. We also studied the familial association of these attentional alterations. The ANOVA revealed main effects of flanker and cue condition and a significant interaction effect between flanker and groups studied. The schizophrenic patients and their relatives had a longer median reaction time than the control group. The probands and their relatives significantly differed from the healthy controls in terms of their conflict resolution; however, the alerting network appeared to be conserved. Our results support the thesis of a specific attentional deficit in schizophrenia and show the segregation of the three attentional networks. The family association of these reported alterations supports the idea of a potential endophenotype in schizophrenia.

  15. The Composition of Colonic Commensal Bacteria According to Anatomical Localization in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Liuyang Zhao

    2017-02-01

    Full Text Available Colorectal cancer (CRC is a multistage disease resulting from complex factors, including genetic mutations, epigenetic changes, chronic inflammation, diet, and lifestyle. Recent accumulating evidence suggests that the gut microbiota is a new and important player in the development of CRC. Imbalance of the gut microbiota, especially dysregulated gut bacteria, contributes to colon cancer through mechanisms of inflammation, host defense modulations, oxidative stress, and alterations in bacterial-derived metabolism. Gut commensal bacteria are anatomically defined as four populations: luminal commensal bacteria, mucus-resident bacteria, epithelium-resident bacteria, and lymphoid tissue-resident commensal bacteria. The bacterial flora that are harbored in the gastrointestinal (GI tract vary both longitudinally and cross-sectionally by different anatomical localization. It is notable that the translocation of colonic commensal bacteria is closely related to CRC progression. CRC-associated bacteria can serve as a non-invasive and accurate biomarker for CRC diagnosis. In this review, we summarize recent findings on the oncogenic roles of gut bacteria with different anatomical localization in CRC progression.

  16. Altered structural network architecture is predictive of the presence of psychotic symptoms in patients with 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Maria C. Padula

    2017-01-01

    Our results point to alterations in structural network architecture and white matter microstructure in patients with 22q11DS with attenuated positive symptoms, mainly involving connections of the limbic system. These alterations may therefore represent a potential biomarker for an increased risk of psychosis that should be further tested in longitudinal studies.

  17. Anterior Cingulate Volumetric Alterations in Treatment-Naive Adults with ADHD: A Pilot Study

    Science.gov (United States)

    Makris, Nikos; Seidman, Larry J.; Valera, Eve M.; Biederman, Joseph; Monuteaux, Michael C.; Kennedy, David N.; Caviness, Verne S., Jr.; Bush, George; Crum, Katherine; Brown, Ariel B.; Faraone, Stephen V.

    2010-01-01

    Objective: We sought to examine preliminary results of brain alterations in anterior cingulate cortex (ACC) in treatment-naive adults with ADHD. The ACC is a central brain node for the integration of cognitive control and allocation of attention, affect and drive. Thus its anatomical alteration may give rise to impulsivity, hyperactivity and…

  18. In vivo estimation of normal amygdala volume from structural MRI scans with anatomical-based segmentation.

    Science.gov (United States)

    Siozopoulos, Achilleas; Thomaidis, Vasilios; Prassopoulos, Panos; Fiska, Aliki

    2018-02-01

    Literature includes a number of studies using structural MRI (sMRI) to determine the volume of the amygdala, which is modified in various pathologic conditions. The reported values vary widely mainly because of different anatomical approaches to the complex. This study aims at estimating of the normal amygdala volume from sMRI scans using a recent anatomical definition described in a study based on post-mortem material. The amygdala volume has been calculated in 106 healthy subjects, using sMRI and anatomical-based segmentation. The resulting volumes have been analyzed for differences related to hemisphere, sex, and age. The mean amygdalar volume was estimated at 1.42 cm 3 . The mean right amygdala volume has been found larger than the left, but the difference for the raw values was within the limits of the method error. No intersexual differences or age-related alterations have been observed. The study provides a method for determining the boundaries of the amygdala in sMRI scans based on recent anatomical considerations and an estimation of the mean normal amygdala volume from a quite large number of scans for future use in comparative studies.

  19. Posterolateral supporting structures of the knee: findings on anatomic dissection, anatomic slices and MR images

    Energy Technology Data Exchange (ETDEWEB)

    Maeseneer, M. de; Shahabpour, M.; Vanderdood, K.; Ridder, F. de; Osteaux, M. [Dept. of Radiology, Free Univ. Brussels (Belgium); Roy, F. van [Dept. of Experimental Anatomy, Free Univ. Brussels (Belgium)

    2001-11-01

    In this article we study the ligaments and tendons of the posterolateral corner of the knee by anatomic dissection, MR-anatomic correlation, and MR imaging. The posterolateral aspect of two fresh cadaveric knee specimens was dissected. The MR-anatomic correlation was performed in three other specimens. The MR images of 122 patients were reviewed and assessed for the visualization of different posterolateral structures. Anatomic dissection and MR-anatomic correlation demonstrated the lateral collateral, fabellofibular, and arcuate ligaments, as well as the biceps and popliteus tendons. On MR images of patients the lateral collateral ligament was depicted in all cases. The fabellofibular, arcuate, and popliteofibular ligaments were visualized in 33, 25, and 38% of patients, respectively. Magnetic resonance imaging allows a detailed appreciation of the posterolateral corner of the knee. (orig.)

  20. Normalization of similarity-based individual brain networks from gray matter MRI and its association with neurodevelopment in infants with intrauterine growth restriction.

    Science.gov (United States)

    Batalle, Dafnis; Muñoz-Moreno, Emma; Figueras, Francesc; Bargallo, Nuria; Eixarch, Elisenda; Gratacos, Eduard

    2013-12-01

    Obtaining individual biomarkers for the prediction of altered neurological outcome is a challenge of modern medicine and neuroscience. Connectomics based on magnetic resonance imaging (MRI) stands as a good candidate to exhaustively extract information from MRI by integrating the information obtained in a few network features that can be used as individual biomarkers of neurological outcome. However, this approach typically requires the use of diffusion and/or functional MRI to extract individual brain networks, which require high acquisition times and present an extreme sensitivity to motion artifacts, critical problems when scanning fetuses and infants. Extraction of individual networks based on morphological similarity from gray matter is a new approach that benefits from the power of graph theory analysis to describe gray matter morphology as a large-scale morphological network from a typical clinical anatomic acquisition such as T1-weighted MRI. In the present paper we propose a methodology to normalize these large-scale morphological networks to a brain network with standardized size based on a parcellation scheme. The proposed methodology was applied to reconstruct individual brain networks of 63 one-year-old infants, 41 infants with intrauterine growth restriction (IUGR) and 22 controls, showing altered network features in the IUGR group, and their association with neurodevelopmental outcome at two years of age by means of ordinal regression analysis of the network features obtained with Bayley Scale for Infant and Toddler Development, third edition. Although it must be more widely assessed, this methodology stands as a good candidate for the development of biomarkers for altered neurodevelopment in the pediatric population. © 2013 Elsevier Inc. All rights reserved.

  1. Anatomical and functional assemblies of brain BOLD oscillations

    Science.gov (United States)

    Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

    2011-01-01

    Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

  2. Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography

    International Nuclear Information System (INIS)

    Du, Dajiang; Asaoka, Teruo; Ushida, Takashi; Furukawa, Katsuko S

    2014-01-01

    Because patient bone defects are usually varied and complicated in geometry, it would be preferred to fabricate custom-made artificial bone grafts that are anatomically specific to individual patient defects. Using a rabbit femoral segment as a bone reconstruction model, we successfully produced customized ceramic scaffolds by stereolithography, which not only had an anatomically correct external shape according to computed tomography data but also contained an interconnecting internal network of channels designed for perfusion culture. Rabbit bone marrow stromal cells were isolated and cultured with these scaffolds using a novel oscillatory perfusion system that was stereolithographically fabricated to fit well to the unique scaffold shapes. After five days of three-dimensional culture with oscillatory perfusion, the cells attached and proliferated homogenously in the scaffolds. However, control cells inside the scaffolds cultured under static conditions were dead after prolonged in vitro culture. Cellular DNA content and alkaline phosphatase activities were significantly higher in the perfusion group versus the static group. Therefore, anatomically correct artificial bone can be successfully constructed using stereolithography and oscillatory culture technology, and could be useful for bone engraftment and defect repair. (paper)

  3. An anatomic transcriptional atlas of human glioblastoma.

    Science.gov (United States)

    Puchalski, Ralph B; Shah, Nameeta; Miller, Jeremy; Dalley, Rachel; Nomura, Steve R; Yoon, Jae-Guen; Smith, Kimberly A; Lankerovich, Michael; Bertagnolli, Darren; Bickley, Kris; Boe, Andrew F; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Chapin, Mike; Datta, Suvro; Dee, Nick; Desta, Tsega; Dolbeare, Tim; Dotson, Nadezhda; Ebbert, Amanda; Feng, David; Feng, Xu; Fisher, Michael; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Hejazinia, Nika; Hohmann, John; Hothi, Parvinder; Howard, Robert; Joines, Kevin; Kriedberg, Ali; Kuan, Leonard; Lau, Chris; Lee, Felix; Lee, Hwahyung; Lemon, Tracy; Long, Fuhui; Mastan, Naveed; Mott, Erika; Murthy, Chantal; Ngo, Kiet; Olson, Eric; Reding, Melissa; Riley, Zack; Rosen, David; Sandman, David; Shapovalova, Nadiya; Slaughterbeck, Clifford R; Sodt, Andrew; Stockdale, Graham; Szafer, Aaron; Wakeman, Wayne; Wohnoutka, Paul E; White, Steven J; Marsh, Don; Rostomily, Robert C; Ng, Lydia; Dang, Chinh; Jones, Allan; Keogh, Bart; Gittleman, Haley R; Barnholtz-Sloan, Jill S; Cimino, Patrick J; Uppin, Megha S; Keene, C Dirk; Farrokhi, Farrokh R; Lathia, Justin D; Berens, Michael E; Iavarone, Antonio; Bernard, Amy; Lein, Ed; Phillips, John W; Rostad, Steven W; Cobbs, Charles; Hawrylycz, Michael J; Foltz, Greg D

    2018-05-11

    Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Impaired clock output by altered connectivity in the circadian network.

    Science.gov (United States)

    Fernández, María de la Paz; Chu, Jessie; Villella, Adriana; Atkinson, Nigel; Kay, Steve A; Ceriani, María Fernanda

    2007-03-27

    Substantial progress has been made in elucidating the molecular processes that impart a temporal control to physiology and behavior in most eukaryotes. In Drosophila, dorsal and ventral neuronal networks act in concert to convey rhythmicity. Recently, the hierarchical organization among the different circadian clusters has been addressed, but how molecular oscillations translate into rhythmic behavior remains unclear. The small ventral lateral neurons can synchronize certain dorsal oscillators likely through the release of pigment dispersing factor (PDF), a neuropeptide central to the control of rhythmic rest-activity cycles. In the present study, we have taken advantage of flies exhibiting a distinctive arrhythmic phenotype due to mutation of the potassium channel slowpoke (slo) to examine the relevance of specific neuronal populations involved in the circadian control of behavior. We show that altered neuronal function associated with the null mutation specifically impaired PDF accumulation in the dorsal protocerebrum and, in turn, desynchronized molecular oscillations in the dorsal clusters. However, molecular oscillations in the small ventral lateral neurons are properly running in the null mutant, indicating that slo is acting downstream of these core pacemaker cells, most likely in the output pathway. Surprisingly, disrupted PDF signaling by slo dysfunction directly affects the structure of the underlying circuit. Our observations demonstrate that subtle structural changes within the circadian network are responsible for behavioral arrhythmicity.

  5. A new contrast agent for radiological and dissection studies of the arterial network of anatomic specimens.

    Science.gov (United States)

    Bulla, A; Casoli, C; Farace, F; Mazzarello, V; De Luca, L; Rubino, C; Montella, A

    2014-01-01

    The aim of the present study is to propose a new contrast agent that can be easily applied both to CT and dissection studies to replace lead oxide based formulas for comparative anatomical analyses of the vascularisation of cadaveric specimens. The infusion material was an epoxy resin, especially modified by the addition of barium sulphate to enhance its radiopacity. The final copolymer was toxicologically safe. To test the properties of the new material, several cadaveric limb injections were performed. The injected specimens were both CT scanned to perform 3D vascular reconstructions and dissected by anatomical planes. There was a perfect correspondence between the image studies and the dissections: even the smallest arteries on CT scan can be identified on the specimen and vice versa. The properties of the epoxy allowed an easy dissection of the vessels. The new imaging techniques available today, such as CT scan, can evaluate the vascular anatomy in high detail and 3D. This new contrast agent may help realising detailed vascular studies comparing CT scan results with anatomical dissections. Moreover, it may be useful for teaching surgical skills in the field of plastic surgery.

  6. Networks of myelin covariance

    Science.gov (United States)

    Slater, David; Ruef, Anne; Sanabria‐Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine

    2017-01-01

    Abstract Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, 2013). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these “networks of myelin covariance” (Myelin‐Nets). The Myelin‐Nets were built from quantitative Magnetization Transfer data—an in‐vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin‐Nets. We therefore selected two age groups: Young‐Age (20–31 years old) and Old‐Age (60–71 years old) and a pool of participants from 48 to 87 years old for a Myelin‐Nets aging trajectory study. We found that the topological organization of the Myelin‐Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin‐Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. PMID:29271053

  7. Networks of myelin covariance.

    Science.gov (United States)

    Melie-Garcia, Lester; Slater, David; Ruef, Anne; Sanabria-Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine

    2018-04-01

    Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, ). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these "networks of myelin covariance" (Myelin-Nets). The Myelin-Nets were built from quantitative Magnetization Transfer data-an in-vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin-Nets. We therefore selected two age groups: Young-Age (20-31 years old) and Old-Age (60-71 years old) and a pool of participants from 48 to 87 years old for a Myelin-Nets aging trajectory study. We found that the topological organization of the Myelin-Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin-Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  8. Independent functional connectivity networks underpin food and monetary reward sensitivity in excess weight.

    Science.gov (United States)

    Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio

    2017-02-01

    Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Impulsivity in Parkinson’s Disease Is Associated With Alterations in Affective and Sensorimotor Striatal Networks

    Directory of Open Access Journals (Sweden)

    Marit F. L. Ruitenberg

    2018-04-01

    Full Text Available A subset of patients with Parkinson’s disease (PD experiences problems with impulse control, characterized by a loss of voluntary control over impulses, drives, or temptations regarding excessive hedonic behavior. The present study aimed to better understand the neural basis of such impulse control disorders (ICDs in PD. We collected resting-state functional connectivity and structural MRI data from 21 PD patients with ICDs and 30 patients without such disorders. To assess impulsivity, all patients completed the Barratt Impulsiveness Scale and performed an information-gathering task. MRI results demonstrated substantial differences in neural characteristics between PD patients with and without ICDs. Results showed that impulsivity was linked to alterations in affective basal ganglia circuitries. Specifically, reduced frontal–striatal connectivity and GPe volume were associated with more impulsivity. We suggest that these changes affect decision making and result in a preference for risky or inappropriate actions. Results further showed that impulsivity was linked to alterations in sensorimotor striatal networks. Enhanced connectivity within this network and larger putamen volume were associated with more impulsivity. We propose that these changes affect sensorimotor processing such that patients have a greater propensity to act. Our findings suggest that the two mechanisms jointly contribute to impulsive behaviors in PD.

  10. Anatomical curve identification

    Science.gov (United States)

    Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise

    2015-01-01

    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943

  11. Altered organization of face processing networks in temporal lobe epilepsy

    Science.gov (United States)

    Riley, Jeffrey D.; Fling, Brett W.; Cramer, Steven C.; Lin, Jack J.

    2015-01-01

    SUMMARY Objective Deficits in social cognition are common and significant in people with temporal lobe epilepsy (TLE), but the functional and structural underpinnings remain unclear. The present study investigated how the side of seizure focus impacts face processing networks in temporal lobe epilepsy. Methods We used functional magnetic resonance imaging (fMRI) of a face processing paradigm to identify face responsive regions in 24 individuals with unilateral temporal lobe epilepsy (Left = 15; Right = 9) and 19 healthy controls. fMRI signals of face responsive regions ispilateral and contralateral to the side of seizure onset were delineated in TLE and compared to the healthy controls with right and left side combined. Diffusion tensor images were acquired to investigate structural connectivity between face regions that differed in fMRI signals between the two groups. Results In temporal lobe epilepsy, activation of the cortical face processing networks varied according to side of seizure onset. In temporal lobe epilepsy, the laterality of amygdala activation was shifted to the side contralateral to the seizure focus while controls showed no significant asymmetry. Furthermore, compared to controls, patients with TLE showed decreased activation of the occipital face responsive region in the ipsilateral side and an increased activity of the anterior temporal lobe in the contralateral side to the seizure focus. Probabilistic tractography revealed that the occipital face area and anterior temporal lobe are connected via the inferior longitudinal fasciculus, which in individuals with temporal lobe epilepsy showed reduced integrity. Significance Taken together, these findings suggest that brain function and white matter integrity of networks subserving face processing are impaired on the side of seizure onset, accompanied by altered responses on the side contralateral to the seizure. PMID:25823855

  12. Co-altered functional networks and brain structure in unmedicated patients with bipolar and major depressive disorders.

    Science.gov (United States)

    He, Hao; Sui, Jing; Du, Yuhui; Yu, Qingbao; Lin, Dongdong; Drevets, Wayne C; Savitz, Jonathan B; Yang, Jian; Victor, Teresa A; Calhoun, Vince D

    2017-12-01

    Bipolar disorder (BD) and major depressive disorder (MDD) share similar clinical characteristics that often obscure the diagnostic distinctions between their depressive conditions. Both functional and structural brain abnormalities have been reported in these two disorders. However, the direct link between altered functioning and structure in these two diseases is unknown. To elucidate this relationship, we conducted a multimodal fusion analysis on the functional network connectivity (FNC) and gray matter density from MRI data from 13 BD, 40 MDD, and 33 matched healthy controls (HC). A data-driven fusion method called mCCA+jICA was used to identify the co-altered FNC and gray matter components. Comparing to HC, BD exhibited reduced gray matter density in the parietal and occipital cortices, which correlated with attenuated functional connectivity within sensory and motor networks, as well as hyper-connectivity in regions that are putatively engaged in cognitive control. In addition, lower gray matter density was found in MDD in the amygdala and cerebellum. High accuracy in discriminating across groups was also achieved by trained classification models, implying that features extracted from the fusion analysis hold the potential to ultimately serve as diagnostic biomarkers for mood disorders.

  13. [Establishment of anatomical terminology in Japan].

    Science.gov (United States)

    Shimada, Kazuyuki

    2008-12-01

    The history of anatomical terminology in Japan began with the publication of Waran Naikei Ihan-teimŏ in 1805 and Chŏtei Kaitai Shinsho in 1826. Although the establishment of Japanese anatomical terminology became necessary during the Meiji era when many western anatomy books imported into Janan were translated, such terminology was not unified during this period and varied among translators. In 1871, Tsukumo Ono's Kaibŏgaku Gosen was published by the Ministry of Education. Although this book is considered to be the first anatomical glossary terms in Japan, its contents were incomplete. Overseas, the German Anatomical Society established a unified anatomical terminology in 1895 called the Basle Nomina Anatomica (B.N.A.). Based on this development, Kaibŏgaku Meishŭ which follows the BNA, by Buntarŏ Suzuki was published in 1905. With the subsequent establishment in 1935 of Jena Nomina Anatomica (J.N.A.), the unification of anatomical terminology was also accelerated in Japan, leading to the further development of terminology.

  14. Mind-wandering and alterations to default mode network connectivity when listening to naturalistic versus artificial sounds

    OpenAIRE

    Gould van Praag, CD; Garfinkel, SN; Sparasci, O; Mees, A; Philippides, AO; Ware, M; Ottaviani, C; Critchley, HD

    2017-01-01

    Naturalistic environments have been demonstrated to promote relaxation and wellbeing. We assess opposing theoretical accounts for these effects through investigation of autonomic arousal and alterations of activation and functional connectivity within the default mode network (DMN) of the brain while participants listened to sounds from artificial and natural environments. We found no evidence for increased DMN activity in the naturalistic compared to artificial or control condition, however,...

  15. Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life.

    Science.gov (United States)

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-08-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, longitudinal MR images of 73 healthy subjects from birth to 2 year old are used. For each subject at each time point, its measures of cortical thickness, cortical folding, and fiber density are projected to its cortical surface that has been partitioned into 78 cortical regions. Then, the correlation matrices for cortical thickness, cortical folding, and fiber density at each time point can be constructed, respectively, by computing the inter-regional Pearson correlation coefficient (of any pair of ROIs) across all 73 subjects. Finally, the presence/absence pattern (i.e., binary pattern) of the connection network is constructed from each inter-regional correlation matrix, and its statistical and anatomical properties are adopted to analyze the longitudinal development of anatomical networks. The results show that the development of anatomical network could be characterized differently by using different anatomical properties (i.e., using cortical thickness, cortical folding, or fiber density). Copyright © 2013 Wiley Periodicals, Inc.

  16. Altered resting state connectivity in right side frontoparietal network in primary insomnia patients

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shumei; Tian, Junzhang; Li, Meng; Wang, Tianyue; Lin, Chulan; Yin, Yi; Jiang, Guihua [Guangdong Second Provincial General Hospital, Department of Medical Imaging, Guangzhou (China); Zeng, Luxian [Guangdong Second Provincial General Hospital, Department of Science and Education, Guangzhou (China); Li, Cheng [Guangdong Second Provincial General Hospital, Department of Renal Transplantation, Guangzhou (China)

    2018-02-15

    This study investigated alterations of resting-state networks (RSNs) in primary insomnia patients as well as relationships between these changes and clinical features. Fifty-nine primary insomnia patients and 53 healthy control subjects underwent a resting-state fMRI scan (rs-fMRI). Ten RSNs were identified using independent component analysis of rs-fMRI data. To assess significant differences between the two groups, voxel-wise analysis of ten RSNs was conducted using dual regression with FSL randomised non-parametric permutation testing and a threshold-free cluster enhanced technique to control for multiple comparisons. Relationships between abnormal functional connectivity and clinical variables were then investigated with Pearson's correlation analysis. Primary insomnia patients showed decreased connectivity in regions of the right frontoparietal network (FPN), including the superior parietal lobule and superior frontal gyrus. Moreover, decreased connectivity in the right middle temporal gyrus and right lateral occipital cortex with the FPN showed significant positive correlations with disease duration and self-rated anxiety, respectively. Our study suggests that primary insomnia patients are characterised by abnormal organisation of the right FPN, and dysfunction of the FPN is correlated with disease duration and anxiety. The results enhance our understanding of neural substrates underlying symptoms of primary insomnia from the viewpoint of resting-state networks. (orig.)

  17. Altered resting state connectivity in right side frontoparietal network in primary insomnia patients

    International Nuclear Information System (INIS)

    Li, Shumei; Tian, Junzhang; Li, Meng; Wang, Tianyue; Lin, Chulan; Yin, Yi; Jiang, Guihua; Zeng, Luxian; Li, Cheng

    2018-01-01

    This study investigated alterations of resting-state networks (RSNs) in primary insomnia patients as well as relationships between these changes and clinical features. Fifty-nine primary insomnia patients and 53 healthy control subjects underwent a resting-state fMRI scan (rs-fMRI). Ten RSNs were identified using independent component analysis of rs-fMRI data. To assess significant differences between the two groups, voxel-wise analysis of ten RSNs was conducted using dual regression with FSL randomised non-parametric permutation testing and a threshold-free cluster enhanced technique to control for multiple comparisons. Relationships between abnormal functional connectivity and clinical variables were then investigated with Pearson's correlation analysis. Primary insomnia patients showed decreased connectivity in regions of the right frontoparietal network (FPN), including the superior parietal lobule and superior frontal gyrus. Moreover, decreased connectivity in the right middle temporal gyrus and right lateral occipital cortex with the FPN showed significant positive correlations with disease duration and self-rated anxiety, respectively. Our study suggests that primary insomnia patients are characterised by abnormal organisation of the right FPN, and dysfunction of the FPN is correlated with disease duration and anxiety. The results enhance our understanding of neural substrates underlying symptoms of primary insomnia from the viewpoint of resting-state networks. (orig.)

  18. Altered Distant Synchronization of Background Network in Mild Cognitive Impairment during an Executive Function Task

    Directory of Open Access Journals (Sweden)

    Pengyun Wang

    2017-09-01

    Full Text Available Few studies to date have investigated the background network in the cognitive state relying on executive function in mild cognitive impairment (MCI patients. Using the index of degree of centrality (DC, we explored distant synchronization of background network in MCI during a hybrid delayed-match-to-sample task (DMST, which mainly relies on the working memory component of executive function. We observed significant interactions between group and cognitive state in the bilateral posterior cingulate cortex (PCC and the ventral subregion of precuneus. For normal control (NC group, the long distance functional connectivity (FC of the PCC/precuneus with the other regions of the brain was higher in rest state than that working memory state. For MCI patients, however, this pattern altered. There was no significant difference between rest and working memory state. The similar pattern was observed in the other cluster located in the right angular gyrus. To examine whether abnormal DC in PCC/precuneus and angular gyrus partially resulted from the deficit of FC between these regions and the other parts in the whole brain, we conducted a seed-based correlation analysis with these regions as seeds. The results indicated that the FC between bilateral PCC/precuneus and the right inferior parietal lobule (IPL increased from rest to working memory state for NC participants. For MCI patients, however, there was no significant change between rest and working memory state. The similar pattern was observed for the FC between right angular gyrus and right anterior insula. However, there was no difference between MCI and NC groups in global efficiency and modularity. It may indicate a lack of efficient reorganization from rest state to a working memory state in the brain network of MCI patients. The present study demonstrates the altered distant synchronization of background network in MCI during a task relying on executive function. The results provide a new

  19. Cleft lip and palate: recommendations for dental anesthetic procedure based on anatomic evidences

    Directory of Open Access Journals (Sweden)

    Ivy Kiemle Trindade-Suedam

    2012-02-01

    Full Text Available Patients with cleft lip and palate usually present dental anomalies of number, shape, structure and position in the cleft area and the general dentist is frequently asked to restore or extract those teeth. Considering that several anatomic variations are expected in teeth adjacent to cleft areas and that knowledge of these variations by general dentists is required for optimal treatment, the objectives of this paper are: 1 to describe changes in the innervation pattern of anterior teeth and soft tissue caused by the presence of a cleft, 2 to describe a local anesthetic procedure in unilateral and bilateral clefts, and 3 to provide recommendations to improve anesthetic procedures in patients with cleft lip and palate. The cases of 2 patients are presented: one with complete unilateral cleft lip and palate, and the other with complete bilateral cleft lip and palate. The patients underwent local anesthesia in the cleft area in order to extract teeth with poor bone support. The modified anesthetic procedure, respecting the altered course of nerves in the cleft maxilla and soft tissue alterations at the cleft site, was accomplished successfully and the tooth extraction was performed with no pain to the patients. General dentists should be aware of the anatomic variations in nerve courses in the cleft area to offer high quality treatment to patients with cleft lip and palate.

  20. Progestins alter photo-transduction cascade and circadian rhythm network in eyes of zebrafish (Danio rerio)

    Science.gov (United States)

    Zhao, Yanbin; Fent, Karl

    2016-02-01

    Environmental progestins are implicated in endocrine disruption in vertebrates. Additional targets that may be affected in organisms are poorly known. Here we report that progesterone (P4) and drospirenone (DRS) interfere with the photo-transduction cascade and circadian rhythm network in the eyes of zebrafish. Breeding pairs of adult zebrafish were exposed to P4 and DRS for 21 days with different measured concentrations of 7-742 ng/L and 99-13´650 ng/L, respectively. Of totally 10 key photo-transduction cascade genes analyzed, transcriptional levels of most were significantly up-regulated, or normal down-regulation was attenuated. Similarly, for some circadian rhythm genes, dose-dependent transcriptional alterations were also observed in the totally 33 genes analyzed. Significant alterations occurred even at environmental relevant levels of 7 ng/L P4. Different patterns were observed for these transcriptional alterations, of which, the nfil3 family displayed most significant changes. Furthermore, we demonstrate the importance of sampling time for the determination and interpretation of gene expression data, and put forward recommendations for sampling strategies to avoid false interpretations. Our results suggest that photo-transduction signals and circadian rhythm are potential targets for progestins. Further studies are required to assess alterations on the protein level, on physiology and behavior, as well as on implications in mammals.

  1. Effects of network resolution on topological properties of human neocortex

    DEFF Research Database (Denmark)

    Romero-Garcia, Rafael; Atienza, Mercedes; Clemmensen, Line Katrine Harder

    2012-01-01

    Graph theoretical analyses applied to neuroimaging datasets have provided valuable insights into the large-scale anatomical organization of the human neocortex. Most of these studies were performed with different cortical scales leading to cortical networks with different levels of small-world or......Graph theoretical analyses applied to neuroimaging datasets have provided valuable insights into the large-scale anatomical organization of the human neocortex. Most of these studies were performed with different cortical scales leading to cortical networks with different levels of small...

  2. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy.

    Science.gov (United States)

    Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok

    2015-01-01

    alteration in eigenvector centrality, clustering coefficient (inter-regional) and participation co-efficient (inter-modular) alterations of frontal-striatal and fronto-limbic nodes suggesting re-organization of these pathways. Both along tract and structural topology network measurements correlated strongly with motor and visual clinical outcome scores. This study shows the value of combining along-tract analysis and structural network topology in depicting not only selective parietal occipital regional vulnerability but also reorganization of frontal-striatal and frontal-limbic pathways in preterm children with cerebral palsy. These finding also support the concept that widespread, but selective posterior-anterior neural network connectivity alterations in preterm children with cerebral palsy likely contribute to the pathogenesis of neurosensory and cognitive impairment in this group.

  3. Frequency-Dependent Altered Functional Connections of Default Mode Network in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Youjun Li

    2017-08-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder associated with the progressive dysfunction of cognitive ability. Previous research has indicated that the default mode network (DMN is closely related to cognition and is impaired in Alzheimer’s disease. Because recent studies have shown that different frequency bands represent specific physiological functions, DMN functional connectivity studies of the different frequency bands based on resting state fMRI (RS-fMRI data may provide new insight into AD pathophysiology. In this study, we explored the functional connectivity based on well-defined DMN regions of interest (ROIs from the five frequency bands: slow-5 (0.01–0.027 Hz, slow-4 (0.027–0.073 Hz, slow-3 (0.073–0.198 Hz, slow-2 (0.198–0.25 Hzs and standard low-frequency oscillations (LFO (0.01–0.08 Hz. We found that the altered functional connectivity patterns are mainly in the frequency band of slow-5 and slow-4 and that the decreased connections are long distance, but some relatively short connections are increased. In addition, the altered functional connections of the DMN in AD are frequency dependent and differ between the slow-5 and slow-4 bands. Mini-Mental State Examination scores were significantly correlated with the altered functional connectivity patterns in the slow-5 and slow-4 bands. These results indicate that frequency-dependent functional connectivity changes might provide potential biomarkers for AD pathophysiology.

  4. Perceived social isolation is associated with altered functional connectivity in neural networks associated with tonic alertness and executive control.

    Science.gov (United States)

    Layden, Elliot A; Cacioppo, John T; Cacioppo, Stephanie; Cappa, Stefano F; Dodich, Alessandra; Falini, Andrea; Canessa, Nicola

    2017-01-15

    Perceived social isolation (PSI), colloquially known as loneliness, is associated with selectively altered attentional, cognitive, and affective processes in humans, but the neural mechanisms underlying these adjustments remain largely unexplored. Behavioral, eye tracking, and neuroimaging research has identified associations between PSI and implicit hypervigilance for social threats. Additionally, selective executive dysfunction has been evidenced by reduced prepotent response inhibition in social Stroop and dichotic listening tasks. Given that PSI is associated with pre-attentional processes, PSI may also be related to altered resting-state functional connectivity (FC) in the brain. Therefore, we conducted the first resting-state fMRI FC study of PSI in healthy young adults. Five-minute resting-state scans were obtained from 55 participants (31 females). Analyses revealed robust associations between PSI and increased brain-wide FC in areas encompassing the right central operculum and right supramarginal gyrus, and these associations were not explained by depressive symptomatology, objective isolation, or demographics. Further analyses revealed that PSI was associated with increased FC between several nodes of the cingulo-opercular network, a network known to underlie the maintenance of tonic alertness. These regions encompassed the bilateral insula/frontoparietal opercula and ACC/pre-SMA. In contrast, FC between the cingulo-opercular network and right middle/superior frontal gyrus was reduced, a finding associated with diminished executive function in prior literature. We suggest that, in PSI, increased within-network cingulo-opercular FC may be associated with hypervigilance to social threat, whereas reduced right middle/superior frontal gyrus FC to the cingulo-opercular network may be associated with diminished impulse control. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    Science.gov (United States)

    Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M

    2014-10-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  6. The anatomical diaspora: evidence of early American anatomical traditions in North Dakota.

    Science.gov (United States)

    Stubblefield, Phoebe R

    2011-09-01

    The current focus in forensic anthropology on increasing scientific certainty in ancestry determination reinforces the need to examine the ancestry of skeletal remains used for osteology instruction. Human skeletal remains were discovered on the University of North Dakota campus in 2007. After recovery, the osteological examination resulted in a profile for a 33- to 46-year-old woman of African descent with stature ranging from 56.3 to 61.0 in. The pattern of postmortem damage indicated that the remains had been prepared for use as an anatomical teaching specimen. Review of the American history of anatomical teaching revealed a preference for Black subjects, which apparently extended to states like North Dakota despite extremely low resident populations of people of African descent. This study emphasizes the need to examine the ancestry of older teaching specimens that lack provenience, rather than assuming they are derived from typical (i.e., Indian) sources of anatomical material. © 2011 American Academy of Forensic Sciences.

  7. Assessing the heritability of attentional networks

    Directory of Open Access Journals (Sweden)

    Fossella John A

    2001-09-01

    Full Text Available Abstract Background Current efforts to study the genetics of higher functions have been lacking appropriate phenotypes to describe cognition. One of the problems is that many cognitive concepts for which there is a single word (e.g. attention have been shown to be related to several anatomical networks. Recently we have developed an Attention Network Test (ANT that provides a separate measure for each of three anatomically defined attention networks. In this small scale study, we ran 26 pairs of MZ and DZ twins in an effort to determine if any of these networks show sufficient evidence of heritability to warrant further exploration of their genetic basis. Results The efficiency of the executive attention network, that mediates stimulus and response conflict, shows sufficient heritability to warrant further study. Alerting and overall reaction time show some evidence for heritability and in our study the orienting network shows no evidence of heritability. Conclusions These results suggest that genetic variation contributes to normal individual differences in higher order executive attention involving dopamine rich frontal areas including the anterior cingulate. At least the executive portion of the ANT may serve as a valid endophenotype for larger twin studies and subsequent molecular genetic analysis in normal subject populations.

  8. Measuring alterations in oscillatory brain networks in schizophrenia with resting-state MEG: State-of-the-art and methodological challenges.

    Science.gov (United States)

    Alamian, Golnoush; Hincapié, Ana-Sofía; Pascarella, Annalisa; Thiery, Thomas; Combrisson, Etienne; Saive, Anne-Lise; Martel, Véronique; Althukov, Dmitrii; Haesebaert, Frédéric; Jerbi, Karim

    2017-09-01

    Neuroimaging studies provide evidence of disturbed resting-state brain networks in Schizophrenia (SZ). However, untangling the neuronal mechanisms that subserve these baseline alterations requires measurement of their electrophysiological underpinnings. This systematic review specifically investigates the contributions of resting-state Magnetoencephalography (MEG) in elucidating abnormal neural organization in SZ patients. A systematic literature review of resting-state MEG studies in SZ was conducted. This literature is discussed in relation to findings from resting-state fMRI and EEG, as well as to task-based MEG research in SZ population. Importantly, methodological limitations are considered and recommendations to overcome current limitations are proposed. Resting-state MEG literature in SZ points towards altered local and long-range oscillatory network dynamics in various frequency bands. Critical methodological challenges with respect to experiment design, and data collection and analysis need to be taken into consideration. Spontaneous MEG data show that local and global neural organization is altered in SZ patients. MEG is a highly promising tool to fill in knowledge gaps about the neurophysiology of SZ. However, to reach its fullest potential, basic methodological challenges need to be overcome. MEG-based resting-state power and connectivity findings could be great assets to clinical and translational research in psychiatry, and SZ in particular. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  9. Nogo receptor 1 limits tactile task performance independent of basal anatomical plasticity.

    Directory of Open Access Journals (Sweden)

    Jennifer I Park

    Full Text Available The genes that govern how experience refines neural circuitry and alters synaptic structural plasticity are poorly understood. The nogo-66 receptor 1 gene (ngr1 is one candidate that may restrict the rate of learning as well as basal anatomical plasticity in adult cerebral cortex. To investigate if ngr1 limits the rate of learning we tested adult ngr1 null mice on a tactile learning task. Ngr1 mutants display greater overall performance despite a normal rate of improvement on the gap-cross assay, a whisker-dependent learning paradigm. To determine if ngr1 restricts basal anatomical plasticity in the associated sensory cortex, we repeatedly imaged dendritic spines and axonal varicosities of both constitutive and conditional adult ngr1 mutant mice in somatosensory barrel cortex for two weeks through cranial windows with two-photon chronic in vivo imaging. Neither constant nor acute deletion of ngr1 affected turnover or stability of dendritic spines or axonal boutons. The improved performance on the gap-cross task is not attributable to greater motor coordination, as ngr1 mutant mice possess a mild deficit in overall performance and a normal learning rate on the rotarod, a motor task. Mice lacking ngr1 also exhibit normal induction of tone-associated fear conditioning yet accelerated fear extinction and impaired consolidation. Thus, ngr1 alters tactile and motor task performance but does not appear to limit the rate of tactile or motor learning, nor determine the low set point for synaptic turnover in sensory cortex.

  10. Alterations of white matter structural networks in patients with non-neuropsychiatric systemic lupus erythematosus identified by probabilistic tractography and connectivity-based analyses

    Directory of Open Access Journals (Sweden)

    Man Xu

    2017-01-01

    Conclusion: This study reveals an altered topological organization of white matter networks in non-NPSLE patients. Furthermore, this research provides new insights into the structural disruptions underlying the functional and neurocognitive deficits in non-NPSLE patients.

  11. An algebraic topological method for multimodal brain networks comparison

    Directory of Open Access Journals (Sweden)

    Tiago eSimas

    2015-07-01

    Full Text Available Understanding brain connectivity is one of the most important issues in neuroscience. Nonetheless, connectivity data can reflect either functional relationships of brain activities or anatomical connections between brain areas. Although both representations should be related, this relationship is not straightforward. We have devised a powerful method that allows different operations between networks that share the same set of nodes, by embedding them in a common metric space, enforcing transitivity to the graph topology. Here, we apply this method to construct an aggregated network from a set of functional graphs, each one from a different subject. Once this aggregated functional network is constructed, we use again our method to compare it with the structural connectivity to identify particular brain regions that differ in both modalities (anatomical and functional. Remarkably, these brain regions include functional areas that form part of the classical resting state networks. We conclude that our method -based on the comparison of the aggregated functional network- reveals some emerging features that could not be observed when the comparison is performed with the classical averaged functional network.

  12. Surgical reconstruction of pelvic floor descent: anatomic and functional aspects.

    Science.gov (United States)

    Wagenlehner, F M E; Bschleipfer, T; Liedl, B; Gunnemann, A; Petros, P; Weidner, W

    2010-01-01

    The human pelvic floor is a complex structure and pelvic floor dysfunction is seen frequently in females. This review focuses on the surgical reconstruction of the pelvic floor employing recent findings on functional anatomy. A selective literature research was performed by the authors. Pelvic floor activity is regulated by 3 main muscular forces that are responsible for vaginal tension and suspension of the pelvic floor organs, bladder and rectum. A variety of symptoms can derive from pelvic floor dysfunctions, such as urinary urge and stress incontinence, abnormal bladder emptying, fecal incontinence, obstructive bowel disease syndrome and pelvic pain. These symptoms mainly derive, for different reasons, from laxity in the vagina or its supporting ligaments as a result of altered connective tissue. Pelvic floor reconstruction is nowadays driven by the concept that in case of pelvic floor symptoms, restoration of the anatomy will translate into restoration of the physiology and ultimately improve patients' symptoms. The surgical reconstruction of the anatomy is almost exclusively focused on the restoration of the lax pelvic floor ligaments. Exact preoperative identification of the anatomical lesions is necessary to allow for exact anatomical reconstruction with respect to the muscular forces of the pelvic floor. Copyright 2010 S. Karger AG, Basel.

  13. Anatomical location differences between mutated and wild-type isocitrate dehydrogenase 1 in low-grade gliomas.

    Science.gov (United States)

    Yu, Jinhua; Shi, Zhifeng; Ji, Chunhong; Lian, Yuxi; Wang, Yuanyuan; Chen, Liang; Mao, Ying

    2017-10-01

    Anatomical location of gliomas has been considered as a factor implicating the contributions of a specific precursor cells during the tumor growth. Isocitrate dehydrogenase 1 (IDH1) is a pathognomonic biomarker with a significant impact on the development of gliomas and remarkable prognostic effect. The correlation between anatomical location of tumor and IDH1 states for low-grade gliomas was analyzed quantitatively in this study. Ninety-two patients diagnosed of low-grade glioma pathologically were recruited in this study, including 65 patients with IDH1-mutated glioma and 27 patients with wide-type IDH1. A convolutional neural network was designed to segment the tumor from three-dimensional magnetic resonance imaging images. Voxel-based lesion symptom mapping was then employed to study the tumor location distribution differences between gliomas with mutated and wild-type IDH1. In order to characterize the location differences quantitatively, the Automated Anatomical Labeling Atlas was used to partition the standard brain atlas into 116 anatomical volumes of interests (AVOIs). The percentages of tumors with different IDH1 states in 116 AVOIs were calculated and compared. Support vector machine and AdaBoost algorithms were used to estimate the IDH1 status based on the 116 location features of each patient. Experimental results proved that the quantitative tumor location measurement could be a very important group of imaging features in biomarker estimation based on radiomics analysis of glioma.

  14. Alterations in physiology and anatomy during pregnancy.

    Science.gov (United States)

    Tan, Eng Kien; Tan, Eng Loy

    2013-12-01

    Pregnant women undergo profound anatomical and physiological changes so that they can cope with the increased physical and metabolic demands of their pregnancies. The cardiovascular, respiratory, haematological, renal, gastrointestinal and endocrine systems all undergo important physiological alterations and adaptations needed to allow development of the fetus and to allow the mother and fetus to survive the demands of childbirth. Such alterations in anatomy and physiology may cause difficulties in interpreting signs, symptoms, and biochemical investigations, making the clinical assessment of a pregnant woman inevitably confusing but challenging. Understanding these changes is important for every practicing obstetrician, as the pathological deviations from the normal physiological alterations may not be clear-cut until an adverse outcome has resulted. Only with a sound knowledge of the physiology and anatomy changes can the care of an obstetric parturient be safely optimized for a better maternal and fetal outcome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A machine learning approach to automated structural network analysis: application to neonatal encephalopathy.

    Directory of Open Access Journals (Sweden)

    Etay Ziv

    Full Text Available Neonatal encephalopathy represents a heterogeneous group of conditions associated with life-long developmental disabilities and neurological deficits. Clinical measures and current anatomic brain imaging remain inadequate predictors of outcome in children with neonatal encephalopathy. Some studies have suggested that brain development and, therefore, brain connectivity may be altered in the subgroup of patients who subsequently go on to develop clinically significant neurological abnormalities. Large-scale structural brain connectivity networks constructed using diffusion tractography have been posited to reflect organizational differences in white matter architecture at the mesoscale, and thus offer a unique tool for characterizing brain development in patients with neonatal encephalopathy. In this manuscript we use diffusion tractography to construct structural networks for a cohort of patients with neonatal encephalopathy. We systematically map these networks to a high-dimensional space and then apply standard machine learning algorithms to predict neurological outcome in the cohort. Using nested cross-validation we demonstrate high prediction accuracy that is both statistically significant and robust over a broad range of thresholds. Our algorithm offers a novel tool to evaluate neonates at risk for developing neurological deficit. The described approach can be applied to any brain pathology that affects structural connectivity.

  16. Introducing 3-Dimensional Printing of a Human Anatomic Pathology Specimen: Potential Benefits for Undergraduate and Postgraduate Education and Anatomic Pathology Practice.

    Science.gov (United States)

    Mahmoud, Amr; Bennett, Michael

    2015-08-01

    Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.

  17. TIBIAL LANDMARKS IN ACL ANATOMIC REPAIR

    Directory of Open Access Journals (Sweden)

    M. V. Demesсhenko

    2016-01-01

    Full Text Available Purpose: to identify anatomical landmarks on tibial articular surface to serve as reference in preparing tibial canal with respect to the center of ACL footprint during single bundle arthroscopic repair.Materials and methods. Twelve frozen knee joint specimens and 68 unpaired macerated human tibia were studied using anatomical, morphometric, statistical methods as well as graphic simulation.Results. Center of the tibial ACL footprint was located 13,1±1,7 mm anteriorly from posterior border of intercondylar eminence, at 1/3 of the distance along the line connecting apexes of internal and external tubercles and 6,1±0,5 mm anteriorly along the perpendicular raised to this point.Conclusion. Internal and external tubercles, as well as posterior border of intercondylar eminence can be considered as anatomical references to determine the center of the tibial ACL footprint and to prepare bone canals for anatomic ligament repair.

  18. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    Science.gov (United States)

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging

  19. Consensus guidelines for the uniform reporting of study ethics in anatomical research within the framework of the anatomical quality assurance (AQUA) checklist.

    Science.gov (United States)

    Henry, Brandon Michael; Vikse, Jens; Pekala, Przemyslaw; Loukas, Marios; Tubbs, R Shane; Walocha, Jerzy A; Jones, D Gareth; Tomaszewski, Krzysztof A

    2018-05-01

    Unambiguous reporting of a study's compliance with ethical guidelines in anatomical research is imperative. As such, clear, universal, and uniform reporting guidelines for study ethics are essential. In 2016, the International Evidence-Based Anatomy Working group in collaboration with international partners established reporting guidelines for anatomical studies, the Anatomical Quality Assurance (AQUA) Checklist. In this elaboration of the AQUA Checklist, consensus guidelines for reporting study ethics in anatomical studies are provided with in the framework of the AQUA Checklist. The new guidelines are aimed to be applicable to research across the spectrum of the anatomical sciences, including studies on both living and deceased donors. The authors hope the established guidelines will improve ethical compliance and reporting in anatomical research. Clin. Anat. 31:521-524, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  20. The application of anatomical side markers during abdominal and IVU examinations: An investigation of practice prior to and post-installation of computed radiography (CR)

    International Nuclear Information System (INIS)

    Platt, Jane M.; Strudwick, Ruth M.

    2009-01-01

    Professionally, radiographers are accountable for their practice. Available literature highlights the ramifications of not using anatomical side markers within the primary beam. It was thought by the authors that the installation of a computed radiography (CR) system could potentially cause a change in practice due to the ease of adding anatomical side markers manually/electronically during post-processing. This study assessed anatomical marker use within the primary beam at a district general hospital in East Anglia, one-year pre-CR installation and one-year post-CR installation. 100 abdominal images were evaluated from each time period and the presence of anatomical side markers was recorded and compared to establish any significant change. The study showed that although there was a decline in use of anatomical side markers used within the primary beam post-CR installation (from 32% to 25%), the changes were not statistically significant (p > 0.05). However, the agreed standard of 100% images having the primary beam side marker present was not met. There is a conflict of opinion about the necessity for anatomical side markers to be used within the primary beam. However, the researchers believe there is a case for recommending alterations and improvements to practice to comply with 'best practice' requirements.

  1. Laser technique for anatomical-functional study of the medial prefrontal cortex of the brain

    Science.gov (United States)

    Sanchez-Huerta, Laura; Hernandez, Adan; Ayala, Griselda; Marroquin, Javier; Silva, Adriana B.; Khotiaintsev, Konstantin S.; Svirid, Vladimir A.; Flores, Gonzalo; Khotiaintsev, Sergei N.

    1999-05-01

    The brain represents one of the most complex systems that we know yet. In its study, non-destructive methods -- in particular, behavioral studies play an important role. By alteration of brain functioning (e.g. by pharmacological means) and observation of consequent behavior changes an important information on brain organization and functioning is obtained. For inducing local alterations, permanent brain lesions are employed. However, for correct results this technique has to be quasi-non-destructive, i.e. not to affect the normal brain function. Hence, the lesions should be very small, accurate and applied precisely over the structure (e.g. the brain nucleus) of interest. These specifications are difficult to meet with the existing techniques for brain lesions -- specifically, neurotoxical, mechanical and electrical means because they result in too extensive damage. In this paper, we present new laser technique for quasi-non- destructive anatomical-functional mapping in vivo of the medial prefrontal cortex (MPFC) of the rat. The technique is based on producing of small-size, well-controlled laser- induced lesions over some areas of the MPFC. The anesthetized animals are subjected to stereotactic surgery and certain points of the MPFC are exposed the confined radiation of the 10 W cw CO2 laser. Subsequent behavioral changes observed in neonatal and adult animals as well as histological data prove effectiveness of this technology for anatomical- functional studies of the brain by areas, and as a treatment method for some pathologies.

