WorldWideScience

Sample records for altair lunar lander

  1. Sensor systems for the Altair Lunar Lander:

    Energy Technology Data Exchange (ETDEWEB)

    Mariella, R

    2009-12-22

    The Altair Lunar Lander will enable astronauts to learn to live and work on the moon for extended periods of time, providing the experience needed to expand human exploration farther into the solar system. My overriding recommendation: Use independent and complementary [sometimes referred to as 'orthogonal'] techniques to disambiguate confounding/interfering signals. E.g.: a mass spectrometer ['MS'], which currently serves as a Majority Constituent Analyzer ['MCA'] can be very valuable in detecting the presence of a gaseous specie, so long as it falls on a mass-to-charge ratio ['m/z'] that is not already occupied by a majority constituent of cabin air. Consider the toxic gas, CO. Both N{sub 2} and CO have parent peaks of m/z = 28, and CO{sub 2} has a fragment peak at m/z = 28 [and at 16 and 12], so the N{sub 2} and CO{sub 2} m/z=28 signals could mask low, but potentially-dangerous levels of CO. However there are numerous surface-sensitive CO detectors, as well as tunable-diode-laser-based CO sensors that could provide independent monitoring of CO. Also, by appending a gas chromatograph ['GC'] as the front-end sample processer, prior to the inlet of the MS, one can rely upon the GC to separate CO from N{sub 2} and CO{sub 2}, providing the crew with another CO monitor. If the Altair Lunar Lander is able to include a Raman-based MCA for N{sub 2}, O{sub 2}, H{sub 2}O, and CO{sub 2}, then each type of MCA would have cross-references, providing more confidence in the ongoing performance of each technique, and decreasing the risk that one instrument might fail to perform properly, without being noticed. See, also Dr. Pete Snyder's work, which states 'An orthogonal technologies sensor system appears to be attractive for a high confidence detection of presence and temporal characterization of bioaerosols.' Another recommendation: Use data fusion for event detection to decrease uncertainty: tie together the

  2. Altair Lander Life Support: Design Analysis Cycles 4 and 5

    Science.gov (United States)

    Anderson, Molly; Curley, Su; Rotter, Henry; Stambaugh, Imelda; Yagoda, Evan

    2011-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  3. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    Science.gov (United States)

    Bannon, Erika T.; Bower, Chad E.; Sheth, Rubik; Stephan, Ryan

    2010-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat rejected by a radiator. Coupon level tests were performed to test the feasibility of this technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios encountered during a mission profile for the Altair Lunar Lander. This paper summarizes results from coupon level tests as well as the thermal math models developed to investigate how electrochromics can be used to increase turn down ratios for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  4. Lunar lander stage requirements based on the Civil Needs Data Base

    Science.gov (United States)

    Mulqueen, John A.

    1992-01-01

    This paper examines the lunar lander stages that will be necessary for the future exploration and development of the Moon. Lunar lander stage sizing is discussed based on the projected lunar payloads listed in the Civil Needs Data Base. Factors that will influence the lander stage design are identified and discussed. Some of these factors are (1) lunar orbiting and lunar surface lander bases; (2) implications of direct landing trajectories and landing from a parking orbit; (3) implications of landing site and parking orbit; (4) implications of landing site and parking orbit selection; (5) the use of expendable and reusable lander stages; and (6) the descent/ascent trajectories. Data relating the lunar lander stage design requirements to each of the above factors and others are presented in parametric form. These data will provide useful design data that will be applicable to future mission model modifications and design studies.

  5. Robotic Lunar Lander Development Status

    Science.gov (United States)

    Ballard, Benjamin; Cohen, Barbara A.; McGee, Timothy; Reed, Cheryl

    2012-01-01

    NASA Marshall Space Flight Center and John Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  6. Accuracy Analysis of Lunar Lander Terminal Guidance Algorithm

    Directory of Open Access Journals (Sweden)

    E. K. Li

    2017-01-01

    Full Text Available This article studies a proposed analytical algorithm of the terminal guidance for the lunar lander. The analytical solution, which forms the basis of the algorithm, was obtained for a constant acceleration trajectory and thrust vector orientation programs that are essentially linear with time. The main feature of the proposed algorithm is a completely analytical solution to provide the lander terminal guidance to the desired spot in 3D space when landing on the atmosphereless body with no numerical procedures. To reach 6 terminal conditions (components of position and velocity vectors at the final time are used 6 guidance law parameters, namely time-to-go, desired value of braking deceleration, initial values of pitch and yaw angles and rates of their change. In accordance with the principle of flexible trajectories, this algorithm assumes the implementation of a regularly updated control program that ensures reaching terminal conditions from the current state that corresponds to the control program update time. The guidance law parameters, which ensure that terminal conditions are reached, are generated as a function of the current phase coordinates of a lander. The article examines an accuracy and reliability of the proposed analytical algorithm that provides the terminal guidance of the lander in 3D space through mathematical modeling of the lander guidance from the circumlunar pre-landing orbit to the desired spot near the lunar surface. A desired terminal position of the lunar lander is specified by the selenographic latitude, longitude and altitude above the lunar surface. The impact of variations in orbital parameters on the terminal guidance accuracy has been studied. By varying the five initial orbit parameters (obliquity, ascending node longitude, argument of periapsis, periapsis height, apoapsis height when the terminal spot is fixed the statistic characteristics of the terminal guidance algorithm error according to the terminal

  7. The ESA Lunar Lander and the search for Lunar Volatiles

    Science.gov (United States)

    Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Gibson, E. K.; Merrifield, J. A.; Waltham, N. R.; Waugh, L. J.; Pillinger, C. T.

    2011-10-01

    Following the Apollo era the moon was considered a volatile poor body. Samples collected from the Apollo missions contained only ppm levels of water formed by the interaction of the solar wind with the lunar regolith [1]. However more recent orbiter observations have indicated that water may exist as water ice in cold polar regions buried within craters at concentrations of a few wt. % [2]. Infrared images from M3 on Chandrayaan-1 have been interpreted as showing the presence of hydrated surface minerals with the ongoing hydroxyl/water process feeding cold polar traps. This has been supported by observation of ephemeral features termed "space dew" [3]. Meanwhile laboratory studies indicate that water could be present in appreciable quantities in lunar rocks [4] and could also have a cometary source [5]. The presence of sufficient quantities of volatiles could provide a resource which would simplify logistics for long term lunar missions. The European Space Agency (ESA's Directorate of Human Spaceflight and Operations) have provisionally scheduled a robotic mission to demonstrate key technologies to enable later human exploration. Planned for launch in 2018, the primary aim is for precise automated landing, with hazard avoidance, in zones which are almost constantly illuminated (e.g. at the edge of the Shackleton crater at the lunar south pole). These regions would enable the solar powered Lander to survive for long periods > 6 months, but require accurate navigation to within 200m. Although landing in an illuminated area, these regions are close to permanently shadowed volatile rich regions and the analysis of volatiles is a major science objective of the mission. The straw man payload includes provision for a Lunar Volatile and Resources Analysis Package (LVRAP). The authors have been commissioned by ESA to conduct an evaluation of possible technologies to be included in L-VRAP which can be included within the Lander payload. Scientific aims are to demonstrate the

  8. Battery and Fuel Cell Development Goals for the Lunar Surface and Lander

    Science.gov (United States)

    Mercer, Carolyn R.

    2008-01-01

    NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.

  9. A simulation of the Four-way lunar Lander-Orbiter tracking mode for the Chang'E-5 mission

    Science.gov (United States)

    Li, Fei; Ye, Mao; Yan, Jianguo; Hao, Weifeng; Barriot, Jean-Pierre

    2016-06-01

    The Chang'E-5 mission is the third phase of the Chinese Lunar Exploration Program and will collect and return lunar samples. After sampling, the Orbiter and the ascent vehicle will rendezvous and dock, and both spacecraft will require high precision orbit navigation. In this paper, we present a novel tracking mode-Four-way lunar Lander-Orbiter tracking that possibly can be employed during the Chang'E-5 mission. The mathematical formulas for the Four-way lunar Lander-Orbiter tracking mode are given and implemented in our newly-designed lunar spacecraft orbit determination and gravity field recovery software, the LUnar Gravity REcovery and Analysis Software/System (LUGREAS). The simulated observables permit analysis of the potential contribution Four-way lunar Lander-Orbiter tracking could make to precision orbit determination for the Orbiter. Our results show that the Four-way lunar Lander-Orbiter Range Rate has better geometric constraint on the orbit, and is more sensitive than the traditional two-way range rate that only tracks data between the Earth station and lunar Orbiter. After combining the Four-way lunar Lander-Orbiter Range Rate data with the traditional two-way range rate data and considering the Lander position error and lunar gravity field error, the accuracy of precision orbit determination for the Orbiter in the simulation was improved significantly, with the biggest improvement being one order of magnitude, and the Lander position could be constrained to sub-meter level. This new tracking mode could provide a reference for the Chang'E-5 mission and have enormous potential for the positioning of future lunar farside Lander due to its relay characteristic.

  10. Linear Covariance Analysis for a Lunar Lander

    Science.gov (United States)

    Jang, Jiann-Woei; Bhatt, Sagar; Fritz, Matthew; Woffinden, David; May, Darryl; Braden, Ellen; Hannan, Michael

    2017-01-01

    A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The design goal is to allow the lander to softly land within the prescribed landing precision. The achievement of this precision landing requirement depends on proper selection of the sensor suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear Covariance (LinCov) analysis tool developed by Draper.

  11. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    Science.gov (United States)

    Clegg, Ryan N.; Metzger, Philip T.; Huff, Stephen; Roberson, Luke B.

    2008-01-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor Ill spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon [1-3]. The low ejection angle and high velocity are concerns for the lunar outpost.

  12. Lander Technologies

    Science.gov (United States)

    Chavers, Greg

    2015-01-01

    Since 2006 NASA has been formulating robotic missions to the lunar surface through programs and projects like the Robotic Lunar Exploration Program, Lunar Precursor Robotic Program, and International Lunar Network. All of these were led by NASA Marshall Space Flight Center (MSFC). Due to funding shortfalls, the lunar missions associated with these efforts, the designs, were not completed. From 2010 to 2013, the Robotic Lunar Lander Development Activity was funded by the Science Mission Directorate (SMD) to develop technologies that would enable and enhance robotic lunar surface missions at lower costs. In 2013, a requirements-driven, low-cost robotic lunar lander concept was developed for the Resource Prospector Mission. Beginning in 2014, The Advanced Exploration Systems funded the lander team and established the MSFC, Johnson Space Center, Applied Physics Laboratory, and the Jet Propulsion Laboratory team with MSFC leading the project. The lander concept to place a 300-kg rover on the lunar surface has been described in the New Technology Report Case Number MFS-33238-1. A low-cost lander concept for placing a robotic payload on the lunar surface is shown in figures 1 and 2. The NASA lander team has developed several lander concepts using common hardware and software to allow the lander to be configured for a specific mission need. In addition, the team began to transition lander expertise to United States (U.S.) industry to encourage the commercialization of space, specifically the lunar surface. The Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative was started and the NASA lander team listed above is partnering with three competitively selected U.S. companies (Astrobotic, Masten Space Systems, and Moon Express) to develop, test, and operate their lunar landers.

  13. Orbiting Depot and Reusable Lander for Lunar Transportation

    Science.gov (United States)

    Petro, Andrew

    2009-01-01

    A document describes a conceptual transportation system that would support exploratory visits by humans to locations dispersed across the surface of the Moon and provide transport of humans and cargo to sustain one or more permanent Lunar outpost. The system architecture reflects requirements to (1) minimize the amount of vehicle hardware that must be expended while maintaining high performance margins and (2) take advantage of emerging capabilities to produce propellants on the Moon while also enabling efficient operation using propellants transported from Earth. The system would include reusable single- stage lander spacecraft and a depot in a low orbit around the Moon. Each lander would have descent, landing, and ascent capabilities. A crew-taxi version of the lander would carry a pressurized crew module; a cargo version could carry a variety of cargo containers. The depot would serve as a facility for storage and for refueling with propellants delivered from Earth or propellants produced on the Moon. The depot could receive propellants and cargo sent from Earth on a variety of spacecraft. The depot could provide power and orbit maintenance for crew vehicles from Earth and could serve as a safe haven for lunar crews pending transport back to Earth.

  14. KOREAN LUNAR LANDER – CONCEPT STUDY FOR LANDING-SITE SELECTION FOR LUNAR RESOURCE EXPLORATION

    Directory of Open Access Journals (Sweden)

    K. J. Kim

    2016-06-01

    Full Text Available As part of the national space promotion plan and presidential national agendas South Korea’s institutes and agencies under the auspices of the Ministry of Science, Information and Communication Technology and Future Planning (MSIP are currently developing a lunar mission package expected to reach Moon in 2020. While the officially approved Korean Pathfinder Lunar Orbiter (KPLO is aimed at demonstrating technologies and monitoring the lunar environment from orbit, a lander – currently in pre-phase A – is being designed to explore the local geology with a particular focus on the detection and characterization of mineral resources. In addition to scientific and potential resource potentials, the selection of the landing-site will be partly constrained by engineering constraints imposed by payload and spacecraft layout. Given today’s accumulated volume and quality of available data returned from the Moon’s surface and from orbital observations, an identification of landing sites of potential interest and assessment of potential hazards can be more readily accomplished by generating synoptic snapshots through data integration. In order to achieve such a view on potential landing sites, higher level processing and derivation of data are required, which integrates their spatial context, with detailed topographic and geologic characterizations. We are currently assessing the possibility of using fuzzy c-means clustering algorithms as a way to perform (semi- automated terrain characterizations of interest. This paper provides information and background on the national lunar lander program, reviews existing approaches – including methods and tools – for landing site analysis and hazard assessment, and discusses concepts to detect and investigate elemental abundances from orbit and the surface. This is achieved by making use of manual, semi-automated as well as fully-automated remote-sensing methods to demonstrate the applicability of

  15. Spacecraft Conceptual Design Compared to the Apollo Lunar Lander

    Science.gov (United States)

    Young, C.; Bowie, J.; Rust, R.; Lenius, J.; Anderson, M.; Connolly, J.

    2011-01-01

    Future human exploration of the Moon will require an optimized spacecraft design with each sub-system achieving the required minimum capability and maintaining high reliability. The objective of this study was to trade capability with reliability and minimize mass for the lunar lander spacecraft. The NASA parametric concept for a 3-person vehicle to the lunar surface with a 30% mass margin totaled was considerably heavier than the Apollo 15 Lunar Module "as flown" mass of 16.4 metric tons. The additional mass was attributed to mission requirements and system design choices that were made to meet the realities of modern spaceflight. The parametric tool used to size the current concept, Envision, accounts for primary and secondary mass requirements. For example, adding an astronaut increases the mass requirements for suits, water, food, oxygen, as well as, the increase in volume. The environmental control sub-systems becomes heavier with the increased requirements and more structure was needed to support the additional mass. There was also an increase in propellant usage. For comparison, an "Apollo-like" vehicle was created by removing these additional requirements. Utilizing the Envision parametric mass calculation tool and a quantitative reliability estimation tool designed by Valador Inc., it was determined that with today?s current technology a Lunar Module (LM) with Apollo capability could be built with less mass and similar reliability. The reliability of this new lander was compared to Apollo Lunar Module utilizing the same methodology, adjusting for mission timeline changes as well as component differences. Interestingly, the parametric concept's overall estimated risk for loss of mission (LOM) and loss of crew (LOC) did not significantly improve when compared to Apollo.

  16. Lunar lander and return propulsion system trade study

    Science.gov (United States)

    Hurlbert, Eric A.; Moreland, Robert; Sanders, Gerald B.; Robertson, Edward A.; Amidei, David; Mulholland, John

    1993-01-01

    This trade study was initiated at NASA/JSC in May 1992 to develop and evaluate main propulsion system alternatives to the reference First Lunar Outpost (FLO) lander and return-stage transportation system concept. Thirteen alternative configurations were developed to explore the impacts of various combinations of return stage propellants, using either pressure or pump-fed propulsion systems and various staging options. Besides two-stage vehicle concepts, the merits of single-stage and stage-and-a-half options were also assessed in combination with high-performance liquid oxygen and liquid hydrogen propellants. Configurations using an integrated modular cryogenic engine were developed to assess potential improvements in packaging efficiency, mass performance, and system reliability compared to non-modular cryogenic designs. The selection process to evaluate the various designs was the analytic hierarchy process. The trade study showed that a pressure-fed MMH/N2O4 return stage and RL10-based lander stage is the best option for a 1999 launch. While results of this study are tailored to FLO needs, the design date, criteria, and selection methodology are applicable to the design of other crewed lunar landing and return vehicles.