  2. Fragmentation alters stream fish community structure in dendritic ecological networks.

    Science.gov (United States)

    Perkin, Joshuah S; Gido, Keith B

    2012-12-01

    Effects of fragmentation on the ecology of organisms occupying dendritic ecological networks (DENs) have recently been described through both conceptual and mathematical models, but few hypotheses have been tested in complex, real-world ecosystems. Stream fishes provide a model system for assessing effects of fragmentation on the structure of communities occurring within DENs, including how fragmentation alters metacommunity dynamics and biodiversity. A recently developed habitat-availability measure, the "dendritic connectivity index" (DCI), allows for assigning quantitative measures of connectivity in DENs regardless of network extent or complexity, and might be used to predict fish community response to fragmentation. We characterized stream fish community structure in 12 DENs in the Great Plains, USA, during periods of dynamic (summer) and muted (fall) discharge regimes to test the DCI as a predictive model of fish community response to fragmentation imposed by road crossings. Results indicated that fish communities in stream segments isolated by road crossings had reduced species richness (alpha diversity) relative to communities that maintained connectivity with the surrounding DEN during summer and fall. Furthermore, isolated communities had greater dissimilarity (beta diversity) to downstream sites notisolated by road crossings during summer and fall. Finally, dissimilarity among communities within DENs decreased as a function of increased habitat connectivity (measured using the DCI) for summer and fall, suggesting that communities within highly connected DENs tend to be more homogeneous. Our results indicate that the DCI is sensitive to community effects of fragmentation in riverscapes and might be used by managers to predict ecological responses to changes in habitat connectivity. Moreover, our findings illustrate that relating structural connectivity of riverscapes to functional connectivity among communities might aid in maintaining metacommunity

  3. Neural Alterations in Acquired Age-Related Hearing Loss

    Directory of Open Access Journals (Sweden)

    Raksha Anand Mudar

    2016-06-01

    Full Text Available Hearing loss is one of the most prevalent chronic health conditions in older adults. Growing evidence suggests that hearing loss is associated with reduced cognitive functioning and incident dementia. In this mini-review, we briefly examine literature on anatomical and functional alterations in the brains of adults with acquired age-associated hearing loss, which may underlie the cognitive consequences observed in this population, focusing on studies that have used structural and functional magnetic resonance imaging, diffusion tensor imaging, and event-related electroencephalography. We discuss structural and functional alterations observed in the temporal and frontal cortices and the limbic system. These neural alterations are discussed in the context of common cause, information-degradation, and sensory-deprivation hypotheses, and we suggest possible rehabilitation strategies. Although we are beginning to learn more about changes in neural architecture and functionality related to age-associated hearing loss, much work remains to be done. Understanding the neural alterations will provide objective markers for early identification of neural consequences of age-associated hearing loss and for evaluating benefits of intervention approaches.

  4. Insight and psychosis: Functional and anatomical brain connectivity and self-reflection in Schizophrenia.

    Science.gov (United States)

    Ćurčić-Blake, Branislava; van der Meer, Lisette; Pijnenborg, Gerdina H M; David, Anthony S; Aleman, André

    2015-12-01

    Impaired insight into illness, associated with worse treatment outcome, is common in schizophrenia. Insight has been related to the self-reflective processing, centred on the medial frontal cortex. We hypothesized that anatomical and functional routes to and from the ventromedial prefrontal cortex (vmPFC) would differ in patients according to their degree of impaired insight. Forty-five schizophrenia patients and 19 healthy subjects performed a self-reflection task during fMRI, and underwent diffusion tensor imaging. Using dynamic causal modelling we observed increased effective connectivity from the posterior cingulate cortex (PCC), inferior parietal lobule (IPL), and dorsal mPFC (dmPFC) towards the vmPFC with poorer insight and decrease from vmPFC to the IPL. Stronger connectivity from the PCC to vmPFC during judgment of traits related to self was associated with poorer insight. We found small-scale significant changes in white matter integrity associated with clinical insight. Self-reflection may be influenced by synaptic changes that lead to the observed alterations in functional connectivity accompanied by the small-scale but measurable alterations in anatomical connections. Our findings may point to a neural compensatory response to an impairment of connectivity between self-processing regions. Similarly, the observed hyper-connectivity might be a primary deficit linked to inefficiency in the component cognitive processes that lead to impaired insight. We suggest that the stronger cognitive demands placed on patients with poor insight is reflected in increased effective connectivity during the task in this study. © 2015 Wiley Periodicals, Inc.

  5. Comparison of digital surface displacements of maxillary dentures based on noninvasive anatomic landmarks.

    Science.gov (United States)

    Norvell, Nicholas G; Korioth, Tom V; Cagna, David R; Versluis, Antheunis

    2018-02-08

    Artificial markers called fiducials are commonly used to orient digitized surfaces for analysis. However, when these markers are tangible and placed in the region of interest, they may alter surface topography and influence data analysis. The purpose of this in vitro study was to apply a modified digital surface fitting method based on anatomic landmarks to evaluate denture accuracy and to use 2 different denture processing techniques to evaluate the method. The goal was to noninvasively measure and describe any surface differences in denture processing techniques at the intaglio and denture tooth levels. Twenty standardized maxillary complete dentures were waxed on standardized edentulous casts and processed by using acrylic resin compression (COM, n=10) and injection molding (INJ, n=10) methods. Digital scans were recorded of the anatomic surface of the cast, the intaglio and cameo surfaces of the acrylic resin dentures, and the cameo surface of the wax dentures. Three anatomic fiducials were identified on denture intaglio and cast scans and 4 on the cameo surfaces of waxed and acrylic resin denture scans. These fiducials were then used to digitally align the anatomic with the processed intaglio surfaces and the waxed with the processed cameo surfaces. Surface displacements were compared among processed dentures expressed at specific points (9 tissue landmarks and 8 tooth landmarks). The accuracy of surface displacements was assessed by changes in the number and location of anatomic fiducials. The scanning precision and the intraobserver repeatability in the selection of dental landmarks were also determined. For each landmark, the spatial (x, y, and z) mean differences between the 2 processing techniques were calculated for the intaglio and the cameo surfaces and presented on each orthogonal plane. Statistical nonparametric comparison of these means was analyzed with the Mann-Whitney U test (α=.05). Benjamini-Hochberg corrections for multiple comparisons were

  6. Longitudinal Development of Cortical Thickness, Folding, and Fiber Density Networks in the First 2 Years of Life

    OpenAIRE

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H.; Shen, Dinggang

    2013-01-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, ...

  7. Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia.

    Science.gov (United States)

    Hoftman, Gil D; Dienel, Samuel J; Bazmi, Holly H; Zhang, Yun; Chen, Kehui; Lewis, David A

    2018-04-15

    Visuospatial working memory (vsWM), which is impaired in schizophrenia, requires information transfer across multiple nodes in the cerebral cortex, including visual, posterior parietal, and dorsolateral prefrontal regions. Information is conveyed across these regions via the excitatory projections of glutamatergic pyramidal neurons located in layer 3, whose activity is modulated by local inhibitory gamma-aminobutyric acidergic (GABAergic) neurons. Key properties of these neurons differ across these cortical regions. Consequently, in schizophrenia, alterations in the expression of gene products regulating these properties could disrupt vsWM function in different ways, depending on the region(s) affected. Here, we quantified the expression of markers of glutamate and GABA neurotransmission selectively in layer 3 of four cortical regions in the vsWM network from 20 matched pairs of schizophrenia and unaffected comparison subjects. In comparison subjects, levels of glutamate transcripts tended to increase, whereas GABA transcript levels tended to decrease, from caudal to rostral, across cortical regions of the vsWM network. Composite measures across all transcripts revealed a significant effect of region, with the glutamate measure lowest in the primary visual cortex and highest in the dorsolateral prefrontal cortex, whereas the GABA measure showed the opposite pattern. In schizophrenia subjects, the expression levels of many of these transcripts were altered. However, this disease effect differed across regions, such that the caudal-to-rostral increase in the glutamate measure was blunted and the caudal-to-rostral decline in the GABA measure was enhanced in the illness. Differential alterations in layer 3 glutamate and GABA neurotransmission across cortical regions may contribute to vsWM deficits in schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Recent advances in standards for collaborative Digital Anatomic Pathology

    Science.gov (United States)

    2011-01-01

    Context Collaborative Digital Anatomic Pathology refers to the use of information technology that supports the creation and sharing or exchange of information, including data and images, during the complex workflow performed in an Anatomic Pathology department from specimen reception to report transmission and exploitation. Collaborative Digital Anatomic Pathology can only be fully achieved using medical informatics standards. The goal of the international integrating the Healthcare Enterprise (IHE) initiative is precisely specifying how medical informatics standards should be implemented to meet specific health care needs and making systems integration more efficient and less expensive. Objective To define the best use of medical informatics standards in order to share and exchange machine-readable structured reports and their evidences (including whole slide images) within hospitals and across healthcare facilities. Methods Specific working groups dedicated to Anatomy Pathology within multiple standards organizations defined standard-based data structures for Anatomic Pathology reports and images as well as informatic transactions in order to integrate Anatomic Pathology information into the electronic healthcare enterprise. Results The DICOM supplements 122 and 145 provide flexible object information definitions dedicated respectively to specimen description and Whole Slide Image acquisition, storage and display. The content profile “Anatomic Pathology Structured Report” (APSR) provides standard templates for structured reports in which textual observations may be bound to digital images or regions of interest. Anatomic Pathology observations are encoded using an international controlled vocabulary defined by the IHE Anatomic Pathology domain that is currently being mapped to SNOMED CT concepts. Conclusion Recent advances in standards for Collaborative Digital Anatomic Pathology are a unique opportunity to share or exchange Anatomic Pathology structured

  9. Alterations of brain network hubs in reflex syncope: Evidence from a graph theoretical analysis based on DTI.

    Science.gov (United States)

    Park, Bong Soo; Lee, Yoo Jin; Park, Jin-Han; Kim, Il Hwan; Park, Si Hyung; Lee, Ho-Joon; Park, Kang Min

    2018-06-01

    We evaluated global topology and organization of regional hubs in the brain networks and microstructural abnormalities in the white matter of patients with reflex syncope. Twenty patients with reflex syncope and thirty healthy subjects were recruited, and they underwent diffusion tensor imaging (DTI) scans. Graph theory was applied to obtain network measures based on extracted DTI data, using DSI Studio. We then investigated differences in the network measures between the patients with reflex syncope and the healthy subjects. We also analyzed microstructural abnormalities of white matter using tract-based spatial statistics analysis (TBSS). Measures of global topology were not different between patients with reflex syncope and healthy subjects. However, in reflex syncope patients, the strength measures of the right angular, left inferior frontal, left middle orbitofrontal, left superior medial frontal, and left middle temporal gyrus were lower than in healthy subjects. The betweenness centrality measures of the left middle orbitofrontal, left fusiform, and left lingual gyrus in patients were lower than those in healthy subjects. The PageRank centrality measures of the right angular, left middle orbitofrontal, and left superior medial frontal gyrus in patients were lower than those in healthy subjects. Regarding the analysis of the white matter microstructure, there were no differences in the fractional anisotropy and mean diffusivity values between the two groups. We have identified a reorganization of network hubs in the brain network of patients with reflex syncope. These alterations in brain network may play a role in the pathophysiologic mechanism underlying reflex syncope. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  10. Anatomical barriers in the right atrium to the coronary sinus cannulation

    Directory of Open Access Journals (Sweden)

    Wiesława Klimek-Piotrowska

    2016-01-01

    Full Text Available Background. The coronary venous system is an increasingly frequent target of minimally invasive cardiac procedures. The purpose of this paper is to assess the anatomical barriers in the right atrium to coronary sinus cannulation.Methods. We examined the anatomy of the right atrium, coronary sinus ostium, inferior and superior vena cava ostia in 110 randomly selected autopsied human hearts of both sexes (27% females; mean age 49.2 ± 17.5 years.Results. The Eustachian valve was present in 79 cases (71.8% with mean height =4.9 ± 2.6 mm. The valve was perforated in 11 cases (13.9%. It is typically too small to hinder the coronary sinus catheterization, but in some cases (about 2% a significantly protruding valve may be an obstacle. Chiari’s network (4.6% is not a barrier to catheter entry into the right atrium but may significantly impede further catheter manipulations inside the heart venous system. A typical Thebesian valve leaves enough space for the passage of the standard catheter to the coronary sinus.Discussion. Detailed anatomy of various anatomical structures within the right atrium that could play a potential role in coronary sinus cannulation is discussed.

  11. Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities.

    Science.gov (United States)

    Ghafoorian, Mohsen; Karssemeijer, Nico; Heskes, Tom; van Uden, Inge W M; Sanchez, Clara I; Litjens, Geert; de Leeuw, Frank-Erik; van Ginneken, Bram; Marchiori, Elena; Platel, Bram

    2017-07-11

    The anatomical location of imaging features is of crucial importance for accurate diagnosis in many medical tasks. Convolutional neural networks (CNN) have had huge successes in computer vision, but they lack the natural ability to incorporate the anatomical location in their decision making process, hindering success in some medical image analysis tasks. In this paper, to integrate the anatomical location information into the network, we propose several deep CNN architectures that consider multi-scale patches or take explicit location features while training. We apply and compare the proposed architectures for segmentation of white matter hyperintensities in brain MR images on a large dataset. As a result, we observe that the CNNs that incorporate location information substantially outperform a conventional segmentation method with handcrafted features as well as CNNs that do not integrate location information. On a test set of 50 scans, the best configuration of our networks obtained a Dice score of 0.792, compared to 0.805 for an independent human observer. Performance levels of the machine and the independent human observer were not statistically significantly different (p-value = 0.06).

  12. Anatomical eponyms - unloved names in medical terminology.

    Science.gov (United States)

    Burdan, F; Dworzański, W; Cendrowska-Pinkosz, M; Burdan, M; Dworzańska, A

    2016-01-01

    Uniform international terminology is a fundamental issue of medicine. Names of various organs or structures have developed since early human history. The first proper anatomical books were written by Hippocrates, Aristotle and Galen. For this reason the modern terms originated from Latin or Greek. In a modern time the terminology was improved in particular by Vasalius, Fabricius and Harvey. Presently each known structure has internationally approved term that is explained in anatomical or histological terminology. However, some elements received eponyms, terms that incorporate the surname of the people that usually describe them for the first time or studied them (e.g., circle of Willis, follicle of Graff, fossa of Sylvious, foramen of Monro, Adamkiewicz artery). Literature and historical hero also influenced medical vocabulary (e.g. Achilles tendon and Atlas). According to various scientists, all the eponyms bring colour to medicine, embed medical traditions and culture to our history but lack accuracy, lead of confusion, and hamper scientific discussion. The current article presents a wide list of the anatomical eponyms with their proper anatomical term or description according to international anatomical terminology. However, since different eponyms are used in various countries, the list could be expanded.

  13. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    Science.gov (United States)

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  14. From chalkboard, slides, and paper to e-learning: How computing technologies have transformed anatomical sciences education.

    Science.gov (United States)

    Trelease, Robert B

    2016-11-01

    Until the late-twentieth century, primary anatomical sciences education was relatively unenhanced by advanced technology and dependent on the mainstays of printed textbooks, chalkboard- and photographic projection-based classroom lectures, and cadaver dissection laboratories. But over the past three decades, diffusion of innovations in computer technology transformed the practices of anatomical education and research, along with other aspects of work and daily life. Increasing adoption of first-generation personal computers (PCs) in the 1980s paved the way for the first practical educational applications, and visionary anatomists foresaw the usefulness of computers for teaching. While early computers lacked high-resolution graphics capabilities and interactive user interfaces, applications with video discs demonstrated the practicality of programming digital multimedia linking descriptive text with anatomical imaging. Desktop publishing established that computers could be used for producing enhanced lecture notes, and commercial presentation software made it possible to give lectures using anatomical and medical imaging, as well as animations. Concurrently, computer processing supported the deployment of medical imaging modalities, including computed tomography, magnetic resonance imaging, and ultrasound, that were subsequently integrated into anatomy instruction. Following its public birth in the mid-1990s, the World Wide Web became the ubiquitous multimedia networking technology underlying the conduct of contemporary education and research. Digital video, structural simulations, and mobile devices have been more recently applied to education. Progressive implementation of computer-based learning methods interacted with waves of ongoing curricular change, and such technologies have been deemed crucial for continuing medical education reforms, providing new challenges and opportunities for anatomical sciences educators. Anat Sci Educ 9: 583-602. © 2016 American

  15. Brain structural network topological alterations of the left prefrontal and limbic cortex in psychogenic erectile dysfunction.

    Science.gov (United States)

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-05-01

    Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.

  16. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    Science.gov (United States)

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174

  17. Gross anatomy of network security

    Science.gov (United States)

    Siu, Thomas J.

    2002-01-01

    Information security involves many branches of effort, including information assurance, host level security, physical security, and network security. Computer network security methods and implementations are given a top-down description to permit a medically focused audience to anchor this information to their daily practice. The depth of detail of network functionality and security measures, like that of the study of human anatomy, can be highly involved. Presented at the level of major gross anatomical systems, this paper will focus on network backbone implementation and perimeter defenses, then diagnostic tools, and finally the user practices (the human element). Physical security measures, though significant, have been defined as beyond the scope of this presentation.

  18. Dissection of regulatory networks that are altered in disease via differential co-expression.

    Directory of Open Access Journals (Sweden)

    David Amar

    Full Text Available Comparing the gene-expression profiles of sick and healthy individuals can help in understanding disease. Such differential expression analysis is a well-established way to find gene sets whose expression is altered in the disease. Recent approaches to gene-expression analysis go a step further and seek differential co-expression patterns, wherein the level of co-expression of a set of genes differs markedly between disease and control samples. Such patterns can arise from a disease-related change in the regulatory mechanism governing that set of genes, and pinpoint dysfunctional regulatory networks. Here we present DICER, a new method for detecting differentially co-expressed gene sets using a novel probabilistic score for differential correlation. DICER goes beyond standard differential co-expression and detects pairs of modules showing differential co-expression. The expression profiles of genes within each module of the pair are correlated across all samples. The correlation between the two modules, however, differs markedly between the disease and normal samples. We show that DICER outperforms the state of the art in terms of significance and interpretability of the detected gene sets. Moreover, the gene sets discovered by DICER manifest regulation by disease-specific microRNA families. In a case study on Alzheimer's disease, DICER dissected biological processes and protein complexes into functional subunits that are differentially co-expressed, thereby revealing inner structures in disease regulatory networks.

  19. Determining customer satisfaction in anatomic pathology.

    Science.gov (United States)

    Zarbo, Richard J

    2006-05-01

    Measurement of physicians' and patients' satisfaction with laboratory services has become a standard practice in the United States, prompted by national accreditation requirements. Unlike other surveys of hospital-, outpatient care-, or physician-related activities, no ongoing, comprehensive customer satisfaction survey of anatomic pathology services is available for subscription that would allow continual benchmarking against peer laboratories. Pathologists, therefore, must often design their own local assessment tools to determine physician satisfaction in anatomic pathology. To describe satisfaction survey design that would elicit specific information from physician customers about key elements of anatomic pathology services. The author shares his experience in biannually assessing customer satisfaction in anatomic pathology with survey tools designed at the Henry Ford Hospital, Detroit, Mich. Benchmarks for physician satisfaction, opportunities for improvement, and characteristics that correlated with a high level of physician satisfaction were identified nationally from a standardized survey tool used by 94 laboratories in the 2001 College of American Pathologists Q-Probes quality improvement program. In general, physicians are most satisfied with professional diagnostic services and least satisfied with pathology services related to poor communication. A well-designed and conducted customer satisfaction survey is an opportunity for pathologists to periodically educate physician customers about services offered, manage unrealistic expectations, and understand the evolving needs of the physician customer. Armed with current information from physician customers, the pathologist is better able to strategically plan for resources that facilitate performance improvements in anatomic pathology laboratory services that align with evolving clinical needs in health care delivery.

  20. The importance of accurate anatomic assessment for the volumetric analysis of the amygdala

    Directory of Open Access Journals (Sweden)

    L. Bonilha

    2005-03-01

    Full Text Available There is a wide range of values reported in volumetric studies of the amygdala. The use of single plane thick magnetic resonance imaging (MRI may prevent the correct visualization of anatomic landmarks and yield imprecise results. To assess whether there is a difference between volumetric analysis of the amygdala performed with single plane MRI 3-mm slices and with multiplanar analysis of MRI 1-mm slices, we studied healthy subjects and patients with temporal lobe epilepsy. We performed manual delineation of the amygdala on T1-weighted inversion recovery, 3-mm coronal slices and manual delineation of the amygdala on three-dimensional volumetric T1-weighted images with 1-mm slice thickness. The data were compared using a dependent t-test. There was a significant difference between the volumes obtained by the coronal plane-based measurements and the volumes obtained by three-dimensional analysis (P < 0.001. An incorrect estimate of the amygdala volume may preclude a correct analysis of the biological effects of alterations in amygdala volume. Three-dimensional analysis is preferred because it is based on more extensive anatomical assessment and the results are similar to those obtained in post-mortem studies.

  1. Anatomical Arrangement of the Subclavian Artery Branches in the Rabbit and European Hare

    Directory of Open Access Journals (Sweden)

    Maženský D.

    2017-12-01

    Full Text Available The aim of this study was to compare the anatomical arrangements of the branches arising from the subclavian arteries in the domesticated rabbit and hare. The study was carried out on ten adult rabbits and ten adult European hares using the corrosion cast technique. After the euthanasia, the vascular network was perfused with saline. The arterial system of the entire body was injected by Batson’s corrosion casting kit No. 17. After polymerization of the medium, the maceration was carried out in KOH solution. The arrangement of the origins of the branches of the bilateral subclavian arteries were more variable in the hare. The number of branches arising from the subclavian artery were more regular in the rabbit on the right side and in the hare on the left side. In the rabbit, we found in two cases, the origins of the branches of the left subclavian artery from the aortic arch. The anatomical found between the rabbit and the hare may possibly be associated with their different ways of life.

  2. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons .

    Directory of Open Access Journals (Sweden)

    Dan eShlosberg

    2012-02-01

    Full Text Available Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO fluorescent indicator DAF-2DA. However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity.Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4X objective. Histochemistry for NADPH diaphorase, a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during and after illumination confirmed the selective damage to non fast-spiking interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs was significantly reduced at distances of 300-400 m from the stimulation, but not when inhibition was non-selectively weakened with the GABAA blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.

  3. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons.

    Science.gov (United States)

    Shlosberg, Dan; Buskila, Yossi; Abu-Ghanem, Yasmin; Amitai, Yael

    2012-01-01

    Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS) is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO) fluorescent indicator diaminofluorescein-2 diacetate (DAF-2DA). However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity. Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4× objective. Histochemistry for NADPH-diaphorase (NADPH-d), a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during, and after illumination confirmed the selective damage to non-fast-spiking (FS) interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs) was significantly reduced at distances of 300-400 μm from the stimulation, but not when inhibition was non-selectively weakened with the GABA(A) blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.

  4. Anatomical Basis for the Cardiac Interventional Electrophysiologist

    Directory of Open Access Journals (Sweden)

    Damián Sánchez-Quintana

    2015-01-01

    Full Text Available The establishment of radiofrequency catheter ablation techniques as the mainstay in the treatment of tachycardia has renewed new interest in cardiac anatomy. The interventional arrhythmologist has drawn attention not only to the gross anatomic details of the heart but also to architectural and histological characteristics of various cardiac regions that are relevant to the development or recurrence of tachyarrhythmias and procedural related complications of catheter ablation. In this review, therefore, we discuss some anatomic landmarks commonly used in catheter ablations including the terminal crest, sinus node region, Koch’s triangle, cavotricuspid isthmus, Eustachian ridge and valve, pulmonary venous orifices, venoatrial junctions, and ventricular outflow tracts. We also discuss the anatomical features of important structures in the vicinity of the atria and pulmonary veins, such as the esophagus and phrenic nerves. This paper provides basic anatomic information to improve understanding of the mapping and ablative procedures for cardiac interventional electrophysiologists.

  5. Characterization of Schizophrenia Adverse Drug Interactions through a Network Approach and Drug Classification

    Directory of Open Access Journals (Sweden)

    Jingchun Sun

    2013-01-01

    Full Text Available Antipsychotic drugs are medications commonly for schizophrenia (SCZ treatment, which include two groups: typical and atypical. SCZ patients have multiple comorbidities, and the coadministration of drugs is quite common. This may result in adverse drug-drug interactions, which are events that occur when the effect of a drug is altered by the coadministration of another drug. Therefore, it is important to provide a comprehensive view of these interactions for further coadministration improvement. Here, we extracted SCZ drugs and their adverse drug interactions from the DrugBank and compiled a SCZ-specific adverse drug interaction network. This network included 28 SCZ drugs, 241 non-SCZs, and 991 interactions. By integrating the Anatomical Therapeutic Chemical (ATC classification with the network analysis, we characterized those interactions. Our results indicated that SCZ drugs tended to have more adverse drug interactions than other drugs. Furthermore, SCZ typical drugs had significant interactions with drugs of the “alimentary tract and metabolism” category while SCZ atypical drugs had significant interactions with drugs of the categories “nervous system” and “antiinfectives for systemic uses.” This study is the first to characterize the adverse drug interactions in the course of SCZ treatment and might provide useful information for the future SCZ treatment.

  6. Hyperthermia-induced disruption of functional connectivity in the human brain network.

    Directory of Open Access Journals (Sweden)

    Gang Sun

    Full Text Available BACKGROUND: Passive hyperthermia is a potential risk factor to human cognitive performance and work behavior in many extreme work environments. Previous studies have demonstrated significant effects of passive hyperthermia on human cognitive performance and work behavior. However, there is a lack of a clear understanding of the exact affected brain regions and inter-regional connectivities. METHODOLOGY AND PRINCIPAL FINDINGS: We simulated 1 hour environmental heat exposure to thirty-six participants under two environmental temperature conditions (25 °C and 50 °C, and collected resting-state functional brain activity. The functional connectivities with a preselected region of interest (ROI in the posterior cingulate cortex and precuneus (PCC/PCu, furthermore, inter-regional connectivities throughout the entire brain using a prior Anatomical Automatic Labeling (AAL atlas were calculated. We identified decreased correlations of a set of regions with the PCC/PCu, including the medial orbitofrontal cortex (mOFC and bilateral medial temporal cortex, as well as increased correlations with the partial orbitofrontal cortex particularly in the bilateral orbital superior frontal gyrus. Compared with the normal control (NC group, the hyperthermia (HT group showed 65 disturbed functional connectivities with 50 of them being decreased and 15 of them being increased. While the decreased correlations mainly involved with the mOFC, temporal lobe and occipital lobe, increased correlations were mainly located within the limbic system. In consideration of physiological system changes, we explored the correlations of the number of significantly altered inter-regional connectivities with differential rectal temperatures and weight loss, but failed to obtain significant correlations. More importantly, during the attention network test (ANT we found that the number of significantly altered functional connectivities was positively correlated with an increase in

  7. Role of altered cerebello-thalamo-cortical network in the neurobiology of essential tremor

    Energy Technology Data Exchange (ETDEWEB)

    Lenka, Abhishek; Bhalsing, Ketaki Swapnil; Jhunjhunwala, Ketan [National Institute of Mental Health and Neurosciences, Department of Neurology, Bangalore, Karnataka (India); National Institute of Mental Health and Neurosciences, Department of Clinical Neurosciences, Bangalore, Karnataka (India); Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn [National Institute of Mental Health and Neurosciences, Department of Neuroimaging and Interventional Radiology, Bangalore, Karnataka (India); Naduthota, Rajini M.; Yadav, Ravi; Pal, Pramod Kumar [National Institute of Mental Health and Neurosciences, Department of Neurology, Bangalore, Karnataka (India)

    2017-02-15

    Essential tremor (ET) is the most common movement disorder among adults. Although ET has been recognized as a mono-symptomatic benign illness, reports of non-motor symptoms and non-tremor motor symptoms have increased its clinical heterogeneity. The neural correlates of ET are not clearly understood. The aim of this study was to understand the neurobiology of ET using resting state fMRI. Resting state functional MR images of 30 patients with ET and 30 age- and gender-matched healthy controls were obtained. The functional connectivity of the two groups was compared using whole-brain seed-to-voxel-based analysis. The ET group had decreased connectivity of several cortical regions especially of the primary motor cortex and the primary somatosensory cortex with several right cerebellar lobules compared to the controls. The thalamus on both hemispheres had increased connectivity with multiple posterior cerebellar lobules and vermis. Connectivity of several right cerebellar seeds with the cortical and thalamic seeds had significant correlation with an overall score of Fahn-Tolosa-Marin tremor rating scale (FTM-TRS) as well as the subscores for head tremor and limb tremor. Seed-to-voxel resting state connectivity analysis revealed significant alterations in the cerebello-thalamo-cortical network in patients with ET. These alterations correlated with the overall FTM scores as well as the subscores for limb tremor and head tremor in patients with ET. These results further support the previous evidence of cerebellar pathology in ET. (orig.)

  8. Role of altered cerebello-thalamo-cortical network in the neurobiology of essential tremor

    International Nuclear Information System (INIS)

    Lenka, Abhishek; Bhalsing, Ketaki Swapnil; Jhunjhunwala, Ketan; Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn; Naduthota, Rajini M.; Yadav, Ravi; Pal, Pramod Kumar

    2017-01-01

    Essential tremor (ET) is the most common movement disorder among adults. Although ET has been recognized as a mono-symptomatic benign illness, reports of non-motor symptoms and non-tremor motor symptoms have increased its clinical heterogeneity. The neural correlates of ET are not clearly understood. The aim of this study was to understand the neurobiology of ET using resting state fMRI. Resting state functional MR images of 30 patients with ET and 30 age- and gender-matched healthy controls were obtained. The functional connectivity of the two groups was compared using whole-brain seed-to-voxel-based analysis. The ET group had decreased connectivity of several cortical regions especially of the primary motor cortex and the primary somatosensory cortex with several right cerebellar lobules compared to the controls. The thalamus on both hemispheres had increased connectivity with multiple posterior cerebellar lobules and vermis. Connectivity of several right cerebellar seeds with the cortical and thalamic seeds had significant correlation with an overall score of Fahn-Tolosa-Marin tremor rating scale (FTM-TRS) as well as the subscores for head tremor and limb tremor. Seed-to-voxel resting state connectivity analysis revealed significant alterations in the cerebello-thalamo-cortical network in patients with ET. These alterations correlated with the overall FTM scores as well as the subscores for limb tremor and head tremor in patients with ET. These results further support the previous evidence of cerebellar pathology in ET. (orig.)

  9. Interpreting and Integrating Clinical and Anatomic Pathology Results.

    Science.gov (United States)

    Ramaiah, Lila; Hinrichs, Mary Jane; Skuba, Elizabeth V; Iverson, William O; Ennulat, Daniela

    2017-01-01

    The continuing education course on integrating clinical and anatomical pathology data was designed to communicate the importance of using a weight of evidence approach to interpret safety findings in toxicology studies. This approach is necessary, as neither clinical nor anatomic pathology data can be relied upon in isolation to fully understand the relationship between study findings and the test article. Basic principles for correlating anatomic pathology and clinical pathology findings and for integrating these with other study end points were reviewed. To highlight these relationships, a series of case examples, presented jointly by a clinical pathologist and an anatomic pathologist, were used to illustrate the collaborative effort required between clinical and anatomical pathologists. In addition, the diagnostic utility of traditional liver biomarkers was discussed using results from a meta-analysis of rat hepatobiliary marker and histopathology data. This discussion also included examples of traditional and novel liver and renal biomarker data implementation in nonclinical toxicology studies to illustrate the relationship between discrete changes in biochemistry and tissue morphology.

  10. Altered Behavioral and Autonomic Pain Responses in Alzheimer’s Disease Are Associated with Dysfunctional Affective, Self-Reflective and Salience Network Resting-State Connectivity

    Directory of Open Access Journals (Sweden)

    Paul A. Beach

    2017-09-01

    Full Text Available While pain behaviors are increased in Alzheimer’s disease (AD patients compared to healthy seniors (HS across multiple disease stages, autonomic responses are reduced with advancing AD. To better understand the neural mechanisms underlying these phenomena, we undertook a controlled cross-sectional study examining behavioral (Pain Assessment in Advanced Dementia, PAINAD scores and autonomic (heart rate, HR pain responses in 24 HS and 20 AD subjects using acute pressure stimuli. Resting-state fMRI was utilized to investigate how group connectivity differences were related to altered pain responses. Pain behaviors (slope of PAINAD score change and mean PAINAD score were increased in patients vs. controls. Autonomic measures (HR change intercept and mean HR change were reduced in severe vs. mildly affected AD patients. Group functional connectivity differences associated with greater pain behavior reactivity in patients included: connectivity within a temporal limbic network (TLN and between the TLN and ventromedial prefrontal cortex (vmPFC; between default mode network (DMN subcomponents; between the DMN and ventral salience network (vSN. Reduced HR responses within the AD group were associated with connectivity changes within the DMN and vSN—specifically the precuneus and vmPFC. Discriminant classification indicated HR-related connectivity within the vSN to the vmPFC best distinguished AD severity. Thus, altered behavioral and autonomic pain responses in AD reflects dysfunction of networks and structures subserving affective, self-reflective, salience and autonomic regulation.

  11. Anatomical and palynological characteristics of Salvia willeana ...

    African Journals Online (AJOL)

    In this study, anatomical and palynological features of the roots, stems, petiole and leaves of Salvia willeana (Holmboe) Hedge and Salvia veneris Hedge, Salvia species endemic to Cyprus, were investigated. In the anatomical characteristics of stem structures, it was found that the chlorenchyma composed of 6 or 7 rows of ...

  12. Standards to support information systems integration in anatomic pathology.

    Science.gov (United States)

    Daniel, Christel; García Rojo, Marcial; Bourquard, Karima; Henin, Dominique; Schrader, Thomas; Della Mea, Vincenzo; Gilbertson, John; Beckwith, Bruce A

    2009-11-01

    Integrating anatomic pathology information- text and images-into electronic health care records is a key challenge for enhancing clinical information exchange between anatomic pathologists and clinicians. The aim of the Integrating the Healthcare Enterprise (IHE) international initiative is precisely to ensure interoperability of clinical information systems by using existing widespread industry standards such as Digital Imaging and Communication in Medicine (DICOM) and Health Level Seven (HL7). To define standard-based informatics transactions to integrate anatomic pathology information to the Healthcare Enterprise. We used the methodology of the IHE initiative. Working groups from IHE, HL7, and DICOM, with special interest in anatomic pathology, defined consensual technical solutions to provide end-users with improved access to consistent information across multiple information systems. The IHE anatomic pathology technical framework describes a first integration profile, "Anatomic Pathology Workflow," dedicated to the diagnostic process including basic image acquisition and reporting solutions. This integration profile relies on 10 transactions based on HL7 or DICOM standards. A common specimen model was defined to consistently identify and describe specimens in both HL7 and DICOM transactions. The IHE anatomic pathology working group has defined standard-based informatics transactions to support the basic diagnostic workflow in anatomic pathology laboratories. In further stages, the technical framework will be completed to manage whole-slide images and semantically rich structured reports in the diagnostic workflow and to integrate systems used for patient care and those used for research activities (such as tissue bank databases or tissue microarrayers).

  13. Defining nodes in complex brain networks

    Directory of Open Access Journals (Sweden)

    Matthew Lawrence Stanley

    2013-11-01

    Full Text Available Network science holds great promise for expanding our understanding of the human brain in health, disease, development, and aging. Network analyses are quickly becoming the method of choice for analyzing functional MRI data. However, many technical issues have yet to be confronted in order to optimize results. One particular issue that remains controversial in functional brain network analyses is the definition of a network node. In functional brain networks a node represents some predefined collection of brain tissue, and an edge measures the functional connectivity between pairs of nodes. The characteristics of a node, chosen by the researcher, vary considerably in the literature. This manuscript reviews the current state of the art based on published manuscripts and highlights the strengths and weaknesses of three main methods for defining nodes. Voxel-wise networks are constructed by assigning a node to each, equally sized brain area (voxel. The fMRI time-series recorded from each voxel is then used to create the functional network. Anatomical methods utilize atlases to define the nodes based on brain structure. The fMRI time-series from all voxels within the anatomical area are averaged and subsequently used to generate the network. Functional activation methods rely on data from traditional fMRI activation studies, often from databases, to identify network nodes. Such methods identify the peaks or centers of mass from activation maps to determine the location of the nodes. Small (~10-20 millimeter diameter spheres located at the coordinates of the activation foci are then applied to the data being used in the network analysis. The fMRI time-series from all voxels in the sphere are then averaged, and the resultant time series is used to generate the network. We attempt to clarify the discussion and move the study of complex brain networks forward. While the correct method to be used remains an open, possibly unsolvable question that

  14. Altered brain network topology in left-behind children: A resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Zhao, Youjin; Du, Meimei; Gao, Xin; Xiao, Yuan; Shah, Chandan; Sun, Huaiqiang; Chen, Fuqin; Yang, Lili; Yan, Zhihan; Fu, Yuchuan; Lui, Su

    2016-12-01

    Whether a lack of direct parental care affects brain function in children is an important question, particularly in developing countries where hundreds of millions of children are left behind when their parents migrate for economic or political reasons. In this study, we investigated changes in the topological architectures of brain functional networks in left-behind children (LBC). Resting-state functional magnetic resonance imaging data were obtained from 26 LBC and 21 children living within their nuclear family (non-LBC). LBC showed a significant increase in the normalized characteristic path length (λ), suggesting a decrease in efficiency in information access, and altered nodal centralities in the fronto-limbic regions and motor and sensory systems. Moreover, a decreased nodal degree and the nodal betweenness of the right rectus gyrus were positively correlated with annual family income. The present study provides the first empirical evidence that suggests that a lack of direct parental care could affect brain functional development in children, particularly involving emotional networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Functional brain networks develop from a "local to distributed" organization.

    Directory of Open Access Journals (Sweden)

    Damien A Fair

    2009-05-01

    Full Text Available The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI, graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength between regions close in anatomical space and 'integration' (an increased correlation strength between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults

  16. Functional brain networks develop from a "local to distributed" organization.

    Science.gov (United States)

    Fair, Damien A; Cohen, Alexander L; Power, Jonathan D; Dosenbach, Nico U F; Church, Jessica A; Miezin, Francis M; Schlaggar, Bradley L; Petersen, Steven E

    2009-05-01

    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have

  17. Benchmarking Academic Anatomic Pathologists

    Directory of Open Access Journals (Sweden)

    Barbara S. Ducatman MD

    2016-10-01

    Full Text Available The most common benchmarks for faculty productivity are derived from Medical Group Management Association (MGMA or Vizient-AAMC Faculty Practice Solutions Center ® (FPSC databases. The Association of Pathology Chairs has also collected similar survey data for several years. We examined the Association of Pathology Chairs annual faculty productivity data and compared it with MGMA and FPSC data to understand the value, inherent flaws, and limitations of benchmarking data. We hypothesized that the variability in calculated faculty productivity is due to the type of practice model and clinical effort allocation. Data from the Association of Pathology Chairs survey on 629 surgical pathologists and/or anatomic pathologists from 51 programs were analyzed. From review of service assignments, we were able to assign each pathologist to a specific practice model: general anatomic pathologists/surgical pathologists, 1 or more subspecialties, or a hybrid of the 2 models. There were statistically significant differences among academic ranks and practice types. When we analyzed our data using each organization’s methods, the median results for the anatomic pathologists/surgical pathologists general practice model compared to MGMA and FPSC results for anatomic and/or surgical pathology were quite close. Both MGMA and FPSC data exclude a significant proportion of academic pathologists with clinical duties. We used the more inclusive FPSC definition of clinical “full-time faculty” (0.60 clinical full-time equivalent and above. The correlation between clinical full-time equivalent effort allocation, annual days on service, and annual work relative value unit productivity was poor. This study demonstrates that effort allocations are variable across academic departments of pathology and do not correlate well with either work relative value unit effort or reported days on service. Although the Association of Pathology Chairs–reported median work relative

  18. Alteration of amino acid and biogenic amine metabolism in hepatobiliary cancers : Findings from a prospective cohort study

    NARCIS (Netherlands)

    Stepien, Magdalena; Duarte-Salles, Talita; Fedirko, Veronika; Floegel, Anne; Barupal, Dinesh Kumar; Rinaldi, Sabina; Achaintre, David; Assi, Nada; Tjønneland, Anne; Overvad, Kim; Bastide, Nadia; Boutron-Ruault, Marie Christine; Severi, Gianluca; Kühn, Tilman; Kaaks, Rudolf; Aleksandrova, Krasimira; Boeing, Heiner; Trichopoulou, Antonia; Bamia, Christina; Lagiou, Pagona; Saieva, Calogero; Agnoli, Claudia; Panico, Salvatore; Tumino, Rosario; Naccarati, Alessio; Bueno-de-Mesquita, H. B.; Peeters, Petra H.; Weiderpass, Elisabete; Quirós, J. Ramón; Agudo, Antonio; Sánchez, María José; Dorronsoro, Miren; Gavrila, Diana; Barricarte, Aurelio; Ohlsson, Bodil; Sjöberg, Klas; Werner, Mårten; Sund, Malin; Wareham, Nick; Khaw, Kay Tee; Travis, Ruth C.; Schmidt, Julie A.; Gunter, Marc; Cross, Amanda; Vineis, Paolo; Romieu, Isabelle; Scalbert, Augustin; Jenab, Mazda

    2016-01-01

    Perturbations in levels of amino acids (AA) and their derivatives are observed in hepatocellular carcinoma (HCC). Yet, it is unclear whether these alterations precede or are a consequence of the disease, nor whether they pertain to anatomically related cancers of the intrahepatic bile duct (IHBC),

  19. Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Thomas P. DeRamus

    2015-01-01

    Full Text Available Autism spectrum disorders (ASD are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE analysis of 21 voxel-based morphometry (VBM studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals. Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations.

  20. Standardized anatomic space for abdominal fat quantification

    Science.gov (United States)

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.

    2014-03-01

    The ability to accurately measure subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from images is important for improved assessment and management of patients with various conditions such as obesity, diabetes mellitus, obstructive sleep apnea, cardiovascular disease, kidney disease, and degenerative disease. Although imaging and analysis methods to measure the volume of these tissue components have been developed [1, 2], in clinical practice, an estimate of the amount of fat is obtained from just one transverse abdominal CT slice typically acquired at the level of the L4-L5 vertebrae for various reasons including decreased radiation exposure and cost [3-5]. It is generally assumed that such an estimate reliably depicts the burden of fat in the body. This paper sets out to answer two questions related to this issue which have not been addressed in the literature. How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? At what anatomic location do the volumes of SAT and VAT correlate maximally with the corresponding single-slice area measures? To answer these questions, we propose two approaches for slice localization: linear mapping and non-linear mapping which is a novel learning based strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. We then study the volume-to-area correlations and determine where they become maximal. We demonstrate on 50 abdominal CT data sets that this mapping achieves significantly improved consistency of anatomic localization compared to current practice. Our results also indicate that maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized.

  1. Early fetal anatomical sonography.

    LENUS (Irish Health Repository)

    Donnelly, Jennifer C

    2012-10-01

    Over the past decade, prenatal screening and diagnosis has moved from the second into the first trimester, with aneuploidy screening becoming both feasible and effective. With vast improvements in ultrasound technology, sonologists can now image the fetus in greater detail at all gestational ages. In the hands of experienced sonographers, anatomic surveys between 11 and 14 weeks can be carried out with good visualisation rates of many structures. It is important to be familiar with the normal development of the embryo and fetus, and to be aware of the major anatomical landmarks whose absence or presence may be deemed normal or abnormal depending on the gestational age. Some structural abnormalities will nearly always be detected, some will never be and some are potentially detectable depending on a number of factors.

  2. The linguistic roots of Modern English anatomical terminology.

    Science.gov (United States)

    Turmezei, Tom D

    2012-11-01

    Previous research focusing on Classical Latin and Greek roots has shown that understanding the etymology of English anatomical terms may be beneficial for students of human anatomy. However, not all anatomical terms are derived from Classical origins. This study aims to explore the linguistic roots of the Modern English terminology used in human gross anatomy. By reference to the Oxford English Dictionary, etymologies were determined for a lexicon of 798 Modern English gross anatomical terms from the 40(th) edition of Gray's Anatomy. Earliest traceable language of origin was determined for all 798 terms; language of acquisition was determined for 747 terms. Earliest traceable languages of origin were: Classical Latin (62%), Classical Greek (24%), Old English (7%), Post-Classical Latin (3%), and other (4%). Languages of acquisition were: Classical Latin (42%), Post-Classical Latin (29%), Old English (8%), Modern French (6%), Classical Greek (5%), Middle English (3%), and other (7%). While the roots of Modern English anatomical terminology mostly lie in Classical languages (accounting for the origin of 86% of terms), the anatomical lexicon of Modern English is actually much more diverse. Interesting and perhaps less familiar examples from these languages and the methods by which such terms have been created and absorbed are discussed. The author suggests that awareness of anatomical etymologies may enhance the enjoyment and understanding of human anatomy for students and teachers alike. Copyright © 2012 Wiley Periodicals, Inc.

  3. The hippocampal network model: A transdiagnostic metaconnectomic approach

    Directory of Open Access Journals (Sweden)

    Eithan Kotkowski

    Full Text Available Purpose: The hippocampus plays a central role in cognitive and affective processes and is commonly implicated in neurodegenerative diseases. Our study aimed to identify and describe a hippocampal network model (HNM using trans-diagnostic MRI data from the BrainMap® database. We used meta-analysis to test the network degeneration hypothesis (NDH (Seeley et al., 2009 by identifying structural and functional covariance in this hippocampal network. Methods: To generate our network model, we used BrainMap's VBM database to perform a region-to-whole-brain (RtWB meta-analysis of 269 VBM experiments from 165 published studies across a range of 38 psychiatric and neurological diseases reporting hippocampal gray matter density alterations. This step identified 11 significant gray matter foci, or nodes. We subsequently used meta-analytic connectivity modeling (MACM to define edges of structural covariance between nodes from VBM data as well as functional covariance using the functional task-activation database, also from BrainMap. Finally, we applied a correlation analysis using Pearson's r to assess the similarities and differences between the structural and functional covariance models. Key findings: Our hippocampal RtWB meta-analysis reported consistent and significant structural covariance in 11 key regions. The subsequent structural and functional MACMs showed a strong correlation between HNM nodes with a significant structural-functional covariance correlation of r = .377 (p = .000049. Significance: This novel method of studying network covariance using VBM and functional meta-analytic techniques allows for the identification of generalizable patterns of functional and structural abnormalities pertaining to the hippocampus. In accordance with the NDH, this framework could have major implications in studying and predicting spatial disease patterns using network-based assays. Keywords: Anatomic likelihood estimation, ALE, BrainMap, Functional

  4. Anatomical influences on internally coupled ears in reptiles.

    Science.gov (United States)

    Young, Bruce A

    2016-10-01

    Many reptiles, and other vertebrates, have internally coupled ears in which a patent anatomical connection allows pressure waves generated by the displacement of one tympanic membrane to propagate (internally) through the head and, ultimately, influence the displacement of the contralateral tympanic membrane. The pattern of tympanic displacement caused by this internal coupling can give rise to novel sensory cues. The auditory mechanics of reptiles exhibit more anatomical variation than in any other vertebrate group. This variation includes structural features such as diverticula and septa, as well as coverings of the tympanic membrane. Many of these anatomical features would likely influence the functional significance of the internal coupling between the tympanic membranes. Several of the anatomical components of the reptilian internally coupled ear are under active motor control, suggesting that in some reptiles the auditory system may be more dynamic than previously recognized.

  5. Perceptions of science. The anatomical mission to Burma.

    Science.gov (United States)

    Sappol, Michael

    2003-10-10

    Until the 1830s, most Americans were unfamiliar with the images of anatomy. Then a small vanguard of reformers and missionaries began to preach, at home and around the world, that an identification with the images and concepts of anatomy was a crucial part of the civilizing process. In his essay, Sappol charts the changes in the perception of self that resulted from this anatomical evangelism. Today, as anatomical images abound in the arts and the media, we still believe that anatomical images show us our inner reality.

  6. Uniportal anatomic combined unusual segmentectomies.

    Science.gov (United States)

    González-Rivas, Diego; Lirio, Francisco; Sesma, Julio

    2017-01-01

    Nowadays, sublobar anatomic resections are gaining momentum as a valid alternative for early stage lung cancer. Despite being technically demanding, anatomic segmentectomies can be performed by uniportal video-assisted thoracic surgery (VATS) approach to combine the benefits of minimally invasiveness with the maximum lung sparing. This procedure can be even more complex if a combined resection of multiple segments from different lobes has to be done. Here we report five cases of combined and unusual segmentectomies done by the same experienced surgeon in high volume institutions to show uniportal VATS is a feasible approach for these complex resections and to share an excellent educational resource.

  7. Mind-wandering and alterations to default mode network connectivity when listening to naturalistic versus artificial sounds.

    Science.gov (United States)

    Gould van Praag, Cassandra D; Garfinkel, Sarah N; Sparasci, Oliver; Mees, Alex; Philippides, Andrew O; Ware, Mark; Ottaviani, Cristina; Critchley, Hugo D

    2017-03-27

    Naturalistic environments have been demonstrated to promote relaxation and wellbeing. We assess opposing theoretical accounts for these effects through investigation of autonomic arousal and alterations of activation and functional connectivity within the default mode network (DMN) of the brain while participants listened to sounds from artificial and natural environments. We found no evidence for increased DMN activity in the naturalistic compared to artificial or control condition, however, seed based functional connectivity showed a shift from anterior to posterior midline functional coupling in the naturalistic condition. These changes were accompanied by an increase in peak high frequency heart rate variability, indicating an increase in parasympathetic activity in the naturalistic condition in line with the Stress Recovery Theory of nature exposure. Changes in heart rate and the peak high frequency were correlated with baseline functional connectivity within the DMN and baseline parasympathetic tone respectively, highlighting the importance of individual neural and autonomic differences in the response to nature exposure. Our findings may help explain reported health benefits of exposure to natural environments, through identification of alterations to autonomic activity and functional coupling within the DMN when listening to naturalistic sounds.