  17. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    Science.gov (United States)

    Clegg, Ryan; Metzger, Philip; Roberson, Luke; Stephen, Huff

    2010-03-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor III spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon. The low ejection angle and high velocity are concerns for the lunar outpost. As a first step in investigating this concern, we have performed a series of low-velocity impact experiments in a modified sandblasting hood using lunar soil simulant impacted upon various materials that are commonly used in spaceflight hardware. It was seen that considerable damage is inevitable and protective barriers need to be designed.

  18. Low Cost Precision Lander for Lunar Exploration

    Science.gov (United States)

    Head, J. N.; Gardner, T. G.; Hoppa, G. V.; Seybold, K. G.

    2004-12-01

    For 60 years the US Defense Department has invested heavily in producing small, low mass, precision guided vehicles. The technologies matured under these programs include terrain-aided navigation, closed loop terminal guidance algorithms, robust autopilots, high thrust-to-weight propulsion, autonomous mission management software, sensors, and data fusion. These technologies will aid NASA in addressing New Millennium Science and Technology goals as well as the requirements flowing from the Vision articulated in January 2004. Establishing and resupplying a long term lunar presence will require automated landing precision not yet demonstrated. Precision landing will increase safety and assure mission success. In the DOD world, such technologies are used routinely and reliably. Hence, it is timely to generate a point design for a precise planetary lander useful for lunar exploration. In this design science instruments amount to 10 kg, 16% of the lander vehicle mass. This compares favorably with 7% for Mars Pathfinder and less than 15% for Surveyor. The mission design flies the lander in an inert configuration to the moon, relying on a cruise stage for navigation and TCMs. The lander activates about a minute before impact. A solid booster reduces the vehicle speed to 300-450 m/s. The lander is now about 2 minutes from touchdown and has 600 to 700 m/s delta-v capability, allowing for about 10 km of vehicle divert during terminal descent. This concept of operations is chosen because it closely mimics missile operational timelines used for decades: the vehicle remains inert in a challenging environment, then must execute its mission flawlessly on a moment's notice. The vehicle design consists of a re-plumbed propulsion system, using propellant tanks and thrusters from exoatmospheric programs. A redesigned truss provides hard points for landing gear, electronics, power supply, and science instruments. A radar altimeter and a Digital Scene Matching Area Correlator (DSMAC

  19. Study of Plume Impingement Effects in the Lunar Lander Environment

    Science.gov (United States)

    Marichalar, Jeremiah; Prisbell, A.; Lumpkin, F.; LeBeau, G.

    2010-01-01

    Plume impingement effects from the descent and ascent engine firings of the Lunar Lander were analyzed in support of the Lunar Architecture Team under the Constellation Program. The descent stage analysis was performed to obtain shear and pressure forces on the lunar surface as well as velocity and density profiles in the flow field in an effort to understand lunar soil erosion and ejected soil impact damage which was analyzed as part of a separate study. A CFD/DSMC decoupled methodology was used with the Bird continuum breakdown parameter to distinguish the continuum flow from the rarefied flow. The ascent stage analysis was performed to ascertain the forces and moments acting on the Lunar Lander Ascent Module due to the firing of the main engine on take-off. The Reacting and Multiphase Program (RAMP) method of characteristics (MOC) code was used to model the continuum region of the nozzle plume, and the Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) was used to model the impingement results in the rarefied region. The ascent module (AM) was analyzed for various pitch and yaw rotations and for various heights in relation to the descent module (DM). For the ascent stage analysis, the plume inflow boundary was located near the nozzle exit plane in a region where the flow number density was large enough to make the DSMC solution computationally expensive. Therefore, a scaling coefficient was used to make the DSMC solution more computationally manageable. An analysis of the effectiveness of this scaling technique was performed by investigating various scaling parameters for a single height and rotation of the AM. Because the inflow boundary was near the nozzle exit plane, another analysis was performed investigating three different inflow contours to determine the effects of the flow expansion around the nozzle lip on the final plume impingement results.

  20. NASA Constellation Program (CxP) Key Driving Requirements and Element Descriptions for International Architecture Working Group (IAWG) Functional Teams Human Transportation Cargo Transportation

    Science.gov (United States)

    Martinez, Roland M.

    2009-01-01

    The NASA Constellation uncrewed cargo mission delivers cargo to any designated location on the lunar surface (or other staging point) in a single mission. This capability is used to deliver surface infrastructure needed for lunar outpost construction, to provide periodic logistics resupply to support a continuous human lunar presence, and potentially deliver other assets to various locations.In the nominal mission mode, the Altair lunar lander is launched on Ares V into Low Earth Orbit (LEO), following a short Low Earth Orbit (LEO) loiter period, the Earth Departure Stage (EDS) performs the Trans Lunar Injection (TLI) burn and is then jettisoned. The Altair performs translunar trajectory correction maneuvers as necessary and performs the Lunar Orbit Insertion (LOI) burn. Altair then descends to the surface to land near a designated target, presumably in proximity to an Outpost location or another site of interest for exploration.Alternatively, the EDS and Altair Descent Stage could deliver assets to various staging points within their propulsive capabilities.

  1. Research on Impact Process of Lander Footpad against Simulant Lunar Soils

    Directory of Open Access Journals (Sweden)

    Bo Huang

    2015-01-01

    Full Text Available The safe landing of a Moon lander and the performance of the precise instruments it carries may be affected by too heavy impact on touchdown. Accordingly, landing characteristics have become an important research focus. Described in this paper are model tests carried out using simulated lunar soils of different relative densities (called “simulant” lunar soils below, with a scale reduction factor of 1/6 to consider the relative gravities of the Earth and Moon. In the model tests, the lander was simplified as an impact column with a saucer-shaped footpad with various impact landing masses and velocities. Based on the test results, the relationships between the footpad peak feature responses and impact kinetic energy have been analyzed. Numerical simulation analyses were also conducted to simulate the vertical impact process. A 3D dynamic finite element model was built for which the material parameters were obtained from laboratory test data. When compared with the model tests, the numerical model proved able to effectively simulate the dynamic characteristics of the axial forces, accelerations, and penetration depths of the impact column during landing. This numerical model can be further used as required for simulating oblique landing impacts.

  2. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  3. The inducible CAM plants in putative lunar lander experiments

    Science.gov (United States)

    Burlak, Olexii; Zaetz, Iryna; Soldatkin, Olexii; Rogutskyy, Ivan; Danilchenko, Boris; Mikheev, Olexander; de Vera, Jean-Pierre; Vidmachenko, Anatolii; Foing, Bernard H.; Kozyrovska, Natalia

    Precursory lunar lander experiments on growing plants in locker-based chambers will increase our understanding of effect of lunar conditions on plant physiology. The inducible CAM (Cras-sulacean Acid Metabolism)-plants are reasonable model for a study of relationships between environmental challenges and changes in plant/bacteria gene expression. In inducible CAM-plants the enzymatic machinery for the environmentally activated CAM switches on from a C3-to a full-CAM mode of photosynthesis in response to any stresses (Winter et al., 2008). In our study, Kalanchoe spp. are shown to be promising candidates for putative lunar experiments as resistant to irradiation and desiccation, especially after inoculation with a bacterial consortium (Boorlak et al., 2010). Within frames of the experiment we expect to get information about the functional activity of CAM-plants, in particular, its organogenesis, photosystem, the circadian regulation of plant metabolism on the base of data gaining with instrumental indications from expression of the reporter genes fused to any genes involved in vital functions of the plant (Kozyrovska et al., 2009). References 1. Winter K., Garcia M., Holtum J. (2008) J. Exp. Bot. 59(7):1829-1840 2. Bourlak O., Lar O., Rogutskyy I., Mikheev A., Zaets I., Chervatyuk N., de Vera J.-P., Danilchenko A.B. Foing B.H., zyrovska N. (2010) Space Sci. Technol. 3. Kozyrovska N.O., Vidmachenko A.P., Foing B.H. et al. Exploration/call/estec/ESA. 2009.

  4. Understanding the Lunar System Architecture Design Space

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  5. ESA strategy for human exploration and the Lunar Lander Mission

    Science.gov (United States)

    Gardini, B.

    As part of ESAs Aurora Exploration programme, the Agency has defined, since 2001, a road map for exploration in which, alongside robotic exploration missions, the International Space Station (ISS) and the Moon play an essential role on the way to other destinations in the Solar System, ultimately to a human mission to Mars in a more distant future. In the frame of the Human Spaceflight programme the first European Lunar Lander Mission, with a launch date on 2018, has been defined, targeting the lunar South Pole region to capitalize on unique illumination conditions and provide the opportunity to carry out scientific investigations in a region of the Moon not explored so far. The Phase B1 industrial study, recently initiated, will consolidate the mission design and prepare the ground for the approval of the full mission development phase at the 2012 ESA Council at Ministerial. This paper describes the mission options which have been investigated in the past Phase A studies and presents the main activities foreseen in the Phase B1 to consolidate the mission design, including a robust bread-boards and technology development programme. In addition, the approach to overcoming the mission's major technical and environmental challenges and the activities to advance the definition of the payload elements will be described.

  6. Altair performance and upgrades

    Science.gov (United States)

    Lai, Olivier; Véran, Jean-Pierre; Herriot, Glen; White, John; Ball, Jesse; Trujillo, Chad

    2014-07-01

    Altair is the facility single conjugate AO system for Gemini North. Although it has been in operation for more than 10 years (and upgraded to LGS in 2007), Altair's performance is degraded by three main issues: vibrations of the telescope and instrument support structure, spatial aliasing on centroid offsets from the M2 support structure print-through on the optical surface and static non-common path aberrations. Monte-Carlo simulations can reproduce the behavior of Altair when including these three effects and they are roughly of the same order of magnitude. Solutions or mitigations are being investigated to overcome these nefarious effects and restore Altair's performance to its nominal level. A simplex algorithm as well as a phase diversity approach are being investigated to measure and correct for static aberrations. A high accuracy phase map of the M2 print-through has been obtained and is being used to calibrate and/or filter centroids affected by aliasing. A new real time computer is under consideration, to be able to handle more advanced controllers, especially notch filters to combat vibrations. In this paper we will report on the various simulations and on-sky results of this rejuvenation of one of Gemini's workhorse instruments.

  7. Overview of Human Factors and Habitability at NASA

    Science.gov (United States)

    Connolly, Janis; Arch, M.; Kaiser, Mary

    2009-01-01

    This slide presentation reviews the ongoing work on human factors and habitability in the development of the Constellation Program. The focus of the work is on how equipment, spacecraft design, tools, procedures and nutrition be used to improve the health, safety and efficiency of the crewmembers. There are slides showing the components of the Constellation Program, and the conceptual designs of the Orion Crew module, the lunar lander, (i.e., Altair) the microgravity EVA suit, and the lunar surface EVA suit, the lunar rover, and the lunar surface system infrastructure.

  8. Optimal Lunar Landing Trajectory Design for Hybrid Engine

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Cho

    2015-01-01

    Full Text Available The lunar landing stage is usually divided into two parts: deorbit burn and powered descent phases. The optimal lunar landing problem is likely to be transformed to the trajectory design problem on the powered descent phase by using continuous thrusters. The optimal lunar landing trajectories in general have variety in shape, and the lunar lander frequently increases its altitude at the initial time to obtain enough time to reduce the horizontal velocity. Due to the increment in the altitude, the lunar lander requires more fuel for lunar landing missions. In this work, a hybrid engine for the lunar landing mission is introduced, and an optimal lunar landing strategy for the hybrid engine is suggested. For this approach, it is assumed that the lunar lander retrofired the impulsive thruster to reduce the horizontal velocity rapidly at the initiated time on the powered descent phase. Then, the lunar lander reduced the total velocity and altitude for the lunar landing by using the continuous thruster. In contradistinction to other formal optimal lunar landing problems, the initial horizontal velocity and mass are not fixed at the start time. The initial free optimal control theory is applied, and the optimal initial value and lunar landing trajectory are obtained by simulation studies.

  9. Battery and Fuel Cell Development for NASA's Constellation Missions

    Science.gov (United States)

    Manzo, Michelle A.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  10. Battery and Fuel Cell Development for NASA's Exploration Missions

    Science.gov (United States)

    Manzo, Michelle A.; Reid, Concha M.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  11. Lunar Riometry

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Burns, J. O.; Kasper, J. C.

    2011-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent and its behavior over time, including modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the peak plasma density of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of nanometer- to micron-scale dust. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  12. An Evaluation of a High Pressure Regulator for NASA's Robotic Lunar Lander Spacecraft

    Science.gov (United States)

    Burnside, Christopher G.; Trinh, Huu P.; Pedersen, Kevin W.

    2013-01-01

    The Robotic Lunar Lander (RLL) development project office at NASA Marshall Space Flight Center is currently studying several lunar surface science mission concepts. The focus is on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface or other air-less bodies in the solar system. Initial trade studies of launch vehicle options indicate the spacecraft will be significantly mass and volume constrained. Because of the investment by the DOD in low mass, highly volume efficient components, NASA has investigated the potential integration of some of these technologies in space science applications. A 10,000 psig helium pressure regulator test activity has been conducted as part of the overall risk reduction testing for the RLL spacecraft. The regulator was subjected to typical NASA acceptance testing to assess the regulator response to the expected RLL mission requirements. The test results show the regulator can supply helium at a stable outlet pressure of 740 psig within a +/- 5% tolerance band and maintain a lock-up pressure less than the +5% above nominal outlet pressure for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for the internal seat leakage at lock-up and less than 10-5 SCCS for external leakage through the regulator body. The successful test has shown the potential for 10,000 psig helium systems in NASA spacecraft and has reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements.

  13. An Overview of Propulsion Concept Studies and Risk Reduction Activities for Robotic Lunar Landers

    Science.gov (United States)

    Trinh, Huu P.; Story, George; Burnside, Chris; Kudlach, Al

    2010-01-01

    In support of designing robotic lunar lander concepts, the propulsion team at NASA Marshall Space Flight Center (MSFC) and the Johns Hopkins University Applied Physics Laboratory (APL), with participation from industry, conducted a series of trade studies on propulsion concepts with an emphasis on light-weight, advanced technology components. The results suggest a high-pressure propulsion system may offer some benefits in weight savings and system packaging. As part of the propulsion system, a solid rocket motor was selected to provide a large impulse to reduce the spacecraft s velocity prior to the lunar descent. In parallel to this study effort, the team also began technology risk reduction testing on a high thrust-to-weight descent thruster and a high-pressure regulator. A series of hot-fire tests was completed on the descent thruster in vacuum conditions at NASA White Sands Test Facility (WSTF) in New Mexico in 2009. Preparations for a hot-fire test series on the attitude control thruster at WSTF and for pressure regulator testing are now underway. This paper will provide an overview of the concept trade study results along with insight into the risk mitigation activities conducted to date.

  14. Optimization of a Lunar Pallet Lander Reinforcement Structure Using a Genetic Algorithm

    Science.gov (United States)

    Burt, Adam O.; Hull, Patrick V.

    2014-01-01

    This paper presents a design automation process using optimization via a genetic algorithm to design the conceptual structure of a Lunar Pallet Lander. The goal is to determine a design that will have the primary natural frequencies at or above a target value as well as minimize the total mass. Several iterations of the process are presented. First, a concept optimization is performed to determine what class of structure would produce suitable candidate designs. From this a stiffened sheet metal approach was selected leading to optimization of beam placement through generating a two-dimensional mesh and varying the physical location of reinforcing beams. Finally, the design space is reformulated as a binary problem using 1-dimensional beam elements to truncate the design space to allow faster convergence and additional mechanical failure criteria to be included in the optimization responses. Results are presented for each design space configuration. The final flight design was derived from these results.

  15. Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes

    Science.gov (United States)

    Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe

    2011-01-01

    Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang

  16. A HW-SW Co-Designed System for the Lunar Lander Hazard Detection and Avoidance Breadboarding

    Science.gov (United States)

    Palomo, Pedro; Latorre, Antonio; Valle, Carlos; Gomez de Aguero, Sergio; Hagenfeldt, Miguel; Parreira, Baltazar; Lindoso, Almudena; Portela, Marta; Garcia, Mario; San Millan, Enrique; Zharikov, Yuri; Entrena, Luis

    2014-08-01

    This paper presents the HW-SW co-design approach followed to tackle the design of the Hazard Detection and Avoidance (HDA) system breadboarding for the Lunar Lander ESA mission, undertaken given the fact that novel GNC technologies used to promote autonomous systems demand processing capabilities that current (and forthcoming) space processors are not able to satisfy. The paper shows how the current system design has been performed in a process in which the original HDA functionally validated design has been partitioned between SW (deemed for execution in a microprocessor) and HW algorithms (to be executed in an FPGA), considering the performance requirements and resorting to a deep analysis of the algorithms in view of their adequacy to HW or SW implementation.

  17. CE-4 Mission and Future Journey to Lunar

    Science.gov (United States)

    Zou, Yongliao; Wang, Qin; Liu, Xiaoqun

    2016-07-01

    Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.