  8. Mistakes in the usage of anatomical terminology in clinical practice.

    Science.gov (United States)

    Kachlik, David; Bozdechova, Ivana; Cech, Pavel; Musil, Vladimir; Baca, Vaclav

    2009-06-01

    Anatomical terminology serves as a basic communication tool in all the medical fields. Therefore Latin anatomical nomenclature has been repetitively issued and revised from 1895 (Basiliensia Nomina Anatomica) until 1998, when the last version was approved and published as the Terminologia Anatomica (International Anatomical Terminology) by the Federative Committee on Anatomical Terminology. A brief history of the terminology and nomenclature development is mentioned, along with the concept and contributions of the Terminologia Anatomica including the employed abbreviations. Examples of obsolete anatomical terms and their current synonyms are listed. Clinicians entered the process of the nomenclature revision and this aspect is demonstrated with several examples of terms used in clinical fields only, some already incorporated in the Terminologia Anatomica and a few obsolete terms still alive in non-theoretical communication. Frequent mistakes in grammar and orthography are stated as well. Authors of the article strongly recommend the use of the recent revision of the Latin anatomical nomenclature both in theoretical and clinical medicine.

  9. Altered Global Signal Topography in Schizophrenia.

    Science.gov (United States)

    Yang, Genevieve J; Murray, John D; Glasser, Matthew; Pearlson, Godfrey D; Krystal, John H; Schleifer, Charlie; Repovs, Grega; Anticevic, Alan

    2017-11-01

    Schizophrenia (SCZ) is a disabling neuropsychiatric disease associated with disruptions across distributed neural systems. Resting-state functional magnetic resonance imaging has identified extensive abnormalities in the blood-oxygen level-dependent signal in SCZ patients, including alterations in the average signal over the brain-i.e. the "global" signal (GS). It remains unknown, however, if these "global" alterations occur pervasively or follow a spatially preferential pattern. This study presents the first network-by-network quantification of GS topography in healthy subjects and SCZ patients. We observed a nonuniform GS contribution in healthy comparison subjects, whereby sensory areas exhibited the largest GS component. In SCZ patients, we identified preferential GS representation increases across association regions, while sensory regions showed preferential reductions. GS representation in sensory versus association cortices was strongly anti-correlated in healthy subjects. This anti-correlated relationship was markedly reduced in SCZ. Such shifts in GS topography may underlie profound alterations in neural information flow in SCZ, informing development of pharmacotherapies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Longitudinal Structural and Functional Brain Network Alterations in a Mouse Model of Neuropathic Pain.

    Science.gov (United States)

    Bilbao, Ainhoa; Falfán-Melgoza, Claudia; Leixner, Sarah; Becker, Robert; Singaravelu, Sathish Kumar; Sack, Markus; Sartorius, Alexander; Spanagel, Rainer; Weber-Fahr, Wolfgang

    2018-04-22

    Neuropathic pain affects multiple brain functions, including motivational processing. However, little is known about the structural and functional brain changes involved in the transition from an acute to a chronic pain state. Here we combined behavioral phenotyping of pain thresholds with multimodal neuroimaging to longitudinally monitor changes in brain metabolism, structure and connectivity using the spared nerve injury (SNI) mouse model of chronic neuropathic pain. We investigated stimulus-evoked pain responses prior to SNI surgery, and one and twelve weeks following surgery. A progressive development and potentiation of stimulus-evoked pain responses (cold and mechanical allodynia) were detected during the course of pain chronification. Voxel-based morphometry demonstrated striking decreases in volume following pain induction in all brain sites assessed - an effect that reversed over time. Similarly, all global and local network changes that occurred following pain induction disappeared over time, with two notable exceptions: the nucleus accumbens, which played a more dominant role in the global network in a chronic pain state and the prefrontal cortex and hippocampus, which showed lower connectivity. These changes in connectivity were accompanied by enhanced glutamate levels in the hippocampus, but not in the prefrontal cortex. We suggest that hippocampal hyperexcitability may contribute to alterations in synaptic plasticity within the nucleus accumbens, and to pain chronification. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Anatomic features involved in technical complexity of partial nephrectomy.

    Science.gov (United States)

    Hou, Weibin; Yan, Weigang; Ji, Zhigang

    2015-01-01

    Nephrometry score systems, including RENAL nephrometry, preoperative aspects and dimensions used for an anatomical classification system, C-index, diameter-axial-polar nephrometry, contact surface area score, calculating resected and ischemized volume, renal tumor invasion index, surgical approach renal ranking score, zonal NePhRO score, and renal pelvic score, have been reviewed. Moreover, salient anatomic features like the perinephric fat and vascular variants also have been discussed. We then extract 7 anatomic characteristics, namely tumor size, spatial location, adjacency, exophytic/endophytic extension, vascular variants, pelvic anatomy, and perinephric fat as important features for partial nephrectomy. For novice surgeons, comprehensive and adequate anatomic consideration may help them in their early clinical practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Anatomically-aided PET reconstruction using the kernel method.

    Science.gov (United States)

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2016-09-21

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  13. Altered white matter microarchitecture in the cingulum bundle in women with primary dysmenorrhea: A tract-based analysis study.

    Science.gov (United States)

    Liu, Jixin; Liu, Hongjuan; Mu, Junya; Xu, Qing; Chen, Tao; Dun, Wanghuan; Yang, Jing; Tian, Jie; Hu, Li; Zhang, Ming

    2017-09-01

    Primary dysmenorrhea (PD), as characterized by painful menstrual cramps without organic causes, is associated with central sensitization and brain function changes. Previous studies showed the integrated role of the default mode network (DMN) in the pain connectome and its key contribution on how an individual perceives and copes with pain disorders. Here, we aimed to investigate whether the cingulum bundle connecting hub regions of the DMN was disrupted in young women with PD. Diffusion tensor imaging was obtained in 41 PD patients and 41 matched healthy controls (HC) during their periovulatory phase. The production of prostaglandins (PGs) was obtained in PD patients during their pain-free and pain phases. As compared with HC, PD patients had similar scores of pain intensity, anxiety, and depression in their pain-free phase. However, altered white matter properties mainly located in the posterior section of the cingulum bundle were observed in PD. Besides PGs being related to menstrual pain, a close relationship was found between the white matter properties of the cingulum bundle during the pain-free phase and the severity of the menstrual pain in PD patients. Our study suggested that PD had trait changes of white matter integrities in the cingulum bundle that persisted beyond the time of menstruation. We inferred that altered anatomical connections may lead to less-flexible communication within the DMN, and/or between the DMN and other pain-related brain networks, which may result in the central susceptibility to develop chronic pain conditions in PD's later life. Hum Brain Mapp 38:4430-4443, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Anatomic and functional leg-length inequality: A review and recommendation for clinical decision-making. Part I, anatomic leg-length inequality: prevalence, magnitude, effects and clinical significance

    Directory of Open Access Journals (Sweden)

    Knutson Gary A

    2005-07-01

    Full Text Available Abstract Background Leg-length inequality is most often divided into two groups: anatomic and functional. Part I of this review analyses data collected on anatomic leg-length inequality relative to prevalence, magnitude, effects and clinical significance. Part II examines the functional "short leg" including anatomic-functional relationships, and provides an outline for clinical decision-making. Methods Online database – Medline, CINAHL and MANTIS – and library searches for the time frame of 1970–2005 were done using the term "leg-length inequality". Results and Discussion Using data on leg-length inequality obtained by accurate and reliable x-ray methods, the prevalence of anatomic inequality was found to be 90%, the mean magnitude of anatomic inequality was 5.2 mm (SD 4.1. The evidence suggests that, for most people, anatomic leg-length inequality does not appear to be clinically significant until the magnitude reaches ~ 20 mm (~3/4". Conclusion Anatomic leg-length inequality is near universal, but the average magnitude is small and not likely to be clinically significant.

  15. Anatomical imaging for radiotherapy

    International Nuclear Information System (INIS)

    Evans, Philip M

    2008-01-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  16. Unification of Sinonasal Anatomical Terminology

    Directory of Open Access Journals (Sweden)

    Voegels, Richard Louis

    2015-07-01

    Full Text Available The advent of endoscopy and computed tomography at the beginning of the 1980s brought to rhinology a revival of anatomy and physiology study. In 1994, the International Conference of Sinus Disease was conceived because the official “Terminologia Anatomica”[1] had little information on the detailed sinonasal anatomy. In addition, there was a lack of uniformity of terminology and definitions. After 20 years, a new conference has been held. The need to use the same terminology led to the publication by the European Society of Rhinology of the “European Position Paper on the Anatomical Terminology of the Internal Nose and Paranasal Sinuses,” that can be accessed freely at www.rhinologyjournal.com. Professor Valerie Lund et al[2] wrote this document reviewing the anatomical terms, comparing to the “Terminology Anatomica” official order to define the structures without eponyms, while respecting the embryological development and especially universalizing and simplifying the terms. A must-read! The text's purpose lies beyond the review of anatomical terminology to universalize the language used to refer to structures of the nasal and paranasal cavities. Information about the anatomy, based on extensive review of the current literature, is arranged in just over 50 pages, which are direct and to the point. The publication may be pleasant reading for learners and teachers of rhinology. This text can be a starting point and enables searching the universal terminology used in Brazil, seeking to converge with this new European proposal for a nomenclature to help us communicate with our peers in Brazil and the rest of the world. The original text of the European Society of Rhinology provides English terms that avoided the use of Latin, and thus fall beyond several national personal translations. It would be admirable if we created our own cross-cultural adaptation of this new suggested anatomical terminology.

  17. Alterations of the default mode network connectivity in obsessive-compulsive personality disorder: A pilot study.

    Science.gov (United States)

    Coutinho, Joana; Goncalves, Oscar Filipe; Soares, José Miguel; Marques, Paulo; Sampaio, Adriana

    2016-10-30

    Obsessive-compulsive personality (OCPD) disorder is characterized by a pattern of excessive self-control, perfectionism and behavioral and cognitive rigidity. Despite the fact that OCPD is the most common personality disorder in the general population, published studies looking at the brain correlates of this disorder are practically nonexistent. The main goal of this study was to analyze the presence of brain alterations in OCPD when compared to healthy controls, specifically at the level of the Default Mode Network (DMN). The DMN is a well-established resting state network which was found to be associated with psychological processes that may play a key role in OCPD (e.g., self-awareness, episodic future thinking and mental simulation). Ten individuals diagnosed with OCPD and ten healthy controls underwent a clinical assessment interview and a resting-state functional magnetic resonance imaging (fMRI) acquisition. The results show that OCPD patients presented an increased functional connectivity in the precuneus (i.e., a posterior node of the DMN), known to be involved in the retrieval manipulation of past events in order to solve current problems and develop plans for the future. These results suggest that this key node of the DMN may play an important role in the pathophysiology of OCPD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Anatomical terminology and nomenclature: past, present and highlights.

    Science.gov (United States)

    Kachlik, David; Baca, Vaclav; Bozdechova, Ivana; Cech, Pavel; Musil, Vladimir

    2008-08-01

    The anatomical terminology is a base for medical communication. It is elaborated into a nomenclature in Latin. Its history goes back to 1895, when the first Latin anatomical nomenclature was published as Basiliensia Nomina Anatomica. It was followed by seven revisions (Jenaiensia Nomina Anatomica 1935, Parisiensia Nomina Anatomica 1955, Nomina Anatomica 2nd to 6th edition 1960-1989). The last revision, Terminologia Anatomica, (TA) created by the Federative Committee on Anatomical Terminology and approved by the International Federation of Associations of Anatomists, was published in 1998. Apart from the official Latin anatomical terminology, it includes a list of recommended English equivalents. In this article, major changes and pitfalls of the nomenclature are discussed, as well as the clinical anatomy terms. The last revision (TA) is highly recommended to the attention of not only teachers, students and researchers, but also to clinicians, doctors, translators, editors and publishers to be followed in their activities.

  19. Extra-Anatomic Revascularization of Extensive Coral Reef Aorta.

    Science.gov (United States)

    Gaggiano, Andrea; Kasemi, Holta; Monti, Andrea; Laurito, Antonella; Maselli, Mauro; Manzo, Paola; Quaglino, Simone; Tavolini, Valeria

    2017-10-01

    Coral reef aorta (CRA) is a rare, potential lethal disease of the visceral aorta as it can cause visceral and renal infarction. Various surgical approaches have been proposed for the CRA treatment. The purpose of this article is to report different extensive extra-anatomic CRA treatment modalities tailored on the patients' clinical and anatomic presentation. From April 2006 to October 2012, 4 symptomatic patients with extensive CRA were treated at our department. Extra-anatomic aortic revascularization with selective visceral vessels clamping was performed in all cases. Technical success was 100%. No perioperative death was registered. All patients remained asymptomatic during the follow-up period (62, 49, 25, and 94 months, respectively), with bypasses and target vessels patency. The extra-anatomic bypass with selective visceral vessels clamping reduces the aortic occlusion time and the risk of organ ischemia. All approaches available should be considered on a case-by-case basis and in high-volume centers. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Complex distal insertions of the tibialis posterior tendon: detailed anatomic and MR imaging investigation in cadavers

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, Daniel; Cerri, Giovanni G. [University of Sao Paulo, Department of Radiology, Sao Paulo, Sao Paulo (Brazil); VA Medical Center, University of California, Department of Radiology, San Diego, CA (United States); Dirim, Berna; Wangwinyuvirat, Mani; Belentani, Clarissa L.; Trudell, Debra J.; Resnick, Donald L. [VA Medical Center, University of California, Department of Radiology, San Diego, CA (United States); Haghighi, Parviz [VA Medical Center, University of California, Department of Radiology, San Diego, CA (United States); VA Medical Center, University of California, Department of Histology, San Diego, CA (United States)

    2008-09-15

    The purpose of this report was to demonstrate the normal complex insertional anatomy of the tibialis posterior tendon (TPT) in cadavers using magnetic resonance (MR) imaging with anatomic and histologic correlation. Ten cadaveric ankles were used according to institutional guidelines. MR T1-weighted spin echo imaging was performed to demonstrate aspects of the complex anatomic distal insertions of the TPT in cadaveric specimens. Findings on MR imaging were correlated with those derived from anatomic and histologic study. Generally, the TPT revealed a low signal in all MR images, except near the level of the medial malleolus, where the TPT suddenly changed direction and ''magic angle'' artifact could be observed. In five out of ten specimens (50%), a type I accessory navicular bone was found in the TPT. In all cases with a type I accessory navicular bone, the TPT had an altered signal in this area. Axial and coronal planes on MR imaging were the best in identifying the distal insertions of the TPT. A normal division of the TPT was observed just proximal to the insertion into the navicular bone in five specimens (100%) occurring at a maximum proximal distance from its attachment to the navicular bone of approximately 1.5 to 2 cm. In the other five specimens, in which a type I accessory navicular bone was present, the TPT directly inserted into the accessory bone and a slip less than 1.5 mm in thickness could be observed attaching to the medial aspect of the navicular bone (100%). Anatomic inspection confirmed the sites of the distal insertions of the components of the TPT. MR imaging enabled detailed analysis of the complex distal insertions of the TPT as well as a better understanding of those features of its insertion that can simulate a lesion. (orig.)

  1. Altered intrinsic functional connectivity in the latent period of epileptogenesis in a temporal lobe epilepsy model.

    Science.gov (United States)

    Lee, Hyoin; Jung, Seungmoon; Lee, Peter; Jeong, Yong

    2017-10-01

    The latent period, a seizure-free phase, is the duration between brain injury and the onset of spontaneous recurrent seizures (SRSs) during epileptogenesis. The latent period is thought to involve several progressive pathophysiological events that lead to the evolution of the chronic epilepsy phase. Hence, it is vital to investigate the changes in the latent period during epileptogenesis in order to better understand temporal lobe epilepsy (TLE), and to achieve early diagnosis and appropriate management of the condition. Accordingly, recent studies with patients with TLE using resting-state functional magnetic resonance imaging (rs-fMRI) have reported that alterations of resting-state functional connectivity (rsFC) during the chronic period are associated with some clinical manifestations, including learning and memory impairments, emotional instability, and social behavior deficits, in addition to repetitive seizure episodes. In contrast, the changes in the intrinsic rsFC during epileptogenesis, particularly during the latent period, remain unclear. In this study, we investigated the alterations in intrinsic rsFC during the latent and chronic periods in a pilocarpine-induced TLE mouse model using intrinsic optical signal imaging (IOSI). This technique can monitor the changes in the local hemoglobin concentration according to neuronal activity and can help investigate large-scale brain intrinsic networks. After seeding on the anatomical regions of interest (ROIs) and calculating the correlation coefficients between each ROI, we established and compared functional correlation matrices and functional connectivity maps during the latent and chronic periods of epilepsy. We found a decrease in the interhemispheric rsFC at the frontal and temporal regions during both the latent and chronic periods. Furthermore, a significant decrease in the interhemispheric rsFC was observed in the somatosensory area during the chronic period. Changes in network configurations during

  2. Reappraising the functional implications of the primate visual anatomical hierarchy.

    Science.gov (United States)

    Hegdé, Jay; Felleman, Daniel J

    2007-10-01

    The primate visual system has been shown to be organized into an anatomical hierarchy by the application of a few principled criteria. It has been widely assumed that cortical visual processing is also hierarchical, with the anatomical hierarchy providing a defined substrate for clear levels of hierarchical function. A large body of empirical evidence seemed to support this assumption, including the general observations that functional properties of visual neurons grow progressively more complex at progressively higher levels of the anatomical hierarchy. However, a growing body of evidence, including recent direct experimental comparisons of functional properties at two or more levels of the anatomical hierarchy, indicates that visual processing neither is hierarchical nor parallels the anatomical hierarchy. Recent results also indicate that some of the pathways of visual information flow are not hierarchical, so that the anatomical hierarchy cannot be taken as a strict flowchart of visual information either. Thus, while the sustaining strength of the notion of hierarchical processing may be that it is rather simple, its fatal flaw is that it is overly simplistic.

  3. Anatomical Correlates of Non-Verbal Perception in Dementia Patients

    Directory of Open Access Journals (Sweden)

    Pin-Hsuan Lin

    2016-08-01

    Full Text Available Purpose: Patients with dementia who have dissociations in verbal and non-verbal sound processing may offer insights into the anatomic basis for highly related auditory modes. Methods: To determine the neuronal networks on non-verbal perception, 16 patients with Alzheimer’s dementia (AD, 15 with behavior variant fronto-temporal dementia (bv-FTD, 14 with semantic dementia (SD were evaluated and compared with 15 age-matched controls. Neuropsychological and auditory perceptive tasks were included to test the ability to compare pitch changes, scale-violated melody and for naming and associating with environmental sound. The brain 3D T1 images were acquired and voxel-based morphometry (VBM was used to compare and correlated the volumetric measures with task scores. Results: The SD group scored the lowest among 3 groups in pitch or scale-violated melody tasks. In the environmental sound test, the SD group also showed impairment in naming and also in associating sound with pictures. The AD and bv-FTD groups, compared with the controls, showed no differences in all tests. VBM with task score correlation showed that atrophy in the right supra-marginal and superior temporal gyri was strongly related to deficits in detecting violated scales, while atrophy in the bilateral anterior temporal poles and left medial temporal structures was related to deficits in environmental sound recognition. Conclusions: Auditory perception of pitch, scale-violated melody or environmental sound reflects anatomical degeneration in dementia patients and the processing of non-verbal sounds is mediated by distinct neural circuits.

  4. The application of graph theoretical analysis to complex networks in the brain.

    Science.gov (United States)

    Reijneveld, Jaap C; Ponten, Sophie C; Berendse, Henk W; Stam, Cornelis J

    2007-11-01

    Considering the brain as a complex network of interacting dynamical systems offers new insights into higher level brain processes such as memory, planning, and abstract reasoning as well as various types of brain pathophysiology. This viewpoint provides the opportunity to apply new insights in network sciences, such as the discovery of small world and scale free networks, to data on anatomical and functional connectivity in the brain. In this review we start with some background knowledge on the history and recent advances in network theories in general. We emphasize the correlation between the structural properties of networks and the dynamics of these networks. We subsequently demonstrate through evidence from computational studies, in vivo experiments, and functional MRI, EEG and MEG studies in humans, that both the functional and anatomical connectivity of the healthy brain have many features of a small world network, but only to a limited extent of a scale free network. The small world structure of neural networks is hypothesized to reflect an optimal configuration associated with rapid synchronization and information transfer, minimal wiring costs, resilience to certain types of damage, as well as a balance between local processing and global integration. Eventually, we review the current knowledge on the effects of focal and diffuse brain disease on neural network characteristics, and demonstrate increasing evidence that both cognitive and psychiatric disturbances, as well as risk of epileptic seizures, are correlated with (changes in) functional network architectural features.

  5. Inexpensive anatomical trainer for bronchoscopy.

    Science.gov (United States)

    Di Domenico, Stefano; Simonassi, Claudio; Chessa, Leonardo

    2007-08-01

    Flexible fiberoptic bronchoscopy is an indispensable tool for optimal management of intensive care unit patients. However, the acquisition of sufficient training in bronchoscopy is not straightforward during residency, because of technical and ethical problems. Moreover, the use of commercial simulators is limited by their high cost. In order to overcome these limitations, we realized a low-cost anatomical simulator to acquire and maintain the basic skill to perform bronchoscopy in ventilated patients. We used 1.5 mm diameter iron wire to construct the bronchial tree scaffold; glazier-putty was applied to create the anatomical model. The model was covered by several layers of newspaper strips previously immersed in water and vinilic glue. When the model completely dried up, it was detached from the scaffold by cutting it into six pieces, it was reassembled, painted and fitted with an endotracheal tube. We used very cheap material and the final cost was euro16. The trainer resulted in real-scale and anatomically accurate, with appropriate correspondence on endoscopic view between model and patients. All bronchial segments can be explored and easily identified by endoscopic and external vision. This cheap simulator is a valuable tool for practicing, particularly in a hospital with limited resources for medical training.

  6. Crista Supraventricularis Purkinje Network and Its Relation to Intraseptal Purkinje Network.

    Science.gov (United States)

    De Almeida, Marcos C; Araujo, Mayssa; Duque, Mathias; Vilhena, Virginia

    2017-10-01

    Using transparent specimens with a dual color injection, microscopy, and computer tomography, this report shows that the right and left ventricular subendocardial Purkinje networks are connected by an extensive septal network in the bovine heart. The septal network is present along the entire septum except at a free zone below ventricular valves. Being the only communication of the basal right septum with the right free wall, the supraventricular crest is an enigmatic but not, by any means, hidden muscular structure. It is one of the last structures to be activated in human heart. It is shown here that the supraventricular crest Purkinje network connects the anterosuperior right ventricular basal free wall Purkinje network to anterior right ventricular basal septal Purkinje network. It is suggested that the stimulus initiated at middle left ventricular endocardium will activate the supraventricular crest. The intraseptal connection found between the basal left ventricular subendocardial septal Purkinje network and the right ventricular basal septal Purkinje network is, probably, the pathway for the stimulus. An anatomic basis is provided to explain why the inflow tract contracts earlier than the outflow tract in the right ventricle systole. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1793-1801, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Anatomically contoured plates for fixation of rib fractures.

    Science.gov (United States)

    Bottlang, Michael; Helzel, Inga; Long, William B; Madey, Steven

    2010-03-01

    : Intraoperative contouring of long bridging plates for stabilization of flail chest injuries is difficult and time consuming. This study implemented for the first time biometric parameters to derive anatomically contoured rib plates. These plates were tested on a range of cadaveric ribs to quantify plate fit and to extract a best-fit plating configuration. : Three left and three right rib plates were designed, which accounted for anatomic parameters required when conforming a plate to the rib surface. The length lP over which each plate could trace the rib surface was evaluated on 109 cadaveric ribs. For each rib level 3-9, the plate design with the highest lP value was extracted to determine a best-fit plating configuration. Furthermore, the characteristic twist of rib surfaces was measured on 49 ribs to determine the surface congruency of anatomic plates with a constant twist. : The tracing length lP of the best-fit plating configuration ranged from 12.5 cm to 14.7 cm for ribs 3-9. The corresponding range for standard plates was 7.1-13.7 cm. The average twist of ribs over 8-cm, 12-cm, and 16-cm segments was 8.3 degrees, 20.6 degrees, and 32.7 degrees, respectively. The constant twist of anatomic rib plates was not significantly different from the average rib twist. : A small set of anatomic rib plates can minimize the need for intraoperative plate contouring for fixation of ribs 3-9. Anatomic rib plates can therefore reduce the time and complexity of flail chest stabilization and facilitate spanning of flail segments with long plates.

  8. Anatomic mapping of molecular subtypes in diffuse glioma.

    Science.gov (United States)

    Tang, Qisheng; Lian, Yuxi; Yu, Jinhua; Wang, Yuanyuan; Shi, Zhifeng; Chen, Liang

    2017-09-15

    Tumor location served as an important prognostic factor in glioma patients was considered to postulate molecular features according to cell origin theory. However, anatomic distribution of unique molecular subtypes was not widely investigated. The relationship between molecular phenotype and histological subgroup were also vague based on tumor location. Our group focuses on the study of glioma anatomic location of distinctive molecular subgroups and histology subtypes, and explores the possibility of their consistency based on clinical background. We retrospectively reviewed 143 cases with both molecular information (IDH1/TERT/1p19q) and MRI images diagnosed as cerebral diffuse gliomas. The anatomic distribution was analyzed between distinctive molecular subgroups and its relationship with histological subtypes. The influence of tumor location, molecular stratification and histology diagnosis on survival outcome was investigated as well. Anatomic locations of cerebral diffuse glioma indicate varied clinical outcome. Based on that, it can be stratified into five principal molecular subgroups according to IDH1/TERT/1p19q status. Triple-positive (IDH1 and TERT mutation with 1p19q codeletion) glioma tended to be oligodendroglioma present with much better clinical outcome compared to TERT mutation only group who is glioblastoma inclined (median overall survival 39 months VS 18 months). Five molecular subgroups were demonstrated with distinctive locational distribution. This kind of anatomic feature is consistent with its corresponding histological subtypes. Each molecular subgroup in glioma has unique anatomic location which indicates distinctive clinical outcome. Molecular diagnosis can be served as perfect complementary tool for the precise diagnosis. Integration of histomolecular diagnosis will be much more helpful in routine clinical practice in the future.

  9. Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Vinay Lanke

    2018-05-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder contributing to rapid decline in cognitive function and ultimately dementia. Most cases of AD occur in elderly and later years. There is a growing need for understanding the relationship between aging and AD to identify shared and unique hallmarks associated with the disease in a region and cell-type specific manner. Although genomic studies on AD have been performed extensively, the molecular mechanism of disease progression is still not clear. The major objective of our study is to obtain a higher-order network-level understanding of aging and AD, and their relationship using the hippocampal gene expression profiles of young (20–50 years, aging (70–99 years, and AD (70–99 years. The hippocampus is vulnerable to damage at early stages of AD and altered neurogenesis in the hippocampus is linked to the onset of AD. We combined the weighted gene co-expression network and weighted protein–protein interaction network-level approaches to study the transition from young to aging to AD. The network analysis revealed the organization of co-expression network into functional modules that are cell-type specific in aging and AD. We found that modules associated with astrocytes, endothelial cells and microglial cells are upregulated and significantly correlate with both aging and AD. The modules associated with neurons, mitochondria and endoplasmic reticulum are downregulated and significantly correlate with AD than aging. The oligodendrocytes module does not show significant correlation with neither aging nor disease. Further, we identified aging- and AD-specific interactions/subnetworks by integrating the gene expression with a human protein–protein interaction network. We found dysregulation of genes encoding protein kinases (FYN, SYK, SRC, PKC, MAPK1, ephrin receptors and transcription factors (FOS, STAT3, CEBPB, MYC, NFKβ, and EGR1 in AD. Further, we found genes that encode proteins

  10. Structural alterations of the superior temporal gyrus in schizophrenia: Detailed subregional differences.

    Science.gov (United States)

    Ohi, K; Matsuda, Y; Shimada, T; Yasuyama, T; Oshima, K; Sawai, K; Kihara, H; Nitta, Y; Okubo, H; Uehara, T; Kawasaki, Y

    2016-05-01

    Reduced gray matter volumes in the superior temporal gyrus (STG) have been reported in patients with schizophrenia. Such volumetric abnormalities might denote alterations in cortical thickness, surface area, local gyrification or all of these factors. The STG can be anatomically divided into five subregions using automatic parcellation in FreeSurfer: lateral aspect of the STG, anterior transverse temporal gyrus of Heschl gyrus (HG), planum polare (PP) of the STG, planum temporale (PT) of the STG and transverse temporal sulcus. We acquired magnetic resonance imaging (MRI) 3T scans from 40 age- and sex-matched patients with schizophrenia and 40 healthy subjects, and the scans were automatically processed using FreeSurfer. General linear models were used to assess group differences in regional volumes and detailed thickness, surface area and local gyrification. As expected, patients with schizophrenia had significantly smaller bilateral STG volumes than healthy subjects. Of the five subregions in the STG, patients with schizophrenia showed significantly and marginally reduced volumes in the lateral aspect of the STG and PT of the STG bilaterally compared with healthy subjects. The volumetric alteration in bilateral lateral STG was derived from both the cortical thickness and surface area but not local gyrification. There was no significant laterality of the alteration in the lateral STG between patients and controls and no correlation among the structures and clinical characteristics. These findings suggest that of five anatomical subregions in the STG, the lateral STG is one of the most meaningful regions for brain pathophysiology in schizophrenia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Connecting imaging mass spectrometry and magnetic resonance imaging-based anatomical atlases for automated anatomical interpretation and differential analysis.

    Science.gov (United States)

    Verbeeck, Nico; Spraggins, Jeffrey M; Murphy, Monika J M; Wang, Hui-Dong; Deutch, Ariel Y; Caprioli, Richard M; Van de Plas, Raf

    2017-07-01

    Imaging mass spectrometry (IMS) is a molecular imaging technology that can measure thousands of biomolecules concurrently without prior tagging, making it particularly suitable for exploratory research. However, the data size and dimensionality often makes thorough extraction of relevant information impractical. To help guide and accelerate IMS data analysis, we recently developed a framework that integrates IMS measurements with anatomical atlases, opening up opportunities for anatomy-driven exploration of IMS data. One example is the automated anatomical interpretation of ion images, where empirically measured ion distributions are automatically decomposed into their underlying anatomical structures. While offering significant potential, IMS-atlas integration has thus far been restricted to the Allen Mouse Brain Atlas (AMBA) and mouse brain samples. Here, we expand the applicability of this framework by extending towards new animal species and a new set of anatomical atlases retrieved from the Scalable Brain Atlas (SBA). Furthermore, as many SBA atlases are based on magnetic resonance imaging (MRI) data, a new registration pipeline was developed that enables direct non-rigid IMS-to-MRI registration. These developments are demonstrated on protein-focused FTICR IMS measurements from coronal brain sections of a Parkinson's disease (PD) rat model. The measurements are integrated with an MRI-based rat brain atlas from the SBA. The new rat-focused IMS-atlas integration is used to perform automated anatomical interpretation and to find differential ions between healthy and diseased tissue. IMS-atlas integration can serve as an important accelerator in IMS data exploration, and with these new developments it can now be applied to a wider variety of animal species and modalities. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2017. Published by Elsevier B.V.

  12. Brain Network Analysis from High-Resolution EEG Signals

    Science.gov (United States)

    de Vico Fallani, Fabrizio; Babiloni, Fabio

    Over the last decade, there has been a growing interest in the detection of the functional connectivity in the brain from different neuroelectromagnetic and hemodynamic signals recorded by several neuro-imaging devices such as the functional Magnetic Resonance Imaging (fMRI) scanner, electroencephalography (EEG) and magnetoencephalography (MEG) apparatus. Many methods have been proposed and discussed in the literature with the aim of estimating the functional relationships among different cerebral structures. However, the necessity of an objective comprehension of the network composed by the functional links of different brain regions is assuming an essential role in the Neuroscience. Consequently, there is a wide interest in the development and validation of mathematical tools that are appropriate to spot significant features that could describe concisely the structure of the estimated cerebral networks. The extraction of salient characteristics from brain connectivity patterns is an open challenging topic, since often the estimated cerebral networks have a relative large size and complex structure. Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory. Since a graph is a mathematical representation of a network, which is essentially reduced to nodes and connections between them, the use of a theoretical graph approach seems relevant and useful as firstly demonstrated on a set of anatomical brain networks. In those studies, the authors have employed two characteristic measures, the average shortest path L and the clustering index C, to extract respectively the global and local properties of the network structure. They have found that anatomical brain networks exhibit many local connections (i.e. a high C) and few random long distance connections (i.e. a low L). These values identify a particular model that interpolate between a regular

  13. Anatomical correlates of cognitive functions in early Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Roberta Biundo

    Full Text Available Cognitive deficits may occur early in Parkinson's disease (PD but the extent of cortical involvement associated with cognitive dysfunction needs additional investigations. The aim of our study is to identify the anatomical pattern of cortical thickness alterations in patients with early stage PD and its relationship with cognitive disability.We recruited 29 PD patients and 21 healthy controls. All PD patients performed an extensive neuropsychological examination and 14 were diagnosed with mild cognitive impairment (PD-MCI. Surface-based cortical thickness analysis was applied to investigate the topographical distribution of cortical and subcortical alterations in early PD compared with controls and to assess the relationship between cognition and regional cortical changes in PD-MCI.Overall PD patients showed focal cortical (occipital-parietal areas, orbito-frontal and olfactory areas and subcortical thinning when compared with controls. PD-MCI showed a wide spectrum of cognitive deficits and related significant regional thickening in the right parietal-frontal as well as in the left temporal-occipital areas.Our results confirm the presence of changes in grey matter thickness at relatively early PD stage and support previous studies showing thinning and atrophy in the neocortex and subcortical regions. Relative cortical thickening in PD-MCI may instead express compensatory neuroplasticity. Brain reserve mechanisms might first modulate cognitive decline during the initial stages of PD.

  14. Automatic anatomically selective image enhancement in digital chest radiography

    International Nuclear Information System (INIS)

    Sezan, M.I.; Minerbo, G.N.; Schaetzing, R.

    1989-01-01

    The authors develop a technique for automatic anatomically selective enhancement of digital chest radiographs. Anatomically selective enhancement is motivated by the desire to simultaneously meet the different enhancement requirements of the lung field and the mediastinum. A recent peak detection algorithm and a set of rules are applied to the image histogram to determine automatically a gray-level threshold between the lung field and mediastinum. The gray-level threshold facilitates anatomically selective gray-scale modification and/or unsharp masking. Further, in an attempt to suppress possible white-band or black-band artifacts due to unsharp masking at sharp edges, local-contrast adaptivity is incorporated into anatomically selective unsharp masking by designing an anatomy-sensitive emphasis parameter which varies asymmetrically with positive and negative values of the local image contrast

  15. CT following US for possible appendicitis: anatomic coverage

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, Martin E. [University of Toronto, Princess Margaret Hospital, 3-920, Joint Department of Medical Imaging, Toronto, Ontario (Canada); Alharbi, Fawaz [University of Toronto, Toronto General Hospital, NCSB 1C572, Joint Department of Medical Imaging, Toronto, Ontario (Canada); Qassim University, Department of Medical Imaging, Buraydah, Qassim (Saudi Arabia); Chawla, Tanya P. [University of Toronto, Mount Sinai Hospital, Room 567, Joint Department of Medical Imaging, Toronto, Ontario (Canada); Moshonov, Hadas [University of Toronto, Joint Department of Medical Imaging, Toronto, Ontario (Canada)

    2016-02-15

    To determine superior-inferior anatomic borders for CT following inconclusive/nondiagnostic US for possible appendicitis. Ninety-nine patients with possible appendicitis and inconclusive/nondiagnostic US followed by CT were included in this retrospective study. Two radiologists reviewed CT images and determined superior-inferior anatomic borders required to diagnose or exclude appendicitis and diagnose alternative causes. This ''targeted'' coverage was used to estimate potential reduction in anatomic coverage compared to standard abdominal/pelvic CT. The study group included 83 women and 16 men; mean age 32 (median, 29; range 18-73) years. Final diagnoses were: nonspecific abdominal pain 50/99 (51 %), appendicitis 26/99 (26 %), gynaecological 12/99 (12 %), gastrointestinal 9/99 (10 %), and musculoskeletal 2/99 (2 %). Median dose-length product for standard CT was 890.0 (range, 306.3 - 2493.9) mGy.cm. To confidently diagnose/exclude appendicitis or identify alternative diagnoses, maximum superior-inferior anatomic CT coverage was the superior border of L2-superior border of pubic symphysis, for both reviewers. Targeted CT would reduce anatomic coverage by 30-55 % (mean 39 %, median 40 %) compared to standard CT. When CT is performed for appendicitis following inconclusive/nondiagnostic US, targeted CT from the superior border of L2-superior border of pubic symphysis can be used resulting in significant reduction in exposure to ionizing radiation compared to standard CT. (orig.)

  16. CT following US for possible appendicitis: anatomic coverage

    International Nuclear Information System (INIS)

    O'Malley, Martin E.; Alharbi, Fawaz; Chawla, Tanya P.; Moshonov, Hadas

    2016-01-01

    To determine superior-inferior anatomic borders for CT following inconclusive/nondiagnostic US for possible appendicitis. Ninety-nine patients with possible appendicitis and inconclusive/nondiagnostic US followed by CT were included in this retrospective study. Two radiologists reviewed CT images and determined superior-inferior anatomic borders required to diagnose or exclude appendicitis and diagnose alternative causes. This ''targeted'' coverage was used to estimate potential reduction in anatomic coverage compared to standard abdominal/pelvic CT. The study group included 83 women and 16 men; mean age 32 (median, 29; range 18-73) years. Final diagnoses were: nonspecific abdominal pain 50/99 (51 %), appendicitis 26/99 (26 %), gynaecological 12/99 (12 %), gastrointestinal 9/99 (10 %), and musculoskeletal 2/99 (2 %). Median dose-length product for standard CT was 890.0 (range, 306.3 - 2493.9) mGy.cm. To confidently diagnose/exclude appendicitis or identify alternative diagnoses, maximum superior-inferior anatomic CT coverage was the superior border of L2-superior border of pubic symphysis, for both reviewers. Targeted CT would reduce anatomic coverage by 30-55 % (mean 39 %, median 40 %) compared to standard CT. When CT is performed for appendicitis following inconclusive/nondiagnostic US, targeted CT from the superior border of L2-superior border of pubic symphysis can be used resulting in significant reduction in exposure to ionizing radiation compared to standard CT. (orig.)

  17. [Project HRANAFINA--Croatian anatomical and physiological terminology].

    Science.gov (United States)

    Vodanović, Marin

    2012-01-01

    HRANAFINA--Croatian Anatomical and Physiological Terminology is a project of the University of Zagreb School of Dental Medicine funded by the Croatian Science Foundation. It is performed in cooperation with other Croatian universities with medical schools. This project has a two-pronged aim: firstly, building of Croatian anatomical and physiological terminology and secondly, Croatian anatomical and physiological terminology usage popularization between health professionals, medical students, scientists and translators. Internationally recognized experts from Croatian universities with medical faculties and linguistics experts are involved in the project. All project activities are coordinated in agreement with the National Coordinator for Development of Croatian Professional Terminology. The project enhances Croatian professional terminology and Croatian language in general, increases competitiveness of Croatian scientists on international level and facilitates the involvement of Croatian scientists, health care providers and medical students in European projects.

  18. Anatomic variability of the vascularized composite osteomyocutaneous flap from the medial femoral condyle: an anatomical study

    Directory of Open Access Journals (Sweden)

    Trung-Hau Le Thua

    2014-12-01

    Full Text Available Aim: The anatomical study and clinical application for the vascularized corticoperiosteal flap from the medial femoral condyle have been performed and described previously. Although prior studies have described the composite osteomyocutaneous flap from the medial femoral condyle, a detailed analysis of the vascularity of this region has not yet been fully evaluated. Methods: This anatomical study described the variability of the arteries from the medial femoral condyle in 40 cadaveric specimens. Results: The descending genicular artery (DGA was found in 33 of 40 cases (82.5%. The  superomedial genicular artery (SGA was present in 10 cases (25%. All 33 cases (100% of the DGA had articular branches to the periosteum of the medial femoral condyle. Muscular branches and saphenous branches of the DGA were present in 25 cases (62.5% and 26 cases (70.3%, respectively. Conclusion: The current study demonstrates that the size and length of the vessels to the medial femoral condyle are sufficient for a vascularized bone flap. A careful preoperative vascular assessment is essential prior to use of the vascularized composite osteomyocutaneous flap from the medial femoral condyle, because of the considerable anatomical variations in different branches of the DGA.

  19. Functional brain connectivity is predictable from anatomic network's Laplacian eigen-structure.

    Science.gov (United States)

    Abdelnour, Farras; Dayan, Michael; Devinsky, Orrin; Thesen, Thomas; Raj, Ashish

    2018-05-15

    How structural connectivity (SC) gives rise to functional connectivity (FC) is not fully understood. Here we mathematically derive a simple relationship between SC measured from diffusion tensor imaging, and FC from resting state fMRI. We establish that SC and FC are related via (structural) Laplacian spectra, whereby FC and SC share eigenvectors and their eigenvalues are exponentially related. This gives, for the first time, a simple and analytical relationship between the graph spectra of structural and functional networks. Laplacian eigenvectors are shown to be good predictors of functional eigenvectors and networks based on independent component analysis of functional time series. A small number of Laplacian eigenmodes are shown to be sufficient to reconstruct FC matrices, serving as basis functions. This approach is fast, and requires no time-consuming simulations. It was tested on two empirical SC/FC datasets, and was found to significantly outperform generative model simulations of coupled neural masses. Copyright © 2018. Published by Elsevier Inc.

  20. Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: Fourier transform infrared microspectroscopy and neural network study

    Science.gov (United States)

    Bozkurt, Ozlem; Haman Bayari, Sevgi; Severcan, Mete; Krafft, Christoph; Popp, Jürgen; Severcan, Feride

    2012-07-01

    The relation between protein structural alterations and tissue dysfunction is a major concern as protein fibrillation and/or aggregation due to structural alterations has been reported in many disease states. In the current study, Fourier transform infrared microspectroscopic imaging has been used to investigate diabetes-induced changes on protein secondary structure and macromolecular content in streptozotocin-induced diabetic rat liver. Protein secondary structural alterations were predicted using neural network approach utilizing the amide I region. Moreover, the role of selenium in the recovery of diabetes-induced alterations on macromolecular content and protein secondary structure was also studied. The results revealed that diabetes induced a decrease in lipid to protein and glycogen to protein ratios in diabetic livers. Significant alterations in protein secondary structure were observed with a decrease in α-helical and an increase in β-sheet content. Both doses of selenium restored diabetes-induced changes in lipid to protein and glycogen to protein ratios. However, low-dose selenium supplementation was not sufficient to recover the effects of diabetes on protein secondary structure, while a higher dose of selenium fully restored diabetes-induced alterations in protein structure.

  1. Variability in anatomical features of human clavicle: Its forensic anthropological and clinical significance

    Directory of Open Access Journals (Sweden)

    Jagmahender Singh Sehrawat

    2016-06-01

    Full Text Available Bones can reflect the basic framework of human body and may provide valuable information about the biological identity of the deceased. They, often, survive the morphological alterations, taphonomic destructions, decay/mutilation and decomposition insults. In-depth knowledge of variations in clavicular shape, size and its dimensions is very important from both clinical (fixation of clavicular fractures using external or inter-medullary devices, designing orthopedic fixation devices as well as forensic anthropological perspectives. Human clavicle is the most frequently fractured bone of human skeleton, possessing high degree of variability in its anatomical, biomechanical and morphological features. Extended period of skeletal growth (up to third decade in clavicle imparts it an additional advantage for forensic identification purposes. In present study, five categories of clavicular features like lengths, diameters, angles, indices and robustness were examined to explore the suitability of collarbone for forensic and clinical purposes. For this purpose, 263 pairs of adult clavicles (195 Males and 68 Females were collected from autopsied cadavers and were studied for 13 anatomical features. Gender and occupational affiliations of cadavers were found to have significant influences on anatomical dimensions of their clavicles. Product index, weight and circumference of collarbone were found the best univariate variables, discriminating sex of more than 80% individuals. The best multivariate Function-I (DF: -17.315 + 0.054 CL-L+0.196 CC-R+0.184 DM-L could identify sex and occupation of 89.4% (89.2% Male and 89.7% Female and 65.4% individuals, respectively. All clavicular variables were found bilaterally asymmetric; left clavicles being significantly longer in length, lighter in weight, smooth in texture and less curved than the right side bones. Among non-metric traits, sub-clavian groove, nutrient foramina and ‘type’ of clavicle exhibited

  2. Anatomical entity recognition with a hierarchical framework augmented by external resources.

    Directory of Open Access Journals (Sweden)

    Yan Xu

    Full Text Available References to anatomical entities in medical records consist not only of explicit references to anatomical locations, but also other diverse types of expressions, such as specific diseases, clinical tests, clinical treatments, which constitute implicit references to anatomical entities. In order to identify these implicit anatomical entities, we propose a hierarchical framework, in which two layers of named entity recognizers (NERs work in a cooperative manner. Each of the NERs is implemented using the Conditional Random Fields (CRF model, which use a range of external resources to generate features. We constructed a dictionary of anatomical entity expressions by exploiting four existing resources, i.e., UMLS, MeSH, RadLex and BodyPart3D, and supplemented information from two external knowledge bases, i.e., Wikipedia and WordNet, to improve inference of anatomical entities from implicit expressions. Experiments conducted on 300 discharge summaries showed a micro-averaged performance of 0.8509 Precision, 0.7796 Recall and 0.8137 F1 for explicit anatomical entity recognition, and 0.8695 Precision, 0.6893 Recall and 0.7690 F1 for implicit anatomical entity recognition. The use of the hierarchical framework, which combines the recognition of named entities of various types (diseases, clinical tests, treatments with information embedded in external knowledge bases, resulted in a 5.08% increment in F1. The resources constructed for this research will be made publicly available.

  3. Altered functional connectivity of the default mode network in Williams syndrome: a multimodal approach.

    Science.gov (United States)

    Sampaio, Adriana; Moreira, Pedro Silva; Osório, Ana; Magalhães, Ricardo; Vasconcelos, Cristiana; Férnandez, Montse; Carracedo, Angel; Alegria, Joana; Gonçalves, Óscar F; Soares, José Miguel

    2016-07-01

    Resting state brain networks are implicated in a variety of relevant brain functions. Importantly, abnormal patterns of functional connectivity (FC) have been reported in several neurodevelopmental disorders. In particular, the Default Mode Network (DMN) has been found to be associated with social cognition. We hypothesize that the DMN may be altered in Williams syndrome (WS), a neurodevelopmental genetic disorder characterized by an unique cognitive and behavioral phenotype. In this study, we assessed the architecture of the DMN using fMRI in WS patients and typically developing matched controls (sex and age) in terms of FC and volumetry of the DMN. Moreover, we complemented the analysis with a functional connectome approach. After excluding participants due to movement artifacts (n = 3), seven participants with WS and their respective matched controls were included in the analyses. A decreased FC between the DMN regions was observed in the WS group when compared with the typically developing group. Specifically, we found a decreased FC in a posterior hub of the DMN including the precuneus, calcarine and the posterior cingulate of the left hemisphere. The functional connectome approach showed a focalized and global increased FC connectome in the WS group. The reduced FC of the posterior hub of the DMN in the WS group is consistent with immaturity of the brain FC patterns and may be associated with the singularity of their visual spatial phenotype. © 2016 John Wiley & Sons Ltd.

  4. Altered Insula Connectivity under MDMA.

    Science.gov (United States)

    Walpola, Ishan C; Nest, Timothy; Roseman, Leor; Erritzoe, David; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2017-10-01

    Recent work with noninvasive human brain imaging has started to investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA) on large-scale patterns of brain activity. MDMA, a potent monoamine-releaser with particularly pronounced serotonin- releasing properties, has unique subjective effects that include: marked positive mood, pleasant/unusual bodily sensations and pro-social, empathic feelings. However, the neurobiological basis for these effects is not properly understood, and the present analysis sought to address this knowledge gap. To do this, we administered MDMA-HCl (100 mg p.o.) and, separately, placebo (ascorbic acid) in a randomized, double-blind, repeated-measures design with twenty-five healthy volunteers undergoing fMRI scanning. We then employed a measure of global resting-state functional brain connectivity and follow-up seed-to-voxel analysis to the fMRI data we acquired. Results revealed decreased right insula/salience network functional connectivity under MDMA. Furthermore, these decreases in right insula/salience network connectivity correlated with baseline trait anxiety and acute experiences of altered bodily sensations under MDMA. The present findings highlight insular disintegration (ie, compromised salience network membership) as a neurobiological signature of the MDMA experience, and relate this brain effect to trait anxiety and acutely altered bodily sensations-both of which are known to be associated with insular functioning.

  5. Understanding emotion with brain networks.

    Science.gov (United States)

    Pessoa, Luiz

    2018-02-01

    Emotional processing appears to be interlocked with perception, cognition, motivation, and action. These interactions are supported by the brain's large-scale non-modular anatomical and functional architectures. An important component of this organization involves characterizing the brain in terms of networks. Two aspects of brain networks are discussed: brain networks should be considered as inherently overlapping (not disjoint) and dynamic (not static). Recent work on multivariate pattern analysis shows that affective dimensions can be detected in the activity of distributed neural systems that span cortical and subcortical regions. More broadly, the paper considers how we should think of causation in complex systems like the brain, so as to inform the relationship between emotion and other mental aspects, such as cognition.

  6. Morpho-anatomical investigations on Momordica charantia L. (Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    İlham Eröz Poyraz

    2016-05-01

    Full Text Available Momordica charantia L. (Cucurbitaceae used for some medicinal purposes like antidiabetic, anticancer, antiviral and treat to gastritis was investigated. Morphological studies were supported by morphometric measurements and drawings of male and female flowers, fruit and seeds of the species. In anatomical studies, cross sections of stem and leaf, upper and lower surface sections of leaves were evaluated. It was detected that the stem with typical anatomical properties of a climbing dicotyl plant. The leaves were amphistotamic and with lots of cyctoliths on the lower surface of leaves. Stomata are anomocytic and situated much more at the lower surface of leaves. Morpho-anatomical investigations on Momordica charantia L. (Cucurbitaceae*

  7. Does respondent driven sampling alter the social network composition and health-seeking behaviors of illicit drug users followed prospectively?

    Directory of Open Access Journals (Sweden)

    Abby E Rudolph

    2011-05-01

    Full Text Available Respondent driven sampling (RDS was originally developed to sample and provide peer education to injection drug users at risk for HIV. Based on the premise that drug users' social networks were maintained through sharing rituals, this peer-driven approach to disseminate educational information and reduce risk behaviors capitalizes and expands upon the norms that sustain these relationships. Compared with traditional outreach interventions, peer-driven interventions produce greater reductions in HIV risk behaviors and adoption of safer behaviors over time, however, control and intervention groups are not similarly recruited. As peer-recruitment may alter risk networks and individual risk behaviors over time, such comparison studies are unable to isolate the effect of a peer-delivered intervention. This analysis examines whether RDS recruitment (without an intervention is associated with changes in health-seeking behaviors and network composition over 6 months. New York City drug users (N = 618 were recruited using targeted street outreach (TSO and RDS (2006-2009. 329 non-injectors (RDS = 237; TSO = 92 completed baseline and 6-month surveys ascertaining demographic, drug use, and network characteristics. Chi-square and t-tests compared RDS- and TSO-recruited participants on changes in HIV testing and drug treatment utilization and in the proportion of drug using, sex, incarcerated and social support networks over the follow-up period. The sample was 66% male, 24% Hispanic, 69% black, 62% homeless, and the median age was 35. At baseline, the median network size was 3, 86% used crack, 70% used cocaine, 40% used heroin, and in the past 6 months 72% were tested for HIV and 46% were enrolled in drug treatment. There were no significant differences by recruitment strategy with respect to changes in health-seeking behaviors or network composition over 6 months. These findings suggest no association between RDS recruitment and changes in

  8. Methods for processing and analysis functional and anatomical brain images: computerized tomography, emission tomography and nuclear resonance imaging

    International Nuclear Information System (INIS)

    Mazoyer, B.M.

    1988-01-01

    The various methods for brain image processing and analysis are presented and compared. The following topics are developed: the physical basis of brain image comparison (nature and formation of signals intrinsic performance of the methods image characteristics); mathematical methods for image processing and analysis (filtering, functional parameter extraction, morphological analysis, robotics and artificial intelligence); methods for anatomical localization (neuro-anatomy atlas, proportional stereotaxic atlas, numerized atlas); methodology of cerebral image superposition (normalization, retiming); image networks [fr

  9. Remote synchronization reveals network symmetries and functional modules.

    Science.gov (United States)

    Nicosia, Vincenzo; Valencia, Miguel; Chavez, Mario; Díaz-Guilera, Albert; Latora, Vito

    2013-04-26

    We study a Kuramoto model in which the oscillators are associated with the nodes of a complex network and the interactions include a phase frustration, thus preventing full synchronization. The system organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this result, and we show how the frustration parameter affects the distribution of phases. An application to brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining correlated functional modules across distant locations.

  10. ANATOMIC STRUCTURE OF CAMPANULA ROTUNDIFOLIA L. GRASS

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2017-01-01

    Full Text Available The article present results of the study for a anatomic structure of Campanula rotundifolia grass from Campanulaceae family. Despite its dispersion and application in folk medicine, there are no data about its anatomic structure, therefore to estimate the indices of authenticity and quality of raw materials it is necessary to develop microdiagnostical features in the first place, which could help introducing of thisplant in a medical practice. The purpose of this work is to study anatomical structureof Campanula rotundifolia grass to determine its diagnostic features. Methods. Thestudy for anatomic structure was carried out in accordance with the requirements of State Pharmacopoeia, edition XIII. Micromed laboratory microscope with digital adjutage was used to create microphotoes, Photoshop CC was used for their processing. Result. We have established that stalk epidermis is prosenchymal, slightly winding with straight of splayed end cells. After study for the epidermis cells we established that upper epidermis cells had straight walls and are slightly winding. The cells of lower epidermishave more winding walls with prolong wrinkled cuticule. Presence of simple one-cell, thin wall, rough papillose hair on leaf and stalk epidermis. Cells of epidermis in fauces of corolla are prosenchymal, with winding walls, straight or winding walls in a cup. Papillary excrescences can be found along the cup edges. Stomatal apparatus is anomocytic. Conclusion. As the result of the study we have carried out the research for Campanula rotundifolia grass anatomic structure, and determined microdiagnostic features for determination of raw materials authenticity, which included presence of simple, one-cell, thin-walled, rough papillose hair on both epidermises of a leaf, along the veins, leaf edge, and stalk epidermis, as well as the presence of epidermis cells with papillary excrescences along the edges of leaves and cups. Intercellular canals are situatedalong the

  11. [Cellular subcutaneous tissue. Anatomic observations].

    Science.gov (United States)

    Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B

    2001-11-01

    We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was

  12. Automatic, anatomically selective, artifact-free enhancement of digital chest radiographs

    International Nuclear Information System (INIS)

    Sezan, M.I.; Tekalp, A.M.; Schaetzing, R.

    1988-01-01

    The authors propose a technique for automatic, anatomically selective, artifact-free enhancement of digital chest radiographs. Anatomically selective enhancement is motivated by the different enhancement requirements of the lung field and the mediastinum. A recent peak detection algorithm is applied to the image histogram to automatically determine a gray-level threshold between the lung and mediastinum fields. The gray-level threshold facilitates anatomically selective gray-scale modification and unsharp masking. Further, in an attempt to suppress possible white-band artifacts due to unsharp masking at sharp edges, local-contrast adaptivity is incorporated into anatomically selective unsharp masking by designing an anatomy-sensitive emphasis parameter that varied asymmetrically with positive and negative values of the local image contrast

  13. Altered brain activation and functional connectivity in working memory related networks in patients with type 2 diabetes: An ICA-based analysis

    Science.gov (United States)

    Zhang, Yang; Lu, Shan; Liu, Chunlei; Zhang, Huimei; Zhou, Xuanhe; Ni, Changlin; Qin, Wen; Zhang, Quan

    2016-01-01

    Type 2 diabetes mellitus (T2DM) can cause multidimensional cognitive deficits, among which working memory (WM) is usually involved at an early stage. However, the neural substrates underlying impaired WM in T2DM patients are still unclear. To clarify this issue, we utilized functional magnetic resonance imaging (fMRI) and independent component analysis to evaluate T2DM patients for alterations in brain activation and functional connectivity (FC) in WM networks and to determine their associations with cognitive and clinical variables. Twenty complication-free T2DM patients and 19 matched healthy controls (HCs) were enrolled, and fMRI data were acquired during a block-designed 1-back WM task. The WM metrics of the T2DM patients showed no differences compared with those of the HCs, except for a slightly lower accuracy rate in the T2DM patients. Compared with the HCs, the T2DM patients demonstrated increased activation within their WM fronto-parietal networks, and activation strength was significantly correlated with WM performance. The T2DM patients also showed decreased FC within and between their WM networks. Our results indicate that the functional integration of WM sub-networks was disrupted in the complication-free T2DM patients and that strengthened regional activity in fronto-parietal networks may compensate for the WM impairment caused by T2DM. PMID:27021340

  14. The Anatomical Basis for Dystonia: The Motor Network Model

    Directory of Open Access Journals (Sweden)

    H.A. Jinnah

    2017-10-01

    Full Text Available Background: The dystonias include a clinically and etiologically very diverse group of disorders. There are both degenerative and non-degenerative subtypes resulting from genetic or acquired causes. Traditionally, all dystonias have been viewed as disorders of the basal ganglia. However, there has been increasing appreciation for involvement of other brain regions including the cerebellum, thalamus, midbrain, and cortex. Much of the early evidence for these other brain regions has come from studies of animals, but multiple recent studies have been done with humans, in an effort to confirm or refute involvement of these other regions. The purpose of this article is to review the new evidence from animals and humans regarding the motor network model, and to address the issues important to translational neuroscience.Methods: The English literature was reviewed for articles relating to the neuroanatomical basis for various types of dystonia in both animals and humans.Results: There is evidence from both animals and humans that multiple brain regions play an important role in various types of dystonia. The most direct evidence for specific brain regions comes from animal studies using pharmacological, lesion, or genetic methods. In these studies, experimental manipulations of specific brain regions provide direct evidence for involvement of the basal ganglia, cerebellum, thalamus and other regions. Additional evidence also comes from human studies using neuropathological, neuroimaging, non-invasive brain stimulation, and surgical interventions. In these studies, the evidence is less conclusive, because discriminating the regions that cause dystonia from those that reflect secondary responses to abnormal movements is more challenging.Discussion: Overall, the evidence from both animals and humans suggests that different regions may play important roles in different subtypes of dystonia. The evidence so far provides strong support for the motor

  15. Return-to-activity after anatomical reconstruction of acute high-grade acromioclavicular separation.

    Science.gov (United States)

    Saier, T; Plath, J E; Beitzel, K; Minzlaff, P; Feucht, J M; Reuter, S; Martetschläger, F; Imhoff, Andreas B; Aboalata, M; Braun, S

    2016-04-02

    To evaluate return-to-activity (RtA) after anatomical reconstruction of acute high-grade acromioclavicular joint (ACJ) separation. A total of 42 patients with anatomical reconstruction of acute high-grade ACJ-separation (Rockwood Type V) were surveyed to determine RtA at a mean 31 months follow-up (f-u). Sports disciplines, intensity, level of competition, participation in overhead and/or contact sports, as well as activity scales (DASH-Sport-Module, Tegner Activity Scale) were evaluated. Functional outcome evaluation included Constant score and QuickDASH. All patients (42/42) participated in sporting activities at f-u. Neither participation in overhead/contact sports, nor level of activity declined significantly (n.s.). 62 % (n = 26) of patients reported subjective sports specific ACJ integrity to be at least the same as prior to the trauma. Sporting intensity (hours/week: 7.3 h to 5.4 h, p = .004) and level of competition (p = .02) were reduced. If activity changed, in 50 % other reasons but clinical symptoms/impairment were named for modified behavior. QuickDASH (mean 6, range 0-54, SD 11) and DASH-Sport-Module (mean 6, range 0-56, SD 13) revealed only minor disabilities at f-u. Over time Constant score improved significant to an excellent score (mean 94, range 86-100, SD 4; p < .001). Functional outcome was not correlated with RtA (n.s.). All patients participated in sporting activities after anatomical reconstruction of high-grade (Rockwood Type V) ACJ-separation. With a high functional outcome there was no significant change in activity level (Tegner) and participation in overhead and/or contact sports observed. There was no correlation between functional outcome and RtA. Limiting, there were alterations in time spent for sporting activities and level of competition observed. But in 50 % those were not related to ACJ symptoms/impairment. Unrelated to successful re-established integrity and function of the ACJ it should be considered that

  16. Early Results of Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction

    OpenAIRE

    Demet Pepele

    2014-01-01

    Aim: The goal in anterior cruciate ligament reconstruction (ACLR) is to restore the normal anatomic structure and function of the knee. In the significant proportion of patients after the traditional single-bundle ACLR, complaints of instability still continue. Anatomic double bundle ACLR may provide normal kinematics in knees, much closer to the natural anatomy. The aim of this study is to clinically assess the early outcomes of our anatomical double bundle ACLR. Material and Method: In our ...

  17. Anatomical planes: are we teaching accurate surface anatomy?

    Science.gov (United States)

    Mirjalili, S Ali; McFadden, Sarah L; Buckenham, Tim; Wilson, Ben; Stringer, Mark D

    2012-10-01

    Anatomical planes used in clinical practice and teaching anatomy are largely derived from cadaver studies. Numerous inconsistencies in clinically important surface markings exist between and within anatomical reference texts. The aim of this study was to reassess the accuracy of common anatomical planes in vivo using computed tomographic (CT) imaging. CT scans of the trunk in supine adults at end tidal inspiration were analyzed by dual consensus reporting to determine the anatomy of five anatomical planes: sternal angle, transpyloric, subcostal, supracristal, and the plane of the pubic crest. Patients with kyphosis, scoliosis, or abnormal lordosis, distorting space-occupying lesions, or visceromegaly were excluded. Among 153 thoracic CT scans (mean age 63 years, 53% female), the sternal angle was most common at T4 (females) or T4/5 (males) vertebral level, and the tracheal bifurcation, aortic arch, and pulmonary trunk were most often below this plane. In 108 abdominal CT scans (mean age 60 years, 59% female), the subcostal and supracristal planes were most often at L2 (58%) and L4 (69%), respectively. In 52 thoracoabdominal CT scans (mean age 61 years, 56% female), the transpyloric plane was between lower L1 and upper L2 (75%); in this plane were the superior mesenteric artery (56%), formation of the portal vein (53%), tip of the ninth rib (60%), and the left renal hilum (54%), but the right renal hilum and gallbladder fundus were more often below. The surface anatomy of anatomical planes needs revising in the light of results from living subjects using modern imaging techniques. Copyright © 2012 Wiley Periodicals, Inc.

  18. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  19. Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus.

    Science.gov (United States)

    Tejada, Julian; Garcia-Cairasco, Norberto; Roque, Antonio C

    2014-05-01

    Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, mossy fiber sprouting increases the excitability of the circuit while dendritic spine loss may have the opposite effect. However, the effect of the interplay of these different morphological alterations on the hyperexcitability of the dentate gyrus is still unknown. Here we adapted an existing computational model of the dentate gyrus by replacing the reduced granule cell models with morphologically detailed models coming from three-dimensional reconstructions of mature cells. The model simulates a network with 10% of the mossy fiber sprouting observed in the pilocarpine (PILO) model of epilepsy. Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase.

  20. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole

    2017-01-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of...... in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease.......Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim...... that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia.NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead...

  1. Visual feedback alters force control and functional activity in the visuomotor network after stroke

    Directory of Open Access Journals (Sweden)

    Derek B. Archer

    2018-01-01

    Full Text Available Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke.

  2. Construction of a 3-D anatomical model for teaching temporal lobectomy.

    Science.gov (United States)

    de Ribaupierre, Sandrine; Wilson, Timothy D

    2012-06-01

    Although we live and work in 3 dimensional space, most of the anatomical teaching during medical school is done on 2-D (books, TV and computer screens, etc). 3-D spatial abilities are essential for a surgeon but teaching spatial skills in a non-threatening and safe educational environment is a much more difficult pedagogical task. Currently, initial anatomical knowledge formation or specific surgical anatomy techniques, are taught either in the OR itself, or in cadaveric labs; which means that the trainee has only limited exposure. 3-D computer models incorporated into virtual learning environments may provide an intermediate and key step in a blended learning approach for spatially challenging anatomical knowledge formation. Specific anatomical structures and their spatial orientation can be further clinically contextualized through demonstrations of surgical procedures in the 3-D digital environments. Recordings of digital models enable learner reviews, taking as much time as they want, stopping the demonstration, and/or exploring the model to understand the anatomical relation of each structure. We present here how a temporal lobectomy virtual model has been developed to aid residents and fellows conceptualization of the anatomical relationships between different cerebral structures during that procedure. We suggest in comparison to cadaveric dissection, such virtual models represent a cost effective pedagogical methodology providing excellent support for anatomical learning and surgical technique training. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Large-Scale Functional Brain Network Reorganization During Taoist Meditation.

    Science.gov (United States)

    Jao, Tun; Li, Chia-Wei; Vértes, Petra E; Wu, Changwei Wesley; Achard, Sophie; Hsieh, Chao-Hsien; Liou, Chien-Hui; Chen, Jyh-Horng; Bullmore, Edward T

    2016-02-01

    Meditation induces a distinct and reversible mental state that provides insights into brain correlates of consciousness. We explored brain network changes related to meditation by graph theoretical analysis of resting-state functional magnetic resonance imaging data. Eighteen Taoist meditators with varying levels of expertise were scanned using a within-subjects counterbalanced design during resting and meditation states. State-related differences in network topology were measured globally and at the level of individual nodes and edges. Although measures of global network topology, such as small-worldness, were unchanged, meditation was characterized by an extensive and expertise-dependent reorganization of the hubs (highly connected nodes) and edges (functional connections). Areas of sensory cortex, especially the bilateral primary visual and auditory cortices, and the bilateral temporopolar areas, which had the highest degree (or connectivity) during the resting state, showed the biggest decrease during meditation. Conversely, bilateral thalamus and components of the default mode network, mainly the bilateral precuneus and posterior cingulate cortex, had low degree in the resting state but increased degree during meditation. Additionally, these changes in nodal degree were accompanied by reorganization of anatomical orientation of the edges. During meditation, long-distance longitudinal (antero-posterior) edges increased proportionally, whereas orthogonal long-distance transverse (right-left) edges connecting bilaterally homologous cortices decreased. Our findings suggest that transient changes in consciousness associated with meditation introduce convergent changes in the topological and spatial properties of brain functional networks, and the anatomical pattern of integration might be as important as the global level of integration when considering the network basis for human consciousness.

  4. Neural plasticity in functional and anatomical MRI studies of children with Tourette syndrome

    DEFF Research Database (Denmark)

    Eichele, Heike; Plessen, Kerstin J

    2012-01-01

    Background: Tourette syndrome (TS) is a neuropsychiatric disorder with childhood onset characterized by chronic motor and vocal tics. The typical clinical course of an attenuation of symptoms during adolescence in parallel with the emerging self-regulatory control during development suggests...... that plastic processes may play an important role in the development of tic symptoms. Methods: We conducted a systematic search to identify existing imaging studies (both anatomical and functional magnetic resonance imaging [fMRI]) in young persons under the age of 19 years with TS. Results: The final search...... compensatory pathways in children with TS. Along with alterations in regions putatively representing the origin of tics, deviations in several other regions most likely represent an activity-dependent neural plasticity that help to modulate tic severity, such as the prefrontal cortex, but also in the corpus...

  5. The Anatomical Institute at the University of Greifswald during National Socialism: The procurement of bodies and their use for anatomical purposes.

    Science.gov (United States)

    Alvermann, Dirk; Mittenzwei, Jan

    2016-05-01

    This is the first comprehensive account of body procurement at the Anatomical Institute at Greifswald University during National Socialism (NS). As in all other German anatomical departments, the bodies received during this period included increasing numbers of victims of the NS regime. Prior to 1939, 90% of all bodies came from hospitals, state nursing homes and mental institutions (Heil- und Pflegeanstalten), but dropped to less than 30% after 1941. While the total catchment area for body procurement decreased, the number of suppliers increased and included prisons, POW camps, Gestapo offices and military jurisdiction authorities. Among the 432 documented bodies delivered to the institute, 132 came from state nursing homes and mental institutions, mainly from Ueckermünde. These were bodies of persons, who probably were victims of "euthanasia" crimes. The Anatomical Institute also procured 46 bodies of forced laborers, of whom at least twelve had been executed. Other groups of victims included 21 bodies of executed Wehrmacht soldiers and 16 Russian prisoners of war from the camp Stalag II C in Greifswald, who had died of starvation and exhaustion. From 1941 onwards, the number of bodies delivered from prisons and penitentiaries greatly increased. In total, 60 bodies of prisoners, mainly from the penitentiary in Gollnow, were delivered to the Anatomical Institute. Greifswald Anatomical Institute was not just a passive recipient of bodies from all of these sources, but the anatomists actively lobbied with the authorities for an increased body supply for teaching and research purposes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Network stigma towards people living with HIV/AIDS and their caregivers: An egocentric network study.

    Science.gov (United States)

    Wu, Fei; He, Xin; Guida, Jennifer; Xu, Yongfang; Liu, Hongjie

    2015-10-01

    HIV stigma occurs among peers in social networks. However, the features of social networks that drive HIV stigma are not well understood. The objective of this study is to investigate anticipated HIV stigma within the social networks of people living with HIV/AIDS (PLWHA) (N = 147) and the social networks of PLWHA's caregivers (N = 148). The egocentric social network data were collected in Guangxi, China. More than half of PLWHA (58%) and their caregivers (53%) anticipated HIV stigma from their network peers. Both PLWHA and their caregivers anticipated that spouses or other family members were less likely to stigmatise them, compared to friend peers or other relationships. Married network peers were believed to stigmatise caregivers more than unmarried peers. The association between frequent contacts and anticipated stigma was negative among caregivers. Being in a close relationship with PLWHA or caregivers (e.g., a spouse or other family member) was associated with less anticipated stigma. Lower network density was associated with higher anticipated stigma among PLWHA's alters, but not among caregivers' alters. Findings may shed light on innovative stigma reduction interventions at the social network level and therefore improve HIV/AIDS treatment utilisation.

  7. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition

    Directory of Open Access Journals (Sweden)

    ASISH KUMAR PARIDA

    2016-03-01

    Full Text Available Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analysing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500 and 750 mM NaCl under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na+ contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K+ content. There was significant alterations in leaf, stem and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl. There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, hypodermal cell diameter, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by 2-fold at high salinity (750 mM NaCl. The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM, whereas it increased significantly at higher salinity (500 and 750 mM NaCl. The proline content increased in the NaCl treated seedlings as

  8. Lacrimal Gland Pathologies from an Anatomical Perspective

    Directory of Open Access Journals (Sweden)

    Mahmut Sinan Abit

    2015-06-01

    Full Text Available Most of the patients in our daily practice have one or more ocular surface disorders including conjucntivitis, keratitis, dry eye disease, meibomian gland dysfunction, contact lens related symptoms, refractive errors,computer vision syndrome. Lacrimal gland has an important role in all above mentioned pathologies due to its major secretory product. An anatomical and physiological knowledge about lacrimal gland is a must in understanding basic and common ophthalmological cases. İn this paper it is aimed to explain the lacrimal gland diseases from an anatomical perspective.

  9. The Science and Politics of Naming: Reforming Anatomical Nomenclature, ca. 1886-1955.

    Science.gov (United States)

    Buklijas, Tatjana

    2017-04-01

    Anatomical nomenclature is medicine's official language. Early in their medical studies, students are expected to memorize not only the bodily geography but also the names for all the structures that, by consensus, constitute the anatomical body. The making and uses of visual maps of the body have received considerable historiographical attention, yet the history of production, communication, and reception of anatomical names-a history as long as the history of anatomy itself-has been studied far less. My essay examines the reforms of anatomical naming between the first modern nomenclature, the 1895 Basel Nomina Anatomica (BNA), and the 1955 Nomina Anatomica Parisiensia (NAP, also known as PNA), which is the basis for current anatomical terminology. I focus on the controversial and ultimately failed attempt to reform anatomical nomenclature, known as Jena Nomina Anatomica (INA), of 1935. Discussions around nomenclature reveal not only how anatomical names are made and communicated, but also the relationship of anatomy with the clinic; disciplinary controversies within anatomy; national traditions in science; and the interplay between international and scientific disciplinary politics. I show how the current anatomical nomenclature, a successor to the NAP, is an outcome of both political and disciplinary tensions that reached their peak before 1945. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xing [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Wang, Yinyan [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Capital Medical University, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing (China); Wang, Kai; Ma, Jun; Li, Shaowu [Capital Medical University, Department of Neuroradiology, Beijing Tiantan Hospital, Beijing (China); Liu, Shuai [Chinese Academy of Medical Sciences and Peking Union Medical College, Departments of Neurosurgery, Peking Union Medical College Hospital, Beijing (China); Liu, Yong [Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing (China); Jiang, Tao [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Beijing Academy of Critical Illness in Brain, Department of Clinical Oncology, Beijing (China)

    2016-01-15

    The expression of vascular endothelial growth factor (VEGF) is a common genetic alteration in malignant gliomas and contributes to the angiogenesis of tumors. This study aimed to investigate the anatomical specificity of VEGF expression levels in glioblastomas using voxel-based neuroimaging analysis. Clinical information, MR scans, and immunohistochemistry stains of 209 patients with glioblastomas were reviewed. All tumor lesions were segmented manually and subsequently registered to standard brain space. Voxel-based regression analysis was performed to correlate the brain regions of tumor involvement with the level of VEGF expression. Brain regions identified as significantly associated with high or low VEGF expression were preserved following permutation correction. High VEGF expression was detected in 123 (58.9 %) of the 209 patients. Voxel-based statistical analysis demonstrated that high VEGF expression was more likely in tumors located in the left frontal lobe and the right caudate and low VEGF expression was more likely in tumors that occurred in the posterior region of the right lateral ventricle. Voxel-based neuroimaging analysis revealed the anatomic specificity of VEGF expression in glioblastoma, which may further our understanding of genetic heterogeneity during tumor origination. This finding provides primary theoretical support for potential future application of customized antiangiogenic therapy. (orig.)

  11. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis

    International Nuclear Information System (INIS)

    Fan, Xing; Wang, Yinyan; Wang, Kai; Ma, Jun; Li, Shaowu; Liu, Shuai; Liu, Yong; Jiang, Tao

    2016-01-01

    The expression of vascular endothelial growth factor (VEGF) is a common genetic alteration in malignant gliomas and contributes to the angiogenesis of tumors. This study aimed to investigate the anatomical specificity of VEGF expression levels in glioblastomas using voxel-based neuroimaging analysis. Clinical information, MR scans, and immunohistochemistry stains of 209 patients with glioblastomas were reviewed. All tumor lesions were segmented manually and subsequently registered to standard brain space. Voxel-based regression analysis was performed to correlate the brain regions of tumor involvement with the level of VEGF expression. Brain regions identified as significantly associated with high or low VEGF expression were preserved following permutation correction. High VEGF expression was detected in 123 (58.9 %) of the 209 patients. Voxel-based statistical analysis demonstrated that high VEGF expression was more likely in tumors located in the left frontal lobe and the right caudate and low VEGF expression was more likely in tumors that occurred in the posterior region of the right lateral ventricle. Voxel-based neuroimaging analysis revealed the anatomic specificity of VEGF expression in glioblastoma, which may further our understanding of genetic heterogeneity during tumor origination. This finding provides primary theoretical support for potential future application of customized antiangiogenic therapy. (orig.)

  12. Interconnected networks

    CERN Document Server

    2016-01-01

    This volume provides an introduction to and overview of the emerging field of interconnected networks which include multi layer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave – understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant – for example regarding diffusion, robustness and competition – the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.

  13. Meta-analytically informed network analysis of resting state FMRI reveals hyperconnectivity in an introspective socio-affective network in depression.

    Directory of Open Access Journals (Sweden)

    Leonhard Schilbach

    Full Text Available Alterations of social cognition and dysfunctional interpersonal expectations are thought to play an important role in the etiology of depression and have, thus, become a key target of psychotherapeutic interventions. The underlying neurobiology, however, remains elusive. Based upon the idea of a close link between affective and introspective processes relevant for social interactions and alterations thereof in states of depression, we used a meta-analytically informed network analysis to investigate resting-state functional connectivity in an introspective socio-affective (ISA network in individuals with and without depression. Results of our analysis demonstrate significant differences between the groups with depressed individuals showing hyperconnectivity of the ISA network. These findings demonstrate that neurofunctional alterations exist in individuals with depression in a neural network relevant for introspection and socio-affective processing, which may contribute to the interpersonal difficulties that are linked to depressive symptomatology.

  14. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    CERN Document Server

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  15. 16 CFR Figure 1 to Part 1203 - Anatomical Planes

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Anatomical Planes 1 Figure 1 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 1 Figure 1 to Part 1203—Anatomical Planes ER10MR98.001 ...

  16. Feature-based morphometry: discovering group-related anatomical patterns.

    Science.gov (United States)

    Toews, Matthew; Wells, William; Collins, D Louis; Arbel, Tal

    2010-02-01

    This paper presents feature-based morphometry (FBM), a new fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). Copyright (c) 2009 Elsevier Inc. All rights reserved.

  17. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats.

    Science.gov (United States)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole; Sotty, Florence

    2017-08-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of this study was to determine how administration of the NMDAR antagonist phencyclidine (PCP) during neurodevelopment affects functional network activity within the hippocampus and medial prefrontal cortex (mPFC). We recorded field potentials in vivo after electrical brain stem stimulation and observed a suppression of evoked theta power in ventral hippocampus, while evoked gamma power in mPFC was enhanced in rats administered with PCP neonatally. In addition, increased gamma synchrony elicited by acute administration of the NMDAR antagonist MK-801 was exaggerated in neonatal PCP animals. These data suggest that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia. NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead to suppressed evoked theta oscillations in ventral hippocampus in adult rats, while evoked gamma oscillations are enhanced and hypersensitive to an acute challenge with a NMDA receptor antagonist in prefrontal cortex. These observations reveal the significance of neurodevelopmental disturbances in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease. Copyright © 2017 the American Physiological Society.

  18. The Fate of Anatomical Collections

    NARCIS (Netherlands)

    Knoeff, Rina; Zwijnenberg, Robert

    Almost every medical faculty possesses anatomical and/or pathological collections: human and animal preparations, wax- and other models, as well as drawings, photographs, documents and archives relating to them. In many institutions these collections are well-preserved, but in others they are poorly

  19. Anatomical success in patients after retinectomy for complex retinal detachment

    International Nuclear Information System (INIS)

    Mukhtar, A.; Ishaq, M.; Islam, Q.U.

    2015-01-01

    To evaluate the efficacy of primary and redo retinectomy in eyes with complex retinal detachment. Study Design: Quasi-experimental study. Place and Duration of Study: Armed Forces Institute of Ophthalmology Rawalpindi from Jan 2012 to June 2013. Patients and Methods: Fifty eight eyes (patients) underwent relaxing retinectomies for complex retinal detachment with proliferative vitreoretinopathy or intrinsic retinal shortening. Operative technique included pars plana vitrectomy, proliferative vitreoretinopathy management, use of intraoperative perfluorocarbon liquid, retinectomy, endolaser and intraocular temponade. The main outcome was anatomic success, defined as complete retinal reattachment at four months follow up. Eighteen eyes out of the same primary group underwent second retinectomy because of anatomical failure. Results: Mean age of study population was 53.78 ± 15.11 years, 56.9% of patients were male(s). Anatomic success rate after 1st retinectomy was achieved in 68.96% (40 eyes out of 58). In eighteen eyes that underwent 2nd retinectomy, anatomic success rate was 72.22% (13 eyes out of 18). Overall success rate was 91.3% (53 eyes out of 58) in our study. Conclusions: Relaxing retinectomies for retinal shortening can improve the anatomical success rate in patients with complex RD. (author)

  20. Structural and Functional Alterations in Neocortical Circuits after Mild Traumatic Brain Injury

    Science.gov (United States)

    Vascak, Michal

    National concern over traumatic brain injury (TBI) is growing rapidly. Recent focus is on mild TBI (mTBI), which is the most prevalent injury level in both civilian and military demographics. A preeminent sequelae of mTBI is cognitive network disruption. Advanced neuroimaging of mTBI victims supports this premise, revealing alterations in activation and structure-function of excitatory and inhibitory neuronal systems, which are essential for network processing. However, clinical neuroimaging cannot resolve the cellular and molecular substrates underlying such changes. Therefore, to understand the full scope of mTBI-induced alterations it is necessary to study cortical networks on the microscopic level, where neurons form local networks that are the fundamental computational modules supporting cognition. Recently, in a well-controlled animal model of mTBI, we demonstrated in the excitatory pyramidal neuron system, isolated diffuse axonal injury (DAI), in concert with electrophysiological abnormalities in nearby intact (non-DAI) neurons. These findings were consistent with altered axon initial segment (AIS) intrinsic activity functionally associated with structural plasticity, and/or disturbances in extrinsic systems related to parvalbumin (PV)-expressing interneurons that form GABAergic synapses along the pyramidal neuron perisomatic/AIS domains. The AIS and perisomatic GABAergic synapses are domains critical for regulating neuronal activity and E-I balance. In this dissertation, we focus on the neocortical excitatory pyramidal neuron/inhibitory PV+ interneuron local network following mTBI. Our central hypothesis is that mTBI disrupts neuronal network structure and function causing imbalance of excitatory and inhibitory systems. To address this hypothesis we exploited transgenic and cre/lox mouse models of mTBI, employing approaches that couple state-of-the-art bioimaging with electrophysiology to determine the structuralfunctional alterations of excitatory and

  1. Evaluation of anatomical and physical properties of Khaya nthotheca

    African Journals Online (AJOL)

    The anatomical and physical properties of Khaya anthotheca (Welw.) C. DC wood from the transition forest of middle altitude (zone 1) and the humid dense forest of low altitude (zone 2) in the East of the Democratic Republic of Congo were evaluated to ascertain the effect of growth area on the anatomical and physical ...

  2. [Lymphoscintigrams with anatomical landmarks obtained with vector graphics].

    Science.gov (United States)

    Rubini, Giuseppe; Antonica, Filippo; Renna, Maria Antonia; Ferrari, Cristina; Iuele, Francesca; Stabile Ianora, Antonio Amato; Losco, Matteo; Niccoli Asabella, Artor

    2012-11-01

    Nuclear medicine images are difficult to interpret because they do not include anatomical details. The aim of this study was to obtain lymphoscintigrams with anatomical landmarks that could be easily interpreted by General Physicians. Traditional lymphoscintigrams were processed with Adobe© Photoshop® CS6 and converted into vector images created by Illustrator®. The combination with a silhouette vector improved image interpretation, without resulting in longer radiation exposure or acquisition times.

  3. Altered whole-brain white matter networks in preclinical Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Florian Udo Fischer

    2015-01-01

    Our results suggest an impairment of WM networks in preclinical AD that is detectable while other structural imaging markers do not yet indicate incipient neurodegeneration. Moreover, these findings are specific to WM networks and cannot be explained by other surrogates of global WM integrity.

  4. Nicotine increases brain functional network efficiency.

    Science.gov (United States)

    Wylie, Korey P; Rojas, Donald C; Tanabe, Jody; Martin, Laura F; Tregellas, Jason R

    2012-10-15

    Despite the use of cholinergic therapies in Alzheimer's disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network's tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer's disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. Published by Elsevier Inc.

  5. The Intermingled History of Occupational Therapy and Anatomical Education: A Retrospective Exploration

    Science.gov (United States)

    Carroll, Melissa A.; Lawson, Katherine

    2014-01-01

    Few research articles have addressed the anatomical needs of entry-level occupational therapy students. Given this paucity of empirical evidence, there is a lack of knowledge regarding anatomical education in occupational therapy. This article will primarily serve as a retrospective look at the inclusion of anatomical education in the occupational…

  6. TissueCypher™: A systems biology approach to anatomic pathology

    Directory of Open Access Journals (Sweden)

    Jeffrey W Prichard

    2015-01-01

    Full Text Available Background: Current histologic methods for diagnosis are limited by intra- and inter-observer variability. Immunohistochemistry (IHC methods are frequently used to assess biomarkers to aid diagnoses, however, IHC staining is variable and nonlinear and the manual interpretation is subjective. Furthermore, the biomarkers assessed clinically are typically biomarkers of epithelial cell processes. Tumors and premalignant tissues are not composed only of epithelial cells but are interacting systems of multiple cell types, including various stromal cell types that are involved in cancer development. The complex network of the tissue system highlights the need for a systems biology approach to anatomic pathology, in which quantification of system processes is combined with informatics tools to produce actionable scores to aid clinical decision-making. Aims: Here, we describe a quantitative, multiplexed biomarker imaging approach termed TissueCypher™ that applies systems biology to anatomic pathology. Applications of TissueCypher™ in understanding the tissue system of Barrett's esophagus (BE and the potential use as an adjunctive tool in the diagnosis of BE are described. Patients and Methods: The TissueCypher™ Image Analysis Platform was used to assess 14 epithelial and stromal biomarkers with known diagnostic significance in BE in a set of BE biopsies with nondysplastic BE with reactive atypia (RA, n = 22 and Barrett's with high-grade dysplasia (HGD, n = 17. Biomarker and morphology features were extracted and evaluated in the confirmed BE HGD cases versus the nondysplastic BE cases with RA. Results: Multiple image analysis features derived from epithelial and stromal biomarkers, including immune biomarkers and morphology, showed significant differences between HGD and RA. Conclusions: The assessment of epithelial cell abnormalities combined with an assessment of cellular changes in the lamina propria may serve as an adjunct to conventional

  7. Chemical and anatomical changes in Liquidambar styraciflua L. xylem after long term exposure to elevated CO2

    International Nuclear Information System (INIS)

    Kim, Keonhee; Labbé, Nicole; Warren, Jeffrey M.; Elder, Thomas; Rials, Timothy G.

    2015-01-01

    The anatomical and chemical characteristics of sweetgum were studied after 11 years of elevated CO 2 (544 ppm, ambient at 391 ppm) exposure. Anatomically, branch xylem cells were larger for elevated CO 2 trees, and the cell wall thickness was thinner. Chemically, elevated CO 2 exposure did not impact the structural components of the stem wood, but non-structural components were significantly affected. Principal component analysis (PCA) was employed to detect differences between the CO 2 treatments by considering numerous structural and chemical variables, as well as tree size, and data from previously published sources (i.e., root biomass, production and turnover). The PCA results indicated a clear separation between trees exposed to ambient and elevated CO 2 conditions. Correlation loadings plots of the PCA revealed that stem structural components, ash, Ca, Mg, total phenolics, root biomass, production and turnover were the major responses that contribute to the separation between the elevated and ambient CO 2 treated trees. - Highlights: • First study of wood properties after 11 years of higher level of CO 2 treatment. • Elevated CO 2 exposure does not impact structural components of wood. • Total phenolics content and some inorganics were significantly affected. • Branch xylem cells were larger under elevated CO 2 . • Cell wall thickness was thinner under elevated CO 2 . - Elevated CO 2 in atmosphere did not impact the structural components yet altered some of non-structural components and anatomical properties after 11 years of exposure on sweetgum

  8. Aging-related changes in the default mode network and its anti-correlated networks: a resting-state fMRI study.

    Science.gov (United States)

    Wu, Jing-Tao; Wu, Hui-Zhen; Yan, Chao-Gan; Chen, Wen-Xin; Zhang, Hong-Ying; He, Yong; Yang, Hai-Shan

    2011-10-17

    Intrinsic brain activity in a resting state incorporates components of the task negative network called default mode network (DMN) and task-positive networks called attentional networks. In the present study, the reciprocal neuronal networks in the elder group were compared with the young group to investigate the differences of the intrinsic brain activity using a method of temporal correlation analysis based on seed regions of posterior cingulate cortex (PCC) and ventromedial prefrontal cortex (vmPFC). We found significant decreased positive correlations and negative correlations with the seeds of PCC and vmPFC in the old group. The decreased coactivations in the DMN network components and their negative networks in the old group may reflect age-related alterations in various brain functions such as attention, motor control and inhibition modulation in cognitive processing. These alterations in the resting state anti-correlative networks could provide neuronal substrates for the aging brain. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. The brain's default network: anatomy, function, and relevance to disease.

    Science.gov (United States)

    Buckner, Randy L; Andrews-Hanna, Jessica R; Schacter, Daniel L

    2008-03-01

    Thirty years of brain imaging research has converged to define the brain's default network-a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations. These two subsystems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.

  10. Drugs that alter biodistribution and kinetics of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Shani, J.

    1986-01-01

    Target localization and organ biodistribution of radiopharmaceuticals (RPs) may be altered by non-radioactive drugs whose pharmacological mechanisms compete with the RPs for the same retention processes. Originally referred to as side effects or incompatibilities, such interactions became a major concern in evaluating Nuclear Medicine procedures, as they might cause interpretation of the latter to be without value or misleading. With accumulated experience, some interactions were intentionally included in Nuclear Medicine procedures and became an additional tool in differential diagnosis. Moreover, due to the ability of some RPs to compete with therapeutic agents, Nuclear Medicine studies shifted from anatomical-physiological to more pharmacologically-pathologically-based procedures that can also monitor the stage of disease, and follow its treatment. The aim of this review, therefore, is not only to illustrate some crucial pharmacological issues in Nuclear Medicine imaging, but to emphasize the possible input that alterations of RP biodistribution by drugs may have in achieving better and safer diagnosis, disease staging and monitoring of the patient's response to therapy. 166 references

  11. Targeting molecular networks for drug research

    Directory of Open Access Journals (Sweden)

    José Pedro Pinto

    2014-06-01

    Full Text Available The study of molecular networks has recently moved into the limelight of biomedical research. While it has certainly provided us with plenty of new insights into cellular mechanisms, the challenge now is how to modify or even restructure these networks. This is especially true for human diseases, which can be regarded as manifestations of distorted states of molecular networks. Of the possible interventions for altering networks, the use of drugs is presently the most feasible. In this mini-review, we present and discuss some exemplary approaches of how analysis of molecular interaction networks can contribute to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects, as well as listing pointers to relevant resources and software to guide future research. We also outline recent progress in the use of drugs for in vitro reprogramming of cells, which constitutes an example par excellence for altering molecular interaction networks with drugs.

  12. Evaluation of 3D printed anatomically scalable transfemoral prosthetic knee.

    Science.gov (United States)

    Ramakrishnan, Tyagi; Schlafly, Millicent; Reed, Kyle B

    2017-07-01

    This case study compares a transfemoral amputee's gait while using the existing Ossur Total Knee 2000 and our novel 3D printed anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee is 3D printed out of a carbon-fiber and nylon composite that has a gear-mesh coupling with a hard-stop weight-actuated locking mechanism aided by a cross-linked four-bar spring mechanism. This design can be scaled using anatomical dimensions of a human femur and tibia to have a unique fit for each user. The transfemoral amputee who was tested is high functioning and walked on the Computer Assisted Rehabilitation Environment (CAREN) at a self-selected pace. The motion capture and force data that was collected showed that there were distinct differences in the gait dynamics. The data was used to perform the Combined Gait Asymmetry Metric (CGAM), where the scores revealed that the overall asymmetry of the gait on the Ossur Total Knee was more asymmetric than the anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee had higher peak knee flexion that caused a large step time asymmetry. This made walking on the anatomically scalable transfemoral prosthetic knee more strenuous due to the compensatory movements in adapting to the different dynamics. This can be overcome by tuning the cross-linked spring mechanism to emulate the dynamics of the subject better. The subject stated that the knee would be good for daily use and has the potential to be adapted as a running knee.

  13. Altered intrinsic functional coupling between core neurocognitive networks in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Deepti Putcha

    2015-01-01

    Full Text Available Parkinson's disease (PD is largely attributed to disruptions in the nigrostriatal dopamine system. These neurodegenerative changes may also have a more global effect on intrinsic brain organization at the cortical level. Functional brain connectivity between neurocognitive systems related to cognitive processing is critical for effective neural communication, and is disrupted across neurological disorders. Three core neurocognitive networks have been established as playing a critical role in the pathophysiology of many neurological disorders: the default-mode network (DMN, the salience network (SN, and the central executive network (CEN. In healthy adults, DMN–CEN interactions are anti-correlated while SN–CEN interactions are strongly positively correlated even at rest, when individuals are not engaging in any task. These intrinsic between-network interactions at rest are necessary for efficient suppression of the DMN and activation of the CEN during a range of cognitive tasks. To identify whether these network interactions are disrupted in individuals with PD, we used resting state functional magnetic resonance imaging (rsfMRI to compare between-network connectivity between 24 PD participants and 20 age-matched controls (MC. In comparison to the MC, individuals with PD showed significantly less SN–CEN coupling and greater DMN–CEN coupling during rest. Disease severity, an index of striatal dysfunction, was related to reduced functional coupling between the striatum and SN. These results demonstrate that individuals with PD have a dysfunctional pattern of interaction between core neurocognitive networks compared to what is found in healthy individuals, and that interaction between the SN and the striatum is even more profoundly disrupted in those with greater disease severity.

  14. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    Science.gov (United States)

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-01-01

    Abstract. Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach’s feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method. PMID:28464120

  15. Altered resting-state connectivity within default mode network associated with late chronotype.

    Science.gov (United States)

    Horne, Charlotte Mary; Norbury, Ray

    2018-04-20

    Current evidence suggests late chronotype individuals have an increased risk of developing depression. However, the underlying neural mechanisms of this association are not fully understood. Forty-six healthy, right-handed individuals free of current or previous diagnosis of depression, family history of depression or sleep disorder underwent resting-state functional Magnetic Resonance Imaging (rsFMRI). Using an Independent Component Analysis (ICA) approach, the Default Mode Network (DMN) was identified based on a well validated template. Linear effects of chronotype on DMN connectivity were tested for significance using non-parametric permutation tests (applying 5000 permutations). Sleep quality, age, gender, measures of mood and anxiety, time of scan and cortical grey matter volume were included as covariates in the regression model. A significant positive correlation between chronotype and functional connectivity within nodes of the DMN was observed, including; bilateral PCC and precuneus, such that later chronotype (participants with lower rMEQ scores) was associated with decreased connectivity within these regions. The current results appear consistent with altered DMN connectivity in depressed patients and weighted evidence towards reduced DMN connectivity in other at-risk populations which may, in part, explain the increased vulnerability for depression in late chronotype individuals. The effect may be driven by self-critical thoughts associated with late chronotype although future studies are needed to directly investigate this. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A comprehensive assessment of resting state networks: bidirectional modification of functional integrity in cerebro-cerebellar networks in dementia.

    Science.gov (United States)

    Castellazzi, Gloria; Palesi, Fulvia; Casali, Stefano; Vitali, Paolo; Sinforiani, Elena; Wheeler-Kingshott, Claudia A M; D'Angelo, Egidio

    2014-01-01

    In resting state fMRI (rs-fMRI), only functional connectivity (FC) reductions in the default mode network (DMN) are normally reported as a biomarker for Alzheimer's disease (AD). In this investigation we have developed a comprehensive strategy to characterize the FC changes occurring in multiple networks and applied it in a pilot study of subjects with AD and Mild Cognitive Impairment (MCI), compared to healthy controls (HC). Resting state networks (RSNs) were studied in 14 AD (70 ± 6 years), 12 MCI (74 ± 6 years), and 16 HC (69 ± 5 years). RSN alterations were present in almost all the 15 recognized RSNs; overall, 474 voxels presented a reduced FC in MCI and 1244 in AD while 1627 voxels showed an increased FC in MCI and 1711 in AD. The RSNs were then ranked according to the magnitude and extension of FC changes (gFC), putting in evidence 6 RSNs with prominent changes: DMN, frontal cortical network (FCN), lateral visual network (LVN), basal ganglia network (BGN), cerebellar network (CBLN), and the anterior insula network (AIN). Nodes, or hubs, showing alterations common to more than one RSN were mostly localized within the prefrontal cortex and the mesial-temporal cortex. The cerebellum showed a unique behavior where voxels of decreased gFC were only found in AD while a significant gFC increase was only found in MCI. The gFC alterations showed strong correlations (p neural reserve through plasticity, which evolve in a state of lack of connectivity between different networks with the worsening of the pathology.

  17. Trail making test performance in youth varies as a function of anatomical coupling between the prefrontal cortex and distributed cortical regions

    Directory of Open Access Journals (Sweden)

    Nancy Raitano Lee

    2014-07-01

    Full Text Available While researchers have gained a richer understanding of the neural correlates of executive function in adulthood, much less is known about how these abilities are represented in the developing brain and what structural brain networks underlie them. Thus, the current study examined how individual differences in executive function, as measured by the Trail Making Test (TMT, relate to structural covariance in the pediatric brain. The sample included 146 unrelated, typically developing youth (80 females, ages 9-14 years, who completed a structural MRI scan of the brain and the Halstead-Reitan TMT (intermediate form. TMT scores used to index executive function included those that evaluated set-shifting ability: Trails B time (number-letter sequencing and the difference in time between Trails B and A (number sequencing only. Anatomical coupling was measured by examining correlations between mean cortical thickness (MCT across the entire cortical ribbon and individual vertex thickness measured at ~81,000 vertices. To examine how TMT scores related to anatomical coupling strength, linear regression was utilized and the interaction between age-normed TMT scores and both age and sex-normed MCT was used to predict vertex thickness. Results revealed that stronger Trails B scores were associated with greater anatomical coupling between a large swath of prefrontal cortex and the rest of cortex. For the difference between Trails B and A, a network of regions in the frontal, temporal and parietal lobes was found to be more tightly coupled with the rest of cortex in stronger performers. This study is the first to highlight the importance of structural covariance in the prediction of individual differences in executive function skills in youth. Thus, it adds to the growing literature on the neural correlates of childhood executive functions and identifies neuroanatomic coupling as a biological substrate that may contribute to executive function and dysfunction in

  18. Trail making test performance in youth varies as a function of anatomical coupling between the prefrontal cortex and distributed cortical regions

    Science.gov (United States)

    Lee, Nancy Raitano; Wallace, Gregory L.; Raznahan, Armin; Clasen, Liv S.; Giedd, Jay N.