  18. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  19. Exploration Life Support Technology Development for Lunar Missions

    Science.gov (United States)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  20. Basic radio interferometry for future lunar missions

    NARCIS (Netherlands)

    Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Marinus Jan; Falcke, Heino

    2014-01-01

    In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,

  1. A Dual Launch Robotic and Human Lunar Mission Architecture

    Science.gov (United States)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This

  2. ATHLETE: Lunar Cargo Handling for International Lunar Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2010-01-01

    As part of the Human-Robot Systems Project within the NASA Exploration Technology Development Program, the Jet Propulsion Laboratory is developing a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. The basic idea of ATHLETE is to have six relatively small wheels on the ends of legs. The small wheels and associated drive actuators are much less massive than the larger wheels and gears needed for an "all terrain" vehicle that cannot "walk" out of extreme terrain. The mass savings for the wheels and wheel actuators is greater than the mass penalty of the legs, for a net mass savings. Starting in 2009, NASA became engaged in detailed architectural studies for international discussions with the European Space Agency (ESA), the Japanese Space Agency (JAXA), and the Canadian Space Agency (CSA) under the auspices of the International Architecture Working Group (IAWG). ATHLETE is considered in most of the campaign options considered, providing a way to offload cargo from large Altair-class landers (having a cargo deck 6+ meters above the surface) as well as offloading international landers launched on Ariane-5 or H-2 launch vehicles. These international landers would carry provisions as well as scientific instruments and/or small rovers that would be used by international astronauts as part of an international effort to explore the moon.Work described in this paper includes architectural studies in support of the international missions as well as field testing of a half-scale ATHLETE prototype performing cargo offloading from a lander mockup, along with multi-kilometer traverse, climbing over greater than 1 m rocks, tool use, etc.

  3. Preface: The Chang'e-3 lander and rover mission to the Moon

    Science.gov (United States)

    Ip, Wing-Huen; Yan, Jun; Li, Chun-Lai; Ouyang, Zi-Yuan

    2014-12-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.

  4. Lunar scout: A Project Artemis proposal

    Science.gov (United States)

    The results of a student project to design a lunar lander in the context of a specifically defined mission are presented. The Lunar Scout will be launched from Cape Canaveral, Florida onboard a Delta II launch vehicle. The Delta II will carry the lander and its payload to a 1367 km orbit. Once it reaches that altitude, a STAR 48A solid rocket motor will kick the spacecraft into a lunar trajectory. After burnout of the lunar insertion motor, it will be jettisoned from the spacecraft. The flight from the earth to the moon will take approximately 106.4 hours. During this time the battery, which was fully charged prior to launch, will provide all power to the spacecraft. Every hour, the spacecraft will use its sun sensors and star trackers to update its position, maintain some stabilization and relay it back to earth using the dipole antennas. At the start of its lunar trajectory, the spacecraft will fire one of its 1.5 N thrusters to spin in at a very small rate. The main reason for this is to prevent one side of the spacecraft from overheating in the sun. When the spacecraft nears the moon, it will orient itself for the main retro burn. At an altitude of 200 km, a 4400 N bipropellant liquid thruster will ignite to slow the spacecraft. During the burn, the radar altimeter will be turned on to guide the spacecraft. The main retro rocket will slow the lander to 10 m/s at an approximate altitude of 40 km above the moon. From there, the space craft will use four 4.5 N hydrazine vertical thrusters and 1.5 N horizontal thrusters to guide the spacecraft to a soft landing. Once on the ground, the lander will shutoff the radar and attitude control systems. After the debris from the impact has settled, the six solar panels will be deployed to begin recharging the batteries and to power up the payload. The feedhorn antenna will then rotate to fix itself on the earth.

  5. Lagrangian Trajectory Modeling of Lunar Dust Particles

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.; Immer, Christopher D.

    2008-01-01

    Apollo landing videos shot from inside the right LEM window, provide a quantitative measure of the characteristics and dynamics of the ejecta spray of lunar regolith particles beneath the Lander during the final 10 [m] or so of descent. Photogrammetry analysis gives an estimate of the thickness of the dust layer and angle of trajectory. In addition, Apollo landing video analysis divulges valuable information on the regolith ejecta interactions with lunar surface topography. For example, dense dust streaks are seen to originate at the outer rims of craters within a critical radius of the Lander during descent. The primary intent of this work was to develop a mathematical model and software implementation for the trajectory simulation of lunar dust particles acted on by gas jets originating from the nozzle of a lunar Lander, where the particle sizes typically range from 10 micron to 500 micron. The high temperature, supersonic jet of gas that is exhausted from a rocket engine can propel dust, soil, gravel, as well as small rocks to high velocities. The lunar vacuum allows ejected particles to travel great distances unimpeded, and in the case of smaller particles, escape velocities may be reached. The particle size distributions and kinetic energies of ejected particles can lead to damage to the landing spacecraft or to other hardware that has previously been deployed in the vicinity. Thus the primary motivation behind this work is to seek a better understanding for the purpose of modeling and predicting the behavior of regolith dust particle trajectories during powered rocket descent and ascent.

  6. Lunar Atmosphere Probe Station: A Proof-of-Concept Instrument Package for Monitoring the Lunar Atmosphere

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.

    2013-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.

  7. Optimal Lunar Landing Trajectory Design for Hybrid Engine

    OpenAIRE

    Cho, Dong-Hyun; Kim, Donghoon; Leeghim, Henzeh

    2015-01-01

    The lunar landing stage is usually divided into two parts: deorbit burn and powered descent phases. The optimal lunar landing problem is likely to be transformed to the trajectory design problem on the powered descent phase by using continuous thrusters. The optimal lunar landing trajectories in general have variety in shape, and the lunar lander frequently increases its altitude at the initial time to obtain enough time to reduce the horizontal velocity. Due to the increment in the altitude,...

  8. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    Science.gov (United States)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  9. SiGe Based Low Temperature Electronics for Lunar Surface Applications

    Science.gov (United States)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John

    2012-01-01

    The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.

  10. COMPASS Final Report: Lunar Communications Terminal (LCT)

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2010-01-01

    The Lunar Communications Terminal (LCT) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session designed a terminal to provide communications between lunar South Pole assets, communications relay to/from these assets through an orbiting Lunar Relay Satellite (LRS) and navigation support. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The Terminal consists of a pallet containing the communications and avionics equipment, surrounded by the thermal control system (radiator), an attached, deployable 10-m tower, upon which were mounted locally broadcasting and receiving modems and a deployable 1 m diameter Ka/S band dish which provides relay communications with the lunar relay satellites and, as a backup, Earth when it is in view. All power was assumed to come from the lunar outpost Habitat. Three LCT design options were explored: a stand-alone LCT servicing the manned outpost, an integrated LCT (into the Habitat or Lunar Lander), and a mini-LCT which provides a reduced level of communication for primarily robotic areas dealing as in situ resource utilization (ISRU) and remote science. Where possible all the designs assumed single fault tolerance. Significant mass savings were found when integrating the LCT into the Habitat or Lander but increases in costs occurred depending upon the level of man rating required for such designs.

  11. Preface: The Chang'e-3 lander and rover mission to the Moon

    International Nuclear Information System (INIS)

    Ip Wing-Huen; Yan Jun; Li Chun-Lai; Ouyang Zi-Yuan

    2014-01-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions

  12. Lunar Riometry: Proof-of-Concept Instrument Package

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K.; Giersch, L.; Burns, J. O.; Farrell, W. M.; Kasper, J. C.; O'Dwyer, I.; Hartman, J.

    2012-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) is based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the vertical extent of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  13. A Lunar L2-Farside Exploration and Science Mission Concept with the ORion Multi-Purpose Crew Vehicle and a Teleoperated Lander/Rover

    Science.gov (United States)

    Burns, Jack O.; Kring, David; Norris, Scott; Hopkins, Josh; Lazio, Joseph; Kasper, Justin

    2012-01-01

    A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such missions would validate the Orion MPCV's life support systems, would demonstrate the high-speed re-entry capability needed for return from deep space, and would measure astronauts' radiation dose from cosmic rays and solar flares to verify that Orion would provide sufficient protection, as it is designed to do. On this proposed mission, the astronauts would teleoperate landers and rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitkin basin (one of the oldest impact basins in the solar system) is a key science objective of the 2011 Planetary Science Decadal Survey. Observations of the Universe's first stars/galaxies at low radio frequencies are a priority of the 2010 Astronomy & Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions.

  14. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  15. Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.

  16. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  17. NASA Propulsion Sub-System Concept Studies and Risk Reduction Activities for Resource Prospector Lander

    Science.gov (United States)

    Trinh, Huu P.

    2015-01-01

    NASA's exploration roadmap is focused on developing technologies and performing precursor missions to advance the state of the art for eventual human missions to Mars. One of the key components of this roadmap is various robotic missions to Near-Earth Objects, the Moon, and Mars to fill in some of the strategic knowledge gaps. The Resource Prospector (RP) project is one of these robotic precursor activities in the roadmap. RP is a multi-center and multi-institution project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days, assuming a five day direct Earth to Moon transfer. Because of the mission cost constraint, a trade study of the propulsion concepts was conducted with a focus on available low-cost hardware for reducing cost in development, while technical risk, system mass, and technology advancement requirements were also taken into consideration. The propulsion system for the lander is composed of a braking stage providing a high thrust to match the lander's velocity with the lunar surface and a lander stage performing the final lunar descent. For the braking stage, liquid oxygen (LOX) and liquid methane (LCH4) propulsion systems, derived from the Morpheus experimental lander, and storable bi-propellant systems, including the 4th stage Peacekeeper (PK) propulsion components and Space Shuttle orbital maneuvering engine (OME), and a solid motor were considered for the study. For the lander stage, the trade study included miniaturized Divert Attitude Control System (DACS) thrusters (Missile Defense Agency (MDA) heritage), their enhanced thruster versions, ISE-100 and ISE-5, and commercial-off-the-shelf (COTS) hardware. The lowest cost configuration of using the solid motor and the PK components while meeting the requirements was selected. The reference concept of the lander is shown in Figure 1. In the current reference configuration, the solid stage is the primary provider of delta

  18. Scientific Objectives of China Chang E 4 CE-4 Lunar Far-side Exploration Mission

    Science.gov (United States)

    Zhang, Hongbo; Zeng, Xingguo; Chen, Wangli

    2017-10-01

    China has achieved great success in the recently CE-1~CE-3 lunar missions, and in the year of 2018, China Lunar Exploration Program (CLEP) is going to launch the CE-4 mission. CE-4 satellite is the backup satellite of CE-3, so that it also consists of a Lander and a Rover. However, CE-4 is the first mission designed to detect the far side of the Moon in human lunar exploration history. So the biggest difference between CE-4 and CE-3 is that it will be equipped with a relay satellite in Earth-Moon-L2 Point for Earth-Moon Communication. And the scientific payloads carried on the Lander and Rover will also be different. It has been announced by the Chinese government that CE-4 mission will be equipped with some new international cooperated scientific payloads, such as the Low Frequency Radio Detector from Holland, Lunar Neutron and Radiation Dose Detector from Germany, Neutral Atom Detector from Sweden, and Lunar Miniature Optical Imaging Sounder from Saudi Arabia. The main scientific objective of CE-4 is to provide scientific data for lunar far side research, including: 1)general spatial environmental study of lunar far side;2)general research on the surface, shallow layer and deep layer of lunar far side;3)detection of low frequency radio on lunar far side using Low Frequency Radio Detector, which would be the first time of using such frequency band in lunar exploration history .

  19. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    Science.gov (United States)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  20. Japanese lunar robotics exploration by co-operation with lander and ...

    Indian Academy of Sciences (India)

    A lunar rover is expected to travel safely in a wide area and explore in detail. Japanese ... is proposed. The working group has been conducting feasibility study of advance technologies. .... CPUs are dedicated to the function of environment.

  1. Plume Impingement to the Lunar Surface: A Challenging Problem for DSMC

    Science.gov (United States)

    Lumpkin, Forrest; Marichalar, Jermiah; Piplica, Anthony

    2007-01-01

    The President's Vision for Space Exploration calls for the return of human exploration of the Moon. The plans are ambitious and call for the creation of a lunar outpost. Lunar Landers will therefore be required to land near predeployed hardware, and the dust storm created by the Lunar Lander's plume impingement to the lunar surface presents a hazard. Knowledge of the number density, size distribution, and velocity of the grains in the dust cloud entrained into the flow is needing to develop mitigation strategies. An initial step to acquire such knowledge is simulating the associated plume impingement flow field. The following paper presents results from a loosely coupled continuum flow solver/Direct Simulation Monte Carlo (DSMC) technique for simulating the plume impingement of the Apollo Lunar module on the lunar surface. These cases were chosen for initial study to allow for comparison with available Apollo video. The relatively high engine thrust and the desire to simulate interesting cases near touchdown result in flow that is nearly entirely continuum. The DSMC region of the flow field was simulated using NASA's DSMC Analysis Code (DAC) and must begin upstream of the impingement shock for the loosely coupled technique to succeed. It was therefore impossible to achieve mean free path resolution with a reasonable number of molecules (say 100 million) as is shown. In order to mitigate accuracy and performance issues when using such large cells, advanced techniques such as collision limiting and nearest neighbor collisions were employed. The final paper will assess the benefits and shortcomings of such techniques. In addition, the effects of plume orientation, plume altitude, and lunar topography, such as craters, on the flow field, the surface pressure distribution, and the surface shear stress distribution are presented.

  2. Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes

    Science.gov (United States)

    2008-01-01

    Excavating granular materials beneath a vertical jet of gas involves several physical mechanisms. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. We performed a series of experiments and simulations (Figure 1) to provide a detailed view of the complex gas-soil interactions. Measurements taken from the Apollo lunar landing videos (Figure 2) and from photographs of the resulting terrain helped demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from the landing spacecraft must be accurately predicted and controlled or it could erode the surfaces of nearby hardware. This analysis indicated that the lunar dust is ejected at an angle of less than 3 degrees above the surface, the results of which can be mitigated by a modest berm of lunar soil. These results assume that future lunar landers will use a single engine. The analysis would need to be adjusted for a multiengine lander. Figure 3 is a detailed schematic of the Lunar Module camera calibration math model. In this chart, formulas relating the known quantities, such as sun angle and Lunar Module dimensions, to the unknown quantities are depicted. The camera angle PSI is determined by measurement of the imaged aspect ratio of a crater, where the crater is assumed to be circular. The final solution is the determination of the camera calibration factor, alpha. Figure 4 is a detailed schematic of the dust angle math model, which again relates known to unknown parameters. The known parameters now include the camera calibration factor and Lunar Module dimensions. The final computation is the ejected

  3. Stable orbits for lunar landing assistance

    Science.gov (United States)

    Condoleo, Ennio; Cinelli, Marco; Ortore, Emiliano; Circi, Christian

    2017-10-01

    To improve lunar landing performances in terms of mission costs, trajectory determination and visibility the use of a single probe located over an assistance orbit around the Moon has been taken into consideration. To this end, the properties of two quasi-circular orbits characterised by a stable behaviour of semi-major axis, eccentricity and inclination have been investigated. The analysis has demonstrated the possibility of using an assistance probe, located over one of these orbits, as a relay satellite between lander and Earth, even in the case of landings on the far side of the Moon. A comparison about the accuracy in retrieving the lander's state with respect to the use of a probe located in the Lagrangian point L2 of the Earth-Moon system has also been carried out.

  4. Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions

    Science.gov (United States)

    Jan, Darrell L.

    2010-01-01

    Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.

  5. Viking Lander Model

    Science.gov (United States)

    2007-01-01

    NASA's Viking Project found a place in history when it became the first mission to land a spacecraft successfully on the surface of another planet and return both imaging and non-imaging data over an extended time period. Two identical spacecraft, each consisting of a lander and an orbiter, were built. Each orbiter-lander pair flew together and entered Mars orbit; the landers then separated and descended to the planet's surface. The Viking 1 Lander touched down on the western slope of Chryse Planitia (the Plains of Gold) on July 20, 1976, while the Viking 2 lander settled down at Utopia Planitia on September 3, 1976. Besides taking photographs and collecting other science data on the Martian surface, the two landers conducted three biology experiments designed to look for possible signs of life. These experiments discovered unexpected and enigmatic chemical activity in the Martian soil, but provided no clear evidence for the presence of living microorganisms in soil near the landing sites. According to scientists, Mars is self-sterilizing. They believe the combination of solar ultraviolet radiation that saturates the surface, the extreme dryness of the soil and the oxidizing nature of the soil chemistry prevent the formation of living organisms in the Martian soil. The Viking mission was planned to continue for 90 days after landing. Each orbiter and lander operated far beyond its design lifetime. Viking Orbiter 1 functioned until July 25, 1978, while Viking Orbiter 2 continued for four years and 1,489 orbits of Mars, concluding its mission August 7, 1980. Because of the variations in available sunlight, both landers were powered by radioisotope thermoelectric generators -- devices that create electricity from heat given off by the natural decay of plutonium. That power source allowed long-term science investigations that otherwise would not have been possible. The last data from Viking Lander 2 arrived at Earth on April 11, 1980. Viking Lander 1 made its final

  6. Rover deployment system for lunar landing mission

    Science.gov (United States)

    Sutoh, Masataku; Hoshino, Takeshi; Wakabayashi, Sachiko

    2017-09-01

    For lunar surface exploration, a deployment system is necessary to allow a rover to leave the lander. The system should be as lightweight as possible and stored retracted when launched. In this paper, two types of retractable deployment systems for lunar landing missions, telescopic- and fold-type ramps, are discussed. In the telescopic-type system, a ramp is stored with the sections overlapping and slides out during deployment. In the fold-type system, it is stored folded and unfolds for the deployment. For the development of these ramps, a design concept study and structural analysis were conducted first. Subsequently, ramp deployment and rover release tests were performed using the developed ramp prototypes. Through these tests, the validity of their design concepts and functions have been confirmed. In the rover release test, it was observed that the developed lightweight ramp was sufficiently strong for a 50-kg rover to descend. This result suggests that this ramp system is suitable for the deployment of a 300-kg-class rover on the Moon, where the gravity is about one-sixth that on Earth. The lightweight and sturdy ramp developed in this study will contribute to both safe rover deployment and increase of lander/rover payload.