    2014-01-01

    While researchers have gained a richer understanding of the neural correlates of executive function in adulthood, much less is known about how these abilities are represented in the developing brain and what structural brain networks underlie them. Thus, the current study examined how individual differences in executive function, as measured by the Trail Making Test (TMT), relate to structural covariance in the pediatric brain. The sample included 146 unrelated, typically developing youth (80 females), ages 9–14 years, who completed a structural MRI scan of the brain and the Halstead-Reitan TMT (intermediate form). TMT scores used to index executive function included those that evaluated set-shifting ability: Trails B time (number-letter sequencing) and the difference in time between Trails B and A (number sequencing only). Anatomical coupling was measured by examining correlations between mean cortical thickness (MCT) across the entire cortical ribbon and individual vertex thickness measured at ~81,000 vertices. To examine how TMT scores related to anatomical coupling strength, linear regression was utilized and the interaction between age-normed TMT scores and both age and sex-normed MCT was used to predict vertex thickness. Results revealed that stronger Trails B scores were associated with greater anatomical coupling between a large swath of prefrontal cortex and the rest of cortex. For the difference between Trails B and A, a network of regions in the frontal, temporal, and parietal lobes was found to be more tightly coupled with the rest of cortex in stronger performers. This study is the first to highlight the importance of structural covariance in in the prediction of individual differences in executive function skills in youth. Thus, it adds to the growing literature on the neural correlates of childhood executive functions and identifies neuroanatomic coupling as a biological substrate that may contribute to executive function and dysfunction in

  19. A comprehensive assessment of resting state networks: bidirectional modification of functional integrity in cerebro-cerebellar networks in dementia

    Directory of Open Access Journals (Sweden)

    Gloria eCastellazzi

    2014-07-01

    Full Text Available In resting state fMRI (rs-fMRI, only functional connectivity (FC reductions in the default mode network (DMN are normally reported as a biomarker for Alzheimer's disease (AD. In this investigation we have developed a comprehensive strategy to characterize the FC changes occurring in multiple networks and applied it in a pilot study of subjects with AD and Mild Cognitive Impairment (MCI, compared to healthy controls (HC. Resting state networks (RSNs were studied in 14 AD (70±6 years, 12 MCI (74±6 years and 16 HC (69±5 years. RSN alterations were present in almost all the 15 recognized RSNs; overall, 474 voxels presented a reduced FC in MCI and 1244 in AD while 1627 voxels showed an increased FC in MCI and 1711 in AD. The RSNs were then ranked according to the magnitude and extension of FC changes (gFC, putting in evidence 6 RSNs with prominent changes: DMN, frontal cortical network (FCN, lateral visual network (LVN, basal ganglia network (BGN, cerebellar network (CBLN, and the anterior insula network (AIN. Nodes, or hubs, showing alterations common to more than one RSN were mostly localized within the prefrontal cortex and the mesial-temporal cortex. The cerebellum showed a unique behavior where voxels of decreased gFC were only found in AD while a significant gFC increase was only found in MCI. The gFC alterations showed strong correlations (p< 0.001 with psychological scores, in particular MMSE and attention/memory tasks. In conclusion, this analysis revealed that the DMN was affected by remarkable FC increases, that FC alterations extended over several RSNs, that derangement of functional relationships between multiple areas occurred already in the early stages of dementia. These results warrant future work to verify whether these represent compensatory mechanisms that exploit a pre-existing neural reserve through plasticity, which evolve in a state of lack of connectivity between different networks with the worsening of the pathology.

  20. PC Assisted Anatomical Measurements in 3D Using CT Data

    DEFF Research Database (Denmark)

    Hvidtfeldt, Mogens; Pedersen, Steen

    1999-01-01

    To assess facilities and applications of a programme for a PC based CT measurements in 3D of anatomical angelse in the skeleton.......To assess facilities and applications of a programme for a PC based CT measurements in 3D of anatomical angelse in the skeleton....

  1. Altering the swelling pressures within in vitro engineered cartilage is predicted to modulate the configuration of the collagen network and hence improve tissue mechanical properties.

    Science.gov (United States)

    Nagel, Thomas; Kelly, Daniel J

    2013-06-01

    Prestress in the collagen network has a significant impact on the material properties of cartilaginous tissues. It is closely related to the recruitment configuration of the collagen network which defines the transition from lax collagen fibres to uncrimped, load-bearing collagen fibres. This recruitment configuration can change in response to alterations in the external environmental conditions. In this study, the influence of changes in external salt concentration or sequential proteoglycan digestion on the configuration of the collagen network of tissue engineered cartilage is investigated using a previously developed computational model. Collagen synthesis and network assembly are assumed to occur in the tissue configuration present during in vitro culture. The model assumes that if this configuration is more compact due to changes in tissue swelling, the collagen network will adapt by lowering its recruitment stretch. When returned to normal physiological conditions, these tissues will then have a higher prestress in the collagen network. Based on these assumptions, the model demonstrates that proteoglycan digestion at discrete time points during culture as well as culture in a hypertonic medium can improve the functionality of tissue engineered cartilage, while culture in hypotonic solution is detrimental to the apparent mechanical properties of the graft. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Anatomical variations of the circle of Willis and cerebrovascular accidents in transitional Albania

    Directory of Open Access Journals (Sweden)

    Edlira Harizi (Shemsi

    2015-12-01

    Full Text Available Aim: The purpose of this study was twofold: i in a case-control design, to determine the relationship between anatomical variations of the circle of Willis and cerebrovascular accidents; ii to assess the association between anatomical variations of the circle of Willis and aneurisms among patients with subarachnoid hemorrhage. Methods: A case-control study was conducted in Albania in 2013-2014, including 100 patients with subarachnoid hemorrhage and 100 controls (individuals without cerebrovascular accidents. Patients with subarachnoid hemorrhage underwent a CT angiography procedure, whereas individuals in the control group underwent a magnetic resonance angiography procedure. Binary logistic regression was used to assess the association between cerebrovascular accidents and the anatomical variations of the circle of Willis. Conversely, Fisher’s exact test was used to compare the prevalence of aneurisms between subarachnoid hemorrhage patients with and without anatomical variations of the circle of Willis. Results: Among patients, there were 22 (22% cases with anatomical variations of the circle of Willis compared with 10 (10% individuals in the control group (P=0.033. There was no evidence of a statistically significant difference in the types of the anatomical variations of the circle of Willis between patients and controls (P=0.402. In age- and-sex adjusted logistic regression models, there was evidence of a significant positive association between cerebrovascular accidents and the anatomical variations of the circle of Willis (OR=1.87, 95%CI=1.03-4.68, P=0.048. Within the patients’ group, of the 52 cases with aneurisms, there were 22 (42.3% individuals with anatomical variations of the circle of Willis compared with no individuals with anatomical variations among the 48 patients without aneurisms (P<0.001. Conclusion: This study provides useful evidence on the association between anatomical variations of the circle of Willis and

  3. Alterações anatômicas em plantas de algodoeiro com sintomas de murchamento avermelhado Anatomical alterations in cotton plants with reddish withering symptoms

    Directory of Open Access Journals (Sweden)

    Rachel Benetti Queiroz-Voltan

    1995-01-01

    Full Text Available Estudaram-se as alterações anatômicas em plantas de algodoeiro com sintomas de murchamento avermelhado em dezembro de 1993-fevereiro de 94. Analisaram-se amostras de raiz, caule e folha de Gossypium hirsutum L. 'IAC 20' provenientes de áreas de ocorrência do sintoma. Estimou-se o número de glândulas secretoras das folhas dos cultivares IAC 20 e CNPA ITA 90 (que se tem mostrado resistente. Observou-se que as células parenquimáticas apresentavam, no interior, substâncias insolúveis em água, cuja concentração aumentava à medida do grau do sintoma. As folhas apresentaram uma concentração maior dessas substâncias em relação ao restante do corpo vegetal. Os núcleos das células do parênquima paliçádico encontravam-se aumentados e os cloroplastos do mesofilo, parcialmente destruídos. As plantas com alto grau de sintoma apresentavam também um número maior de glândulas secretoras nas folhas.Anatomical alterations in cotton plants (Gossypium hirsutum L. with reddish withering symptons observated between December/93 to February/94 were studied. Samples of root, stem and leaf of Gossypium hirsutum L. 'IAC 20' collected in several sites with symptoms occurrence were analised. The number of secretory glands in the leaves of cultivar IAC 20, and for the resistent cultivar CNPA ITA 90 was estimated. The parenchyma cells included insoluble substances, and these concentrations increased with the crescent symptoms. The leaves presented higher concentration of these substances than the remaining plant body. The nucleus of palisade parenchyma cells was increased and the chloroplasts partially destroyed. The leave secretory glands number increases proportionally to the advance of the symptoms.

  4. CDKL5 knockout leads to altered inhibitory transmission in the cerebellum of adult mice.

    Science.gov (United States)

    Sivilia, S; Mangano, C; Beggiato, S; Giuliani, A; Torricella, R; Baldassarro, V A; Fernandez, M; Lorenzini, L; Giardino, L; Borelli, A C; Ferraro, L; Calzà, L

    2016-06-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 gene (CDKL5) are associated to severe neurodevelopmental alterations including motor symptoms. In order to elucidate the neurobiological substrate of motor symptoms in CDKL5 syndrome, we investigated the motor function, GABA and glutamate pathways in the cerebellum of CDKL5 knockout female mice. Behavioural data indicate that CDKL5-KO mice displayed impaired motor coordination on the Rotarod test, and altered steps, as measured by the gait analysis using the CatWalk test. A higher reduction in spontaneous GABA efflux, than that in glutamate, was observed in CDKL5-KO mouse cerebellar synaptosomes, leading to a significant increase of spontaneous glutamate/GABA efflux ratio in these animals. On the contrary, there were no differences between groups in K(+) -evoked GABA and glutamate efflux. The anatomical analysis of cerebellar excitatory and inhibitory pathways showed a selective defect of the GABA-related marker GAD67 in the molecular layer in CDKL5-KO mice, while the glutamatergic marker VGLUT1 was unchanged in the same area. Fine cerebellar structural abnormalities such as a reduction of the inhibitory basket 'net' estimated volume and an increase of the pinceau estimated volume were also observed in CDKL5-KO mice. Finally, the BDNF mRNA expression level in the cerebellum, but not in the hippocampus, was reduced compared with WT animals. These data suggest that CDKL5 deletion during development more markedly impairs the establishment of a correct GABAergic cerebellar network than that of glutamatergic one, leading to the behavioural symptoms associated with CDKL5 mutation. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Complex modular structure of large-scale brain networks

    Science.gov (United States)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  6. Sap flow is Underestimated by Thermal Dissipation Sensors due to Alterations of Wood Anatomy

    Science.gov (United States)

    Marañón-Jiménez, S.; Wiedemann, A.; van den Bulcke, J.; Cuntz, M.; Rebmann, C.; Steppe, K.

    2014-12-01

    The thermal dissipation technique (TD) is one of the most commonly adopted methods for sap flow measurements. However, underestimations of up to 60% of the tree transpiration have been reported with this technique, although the causes are not certainly known. The insertion of TD sensors within the stems causes damage of the wood tissue and subsequent healing reactions, changing wood anatomy and likely the sap flow path. However, the anatomical changes in response to the insertion of sap flow sensors and the effects on the measured flow have not been assessed yet. In this study, we investigate the alteration of vessel anatomy on wounds formed around TD sensors. Our main objectives were to elucidate the anatomical causes of sap flow underestimation for ring-porous and diffuse-porous species, and relate these changes to sap flow underestimations. Successive sets of TD probes were installed in early, mid and end of the growing season in Fagus sylvatica (diffuse-porous) and Quercus petraea (ring-porous) trees. They were logged after the growing season and additional sets of sensors were installed in the logged stems with presumably no healing reaction. The wood tissue surrounding each sensor was then excised and analysed by X-ray computed microtomography (X-ray micro CT). This technique allowed the quantification of vessel anatomical characteristics and the reconstruction of the 3-D internal microstructure of the xylem vessels so that extension and shape of the altered area could be determined. Gels and tyloses clogged the conductive vessels around the sensors in both beech and oak. The extension of the affected area was larger for beech although these anatomical changes led to similar sap flow underestimations in both species. The higher vessel size in oak may explain this result and, therefore, larger sap flow underestimation per area of affected conductive tissue. The wound healing reaction likely occurred within the first weeks after sensor installation, which

  7. [The anatomical revolution and the transition of anatomical conception in late imperial china].

    Science.gov (United States)

    Sihn, Kyu Hwan

    2012-04-30

    This paper aimed to examine the anatomical revolution from Yilingaicuo (Correcting the Errors of Medicine) and Quantixinlun(Outline of Anatomy and Physiology) in late imperial China. As the cephalocentrism which the brain superintend human operation of the mind was diffused in China since 16th century, the cephalocentrism and the cardiocentrism had competed for the hegemony of anatomical conception. Because of the advent of Yilingaicuo and Quantixinlun, the cephalocentrism became the main stream in the anatomical conception. The supporters of the Wang Yangming's Xinxue(the Learning of Heart and Mind) argued that the heart was the central organ of perception, sensitivity, and morality of the human body in medicine since 16th century. Even reformist and revolutionary intellectuals like Tan sitong and Mao zedong who had supported the Wang Yangming's Xinxue embraced the cephalocentrism in the late 19th century and the early 20th century. May Fourth intellectuals had not obsessed metaphysical interpretation of human body any more in the New Culture Movement in 1910s. They regarded human body as the object of research and writing. The anatomy was transformed into the instrumental knowledge for mutilation of the body. Yilingaicuo challenged the traditional conception of body, and Chinese intellectuals drew interest in the anatomy knowledge based on real mutilation. Quantixinlun based on Western medicine fueled a controversy about anatomy. Though new knowledge of anatomy was criticized by traditional Chinese medical doctors from the usefulness and morality of anatomy, nobody disavowed new knowledge of anatomy from the institutionalization of Western medicine in medical school. The internal development of cephalocentrism and positivism had influence on anatomy in China since 16th century. The advent of Yilingaicuo and Quantixinlun provided the milestone of new anatomy, though both sides represented traditional Chinese medicine and Western medicine respectively. They

  8. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia.

    Science.gov (United States)

    Giraldo-Chica, Monica; Rogers, Baxter P; Damon, Stephen M; Landman, Bennett A; Woodward, Neil D

    2018-03-15

    Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses. Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients. Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia. The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex. Copyright © 2017 Society of

  9. Schizophrenia alters intra-network functional connectivity in the caudate for detecting speech under informational speech masking conditions.

    Science.gov (United States)

    Zheng, Yingjun; Wu, Chao; Li, Juanhua; Li, Ruikeng; Peng, Hongjun; She, Shenglin; Ning, Yuping; Li, Liang

    2018-04-04

    Speech recognition under noisy "cocktail-party" environments involves multiple perceptual/cognitive processes, including target detection, selective attention, irrelevant signal inhibition, sensory/working memory, and speech production. Compared to health listeners, people with schizophrenia are more vulnerable to masking stimuli and perform worse in speech recognition under speech-on-speech masking conditions. Although the schizophrenia-related speech-recognition impairment under "cocktail-party" conditions is associated with deficits of various perceptual/cognitive processes, it is crucial to know whether the brain substrates critically underlying speech detection against informational speech masking are impaired in people with schizophrenia. Using functional magnetic resonance imaging (fMRI), this study investigated differences between people with schizophrenia (n = 19, mean age = 33 ± 10 years) and their matched healthy controls (n = 15, mean age = 30 ± 9 years) in intra-network functional connectivity (FC) specifically associated with target-speech detection under speech-on-speech-masking conditions. The target-speech detection performance under the speech-on-speech-masking condition in participants with schizophrenia was significantly worse than that in matched healthy participants (healthy controls). Moreover, in healthy controls, but not participants with schizophrenia, the strength of intra-network FC within the bilateral caudate was positively correlated with the speech-detection performance under the speech-masking conditions. Compared to controls, patients showed altered spatial activity pattern and decreased intra-network FC in the caudate. In people with schizophrenia, the declined speech-detection performance under speech-on-speech masking conditions is associated with reduced intra-caudate functional connectivity, which normally contributes to detecting target speech against speech masking via its functions of suppressing masking-speech signals.

  10. Impact of anatomical variations of the circle of Willis on the incidence of aneurysms and their recurrence rate following endovascular treatment

    International Nuclear Information System (INIS)

    Songsaeng, D.; Geibprasert, S.; Willinsky, R.; Tymianski, M.; TerBrugge, K.G.; Krings, T.

    2010-01-01

    Aim: To analyse the impact of anatomical variations of the parent arteries on the incidence and recurrence rate following coil embolization of aneurysms of the anterior (AcoA), posterior communicating artery (PcoA) and basilar artery (BA) tip. Methods: Two hundred and two (96 AcoA, 67 PcoA, and 29 BA) aneurysms in 200 patients were treated with coil embolization between January 2000 and April 2008. Parent artery variations at each location were classified as: AcoA: A1 aplasia versus hypoplasia versus symmetrical size; PcoA: foetal origin versus medium versus small size, BA: cranial versus caudal versus asymmetrical fusion. The incidence of aneurysms and difference between recurrence rates for each group were recorded on follow-up. Results: AcoA, PcoA, and BA aneurysms were more often associated with embryonically earlier vessel wall dispositions (A1 aplasia, foetal PcoA, asymmetrical fusion). Two of these variations were also associated with aneurysm recurrence following coil embolization: asymmetrical A1 segment (p = 0.01), and asymmetrical BA tip (p = 0.02). Conclusions: AcoA, PcoA, and BA tip aneurysms tend to occur more often in anatomically variant parent artery dispositions, some of which are related to aneurysm recurrence following coil embolization. This may relate to a more fragile vessel disposition as it is not fully matured or to altered haemodynamics secondary to the anatomical variations.

  11. Impact of anatomical variations of the circle of Willis on the incidence of aneurysms and their recurrence rate following endovascular treatment

    Energy Technology Data Exchange (ETDEWEB)

    Songsaeng, D. [Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto (Canada); Department of Radiology, Siriraj Hospital, Faculty of Medicine, Mahidol University, Bangkok (Thailand); Geibprasert, S.; Willinsky, R. [Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto (Canada); Tymianski, M. [Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto (Canada); TerBrugge, K.G. [Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto (Canada); Krings, T., E-mail: timo.krings@uhn.on.c [Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto (Canada)

    2010-11-15

    Aim: To analyse the impact of anatomical variations of the parent arteries on the incidence and recurrence rate following coil embolization of aneurysms of the anterior (AcoA), posterior communicating artery (PcoA) and basilar artery (BA) tip. Methods: Two hundred and two (96 AcoA, 67 PcoA, and 29 BA) aneurysms in 200 patients were treated with coil embolization between January 2000 and April 2008. Parent artery variations at each location were classified as: AcoA: A1 aplasia versus hypoplasia versus symmetrical size; PcoA: foetal origin versus medium versus small size, BA: cranial versus caudal versus asymmetrical fusion. The incidence of aneurysms and difference between recurrence rates for each group were recorded on follow-up. Results: AcoA, PcoA, and BA aneurysms were more often associated with embryonically earlier vessel wall dispositions (A1 aplasia, foetal PcoA, asymmetrical fusion). Two of these variations were also associated with aneurysm recurrence following coil embolization: asymmetrical A1 segment (p = 0.01), and asymmetrical BA tip (p = 0.02). Conclusions: AcoA, PcoA, and BA tip aneurysms tend to occur more often in anatomically variant parent artery dispositions, some of which are related to aneurysm recurrence following coil embolization. This may relate to a more fragile vessel disposition as it is not fully matured or to altered haemodynamics secondary to the anatomical variations.

  12. Robust gene network analysis reveals alteration of the STAT5a network as a hallmark of prostate cancer.

    Science.gov (United States)

    Reddy, Anupama; Huang, C Chris; Liu, Huiqing; Delisi, Charles; Nevalainen, Marja T; Szalma, Sandor; Bhanot, Gyan

    2010-01-01

    We develop a general method to identify gene networks from pair-wise correlations between genes in a microarray data set and apply it to a public prostate cancer gene expression data from 69 primary prostate tumors. We define the degree of a node as the number of genes significantly associated with the node and identify hub genes as those with the highest degree. The correlation network was pruned using transcription factor binding information in VisANT (http://visant.bu.edu/) as a biological filter. The reliability of hub genes was determined using a strict permutation test. Separate networks for normal prostate samples, and prostate cancer samples from African Americans (AA) and European Americans (EA) were generated and compared. We found that the same hubs control disease progression in AA and EA networks. Combining AA and EA samples, we generated networks for low low (cancer (e.g. possible turning on of oncogenes). (ii) Some hubs reduced their degree in the tumor network compared to their degree in the normal network, suggesting that these genes are associated with loss of regulatory control in cancer (e.g. possible loss of tumor suppressor genes). A striking result was that for both AA and EA tumor samples, STAT5a, CEBPB and EGR1 are major hubs that gain neighbors compared to the normal prostate network. Conversely, HIF-lα is a major hub that loses connections in the prostate cancer network compared to the normal prostate network. We also find that the degree of these hubs changes progressively from normal to low grade to high grade disease, suggesting that these hubs are master regulators of prostate cancer and marks disease progression. STAT5a was identified as a central hub, with ~120 neighbors in the prostate cancer network and only 81 neighbors in the normal prostate network. Of the 120 neighbors of STAT5a, 57 are known cancer related genes, known to be involved in functional pathways associated with tumorigenesis. Our method is general and can easily

  13. ANATOMIC AND PHYSIOLOGICAL FEATURES OF DISTAL LOWER LEG AND THEIR INFLUENCE ON THE PROCESS OF OSTEOGENESIS

    Directory of Open Access Journals (Sweden)

    Desimir Mladenović

    2010-06-01

    Full Text Available Osteogenesis is the process of bone tissue forming, i.e. bone or callus regeneration. This process is influenced by many factors, and the degree of bone fragments’ stability and vascularization in the fracture area are the basic local factors which determine the nature of reparative process. Regenerative process of all bone structures increases with increasing of blood supply.The distal lower leg has its specific biomechanical features, and plays an important role in the transfer of body weight to foot. The distal part of tibia has a small diameter, which as a consequence has reduced diameter in medullar cave. Through this anatomic feature, the medullar network in the lower tibia part is also reduced.As for anatomic aspect, vascularization in the lower end of tibia is poor. It primarily depends on periosteal vascularization, because medullar vascularization is reduced. Fasciae, tendons and skin cover the lower part of the leg, and there is no muscle mass. These tissues have poor vascular network and that is why the extraosseous blood circulation in tibia is poor, and does not participate in the osteogenesis process. For these reasons, distal lower leg represents a predelection site for delayed osteogenesis and pseudoarthrosys development.Osteosynthesis causes secondary damage to bone and soft tissue circulation. The screw plate damages the periosteal circulation – in the lower part of tibia it is the main source of vascularization, and for this reason, this method of osteosynthesis should not be applied. The external fixator has a sparing role regarding vascularization, and that is the reason why this method is recommended for fracture stabilization at the level of distal lower leg.

  14. A reusable anatomically segmented digital mannequin for public health communication.

    Science.gov (United States)

    Fujieda, Kaori; Okubo, Kosaku

    2016-01-01

    The ongoing development of world wide web technologies has facilitated a change in health communication, which has now become bi-directional and encompasses people with diverse backgrounds. To enable an even greater role for medical illustrations, a data set, BodyParts3D, has been generated and its data set can be used by anyone to create and exchange customised three-dimensional (3D) anatomical images. BP3D comprises more than 3000 3D object files created by segmenting a digital mannequin in accordance with anatomical naming conventions. This paper describes the methodologies and features used to generate an anatomically correct male mannequin.

  15. Sinonasal anatomical variations: their relationship with chronic rhinosinusitis and effect on the severity of disease-a computerized tomography assisted anatomical and clinical study.

    Science.gov (United States)

    Kaygusuz, Ahmet; Haksever, Mehmet; Akduman, Davut; Aslan, Sündüs; Sayar, Zeynep

    2014-09-01

    The anatomy of the sinonasal area has a very wide rage of anatomical variations. The significance of these anatomical variations in pathogenesis of rhinosinusitis, which is the commonest disease in the region, is still unclear. The aims of the study were to compare the rate of sinonasal anatomical variations with development and severity of chronic rhinosinusitis patients. CT scan of paranasal sinuses images of 99 individuals were retrospectively reviewed. 65 cases of chronic rhinosinusitis (study group) who had undergone endoscopic sinus surgery were compared with 34 cases without chronic rhinosinusitis (control group). Also in study group Lund-Mackay score of the sinus disease were calculated and compared to the rate of related anatomical variations. There were 74 (74.7 %) males and 25 (25.2 %) females with ages ranging from 13 to 70 years (mean 32.2 years). The anatomical variations recorded were: Septal deviation 47 (72.3) in study and 25 (73.5 %) in control group, concha bullosa 27 (41.5 %) in study and 18 (52.9 %) in control group, overpneumatized ethmoid bulla 17 (26.1 %) in study and 14 (41.1 %) in control group, pneumatized uncinate 3 (4.6 %) in study and 3 (8.8 %) in control group, agger nasi 42 (64.6 %) in study and 19 (55.8 %) in control group, paradoxical middle turbinates 9 (13.8 %) in study and 4 (11.7 %) in control group, Onodi cell 6 (9.2 %) in study and 2 (5.8 %) in control group, Haller's cells (infraorbital ethmoid cell) 9 (13.8 %) in study and 7 (20.5 %) in control group. None of these results were statistically significant between study and control group (p > 0.05). Lund-Mackay score (which was assumed to show the severity of the disease) of the maxillary, ethmoid and frontal sinus were calculated and compared to rate of septal deviation, concha bullosa, agger nasi cells. No significant correlation was conducted (p > 0.05). The results of study showed no statistically significant correlation between sinonasal anatomical

  16. Altered resting state functional connectivity of the cognitive control network in fibromyalgia and the modulation effect of mind-body intervention.

    Science.gov (United States)

    Kong, Jian; Wolcott, Emily; Wang, Zengjian; Jorgenson, Kristen; Harvey, William F; Tao, Jing; Rones, Ramel; Wang, Chenchen

    2018-05-02

    This study examines altered resting state functional connectivity (rsFC) of the cognitive control network (CCN) in fibromyalgia patients as compared to healthy controls, as well as how an effective mind-body intervention, Tai Chi, can modulate the altered rsFC of the CCN. Patients with fibromyalgia and matched healthy subjects were recruited in this study. Fibromyalgia patients were scanned 12 weeks before and after intervention. The bilateral dorsolateral prefrontal cortex (DLPFC) was used as a seed to explore the rsFC of the CCN. Data analysis was conducted with 21 patients and 20 healthy subjects. Compared to healthy subjects, fibromyalgia patients exhibited increased rsFC between the DLPFC and the bilateral rostral anterior cingulate cortex (rACC) and medial prefrontal cortex (MPFC) at baseline. The rsFC between the CCN and rACC/MPFC further increased after Tai Chi intervention, and this increase was accompanied by clinical improvements. This rsFC change was also significantly associated with corresponding changes in the Overall Impact domain of the Revised Fibromyalgia Impact Questionnaire (FIQR). Further analysis showed that the rACC/MPFC rsFC with both the PAG and hippocampus significantly decreased following Tai Chi intervention. Our study suggests that fibromyalgia is associated with altered CCN rsFC and that effective mind-body treatment may elicit clinical improvements by further increasing this altered rsFC. Elucidating this mechanism of enhancing the allostasis process will deepen our understanding of the mechanisms underlying mind-body interventions in fibromyalgia patients and facilitate the development of new pain management methods.

  17. ArthroBroström Lateral Ankle Stabilization Technique: An Anatomic Study.

    Science.gov (United States)

    Acevedo, Jorge I; Ortiz, Cristian; Golano, Pau; Nery, Caio

    2015-10-01

    Arthroscopic ankle lateral ligament repair techniques have recently been developed and biomechanically as well as clinically validated. Although there has been 1 anatomic study relating suture and anchor proximity to anatomic structures, none has evaluated the ArthroBroström procedure. To evaluate the proximity of anatomic structures for the ArthroBroström lateral ankle ligament stabilization technique and to define ideal landmarks and "safe zones" for this repair. Descriptive laboratory study. Ten human cadaveric ankle specimens (5 matched pairs) were screened for the study. All specimens underwent arthroscopic lateral ligament repair according to the previously described ArthroBroström technique with 2 suture anchors in the fibula. Three cadaveric specimens were used to test the protocol, and 7 were dissected to determine the proximity of anatomic structures. Several distances were measured, including those of different anatomic structures to the suture knots, to determine the "safe zones." Measurements were obtained by 2 separate observers, and statistical analysis was performed. None of the specimens revealed entrapment by either of the suture knots of the critical anatomic structures, including the superficial peroneal nerve (SPN), sural nerve, peroneus tertius tendon, peroneus brevis tendon, or peroneus longus tendon. The internervous safe zone between the intermediate branch of the SPN and sural nerve was a mean of 51 mm (range, 39-64 mm). The intertendinous safe zone between the peroneus tertius and peroneus brevis was a mean of 43 mm (range, 37-49 mm). On average, a 20-mm (range, 8-36 mm) safe distance was maintained from the most medial suture to the intermediate branch of the SPN. The amount of inferior extensor retinaculum (IER) grasped by either suture knot varied from 0 to 12 mm, with 86% of repairs including the retinaculum. The results indicate that there is a relatively wide internervous and intertendinous safe zone when performing the Arthro

  18. ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Mehmet AYBEKE

    2016-12-01

    Full Text Available Specific understanding of root anatomy plasticity under salt stress is lacking and requires creation of efficient screening techniques for stress condition s. To fill this gap, this study aimed to determine the anatomical plasticity in root chracteristics of 31 different rice cultivars (from ‘Best’ to ‘Low’ yielding grown under real field conditions (saline and non-saline from planting to harvesting and to reveal detailed root anatomical parameters that can be used to select and breed salt-tolerant rice. Anatomical and histochemical features of all cultivars and thin structures of the apoplastic barriers were investigated. The amount of silica (Si, 35 different anatomical characteristics, anatomical plasticity characteristics, plasticity rates, plasticity trends and changes and strategies of each group under saline and non-saline conditions were compared. The results showed that protective anatomical characters improved/remained equal to, and worsened/remained equal to those of the controls, in the ‘Best’ and other groups, respectively, from non-saline to saline conditions. Anatomical plasticity is essentially directly related to apoplastic barrier features. High genotypic variation was observed in root anatomy in all cultivars, but foremost traits were as follows: (1 cell size, (2 Si presence, (3 Si accumulation shape, (4 Si distribution towards root stele, (5 xylem arch features, (6 lignification-suberization properties in apoplastic barriers and their degrees, (7 presence/absence of idioblast cells filled with gummic and phenolic substances and (8 moderate anatomical plasticity. Cultivars with the most stabile anatomy under saline and non-saline conditions should be used to select and breed salt-resistant rice.

  19. Anatomic variation of cranial parasympathetic ganglia

    Directory of Open Access Journals (Sweden)

    Selma Siéssere

    2008-06-01

    Full Text Available Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve, the pterygopalatine ganglion (located in the pterygopalatine fossa, the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve, and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen. The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia.

  20. Computational investigation of nonlinear microwave tomography on anatomically realistic breast phantoms

    DEFF Research Database (Denmark)

    Jensen, P. D.; Rubæk, Tonny; Mohr, J. J.

    2013-01-01

    The performance of a nonlinear microwave tomography algorithm is tested using simulated data from anatomically realistic breast phantoms. These tests include several different anatomically correct breast models from the University of Wisconsin-Madison repository with and without tumors inserted....

  1. Theory of mind network activity is altered in subjects with familial liability for schizophrenia

    Science.gov (United States)

    Mohnke, Sebastian; Erk, Susanne; Schnell, Knut; Romanczuk-Seiferth, Nina; Schmierer, Phöbe; Romund, Lydia; Garbusow, Maria; Wackerhagen, Carolin; Ripke, Stephan; Grimm, Oliver; Haller, Leila; Witt, Stephanie H.; Degenhardt, Franziska; Tost, Heike; Heinz, Andreas; Meyer-Lindenberg, Andreas; Walter, Henrik

    2016-01-01

    As evidenced by a multitude of studies, abnormalities in Theory of Mind (ToM) and its neural processing might constitute an intermediate phenotype of schizophrenia. If so, neural alterations during ToM should be observable in unaffected relatives of patients as well, since they share a considerable amount of genetic risk. While behaviorally, impaired ToM function is confirmed meta-analytically in relatives, evidence on aberrant function of the neural ToM network is sparse and inconclusive. The present study therefore aimed to further explore the neural correlates of ToM in relatives of schizophrenia. About 297 controls and 63 unaffected first-degree relatives of patients with schizophrenia performed a ToM task during functional magnetic resonance imaging. Consistent with the literature relatives exhibited decreased activity of the medial prefrontal cortex. Additionally, increased recruitment of the right middle temporal gyrus and posterior cingulate cortex was found, which was related to subclinical paranoid symptoms in relatives. These results further support decreased medial prefrontal activation during ToM as an intermediate phenotype of genetic risk for schizophrenia. Enhanced recruitment of posterior ToM areas in relatives might indicate inefficiency mechanisms in the presence of genetic risk. PMID:26341902

  2. Functional connectivity profile of the human inferior frontal junction: involvement in a cognitive control network

    Directory of Open Access Journals (Sweden)

    Sundermann Benedikt

    2012-10-01

    Full Text Available Abstract Background The human inferior frontal junction area (IFJ is critically involved in three main component processes of cognitive control (working memory, task switching and inhibitory control. As it overlaps with several areas in established anatomical labeling schemes, it is considered to be underreported as a functionally distinct location in the neuroimaging literature. While recent studies explicitly focused on the IFJ's anatomical organization and functional role as a single brain area, it is usually not explicitly denominated in studies on cognitive networks. However based on few analyses in small datasets constrained by specific a priori assumptions on its functional specialization, the IFJ has been postulated to be part of a cognitive control network. Goal of this meta-analysis was to establish the IFJ’s connectivity profile on a high formal level of evidence by aggregating published implicit knowledge about its co-activations. We applied meta-analytical connectivity modeling (MACM based on the activation likelihood estimation (ALE method without specific assumptions regarding functional specialization on 180 (reporting left IFJ activity and 131 (right IFJ published functional neuroimaging experiments derived from the BrainMap database. This method is based on coordinates in stereotaxic space, not on anatomical descriptors. Results The IFJ is significantly co-activated with areas in the dorsolateral and ventrolateral prefrontal cortex, anterior insula, medial frontal gyrus / pre-SMA, posterior parietal cortex, occipitotemporal junction / cerebellum, thalamus and putamen as well as language and motor areas. Results are corroborated by an independent resting-state fMRI analysis. Conclusions These results support the assumption that the IFJ is part of a previously described cognitive control network. They also highlight the involvement of subcortical structures in this system. A direct line is drawn from works on the functional

  3. Anatomical Mercury: Changing Understandings of Quicksilver, Blood, and the Lymphatic System, 1650-1800.

    Science.gov (United States)

    Hendriksen, Marieke M A

    2015-10-01

    The use of mercury as an injection mass in anatomical experiments and preparations was common throughout Europe in the long eighteenth century, and refined mercury-injected preparations as well as plates of anatomical mercury remain today. The use and meaning of mercury in related disciplines such as medicine and chemistry in the same period have been studied, but our knowledge of anatomical mercury is sparse and tends to focus on technicalities. This article argues that mercury had a distinct meaning in anatomy, which was initially influenced by alchemical and classical understandings of mercury. Moreover, it demonstrates that the choice of mercury as an anatomical injection mass was deliberate and informed by an intricate cultural understanding of its materiality, and that its use in anatomical preparations and its perception as an anatomical material evolved with the understanding of the circulatory and lymphatic systems. By using the material culture of anatomical mercury as a starting point, I seek to provide a new, object-driven interpretation of complex and strongly interrelated historiographical categories such as mechanism, vitalism, chemistry, anatomy, and physiology, which are difficult to understand through a historiography that focuses exclusively on ideas. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Anatomical variability of the trunk wood and root tissues of ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the anatomical structure of the trunk wood and the roots of A. nitida and R. racemosa, two mangrove trees from Gabon. The anatomical differences between the trunks and the roots were used to understand their bio-remediating differences through heavy metals. It was found that the ...

  5. Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks

    DEFF Research Database (Denmark)

    Hagen, Espen; Dahmen, David; Stavrinou, Maria L

    2016-01-01

    on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network......With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical...... and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely...

  6. Dynamically Allocated Hub in Task-Evoked Network Predicts the Vulnerable Prefrontal Locus for Contextual Memory Retrieval in Macaques.

    Directory of Open Access Journals (Sweden)

    Takahiro Osada

    2015-06-01

    Full Text Available Neuroimaging and neurophysiology have revealed that multiple areas in the prefrontal cortex (PFC are activated in a specific memory task, but severity of impairment after PFC lesions is largely different depending on which activated area is damaged. The critical relationship between lesion sites and impairments has not yet been given a clear mechanistic explanation. Although recent works proposed that a whole-brain network contains hubs that play integrative roles in cortical information processing, this framework relying on an anatomy-based structural network cannot account for the vulnerable locus for a specific task, lesioning of which would bring impairment. Here, we hypothesized that (i activated PFC areas dynamically form an ordered network centered at a task-specific "functional hub" and (ii the lesion-effective site corresponds to the "functional hub," but not to a task-invariant "structural hub." To test these hypotheses, we conducted functional magnetic resonance imaging experiments in macaques performing a temporal contextual memory task. We found that the activated areas formed a hierarchical hub-centric network based on task-evoked directed connectivity, differently from the anatomical network reflecting axonal projection patterns. Using a novel simulated-lesion method based on support vector machine, we estimated severity of impairment after lesioning of each area, which accorded well with a known dissociation in contextual memory impairment in macaques (impairment after lesioning in area 9/46d, but not in area 8Ad. The predicted severity of impairment was proportional to the network "hubness" of the virtually lesioned area in the task-evoked directed connectivity network, rather than in the anatomical network known from tracer studies. Our results suggest that PFC areas dynamically and cooperatively shape a functional hub-centric network to reallocate the lesion-effective site depending on the cognitive processes, apart from

  7. Comparative epidermal anatomical studies in six taxa of genus Nephrolepis Swart in Nigeria

    Directory of Open Access Journals (Sweden)

    A. A. Fajuke

    2018-04-01

    Full Text Available Anatomical studies in six taxa of genus Nephrolepis; N. biserrata, N. cordifolia, N. exaltata (i & (ii, N. biserrata var. furcans and N. undulata were carried out with a view to identify anatomic characters of taxonomic values. Both qualitative and quantitative anatomical studies were carried out. Quantitative data were subjected to descriptive statistical analysis. Anatomical characters studied include venation patterns, trichome types, presence and absence of stomata and values of the stomatal index which are valuable in delimiting the species. The overall results showed overlaps in the quantitative anatomical attributes of the Nephrolepis taxa studied suggesting that they belong to the same genus. Qualitative anatomical attributes that separated the genus into distinct taxa are the presence of simple multicellular glandular trichomes in N. biserrata and simple multicellular non-glandular trichomes in N. exaltata (i and N. exalta (ii while N. biserrata var. furcans and N. undulata have simple unicellular non-glandular trichomes and absence of trichome in N. cordifolia. Presence of anisocytic, diacytic or anomocytic stomata were of diagnostic important in the six taxa.

  8. Neural plasticity in functional and anatomical MRI studies of children with Tourette syndrome.

    Science.gov (United States)

    Eichele, Heike; Plessen, Kerstin J

    2013-01-01

    Tourette syndrome (TS) is a neuropsychiatric disorder with childhood onset characterized by chronic motor and vocal tics. The typical clinical course of an attenuation of symptoms during adolescence in parallel with the emerging self-regulatory control during development suggests that plastic processes may play an important role in the development of tic symptoms. We conducted a systematic search to identify existing imaging studies (both anatomical and functional magnetic resonance imaging [fMRI]) in young persons under the age of 19 years with TS. The final search resulted in 13 original studies, which were reviewed with a focus on findings suggesting adaptive processes (using fMRI) and plasticity (using anatomical MRI). Differences in brain activation compared to healthy controls during tasks that require overriding of prepotent responses help to understand compensatory pathways in children with TS. Along with alterations in regions putatively representing the origin of tics, deviations in several other regions most likely represent an activity-dependent neural plasticity that help to modulate tic severity, such as the prefrontal cortex, but also in the corpus callosum and the limbic system. Factors that potentially influence the development of adaptive changes in the brain of children with TS are age, comorbidity with other developmental disorders, medication use, IQ along with study-design or MRI techniques for acquisition, and analysis of data. The most prominent limitation of all studies is their cross-sectional design. Longitudinal studies extending to younger age groups and to children at risk for developing TS hopefully will confirm findings of neural plasticity in future investigations.

  9. In-Network Performance of Handheld Mobile Terminals

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2006-01-01

    are compared with the equivalent performance obtained in a live GSM network using data from the Abis network interface. This method does not require altering of the handsets and the testing uses normal calls in the network. The investigation is based on measurements with four different commercially available...

  10. Anatomical models and wax Venuses: art masterpieces or scientific craft works?

    Science.gov (United States)

    Ballestriero, R

    2010-02-01

    The art of wax modelling has an ancient origin but rose to prominence in 14th century Italy with the cult of votive artefacts. With the advent of Neoclassicism this art, now deemed repulsive, continued to survive in a scientific environment, where it flourished in the study of normal and pathological anatomy, obstetrics, zoology and botany. The achievement of having originated the creation of anatomical models in coloured wax must be ascribed to a joint effort undertaken by the Sicilian wax modeller Gaetano Giulio Zumbo and the French surgeon Guillaume Desnoues in the late 17th century. Interest in anatomical wax models spread throughout Europe during the 18th century, first in Bologna with Ercole Lelli, Giovanni Manzolini and Anna Morandi, and then in Florence with Felice Fontana and Clemente Susini. In England, the art of anatomical ceroplastics was brought to London from Florence by the sculptor Joseph Towne. Throughout the centuries many anatomical artists preferred this material due to the remarkable mimetic likeness obtained, far surpassing any other material. Independent of the material used, whether wood, wax or clay, anatomical models were always considered merely craft works confined to hospitals or faculties of medicine and have survived to this day only because of their scientific interest. Italian and English waxes are stylistically different but the remarkable results obtained by Susini and Towne, and the fact that some contemporary artists are again representing anatomical wax bodies in their works, makes the border that formerly separated art and craft indistinguishable.

  11. How accurate is anatomic limb alignment in predicting mechanical limb alignment after total knee arthroplasty?

    Science.gov (United States)

    Lee, Seung Ah; Choi, Sang-Hee; Chang, Moon Jong

    2015-10-27

    Anatomic limb alignment often differs from mechanical limb alignment after total knee arthroplasty (TKA). We sought to assess the accuracy, specificity, and sensitivity for each of three commonly used ranges for anatomic limb alignment (3-9°, 5-10° and 2-10°) in predicting an acceptable range (neutral ± 3°) for mechanical limb alignment after TKA. We also assessed whether the accuracy of anatomic limb alignment was affected by anatomic variation. This retrospective study included 314 primary TKAs. The alignment of the limb was measured with both anatomic and mechanical methods of measurement. We also measured anatomic variation, including the femoral bowing angle, tibial bowing angle, and neck-shaft angle of the femur. All angles were measured on the same full-length standing anteroposterior radiographs. The accuracy, specificity, and sensitivity for each range of anatomic limb alignment were calculated and compared using mechanical limb alignment as the reference standard. The associations between the accuracy of anatomic limb alignment and anatomic variation were also determined. The range of 2-10° for anatomic limb alignment showed the highest accuracy, but it was only 73 % (3-9°, 65 %; 5-10°, 67 %). The specificity of the 2-10° range was 81 %, which was higher than that of the other ranges (3-9°, 69 %; 5-10°, 67 %). However, the sensitivity of the 2-10° range to predict varus malalignment was only 16 % (3-9°, 35 %; 5-10°, 68 %). In addition, the sensitivity of the 2-10° range to predict valgus malalignment was only 43 % (3-9°, 71 %; 5-10°, 43 %). The accuracy of anatomical limb alignment was lower for knees with greater femoral (odds ratio = 1.2) and tibial (odds ratio = 1.2) bowing. Anatomic limb alignment did not accurately predict mechanical limb alignment after TKA, and its accuracy was affected by anatomic variation. Thus, alignment after TKA should be assessed by measuring mechanical alignment rather than anatomic

  12. Effects of chemical alteration on fracture mechanical properties in hydrothermal systems

    Science.gov (United States)

    Callahan, O. A.; Eichhubl, P.; Olson, J. E.

    2015-12-01

    Fault and fracture networks often control the distribution of fluids and heat in hydrothermal and epithermal systems, and in related geothermal and mineral resources. Additional chemical influences on conduit evolution are well documented, with dissolution and precipitation of mineral species potentially changing the permeability of fault-facture networks. Less well understood are the impacts of chemical alteration on the mechanical properties governing fracture growth and fracture network geometry. We use double-torsion (DT) load relaxation tests under ambient air conditions to measure the mode-I fracture toughness (KIC) and subcritical fracture growth index (SCI) of variably altered rock samples obtained from outcrop in Dixie Valley, NV. Samples from southern Dixie Valley include 1) weakly altered granite, characterized by minor sericite in plagioclase, albitization and vacuolization of feldspars, and incomplete replacement of biotite with chlorite, and 2) granite from an area of locally intense propylitic alteration with chlorite-calcite-hematite-epidote assemblages. We also evaluated samples of completely silicified gabbro obtained from the Dixie Comstock epithermal gold deposit. In the weakly altered granite KIC and SCI are 1.3 ±0.2 MPam1/2 (n=8) and 59 ±25 (n=29), respectively. In the propylitic assemblage KIC is reduced to 0.6 ±0.1 MPam1/2 (n=11), and the SCI increased to 75 ±36 (n = 33). In both cases, the altered materials have lower fracture toughness and higher SCI than is reported for common geomechanical standards such as Westerly Granite (KIC ~1.7 MPam1/2; SCI ~48). Preliminary analysis of the silicified gabbro shows a significant increase in fracture toughness, 3.6 ±0.4 MPam1/2 (n=2), and SCI, 102 ±45 (n=19), compared to published values for gabbro (2.9 MPam1/2 and SCI = 32). These results suggest that mineralogical and textural changes associated with different alteration assemblages may result in spatially variable rates of fracture

  13. Network Theory and Effects of Transcranial Brain Stimulation Methods on the Brain Networks

    Directory of Open Access Journals (Sweden)

    Sema Demirci

    2014-12-01

    Full Text Available In recent years, there has been a shift from classic localizational approaches to new approaches where the brain is considered as a complex system. Therefore, there has been an increase in the number of studies involving collaborations with other areas of neurology in order to develop methods to understand the complex systems. One of the new approaches is graphic theory that has principles based on mathematics and physics. According to this theory, the functional-anatomical connections of the brain are defined as a network. Moreover, transcranial brain stimulation techniques are amongst the recent research and treatment methods that have been commonly used in recent years. Changes that occur as a result of applying brain stimulation techniques on physiological and pathological networks help better understand the normal and abnormal functions of the brain, especially when combined with techniques such as neuroimaging and electroencephalography. This review aims to provide an overview of the applications of graphic theory and related parameters, studies conducted on brain functions in neurology and neuroscience, and applications of brain stimulation systems in the changing treatment of brain network models and treatment of pathological networks defined on the basis of this theory.

  14. Computerized Tomographic Study on the Anatomic Variation of the Paranasal Sinus

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Kyung; Lim, Sug Young; Koh, Kwang Joon [Dept. of Oral and Maxillofacial Radiology and Institute of Oral Bio Science, College of Dentistry, Chonbuk National University, Chonju (Korea, Republic of); Park, Mi Ju [Dept. of Prosthodontics, School of Denstistry, Chonbuk National Universty, Chonju (Korea, Republic of)

    1999-08-15

    To evaluate the anatomic variations of the paranasal sinuses on computed tomographs. The author examined the CT images of the paranasal sinuses retrospectively in 500 patients who visited Chonbuk National University Hospital between January 1996 and December 1997. The highest incidence of anatomic variation of the paranasal sinuses in bilateral structures was agger nasi cell (73.2%), followed by concha bullosa (31.1%), Onodi cell (24.0%), Haller cell (19.8%), maxillary sinus septum (13.0%), paradoxical middle turbinate (2.5%), pneumatized uncinate process (2.0%), and bent uncinate process. The highest incidence of anatomic variation in midline structures was nasal septum deviation(53.2%), followed by nasal septumaerated (29.4%), bulla galli (24.7%) asymmetric intersphenoid septum (22.3%), and nasal septum spur (13.8%). The correlation between anatomic variation and paranasal sinusitis was not found. The results of this study will aid in the diagnosis and treatment of paranasal sinus diseases, especially in the treatment planning before functional endoscopic surgery.

  15. Computerized Tomographic Study on the Anatomic Variation of the Paranasal Sinus

    International Nuclear Information System (INIS)

    Choi, Sun Kyung; Lim, Sug Young; Koh, Kwang Joon; Park, Mi Ju

    1999-01-01

    To evaluate the anatomic variations of the paranasal sinuses on computed tomographs. The author examined the CT images of the paranasal sinuses retrospectively in 500 patients who visited Chonbuk National University Hospital between January 1996 and December 1997. The highest incidence of anatomic variation of the paranasal sinuses in bilateral structures was agger nasi cell (73.2%), followed by concha bullosa (31.1%), Onodi cell (24.0%), Haller cell (19.8%), maxillary sinus septum (13.0%), paradoxical middle turbinate (2.5%), pneumatized uncinate process (2.0%), and bent uncinate process. The highest incidence of anatomic variation in midline structures was nasal septum deviation(53.2%), followed by nasal septumaerated (29.4%), bulla galli (24.7%) asymmetric intersphenoid septum (22.3%), and nasal septum spur (13.8%). The correlation between anatomic variation and paranasal sinusitis was not found. The results of this study will aid in the diagnosis and treatment of paranasal sinus diseases, especially in the treatment planning before functional endoscopic surgery.