  7. Parameters and structure of lunar regolith in Chang'E-3 landing area from lunar penetrating radar (LPR) data

    Science.gov (United States)

    Dong, Zehua; Fang, Guangyou; Ji, Yicai; Gao, Yunze; Wu, Chao; Zhang, Xiaojuan

    2017-01-01

    Chang'E-3 (CE-3) landed in the northwest Mare Imbrium, a region that has not been explored before. Yutu rover that released by CE-3 lander carried the first lunar surface penetrating radar (LPR) for exploring lunar regolith thickness and subsurface shallow geological structures. In this paper, based on the LPR data and the Panoramic Camera (PC) data, we first calculate the lunar surface regolith parameters in CE-3 landing area including its permittivity, density, conductivity and FeO + TiO2 content. LPR data provides a higher spatial resolution and more accuracy for the lunar regolith parameters comparing to other remote sensing techniques, such as orbit radar sounder and microwave sensing or earth-based powerful radar. We also derived the regolith thickness and its weathered rate with much better accuracy in the landing area. The results indicate that the regolith growth rate is much faster than previous estimation, the regolith parameters are not uniform even in such a small study area and the thickness and growth rate of lunar regolith here are different from other areas in Mare Imbrium. We infer that the main reason should be geological deformation that caused by multiple impacts of meteorites in different sizes.

  8. Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements

    Science.gov (United States)

    Lin, Yunlong

    Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.

  9. Introduction to EGU session "Lunar Science and Exploration Towards Moon Village"

    Science.gov (United States)

    Foing, Bernard

    2017-04-01

    The EGU PS2.2 session "Lunar Science and Exploration" Towards Moon Village" will address: - Recent lunar results: geochemistry, geophysics in the context of open planetary science and exploration - Synthesis of results from SMART-1, Kaguya, Chang'e 1, 2 and 3, Chandrayaan-1, LCROSS, LADEE, Lunar Reconnaissance Orbiter and, Artemis and GRAIL - Goals and Status of missions under preparation: orbiters, Luna-Glob, Google Lunar X Prize, Luna Resurs polar lander, SLIM, Chandrayaan2, Chang'E 4 & 5, Lunar Resource Prospector, Future landers, Lunar sample return missions - Precursor missions, instruments and investigations for landers, rovers, sample return, and human cis-lunar activities and human lunar surface sorties - Preparation for International Lunar Decade: databases, instruments, missions, terrestrial field campaigns, support studies - ILEWG and Global Exploration roadmaps towards a global robotic/human Moon village - Strategic Knowledge Gaps, and key science Goals relevant to Lunar Global Exploration Lunar science and exploration are developing further with new and exciting missions being developed by China, the US, Japan, India, Russia, Korea and Europe, and with new stakeholders. The Moon Village is an open concept proposed by ESA DG with the goal of a sustainable human and robotic presence on the lunar surface as an ensemble where multiple users can carry out multiple activities. Multiple goals of the Moon Village include planetary science, life sciences, astronomy, fundamental research, resources utilisation, human spaceflight, peaceful cooperation, economical development, inspiration, training and capacity building. ESA director general has revitalized and enhanced the original concept of MoonVillage discussed in the last decade. Space exploration builds on international collaboration. COSPAR and its ILEWG International Lunar Exploration Working Group (created in 1994) have fostered collaboration between lunar missions [4-8]. A flotilla of lunar orbiters has

  10. Investigation of dust particles with future Russian lunar missions: achievements of further development of PmL instrument.

    Science.gov (United States)

    Kuznetsov, Ilya; Zakharov, Alexander; Afonin, Valeri; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Lyash, Andrey; Dolnikov, Gennady; Popel, Sergey; Lisin, Evgeny

    2016-07-01

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On the day side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution of dust particles by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind

  11. Network science landers for Mars

    DEFF Research Database (Denmark)

    Harri, A.M.; Marsal, O.; Lognonne, P.

    1999-01-01

    by the Mars Express Orbiter that is expected to be functional during the NetLander Mission's operational phase. Communication between the landers and the Earth would take place via a data relay onboard the Mars Express Orbiter. (C) 1999 COSPAR. Published by Elsevier Science Ltd.......The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first......, ionospheric, geodetic measurements and ground penetrating radar mapping supported by panoramic images. The payloads also include entry phase measurements of the atmospheric vertical structure. The scientific data could be combined with simultaneous observations of the atmosphere and surface of Mars...

  12. Lunar dust transport and potential interactions with power system components

    International Nuclear Information System (INIS)

    Katzan, C.M.; Edwards, J.L.

    1991-11-01

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor III provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 lunar module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future lunar lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage on radiators and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers

  13. Lunar dust transport and potential interactions with power system components

    Energy Technology Data Exchange (ETDEWEB)

    Katzan, C.M.; Edwards, J.L.

    1991-11-01

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor III provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 lunar module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future lunar lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage on radiators and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers.

  14. Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

    Directory of Open Access Journals (Sweden)

    Hyung-Chul Lim

    2016-09-01

    Full Text Available Korea’s lunar exploration project includes the launching of an orbiter, a lander (including a rover, and an experimental orbiter (referred to as a lunar pathfinder. Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

  15. Researches on hazard avoidance cameras calibration of Lunar Rover

    Science.gov (United States)

    Li, Chunyan; Wang, Li; Lu, Xin; Chen, Jihua; Fan, Shenghong

    2017-11-01

    Lunar Lander and Rover of China will be launched in 2013. It will finish the mission targets of lunar soft landing and patrol exploration. Lunar Rover has forward facing stereo camera pair (Hazcams) for hazard avoidance. Hazcams calibration is essential for stereo vision. The Hazcam optics are f-theta fish-eye lenses with a 120°×120° horizontal/vertical field of view (FOV) and a 170° diagonal FOV. They introduce significant distortion in images and the acquired images are quite warped, which makes conventional camera calibration algorithms no longer work well. A photogrammetric calibration method of geometric model for the type of optical fish-eye constructions is investigated in this paper. In the method, Hazcams model is represented by collinearity equations with interior orientation and exterior orientation parameters [1] [2]. For high-precision applications, the accurate calibration model is formulated with the radial symmetric distortion and the decentering distortion as well as parameters to model affinity and shear based on the fisheye deformation model [3] [4]. The proposed method has been applied to the stereo camera calibration system for Lunar Rover.

  16. A cislunar transportation system fuelled by lunar resources

    Science.gov (United States)

    Sowers, G. F.

    2016-11-01

    A transportation system for a self sustaining economy in cislunar space is discussed. The system is based on liquid oxygen (LO2), liquid hydrogen (LH2) propulsion whose fuels are derived from ice mined at the polar regions of the Moon. The elements of the transportation system consist of the Advanced Cryogenic Evolved Stage (ACES) and the XEUS lander, both being developed by United Launch Alliance (ULA). The main propulsion elements and structures are common between ACES and XEUS. Both stages are fully reusable with refueling of their LO2/LH2 propellants. Utilization of lunar sourced propellants has the potential to dramatically lower the cost of transportation within the cislunar environs. These lower costs dramatically lower the barriers to entry of a number of promising cislunar based activities including space solar power. One early application of the architecture is providing lunar sourced propellant to refuel ACES for traditional spacecraft deployment missions. The business case for this application provides an economic framework for a potential lunar water mining operation.

  17. A single launch lunar habitat derived from an NSTS external tank

    Science.gov (United States)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.

  18. Identification and characterization of science-rich landing sites for lunar lander missions using integrated remote sensing observations

    NARCIS (Netherlands)

    Flahaut, J.; Blanchette-Guertin, J.F.; Jilly, C.; Sharma, P.; Souchon, A.; van Westrenen, W.; Kring, D.A.

    2012-01-01

    Despite more than 52 years of lunar exploration, a wide range of first-order scientific questions remain about the Moon's formation, temporal evolution, and current surface and interior properties. Addressing many of these questions requires obtaining new in situ analyses or return of lunar surface

  19. A new moonquake catalog from Apollo 17 seismic data I: Lunar Seismic Profiling Experiment: Thermal moonquakes and implications for surface processes

    Science.gov (United States)

    Weber, R. C.; Dimech, J. L.; Phillips, D.; Molaro, J.; Schmerr, N. C.

    2017-12-01

    Apollo 17's Lunar Seismic Profiling Experiment's (LSPE) primary objective was to constrain the near-surface velocity structure at the landing site using active sources detected by a 100 m-wide triangular geophone array. The experiment was later operated in "listening mode," and early studies of these data revealed the presence of thermal moonquakes - short-duration seismic events associated with terminator crossings. However, the full data set has never been systematically analyzed for natural seismic signal content. In this study, we analyze 8 months of continuous LSPE data using an automated event detection technique that has previously successfully been applied to the Apollo 16 Passive Seismic Experiment data. We detected 50,000 thermal moonquakes from three distinct event templates, representing impulsive, intermediate, and emergent onset of seismic energy, which we interpret as reflecting their relative distance from the array. Impulsive events occur largely at sunrise, possibly representing the thermal "pinging" of the nearby lunar lander, while emergent events occur at sunset, possibly representing cracking or slumping in more distant surface rocks and regolith. Preliminary application of an iterative event location algorithm to a subset of the impulsive waveforms supports this interpretation. We also perform 3D modeling of the lunar surface to explore the relative contribution of the lander, known rocks and surrounding topography to the thermal state of the regolith in the vicinity of the Apollo 17 landing site over the course of the lunar diurnal cycle. Further development of both this model and the event location algorithm may permit definitive discrimination between different types of local diurnal events e.g. lander noise, thermally-induced rock breakdown, or fault creep on the nearby Lee-Lincoln scarp. These results could place important constraints on both the contribution of seismicity to regolith production, and the age of young lobate scarps.

  20. Spectroscopic observations of the Moon at the lunar surface

    Science.gov (United States)

    Wu, Yunzhao; Hapke, Bruce

    2018-02-01

    The Moon's reflectance spectrum records many of its important properties. However, prior to Chang'E-3 (CE-3), no spectra had previously been measured on the lunar surface. Here we show the in situ reflectance spectra of the Moon acquired on the lunar surface by the Visible-Near Infrared Spectrometer (VNIS) onboard the CE-3 rover. The VNIS detected thermal radiation from the lunar regolith, though with much shorter wavelength range than typical thermal radiometer. The measured temperatures are higher than expected from theoretical model, indicating low thermal inertia of the lunar soil and the effects of grain facet on soil temperature in submillimeter scale. The in situ spectra also reveal that 1) brightness changes visible from orbit are related to the reduction in maturity due to the removal of the fine and weathered particles by the lander's rocket exhaust, not the smoothing of the surface and 2) the spectra of the uppermost soil detected by remote sensing exhibit substantial differences with that immediately beneath, which has important implications for the remote compositional analysis. The reflectance spectra measured by VNIS not only reveal the thermal, compositional, and space-weathering properties of the Moon but also provide a means for the calibration of optical instruments that view the surface remotely.

  1. Relation of the lunar power system to the SEI program and to landers

    Science.gov (United States)

    Criswell, David R.; Waldron, Robert D.

    1992-01-01

    The people of Earth will need more than 20,000 billion watts (GWe) of electric power by 2050 for a high level of prosperity. Power needs in the 22nd Century could exceed 100,000 GWe. By 2100 the total quantity of thermal energy used could fully deplete the known inventory (10(exp 7) GWt-Y) of all non-renewable sources on Earth except for deuterium and hydrogen for use in proposed fusion reactors. The labor, capital, and mass of power plants required to produce 1 GWe-Y of energy from present-day power plants is summarized. Fossil and nuclear plants respectively consume 80 to 190 M$ and 12 to 48 M$ of fuel per GWe-Y. The Lunar Power System (LPS) uses solar power bases on the moon to beam electric power to Earth. The LPS in the figure supplies load-following power to rectennas on Earth. Additional solar power conversion units are located across the lunar limb from their respective Earthward transmitting stations. LPS can be augmented by mirrors in polar orbit about the moon. The construction of rectennas on Earth determines the base cost (0.001s$/kWe-H) of LPS power. A manned International Lunar Base (ILB) can accelerate the development of LPS by providing the initial transportation and habitation facilities and base operations. ILB can greatly reduce up front costs and risks by emplacing a moderate scale LPS (1-100 GWe). LPS can accelerate the development of the ILB by providing greater funding than is reasonable to expect for purely scientific research. An international ILB/LPS program can foster world trust and prosperity.

  2. ROSETTA lander Philae: Touch-down reconstruction

    Science.gov (United States)

    Roll, Reinhard; Witte, Lars

    2016-06-01

    The landing of the ROSETTA-mission lander Philae on November 12th 2014 on Comet 67 P/Churyumov-Gerasimenko was planned as a descent with passive landing and anchoring by harpoons at touch-down. Actually the lander was not fixed at touch-down to the ground due to failing harpoons. The lander internal damper was actuated at touch-down for 42.6 mm with a speed of 0.08 m/s while the lander touch-down speed was 1 m/s. The kinetic energy before touch-down was 50 J, 45 J were dissipated by the lander internal damper and by ground penetration at touch-down, and 5 J kinetic energy are left after touch-down (0.325 m/s speed). Most kinetic energy was dissipated by ground penetration (41 J) while only 4 J are dissipated by the lander internal damper. Based on these data, a value for a constant compressive soil-strength of between 1.55 kPa and 1.8 kPa is calculated. This paper focuses on the reconstruction of the touch-down at Agilkia over a period of around 20 s from first ground contact to lift-off again. After rebound Philae left a strange pattern on ground documented by the OSIRIS Narrow Angle Camera (NAC). The analysis shows, that the touch-down was not just a simple damped reflection on the surface. Instead the lander had repeated contacts with the surface over a period of about 20 s±10 s. This paper discusses scenarios for the reconstruction of the landing sequence based on the data available and on computer simulations. Simulations are performed with a dedicated mechanical multi-body model of the lander, which was validated previously in numerous ground tests. The SIMPACK simulation software was used, including the option to set forces at the feet to the ground. The outgoing velocity vector is mostly influenced by the timing of the ground contact of the different feet. It turns out that ground friction during damping has strong impact on the lander outgoing velocity, on its rotation, and on its nutation. After the end of damping, the attitude of the lander can be

  3. Conceptual Design of Simulation Models in an Early Development Phase of Lunar Spacecraft Simulator Using SMP2 Standard

    Science.gov (United States)

    Lee, Hoon Hee; Koo, Cheol Hea; Moon, Sung Tae; Han, Sang Hyuck; Ju, Gwang Hyeok

    2013-08-01

    The conceptual study for Korean lunar orbiter/lander prototype has been performed in Korea Aerospace Research Institute (KARI). Across diverse space programs around European countries, a variety of simulation application has been developed using SMP2 (Simulation Modelling Platform) standard related to portability and reuse of simulation models by various model users. KARI has not only first-hand experience of a development of SMP compatible simulation environment but also an ongoing study to apply the SMP2 development process of simulation model to a simulator development project for lunar missions. KARI has tried to extend the coverage of the development domain based on SMP2 standard across the whole simulation model life-cycle from software design to its validation through a lunar exploration project. Figure. 1 shows a snapshot from a visualization tool for the simulation of lunar lander motion. In reality, a demonstrator prototype on the right-hand side of image was made and tested in 2012. In an early phase of simulator development prior to a kick-off start in the near future, targeted hardware to be modelled has been investigated and indentified at the end of 2012. The architectural breakdown of the lunar simulator at system level was performed and the architecture with a hierarchical tree of models from the system to parts at lower level has been established. Finally, SMP Documents such as Catalogue, Assembly, Schedule and so on were converted using a XML(eXtensible Mark-up Language) converter. To obtain benefits of the suggested approaches and design mechanisms in SMP2 standard as far as possible, the object-oriented and component-based design concepts were strictly chosen throughout a whole model development process.

  4. Providing Oxygen for the Crew of a Lunar Outpost

    Science.gov (United States)

    Ewert, Michael K.; Jeng, Frank; Conger, Bruce; Anderson, Molly S.

    2009-01-01

    Oxygen (O2) is obviously essential for human space missions, but it is important to examine all the different ways it will be used and the potential sources that it may come from. This effort will lead to storage and delivery requirements and help to determine the optimum architecture from an overall systems engineering point of view. Accounting for all the oxygen in a Lunar Outpost mission includes meeting the metabolic needs of the crew while in the surface Habitat, leakage through the Habitat or Pressurized Rover walls, recharge of the space suit backpack and emergency situations. Current plans indicate that both primary and secondary O2 bottles for the space suit will be filled to a pressure of 20.7 MPa (3000 psia). Other uses of O2 require much lower pressure. Sources of O2 at a Lunar Outpost include compressed or liquefied O2 brought along specifically for life support, scavenged O2 from the Lander propulsion system, recovered O2 from waste water or exhaled carbon dioxide and O2 mined from the moon itself. Previously, eight technology options were investigated to provide the high pressure space suit O2. High pressure O2 storage was treated as the baseline technology and compared to the other seven. The other seven were cryogenic storage followed by high pressure vaporization, scavenging liquid oxygen (LOX) from Lander followed by vaporization, LOX delivery followed by sorption compression, low pressure water electrolysis followed by mechanical compression, high pressure water electrolysis, sharing a high pressure electrolyzer with a regenerative fuel cell power system, and making use of In- Situ Resource Utilization (ISRU). This system-level analysis was conducted by comparing equivalent system mass of the eight technologies in open and closed loop life support architectures. The most promising high pressure O2 generation technologies were recommended for development. Updates and an expansion of the earlier study have been made and the results are reported in

  5. The 3-D geological model around Chang'E-3 landing site based on lunar penetrating radar Channel 1 data

    Science.gov (United States)

    Yuan, Yuefeng; Zhu, Peimin; Zhao, Na; Xiao, Long; Garnero, Edward; Xiao, Zhiyong; Zhao, Jiannan; Qiao, Le

    2017-07-01

    High-frequency lunar penetrating radar (LPR) data from an instrument on the lunar rover Yutu, from the Chang'E-3 (CE-3) robotic lander, were used to build a three-dimensional (3-D) geological model of the lunar subsurface structure. The CE-3 landing site is in the northern Mare Imbrium. More than five significant reflection horizons are evident in the LPR profile, which we interpret as different period lava flow sequences deposited on the lunar surface. The most probable directions of these flows were inferred from layer depths, thicknesses, and other geological information. Moreover, the apparent Imbrian paleoregolith homogeneity in the profile supports the suggestion of a quiescent period of lunar surface evolution. Similar subsurface structures are found at the NASA Apollo landing sites, indicating that the cause and time of formation of the imaged phenomena may be similar between the two distant regions.

  6. Modern mysteries of the Moon what we still don’t know about our lunar companion

    CERN Document Server

    Foster, Vincent S

    2016-01-01

    There are still many questions that remain about the Moon. From concentric craters to lunar swirls, water vapor and lunar reverberations on impact, Foster collects it all for a fascinating tour that will illuminate the backyard observer's understanding of this easily viewed, yet also imperfectly understood, celestial object. Data from Apollo and a flotilla of unmanned Moon orbiters, crashers, and landers have all contributed to our understanding of the Moon, but these mysteries linger despite decades of research. When Project Apollo brought back lunar rocks and soil samples, it opened a new chapter of understanding Earth's lone natural satellite, a process that continues to this day, as old results are revisited and new techniques are used on existing samples. Topics such as the origin, evolution, structure and composition of the Moon, however, are still under debate. Lunar research is still an active field of study. New technologies make it possible to continue to learn. But even so, the Moon continues to h...

  7. Adaptation and Re-Use of Spacecraft Power System Models for the Constellation Program

    Science.gov (United States)

    Hojnicki, Jeffrey S.; Kerslake, Thomas W.; Ayres, Mark; Han, Augustina H.; Adamson, Adrian M.

    2008-01-01

    NASA's Constellation Program is embarking on a new era of space exploration, returning to the Moon and beyond. The Constellation architecture will consist of a number of new spacecraft elements, including the Orion crew exploration vehicle, the Altair lunar lander, and the Ares family of launch vehicles. Each of these new spacecraft elements will need an electric power system, and those power systems will need to be designed to fulfill unique mission objectives and to survive the unique environments encountered on a lunar exploration mission. As with any new spacecraft power system development, preliminary design work will rely heavily on analysis to select the proper power technologies, size the power system components, and predict the system performance throughout the required mission profile. Constellation projects have the advantage of leveraging power system modeling developments from other recent programs such as the International Space Station (ISS) and the Mars Exploration Program. These programs have developed mature power system modeling tools, which can be quickly modified to meet the unique needs of Constellation, and thus provide a rapid capability for detailed power system modeling that otherwise would not exist.

  8. Biomedical program of the ALTAIR french russian flight onboard the MIR station.

    Science.gov (United States)

    Andre-Deshays, C; Haignere, J P; Guell, A; Marsal, O; Suchet, L; Kotovskaya, A; Gratchev, V; Noskin, A; Grigoriev, A

    1995-01-01

    One year after the achievement of the 2 weeks ANTARES french-russian mission in the MIR station in July 1992, a 22 days ALTAIR mission with a french cosmonaut has been performed in July 1993, making use of the scientific payload remaining on board. Taking benefit of the analysis of the previous mission, the experimental protocols were adapted to refine scientific objectives and gave to the scientists the opportunity to enhance quantitatively and qualitatively their results. The french biomedical program, conducted in close scientific cooperation with IMBP and associated laboratories, was composed of 8 experiments out of which 2 were new with regards to the ANTARES program. In the field of cardio-vascular physiology and fluid regulation, the experiments: ORTHOSTATISME, DIURESE have been renewed and complemented by the TISSU experiment (proposed by a german scientist) and a real-time tele-assistance program using US echography technic and ground support from the french CADMOS support control center located in Toulouse. With respect to neurosciences objectives, to the experiments VIMINAL (cognitive processes) and ILLUSIONS (study of proprioceptives cues), was added the SYNERGIES experiment to analyse the postural adjustments during movement. The IMMUNOLOGIE experiment carried on and the radiobiological experiment BIODOSE ended. Adding the results of the 2 missions ANTARES and ALTAIR, and the data obtained in between onboard with russian cosmonauts, the scientists have received a wealth of physiological data and gained reproducibility and confidence in their results.

  9. A Cis-Lunar Propellant Infrastructure for Flexible Path Exploration and Space Commerce

    Science.gov (United States)

    Oeftering, Richard C.

    2012-01-01

    This paper describes a space infrastructure concept that exploits lunar water for propellant production and delivers it to users in cis-lunar space. The goal is to provide responsive economical space transportation to destinations beyond low Earth orbit (LEO) and enable in-space commerce. This is a game changing concept that could fundamentally affect future space operations, provide greater access to space beyond LEO, and broaden participation in space exploration. The challenge is to minimize infrastructure development cost while achieving a low operational cost. This study discusses the evolutionary development of the infrastructure from a very modest robotic operation to one that is capable of supporting human operations. The cis-lunar infrastructure involves a mix of technologies including cryogenic propellant production, reusable lunar landers, propellant tankers, orbital transfer vehicles, aerobraking technologies, and electric propulsion. This cislunar propellant infrastructure replaces Earth-launched propellants for missions beyond LEO. It enables users to reach destinations with smaller launchers or effectively multiplies the user s existing payload capacity. Users can exploit the expanded capacity to launch logistics material that can then be traded with the infrastructure for propellants. This mutually beneficial trade between the cis-lunar infrastructure and propellant users forms the basis of in-space commerce.

  10. The Art and Science of Systems Engineering

    Science.gov (United States)

    Singer, Christopher E.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) was established in 1958, and its Marshall Space Flight Center was founded in 1960, as space-related work was transferred from the Army Ballistic Missile Agency at Redstone Arsenal, where Marshall is located. With this heritage, Marshall contributes almost 50 years of systems engineering experience with human-rated launch vehicles and scientific spacecraft to fulfill NASA's mission exploration and discovery. These complex, highly specialized systems have provided vital platforms for expanding the knowledge base about Earth, the solar system, and cosmos; developing new technologies that also benefit life on Earth; and opening new frontiers for America's strategic space goals. From Mercury and Gemini, to Apollo and the Space Shuttle, Marshall's systems engineering expertise is an unsurpassed foundational competency for NASA and the nation. Current assignments comprise managing Space Shuttle Propulsion systems; developing environmental control and life support systems and coordinating science operations on the International Space Station; and a number of exploration-related responsibilities. These include managing and performing science missions, such as the Lunar Crater Observation and Sensing Satellite and the Lunar Reconnaissance Orbiter slated to launch for the Moon in April 2009, to developing the Ares I crew launch vehicle upper stage and integrating the vehicle stack in house, as well as designing the Ares V cargo launch vehicle and contributing to the development of the Altair Lunar Lander and an International Lunar Network with communications nodes and other infrastructure.

  11. Project Morpheus: Lean Development of a Terrestrial Flight Testbed for Maturing NASA Lander Technologies

    Science.gov (United States)

    Devolites, Jennifer L.; Olansen, Jon B.

    2015-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.

  12. Toxicity of lunar dust assessed in inhalation-exposed rats.

    Science.gov (United States)

    Lam, Chiu-wing; Scully, Robert R; Zhang, Ye; Renne, Roger A; Hunter, Robert L; McCluskey, Richard A; Chen, Bean T; Castranova, Vincent; Driscoll, Kevin E; Gardner, Donald E; McClellan, Roger O; Cooper, Bonnie L; McKay, David S; Marshall, Linda; James, John T

    2013-10-01

    Humans will again set foot on the moon. The moon is covered by a layer of fine dust, which can pose a respiratory hazard. We investigated the pulmonary toxicity of lunar dust in rats exposed to 0, 2.1, 6.8, 20.8 and 60.6 mg/m(3) of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week); the aerosols in the nose-only exposure chambers were generated from a jet-mill ground preparation of a lunar soil collected during the Apollo 14 mission. After 4 weeks of exposure to air or lunar dust, groups of five rats were euthanized 1 day, 1 week, 4 weeks or 13 weeks after the last exposure for assessment of pulmonary toxicity. Biomarkers of toxicity assessed in bronchoalveolar fluids showed concentration-dependent changes; biomarkers that showed treatment effects were total cell and neutrophil counts, total protein concentrations and cellular enzymes (lactate dehydrogenase, glutamyl transferase and aspartate transaminase). No statistically significant differences in these biomarkers were detected between rats exposed to air and those exposed to the two low concentrations of lunar dust. Dose-dependent histopathology, including inflammation, septal thickening, fibrosis and granulomas, in the lung was observed at the two higher exposure concentrations. No lesions were detected in rats exposed to ≤6.8 mg/m(3). This 4-week exposure study in rats showed that 6.8 mg/m(3) was the highest no-observable-adverse-effect level (NOAEL). These results will be useful for assessing the health risk to humans of exposure to lunar dust, establishing human exposure limits and guiding the design of dust mitigation systems in lunar landers or habitats.

  13. Contribution of SELENE-2 geodetic measurements to constrain the lunar internal structure

    Science.gov (United States)

    Matsumoto, K.; Kikuchi, F.; Yamada, R.; Iwata, T.; Kono, Y.; Tsuruta, S.; Hanada, H.; Goossens, S. J.; Ishihara, Y.; Kamata, S.; Sasaki, S.

    2012-12-01

    Internal structure and composition of the Moon provide important clue and constraints on theories for how the Moon formed and evolved. The Apollo seismic network has contributed to the internal structure modeling. Efforts have been made to detect the lunar core from the noisy Apollo data (e.g., [1], [2]), but there is scant information about the structure below the deepest moonquakes at about 1000 km depth. On the other hand, there have been geodetic studies to infer the deep structure of the Moon. For example, LLR (Lunar Laser Ranging) data analyses detected a displacement of the lunar pole of rotation, indicating that dissipation is acting on the rotation arising from a fluid core [3]. Bayesian inversion using geodetic data (such as mass, moments of inertia, tidal Love numbers k2 and h2, and quality factor Q) also suggests a fluid core and partial melt in the lower mantle region [4]. Further improvements in determining the second-degree gravity coefficients (which will lead to better estimates of moments of inertia) and the Love number k2 will help us to better constrain the lunar internal structure. Differential VLBI (Very Long Baseline Interferometry) technique, which was used in the Japanese lunar exploration mission SELENE (Sept. 2007 - June 2009), is expected to contribute to better determining the second-degree potential Love number k2 and low-degree gravity coefficients. SELENE will be followed by the future lunar mission SELENE-2 which will carry both a lander and an orbiter. We propose to put the SELENE-type radio sources on these spacecraft in order to accurately estimate k2 and the low-degree gravity coefficients. By using the same-beam VLBI tracking technique, these parameters will be retrieved through precision orbit determination of the orbiter with respect to the lander which serves as a reference. The VLBI mission with the radio sources is currently one of the mission candidates for SELENE-2. We have conducted a preliminary simulation study on the

  14. Hazard Detection Software for Lunar Landing

    Science.gov (United States)

    Huertas, Andres; Johnson, Andrew E.; Werner, Robert A.; Montgomery, James F.

    2011-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing a system for safe and precise manned lunar landing that involves novel sensors, but also specific algorithms. ALHAT has selected imaging LIDAR (light detection and ranging) as the sensing modality for onboard hazard detection because imaging LIDARs can rapidly generate direct measurements of the lunar surface elevation from high altitude. Then, starting with the LIDAR-based Hazard Detection and Avoidance (HDA) algorithm developed for Mars Landing, JPL has developed a mature set of HDA software for the manned lunar landing problem. Landing hazards exist everywhere on the Moon, and many of the more desirable landing sites are near the most hazardous terrain, so HDA is needed to autonomously and safely land payloads over much of the lunar surface. The HDA requirements used in the ALHAT project are to detect hazards that are 0.3 m tall or higher and slopes that are 5 or greater. Steep slopes, rocks, cliffs, and gullies are all hazards for landing and, by computing the local slope and roughness in an elevation map, all of these hazards can be detected. The algorithm in this innovation is used to measure slope and roughness hazards. In addition to detecting these hazards, the HDA capability also is able to find a safe landing site free of these hazards for a lunar lander with diameter .15 m over most of the lunar surface. This software includes an implementation of the HDA algorithm, software for generating simulated lunar terrain maps for testing, hazard detection performance analysis tools, and associated documentation. The HDA software has been deployed to Langley Research Center and integrated into the POST II Monte Carlo simulation environment. The high-fidelity Monte Carlo simulations determine the required ground spacing between LIDAR samples (ground sample distances) and the noise on the LIDAR range measurement. This simulation has also been used to determine the effect of

  15. Analysis of landing site attributes for future missions targeting the rim of the lunar South Pole Aitken basin

    Science.gov (United States)

    Koebel, David; Bonerba, Michele; Behrenwaldt, Daniel; Wieser, Matthias; Borowy, Carsten

    2012-11-01

    For the South polar lunar region between -85 and -90° Latitude an updated analyses of the solar illumination and ground station visibility conditions has been performed in the frame of a feasibility study for an ESA Lunar Lander mission. The analyses are based on the refined lunar digital elevation model provided by the Japanese Kaguya/Selene mission, originating from its LASER altimeter instrument. For the South polar region maps of integral solar illumination are presented for a mission epoch in 2016. The analysis modelling was validated with the help of a Kaguya High Definition video. The solar illumination is driving for the power subsystems of any robotic lander craft or manned lunar outpost, in case they rely on conventional photovoltaic power generation with battery buffering of shadowed periods. In addition the visibility of the terrain from a terrestrial ESA ground station was analysed. The results are presented as an integral ground contact duration map, being crucial for the operations of any lunar outpost. Considering these two quality criteria, several possible landing sites for a future lunar mission have been pre-selected. For these sites a detailed analysis of quasi-continuous illumination conditions is presented. This includes magnified maps of the pre-selected areas, showing any location's longest illumination intervals that are allowed to be interrupted by shadows with limited duration only. As a final quality criterion, the terrain topology has been analysed for its impact on the landing trajectory. From a trade-off between the three quality criteria the connecting ridge between the Shackleton and the de Gerlache was determined to provide the most favourable landing site quality. This site is located at 89°28' South, 136°40' West, and 1947 m altitude, and features and integral illumination of 85.7%. With battery energy to sustain shadows of 120 h, total mission duration of 9.37 sidereal months can be guaranteed.

  16. Rationale and concept for a lunar pit reconnaissance probe

    Science.gov (United States)

    Dorrington, G. E.