  16. Altered intrinsic and extrinsic connectivity in schizophrenia.

    Science.gov (United States)

    Zhou, Yuan; Zeidman, Peter; Wu, Shihao; Razi, Adeel; Chen, Cheng; Yang, Liuqing; Zou, Jilin; Wang, Gaohua; Wang, Huiling; Friston, Karl J

    2018-01-01

    Schizophrenia is a disorder characterized by functional dysconnectivity among distributed brain regions. However, it is unclear how causal influences among large-scale brain networks are disrupted in schizophrenia. In this study, we used dynamic causal modeling (DCM) to assess the hypothesis that there is aberrant directed (effective) connectivity within and between three key large-scale brain networks (the dorsal attention network, the salience network and the default mode network) in schizophrenia during a working memory task. Functional MRI data during an n-back task from 40 patients with schizophrenia and 62 healthy controls were analyzed. Using hierarchical modeling of between-subject effects in DCM with Parametric Empirical Bayes, we found that intrinsic (within-region) and extrinsic (between-region) effective connectivity involving prefrontal regions were abnormal in schizophrenia. Specifically, in patients (i) inhibitory self-connections in prefrontal regions of the dorsal attention network were decreased across task conditions; (ii) extrinsic connectivity between regions of the default mode network was increased; specifically, from posterior cingulate cortex to the medial prefrontal cortex; (iii) between-network extrinsic connections involving the prefrontal cortex were altered; (iv) connections within networks and between networks were correlated with the severity of clinical symptoms and impaired cognition beyond working memory. In short, this study revealed the predominance of reduced synaptic efficacy of prefrontal efferents and afferents in the pathophysiology of schizophrenia.

  17. GABA Neuron Alterations, Cortical Circuit Dysfunction and Cognitive Deficits in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Guillermo Gonzalez-Burgos

    2011-01-01

    Full Text Available Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.

  18. GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Fish, Kenneth N; Lewis, David A

    2011-01-01

    Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.

  19. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    International Nuclear Information System (INIS)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-01-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E GABA ). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g GABA-extra ) and experimentally identified, seizure-induced changes in g GABA-extra and E GABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g GABA-extra reduced the frequency and coherence of FS-BC firing when E GABA was shunting (−74 mV), but failed to alter average FS-BC frequency when E GABA

  20. Prostatome: A combined anatomical and disease based MRI atlas of the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, Mirabela; Madabhushi, Anant, E-mail: anant.madabhushi@case.edu [Case Western Reserve University, Cleveland, Ohio 44106 (United States); Bloch, B. Nicolas; Jaffe, Carl C. [Boston University School of Medicine, Boston, Massachusetts 02118 (United States); Genega, Elizabeth M. [Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215 (United States); Lenkinski, Robert E.; Rofsky, Neil M. [UT Southwestern Medical Center, Dallas, Texas 75235 (United States); Feleppa, Ernest [Riverside Research Institute, New York, New York 10038 (United States)

    2014-07-15

    Purpose: In this work, the authors introduce a novel framework, the anatomically constrained registration (AnCoR) scheme and apply it to create a fused anatomic-disease atlas of the prostate which the authors refer to as the prostatome. The prostatome combines a MRI based anatomic and a histology based disease atlas. Statistical imaging atlases allow for the integration of information across multiple scales and imaging modalities into a single canonical representation, in turn enabling a fused anatomical-disease representation which may facilitate the characterization of disease appearance relative to anatomic structures. While statistical atlases have been extensively developed and studied for the brain, approaches that have attempted to combine pathology and imaging data for study of prostate pathology are not extant. This works seeks to address this gap. Methods: The AnCoR framework optimizes a scoring function composed of two surface (prostate and central gland) misalignment measures and one intensity-based similarity term. This ensures the correct mapping of anatomic regions into the atlas, even when regional MRI intensities are inconsistent or highly variable between subjects. The framework allows for creation of an anatomic imaging and a disease atlas, while enabling their fusion into the anatomic imaging-disease atlas. The atlas presented here was constructed using 83 subjects with biopsy confirmed cancer who had pre-operative MRI (collected at two institutions) followed by radical prostatectomy. The imaging atlas results from mapping thein vivo MRI into the canonical space, while the anatomic regions serve as domain constraints. Elastic co-registration MRI and corresponding ex vivo histology provides “ground truth” mapping of cancer extent on in vivo imaging for 23 subjects. Results: AnCoR was evaluated relative to alternative construction strategies that use either MRI intensities or the prostate surface alone for registration. The AnCoR framework

  1. Prostatome: A combined anatomical and disease based MRI atlas of the prostate

    International Nuclear Information System (INIS)

    Rusu, Mirabela; Madabhushi, Anant; Bloch, B. Nicolas; Jaffe, Carl C.; Genega, Elizabeth M.; Lenkinski, Robert E.; Rofsky, Neil M.; Feleppa, Ernest

    2014-01-01

    Purpose: In this work, the authors introduce a novel framework, the anatomically constrained registration (AnCoR) scheme and apply it to create a fused anatomic-disease atlas of the prostate which the authors refer to as the prostatome. The prostatome combines a MRI based anatomic and a histology based disease atlas. Statistical imaging atlases allow for the integration of information across multiple scales and imaging modalities into a single canonical representation, in turn enabling a fused anatomical-disease representation which may facilitate the characterization of disease appearance relative to anatomic structures. While statistical atlases have been extensively developed and studied for the brain, approaches that have attempted to combine pathology and imaging data for study of prostate pathology are not extant. This works seeks to address this gap. Methods: The AnCoR framework optimizes a scoring function composed of two surface (prostate and central gland) misalignment measures and one intensity-based similarity term. This ensures the correct mapping of anatomic regions into the atlas, even when regional MRI intensities are inconsistent or highly variable between subjects. The framework allows for creation of an anatomic imaging and a disease atlas, while enabling their fusion into the anatomic imaging-disease atlas. The atlas presented here was constructed using 83 subjects with biopsy confirmed cancer who had pre-operative MRI (collected at two institutions) followed by radical prostatectomy. The imaging atlas results from mapping thein vivo MRI into the canonical space, while the anatomic regions serve as domain constraints. Elastic co-registration MRI and corresponding ex vivo histology provides “ground truth” mapping of cancer extent on in vivo imaging for 23 subjects. Results: AnCoR was evaluated relative to alternative construction strategies that use either MRI intensities or the prostate surface alone for registration. The AnCoR framework

  2. Impact of anatomical variations of the circle of Willis on the incidence of aneurysms and their recurrence rate following endovascular treatment.

    Science.gov (United States)

    Songsaeng, D; Geibprasert, S; Willinsky, R; Tymianski, M; TerBrugge, K G; Krings, T

    2010-11-01

    To analyse the impact of anatomical variations of the parent arteries on the incidence and recurrence rate following coil embolization of aneurysms of the anterior (AcoA), posterior communicating artery (PcoA) and basilar artery (BA) tip. Two hundred and two (96 AcoA, 67 PcoA, and 29 BA) aneurysms in 200 patients were treated with coil embolization between January 2000 and April 2008. Parent artery variations at each location were classified as: AcoA: A1 aplasia versus hypoplasia versus symmetrical size; PcoA: foetal origin versus medium versus small size, BA: cranial versus caudal versus asymmetrical fusion. The incidence of aneurysms and difference between recurrence rates for each group were recorded on follow-up. AcoA, PcoA, and BA aneurysms were more often associated with embryonically earlier vessel wall dispositions (A1 aplasia, foetal PcoA, asymmetrical fusion). Two of these variations were also associated with aneurysm recurrence following coil embolization: asymmetrical A1 segment (p=0.01), and asymmetrical BA tip (p=0.02). AcoA, PcoA, and BA tip aneurysms tend to occur more often in anatomically variant parent artery dispositions, some of which are related to aneurysm recurrence following coil embolization. This may relate to a more fragile vessel disposition as it is not fully matured or to altered haemodynamics secondary to the anatomical variations. Copyright © 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Tuning chaos in network sharing common nonlinearity

    Science.gov (United States)

    Paul Asir, M.; Jeevarekha, A.; Philominathan, P.

    2016-06-01

    In this paper, a novel type of network called network sharing common nonlinearity comprising both autonomous and non-autonomous oscillators have been investigated. We propose that these networks are robust for operating at desired modes i.e., chaotic or periodic by altering the v-i characteristics of common nonlinear element alone. The dynamics of these networks were examined through numerical, analytical, experimental and Multisim simulations.

  4. Touching Anatomy. : On the Handling of Anatomical Preparations in the Anatomical Cabinets of Frederik Ruysch (1638-1731)

    NARCIS (Netherlands)

    Knoeff, Rina

    2015-01-01

    This paper argues that the anatomical Cabinets of Dutch anatomist Frederik Ruysch must be understood as an early modern workshop in which preparations were continuously handled. It is claimed that preparations actively appealed to anatomists and visitors to handle, re-dissect, touch, and even kiss

  5. Anatomically Plausible Surface Alignment and Reconstruction

    DEFF Research Database (Denmark)

    Paulsen, Rasmus R.; Larsen, Rasmus

    2010-01-01

    With the increasing clinical use of 3D surface scanners, there is a need for accurate and reliable algorithms that can produce anatomically plausible surfaces. In this paper, a combined method for surface alignment and reconstruction is proposed. It is based on an implicit surface representation...

  6. State-related functional integration and functional segregation brain networks in schizophrenia.

    Science.gov (United States)

    Yu, Qingbao; Sui, Jing; Kiehl, Kent A; Pearlson, Godfrey; Calhoun, Vince D

    2013-11-01

    Altered topological properties of brain connectivity networks have emerged as important features of schizophrenia. The aim of this study was to investigate how the state-related modulations to graph measures of functional integration and functional segregation brain networks are disrupted in schizophrenia. Firstly, resting state and auditory oddball discrimination (AOD) fMRI data of healthy controls (HCs) and schizophrenia patients (SZs) were decomposed into spatially independent components (ICs) by group independent component analysis (ICA). Then, weighted positive and negative functional integration (inter-component networks) and functional segregation (intra-component networks) brain networks were built in each subject. Subsequently, connectivity strength, clustering coefficient, and global efficiency of all brain networks were statistically compared between groups (HCs and SZs) in each state and between states (rest and AOD) within group. We found that graph measures of negative functional integration brain network and several positive functional segregation brain networks were altered in schizophrenia during AOD task. The metrics of positive functional integration brain network and one positive functional segregation brain network were higher during the resting state than during the AOD task only in HCs. These findings imply that state-related characteristics of both functional integration and functional segregation brain networks are impaired in schizophrenia which provides new insight into the altered brain performance in this brain disorder. © 2013.

  7. High dimensional ICA analysis detects within-network functional connectivity damage of default mode and sensory motor networks in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ottavia eDipasquale

    2015-02-01

    Full Text Available High dimensional independent component analysis (ICA, compared to low dimensional ICA, allows performing a detailed parcellation of the resting state networks. The purpose of this study was to give further insight into functional connectivity (FC in Alzheimer’s disease (AD using high dimensional ICA. For this reason, we performed both low and high dimensional ICA analyses of resting state fMRI (rfMRI data of 20 healthy controls and 21 AD patients, focusing on the primarily altered default mode network (DMN and exploring the sensory motor network (SMN. As expected, results obtained at low dimensionality were in line with previous literature. Moreover, high dimensional results allowed us to observe either the presence of within-network disconnections and FC damage confined to some of the resting state sub-networks. Due to the higher sensitivity of the high dimensional ICA analysis, our results suggest that high-dimensional decomposition in sub-networks is very promising to better localize FC alterations in AD and that FC damage is not confined to the default mode network.

  8. Visual attention in preterm born adults: specifically impaired attentional sub-mechanisms that link with altered intrinsic brain networks in a compensation-like mode.

    Science.gov (United States)

    Finke, Kathrin; Neitzel, Julia; Bäuml, Josef G; Redel, Petra; Müller, Hermann J; Meng, Chun; Jaekel, Julia; Daamen, Marcel; Scheef, Lukas; Busch, Barbara; Baumann, Nicole; Boecker, Henning; Bartmann, Peter; Habekost, Thomas; Wolke, Dieter; Wohlschläger, Afra; Sorg, Christian

    2015-02-15

    Although pronounced and lasting deficits in selective attention have been observed for preterm born individuals it is unknown which specific attentional sub-mechanisms are affected and how they relate to brain networks. We used the computationally specified 'Theory of Visual Attention' together with whole- and partial-report paradigms to compare attentional sub-mechanisms of pre- (n=33) and full-term (n=32) born adults. Resting-state fMRI was used to evaluate both between-group differences and inter-individual variance in changed functional connectivity of intrinsic brain networks relevant for visual attention. In preterm born adults, we found specific impairments of visual short-term memory (vSTM) storage capacity while other sub-mechanisms such as processing speed or attentional weighting were unchanged. Furthermore, changed functional connectivity was found in unimodal visual and supramodal attention-related intrinsic networks. Among preterm born adults, the individual pattern of changed connectivity in occipital and parietal cortices was systematically associated with vSTM in such a way that the more distinct the connectivity differences, the better the preterm adults' storage capacity. These findings provide first evidence for selectively changed attentional sub-mechanisms in preterm born adults and their relation to altered intrinsic brain networks. In particular, data suggest that cortical changes in intrinsic functional connectivity may compensate adverse developmental consequences of prematurity on visual short-term storage capacity. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Retrieving high-resolution images over the Internet from an anatomical image database

    Science.gov (United States)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  10. An Anatomically Validated Brachial Plexus Contouring Method for Intensity Modulated Radiation Therapy Planning

    International Nuclear Information System (INIS)

    Van de Velde, Joris; Audenaert, Emmanuel; Speleers, Bruno; Vercauteren, Tom; Mulliez, Thomas; Vandemaele, Pieter; Achten, Eric; Kerckaert, Ingrid; D'Herde, Katharina; De Neve, Wilfried; Van Hoof, Tom

    2013-01-01

    Purpose: To develop contouring guidelines for the brachial plexus (BP) using anatomically validated cadaver datasets. Magnetic resonance imaging (MRI) and computed tomography (CT) were used to obtain detailed visualizations of the BP region, with the goal of achieving maximal inclusion of the actual BP in a small contoured volume while also accommodating for anatomic variations. Methods and Materials: CT and MRI were obtained for 8 cadavers positioned for intensity modulated radiation therapy. 3-dimensional reconstructions of soft tissue (from MRI) and bone (from CT) were combined to create 8 separate enhanced CT project files. Dissection of the corresponding cadavers anatomically validated the reconstructions created. Seven enhanced CT project files were then automatically fitted, separately in different regions, to obtain a single dataset of superimposed BP regions that incorporated anatomic variations. From this dataset, improved BP contouring guidelines were developed. These guidelines were then applied to the 7 original CT project files and also to 1 additional file, left out from the superimposing procedure. The percentage of BP inclusion was compared with the published guidelines. Results: The anatomic validation procedure showed a high level of conformity for the BP regions examined between the 3-dimensional reconstructions generated and the dissected counterparts. Accurate and detailed BP contouring guidelines were developed, which provided corresponding guidance for each level in a clinical dataset. An average margin of 4.7 mm around the anatomically validated BP contour is sufficient to accommodate for anatomic variations. Using the new guidelines, 100% inclusion of the BP was achieved, compared with a mean inclusion of 37.75% when published guidelines were applied. Conclusion: Improved guidelines for BP delineation were developed using combined MRI and CT imaging with validation by anatomic dissection

  11. Renal Tumor Anatomic Complexity: Clinical Implications for Urologists.

    Science.gov (United States)

    Joshi, Shreyas S; Uzzo, Robert G

    2017-05-01

    Anatomic tumor complexity can be objectively measured and reported using nephrometry. Various scoring systems have been developed in an attempt to correlate tumor complexity with intraoperative and postoperative outcomes. Nephrometry may also predict tumor biology in a noninvasive, reproducible manner. Other scoring systems can help predict surgical complexity and the likelihood of complications, independent of tumor characteristics. The accumulated data in this new field provide provocative evidence that objectifying anatomic complexity can consolidate reporting mechanisms and improve metrics of comparisons. Further prospective validation is needed to understand the full descriptive and predictive ability of the various nephrometry scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Sonographic and Anatomic Description of the Subtalar Joint

    DEFF Research Database (Denmark)

    Mandl, Peter; Bong, David; Balint, Peter V

    2018-01-01

    Our study provides a detailed anatomic and sonographic description of the subtalar joint, a single joint that, anatomically, is divided into the anterior subtalar joint (ASTJ) and the posterior subtalar joint (PSTJ). Cadaver specimens of the ankle and foot were examined in detail by ultrasound (US......), and the subtalar joints of all the specimens were injected with colored latex of a contrasting color under US guidance. Compatible with other studies, examination of the sections revealed lack of communication between the ASTJ and the PSTJ and communication between the PSTJ and the posterior recess...... of agreement between images acquired in cadaver specimens and images acquired in four centers using healthy patients....

  13. A voxelwise approach to determine consensus regions-of-interest for the study of brain network plasticity

    Directory of Open Access Journals (Sweden)

    Sarah M. Rajtmajer

    2015-07-01

    Full Text Available Despite exciting advances in the functional imaging of the brain, it remains a challenge to define regions of interest (ROIs that do not require investigator supervision and permit examination of change in networks over time (or plasticity. Plasticity is most readily examined by maintaining ROIs constant via seed-based and anatomical-atlas based techniques, but these approaches are not data-driven, requiring definition based on prior experience (e.g. choice of seed-region, anatomical landmarks. These approaches are limiting especially when functional connectivity may evolve over time in areas that are finer than known anatomical landmarks or in areas outside predetermined seeded regions. An ideal method would permit investigators to study network plasticity due to learning, maturation effects, or clinical recovery via multiple time point data that can be compared to one another in the same ROI while also preserving the voxel-level data in those ROIs at each time point. Data-driven approaches (e.g., whole-brain voxelwise approaches ameliorate concerns regarding investigator bias, but the fundamental problem of comparing the results between distinct data sets remains. In this paper we propose an approach, aggregate-initialized label propagation (AILP, which allows for data at separate time points to be compared for examining developmental processes resulting in network change (plasticity. To do so, we use a whole-brain modularity approach to parcellate the brain into anatomically constrained functional modules at separate time points and then apply the AILP algorithm to form a consensus set of ROIs for examining change over time. To demonstrate its utility, we make use of a known dataset of individuals with traumatic brain injury sampled at two time points during the first year of recovery and show how the AILP procedure can be applied to select regions of interest to be used in a graph theoretical analysis of plasticity.

  14. Chronic ankle instability: Arthroscopic anatomical repair.

    Science.gov (United States)

    Arroyo-Hernández, M; Mellado-Romero, M; Páramo-Díaz, P; García-Lamas, L; Vilà-Rico, J

    Ankle sprains are one of the most common injuries. Despite appropriate conservative treatment, approximately 20-40% of patients continue to have chronic ankle instability and pain. In 75-80% of cases there is an isolated rupture of the anterior talofibular ligament. A retrospective observational study was conducted on 21 patients surgically treated for chronic ankle instability by means of an arthroscopic anatomical repair, between May 2012 and January 2013. There were 15 men and 6 women, with a mean age of 30.43 years (range 18-48). The mean follow-up was 29 months (range 25-33). All patients were treated by arthroscopic anatomical repair of anterior talofibular ligament. Four (19%) patients were found to have varus hindfoot deformity. Associated injuries were present in 13 (62%) patients. There were 6 cases of osteochondral lesions, 3 cases of posterior ankle impingement syndrome, and 6 cases of peroneal pathology. All these injuries were surgically treated in the same surgical time. A clinical-functional study was performed using the American Orthopaedic Foot and Ankle Society (AOFAS) score. The mean score before surgery was 66.12 (range 60-71), and after surgery it increased up to a mean of 96.95 (range 90-100). All patients were able to return to their previous sport activity within a mean of 21.5 weeks (range 17-28). Complications were found in 3 (14%) patients. Arthroscopic anatomical ligament repair technique has excellent clinical-functional results with a low percentage of complications, and enables patients to return to their previous sport activity within a short period of time. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Anatomical variations of the iliolumbar vein with application to the anterior retroperitoneal approach to the lumbar spine: a cadaver study.

    Science.gov (United States)

    Unruh, Kenneth P; Camp, Christopher L; Zietlow, Scott P; Huddleston, Paul M

    2008-10-01

    Objectives of this study include identification of lumbosacral venous variations, designation of a critical area of dissection for surgical exposure, and comparison between both male/female and right/left-sided anatomy. Attempts were made to provide anatomic nomenclature that accurately describes these structures. Thirty-eight iliolumbar venous systems in 20 cadavers (11 females/9 males) were dissected. Each system was identified as one of three patterns of variation: common venous trunk (combining ascending lumbar and iliolumbar venous systems) with distal veins, common venous trunk without distal veins, and venous systems without a common venous trunk. Dimensions including distances to the inferior vena cava (IVC) confluence, the obturator nerve, and the lumbosacral trunk, and venous stem length were obtained to aid surgical dissection. Differences between males and females and those between right and left sides were compared. Anterior lumbosacral venous variations could be organized into three groups. A Type 1 venous system (common venous trunk with distal veins) was most common (53% of systems). The anatomical name "lateral lumbosacral veins" adequately describes the anatomical location of these veins and does not assume a direction of venous flow or the lack of individual distal veins. A critical area bordered by the obturator nerve anteriorly, the psoas muscle laterally, the spinal column medially, and sacrum posteriorly within 8.2 cm of the IVC confluence should be defined to adequately dissect the lateral lumbosacral veins. Differences in male and female lateral lumbosacral venous anatomy do not alter surgeon's approach to the anterior lumbar spine. (c) 2008 Wiley-Liss, Inc.

  16. Altered brain network measures in patients with primary writing tremor

    Energy Technology Data Exchange (ETDEWEB)

    Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant [National Institute of Mental Health and Neurosciences, Department of Clinical Neurosciences, Bangalore, Karnataka (India); National Institute of Mental Health and Neurosciences (NIMHANS), Department of Neurology, Bangalore, Karnataka (India); Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn [National Institute of Mental Health and Neurosciences, Department of Neuroimaging and Interventional Radiology, Bangalore, Karnataka (India); Yadav, Ravi; Pal, Pramod Kumar [National Institute of Mental Health and Neurosciences (NIMHANS), Department of Neurology, Bangalore, Karnataka (India)

    2017-10-15

    Primary writing tremor (PWT) is a rare task-specific tremor, which occurs only while writing or while adopting the hand in the writing position. The basic pathophysiology of PWT has not been fully understood. The objective of this study is to explore the alterations in the resting state functional brain connectivity, if any, in patients with PWT using graph theory-based analysis. This prospective case-control study included 10 patients with PWT and 10 age and gender matched healthy controls. All subjects underwent MRI in a 3-Tesla scanner. Several parameters of small-world functional connectivity were compared between patients and healthy controls by using graph theory-based analysis. There were no significant differences in age, handedness (all right handed), gender distribution (all were males), and MMSE scores between the patients and controls. The mean age at presentation of tremor in the patient group was 51.7 ± 8.6 years, and the mean duration of tremor was 3.5 ± 1.9 years. Graph theory-based analysis revealed that patients with PWT had significantly lower clustering coefficient and higher path length compared to healthy controls suggesting alterations in small-world architecture of the brain. The clustering coefficients were lower in PWT patients in left and right medial cerebellum, right dorsolateral prefrontal cortex (DLPFC), and left posterior parietal cortex (PPC). Patients with PWT have significantly altered small-world brain connectivity in bilateral medial cerebellum, right DLPFC, and left PPC. Further studies with larger sample size are required to confirm our results. (orig.)

  17. Altered brain network measures in patients with primary writing tremor.

    Science.gov (United States)

    Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant; Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn; Yadav, Ravi; Pal, Pramod Kumar

    2017-10-01

    Primary writing tremor (PWT) is a rare task-specific tremor, which occurs only while writing or while adopting the hand in the writing position. The basic pathophysiology of PWT has not been fully understood. The objective of this study is to explore the alterations in the resting state functional brain connectivity, if any, in patients with PWT using graph theory-based analysis. This prospective case-control study included 10 patients with PWT and 10 age and gender matched healthy controls. All subjects underwent MRI in a 3-Tesla scanner. Several parameters of small-world functional connectivity were compared between patients and healthy controls by using graph theory-based analysis. There were no significant differences in age, handedness (all right handed), gender distribution (all were males), and MMSE scores between the patients and controls. The mean age at presentation of tremor in the patient group was 51.7 ± 8.6 years, and the mean duration of tremor was 3.5 ± 1.9 years. Graph theory-based analysis revealed that patients with PWT had significantly lower clustering coefficient and higher path length compared to healthy controls suggesting alterations in small-world architecture of the brain. The clustering coefficients were lower in PWT patients in left and right medial cerebellum, right dorsolateral prefrontal cortex (DLPFC), and left posterior parietal cortex (PPC). Patients with PWT have significantly altered small-world brain connectivity in bilateral medial cerebellum, right DLPFC, and left PPC. Further studies with larger sample size are required to confirm our results.

  18. Altered brain network measures in patients with primary writing tremor

    International Nuclear Information System (INIS)

    Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant; Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn; Yadav, Ravi; Pal, Pramod Kumar

    2017-01-01

    Primary writing tremor (PWT) is a rare task-specific tremor, which occurs only while writing or while adopting the hand in the writing position. The basic pathophysiology of PWT has not been fully understood. The objective of this study is to explore the alterations in the resting state functional brain connectivity, if any, in patients with PWT using graph theory-based analysis. This prospective case-control study included 10 patients with PWT and 10 age and gender matched healthy controls. All subjects underwent MRI in a 3-Tesla scanner. Several parameters of small-world functional connectivity were compared between patients and healthy controls by using graph theory-based analysis. There were no significant differences in age, handedness (all right handed), gender distribution (all were males), and MMSE scores between the patients and controls. The mean age at presentation of tremor in the patient group was 51.7 ± 8.6 years, and the mean duration of tremor was 3.5 ± 1.9 years. Graph theory-based analysis revealed that patients with PWT had significantly lower clustering coefficient and higher path length compared to healthy controls suggesting alterations in small-world architecture of the brain. The clustering coefficients were lower in PWT patients in left and right medial cerebellum, right dorsolateral prefrontal cortex (DLPFC), and left posterior parietal cortex (PPC). Patients with PWT have significantly altered small-world brain connectivity in bilateral medial cerebellum, right DLPFC, and left PPC. Further studies with larger sample size are required to confirm our results. (orig.)

  19. Anatomical approach for surgery of the male posterior urethra.

    Science.gov (United States)

    Dalpiaz, Orietta; Mitterberger, Michael; Kerschbaumer, Andrea; Pinggera, Germar M; Bartsch, Georg; Strasser, Hannes

    2008-11-01

    To investigate, in a morphological study, the anatomy of the male rhabdosphincter and the relation between the membranous urethra, the rhabdosphincter and the neurovascular bundles (NVBs) to provide the anatomical basis for surgical approach of the posterior urethra as successful outcomes in urethral reconstructive surgery still remain a challenging issue. In all, 11 complete pelves and four tissue blocks of prostate, rectum, membranous urethra and the rhabdosphincter were studied. Besides anatomical preparations, the posterior urethra and their relationship were studied by means of serial histological sections. In the histological cross-sections, the rhabdosphincter forms an omega-shaped loop around the anterior and lateral aspects of the membranous urethra. Ventrally and laterally, it is separated from the membranous urethra by a delicate sheath of connective tissue. Through a midline approach displacing the nerves and vessels laterally, injuries to the NVBs can be avoided. With meticulous dissection of the delicate ventral connective tissue sheath between the ventral wall of the membranous urethra and the rhabdosphincter, the two structures can be separated without damage to either of them. This anatomical approach can be used for dissection of the anterior urethral wall in urethral surgery. Based on precise anatomical knowledge, the ventral wall of the posterior urethra can be dissected and exposed without injuring the rhabdosphincter and the NVBs. This approach provides the basis for sparing of the rhabdosphincter and for successful outcomes in urethral surgery for the treatment of bulbo-membranous urethral strictures.

  20. Network interventions - How citizens’ social media networks influence their political participation

    DEFF Research Database (Denmark)

    Ohme, Jakob; de Vreese, Claes Holger; Albæk, Erik

    Social media platforms are special places of information exposure because they are structured around a user’s social network and not around content, like other news media. Studies could show that news exposure on social media can affect citizens’ political participation due to the personalized......, targeted, & inadvertent exposure. However, previous research did not strongly focus on how the characteristics of a citizens’ social media network might alter this relationship. We tests how political information exposure via three different media channels affects political participation among Danish...... citizens and examine possible moderation effects of users network size, network diversity and the newly introduced parameter of perceived network activity. To this end, a two-wave online survey (n=858) among the Danish population was conducted, applying a smartphone-based media diary study. We find strong...

  1. Brain Networks are Independently Modulated by Donepezil, Sleep, and Sleep Deprivation.

    Science.gov (United States)

    Wirsich, Jonathan; Rey, Marc; Guye, Maxime; Bénar, Christian; Lanteaume, Laura; Ridley, Ben; Confort-Gouny, Sylviane; Cassé-Perrot, Catherine; Soulier, Elisabeth; Viout, Patrick; Rouby, Franck; Lefebvre, Marie-Noëlle; Audebert, Christine; Truillet, Romain; Jouve, Elisabeth; Payoux, Pierre; Bartrés-Faz, David; Bordet, Régis; Richardson, Jill C; Babiloni, Claudio; Rossini, Paolo Maria; Micallef, Joelle; Blin, Olivier; Ranjeva, Jean-Philippe

    2018-05-01

    Resting-state connectivity has been widely studied in the healthy and pathological brain. Less well-characterized are the brain networks altered during pharmacological interventions and their possible interaction with vigilance. In the hopes of finding new biomarkers which can be used to identify cortical activity and cognitive processes linked to the effects of drugs to treat neurodegenerative diseases such as Alzheimer's disease, the analysis of networks altered by medication would be particularly interesting. Eleven healthy subjects were recruited in the context of the European Innovative Medicines Initiative 'PharmaCog'. Each underwent five sessions of simultaneous EEG-fMRI in order to investigate the effects of donepezil and memantine before and after sleep deprivation (SD). The SD approach has been previously proposed as a model for cognitive impairment in healthy subjects. By applying network based statistics (NBS), we observed altered brain networks significantly linked to donepezil intake and sleep deprivation. Taking into account the sleep stages extracted from the EEG data we revealed that a network linked to sleep is interacting with sleep deprivation but not with medication intake. We successfully extracted the functional resting-state networks modified by donepezil intake, sleep and SD. We observed donepezil induced whole brain connectivity alterations forming a network separated from the changes induced by sleep and SD, a result which shows the utility of this approach to check for the validity of pharmacological resting-state analysis of the tested medications without the need of taking into account the subject specific vigilance.

  2. Laparoscopic sacrocolpopexy with bone anchor fixation: short-term anatomic and functional results.

    NARCIS (Netherlands)

    Withagen, M.I.J.; Vierhout, M.E.; Mannaerts, G.H.; Weiden, R.M.F. van der

    2012-01-01

    INTRODUCTION AND HYPOTHESIS: The aim of this study was to evaluate short-term anatomic and functional outcomes and safety of laparoscopic sacrocolpopexy with bone anchor fixation. METHODS: A prospective cohort study of women undergoing laparoscopic sacrocolpopexy between 2004 and 2009. Anatomic

  3. 78 FR 64196 - Privacy Act Altered System of Records

    Science.gov (United States)

    2013-10-28

    ... records to COMMERCE/DEPARTMENT-20, Biographical Files and Social Networks. The amendment serves to modify... DEPARTMENT OF COMMERCE [Docket No. 130730666-3877-02] Privacy Act Altered System of Records AGENCY: Department of Commerce. ACTION: Notice; Commerce/Department-20, Biographical Files. SUMMARY: The Department...

  4. Anatomical variations of paranasal sinuses at multislice computed tomography: what to look for

    International Nuclear Information System (INIS)

    Miranda, Christiana Maia Nobre Rocha de; Maranhao, Carol Pontes de Miranda; Padilha, Igor Gomes; Farias, Lucas de Padua Gomes de; Jatoba, Mayara Stephanie de Araujo; Andrade, Anna Carolina Mendonca de; Padilha, Bruno Gomes

    2011-01-01

    Multislice computed tomography is currently the imaging modality of choice for evaluating paranasal sinuses and adjacent structures. Such a method has been increasingly utilized in the assessment of anatomical variations, allowing their accurate identification with high anatomical details. Some anatomical variations may predispose to sinusal diseases, constituting areas of high risk for injuries and complications during surgical procedures. Therefore, the recognition of such variations is critical in the preoperative evaluation for endoscopic surgery. (author)

  5. Anatomical variations of paranasal sinuses at multislice computed tomography: what to look for

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Christiana Maia Nobre Rocha de; Maranhao, Carol Pontes de Miranda [Clinica de Medicina Nuclear e Radiologia de Maceio (Medradius), Maceio, AL (Brazil). Setor de Tomografia Computadorizada; Arraes, Fabiana Maia Nobre Rocha [Clinica Sinus, Maceio, AL (Brazil); Padilha, Igor Gomes; Farias, Lucas de Padua Gomes de; Jatoba, Mayara Stephanie de Araujo; Andrade, Anna Carolina Mendonca de; Padilha, Bruno Gomes [Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil)

    2011-07-15

    Multislice computed tomography is currently the imaging modality of choice for evaluating paranasal sinuses and adjacent structures. Such a method has been increasingly utilized in the assessment of anatomical variations, allowing their accurate identification with high anatomical details. Some anatomical variations may predispose to sinusal diseases, constituting areas of high risk for injuries and complications during surgical procedures. Therefore, the recognition of such variations is critical in the preoperative evaluation for endoscopic surgery. (author)

  6. Stochastic resonance in feedforward acupuncture networks

    Science.gov (United States)

    Qin, Ying-Mei; Wang, Jiang; Men, Cong; Deng, Bin; Wei, Xi-Le; Yu, Hai-Tao; Chan, Wai-Lok

    2014-10-01

    Effects of noises and some other network properties on the weak signal propagation are studied systematically in feedforward acupuncture networks (FFN) based on FitzHugh-Nagumo neuron model. It is found that noises with medium intensity can enhance signal propagation and this effect can be further increased by the feedforward network structure. Resonant properties in the noisy network can also be altered by several network parameters, such as heterogeneity, synapse features, and feedback connections. These results may also provide a novel potential explanation for the propagation of acupuncture signal.

  7. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  8. Assessment of Anatomical Knowledge and Core Trauma Competency Vascular Skills.

    Science.gov (United States)

    Granite, Guinevere; Pugh, Kristy; Chen, Hegang; Longinaker, Nyaradzo; Garofalo, Evan; Shackelford, Stacy; Shalin, Valerie; Puche, Adam; Pasley, Jason; Sarani, Babak; Henry, Sharon; Bowyer, Mark; Mackenzie, Colin

    2018-03-01

    Surgical residents express confidence in performing specific vascular exposures before training, but such self-reported confidence did not correlate with co-located evaluator ratings. This study reports residents' self-confidence evaluated before and after Advanced Surgical Skills for Exposure in Trauma (ASSET) cadaver-based training, and 12-18 mo later. We hypothesize that residents will better judge their own skill after ASSET than before when compared with evaluator ratings. Forty PGY2-7 surgical residents performed four procedures: axillary artery (AA), brachial artery (BA), femoral artery exposure and control (FA), and lower extremity fasciotomy (FAS) at the three evaluations. Using 5-point Likert scales, surgeons self-assessed their confidence in anatomical understanding and procedure performance after each procedure and evaluators rated each surgeon accordingly. For all the three evaluations, residents consistently rated their anatomical understanding (p < 0.04) and surgical performance (p < 0.03) higher than evaluators for both FA and FAS. Residents rated their anatomical understanding and surgical performance higher (p < 0.005) than evaluators for BA after training and up to 18 mo later. Only for third AA evaluation were there no rating differences. Residents overrate their anatomical understanding and performance abilities for BA, FA, and FAS even after performing the procedures and being debriefed three times in 18 mo.

  9. Hyperosmolar Tears Induce Functional and Structural Alterations of Corneal Nerves: Electrophysiological and Anatomical Evidence Toward Neurotoxicity.

    Science.gov (United States)

    Hirata, Harumitsu; Mizerska, Kamila; Marfurt, Carl F; Rosenblatt, Mark I

    2015-12-01

    In an effort to elucidate possible neural mechanisms underlying diminished tearing in dry eye disease, this study sought to determine if hyperosmolar tears, a ubiquitous sign of dry eye disease, produce functional changes in corneal nerve responses to drying of the cornea and if these changes correlate with alterations in corneal nerve morphology. In vivo extracellular electrophysiological recordings were performed in rat trigeminal ganglion neurons that innervated the cornea before, and up to 3 hours after, the ocular application of continuous hyperosmolar tears or artificial tears. In corollary experiments, immunohistochemical staining was performed to compare corneal nerve morphology in control and in eyes treated with hyperosmolar solutions. Our previous studies identified a population of corneal afferents, dry-sensitive neurons that are strongly excited by corneal dessication ("dry response"), a response thought to trigger the lacrimation reflex. In the present study, we found that the dry responses of corneal dry-sensitive neurons were depressed or even completely abolished by hyperosmolar tears in a time- (30 minutes to 3 hours) and dose (450- to 1000-mOsm solutions)-dependent manner. Furthermore, eyes treated with hyperosmolar tears for 3 hours contained large numbers of morphologically abnormal (granular, fragmented, or prominently beaded) subbasal nerves that appeared to be undergoing degeneration. These results demonstrate that tear hyperosmolarity, considered to be a "core" mechanism of dry eye disease, significantly decreases physiological sensitivity and morphologic integrity of the corneal nerves important in tear production. These alterations might contribute to the diminished tearing seen clinically in dry eye patients.

  10. Ultrasound of the rotator cuff with MRI and anatomic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, Matthieu J.C.M. [Department of Radiology, Jeroen Bosch Hospital, Nieuwstraat 34, 5211 NL ' s-Hertogenbosch (Netherlands)]. E-mail: M.Rutten@JBZ.nl; Maresch, Bas J. [Department of Radiology, Hospital Gelderse Vallei, Willy Brandtlaan 10, 6710 HN Ede (Netherlands)]. E-mail: MareschB@zgv.nl; Jager, Gerrit J. [Department of Radiology, Jeroen Bosch Hospital, Nieuwstraat 34, 5211 NL ' s-Hertogenbosch (Netherlands)]. E-mail: G.Jager@JBZ.nl; Blickman, Johan G. [Department of Radiology, University Medical Center Nijmegen, Geert Grooteplein Zuid 18, 6500 HB Nijmegen (Netherlands)]. E-mail: J.Blickman@rad.umcn.nl; Holsbeeck, Marnix T. van [Department of Radiology, Henry Ford Hospital, 2799 W Grand Boulevard, Detroit, MI 48202 (United States)]. E-mail: vanholsbeeck@comcast.net

    2007-06-15

    Magnetic resonance imaging and high-resolution ultrasound (US) are frequently used for the detection of rotator cuff tears. The diagnostic yield of US is influenced by several factors as technique, knowledge of the imaging characteristics of anatomic and pathologic findings and of pitfalls. The purpose of this article is to illustrates that the standardized high-resolution US examination of the shoulder covers the entire rotator cuff and correlates with MR imaging and anatomic sections.

  11. The maxillary second molar - anatomical variations (case report).

    Science.gov (United States)

    Beshkenadze, E; Chipashvili, N

    2015-01-01

    To be acquainted with dental anatomical specificity is of great importance for dental endodontic treatment algorithm. The subject of present publication is 2 clinical cases of upper second molars, detailed characterization of, which is considered very important for enrichment of anatomical knowledge about dental anatomical variations. In one case, the reason for admission to the clinic of a 38-year-old woman was complains as of esthetic character as well as functional misbalance (disturbance of chewing function due to the damage of orthopedic construction). The patient indicated to the existence of coronary defects of large size aesthetic discomforts, damage and discolouration of old orthopedic construction (denture) in maxillary right molar area. According to the data obtained after clinical and visiographical examinations, chronic periodontitis of 17 teeth was identified as a result of incomplete endodontic treatment. According to the data obtained after clinical and visiographical examinations, the diagnosis of chronic periodontitis of 17 teeth was identified, tooth 17 with 2 roots and 2 canals. In the second clinical case, the reason for admission to the clinic of a 39-year-old woman was severe pain in the upper right molar area. The patient indicated to the caries on the tooth 17. After completion of proper survey clinical and visiographical examinations, acute pulpitis (K04.00) - with three roots and 4 canals was diagnosed. In both cases after the proper examinations and agreement with the patients a treatment plan envisaging: 17 teeth endodontic treatment, filling of caries defects and their preparation on one hand for orthopedic construction (denture) and on the other hand for restoration of anatomical integrity by light-cured composite, was scheduled. The present study is designed to prevent complications of endodontic treatment of the second molar, to optimize diagnosis and treatment algorithm, once again proving reliable information indicating to the

  12. The Pathoconnectivity Profile of Alzheimer’s Disease: A Morphometric Coalteration Network Analysis

    Directory of Open Access Journals (Sweden)

    Jordi Manuello

    2018-01-01

    Full Text Available Gray matter alterations are typical features of brain disorders. However, they do not impact on the brain randomly. Indeed, it has been suggested that neuropathological processes can selectively affect certain assemblies of neurons, which typically are at the center of crucial functional networks. Because of their topological centrality, these areas form a core set that is more likely to be affected by neuropathological processes. In order to identify and study the pattern formed by brain alterations in patients’ with Alzheimer’s disease (AD, we devised an innovative meta-analytic method for analyzing voxel-based morphometry data. This methodology enabled us to discover that in AD gray matter alterations do not occur randomly across the brain but, on the contrary, follow identifiable patterns of distribution. This alteration pattern exhibits a network-like structure composed of coaltered areas that can be defined as coatrophy network. Within the coatrophy network of AD, we were able to further identify a core subnetwork of coaltered areas that includes the left hippocampus, left and right amygdalae, right parahippocampal gyrus, and right temporal inferior gyrus. In virtue of their network centrality, these brain areas can be thought of as pathoconnectivity hubs.

  13. Altered dynamic functional connectivity in the default mode network in patients with cirrhosis and minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Chen, Hua-Jun; Lin, Hai-Long; Chen, Qiu-Feng; Liu, Peng-Fei

    2017-01-01

    Abnormal brain intrinsic functional connectivity (FC) has been documented in minimal hepatic encephalopathy (MHE) by static connectivity analysis. However, changes in dynamic FC (dFC) remain unknown. We aimed to identify altered dFC within the default mode network (DMN) associated with MHE. Resting-state functional MRI data were acquired from 20 cirrhotic patients with MHE and 24 healthy controls. DMN seed regions were defined using seed-based FC analysis (centered on the posterior cingulate cortex (PCC)). Dynamic FC architecture was calculated using a sliding time-window method. K-means clustering (number of clusters = 2-4) was applied to estimate FC states. When the number of clusters was 2, MHE patients presented weaker connectivity strengths compared with controls in states 1 and 2. In state 1, decreased FC strength was found between the PCC/precuneus (PCUN) and right medial temporal lobe (MTL)/bilateral lateral temporal cortex (LTC); left inferior parietal lobule (IPL) and right MTL/left LTC; right IPL and right MTL/bilateral LTC; right MTL and right LTC; and medial prefrontal cortex (MPFC) and right MTL/bilateral LTC. In state 2, reduced FC strength was observed between the PCC/PCUN and bilateral MTL/bilateral LTC; left IPL and left MTL/bilateral LTC/MPFC; and left LTC and right LTC. Altered connectivities from state 1 were correlated with patient cognitive performance. Similar findings were observed when the number of clusters was set to 3 or 4. Aberrant dynamic DMN connectivity is an additional characteristic of MHE. Dynamic connectivity analysis offers a novel paradigm for understanding MHE-related mechanisms. (orig.)

  14. Altered dynamic functional connectivity in the default mode network in patients with cirrhosis and minimal hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Jun; Lin, Hai-Long [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); Chen, Qiu-Feng; Liu, Peng-Fei [Central South University, School of Information Science and Engineering, Changsha (China)

    2017-09-15

    Abnormal brain intrinsic functional connectivity (FC) has been documented in minimal hepatic encephalopathy (MHE) by static connectivity analysis. However, changes in dynamic FC (dFC) remain unknown. We aimed to identify altered dFC within the default mode network (DMN) associated with MHE. Resting-state functional MRI data were acquired from 20 cirrhotic patients with MHE and 24 healthy controls. DMN seed regions were defined using seed-based FC analysis (centered on the posterior cingulate cortex (PCC)). Dynamic FC architecture was calculated using a sliding time-window method. K-means clustering (number of clusters = 2-4) was applied to estimate FC states. When the number of clusters was 2, MHE patients presented weaker connectivity strengths compared with controls in states 1 and 2. In state 1, decreased FC strength was found between the PCC/precuneus (PCUN) and right medial temporal lobe (MTL)/bilateral lateral temporal cortex (LTC); left inferior parietal lobule (IPL) and right MTL/left LTC; right IPL and right MTL/bilateral LTC; right MTL and right LTC; and medial prefrontal cortex (MPFC) and right MTL/bilateral LTC. In state 2, reduced FC strength was observed between the PCC/PCUN and bilateral MTL/bilateral LTC; left IPL and left MTL/bilateral LTC/MPFC; and left LTC and right LTC. Altered connectivities from state 1 were correlated with patient cognitive performance. Similar findings were observed when the number of clusters was set to 3 or 4. Aberrant dynamic DMN connectivity is an additional characteristic of MHE. Dynamic connectivity analysis offers a novel paradigm for understanding MHE-related mechanisms. (orig.)

  15. COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies.

    Science.gov (United States)

    Travin, Dmitrii; Popov, Iaroslav; Guler, Arzu Tugce; Medvedev, Dmitry; van der Plas-Duivesteijn, Suzanne; Varela, Monica; Kolder, Iris C R M; Meijer, Annemarie H; Spaink, Herman P; Palmblad, Magnus

    2018-01-05

    COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages "maps" and "maptools" to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data.

  16. Anatomic connections of the diaphragm influence of respiration on the body system

    Directory of Open Access Journals (Sweden)

    Bordoni B

    2013-07-01

    Full Text Available Bruno Bordoni,1 Emiliano Zanier2 1Rehabilitation Cardiology Institute of Hospitalization and Care with Scientific Address, S Maria Nascente Don Carlo Gnocchi Foundation, 2EdiAcademy, Milano, Italy Abstract: The article explains the scientific reasons for the diaphragm muscle being an important crossroads for information involving the entire body. The diaphragm muscle extends from the trigeminal system to the pelvic floor, passing from the thoracic diaphragm to the floor of the mouth. Like many structures in the human body, the diaphragm muscle has more than one function, and has links throughout the body, and provides the network necessary for breathing. To assess and treat this muscle effectively, it is necessary to be aware of its anatomic, fascial, and neurologic complexity in the control of breathing. The patient is never a symptom localized, but a system that adapts to a corporeal dysfunction. Keywords: diaphragm, fascia, phrenic nerve, vagus nerve, pelvis

  17. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Energy Technology Data Exchange (ETDEWEB)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S. [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Santhakumar, Vijayalakshmi, E-mail: santhavi@njms.rutgers.edu [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States)

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average

  18. Altered brain rhythms and functional network disruptions involved in patients with generalized fixation-off epilepsy

    OpenAIRE

    Solana Sánchez, Ana Beatriz; Hernández Tamames, J.A.; Molina, E.; Martínez, K.; Pineda Pardo, José Ángel; Bruña Fernandez, Ricardo; Toledano, Rafael; San Antonio-Arce, Victoria; Garcia Morales, Irene; Gil Nagel, Antonio; Alfayate, E.; Álvarez Linera, Juan; Pozo Guerrero, Francisco del

    2012-01-01

    Fixation-off sensitivity (FOS) denotes the forms of epilepsy elicited by elimination of fixation. FOS-IGE patients are rare cases [1]. In a previous work [2] we showed that two FOS-IGE patients had different altered EEG rhythms when closing eyes; only beta band was altered in patient 1 while theta, alpha and beta were altered in patient 2. In the present work, we explain the relationship between the altered brain rhythms in these patients and the disruption in functional brain net...

  19. Estimating anatomical wrist joint motion with a robotic exoskeleton.

    Science.gov (United States)

    Rose, Chad G; Kann, Claudia K; Deshpande, Ashish D; O'Malley, Marcia K

    2017-07-01

    Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible. These assumptions hold well for simple one degree-of-freedom joints, but may not be valid for multi-articular joints with unique musculoskeletal properties such as the wrist. This paper presents an experiment comparing robot joint kinematic measurements from an exoskeleton to anatomical joint angles measured with a motion capture system. Joint-space position measurements and task-space smoothness metrics were compared between the two measurement modalities. The experimental results quantify the error between joint-level position measurements, and show that exoskeleton kinematic measurements preserve smoothness characteristics found in anatomical measures of wrist movements.

  20. Anatomical Terms in J. Basanavičius’ Manuscript Anatomijos ir medicinos vardyno medžiaga

    Directory of Open Access Journals (Sweden)

    Nijolė Litevkienė

    2011-12-01

    Full Text Available The historical evolution of anatomical terms dates to antiquity, to the writings of Hippocrates. The historical development of Lithuanian anatomical terminology goes back to the seventeenth century. Anatomical terminology, as a comprehensive system of the names of human body parts is being compiled gradually. The originator of Lithuanian medical terminology was J. Basanavičius. The research paper aims to analyze anatomical terms used in J. Basanavičius’ manuscript Anatomijos ir medicinos vardyno medžiaga (further BM and to compare them with the terms in the Dictionary of Medical Terms ( Medicinos terminų žodynas 1980. The research focuses on the analysis of some aspects of differentiation and congruity of simple and multi-word anatomical terms of the manuscript and the dictionary. About 270 Lithuanian anatomical terms with Russian and Latin equivalents were collected by J. Basanavičius. The results show that the major part of the terms are different, the lesser part of the terms are identical.