    2018-04-01

    Speculation on near-term scientific reasons for the exploration of lunar pits is offered alongside comments on possible longer-term human exploitation. It is proposed that in order to determine whether or not one or more of the pits offer access the large subsurface voids e.g. a non-collapsed lava tube, a preliminary reconnaissance mission solely focused on obtaining lateral images (and/or LiDAR maps) is needed. Possible concept options for such a preliminary reconnaissance mission are discussed. It is suggested that one of the best possible strategies is to employ a micro-sized probe (∼0.3m) that would hop from a nearby main landing spacecraft to the selected pit. After the surface position of the main lander is determined accurately, the probe would perform a ballistic hop, or hover-traverse, a distance of ∼3 km over the lunar surface using existing propulsive and guidance technology capability. Once hovering above the pit, the probe or a separate tethered imaging unit would then be lowered into the pit to acquire the necessary subsurface void topology data. This data would then be transmitted back to Earth, directly, via the lander, or via a store-and-forward orbiting relay. Preliminary estimates indicate that a probe of ∼14 kg (dry mass) is viable using a conventional hydrazine monopropellant system with a propellant mass fraction of less than ∼0.2 (20%) including margins, suggesting a piggyback architecture would be feasible.

  17. Researches on the Orbit Determination and Positioning of the Chinese Lunar Exploration Program

    Science.gov (United States)

    Li, P. J.

    2015-07-01

    differences for several gravity models. It is found that for the 100 km× 100 km lunar orbit, with a degree and order expansion up to 165, the JPL's gravity model LP165P does not show noticeable improvement over Japan's SGM series models (100× 100), but for the 15 km× 100 km lunar orbit, a higher degree-order model can significantly improve the orbit accuracy. After accomplished its nominal mission, CE-2 launched its extended missions, which involving the L2 mission and the 4179 Toutatis mission. During the flight of the extended missions, the regime offers very little dynamics thus requires an extensive amount of time and tracking data in order to attain a solution. The overlap errors are computed, and it is indicated that the use of VLBI measurements is able to increase the accuracy and reduce the total amount of tracking time. An orbit determination method based on the polynomial fitting is proposed for the CE-3's planned lunar soft landing mission. In this method, spacecraft's dynamic modeling is not necessary, and its noise reduction is expected to be better than that of the point positioning method by making full use of all-arc observational data. The simulation experiments and real data processing showed that the optimal description of the CE-1's free-fall landing trajectory is a set of five-order polynomial functions for each of the position components as well as velocity components in J2000.0. The combination of the VLBI delay, the delay rate data, and the USB (united S-band) ranging data significantly improved the accuracy than the use of USB data alone. In order to determine the position for the CE-3's Lunar Lander, a kinematic statistical method is proposed. This method uses both ranging and VLBI measurements to the lander for a continuous arc, combing with precise knowledge about the motion of the moon as provided by planetary ephemeris, to estimate the lander's position on the lunar surface with high accuracy. Application of the lunar digital elevation model

  18. Predicting the Blast of Lunar Soil Under a Rocket's Exhaust Jet

    Science.gov (United States)

    Diaz, Carlos J. Sanchez

    2007-01-01

    The blast of lunar soil represents a problem for the future missions planned for the moon. When the lander approached the ground during the Apollo missions, huge showers of dust particles were sent in all directions at extremely high velocities - including upwards towards the landing spacecraft. This represents a clear danger to the lander because the loss of visibility and the damage that can be produced to the vehicle itself. If there had been equipment on the ground, these showers of particles would have created a sand blasting effect over the equipment, possibly damaging optics and contaminating the equipment and depending on the size and velocity of the particles maybe even more extensive damage as the particles penetrated the outer surface of the equipment. Since the there is no air on the moon to slow down the particles, they can travel large distances at high speeds, in fact in some instances they can reach near escape velocity and go into an orbit around the moon and come all the way back to almost the same point where they were at the beginning; meaning that some of the lunar dust that came up during landing will shower back over the site. Once on the surface, the extremely fine dust had a habit of getting itself everywhere. During the Apollo missions it not only covered the astronauts' suits, but managed to work its way inside, damaging airtight joints and scratching up glass visors. The dust found its way inside the spacecraft, contaminating the floor and electronic systems inside, clogging air filters in the process. This is due to the fact that the lunar soil is extremely cohesive. The Lunar soil causes all of the same problems as sand does on Earth but unlike sand particles on Earth, which have smooth spherical shapes, the dust on the Moon is more like small particles of glass with sharper edges since there is no erosion on the lunar surface. During the Apollo missions the dust problem did not cause a big problem due to the fact of the length of

  19. Mercury Lander Mission Concept Study Summary

    Science.gov (United States)

    Eng, D. A.

    2018-05-01

    Provides a summary of the Mercury Lander Mission Concept Study performed as part of the last Planetary Decadal Survey. The presentation will focus on engineering trades and the challenges of developing a Mercury lander mission.

  20. Beijing Lunar Declaration 2010: B) Technology and Resources; Infrastructures and Human Aspects; Moon, Space and Society

    Science.gov (United States)

    Arvidson, R.; Foing, B. H.; Plescial, J.; Cohen, B.; Blamont, J. E.

    2010-01-01

    We report on the Beijing Lunar Declaration endorsed by the delegates of the Global Lunar Conference/11th ILEWG Conference on Exploration and Utilisation of the Moon, held at Beijing on 30 May- 3 June 2010. Specifically we focus on Part B:Technologies and resources; Infrastructures and human aspects; Moon, Space, Society and Young Explorers. We recommend continued and enhanced development and implementation of sessions about lunar exploration, manned and robotic, at key scientific and engineering meetings. A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and coordination. That should increase towards real cooperation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential.

  1. Lunar base thermoelectric power station study

    Science.gov (United States)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology

  2. The environs of viking 2 lander.

    Science.gov (United States)

    Shorthill, R W; Moore, H J; Hutton, R E; Scott, R F; Spitzer, C R

    1976-12-11

    Forty-six days after Viking 1 landed, Viking 2 landed in Utopia Planitia, about 6500 kilometers away from the landing site of Viking 1. Images show that in the immediate vicinity of the Viking 2 landing site the surface is covered with rocks, some of which are partially buried, and fine-grained materials. The surface sampler, the lander cameras, engineering sensors, and some data from the other lander experiments were used to investigate the properties of the surface. Lander 2 has a more homogeneous surface, more coarse-grained material, an extensive crust, small rocks or clods which seem to be difficult to collect, and more extensive erosion by the retro-engine exhaust gases than lander 1. A report on the physical properties of the martian surface based on data obtained through sol 58 on Viking 2 and a brief description of activities on Viking 1 after sol 36 are given.

  3. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  4. The Design of Two Nano-Rovers for Lunar Surface Exploration in the Context of the Google Lunar X Prize

    Science.gov (United States)

    Gill, E.; Honfi Camilo, L.; Kuystermans, P.; Maas, A. S. B. B.; Buutfeld, B. A. M.; van der Pols, R. H.

    2008-09-01

    This paper summarizes a study performed by ten students at the Delft University of Technology on a lunar exploration vehicle suited for competing in the Google Lunar X Prize1. The design philosophy aimed at a quick and simple design process, to comply with the mission constraints. This is achieved by using conventional technology and performing the mission with two identical rovers, increasing reliability and simplicity of systems. Both rovers are however capable of operating independently. The required subsystems have been designed for survival and operation on the lunar surface for an estimated mission lifetime of five days. This preliminary study shows that it is possible for two nano-rovers to perform the basic exploration tasks. The mission has been devised such that after launch the rovers endure a 160 hour voyage to the Moon after which they will land on Sinus Medii with a dedicated lunar transfer/lander vehicle. The mission outline itself has the two nano-rovers travelling in the same direction, moving simultaneously. This mission characteristic allows a quick take-over of the required tasks by the second rover in case of one rover breakdown. The main structure of the rovers will consist of Aluminium 2219 T851, due to its good thermal properties and high hardness. Because of the small dimensions of the rovers, the vehicles will use rigid caterpillar tracks as locomotion system. The track systems are sealed from lunar dust using closed track to prevent interference with the mechanisms. This also prevents any damage to the electronics inside the tracks. For the movement speed a velocity of 0.055 m/s has been determined. This is about 90% of the maximum rover velocity, allowing direct control from Earth. The rovers are operated by a direct control loop, involving the mission control center. In order to direct the rovers safely, a continuous video link with the Earth is necessary to assess its immediate surroundings. Two forward pointing navigational cameras

  5. An Evaluation of Ultra-High Pressure Regulator for Robotic Lunar Landing Spacecraft

    Science.gov (United States)

    Burnside, Christopher; Trinh, Huu; Pedersen, Kevin

    2011-01-01

    The Robotic Lunar Lander Development (RLLD) Project Office at NASA Marshall Space Flight Center (MSFC) has studied several lunar surface science mission concepts. These missions focus on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface. Initial trade studies of launch vehicle options for these mission concepts indicate that the spacecraft design will be significantly mass-constrained. To minimize mass and facilitate efficient packaging, the notional propulsion system for these landers has a baseline of an ultra-high pressure (10,000 psig) helium pressurization system that has been used on Defense missiles. The qualified regulator is capable of short duration use; however, the hardware has not been previously tested at NASA spacecraft requirements with longer duration. Hence, technical risks exist in using this missile-based propulsion component for spacecraft applications. A 10,000-psig helium pressure regulator test activity is being carried out as part of risk reduction testing for MSFC RLLD project. The goal of the test activity is to assess the feasibility of commercial off-the-shelf ultra-high pressure regulator by testing with a representative flight mission profile. Slam-start, gas blowdown, water expulsion, lock-up, and leak tests are also performed on the regulator to assess performance under various operating conditions. The preliminary test results indicated that the regulator can regulate helium to a stable outlet pressure of 740 psig within the +/- 5% tolerance band and maintain a lock-up pressure less than +5% for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for internal seat leakage at lock-up and less than10-5 SCCS for external leakage through the regulator ambient reference cavity. The successful tests have shown the potential for 10,000 psig helium systems in NASA spacecraft and have reduced risk

  6. One Mars year: viking lander imaging observations.

    Science.gov (United States)

    Jones, K L; Arvidson, R E; Guinness, E A; Bragg, S L; Wall, S D; Carlston, C E; Pidek, D G

    1979-05-25

    Throughout the complete Mars year during which they have been on the planet, the imaging systems aboard the two Viking landers have documented a variety of surface changes. Surface condensates, consisting of both solid H(2)O and CO(2), formed at the Viking 2 lander site during the winter. Additional observations suggest that surface erosion rates due to dust redistribution may be substantially less than those predicted on the basis of pre-Viking observations. The Viking 1 lander will continue to acquire and transmit a predetermined sequence of imaging and meteorology data as long as it is operative.

  7. Frost at the Viking Lander 2 Site

    Science.gov (United States)

    1977-01-01

    Photo from Viking Lander 2 shows late-winter frost on the ground on Mars around the lander. The view is southeast over the top of Lander 2, and shows patches of frost around dark rocks. The surface is reddish-brown; the dark rocks vary in size from 10 centimeters (four inches) to 76 centimeters (30 inches) in diameter. This picture was obtained Sept. 25, 1977. The frost deposits were detected for the first time 12 Martian days (sols) earlier in a black-and-white image. Color differences between the white frost and the reddish soil confirm that we are observing frost. The Lander Imaging Team is trying to determine if frost deposits routinely form due to cold night temperatures, then disappear during the warmer daytime. Preliminary analysis, however, indicates the frost was on the ground for some time and is disappearing over many days. That suggests to scientists that the frost is not frozen carbon dioxide (dry ice) but is more likely a carbon dioxide clathrate (six parts water to one part carbon dioxide). Detailed studies of the frost formation and disappearance, in conjunction with temperature measurements from the lander's meteorology experiment, should be able to confirm or deny that hypothesis, scientists say.

  8. A new lunar absolute control point: established by images from the landing camera on Chang'e-3

    International Nuclear Information System (INIS)

    Wang Fen-Fei; Liu Jian-Jun; Li Chun-Lai; Ren Xin; Mu Ling-Li; Yan Wei; Wang Wen-Rui; Xiao Jing-Tao; Tan Xu; Zhang Xiao-Xia; Zou Xiao-Duan; Gao Xing-Ye

    2014-01-01

    The establishment of a lunar control network is one of the core tasks in selenodesy, in which defining an absolute control point on the Moon is the most important step. However, up to now, the number of absolute control points has been very sparse. These absolute control points have mainly been lunar laser ranging retroreflectors, whose geographical location can be observed by observations on Earth and also identified in high resolution lunar satellite images. The Chang'e-3 (CE-3) probe successfully landed on the Moon, and its geographical location has been monitored by an observing station on Earth. Since its positional accuracy is expected to reach the meter level, the CE-3 landing site can become a new high precision absolute control point. We use a sequence of images taken from the landing camera, as well as satellite images taken by CE-1 and CE-2, to identify the location of the CE-3 lander. With its geographical location known, the CE-3 landing site can be established as a new absolute control point, which will effectively expand the current area of the lunar absolute control network by 22%, and can greatly facilitate future research in the field of lunar surveying and mapping, as well as selenodesy

  9. International Lunar Observatory Association Advancing 21st Century Astronomy from the Moon

    Science.gov (United States)

    Durst, Steve

    2015-08-01

    Long considered a prime location to conduct astronomical observations, the Moon is beginning to prove its value in 21st Century astronomy through the Lunar Ultraviolet Telescope aboard China’s Chang’e-3 Moon lander and through the developing missions of the International Lunar Observatory Association (ILOA). With 24 hours / Earth day of potential operability facilitating long-duration observations, the stable platform of the lunar surface and extremely thin exosphere guaranteeing superior observation conditions, zones of radio-quiet for radio astronomy, and the resources and thermal stability at the lunar South Pole, the Moon provides several pioneering advantages for astronomy. ILOA, through MOUs with NAOC and CNSA, has been collaborating with China to make historic Galaxy observations with the Chang’e-3 LUT, including imaging Galaxy M101 in December 2014. LUT has an aperture of 150mm, covers a wavelength range of 245 to 340 nanometers and is capable of detecting objects at a brightness down to 14 mag. The success of China’s mission has provided support and momentum for ILOA’s mission to place a 2-meter dish, multifunctional observatory at the South Pole of the Moon NET 2017. ILOA also has plans to send a precursor observatory instrument (ILO-X) on the inaugural mission of GLXP contestant Moon Express. Advancing astronomy and astrophysics from the Moon through public-private and International partnerships will provide many valuable research opportunities while also helping to secure humanity’s position as multi world species.

  10. Photogrammetry of the Viking Lander imagery

    Science.gov (United States)

    Wu, S. S. C.; Schafer, F. J.

    1982-01-01

    The problem of photogrammetric mapping which uses Viking Lander photography as its basis is solved in two ways: (1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture, using computerized rectification; and (2) by interfacing a high-speed, general-purpose computer to the analytical plotter employed, so that all correction computations can be performed in real time during the model-orientation and map-compilation process. Both the efficiency of the Viking Lander cameras and the validity of the rectification method have been established by a series of pre-mission tests which compared the accuracy of terrestrial maps compiled by this method with maps made from aerial photographs. In addition, 1:10-scale topographic maps of Viking Lander sites 1 and 2 having a contour interval of 1.0 cm have been made to test the rectification method.

  11. Identification of the Beagle 2 lander on Mars

    Science.gov (United States)

    Bridges, J. C.; Clemmet, J.; Croon, M.; Sims, M. R.; Pullan, D.; Muller, J.-P.; Tao, Y.; Xiong, S.; Putri, A. R.; Parker, T.; Turner, S. M. R.; Pillinger, J. M.

    2017-10-01

    The 2003 Beagle 2 Mars lander has been identified in Isidis Planitia at 90.43° E, 11.53° N, close to the predicted target of 90.50° E, 11.53° N. Beagle 2 was an exobiology lander designed to look for isotopic and compositional signs of life on Mars, as part of the European Space Agency Mars Express (MEX) mission. The 2004 recalculation of the original landing ellipse from a 3-sigma major axis from 174 km to 57 km, and the acquisition of Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) imagery at 30 cm per pixel across the target region, led to the initial identification of the lander in 2014. Following this, more HiRISE images, giving a total of 15, including red and blue-green colours, were obtained over the area of interest and searched, which allowed sub-pixel imaging using super high-resolution techniques. The size (approx. 1.5 m), distinctive multilobed shape, high reflectivity relative to the local terrain, specular reflections, and location close to the centre of the planned landing ellipse led to the identification of the Beagle 2 lander. The shape of the imaged lander, although to some extent masked by the specular reflections in the various images, is consistent with deployment of the lander lid and then some or all solar panels. Failure to fully deploy the panels-which may have been caused by damage during landing-would have prohibited communication between the lander and MEX and commencement of science operations. This implies that the main part of the entry, descent and landing sequence, the ejection from MEX, atmospheric entry and parachute deployment, and landing worked as planned with perhaps only the final full panel deployment failing.