  1. Development of a patient-specific anatomical foot model from structured light scan data.

    Science.gov (United States)

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  2. Advertising cadavers in the republic of letters: anatomical publications in the early modern Netherlands.

    Science.gov (United States)

    Margócsy, Dániel

    2009-06-01

    This paper sketches how late seventeenth-century Dutch anatomists used printed publications to advertise their anatomical preparations, inventions and instructional technologies to an international clientele. It focuses on anatomists Frederik Ruysch (1638-1732) and Lodewijk de Bils (1624-69), inventors of two separate anatomical preparation methods for preserving cadavers and body parts in a lifelike state for decades or centuries. Ruysch's and de Bils's publications functioned as an 'advertisement' for their preparations. These printed volumes informed potential customers that anatomical preparations were aesthetically pleasing and scientifically important but did not divulge the trade secrets of the method of production. Thanks to this strategy of non-disclosure and advertisement, de Bils and Ruysch could create a well-working monopoly market of anatomical preparations. The 'advertising' rhetorics of anatomical publications highlight the potential dangers of equating the growth of print culture with the development of an open system of knowledge exchange.

  3. Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects.

    Science.gov (United States)

    Kim, Seung Jun; Kim, Sung Eun; Kim, Hyo Eun; Han, Kiwan; Jeong, Bumseok; Kim, Jae Jin; Namkoong, Kee; Kim, Ji Woong

    2017-09-01

    Empathy is the ability to identify with or make a vicariously experience of another person's feelings or thoughts based on memory and/or self-referential mental simulation. The default mode network in particular is related to self-referential empathy. In order to elucidate the possible neural mechanisms underlying empathy, we investigated the functional connectivity of the default mode network in subjects from a general population. Resting state functional magnetic resonance imaging data were acquired from 19 low-empathy subjects and 18 medium-empathy subjects. An independent component analysis was used to identify the default mode network, and differences in functional connectivity strength were compared between the two groups. The low-empathy group showed lower functional connectivity of the medial prefrontal cortex and anterior cingulate cortex (Brodmann areas 9 and 32) within the default mode network, compared to the medium-empathy group. The results of the present study suggest that empathy is related to functional connectivity of the medial prefrontal cortex/anterior cingulate cortex within the default mode network. Functional decreases in connectivity among low-empathy subjects may reflect an impairment of self-referential mental simulation. © Copyright: Yonsei University College of Medicine 2017.

  4. Report of a rare anatomic variant

    DEFF Research Database (Denmark)

    De Brucker, Y; Ilsen, B; Muylaert, C

    2015-01-01

    We report the CT findings in a case of partial anomalous pulmonary venous return (PAPVR) from the left upper lobe in an adult. PAPVR is an anatomic variant in which one to three pulmonary veins drain into the right atrium or its tributaries, rather than into the left atrium. This results in a left...

  5. Immediate Direct-To-Implant Breast Reconstruction Using Anatomical Implants

    Directory of Open Access Journals (Sweden)

    Sung-Eun Kim

    2014-09-01

    Full Text Available BackgroundIn 2012, a new anatomic breast implant of form-stable silicone gel was introduced onto the Korean market. The intended use of this implant is in the area of aesthetic breast surgery, and many reports are promising. Thus far, however, there have been no reports on the use of this implant for breast reconstruction in Korea. We used this breast implant in breast reconstruction surgery and report our early experience.MethodsFrom November 2012 to April 2013, the Natrelle Style 410 form-stable anatomically shaped cohesive silicone gel-filled breast implant was used in 31 breasts of 30 patients for implant breast reconstruction with an acellular dermal matrix. Patients were treated with skin-sparing mastectomies followed by immediate breast reconstruction.ResultsThe mean breast resection volume was 240 mL (range, 83-540 mL. The mean size of the breast implants was 217 mL (range, 125-395 mL. Breast shape outcomes were considered acceptable. Infection and skin thinning occurred in one patient each, and hematoma and seroma did not occur. Three cases of wound dehiscence occurred, one requiring surgical intervention, while the others healed with conservative treatment in one month. Rippling did not occur. So far, complications such as capsular contracture and malrotation of breast implant have not yet arisen.ConclusionsBy using anatomic breast implants in breast reconstruction, we achieved satisfactory results with aesthetics better than those obtained with round breast implants. Therefore, we concluded that the anatomical implant is suitable for breast reconstruction.

  6. Altered neural connectivity during response inhibition in adolescents with attention-deficit/hyperactivity disorder and their unaffected siblings.

    Science.gov (United States)

    van Rooij, Daan; Hartman, Catharina A; Mennes, Maarten; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Heslenfeld, Dirk; Faraone, Stephen V; Buitelaar, Jan K; Hoekstra, Pieter J

    2015-01-01

    Response inhibition is one of the executive functions impaired in attention-deficit/hyperactivity disorder (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of the neurobiological basis of ADHD. Here, we investigated if adolescents with ADHD show altered functional connectivity during response inhibition compared to their unaffected siblings and healthy controls. Response inhibition was assessed using the stop signal paradigm. Functional connectivity was assessed using psycho-physiological interaction analyses applied to BOLD time courses from seed regions within inferior- and superior frontal nodes of the response inhibition network. Resulting networks were compared between adolescents with ADHD (N = 185), their unaffected siblings (N = 111), and controls (N = 125). Control subjects showed stronger functional connectivity than the other two groups within the response inhibition network, while subjects with ADHD showed relatively stronger connectivity between default mode network (DMN) nodes. Stronger connectivity within the response inhibition network was correlated with lower ADHD severity, while stronger connectivity with the DMN was correlated with increased ADHD severity. Siblings showed connectivity patterns similar to controls during successful inhibition and to ADHD subjects during failed inhibition. Additionally, siblings showed decreased connectivity with the primary motor areas as compared to both participants with ADHD and controls. Subjects with ADHD fail to integrate activation within the response inhibition network and to inhibit connectivity with task-irrelevant regions. Unaffected siblings show similar alterations only during failed stop trials, as well as unique suppression of motor areas, suggesting compensatory strategies. These findings support the role of altered functional connectivity in understanding the neurobiology and familial transmission of ADHD.

  7. Intermittent Theta-Burst Stimulation of the Lateral Cerebellum Increases Functional Connectivity of the Default Network

    Science.gov (United States)

    Farzan, Faranak; Eldaief, Mark C.; Schmahmann, Jeremy D.; Pascual-Leone, Alvaro

    2014-01-01

    Cerebral cortical intrinsic connectivity networks share topographically arranged functional connectivity with the cerebellum. However, the contribution of cerebellar nodes to distributed network organization and function remains poorly understood. In humans, we applied theta-burst transcranial magnetic stimulation, guided by subject-specific connectivity, to regions of the cerebellum to evaluate the functional relevance of connections between cerebellar and cerebral cortical nodes in different networks. We demonstrate that changing activity in the human lateral cerebellar Crus I/II modulates the cerebral default mode network, whereas vermal lobule VII stimulation influences the cerebral dorsal attention system. These results provide novel insights into the distributed, but anatomically specific, modulatory impact of cerebellar effects on large-scale neural network function. PMID:25186750

  8. Development of the brain's functional network architecture.

    Science.gov (United States)

    Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L

    2010-12-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.

  9. Visual analysis of transcriptome data in the context of anatomical structures and biological networks

    Directory of Open Access Journals (Sweden)

    Astrid eJunker

    2012-11-01

    Full Text Available The complexity and temporal as well as spatial resolution of transcriptome datasets is constantly increasing due to extensive technological developments. Here we present methods for advanced visualization and intuitive exploration of transcriptomics data as necessary prerequisites in order to facilitate the gain of biological knowledge. Color-coding of structural images based on the expression level enables a fast visual data analysis in the background of the examined biological system. The network-based exploration of these visualizations allows for comparative analysis of genes with specific transcript patterns and supports the extraction of functional relationships even from large datasets. In order to illustrate the presented methods, the tool HIVE was applied for visualization and exploration of database-retrieved expression data for master regulators of Arabidopsis thaliana flower and seed development in the context of corresponding tissue-specific regulatory networks.

  10. Intervention in gene regulatory networks with maximal phenotype alteration.

    Science.gov (United States)

    Yousefi, Mohammadmahdi R; Dougherty, Edward R

    2013-07-15

    A basic issue for translational genomics is to model gene interaction via gene regulatory networks (GRNs) and thereby provide an informatics environment to study the effects of intervention (say, via drugs) and to derive effective intervention strategies. Taking the view that the phenotype is characterized by the long-run behavior (steady-state distribution) of the network, we desire interventions to optimally move the probability mass from undesirable to desirable states Heretofore, two external control approaches have been taken to shift the steady-state mass of a GRN: (i) use a user-defined cost function for which desirable shift of the steady-state mass is a by-product and (ii) use heuristics to design a greedy algorithm. Neither approach provides an optimal control policy relative to long-run behavior. We use a linear programming approach to optimally shift the steady-state mass from undesirable to desirable states, i.e. optimization is directly based on the amount of shift and therefore must outperform previously proposed methods. Moreover, the same basic linear programming structure is used for both unconstrained and constrained optimization, where in the latter case, constraints on the optimization limit the amount of mass that may be shifted to 'ambiguous' states, these being states that are not directly undesirable relative to the pathology of interest but which bear some perceived risk. We apply the method to probabilistic Boolean networks, but the theory applies to any Markovian GRN. Supplementary materials, including the simulation results, MATLAB source code and description of suboptimal methods are available at http://gsp.tamu.edu/Publications/supplementary/yousefi13b. edward@ece.tamu.edu Supplementary data are available at Bioinformatics online.

  11. Nodule detection in digital chest radiography: Effect of anatomical noise

    International Nuclear Information System (INIS)

    Baath, M.; Haakansson, M.; Boerjesson, S.; Hoeschen, C.; Tischenko, O.; Kheddache, S.; Vikgren, J.; Maansson, L. G.

    2005-01-01

    The image background resulting from imaged anatomy can be divided into those components that are meaningful to the observers, in the sense that they are recognised as separate structures, and those that are not. These latter components (referred to as anatomical noise) can be removed using a method developed within the RADIUS group. The aim of the present study was to investigate whether the removal of the anatomical noise results in images where lung nodules with lower contrast can be detected. A receiver operating characteristic (ROC) study was therefore conducted using two types of images: clinical chest images and chest images in which the anatomical noise had been removed. Simulated designer nodules with a full-width-at-fifth-maximum of 10 mm but with varying contrast were added to the images. The contrast needed to obtain an area under the ROC curve of 0.80, C0.8, was used as a measure of detectability (a low value of C0.8 represents a high delectability). Five regions of the chest X ray were investigated and it was found that in all regions the removal of anatomical noise led to images with lower C0.8 than the original images. On average, C0.8 was 20% higher in the original images, ranging from 7% (the lateral pulmonary regions) to 41% (the upper mediastinal regions). (authors)

  12. Mobilization of the rectum: anatomic concepts and the bookshelf revisited.

    Science.gov (United States)

    Chapuis, Pierre; Bokey, Les; Fahrer, Marius; Sinclair, Gael; Bogduk, Nikolai

    2002-01-01

    Sound surgical technique is based on accurate anatomic knowledge. In surgery for cancer, the anatomy of the perirectal fascia and the retrorectal plane is the basis for correct mobilization of the rectum to ensure clear surgical margins and to minimize the risk of local recurrence. This review of the literature on the perirectal fascia is based on a translation of the original description by Thoma Jonnesco and a later account by Wilhelm Waldeyer. The Jonnesco description, first published in 1896 in French, is compared with the German account of 1899. These were critically analyzed in the context of our own and other techniques of mobilizing the rectum. Mobilization of the rectum for cancer can be performed along anatomic planes with minimal blood loss, preservation of the pelvic autonomic nerves and a low prevalence of local recurrence. Different techniques including total mesorectal excision are based on the same anatomic principles, however, popular words have been used to replace accepted, established terminology. In particular, the description of total mesorectal excision has been confusing because of its emphasis on the words "total" and "mesorectum." The use of the word "mesorectum" anatomically is inaccurate and the implication that total excision of all the perirectal fat contained within the perirectal fascia "en bloc" in all patients with rectal cancer will minimize local recurrence remains contentious.

  13. Prevalence of anatomical variations in maxillary sinus using cone beam computed tomography

    Directory of Open Access Journals (Sweden)

    Deepjyoti K Mudgade

    2018-01-01

    Full Text Available Introduction: The maxillary sinuses (MS are of particular importance to dentist because of their close proximity to the teeth and their associated structures, so increased risk of maxillary sinusitis has been reported with periapical abscess, periodontal diseases, dental trauma, tooth extraction, and implant placement. Complications of MS are related to its anatomic and pathologic variations. Thus, study was conducted to assess the prevalence of anatomic variations in MS by using cone-beam computerized tomography (CBCT. Aims and Objectives: To determine different anatomical variations in MS by using CBCT. Materials and Methods: CBCT scans of 150 subjects were collected between the age group of 18 years to 70 years and were analyzed for MS anatomical variation. Statistical Analysis: The distribution of age, sex, reasons for CBCT, and dimensions of sinus calculated using descriptive statistics and distribution of other anatomic findings using Chi-square test. Results: Prevalence of obstructed ostium is 23.3% and septa is 66.7%. Average height, width, and antero-posterior (A-P dimensions for right MS are 34.13 mm, 26.09 mm, 37.39 mm and that of left MS are 33.24 mm, 26.11 mm, 37.72 mm respectively. Average distance between lower border of ostium to sinus floor in right MS is 32.17 mm and that of left is 32.69 mm. Average diameter of ostium in right MS is 1.88 mm and that of left is 1.67 mm. Conclusion: Study highlights the importance of accurate assessment of MS and its variations in order to properly differentiate the pathologic lesions from anatomic variations avoiding unnecessary surgical explorations.

  14. Magnetic resonance angiography: infrequent anatomic variants

    International Nuclear Information System (INIS)

    Trejo, Mariano; Meli, Francisco; Lambre, Hector; Blessing, Ricardo; Gigy Traynor, Ignacio; Miguez, Victor

    2002-01-01

    We studied through RM angiography (3D TOF) with high magnetic field equipment (1.5 T) different infrequent intracerebral vascular anatomic variants. For their detection we emphasise the value of post-processed images obtained after conventional angiographic sequences. These post-processed images should be included in routine protocols for evaluation of the intracerebral vascular structures. (author)

  15. Anatomical characteristics of southern pine stemwood

    Science.gov (United States)

    Elaine T. Howard; Floyd G. Manwiller

    1968-01-01

    To obtain a definitive description of the wood and anatomy of all 10 species of southern pine, juvenile, intermediate, and mature wood was sampled at three heights in one tree of each species and examined under a light microscope. Photographs and three-dimensional drawings were made to illustrate the morphology. No significant anatomical differences were found...

  16. Social disadvantage and borderline personality disorder: A study of social networks.

    Science.gov (United States)

    Beeney, Joseph E; Hallquist, Michael N; Clifton, Allan D; Lazarus, Sophie A; Pilkonis, Paul A

    2018-01-01

    Examining differences in social integration, social support, and relationship characteristics in social networks may be critical for understanding the character and costs of the social difficulties experienced of borderline personality disorder (BPD). We conducted an ego-based (self-reported, individual) social network analysis of 142 participants recruited from clinical and community sources. Each participant listed the 30 most significant people (called alters) in their social network, then rated each alter in terms of amount of contact, social support, attachment strength and negative interactions. In addition, measures of social integration were determined using participant's report of the connection between people in their networks. BPD was associated with poorer social support, more frequent negative interactions, and less social integration. Examination of alter-by-BPD interactions indicated that whereas participants with low BPD symptoms had close relationships with people with high centrality within their networks, participants with high BPD symptoms had their closest relationships with people less central to their networks. The results suggest that individuals with BPD are at a social disadvantage: Those with whom they are most closely linked (including romantic partners) are less socially connected (i.e., less central) within their social network. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. HPV Vaccine Effective at Multiple Anatomic Sites

    Science.gov (United States)

    A new study from NCI researchers finds that the HPV vaccine protects young women from infection with high-risk HPV types at the three primary anatomic sites where persistent HPV infections can cause cancer. The multi-site protection also was observed at l

  18. Anatomic variations of the cerebral arteries and their embryology: a pictorial review

    International Nuclear Information System (INIS)

    Okahara, Mika; Kiyosue, Hiro; Mori, Hiromu; Tanoue, Shuichi; Sainou, Michihumi; Nagatomi, Hirohumi

    2002-01-01

    In the embryonic period, several developmental anomalies of the cerebral arteries occur. The knowledge of these anatomic variations of the cerebral artery is important to avoid the unnecessary surgery and to undergo surgery or interventional radiology with safety. We reviewed 3000 MR angiographies and 700 cerebral angiographies of the previous 5 years to assess cerebral arterial system, and to illustrate the embryological development, imaging findings, occurrence, and clinical significance of the anatomic variation of the cerebral arteries. The normal development and variations of the cerebral arteries are depicted. Knowledge of the anatomic variations is important since it can influence surgical and interventional procedure. (orig.)

  19. Corona mortis: an anatomical variation with clinical relevance. Case report.

    Directory of Open Access Journals (Sweden)

    Guillermo Adrián Rivera-Cardona

    2010-12-01

    Full Text Available The obturator artery is one of the parietal branches arising from the internal iliac artery, the anatomical variation from which this artery originates is called “The corona mortis”, generally from the external iliac artery or the inferior epigastric artery. This finding was observed bilaterally in a male cadaver during a pelvis dissection. Clinical consideration of the anatomical variation in the obturator artery, during surgical procedures, is of great importance due to the risk of pelvic hemorrhage.

  20. MORPHOLOGICAL AND ANATOMICAL STUDY ON ENDEMIC CROCUS OLIVIERI GAY SUBSP. ISTANBULENSIS MATHEW SUBSPECIES (IRIDACEAE

    Directory of Open Access Journals (Sweden)

    Kadriye Yetişen

    2013-02-01

    Full Text Available In this study, morphological and anatomical properties of Crocus olivieri Gay subsp. istanbulensis Mathew were investigated. Cross-sections of root, scape and leaf parts of the plant were examined anddemonstrated by photographs. Most of the anatomical properties are similar to the other member of Iridaceae family. Sclerenchyma groups were observed around to leaf vascular bundle. Morphological and anatomical findings compared with other two subspecies of Crocus olivieri.

  1. Learning model of eye movement system based on anatomical structure; Kaibogakuteki kozo ni motozuita gakushu kino wo motsu gankyu undo system to sono tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Wakamatsu, H. [Tokyo Medical and Dental University, Tokyo (Japan)

    1998-07-01

    A learning system is proposed to explain the adaptive function of an eye movement consisting of compensatory and optokinetic reflex, and pursuit movements based on the brain anatomy and physiology. Thereby, the learning system is synthesized as an artificial neural network based on the structure and function of the biological neural network of flocculus. The role of neural paths into flocculus from stretch receptors of ocular muscles are discussed in detail from the viewpoint of system control engineering. The mathematical learning process is also shown taking into account the adaptive mechanism and the anatomical structure of vestibular nuclei. The experimental results through simulation confirm the validity of the hypothesis and the appropriateness of the inference process in connection with the proposed mathematical model. 18 refs., 11 figs.

  2. Segmentation of medical images using explicit anatomical knowledge

    Science.gov (United States)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  3. Upper airway alterations/abnormalities in a case series of obstructive sleep apnea patients identified with cone-beam CT

    International Nuclear Information System (INIS)

    Shigeta, Y.; Shintaku, W.H.; Clark, G.T.; Enciso, R.; Ogawa, T.

    2007-01-01

    There are many factors that influence the configuration of the upper airway and may contribute to the development of obstructive sleep apnea (OSA). This paper presents a series of 12 consecutive OSA cases where various upper airway alteration/abnormalities were identified using 3D anatomic reconstructions generated from cone-beam CT (CBCT) images. Some cases exhibited more than one type of abnormality and below we describe each of the six types identified with CBCT in this case series. (orig.)

  4. Upper airway alterations/abnormalities in a case series of obstructive sleep apnea patients identified with cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, Y; Shintaku, W H; Clark, G T [Orofacial Pain/Oral Medicine Center, Div. of Diagnostic Sciences, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Enciso, R [Div. of Craniofacial Sciences and Therapeutics, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Ogawa, T [Dept. of Fixed Prosthodontic Dentistry, Tsurumi Univ., School of Dental Medicine, Tsurumi (Japan)

    2007-06-15

    There are many factors that influence the configuration of the upper airway and may contribute to the development of obstructive sleep apnea (OSA). This paper presents a series of 12 consecutive OSA cases where various upper airway alteration/abnormalities were identified using 3D anatomic reconstructions generated from cone-beam CT (CBCT) images. Some cases exhibited more than one type of abnormality and below we describe each of the six types identified with CBCT in this case series. (orig.)

  5. A practical workflow for making anatomical atlases for biological research.

    Science.gov (United States)

    Wan, Yong; Lewis, A Kelsey; Colasanto, Mary; van Langeveld, Mark; Kardon, Gabrielle; Hansen, Charles

    2012-01-01

    The anatomical atlas has been at the intersection of science and art for centuries. These atlases are essential to biological research, but high-quality atlases are often scarce. Recent advances in imaging technology have made high-quality 3D atlases possible. However, until now there has been a lack of practical workflows using standard tools to generate atlases from images of biological samples. With certain adaptations, CG artists' workflow and tools, traditionally used in the film industry, are practical for building high-quality biological atlases. Researchers have developed a workflow for generating a 3D anatomical atlas using accessible artists' tools. They used this workflow to build a mouse limb atlas for studying the musculoskeletal system's development. This research aims to raise the awareness of using artists' tools in scientific research and promote interdisciplinary collaborations between artists and scientists. This video (http://youtu.be/g61C-nia9ms) demonstrates a workflow for creating an anatomical atlas.

  6. Anatomical characteristics of Turkish steno-endemic Origanum leptocladum Boiss. (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Süleyman Doğu

    2013-04-01

    Full Text Available Origanum leptocladum Boiss. is an endemic East Mediterranean element, naturally growing only in Ermenek district of Karaman province in Turkey. The aim of this study is to determine anatomical features of the species. The study materials were collected from Karaman-Ermenek in 2009 and then preserved in 70 % alcohol. O. leptocladum generally exhibits the anatomical feaures of the family Lamiaceae. Hovewer, herbaceaus stem is weakly-rectangle shaped or tends to be circular, the collenchymatic tissue at the corner of the stem and scleranchymatic pericycle around the vascular tissue are weakly-developed. The most striking anatomical feature is that leaf lamina is dorsiventral in the region near to midvein, but equifacial out of the midvein. According to the results, while the stomata are of mesomorphic type on the leaf surfaces, O. leptocladum has xeromorphic characters such as palisade richness in mesophyll, the occurrence of rich scleranchymatic tissue in midvein and cuticle thickness on leaf surface.

  7. An increase in tobacco craving is associated with enhanced medial prefrontal cortex network coupling.

    Directory of Open Access Journals (Sweden)

    Amy C Janes

    Full Text Available Craving is a key aspect of drug dependence that is thought to motivate continued drug use. Numerous brain regions have been associated with craving, suggesting that craving is mediated by a distributed brain network. Whether an increase in subjective craving is associated with enhanced interactions among brain regions was evaluated using resting state functional magnetic imaging (fMRI in nicotine dependent participants. We focused on craving-related changes in the orbital and medial prefrontal cortex (OMPFC network, which also included the subgenual anterior cingulate cortex (sgACC extending into the ventral striatum. Brain regions in the OMPFC network are not only implicated in addiction and reward, but, due to their rich anatomic interconnections, may serve as the site of integration across craving-related brain regions. Subjective craving and resting state fMRI were evaluated twice with an ∼1 hour delay between the scans. Cigarette craving was significantly increased at the end, relative to the beginning of the scan session. Enhanced craving was associated with heightened coupling between the OMPFC network and other cortical, limbic, striatal, and visceromotor brain regions that are both anatomically interconnected with the OMPFC, and have been implicated in addiction and craving. This is the first demonstration confirming that an increase in craving is associated with enhanced brain region interactions, which may play a role in the experience of craving.

  8. Anatomic humeral head replacement with a press-fit prosthesis: An in vivo radiographic study

    Directory of Open Access Journals (Sweden)

    Bryan Vopat

    2017-10-01

    Full Text Available Successful total shoulder arthroplasty is, in part, dependent on anatomic reconstruction of the glenohumeral joint. The purpose of this study was to evaluate the post-operative anatomy of total shoulder arthroplasty with an anatomic implant design in patients with primary glenohumeral osteoarthritis and compare it to published normative anatomic measurements. Fifty-one patients (56 shoulders with primary glenohumeral osteoarthritis were treated with a press-fit humeral component as part of a total shoulder arthroplasty (Aequalis, Tornier, Edina, Minnesota. Analysis of postoperative true anterior posterior radiographs was performed with use of a custom software algorithm. The mean humeral inclination (head-shaft angle, mean humeral implant anatomical humeral axis, mean greater tuberosity height, and mean humeral head center offset (medial offset were 135.4±5.1°, 1.73±1.7°, 6.9±2.4 mm, and 3.8±1.8 mm, respectively. All parameters were within the ranges reported in the literature for normal shoulders except the mean humeral head center offset, which was less than reported in the literature. Anatomic parameters of a total shoulder arthroplasty can be achieved with an anatomically designed, modular adaptable press-fit design. Reduced medial humeral head center offset was likely dependent upon implant specific design parameters.

  9. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks.

    Science.gov (United States)

    Chande, Ruchi D; Hargraves, Rosalyn Hobson; Ortiz-Robinson, Norma; Wayne, Jennifer S

    2017-01-01

    Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  10. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment betw...

  11. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge Emil Borch Laurs; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment...

  12. Anatomical characteristics of the ossa sesamoidea phalangis proximalis in cattle (Bos primigenius f. taurus Linné 1758)

    Energy Technology Data Exchange (ETDEWEB)

    Červený, Č. [Vysoka Skola Veterinarni, Brno, Czechoslovakia (Czech Republic)

    1985-06-15

    The anatomical structure and radiography of the sesamoid bones of the proximal phalanges of cattle digits were studied on osteological material and radiograms of 18 cows and 5 bulls. On the basis of detailed anatomical description, a list of new anatomical names for important anatomical formations was proposed in order to complete the anatomical nomenclature and to provide better orientation on the bones as well as a more precise description of the different bones and determine their origin from the respective digits and/or the left or right thoratic or pelvic limbs.

  13. Anatomical characteristics of the ossa sesamoidea phalangis proximalis in cattle (Bos primigenius f. taurus Linné 1758)

    International Nuclear Information System (INIS)

    Červený, Č.

    1985-01-01

    The anatomical structure and radiography of the sesamoid bones of the proximal phalanges of cattle digits were studied on osteological material and radiograms of 18 cows and 5 bulls. On the basis of detailed anatomical description, a list of new anatomical names for important anatomical formations was proposed in order to complete the anatomical nomenclature and to provide better orientation on the bones as well as a more precise description of the different bones and determine their origin from the respective digits and/or the left or right thoratic or pelvic limbs

  14. Network and external perturbation induce burst synchronisation in cat cerebral cortex

    Science.gov (United States)

    Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Batista, Antonio M.; Baptista, Murilo S.; Viana, Ricardo L.

    2016-05-01

    The brain of mammals are divided into different cortical areas that are anatomically connected forming larger networks which perform cognitive tasks. The cat cerebral cortex is composed of 65 areas organised into the visual, auditory, somatosensory-motor and frontolimbic cognitive regions. We have built a network of networks, in which networks are connected among themselves according to the connections observed in the cat cortical areas aiming to study how inputs drive the synchronous behaviour in this cat brain-like network. We show that without external perturbations it is possible to observe high level of bursting synchronisation between neurons within almost all areas, except for the auditory area. Bursting synchronisation appears between neurons in the auditory region when an external perturbation is applied in another cognitive area. This is a clear evidence that burst synchronisation and collective behaviour in the brain might be a process mediated by other brain areas under stimulation.

  15. Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome.

    Science.gov (United States)

    Batalle, Dafnis; Eixarch, Elisenda; Figueras, Francesc; Muñoz-Moreno, Emma; Bargallo, Nuria; Illa, Miriam; Acosta-Rojas, Ruthy; Amat-Roldan, Ivan; Gratacos, Eduard

    2012-04-02

    Intrauterine growth restriction (IUGR) due to placental insufficiency affects 5-10% of all pregnancies and it is associated with a wide range of short- and long-term neurodevelopmental disorders. Prediction of neurodevelopmental outcomes in IUGR is among the clinical challenges of modern fetal medicine and pediatrics. In recent years several studies have used magnetic resonance imaging (MRI) to demonstrate differences in brain structure in IUGR subjects, but the ability to use MRI for individual predictive purposes in IUGR is limited. Recent research suggests that MRI in vivo access to brain connectivity might have the potential to help understanding cognitive and neurodevelopment processes. Specifically, MRI based connectomics is an emerging approach to extract information from MRI data that exhaustively maps inter-regional connectivity within the brain to build a graph model of its neural circuitry known as brain network. In the present study we used diffusion MRI based connectomics to obtain structural brain networks of a prospective cohort of one year old infants (32 controls and 24 IUGR) and analyze the existence of quantifiable brain reorganization of white matter circuitry in IUGR group by means of global and regional graph theory features of brain networks. Based on global and regional analyses of the brain network topology we demonstrated brain reorganization in IUGR infants at one year of age. Specifically, IUGR infants presented decreased global and local weighted efficiency, and a pattern of altered regional graph theory features. By means of binomial logistic regression, we also demonstrated that connectivity measures were associated with abnormal performance in later neurodevelopmental outcome as measured by Bayley Scale for Infant and Toddler Development, Third edition (BSID-III) at two years of age. These findings show the potential of diffusion MRI based connectomics and graph theory based network characteristics for estimating differences in the

  16. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  17. New insight into atmospheric alteration of alkali-lime silicate glasses

    International Nuclear Information System (INIS)

    Alloteau, Fanny; Lehuédé, Patrice; Majérus, Odile; Biron, Isabelle; Dervanian, Anaïs; Charpentier, Thibault; Caurant, Daniel

    2017-01-01

    Highlights: •Glass silicate network hydrolysis is by far the predominant reaction at 80 °C. •Atmospheric conditions yield different altered layer structure than in immersion. •The altered layer bears about 10 wt% of water mainly as H-bonded SiOH groups. •Alkali ions stay embedded into the altered layer closed to SiOH and H 2 O species. -- Abstract: A mixed alkali lime silicate glass altered in atmospheric conditions (80 °C/85%RH, Relative Humidity) for various lengths of time was characterized at all scales. The altered glass forms a hydrated solid phase bearing about 10 wt% of H 2 O in the form of Si-OH groups and molecular water. No alkali depletion was observed after ageing tests. Structural results from 1 H, 23 Na and 29 Si MAS NMR point out the close proximity of Si-OH, H 2 O and Na + species. This study gives new insight into the mechanisms of the atmospheric alteration, essential to conservation strategies in industry and cultural heritage.

  18. Learning-based stochastic object models for characterizing anatomical variations

    Science.gov (United States)

    Dolly, Steven R.; Lou, Yang; Anastasio, Mark A.; Li, Hua

    2018-03-01

    It is widely known that the optimization of imaging systems based on objective, task-based measures of image quality via computer-simulation requires the use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in human anatomy within a specified ensemble of patients remains a challenging task. Previously reported numerical anatomic models lack the ability to accurately model inter-patient and inter-organ variations in human anatomy among a broad patient population, mainly because they are established on image data corresponding to a few of patients and individual anatomic organs. This may introduce phantom-specific bias into computer-simulation studies, where the study result is heavily dependent on which phantom is used. In certain applications, however, databases of high-quality volumetric images and organ contours are available that can facilitate this SOM development. In this work, a novel and tractable methodology for learning a SOM and generating numerical phantoms from a set of volumetric training images is developed. The proposed methodology learns geometric attribute distributions (GAD) of human anatomic organs from a broad patient population, which characterize both centroid relationships between neighboring organs and anatomic shape similarity of individual organs among patients. By randomly sampling the learned centroid and shape GADs with the constraints of the respective principal attribute variations learned from the training data, an ensemble of stochastic objects can be created. The randomness in organ shape and position reflects the learned variability of human anatomy. To demonstrate the methodology, a SOM of an adult male pelvis is computed and examples of corresponding numerical phantoms are created.

  19. Systematic significance of anatomical characterization in some euphorbiaceous species

    International Nuclear Information System (INIS)

    Zahra, N.B.; Shinwari, Z.K.

    2014-01-01

    The study was aimed to explore the systematic potential of anatomical characters for identification and delimitation among Euphorbia species. Eight species of leafy spurges of genus Euphorbia L. (Euphorbiaceae) were evaluated for variations in micro morphological characters of foliar epidermal anatomy. While anatomical observations are of importance in the assessments and appraisals, use of these characters as an effective tool in interpreting phyletic evaluations and systematic delineations has its limitations too. The epidermal cell wall in majority of species was wavy to undulate on both adaxial and abaxial surfaces. The observations made in this study indicate that there is not a single type of stomata which appears as characteristic of the genus Euphorbia. Also their distribution whether epistomatic or hypostomatic is not a genus-characteristic. The trichomes found were simple, unicellular or multicellular, uniseriate. Present investigation revealed the utility of both qualitative and quantitative characters in systematic studies; also the potential influence in the delimitation of species cannot be ignored. Our results show that the micro-morphology of anatomical characters play an important role in definition of taxa at species and sectional levels. (author)

  20. Psychopathic traits are associated with cortical and subcortical volume alterations in healthy individuals.

    Science.gov (United States)

    Vieira, Joana B; Ferreira-Santos, Fernando; Almeida, Pedro R; Barbosa, Fernando; Marques-Teixeira, João; Marsh, Abigail A

    2015-12-01

    Research suggests psychopathy is associated with structural brain alterations that may contribute to the affective and interpersonal deficits frequently observed in individuals with high psychopathic traits. However, the regional alterations related to different components of psychopathy are still unclear. We used voxel-based morphometry to characterize the structural correlates of psychopathy in a sample of 35 healthy adults assessed with the Triarchic Psychopathy Measure. Furthermore, we examined the regional grey matter alterations associated with the components described by the triarchic model. Our results showed that, after accounting for variation in total intracranial volume, age and IQ, overall psychopathy was negatively associated with grey matter volume in the left putamen and amygdala. Additional regression analysis with anatomical regions of interests revealed total triPM score was also associated with increased lateral orbitofrontal cortex (OFC) and caudate volume. Boldness was positively associated with volume in the right insula. Meanness was positively associated with lateral OFC and striatum volume, and negatively associated with amygdala volume. Finally, disinhibition was negatively associated with amygdala volume. Results highlight the contribution of both subcortical and cortical brain alterations for subclinical psychopathy and are discussed in light of prior research and theoretical accounts about the neurobiological bases of psychopathic traits. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers

    DEFF Research Database (Denmark)

    Peyrin, Jean Michel; Deleglise, Bérangère; Saias, Laure

    2011-01-01

    Various experimental models are used to study brain development and degeneration. They range from whole animal models, which preserve anatomical structures but strongly limit investigations at the cellular level, to dissociated cell culture systems that allow detailed observation of cell phenotypes...... and neurodegenerative disorder such as Alzheimer and Parkinson diseases at the sub-cellular, cellular and network levels....

  2. Living AnatoME: Teaching and Learning Musculoskeletal Anatomy through Yoga and Pilates

    Science.gov (United States)

    McCulloch, Carrie; Marango, Stephanie Pieczenik; Friedman, Erica S.; Laitman, Jeffrey T.

    2010-01-01

    Living AnatoME, a program designed in 2004 by two medical students in conjunction with the Director of Anatomy, teaches musculoskeletal anatomy through yoga and Pilates. Previously offered as an adjunct to the Gross Anatomy course in 2007, Living AnatoME became an official part of the curriculum. Previous research conducted on the program…

  3. Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: A multimodal brain imaging study

    Directory of Open Access Journals (Sweden)

    Takashi Itahashi

    2015-01-01

    Full Text Available Growing evidence suggests that a broad range of behavioral anomalies in people with autism spectrum disorder (ASD can be linked with morphological and functional alterations in the brain. However, the neuroanatomical underpinnings of ASD have been investigated using either structural magnetic resonance imaging (MRI or diffusion tensor imaging (DTI, and the relationships between abnormalities revealed by these two modalities remain unclear. This study applied a multimodal data-fusion method, known as linked independent component analysis (ICA, to a set of structural MRI and DTI data acquired from 46 adult males with ASD and 46 matched controls in order to elucidate associations between different aspects of atypical neuroanatomy of ASD. Linked ICA identified two composite components that showed significant between-group differences, one of which was significantly correlated with age. In the other component, participants with ASD showed decreased gray matter (GM volumes in multiple regions, including the bilateral fusiform gyri, bilateral orbitofrontal cortices, and bilateral pre- and post-central gyri. These GM changes were linked with a pattern of decreased fractional anisotropy (FA in several white matter tracts, such as the bilateral inferior longitudinal fasciculi, bilateral inferior fronto-occipital fasciculi, and bilateral corticospinal tracts. Furthermore, unimodal analysis for DTI data revealed significant reductions of FA along with increased mean diffusivity in those tracts for ASD, providing further evidence of disrupted anatomical connectivity. Taken together, our findings suggest that, in ASD, alterations in different aspects of brain morphology may co-occur in specific brain networks, providing a comprehensive view for understanding the neuroanatomy of this disorder.

  4. Influences on anatomical knowledge: The complete arguments

    NARCIS (Netherlands)

    Bergman, E.M.; Verheijen, I.W.; Scherpbier, A.J.J.A.; Vleuten, C.P.M. van der; Bruin, A.B. De

    2014-01-01

    Eight factors are claimed to have a negative influence on anatomical knowledge of medical students: (1) teaching by nonmedically qualified teachers, (2) the absence of a core anatomy curriculum, (3) decreased use of dissection as a teaching tool, (4) lack of teaching anatomy in context, (5)

  5. Comparison of ultrasound-guided versus anatomical landmark ...

    African Journals Online (AJOL)

    Background Femoral vein cannulation may be required during major surgery in infants and children and may prove to be life saving under certain conditions. This study compared ultrasound (US)-guided cannulation of the femoral vein in infants with the traditional anatomical landmark-guided technique. Methods Eighty ...

  6. Anatomic partial nephrectomy: technique evolution.

    Science.gov (United States)

    Azhar, Raed A; Metcalfe, Charles; Gill, Inderbir S

    2015-03-01

    Partial nephrectomy provides equivalent long-term oncologic and superior functional outcomes as radical nephrectomy for T1a renal masses. Herein, we review the various vascular clamping techniques employed during minimally invasive partial nephrectomy, describe the evolution of our partial nephrectomy technique and provide an update on contemporary thinking about the impact of ischemia on renal function. Recently, partial nephrectomy surgical technique has shifted away from main artery clamping and towards minimizing/eliminating global renal ischemia during partial nephrectomy. Supported by high-fidelity three-dimensional imaging, novel anatomic-based partial nephrectomy techniques have recently been developed, wherein partial nephrectomy can now be performed with segmental, minimal or zero global ischemia to the renal remnant. Sequential innovations have included early unclamping, segmental clamping, super-selective clamping and now culminating in anatomic zero-ischemia surgery. By eliminating 'under-the-gun' time pressure of ischemia for the surgeon, these techniques allow an unhurried, tightly contoured tumour excision with point-specific sutured haemostasis. Recent data indicate that zero-ischemia partial nephrectomy may provide better functional outcomes by minimizing/eliminating global ischemia and preserving greater vascularized kidney volume. Contemporary partial nephrectomy includes a spectrum of surgical techniques ranging from conventional-clamped to novel zero-ischemia approaches. Technique selection should be tailored to each individual case on the basis of tumour characteristics, surgical feasibility, surgeon experience, patient demographics and baseline renal function.

  7. Relapse and stability of surgically assisted rapid maxillary expansion, an anatomical biomechanical study

    NARCIS (Netherlands)

    Koudstaal, M.J.; Smeets, J.B.J.; Kleinrensink, G.J.; Schulten, A.J.M.; van der Wal, K.G.H.

    2009-01-01

    Purpose: This anatomic biomechanical study was undertaken to gain insight into the underlining mechanism of tipping of the maxillary segments during transverse expansion using tooth-borne and bone-borne distraction devices. Materials and Methods: An anatomic biomechanical study was performed on 10

  8. Social networking sites use and the morphology of a social-semantic brain network.

    Science.gov (United States)

    Turel, Ofir; He, Qinghua; Brevers, Damien; Bechara, Antoine

    2017-09-30

    Social lives have shifted, at least in part, for large portions of the population to social networking sites. How such lifestyle changes may be associated with brain structures is still largely unknown. In this manuscript, we describe two preliminary studies aimed at exploring this issue. The first study (n = 276) showed that Facebook users reported on increased social-semantic and mentalizing demands, and that such increases were positively associated with people's level of Facebook use. The second study (n = 33) theorized on and examined likely anatomical correlates of such changes in demands on the brain. Findings indicated that the grey matter volumes of the posterior parts of the bilateral middle and superior temporal, and left fusiform gyri were positively associated with the level of Facebook use. These results provided preliminary evidence that grey matter volumes of brain structures involved in social-semantic and mentalizing tasks may be linked to the extent of social networking sites use.

  9. Surface anatomy and anatomical planes in the adult turkish population.

    Science.gov (United States)

    Uzun, C; Atman, E D; Ustuner, E; Mirjalili, S A; Oztuna, D; Esmer, T S

    2016-03-01

    Surface anatomy and anatomical planes are widely used in education and clinical practice. The planes are largely derived from cadaveric studies and their projections on the skin show discrepancies between and within anatomical reference textbooks. In this study, we reassessed the accuracy of common thoracic and abdominopelvic anatomical planes using computed tomography (CT) imaging in the live adult Turkish population. After patients with distorting pathologies had been excluded, CT images of 150 supine patients at the end tidal inspiration were analyzed. Sternal angle, transpyloric, subcostal, supracristal and pubic crest planes and their relationships to anatomical structures were established by dual consensus. The tracheal bifurcation, azygos vein/superior vena cava (SVC) junction and pulmonary bifurcation were usually below the sternal angle while the concavity of the aortic arch was generally within the plane. The tip of the tenth rib, the superior mesenteric artery and the portal vein were usually within the transpyloric plane while the renal hila and the fundus of the gallbladder were below it. The inferior mesenteric artery was below the subcostal plane and the aortic bifurcation was below the supracristal plane in most adults. Projectional surface anatomy is fundamental to medical education and clinical practice. Modern cross-sectional imaging techniques allow large groups of live patients to be examined. Classic textbook information regarding anatomy needs to be reviewed and updated using the data gathered from these recent studies, taking ethnic differences into consideration. © 2015 Wiley Periodicals, Inc.

  10. Mortimer Frank, Johann Ludwig Choulant, and the history of anatomical illustration.

    Science.gov (United States)

    Feibel, Robert M

    2018-01-01

    Mortimer Frank (1874-1919) was an ophthalmologist in Chicago, Illinois. He published a number of papers on the history of medicine, and was secretary of the Chicago Society of the History of Medicine and editor of their Bulletin. His major contribution to the history of medicine relates to the history of anatomical illustration. The classic book on that subject had been published in 1852 in German by the physician and historian, Johann Ludwig Choulant (1791-1861). However, by Frank's time this text was both out dated and out of print. Frank took on the tremendous project of translating Choulant's German text into English as History and Bibliography of Anatomic Illustration in Its Relation to Anatomic Science and The Graphic Arts. He improved Choulant's text with the results of his and other scholars' research, greatly enlarging the text. Frank supplemented the original book with a biography of Choulant, essays on anatomists not considered in the original text, and an essay on the history of anatomical illustration prior to those authors discussed by Choulant. This book, now referred to as Choulant/Frank, has been reprinted several times, and is still useful as a reference in this field, though some of its research is now dated.

  11. Brain network characterization of high-risk preterm-born school-age children

    Directory of Open Access Journals (Sweden)

    Elda Fischi-Gomez

    2016-01-01

    Full Text Available Higher risk for long-term cognitive and behavioral impairments is one of the hallmarks of extreme prematurity (EP and pregnancy-associated fetal adverse conditions such as intrauterine growth restriction (IUGR. While neurodevelopmental delay and abnormal brain function occur in the absence of overt brain lesions, these conditions have been recently associated with changes in microstructural brain development. Recent imaging studies indicate changes in brain connectivity, in particular involving the white matter fibers belonging to the cortico-basal ganglia-thalamic loop. Furthermore, EP and IUGR have been related to altered brain network architecture in childhood, with reduced network global capacity, global efficiency and average nodal strength. In this study, we used a connectome analysis to characterize the structural brain networks of these children, with a special focus on their topological organization. On one hand, we confirm the reduced averaged network node degree and strength due to EP and IUGR. On the other, the decomposition of the brain networks in an optimal set of clusters remained substantially different among groups, talking in favor of a different network community structure. However, and despite the different community structure, the brain networks of these high-risk school-age children maintained the typical small-world, rich-club and modularity characteristics in all cases. Thus, our results suggest that brain reorganizes after EP and IUGR, prioritizing a tight modular structure, to maintain the small-world, rich-club and modularity characteristics. By themselves, both extreme prematurity and IUGR bear a similar risk for neurocognitive and behavioral impairment, and the here defined modular network alterations confirm similar structural changes both by IUGR and EP at school age compared to control. Interestingly, the combination of both conditions (IUGR + EP does not result in a worse outcome. In such cases, the alteration

  12. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms.

    Science.gov (United States)

    Chen, Lei; Liu, Tao; Zhao, Xian

    2018-06-01

    The anatomical therapeutic chemical (ATC) classification system is a widely accepted drug classification scheme. This system comprises five levels and includes several classes in each level. Drugs are classified into classes according to their therapeutic effects and characteristics. The first level includes 14 main classes. In this study, we proposed two network-based models to infer novel potential chemicals deemed to belong in the first level of ATC classification. To build these models, two large chemical networks were constructed using the chemical-chemical interaction information retrieved from the Search Tool for Interactions of Chemicals (STITCH). Two classic network algorithms, shortest path (SP) and random walk with restart (RWR) algorithms, were executed on the corresponding network to mine novel chemicals for each ATC class using the validated drugs in a class as seed nodes. Then, the obtained chemicals yielded by these two algorithms were further evaluated by a permutation test and an association test. The former can exclude chemicals produced by the structure of the network, i.e., false positive discoveries. By contrast, the latter identifies the most important chemicals that have strong associations with the ATC class. Comparisons indicated that the two models can provide quite dissimilar results, suggesting that the results yielded by one model can be essential supplements for those obtained by the other model. In addition, several representative inferred chemicals were analyzed to confirm the reliability of the results generated by the two models. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The fossil Osmundales (Royal Ferns—a phylogenetic network analysis, revised taxonomy, and evolutionary classification of anatomically preserved trunks and rhizomes

    Directory of Open Access Journals (Sweden)

    Benjamin Bomfleur

    2017-07-01

    Full Text Available The Osmundales (Royal Fern order originated in the late Paleozoic and is the most ancient surviving lineage of leptosporangiate ferns. In contrast to its low diversity today (less than 20 species in six genera, it has the richest fossil record of any extant group of ferns. The structurally preserved trunks and rhizomes alone are referable to more than 100 fossil species that are classified in up to 20 genera, four subfamilies, and two families. This diverse fossil record constitutes an exceptional source of information on the evolutionary history of the group from the Permian to the present. However, inconsistent terminology, varying formats of description, and the general lack of a uniform taxonomic concept renders this wealth of information poorly accessible. To this end, we provide a comprehensive review of the diversity of structural features of osmundalean axes under a standardized, descriptive terminology. A novel morphological character matrix with 45 anatomical characters scored for 15 extant species and for 114 fossil operational units (species or specimens is analysed using networks in order to establish systematic relationships among fossil and extant Osmundales rooted in axis anatomy. The results lead us to propose an evolutionary classification for fossil Osmundales and a revised, standardized taxonomy for all taxa down to the rank of (subgenus. We introduce several nomenclatural novelties: (1 a new subfamily Itopsidemoideae (Guaireaceae is established to contain Itopsidema, Donwelliacaulis, and Tiania; (2 the thamnopteroid genera Zalesskya, Iegosigopteris, and Petcheropteris are all considered synonymous with Thamnopteris; (3 12 species of Millerocaulis and Ashicaulis are assigned to modern genera (tribe Osmundeae; (4 the hitherto enigmatic Aurealcaulis is identified as an extinct subgenus of Plenasium; and (5 the poorly known Osmundites tuhajkulensis is assigned to Millerocaulis. In addition, we consider Millerocaulis

  14. The fossil Osmundales (Royal Ferns)-a phylogenetic network analysis, revised taxonomy, and evolutionary classification of anatomically preserved trunks and rhizomes.