  12. Identification of the Beagle 2 lander on Mars.

    Science.gov (United States)

    Bridges, J C; Clemmet, J; Croon, M; Sims, M R; Pullan, D; Muller, J-P; Tao, Y; Xiong, S; Putri, A R; Parker, T; Turner, S M R; Pillinger, J M

    2017-10-01

    The 2003 Beagle 2 Mars lander has been identified in Isidis Planitia at 90.43° E, 11.53° N, close to the predicted target of 90.50° E, 11.53° N. Beagle 2 was an exobiology lander designed to look for isotopic and compositional signs of life on Mars, as part of the European Space Agency Mars Express (MEX) mission. The 2004 recalculation of the original landing ellipse from a 3-sigma major axis from 174 km to 57 km, and the acquisition of Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) imagery at 30 cm per pixel across the target region, led to the initial identification of the lander in 2014. Following this, more HiRISE images, giving a total of 15, including red and blue-green colours, were obtained over the area of interest and searched, which allowed sub-pixel imaging using super high-resolution techniques. The size (approx. 1.5 m), distinctive multilobed shape, high reflectivity relative to the local terrain, specular reflections, and location close to the centre of the planned landing ellipse led to the identification of the Beagle 2 lander. The shape of the imaged lander, although to some extent masked by the specular reflections in the various images, is consistent with deployment of the lander lid and then some or all solar panels. Failure to fully deploy the panels-which may have been caused by damage during landing-would have prohibited communication between the lander and MEX and commencement of science operations. This implies that the main part of the entry, descent and landing sequence, the ejection from MEX, atmospheric entry and parachute deployment, and landing worked as planned with perhaps only the final full panel deployment failing.

  13. The surface of Mars: the view from the viking 2 lander.

    Science.gov (United States)

    Mutch, T A; Grenander, S U; Jones, K L; Patterson, W; Arvidson, R E; Guinness, E A; Avrin, P; Carlston, C E; Binder, A B; Sagan, C; Dunham, E W; Fox, P L; Pieri, D C; Huck, F O; Rowland, C W; Taylor, G R; Wall, S D; Kahn, R; Levinthal, E C; Liebes, S; Tucker, R B; Morris, E C; Pollack, J B; Saunders, R S; Wolf, M R

    1976-12-11

    Viking 2 lander began imaging the surface of Mars at Utopia Planitia on 3 September 1976. The surface is a boulder-strewn reddish desert cut by troughs that probably form a polygonal network. A plateau can be seen to the east of the spacecraft, which for the most probable lander location is approximately the direction of a tongue of ejecta from the crater Mie. Boulders at the lander 2 site are generally more vesicular than those near lander i. Fines at both lander sites appear to be very fine-grained and to be bound in a duricrust. The pinkish color of the sky, similar to that observed at the lander I site, indicates suspension of surface material. However, the atmospheric optical depth is less than that at the lander I site. After dissipation of a cloud of dust stirred during landing, no changes other than those stemming from sampling activities have been detected in the landscape. No signs of large organisms are apparent at either landing site.

  14. The surface of Mars - The view from the Viking 2 lander

    Science.gov (United States)

    Mutch, T. A.; Grenander, S. U.; Jones, K. L.; Patterson, W.; Arvidson, R. E.; Guinness, E. A.; Avrin, P.; Carlston, C. E.; Binder, A. B.; Sagan, C.

    1976-01-01

    Viking 2 lander began imaging the surface of Mars at Utopia Planitia on September 3, 1976. The surface is a boulder-strewn reddish desert cut by troughs that probably form a polygonal network. A plateau can be seen to the east of the spacecraft, which for the most probable lander location is approximately the dirction of a tongue of ejecta from the crater Mie. Boulders at the lander 2 site are generally more vesicular than those near lander 1. Fines at both lander sites appear to be very fine-grained and to be bound in a duricrust. The pinkish color of the sky, similar to that observed at the lander 1 site, indicates suspension of surface material. However, the atmospheric optical depth is less than that at the lander 1 site. After dissipation of a cloud of dust stirred during landing, no changes other than those stemming from sampling activities have been detected in the landscape. No signs of large organisms are apparent at either landing site.

  15. Design and Construction of Manned Lunar Base

    Science.gov (United States)

    Li, Zhijie

    2016-07-01

    support system based on physical/chemic-regenerative life support system, which includes microbial waste treatment system, plants cultivation system and animal-protein production system. Energy is another important aspect needs to be solved when building lunar base habitation. The steps of lunar base building process are divided into lunar surface landing, transport, unloading, assembly and construction. Thus the activity systems including lunar lander, lunar chain block, various lunar rovers, robots and 3D printing machine are needed while building a lunar base. For the sake of enough power support for these facilities, the integrated manned lunar base will use solar + nuclear energy plus regenerative fuel cell together with 180kW power to satisfy the requirement of power supply. Besides these two questions talked above, the lunar base habitation also needs to solve the problem of lunar dust protection. Lunar dust grains are sharp and have electrostatic adsorption, which means this kind of dust may damage the functions of spacesuit, lunar rover and other equipments, and it may cause diseases if breathed by astronauts, consequently, lunar dust protection and cleaning mechanism needs to be founded and the anti-dust, automatic dust removal and self-cleaning materials need to be used. At last, this paper puts forward corresponding advices about building lunar base by using international collaboration. Out of question, the construction of lunar base is a huge project, it is very hard to be accomplished by any country alone since lots of uncertain complications exist there. By this token, international collaboration is a certain development direction, and lots of aerospace countries have already achieved the breakout of correlation key technologies, in order to avoid unnecessary waste, the dispersive advantageous resources need to be combined together.

  16. Planetary Seismology : Lander- and Wind-Induced Seismic Signals

    Science.gov (United States)

    Lorenz, Ralph

    2016-10-01

    Seismic measurements are of interest for future geophysical exploration of ocean worlds such as Europa or Titan, as well as Venus, Mars and the Moon. Even when a seismometer is deployed away from a lander (as in the case of Apollo) lander-generated disturbances are apparent. Such signatures may be usefully diagnostic of lander operations (at least for outreach), and may serve as seismic excitation for near-field propagation studies. The introduction of these 'spurious' events may also influence the performance of event detection and data compression algorithms.Examples of signatures in the Viking 2 seismometer record of lander mechanism operations are presented. The coherence of Viking seismometer noise levels and wind forcing is well-established : some detailed examples are examined. Wind noise is likely to be significant on future Mars missions such as InSight, as well as on Titan and Venus.

  17. Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission

    Science.gov (United States)

    Smith, Alan; Crawford, I. A.; Gowen, Robert Anthony; Ambrosi, R.; Anand, M.; Banerdt, B.; Bannister, N.; Bowles, N.; Braithwaite, C.; Brown, P.; Chela-Flores, J.; Cholinser, T.; Church, P.; Coates, A. J.; Colaprete, T.; Collins, G.; Collinson, G.; Cook, T.; Elphic, R.; Fraser, G.; Gao, Y.; Gibson, E.; Glotch, T.; Grande, M.; Griffiths, A.; Grygorczuk, J.; Gudipati, M.; Hagermann, A.; Heldmann, J.; Hood, L. L.; Jones, A. P.; Joy, K. H.; Khavroshkin, O. B.; Klingelhoefer, G.; Knapmeyer, M.; Kramer, G.; Lawrence, D.; Marczewski, W.; McKenna-Lawlor, S.; Miljkovic, K.; Narendranath, S.; Palomba, E.; Phipps, A.; Pike, W. T.; Pullan, D.; Rask, J.; Richard, D. T.; Seweryn, K.; Sheridan, S.; Sims, M.; Sweeting, M.; Swindle, T.; Talboys, D.; Taylor, L.; Teanby, N.; Tong, V.; Ulamec, S.; Wawrzaszek, R.; Wieczorek, M.; Wilson, L.; Wright, I.

    2012-04-01

    Emplacement of four or more kinetic penetrators geographically distributed over the lunar surface can enable a broad range of scientific exploration objectives of high priority and provide significant synergy with planned orbital missions. Whilst past landed missions achieved a great deal, they have not included a far-side lander, or investigation of the lunar interior apart from a very small area on the near side. Though the LCROSS mission detected water from a permanently shadowed polar crater, there remains in-situ confirmation, knowledge of concentration levels, and detailed identification of potential organic chemistry of astrobiology interest. The planned investigations will also address issues relating to the origin and evolution of the Earth-Moon system and other Solar System planetary bodies. Manned missions would be enhanced with use of water as a potential in-situ resource; knowledge of potential risks from damaging surface Moonquakes, and exploitation of lunar regolith for radiation shielding. LunarNet is an evolution of the 2007 LunarEX proposal to ESA (European Space Agency) which draws on recent significant advances in mission definition and feasibility. In particular, the successful Pendine full-scale impact trials have proved impact survivability for many of the key technology items, and a penetrator system study has greatly improved the definition of descent systems, detailed penetrator designs, and required resources. LunarNet is hereby proposed as an exciting stand-alone mission, though is also well suited in whole or in-part to contribute to the jigsaw of upcoming lunar missions, including that of a significant element to the ILN (International Lunar Network).

  18. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    Science.gov (United States)

    Reid, Concha; Bennett, William

    2009-01-01

    NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established

  19. Project M: Scale Model of Lunar Landing Site of Apollo 17

    Science.gov (United States)

    O'Brien, Hollie; Crain, Timothy P.

    2010-01-01

    The basis of the project was creating a scale model representation of the Apollo 17 lunar landing site. Vital components included surface slope characteristics, crater sizes and locations, prominent rocks, and lighting conditions. The model was made for Project M support when evaluating approach and terminal descent as well as when planning surface operations with respect to the terrain. The project had five main mi lestones during the length of the project. The first was examining the best method to use to re-create the Apollo 17 landing site and then reviewing research fmdings with Dr. Tim Crain and EO staff which occurred on June 25, 2010 at a meeting. The second step was formulating a construction plan, budget, and schedule and then presenting the plan for authority to proceed which occurred on July 6,2010. The third part was building a prototype to test materials and building processes which were completed by July 13, 2010. Next was assembling the landing site model and presenting a mid-term construction status report on July 29, 2010. The fifth and final milestone was demonstrating the model and presenting an exit pitch which happened on August 4, 2010. The project was very technical: it needed a lot of research about moon topography, lighting conditions and angles of the sun on the moon, Apollo 17, and Autonomous Landing and Hazard Avoidance Technology (ALHAT), before starting the actual building process. This required using Spreadsheets, searching internet sources and conducting personal meetings with project representatives. This information assisted the interns in deciding the scale of the model with respect to cracks, craters and rocks and their relative sizes as the objects mentioned could interfere with any of the Lunar Landers: Apollo, Project M and future Landers. The project concluded with the completion of a three dimensional scale model of the Apollo 17 Lunar landing site. This model assists Project M members because they can now visualize

  20. Selenia: A habitability study for the development of a third generation lunar base

    Science.gov (United States)

    1991-01-01

    When Apollo astronauts landed on the Moon, the first generation of lunar bases was established. They consisted essentially of a lunar module and related hardware capable of housing two astronauts for not more than several days. Second generation lunar bases are being developed, and further infrastructure, such as space station, orbital transfer, and reusable lander vehicles will be necessary, as prolonged stay on the Moon is required for exploration, research, and construction for the establishment of a permanent human settlement there. Human life in these habitats could be sustained for months, dependent on a continual flow of life-support supplies from Earth. Third-generation lunar bases will come into being as self sufficiency of human settlements becomes feasible. Regeneration of water, oxygen production, and development of indigenous construction materials from lunar resources will be necessary. Greenhouses will grow food supplies in engineered biospheres. Assured protection from solar flares and cosmic radiation must be provided, as well as provision for survival under meteor showers, or the threat of meteorite impact. All these seem to be possible within the second decade of the next century. Thus, the builders of Selenia, the first of the third-generation lunar bases are born today. During the last two years students from the School of Architecture of the University of Puerto Rico have studied the problems that relate to habitability for prolonged stay in extraterrestrial space. An orbital personnel transport to Mars developed originally by the Aerospace Engineering Department of the University of Michigan was investigated and habitability criteria for evaluation of human space habitats were proposed. An important finding from that study was that the necessary rotational diameter of the vessel has to be on the order of two kilometers to ensure comfort for humans under the artificial gravity conditions necessary to maintain physiological well being of

  1. Viking Lander 2 Anniversary

    Science.gov (United States)

    2002-01-01

    [figure removed for brevity, see original site] This portion of a daytime IR image covers the Viking 2 landing site (shown with the X). The second landing on Mars took place September 3, 1976 in Utopia Planitia. The exact location of Lander 2 is not as well established as Lander 1 because there were no clearly identifiable features in the lander images as there were for the site of Lander 1. The Utopia landing site region contains pedestal craters, shallow swales and gentle ridges. The crater Goldstone was named in honor of the Tracking Station in the desert of California. The two Viking Landers operated for over 6 years (nearly four martian years) after landing. This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials, fine sand and dust are warmer (bright). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce. Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be

  2. What would we miss if we characterized the Moon and Mars with just planetary meteorites, remote mapping, and robotic landers?. [Abstract only

    Science.gov (United States)

    Lindstrom, M. M.

    1994-01-01

    Exploration of the Moon and planets began with telescopic studies of their surfaces, continued with orbiting spacecraft and robotic landers, and will culminate with manned exploration and sample return. For the Moon and Mars we also have accidental samples provided by impacts on their surfaces, the lunar and martian meteorites. How much would we know about the lunar surface if we only had lunar meteorites, orbital spacecraft, and robotic exploration, and not the Apollo and Luna returned samples? What does this imply for Mars? With martian meteorites and data from Mariner, Viking, and the future Pathfinder missions, how much could we learn about Mars? The basis of most of our detailed knowledge about the Moon is the Apollo samples. They provide ground truth for the remote mapping, timescales for lunar processes, and samples from the lunar interior. The Moon is the foundation of planetary science and the basis for our interpretation of the other planets. Mars is similar to the Moon in that impact and volcanism are the dominant processes, but Mars' surface has also been affected by wind and water, and hence has much more complex surface geology. Future geochemical or mineralogical mapping of Mars' surface should be able to tell us whether the dominant rock types of the ancient southern highlands are basaltic, anorthositic, granitic, or something else, but will not be able to tell us the detailed mineralogy, geochemistry, or age. Without many more martian meteorites or returned samples we will not know the diversity of martian rocks, and therefore will be limited in our ability to model martian geological evolution.

  3. Rocket Propulsion (RP) 21 Steering Committee Meeting - NASA Spacecraft Propulsion Update

    Science.gov (United States)

    Klem, Mark

    2016-01-01

    Lander Tech is three separate but synergistic efforts: Lunar CATALYST (Lunar Cargo Transportation and Landing by Soft Touchdown) Support U.S. industry led robotic lunar lander development via three public-private efforts. Support U.S. industry led robotic lunar lander development via three public-private partnerships. Infuse or transfer landing technologies into these public private partnerships. Advanced Exploration Systems-Automated Propellant Loading (APL) -Integrated Ground Operations. Demonstrate LH2 zero loss storage, loading and transfer operations via testing on a large scale in a relevant launch vehicle servicing environment. (KSC, GRC). Game Changing Technology-20 Kelvin -20 Watt Cryocooler Development of a Reverse Turbo-Brayton Cryocooler operating at 20 Kelvin with 20 Watts of refrigeration lift.

  4. AN INITIATIVE FOR CONSTRUCTION OF NEW-GENERATION LUNAR GLOBAL CONTROL NETWORK USING MULTI-MISSION DATA

    Directory of Open Access Journals (Sweden)

    K. Di

    2017-07-01

    Full Text Available A lunar global control network provides geodetic datum and control points for mapping of the lunar surface. The widely used Unified Lunar Control Network 2005 (ULCN2005 was built based on a combined photogrammetric solution of Clementine images acquired in 1994 and earlier photographic data. In this research, we propose an initiative for construction of a new-generation lunar global control network using multi-mission data newly acquired in the 21st century, which have much better resolution and precision than the old data acquired in the last century. The new control network will be based on a combined photogrammetric solution of an extended global image and laser altimetry network. The five lunar laser ranging retro-reflectors, which can be identified in LROC NAC images and have cm level 3D position accuracy, will be used as absolute control points in the least squares photogrammetric adjustment. Recently, a new radio total phase ranging method has been developed and used for high-precision positioning of Chang’e-3 lander; this shall offer a new absolute control point. Systematic methods and key techniques will be developed or enhanced, including rigorous and generic geometric modeling of orbital images, multi-scale feature extraction and matching among heterogeneous multi-mission remote sensing data, optimal selection of images at areas of multiple image coverages, and large-scale adjustment computation, etc. Based on the high-resolution new datasets and developed new techniques, the new generation of global control network is expected to have much higher accuracy and point density than the ULCN2005.