    Science.gov (United States)

    Bomfleur, Benjamin; Grimm, Guido W; McLoughlin, Stephen

    2017-01-01

    The Osmundales (Royal Fern order) originated in the late Paleozoic and is the most ancient surviving lineage of leptosporangiate ferns. In contrast to its low diversity today (less than 20 species in six genera), it has the richest fossil record of any extant group of ferns. The structurally preserved trunks and rhizomes alone are referable to more than 100 fossil species that are classified in up to 20 genera, four subfamilies, and two families. This diverse fossil record constitutes an exceptional source of information on the evolutionary history of the group from the Permian to the present. However, inconsistent terminology, varying formats of description, and the general lack of a uniform taxonomic concept renders this wealth of information poorly accessible. To this end, we provide a comprehensive review of the diversity of structural features of osmundalean axes under a standardized, descriptive terminology. A novel morphological character matrix with 45 anatomical characters scored for 15 extant species and for 114 fossil operational units (species or specimens) is analysed using networks in order to establish systematic relationships among fossil and extant Osmundales rooted in axis anatomy. The results lead us to propose an evolutionary classification for fossil Osmundales and a revised, standardized taxonomy for all taxa down to the rank of (sub)genus. We introduce several nomenclatural novelties: (1) a new subfamily Itopsidemoideae (Guaireaceae) is established to contain Itopsidema , Donwelliacaulis , and Tiania ; (2) the thamnopteroid genera Zalesskya , Iegosigopteris , and Petcheropteris are all considered synonymous with Thamnopteris ; (3) 12 species of Millerocaulis and Ashicaulis are assigned to modern genera (tribe Osmundeae); (4) the hitherto enigmatic Aurealcaulis is identified as an extinct subgenus of Plenasium ; and (5) the poorly known Osmundites tuhajkulensis is assigned to Millerocaulis . In addition, we consider Millerocaulis

  15. A hierarchical scheme for geodesic anatomical labeling of airway trees

    DEFF Research Database (Denmark)

    Feragen, Aasa; Petersen, Jens; Owen, Megan

    2012-01-01

    We present a fast and robust supervised algorithm for label- ing anatomical airway trees, based on geodesic distances in a geometric tree-space. Possible branch label configurations for a given unlabeled air- way tree are evaluated based on the distances to a training set of labeled airway trees....... In tree-space, the airway tree topology and geometry change continuously, giving a natural way to automatically handle anatomical differences and noise. The algorithm is made efficient using a hierarchical approach, in which labels are assigned from the top down. We only use features of the airway...

  16. Renal fascial network in retroperitoneal extension of pathologic processes

    International Nuclear Information System (INIS)

    Raptopoulos, V.; Kleinman, P.K.; Marks, S.C. Jr.; Davidoff, A.

    1987-01-01

    The concept of the fascial network emerged after careful analysis of CT scans of 100 patients with a variety of retroperitoneal abnormalities, and after correlation of CT scans and anatomic dissections performed on eight unembalmed cadavers in which different-colored barium-mixed liquid latex was injected in various retroperitoneal compartments. Fat lobules are supported and connected with each other by surrounding thin layers of connective tissue. Thicker connective tissue lamellae (septa) connect and support organs and fascia. Thus, a fascial network infrastructure exists in which fat lobules act as mechanical barriers to the spread of pathologic processes, while these processes tend to take the course of least resistance by spreading along or dissecting within fascial and septal planes. The fascial network acts as a roadway, conduit, and barrier to spread in the retroperitoneum and fatty tissue in general. The insights afforded by the fascial network concept unwind the traditional views regarding the dynamics of retroperitoneal pathology

  17. Contextual cueing of tactile search is coded in an anatomical reference frame.

    Science.gov (United States)

    Assumpção, Leonardo; Shi, Zhuanghua; Zang, Xuelian; Müller, Hermann J; Geyer, Thomas

    2018-04-01

    This work investigates the reference frame(s) underlying tactile context memory, a form of statistical learning in a tactile (finger) search task. In this task, if a searched-for target object is repeatedly encountered within a stable spatial arrangement of task-irrelevant distractors, detecting the target becomes more efficient over time (relative to nonrepeated arrangements), as learned target-distractor spatial associations come to guide tactile search, thus cueing attention to the target location. Since tactile search displays can be represented in several reference frames, including multiple external and an anatomical frame, in Experiment 1 we asked whether repeated search displays are represented in tactile memory with reference to an environment-centered or anatomical reference frame. In Experiment 2, we went on examining a hand-centered versus anatomical reference frame of tactile context memory. Observers performed a tactile search task, divided into a learning and test session. At the transition between the two sessions, we introduced postural manipulations of the hands (crossed ↔ uncrossed in Expt. 1; palm-up ↔ palm-down in Expt. 2) to determine the reference frame of tactile contextual cueing. In both experiments, target-distractor associations acquired during learning transferred to the test session when the placement of the target and distractors was held constant in anatomical, but not external, coordinates. In the latter, RTs were even slower for repeated displays. We conclude that tactile contextual learning is coded in an anatomical reference frame. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. A quantitative comparison of the electrical and anatomical definition of the pulmonary vein ostium.

    Science.gov (United States)

    Spies, Florian; Kühne, Michael; Reichlin, Tobias; Osswald, Stefan; Sticherling, Christian; Knecht, Sven

    2017-11-01

    Anatomically guided pulmonary vein isolation (PVI) is the cornerstone of atrial fibrillation (AF) ablation. However, the position where to confirm electrical isolation is ill-defined. The aim of the current study was to quantify the relationship between the anatomical and electrical definition of the pulmonary vein ostium. We analyzed 20 patients with paroxysmal AF undergoing PVI using radiofrequency energy and an electroanatomical mapping system. The anatomical ostium was defined based on the geometry obtained from preprocedural magnetic resonance imaging and computed tomography. The electrical ostium was defined at the position with a far-field atrial signal preceding a sharp pulmonary vein (PV) signal without any isoelectric interval in between. The electrically defined ostia were 8.4 ± 4.7 mm more distal in the PV compared to the anatomically defined ostia. The distances varied considerably between the four PVs and were 10.5 ± 6.5 mm, 7.4 ± 4.3 mm, 5.3 ± 4.0 mm, and 8.3 ± 3.4 mm for the left superior, left inferior, right superior, and right inferior PVs, respectively (P  =  0.009). The position of the electrical and anatomical ostium differs markedly. The site of the electrical ostium is variable within the PV but always more distal in the PV compared to the site of the anatomical ostium. © 2017 Wiley Periodicals, Inc.

  19. Visualisation of bony and vascular structures via digital subtraction images upon the amount of anatomic background

    International Nuclear Information System (INIS)

    Hinz, A.; Scholz, A.; Zwicker, C.

    1992-01-01

    We examined the loss of contrast leaving a part of the anatomic background in digital subtraction angiography by visual analysis and densitometry. We observed a greater loss of the quality at the representation of the bone below than above an amount of anatomic background of 60%. The loss of quality at the representation of the vessels decreases more above than below an anatomical background of 45%. We think that, depending on the clinical problem, an anatomical background between 15 and 30% should be left. (orig.) [de

  20. Comparison of leaf anatomical characteristics of hibiscus rosa-sinensis grown in faisalabad region

    International Nuclear Information System (INIS)

    Noman, A.; Ali, Q.; Mehmood, T.; Iftikhar, T.; Mahmeed, M.

    2014-01-01

    The genetic potential of different plant species to different environmental conditions differ in relation to different physiological, biochemical and anatomical characteristics. Of these varying attributes leaf anatomical characteristics play most important role for the establishment of that cultivar in varied environmental conditions. So, the present study was conducted to assess the inter-cultivar genetic potential of Hibiscus in relation to leaf anatomical characteristics. To fulfill the study requirements Hibiscus rosa-sinensis and its six cultivars (were well adapted to their specific natural habitat) were collected from different locations of district Faisalabad Pakistan that have great environmental changes round the year. Results showed significant variability among cultivars in relation to analyzed anatomical characteristics. Cultivars Lemon shiffon and Wilder's white emerge more promising among others by possessing more epidermal thickness, increased epidermal cell area, high cortical cell area and incremented stomatal density as compared with other cultivars. On the other hand, cultivars Cooperi alba, Mrs. George Davis and Frank green possessed least cortex cell area, lowest xylem region thickness and minimum phloem region thickness respectively. Overall, it can be concluded that anatomical genetic potential has endorsed cultivars Lemon chiffon and Wilder's white with enormous capability to grow well under variable environments. (author)

  1. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex.

    Science.gov (United States)

    Ruiz-Mejias, Marcel; Martinez de Lagran, Maria; Mattia, Maurizio; Castano-Prat, Patricia; Perez-Mendez, Lorena; Ciria-Suarez, Laura; Gener, Thomas; Sancristobal, Belen; García-Ojalvo, Jordi; Gruart, Agnès; Delgado-García, José M; Sanchez-Vives, Maria V; Dierssen, Mara

    2016-03-30

    The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified

  2. Handbook of anatomical models for radiation dosimetry

    CERN Document Server

    Eckerman, Keith F

    2010-01-01

    Covering the history of human model development, this title presents the major anatomical and physical models that have been developed for human body radiation protection, diagnostic imaging, and nuclear medicine therapy. It explores how these models have evolved and the role that modern technologies have played in this development.

  3. Anatomic Aspects of Formation and Growth of the Cape Gooseberry Fruit Physalis peruviana (Solanaceae

    Directory of Open Access Journals (Sweden)

    Manuel Fernando Mazorra

    2006-01-01

    confirmed that anatomically the Cape gooseberry fruits, ecotipo Colombia, and ruderal type are similar, which demonstrates the absence of appreciable anatomical changes that explain the greater size of the fruits of ecotipo Colombia.

  4. The ligament of Parks as a key anatomical structure for safer hemorrhoidectomy: Anatomic study and a simple surgical note

    Directory of Open Access Journals (Sweden)

    Menelaos Zoulamoglou

    2017-12-01

    Full Text Available Hemorrhoids are a common anal disorder which affects both men and women of all ages. One out of ten patients with hemorrhoidal disease, requires surgical treatment. Unfortunately though, hemorrhoidectomy is closely related to complications that can be present early or late postoperatively. In the present manuscript, the safe surgical technique which emphasizes to the identification of the key anatomical structure of the ligament of Parks (Trietz's muscle is adequately described. A total of 200 patients with grades III and IV hemorrhoids, underwent Milligan-Morgan or Ferguson's hemorrhoidectomy. The mucosal ligament of Parks was identified to all patients and was used as a key anatomical structure through the excision of the hemorrhoids. Its identification guides surgeons during the operation and reduces the major problem of postoperative complications. Finally, since the mucosal ligament of Parks represents a constantly identifiable landmark, it allows simple and reliable identification of the internal sphincter muscle and minimizes the probability of postoperative complications.

  5. Social network composition of vascular patients and its associations with health behavior and clinical risk factors.

    Directory of Open Access Journals (Sweden)

    Naomi Heijmans

    Full Text Available This study aimed to explore linkages of patients' social network composition with health behaviors and clinical risk factors.This observational study was embedded in a project aimed at improving cardiovascular risk management (CRVM in primary care. 657 vascular patients (227 with cardiovascular disease, 380 at high vascular risk, mean age 72.4 (SD 9.4 years, were recruited as were individuals patients considered important for dealing with their disease, so called alters (n = 487. Network composition was measured with structured patient questionnaires. Both patients and alters completed questionnaires to measure health behavior (habits for physical activity, diet, and smoking. Clinical risk factors (systolic blood pressure, LDL cholesterol level, and body mass index were extracted from patients' medical records. Six logistic regression analyses, using generalized estimating equations, were used to test three hypothesized effects of network composition (having alters with healthful behaviors, without depression, and with specialized knowledge on six outcomes, adjusted for demographic, personal and psychological characteristics.Having alters with overall healthful behavior was related to healthful patient diet (OR 2.14, 95%CI: 1.52-3.02. Having non-smoking alters in networks was related to reduced odds for patient smoking (OR 0.17, 95%CI: 0.05-0.60. No effects of presence of non-depressed alters were found. Presence of alters with specialized knowledge on CVRM was inversely related to healthful diet habits of patients (OR 0.47, 95%CI 0.24-0.89. No significant associations between social network composition and clinical risk factors were found.Diet and smoking, but not physical exercise and clinical risk factors, were associated with social network composition of patients with vascular conditions. In this study of vascular patients, controlling for both personal and psychological factors, fewer network influences were found compared to previous

  6. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging

    Science.gov (United States)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai

    2017-10-01

    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  7. Common and distinct brain networks underlying panic and social anxiety disorders.

    Science.gov (United States)

    Kim, Yong-Ku; Yoon, Ho-Kyoung

    2018-01-03

    Although panic disorder (PD) and phobic disorders are independent anxiety disorders with distinct sets of diagnostic criteria, there is a high level of overlap between them in terms of pathogenesis and neural underpinnings. Functional connectivity research using resting-state functional magnetic resonance imaging (rsfMRI) shows great potential in identifying the similarities and differences between PD and phobias. Understanding common and distinct networks between PD and phobic disorders is critical for identifying both specific and general neural characteristics of these disorders. We review recent rsfMRI studies and explore the clinical relevance of resting-state functional connectivity (rsFC) in PD and phobias. Although findings differ between studies, there are some meaningful, consistent findings. Social anxiety disorder (SAD) and PD share common default mode network alterations. Alterations within the sensorimotor network are observed primarily in PD. Increased connectivity in the salience network is consistently reported in SAD. This review supports hypotheses that PD and phobic disorders share common rsFC abnormalities and that the different clinical phenotypes between the disorders come from distinct brain functional network alterations. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. From network structure to network reorganization: implications for adult neurogenesis

    International Nuclear Information System (INIS)

    Schneider-Mizell, Casey M; Zochowski, Michal R; Sander, Leonard M; Parent, Jack M; Ben-Jacob, Eshel

    2010-01-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells

  9. Altered gamma oscillations during pregnancy through loss of δ subunit-containing GABAA receptors on parvalbumin interneurons

    Directory of Open Access Journals (Sweden)

    Isabella eFerando

    2013-09-01

    Full Text Available Gamma (γ oscillations (30-120 Hz, an emergent property of neuronal networks, correlate with memory, cognition and encoding. In the hippocampal CA3 region, locally generated γ oscillations emerge through feedback between inhibitory parvalbumin-positive basket cells (PV+BCs and the principal (pyramidal cells. PV+BCs express δ-subunit-containing GABAARs (-GABAARs and NMDA receptors (NMDA-Rs that balance the frequency of γ oscillations. Neuroactive steroids (NS, such as the progesterone-derived (3α,5α-3-hydroxy-pregnan-20-one (allopregnanolone; ALLO, modulate the expression of δ-GABAARs and the tonic conductance they mediate. Pregnancy produces large increases in ALLO and brain-region-specific homeostatic changes in δ-GABAARs expression. Here we show that in CA3, where most PV+ interneurons (INs express δ-GABAARs, expression of δ-GABAARs on INs diminishes during pregnancy, but reverts to control levels within 48 hours postpartum. These anatomical findings were corroborated by a pregnancy-related increase in the frequency of kainate-induced CA3 γ oscillations in vitro that could be countered by the NMDA-R antagonists D-AP5 and PPDA. Mimicking the typical hormonal conditions during pregnancy by supplementing 100 nM ALLO lowered the γ frequencies to levels found in virgin or postpartum mice. Our findings show that states of altered NS levels (e.g., pregnancy may provoke perturbations in γ oscillatory activity through direct effects on the GABAergic system, and underscore the importance of δ-GABAARs homeostatic plasticity in maintaining constant network output despite large hormonal changes. Inaccurate coupling of NS levels to δ-GABAAR expression may facilitate abnormal neurological and psychiatric conditions such as epilepsy, post-partum depression, and post-partum psychosis, thus providing insights into potential new treatments.

  10. Structural brain network analysis in families multiply affected with bipolar I disorder.

    Science.gov (United States)

    Forde, Natalie J; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J; Cannon, Dara M; Murray, Robin M; McDonald, Colm

    2015-10-30

    Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its endophenotypic potential. Magnetic resonance diffusion images for 19 BP type I patients in remission, 21 of their first degree unaffected relatives, and 18 unrelated healthy controls underwent tractography. With the automated anatomical labelling atlas being used to define nodes, a connectivity matrix was generated for each subject. Network metrics were extracted with the Brain Connectivity Toolbox and then analysed for group differences, accounting for potential confounding effects of age, gender and familial association. Whole brain analysis revealed no differences between groups. Analysis of specific mainly frontal regions, previously implicated as potentially endophenotypic by functional magnetic resonance imaging analysis of the same cohort, revealed a significant effect of group in the right medial superior frontal gyrus and left middle frontal gyrus driven by reduced organisation in patients compared with controls. The organisation of whole brain networks of those affected with BP I does not differ from their unaffected relatives or healthy controls. In discreet frontal regions, however, anatomical connectivity is disrupted in patients but not in their unaffected relatives. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Altering neuronal excitability to preserve network connectivity in a computational model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Willem de Haan

    2017-09-01

    Full Text Available Neuronal hyperactivity and hyperexcitability of the cerebral cortex and hippocampal region is an increasingly observed phenomenon in preclinical Alzheimer's disease (AD. In later stages, oscillatory slowing and loss of functional connectivity are ubiquitous. Recent evidence suggests that neuronal dynamics have a prominent role in AD pathophysiology, making it a potentially interesting therapeutic target. However, although neuronal activity can be manipulated by various (non-pharmacological means, intervening in a highly integrated system that depends on complex dynamics can produce counterintuitive and adverse effects. Computational dynamic network modeling may serve as a virtual test ground for developing effective interventions. To explore this approach, a previously introduced large-scale neural mass network with human brain topology was used to simulate the temporal evolution of AD-like, activity-dependent network degeneration. In addition, six defense strategies that either enhanced or diminished neuronal excitability were tested against the degeneration process, targeting excitatory and inhibitory neurons combined or separately. Outcome measures described oscillatory, connectivity and topological features of the damaged networks. Over time, the various interventions produced diverse large-scale network effects. Contrary to our hypothesis, the most successful strategy was a selective stimulation of all excitatory neurons in the network; it substantially prolonged the preservation of network integrity. The results of this study imply that functional network damage due to pathological neuronal activity can be opposed by targeted adjustment of neuronal excitability levels. The present approach may help to explore therapeutic effects aimed at preserving or restoring neuronal network integrity and contribute to better-informed intervention choices in future clinical trials in AD.

  12. The development of medical museums in the antebellum American South: slave bodies in networks of anatomical exchange.

    Science.gov (United States)

    Kenny, Stephen C

    2013-01-01

    Prior to the American Civil War, museums were enthusiastically promoted in the annual circulars of southern medical colleges as valuable aids to medical education. Using case history narratives, medical college circulars, and announcements, this article examines the social origins of the region's collections of anatomical and pathological specimens and explores the professional agents and organizations responsible for their maintenance and development. The article is also concerned with exploring the racial framework in which these bodies and specimens were sourced and displayed. The social relations embodied in natural history and medical museum collections, and the emerging specialism of "negro medicine," were all elements of a context that subordinated and objectified blackness, as well as permitting and legitimizing the exploitation of black bodies. Medical museums function as a key case study for examining power relations among physicians, slaves, and slave owners, as well as underscoring southern medicine's dependence on slavery for its development.

  13. A social network model for the development of a 'Theory of Mind'

    Science.gov (United States)

    Harré, Michael S.

    2013-02-01

    A "Theory of Mind" is one of the most important skills we as humans have developed; It enables us to infer the mental states and intentions of others, build stable networks of relationships and it plays a central role in our psychological make-up and development. Findings published earlier this year have also shown that we as a species as well as each of us individually benefit from the enlargement of the underlying neuro-anatomical regions that support our social networks, mediated by our Theory of Mind that stabilises these networks. On the basis of such progress and that of earlier work, this paper draws together several different strands from psychology, behavioural economics and network theory in order to generate a novel theoretical representation of the development of our social-cognition and how subsequent larger social networks enables much of our cultural development but at the increased risk of mental disorders.

  14. Network perturbation by recurrent regulatory variants in cancer.

    Directory of Open Access Journals (Sweden)

    Kiwon Jang

    2017-03-01

    Full Text Available Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes.

  15. Exploring the human body space: A geographical information system based anatomical atlas

    Directory of Open Access Journals (Sweden)

    Antonio Barbeito

    2016-06-01

    Full Text Available Anatomical atlases allow mapping the anatomical structures of the human body. Early versions of these systems consisted of analogical representations with informative text and labeled images of the human body. With computer systems, digital versions emerged and the third and fourth dimensions were introduced. Consequently, these systems increased their efficiency, allowing more realistic visualizations with improved interactivity and functionality. The 4D atlases allow modeling changes over time on the structures represented. The anatomical atlases based on geographic information system (GIS environments allow the creation of platforms with a high degree of interactivity and new tools to explore and analyze the human body. In this study we expand the functions of a human body representation system by creating new vector data, topology, functions, and an improved user interface. The new prototype emulates a 3D GIS with a topological model of the human body, replicates the information provided by anatomical atlases, and provides a higher level of functionality and interactivity. At this stage, the developed system is intended to be used as an educational tool and integrates into the same interface the typical representations of surface and sectional atlases.

  16. Early Results of Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction

    Directory of Open Access Journals (Sweden)

    Demet Pepele

    2014-03-01

    Full Text Available Aim: The goal in anterior cruciate ligament reconstruction (ACLR is to restore the normal anatomic structure and function of the knee. In the significant proportion of patients after the traditional single-bundle ACLR, complaints of instability still continue. Anatomic double bundle ACLR may provide normal kinematics in knees, much closer to the natural anatomy. The aim of this study is to clinically assess the early outcomes of our anatomical double bundle ACLR. Material and Method: In our clinic between June 2009 and March 2010, performed the anatomic double bundle ACLR with autogenous hamstring grafts 20 patients were evaluated prospectively with Cincinnati, IKDC and Lysholm scores and in clinically for muscle strength and with Cybex II dynamometer. Results: The mean follow-up is 17.8 months (13-21 months. Patients%u2019 scores of Cincinnati, IKDC and Lysholm were respectively, preoperative 18.1, 39.3 and 39.8, while the post-op increased to 27.2, 76.3 and 86.3. In their last check, 17 percent of the patients according to IKDC scores (85% A (excellent and B (good group and 3 patients took place as C (adequate group. The power measurements of quadriceps and hamstring muscle groups of patients who underwent surgery showed no significant difference compared with the intact knees. Discussion: Double-bundle ACL reconstruction is a satisfactory method. There is a need comparative, long-term studies in large numbers in order to determine improving clinical outcome, preventing degeneration and restoring the knee biomechanics better.

  17. A social network analysis approach to alcohol use and co-occurring addictive behavior in young adults.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; MacKillop, James; Goodie, Adam S

    2015-12-01

    The current study applied egocentric social network analysis (SNA) to investigate the prevalence of addictive behavior and co-occurring substance use in college students' networks. Specifically, we examined individuals' perceptions of the frequency of network members' co-occurring addictive behavior and investigated whether co-occurring addictive behavior is spread evenly throughout networks or is more localized in clusters. We also examined differences in network composition between individuals with varying levels of alcohol use. The study utilized an egocentric SNA approach in which respondents ("egos") enumerated 30 of their closest friends, family members, co-workers, and significant others ("alters") and the relations among alters listed. Participants were 281 undergraduates at a large university in the Southeastern United States. Robust associations were observed among the frequencies of gambling, smoking, drinking, and using marijuana by network members. We also found that alters tended to cluster together into two distinct groups: one cluster moderate-to-high on co-occurring addictive behavior and the other low on co-occurring addictive behavior. Lastly, significant differences were present when examining egos' perceptions of alters' substance use between the networks of at-risk, light, and nondrinkers. These findings provide empirical evidence of distinct clustering of addictive behavior among young adults and suggest the promise of social network-based interventions for this cohort. Copyright © 2015. Published by Elsevier Ltd.

  18. Renal mass anatomic characteristics and perioperative outcomes of laparoscopic partial nephrectomy: a critical analysis.

    Science.gov (United States)

    Tsivian, Matvey; Ulusoy, Said; Abern, Michael; Wandel, Ayelet; Sidi, A Ami; Tsivian, Alexander

    2012-10-01

    Anatomic parameters determining renal mass complexity have been used in a number of proposed scoring systems despite lack of a critical analysis of their independent contributions. We sought to assess the independent contribution of anatomic parameters on perioperative outcomes of laparoscopic partial nephrectomy (LPN). Preoperative imaging studies were reviewed for 147 consecutive patients undergoing LPN for a single renal mass. Renal mass anatomy was recorded: Size, growth pattern (endo-/meso-/exophytic), centrality (central/hilar/peripheral), anterior/posterior, lateral/medial, polar location. Multivariable models were used to determine associations of anatomic parameters with warm ischemia time (WIT), operative time (OT), estimated blood loss (EBL), intra- and postoperative complications, as well as renal function. All models were adjusted for the learning curve and relevant confounders. Median (range) tumor size was 3.3 cm (1.5-11 cm); 52% were central and 14% hilar. While 44% were exophytic, 23% and 33% were mesophytic and endophytic, respectively. Anatomic parameters did not uniformly predict perioperative outcomes. WIT was associated with tumor size (P=0.068), centrality (central, P=0.016; hilar, P=0.073), and endophytic growth pattern (P=0.017). OT was only associated with tumor size (Panatomic parameter predicted EBL. Tumor centrality increased the odds of overall and intraoperative complications, without reaching statistical significance. Postoperative renal function was not associated with any of the anatomic parameters considered after adjustment for baseline function and WIT. Learning curve, considered as a confounder, was independently associated with reduced WIT and OT as well as reduced odds of intraoperative complications. This study provides a detailed analysis of the independent impact of renal mass anatomic parameters on perioperative outcomes. Our findings suggest diverse independent contributions of the anatomic parameters to the

  19. Alterações anatômicas em algodoeiro infectado pelo vírus da doença azul Anatomical alterations in blue disease infected cotton plant

    Directory of Open Access Journals (Sweden)

    Juliana K. Takimoto

    2009-01-01

    Luteoviridae family. Aiming to understand virus-host pathogenesis as well as to contribute with diagnostic and breeding aspects of cotton blue disease, in the present work, structural studies were performed via anatomical comparative analysis of health and infected plant tissues. For the anatomical studies, leaves from infected cotton plants were chosen when showing typical symptoms, such as: stunting, reduced leaf area with chlorotic vein and edges curled downward; clustered leaves, flowers and fruits due to reduced stem internodes. The results revealed that infected tissues present an increase in callose accumulation and calcium oxalate crystals; integrity of chloroplasts, which were distributed on the peripheral mesophyll cells, revealed a chemical alteration in the interior of palisade parenchyma cells. Inclusions in phloem and occasionally also xylem vessels were observed. The callose accumulation and the presence of inclusions in the phloem vessels are indications of a preferential relationship of the virus to these tissues.

  20. MR urography: Anatomical and quantitative information on ...

    African Journals Online (AJOL)

    Background and Aim: Magnetic resonance urography (MRU) is considered to be the next step in uroradiology. This technique combines superb anatomical images and functional information in a single test. In this article, we aim to present the topic of MRU in children and how it has been implemented in Northern Greece so ...

  1. Anatomical and physical changes in leaves during the production of tamales.

    Science.gov (United States)

    Angeles, Guillermo; Lascurain, Maite; Davalos-Sotelo, Raymundo; Zarate-Morales, Reyna Paula; Ortega-Escalona, Fernando

    2013-08-01

    Tamale preparation has a long tradition in Mexico. To understand which material properties have been considered important for this purpose throughout the years, a study was conducted of the anatomical, chemical, and mechanical properties of the leaves of four plant species used in tamale preparation in Veracruz, Mexico: Calathea misantlensis, Canna indica, Musa paradisiaca, and Oreopanax capitatus. Four cooking treatments were considered: fresh (F), roasted (soasado, R), steamed (S), and roasted plus steamed (R/S). Chemical, anatomical, and mechanical analyses were conducted before and after each treatment. Leaf samples were tested for tensile strength at both parallel and perpendicular orientation relative to the fibers. Musa paradisiaca had the highest proportion of cellulose, while the remaining species shared similar lower proportions. Leaves were stronger and stiffer in the longitudinal direction of the fibers. Musa paradisiaca leaves had higher values of mechanical strength than the other species. The cooking process that most affected the mechanical properties was steaming. The chemical constituents of the leaves are closely correlated with their physical properties. The treatment that caused the greatest decrease in leaf physical integrity was steaming, while the combination of roasting and steaming showed similar results to those of steaming alone. No evident anatomical changes are produced by any of the treatments. This is one of the few studies comparing physical, chemical, and anatomical characteristics of leaves used for human consumption, before and after cooking.

  2. The nonvisual illusion of self-touch: Misaligned hands and anatomical implausibility.

    Science.gov (United States)

    White, Rebekah C; Weinberg, Jennifer L; Aimola Davies, Anne M

    2015-01-01

    The self-touch illusion is elicited when the participant (with eyes closed) administers brushstrokes to a prosthetic hand while the examiner administers synchronous brushstrokes to the participant's other (receptive) hand. In three experiments we investigated the effects of misalignment on the self-touch illusion. In experiment 1 we manipulated alignment (0 degrees, 45 degrees, 90 degrees, 135 degrees, 180 degrees) of the prosthetic hand relative to the participant's receptive hand. The illusion was equally strong at 0 degrees and 45 degrees: the two conditions in which the prosthetic hand was in an anatomically plausible orientation. To investigate whether the illusion was diminished at 90 degrees (and beyond) by anatomical implausibility rather than by misalignment, in experiment 2 hand positioning was changed. The illusion was equally strong at 0 degrees, 45 degrees, and 90 degrees, but diminished at 135 degrees despite the prosthetic hand now being in an anatomically plausible orientation. Thus the illusion is diminished with misalignment of 135 degrees, irrespective of anatomical plausibility. Having demonstrated that the illusion was equally strong with the hands aligned (0 degrees) or misaligned by 45 degrees, in experiment 3 we demonstrated that participants did not detect a 45 degrees misalignment. Large degrees of misalignment prevent a compelling experience of the self-touch illusion, and the self-touch illusion prevents detection of small degrees of misalignment.

  3. Selective vulnerability related to aging in large-scale resting brain networks.

    Science.gov (United States)

    Zhang, Hong-Ying; Chen, Wen-Xin; Jiao, Yun; Xu, Yao; Zhang, Xiang-Rong; Wu, Jing-Tao

    2014-01-01

    Normal aging is associated with cognitive decline. Evidence indicates that large-scale brain networks are affected by aging; however, it has not been established whether aging has equivalent effects on specific large-scale networks. In the present study, 40 healthy subjects including 22 older (aged 60-80 years) and 18 younger (aged 22-33 years) adults underwent resting-state functional MRI scanning. Four canonical resting-state networks, including the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN) and salience network, were extracted, and the functional connectivities in these canonical networks were compared between the younger and older groups. We found distinct, disruptive alterations present in the large-scale aging-related resting brain networks: the ECN was affected the most, followed by the DAN. However, the DMN and salience networks showed limited functional connectivity disruption. The visual network served as a control and was similarly preserved in both groups. Our findings suggest that the aged brain is characterized by selective vulnerability in large-scale brain networks. These results could help improve our understanding of the mechanism of degeneration in the aging brain. Additional work is warranted to determine whether selective alterations in the intrinsic networks are related to impairments in behavioral performance.

  4. Flow distributions and spatial correlations in human brain capillary networks

    Science.gov (United States)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  5. An Application of Geospatial Information Systems (GIS) Technology to Anatomic Dental Charting

    OpenAIRE

    Bartling, William C.; Schleyer, Titus K.L.

    2003-01-01

    Historically, an anatomic dental chart is a compilation of color-coded symbols and numbers used within a template, either paper or computerized, to create a graphic record of a patient’s oral health status. This poster depicts how Geospatial Information System (GIS) technology can be used to create an accurate, current anatomic dental chart that contains detailed information not present in current charting systems.

  6. Tie Content in Professional Networks

    DEFF Research Database (Denmark)

    Zarzecka, Olga

    in resource exchanges and the effect of these differences on the number of, and extent to which, resources are provided by a network tie. Chapter 3 explores how firm underperfomance and social identity with corporate elite alter types of resources a network tie provides. Chapter 4 focuses on a tie’s internal......Professional networks of senior managers have indisputable value for them as well as for their organizations. In recent years, much attention has been given to the structure of these networks as it reflects senior managers’ opportunity to access valuable resources. Surprisingly, the actual...... resources that senior managers acquire through their network ties, i.e. the tie content, remain heavily understudied. Hence, the purpose of this dissertation is to answer the following question: What resources flow through informal ties in senior managers’ professional networks, and why? The first chapter...

  7. Altered structural brain changes and neurocognitive performance in pediatric HIV

    Directory of Open Access Journals (Sweden)

    Santosh K. Yadav

    2017-01-01

    Full Text Available Pediatric HIV patients often suffer with neurodevelopmental delay and subsequently cognitive impairment. While tissue injury in cortical and subcortical regions in the brain of adult HIV patients has been well reported there is sparse knowledge about these changes in perinatally HIV infected pediatric patients. We analyzed cortical thickness, subcortical volume, structural connectivity, and neurocognitive functions in pediatric HIV patients and compared with those of pediatric healthy controls. With informed consent, 34 perinatally infected pediatric HIV patients and 32 age and gender matched pediatric healthy controls underwent neurocognitive assessment and brain magnetic resonance imaging (MRI on a 3 T clinical scanner. Altered cortical thickness, subcortical volumes, and abnormal neuropsychological test scores were observed in pediatric HIV patients. The structural network connectivity analysis depicted lower connection strengths, lower clustering coefficients, and higher path length in pediatric HIV patients than healthy controls. The network betweenness and network hubs in cortico-limbic regions were distorted in pediatric HIV patients. The findings suggest that altered cortical and subcortical structures and regional brain connectivity in pediatric HIV patients may contribute to deficits in their neurocognitive functions. Further, longitudinal studies are required for better understanding of the effect of HIV pathogenesis on brain structural changes throughout the brain development process under standard ART treatment.

  8. Computed-tomography-guided anatomic standardization for quantitative assessment of dopamine transporter SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Kota [National Center of Neurology and Psychiatry, Department of Radiology, Tokyo (Japan); National Center of Neurology and Psychiatry, Integrative Brain Imaging Center, Tokyo (Japan); Imabayashi, Etsuko; Matsuda, Hiroshi [National Center of Neurology and Psychiatry, Integrative Brain Imaging Center, Tokyo (Japan); Sumida, Kaoru; Sone, Daichi; Kimura, Yukio; Sato, Noriko [National Center of Neurology and Psychiatry, Department of Radiology, Tokyo (Japan); Mukai, Youhei; Murata, Miho [National Center of Neurology and Psychiatry, Department of Neurology, Tokyo (Japan)

    2017-03-15

    For the quantitative assessment of dopamine transporter (DAT) using [{sup 123}I]FP-CIT single-photon emission computed tomography (SPECT) (DaTscan), anatomic standardization is preferable for achieving objective and user-independent quantification of striatal binding using a volume-of-interest (VOI) template. However, low accumulation of DAT in Parkinson's disease (PD) would lead to a deformation error when using a DaTscan-specific template without any structural information. To avoid this deformation error, we applied computed tomography (CT) data obtained using SPECT/CT equipment to anatomic standardization. We retrospectively analyzed DaTscan images of 130 patients with parkinsonian syndromes (PS), including 80 PD and 50 non-PD patients. First we segmented gray matter from CT images using statistical parametric mapping 12 (SPM12). These gray-matter images were then anatomically standardized using the diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL) algorithm. Next, DaTscan images were warped with the same parameters used in the CT anatomic standardization. The target striatal VOIs for decreased DAT in PD were generated from the SPM12 group comparison of 20 DaTscan images from each group. We applied these VOIs to DaTscan images of the remaining patients in both groups and calculated the specific binding ratios (SBRs) using nonspecific counts in a reference area. In terms of the differential diagnosis of PD and non-PD groups using SBR, we compared the present method with two other methods, DaTQUANT and DaTView, which have already been released as software programs for the quantitative assessment of DaTscan images. The SPM12 group comparison showed a significant DAT decrease in PD patients in the bilateral whole striatum. Of the three methods assessed, the present CT-guided method showed the greatest power for discriminating PD and non-PD groups, as it completely separated the two groups. CT-guided anatomic standardization using

  9. Anatomic variations in vascular and collecting systems of kidneys from deceased donors.

    Science.gov (United States)

    Costa, H C; Moreira, R J; Fukunaga, P; Fernandes, R C; Boni, R C; Matos, A C

    2011-01-01

    Nephroureterectomy for transplantation has increased owing to the greater number of deceased donors. Anatomic variations may complicate the procedure or, if unrecognized, compromise the viability of kidneys for transplantation. We reviewed 254 surgical descriptions of nephroureterectomy specimens from January 2008 to December 2009. All organs collected according by standard techniques were evaluated for age, cause of death, renal function, frequency of injury during the procedure, as well as variations in the vascular and collecting systems. The mean donor age was 42 years (range, 2-74). The mean serum creatinine was 1.2 mg/dL (range, 1.0-7.0). The causes of death were cerebrovascular cause (stroke; n = 130), traumatic brain injury (n = 81) or other cause (n = 43). Among the anatomic variations: 8.6% (n = 22) were right arterial anatomical variations: 19 cases with 2 arteries and 3 cases with 3 arteries. In 25 cases (9.8%) the identified variation was the left artery: 2 arteries (n = 23), 3 arteries (n = 1) and 4 arteries (n = 1). We observed 9.8% on right side and 1.5% on left side venous anatomic variations, including 24 cases with 2 veins on the right side and 4 cases with 2 veins on the left side. Three cases of a retroaortic left renal vein and 1 case of a retro necklace vein (anterior and posterior to the aorta). Two cases of ureteral duplication were noted on the left and 1 on the right kidney. There were 3 horseshoe and 1 pelvic kidney. In 7.5% of cases, an injury to the graft included ureteral (n = 3), arterial (n = 10), or venous (n = 6). The most common anatomic variation was arterial (17.8%). Duplication of the renal vein was more frequent on the right. The high incidences of anatomic variations require more attention in the dissection of the renal hilum to avoid an injury that may compromise the graft. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Proximity of arthroscopic ankle stabilization procedures to surrounding structures: an anatomic study.

    Science.gov (United States)

    Drakos, Mark; Behrens, Steve B; Mulcahey, Mary K; Paller, David; Hoffman, Eve; DiGiovanni, Christopher W

    2013-06-01

    To examine the anatomy of the lateral ankle after arthroscopic repair of the lateral ligament complex (anterior talofibular ligament [ATFL] and calcaneofibular ligament [CFL]) with regard to structures at risk. Ten lower extremity cadaveric specimens were obtained and were screened for gross anatomic defects and pre-existing ankle laxity. The ATFL and CFL were sectioned from the fibula by an open technique. Standard anterolateral and anteromedial arthroscopy portals were made. An additional portal was created 2 cm distal to the anterolateral portal. The articular surface of the fibula was identified, and the ATFL and CFL were freed from the superficial and deeper tissues. Suture anchors were placed in the fibula at the ATFL and CFL origins and were used to repair the origin of the lateral collateral structures. The distance from the suture knot to several local anatomic structures was measured. Measurements were taken by 2 separate observers, and the results were averaged. Several anatomic structures lie in close proximity to the ATFL and CFL sutures. The ATFL sutures entrapped 9 of 55 structures, and no anatomic structures were inadvertently entrapped by the CFL sutures. The proximity of the peroneus tertius and the extensor tendons to the ATFL makes them at highest risk of entrapment, but the proximity of the intermediate branch of the superficial peroneal nerve (when present) is a risk with significant morbidity. Our results indicate that the peroneus tertius and extensor tendons have the highest risk for entrapment and show the smallest mean distances from the anchor knot to the identified structure. Careful attention to these structures, as well as the superficial peroneal nerve, is mandatory to prevent entrapment of tendons and nerves when one is attempting arthroscopic lateral ankle ligament reconstruction. Defining the anatomic location and proximity of the intervening structures adjacent to the lateral ligament complex of the ankle may help clarify the

  11. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ruchi D. Chande

    2017-01-01

    Full Text Available Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  12. Evaluation of influences of the Viennese Anatomical School on the work of the Croatian Anatomist Jelena Krmpotic-Nemanic.

    Science.gov (United States)

    Dinjar, Kristijan; Toth, Jurica; Atalic, Bruno; Radanovic, Danijela; Maric, Svjetlana

    2012-01-01

    This paper tries to evaluate the connections between the Viennese Anatomical School and the Croatian Anatomist Jelena Krmpotic-Nemanic. 17 papers written by Professor Jelena Krmpotic-Nemanic in the last decade of her life were chosen for analyses. According to their themes they could be divided into three groups: ones which evaluate the anatomical terminology, ones which research the development of anatomical structures, and ones which describe the anatomical variations. Mentioned papers were analysed through their topics, methods of research and cited references. Analyses of the mentioned papers revealed the indirect link between the Viennese Anatomical School and the Professor Jelena Krmpotic-Nemanic, through her mentor Professor Drago Perovic, regarding the themes and the methods of her anatomical researches. It has also showed her preference for Austrian and German anatomical textbooks and atlases, primarily ones published in Vienna and Jena, rather than English and American ones. Finally, her direct connections with the Viennese Institute for the History of Medicine and the Viennese Josephinum Wax Models Museum were emphasized. Mentioned indirect and direct influences of the Viennese Anatomical School on the work of Professor Jelena Krmpotic-Nemanic were critically appraised.

  13. Altered network topology in pediatric traumatic brain injury

    Science.gov (United States)

    Dennis, Emily L.; Rashid, Faisal; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.; Thompson, Paul M.

    2017-11-01

    Outcome after a traumatic brain injury (TBI) is quite variable, and this variability is not solely accounted for by severity or demographics. Identifying sub-groups of patients who recover faster or more fully will help researchers and clinicians understand sources of this variability, and hopefully lead to new therapies for patients with a more prolonged recovery profile. We have previously identified two subgroups within the pediatric TBI patient population with different recovery profiles based on an ERP-derived (event-related potential) measure of interhemispheric transfer time (IHTT). Here we examine structural network topology across both patient groups and healthy controls, focusing on the `rich-club' - the core of the network, marked by high degree nodes. These analyses were done at two points post-injury - 2-5 months (post-acute), and 13-19 months (chronic). In the post-acute time-point, we found that the TBI-slow group, those showing longitudinal degeneration, showed hyperconnectivity within the rich-club nodes relative to the healthy controls, at the expense of local connectivity. There were minimal differences between the healthy controls and the TBI-normal group (those patients who show signs of recovery). At the chronic phase, these disruptions were no longer significant, but closer analysis showed that this was likely due to the loss of power from a smaller sample size at the chronic time-point, rather than a sign of recovery. We have previously shown disruptions to white matter (WM) integrity that persist and progress over time in the TBI-slow group, and here we again find differences in the TBI-slow group that fail to resolve over the first year post-injury.

  14. Networks of global bird invasion altered by regional trade ban.

    Science.gov (United States)

    Reino, Luís; Figueira, Rui; Beja, Pedro; Araújo, Miguel B; Capinha, César; Strubbe, Diederik

    2017-11-01

    Wildlife trade is a major pathway for introduction of invasive species worldwide. However, how exactly wildlife trade influences invasion risk, beyond the transportation of individuals to novel areas, remains unknown. We analyze the global trade network of wild-caught birds from 1995 to 2011 as reported by CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora). We found that before the European Union ban on imports of wild-caught birds, declared in 2005, invasion risk was closely associated with numbers of imported birds, diversity of import sources, and degree of network centrality of importer countries. After the ban, fluxes of global bird trade declined sharply. However, new trade routes emerged, primarily toward the Nearctic, Afrotropical, and Indo-Malay regions. Although regional bans can curtail invasion risk globally, to be fully effective and prevent rerouting of trade flows, bans should be global.

  15. Familial intracranial aneurysms: is anatomic vulnerability heritable?

    Science.gov (United States)

    Mackey, Jason; Brown, Robert D; Moomaw, Charles J; Hornung, Richard; Sauerbeck, Laura; Woo, Daniel; Foroud, Tatiana; Gandhi, Dheeraj; Kleindorfer, Dawn; Flaherty, Matthew L; Meissner, Irene; Anderson, Craig; Rouleau, Guy; Connolly, E Sander; Deka, Ranjan; Koller, Daniel L; Abruzzo, Todd; Huston, John; Broderick, Joseph P

    2013-01-01

    Previous studies have suggested that family members with intracranial aneurysms (IAs) often harbor IAs in similar anatomic locations. IA location is important because of its association with rupture. We tested the hypothesis that anatomic susceptibility to IA location exists using a family-based IA study. We identified all affected probands and first-degree relatives (FDRs) with a definite or probable phenotype in each family. We stratified each IA of the probands by major arterial territory and calculated each family's proband-FDR territory concordance and overall contribution to the concordance analysis. We then matched each family unit to an unrelated family unit selected randomly with replacement and performed 1001 simulations. The median concordance proportions, odds ratios (ORs), and P values from the 1001 logistic regression analyses were used to represent the final results of the analysis. There were 323 family units available for analysis, including 323 probands and 448 FDRs, with a total of 1176 IAs. IA territorial concordance was higher in the internal carotid artery (55.4% versus 45.6%; OR, 1.54 [1.04-2.27]; P=0.032), middle cerebral artery (45.8% versus 30.5%; OR, 1.99 [1.22-3.22]; P=0.006), and vertebrobasilar system (26.6% versus 11.3%; OR, 2.90 [1.05-8.24], P=0.04) distributions in the true family compared with the comparison family. Concordance was also higher when any location was considered (53.0% versus 40.7%; OR, 1.82 [1.34-2.46]; PIA development, we found that IA territorial concordance was higher when probands were compared with their own affected FDRs than with comparison FDRs, which suggests that anatomic vulnerability to IA formation exists. Future studies of IA genetics should consider stratifying cases by IA location.

  16. Utilization management in anatomic pathology.

    Science.gov (United States)

    Lewandrowski, Kent; Black-Schaffer, Steven

    2014-01-01

    There is relatively little published literature concerning utilization management in anatomic pathology. Nonetheless there are many utilization management opportunities that currently exist and are well recognized. Some of these impact only the cost structure within the pathology department itself whereas others reduce charges for third party payers. Utilization management may result in medical legal liabilities for breaching the standard of care. For this reason it will be important for pathology professional societies to develop national utilization guidelines to assist individual practices in implementing a medically sound approach to utilization management. © 2013.

  17. Evolution of the Anatomical Theatre in Padova

    Science.gov (United States)

    Macchi, Veronica; Porzionato, Andrea; Stecco, Carla; Caro, Raffaele

    2014-01-01

    The anatomical theatre played a pivotal role in the evolution of medical education, allowing students to directly observe and participate in the process of dissection. Due to the increase of training programs in clinical anatomy, the Institute of Human Anatomy at the University of Padova has renovated its dissecting room. The main guidelines in…

  18. SEDAH. Data Server for hydrologic alteration evaluation

    International Nuclear Information System (INIS)

    Martinez Romero, R.; Magdaleno Mas, F.; Ortiz Rodriguez, J.; Fernandez Yuste, J. A.; Martinez Santa-Maria, C.

    2011-01-01

    Several tasks and studies have been developed from 2008 till 2010 all around the country in order to evaluate the hydrologic alteration of water bodies. In most cases this alteraction has been evaluated through IAHRIS (Martinez and Fernandez, 2006). The necessity of creating a new toll that allowed a better performance of the National Flow-Stage Stations Network data was showed up by developing these works. The output data series should match IAHRIS and IHA. SEDAH (Data Server for Evaluating Hydrologic Alteration) Helps to solve some of these problems by supplying an easy way to select flow stations, dates, flow series typology, etc. Moreover, other useful utilities are: a preliminary appraisement of quality data, calssification of altered or reference flow series and exportation of data in different file formats. The web application works with different data bases, daily, monthly and annual series belonging to, wither actual series from flow station data or completed series by statistical procedures. Through SEDAH the user has easy access to all this huge information ready for being applied in hydrologic alteration assessment, environmental fows regime, river restoration projects, etc. Furthermore, this first phase of the application constitute the basis for future powerful functionalities related to the natural flow series obtaining. (Author) 5 refs.

  19. Anatomical study of forearm arteries with ultrasound for percutaneous coronary procedures.

    Science.gov (United States)

    Yan, Zhen-xian; Zhou, Yu-jie; Zhao, Ying-xin; Zhou, Zhi-ming; Yang, Shi-wei; Wang, Zhi-jian

    2010-04-01

    In recent years, the radial artery (RA) has become an alternative vascular access site for percutaneous coronary procedures, and the ulnar artery (UA) is another possibility. The objective of this study was to investigate the anatomy of the forearm arteries with ultrasound (US) and to evaluate the effect of the anatomy of the right RA (RRA) on the outcomes of transradial coronary procedures. The 638 patients undergoing transradial coronary procedures were examined with US for measurement of the diameters of the forearm arteries and determination of their anatomical abnormalities before the procedures. The next day the incidence of RA occlusion was recorded. The diameters of the radial and ulnar arteries were similar (P>0.05). The procedure time was longer in patients with anatomical abnormalities (Pforearm arteries of Chinese people are similar. The small diameter and anatomical abnormalities of the RRA could result in longer procedure time, more incidence of procedure failure and RA occlusion.

  20. Relationship between Peeled Internal Limiting Membrane Area and Anatomic Outcomes following Macular Hole Surgery: A Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Yasin Sakir Goker

    2016-01-01

    Full Text Available Purpose. To quantitatively evaluate the effects of peeled internal limiting membrane (ILM area and anatomic outcomes following macular hole surgery using spectral domain optical coherence tomography (SD-OCT. Methods. Forty-one eyes in 37 consecutive patients with idiopathic, Gass stage 3-4 macular hole (MH were enrolled in this retrospective comparative study. All patients were divided into 2 groups according to anatomic success or failure. Basal MH diameter, peeled ILM area, and MH height were calculated using SD-OCT. Other prognostic parameters, including age, stage, preoperative BCVA, and symptom duration were also assessed. Results. Thirty-two cases were classified as anatomic success, and 9 cases were classified as anatomic failure. Peeled ILM area was significantly wider and MH basal diameter was significantly less in the anatomic success group (p=0.024 and 0.032, resp.. Other parameters did not demonstrate statistical significance. Conclusion. The findings of the present study show that the peeled ILM area can affect the anatomic outcomes of MH surgery.