  5. The Phoenix Mars Lander Robotic Arm

    Science.gov (United States)

    Bonitz, Robert; Shiraishi, Lori; Robinson, Matthew; Carsten, Joseph; Volpe, Richard; Trebi-Ollennu, Ashitey; Arvidson, Raymond E.; Chu, P. C.; Wilson, J. J.; Davis, K. R.

    2009-01-01

    The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission.

  6. The Martian surface as imaged, sampled, and analyzed by the Viking landers

    International Nuclear Information System (INIS)

    Arvidson, R.E.; Gooding, J.L.; Moore, H.J.

    1989-01-01

    Data collected by two Viking landers are analyzed. Attention is given to the characteristics of the surface inferred from Lander imaging and meteorology data, physical and magnetic properties experiments, and both inorganic and organic analyses of Martian samples. Viking Lander 1 touched down on Chryse Planitia on July 20, 1976 and continued to operate for 2252 sols, until November 20, 1982. Lander 2 touched down about 6500 km away from Lander 1, on Utopia Planitia on September 3, 1976. The chemical compositions of sediments at the two landing sites are similar, suggesting an aeolian origin. The compositions suggest an iron-rich rock an are matched by various clays and salts. 89 refs

  7. F-region electron density and Te / Ti measurements using incoherent scatter power data collected at ALTAIR

    Directory of Open Access Journals (Sweden)

    M. Milla

    2006-07-01

    Full Text Available The ALTAIR UHF radar was used in an incoherent scatter experiment to observe the low-latitude ionosphere during the Equis 2 rocket campaign. The measurements provided the first high-resolution electron density maps of the low-latitude D- and E-region in the Pacific sector and also extended into the F-region and topside ionosphere. Although the sampling frequency was well below the Nyquist frequency of F-region returns, we were able to estimate Te / Ti ratio and infer unbiased electron density estimates using a regularized inversion technique described here. The technique exploits magnetic aspect angle dependence of ISR cross-section for Te>Ti.

  8. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  9. Payload topography camera of Chang'e-3

    International Nuclear Information System (INIS)

    Yu, Guo-Bin; Liu, En-Hai; Zhao, Ru-Jin; Zhong, Jie; Zhou, Xiang-Dong; Zhou, Wu-Lin; Wang, Jin; Chen, Yuan-Pei; Hao, Yong-Jie

    2015-01-01

    Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's “eye” was one of the main scientific payloads installed on the lander. It was composed of a camera probe, an electronic component that performed image compression, and a cable assembly. Its exploration mission was to obtain optical images of the lunar topography in the landing zone for investigation and research. It also observed rover movement on the lunar surface and finished taking pictures of the lander and rover. After starting up successfully, the topography camera obtained static images and video of rover movement from different directions, 360° panoramic pictures of the lunar surface around the lander from multiple angles, and numerous pictures of the Earth. All images of the rover, lunar surface, and the Earth were clear, and those of the Chinese national flag were recorded in true color. This paper describes the exploration mission, system design, working principle, quality assessment of image compression, and color correction of the topography camera. Finally, test results from the lunar surface are provided to serve as a reference for scientific data processing and application. (paper)

  10. Design and Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

    Science.gov (United States)

    Sunada, Eric; Birur, Gajanana C.; Ganapathi, Gani B.; Miller, Jennifer; Berisford, Daniel; Stephan, Ryan

    2010-01-01

    NASA's proposed lunar lander, Altair, will be exposed to vastly different external environment temperatures. The challenges to the active thermal control system (ATCS) are compounded by unfavorable transients in the internal waste heat dissipation profile: the lowest heat load occurs in the coldest environment while peak loads coincide with the warmest environment. The current baseline for this fluid is a 50/50 inhibited propylene glycol/water mixture with a freeze temperature around -35 C. While the overall size of the radiator's heat rejection area is dictated by the worst case hot scenario, a turn-down feature is necessary to tolerate the worst case cold scenario. A radiator with digital turn-down capability is being designed as a robust means to maintain cabin environment and equipment temperatures while minimizing mass and power consumption. It utilizes active valving to isolate and render ineffective any number of parallel flow tubes which span across the ATCS radiator. Several options were assessed in a trade-study to accommodate flow tube isolation and how to deal with the stagnant fluid that would otherwise remain in the tube. Bread-board environmental tests were conducted for options to drain the fluid from a turned-down leg as well an option to allow a leg to freeze/thaw. Each drain option involved a positive displacement gear pump with different methods of providing a pressure head to feed it. Test results showed that a start-up heater used to generate vapor at the tube inlet held the most promise for tube evacuation. Based on these test results and conclusions drawn from the trade-study, a full-scale radiator design is being worked for the Altair mission profile.

  11. Dust particles investigation for future Russian lunar missions.

    Science.gov (United States)

    Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On light side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution dust particle by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar

  12. Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang'E-3 lunar rover: based on ground validation experiment data

    International Nuclear Information System (INIS)

    Liu Bin; Liu Jian-Zhong; Zhang Guang-Liang; Zou Yong-Liao; Ling Zong-Cheng; Zhang Jiang; He Zhi-Ping; Yang Ben-Yong

    2013-01-01

    The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carried on the Chang'E-3 lunar rover to detect the distribution of lunar minerals and resources. VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon, the reflectance data of which are fundamental for interpretation of lunar composition, whose quality would greatly affect the accuracy of lunar element and mineral determination. Until now, in-situ detection by imaging spectrometers was only performed by rovers on Mars. We firstly review reflectance conversion methods for rovers on Mars (Viking landers, Pathfinder and Mars Exploration rovers, etc). Secondly, we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection. We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simulated lunar soil to test the availability of this method. Finally, we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS. These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions. The shape and amplitude of the spectrum fits well, and the spectral uncertainty parameters for most samples are within 8%, except for the ilmenite sample which has a low albedo. In conclusion, our reflectance conversion method is suitable for lunar in-situ detection.

  13. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    Science.gov (United States)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  14. Level of Automation and Failure Frequency Effects on Simulated Lunar Lander Performance

    Science.gov (United States)

    Marquez, Jessica J.; Ramirez, Margarita

    2014-01-01

    A human-in-the-loop experiment was conducted at the NASA Ames Research Center Vertical Motion Simulator, where instrument-rated pilots completed a simulated terminal descent phase of a lunar landing. Ten pilots participated in a 2 x 2 mixed design experiment, with level of automation as the within-subjects factor and failure frequency as the between subjects factor. The two evaluated levels of automation were high (fully automated landing) and low (manual controlled landing). During test trials, participants were exposed to either a high number of failures (75% failure frequency) or low number of failures (25% failure frequency). In order to investigate the pilots' sensitivity to changes in levels of automation and failure frequency, the dependent measure selected for this experiment was accuracy of failure diagnosis, from which D Prime and Decision Criterion were derived. For each of the dependent measures, no significant difference was found for level of automation and no significant interaction was detected between level of automation and failure frequency. A significant effect was identified for failure frequency suggesting failure frequency has a significant effect on pilots' sensitivity to failure detection and diagnosis. Participants were more likely to correctly identify and diagnose failures if they experienced the higher levels of failures, regardless of level of automation

  15. ExoGeoLab Pilot Project for Landers, Rovers and Instruments

    Science.gov (United States)

    Foing, Bernard

    2010-05-01

    We have developed a pilot facility with a Robotic Test Bench (ExoGeoLab) and a Mobile Lab Habitat (ExoHab). They can be used to validate concepts and external instruments from partner institutes. The ExoGeoLab research incubator project, has started in the frame of a collaboration between ILEWG (International Lunar Exploration working Group http://sci.esa.int/ilewg), ESTEC, NASA and academic partners, supported by a design and control desk in the European Space Incubator (ESI), as well as infrastructure. ExoGeoLab includes a sequence of technology and research pilot project activities: - Data analysis and interpretation of remote sensing and in-situ data, and merging of multi-scale data sets - Procurement and integration of geophysical, geo-chemical and astrobiological breadboard instruments on a surface station and rovers - Integration of cameras, environment and solar sensors, Visible and near IR spectrometer, Raman spectrometer, sample handling, cooperative rovers - Delivery of a generic small planetary lander demonstrator (ExoGeoLab lander, Sept 2009) as a platform for multi-instruments tests - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations, and support for definition and design of science surface packages (Moon, Mars, NEOs, outer moons) - Field tests of lander, rovers and instruments in analogue sites (Utah MDRS 2009 & 2010, Eifel volcanic park in Sept 2009, and future campaigns). Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14

  16. Mars Solar Balloon Lander, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  17. A Novel, Low-Cost Conformable Lander

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary focus of this activity will be to outline a preliminary mechanical design for this conforming lander. Salient issues to be worked include (1) determining...

  18. Testing Gravity via Lunar Laser Ranging: Maximizing Data Quality

    Science.gov (United States)

    Murphy, Thomas

    We propose to continue leading-edge observations with the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO), in an effort to subject gravity to the most stringent tests yet. APOLLO has delivered a dramatic improvement in the measurement of the lunar orbit: now at the millimeter level. Yet incomplete models are thus far unable to confirm the accuracy. We therefore seek to build a calibration system to ensure that APOLLO meets its millimeter measurement goal. Gravity--the most evident force of nature--is in fact the weakest of the fundamental forces, and consequently the most poorly tested. Einstein’s general relativity, which is currently our best description of gravity, is fundamentally incompatible with quantum mechanics and is likely to be replaced by a more complete theory in the future. A modified theory would predict small deviations in the solar system that could have profound consequences for our understanding of the Universe as a whole. Lunar laser ranging (LLR), in which short laser pulses launched from a telescope are bounced off of reflectors placed on the Moon by U.S. astronauts and Soviet landers, has for decades produced some of the leading tests of gravity by mapping the shape of the lunar orbit to high precision. These include tests of the strong equivalence principle, the time-rate-ofchange of Newton’s gravitational constant, gravitomagnetism, the inverse-square law, and many others. Among the attributes that contribute to APOLLO’s superior observations, routine ranging to all five lunar reflectors on timescales of minutes dramatically improves our ability to gauge lunar orientation and body distortion. This information produces insights into the interior structure and dynamics of the Moon, allowing a more precise determination of the path for the Moon’s center of mass, lending to tests of fundamental gravity. Simultaneously, higher precision range measurements, together with data from a superconducting gravimeter at the

  19. Lunar Flashlight and Other Lunar Cubesats

    Science.gov (United States)

    Cohen, Barbara

    2017-01-01

    Water is a human-exploitable resource. Lunar Flashlight is a Cubesat mission to detect and map lunar surface ice in permanently-shadowed regions of the lunar south pole. EM-1 will carry 13 Cubesat-class missions to further smallsat science and exploration capabilities; much room to infuse LEO cubesat methodology, models, and technology. Exploring the value of concurrent measurements to measure dynamical processes of water sources and sinks.

  20. NASA Lunar Mining and Construction Activities and Plans

    Science.gov (United States)

    Sanders, Gerald B.; Larson, William E.; Sacksteder, Kurt R.

    2009-01-01

    the need to implement efforts that are sustainable and affordable. One area NASA is developing that can significantly change how systems required for sustained human presence are designed and integrated, as well as potentially break our reliance on Earth supplied logistics, is In-Situ Resource Utilization (ISRU). ISRU, also known living off the land, involves the extraction and processing of local resources into useful products. In particular, the ability to make propellants, life support consumables, fuel cell reagents, and radiation shielding can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. Also, the ability to modify the lunar landscape for safer landing, transfer of payloads from the lander an outpost, dust generation mitigation, and infrastructure placement and buildup are also extremely important for long-term lunar operations. While extra-terrestrial excavation, material handling and processing, and site preparation and construction may be new to NASA and other space agencies, there is extensive terrestrial hardware and commercial experience that can be leveraged. This paper will provide an overview of current NASA activities in lunar ISRU mining and construction and how terrestrial experience in these areas are important to achieving the goal of affordable and sustainable human exploration.

  1. Our Lunar Destiny: Creating a Lunar Economy

    Science.gov (United States)

    Rohwer, Christopher J.

    2000-01-01

    "Our Lunar Destiny: Creating a Lunar Economy" supports a vision of people moving freely and economically between the earth and the Moon in an expansive space and lunar economy. It makes the economic case for the creation of a lunar space economy and projects the business plan that will make the venture an economic success. In addition, this paper argues that this vision can be created and sustained only by private enterprise and the legal right of private property in space and on the Moon. Finally, this paper advocates the use of lunar land grants as the key to unleashing the needed capital and the economic power of private enterprise in the creation of a 21st century lunar space economy. It is clear that the history of our United States economic system proves the value of private property rights in the creation of any new economy. It also teaches us that the successful development of new frontiers-those that provide economic opportunity for freedom-loving people-are frontiers that encourage, respect and protect the possession of private property and the fruits of labor and industry. Any new 21st century space and lunar economy should therefore be founded on this same principle.

  2. Brake Failure from Residual Magnetism in the Mars Exploration Rover Lander Petal Actuator

    Science.gov (United States)

    Jandura, Louise

    2004-01-01

    In January 2004, two Mars Exploration Rover spacecraft arrived at Mars. Each safely delivered an identical rover to the Martian surface in a tetrahedral lander encased in airbags. Upon landing, the airbags deflated and three Lander Petal Actuators opened the three deployable Lander side petals enabling the rover to exit the Lander. Approximately nine weeks prior to the scheduled launch of the first spacecraft, one of these mission-critical Lander Petal Actuators exhibited a brake stuck-open failure during its final flight stow at Kennedy Space Center. Residual magnetism was the definitive conclusion from the failure investigation. Although residual magnetism was recognized as an issue in the design, the lack of an appropriately specified lower bound on brake drop-out voltage inhibited the discovery of this problem earlier in the program. In addition, the brakes had more unit-to-unit variation in drop-out voltage than expected, likely due to a larger than expected variation in the magnetic properties of the 15-5 PH stainless steel brake plates. Failure analysis and subsequent rework of two other Lander Petal Actuators with marginal brakes was completed in three weeks, causing no impact to the launch date.

  3. Detection Capability Evaluation on Chang'e-5 Lunar Mineralogical Spectrometer (LMS)

    Science.gov (United States)

    Liu, Bin; Ren, Xin; Yan, Wei; Xu, Xuesen; Cai, Tingni; Liu, Dawei; Liu, Jianjun; Li, Chunlai

    2016-04-01

    The Chang'e-5 (CE-5) lunar sample return mission is scheduled to launch in 2017 to bring back lunar regolith and drill samples. The Chang'e-5 Lunar Mineralogical Spectrometer (LMS), as one of the three sets of scientific payload installed on the lander, is used to collect in-situ spectrum and analyze the mineralogical composition of the sampling site. It can also help to select the sampling site , and to compare the measured laboratory spectrum of returned sample with in-situ data. LMS employs acousto-optic tunable filters (AOTFs) and is composed of a VIS/NIR module (0.48μm-1.45μm) and an IR module (1.4μm -3.2μm). It has spectral resolution ranging from 3 to 25 nm, with a field of view (FOV) of 4.24°×4.24°. Unlike Chang'e-3 VIS/NIR Imaging Spectrometer (VNIS), the spectral coverage of LMS is extended from 2.4μm to 3.2μm, which has capability to identify H2O/OH absorption features around 2.7μm. An aluminum plate and an Infragold plate are fixed in the dust cover, being used as calibration targets in the VIS/NIR and IR spectral range respectively when the dust cover is open. Before launch, a ground verification test of LMS needs to be conducted in order to: 1) test and verify the detection capability of LMS through evaluation on the quality of image and spectral data collected for the simulated lunar samples; and 2) evaluate the accuracy of data processing methods by the simulation of instrument working on the moon. The ground verification test will be conducted both in the lab and field. The spectra of simulated lunar regolith/mineral samples will be collected simultaneously by the LMS and two calibrated spectrometers: a FTIR spectrometer (Model 102F) and an ASD FieldSpec 4 Hi-Res spectrometer. In this study, the results of the LMS ground verification test will be reported including the evaluation on the LMS spectral and image data quality, mineral identification and inversion ability, accuracy of calibration and geometric positioning .

  4. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  5. Year 3 LUNAR Annual Report to the NASA Lunar Science Institute

    OpenAIRE

    Burns, Jack; Lazio, Joseph

    2012-01-01

    The Lunar University Network for Astrophysics Research (LUNAR) is a team of researchers and students at leading universities, NASA centers, and federal research laboratories undertaking investigations aimed at using the Moon as a platform for space science. LUNAR research includes Lunar Interior Physics & Gravitation using Lunar Laser Ranging (LLR), Low Frequency Cosmology and Astrophysics (LFCA), Planetary Science and the Lunar Ionosphere, Radio Heliophysics, and Exploration Science. The LUN...

  6. Non-Cooled Power System for Venus Lander

    Science.gov (United States)

    Salazar, Denise; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The Planetary Science Decadal Survey of 2013-2022 stated that the exploration of Venus is of significant interest. Studying the seismic activity of the planet is of particular importance because the findings can be compared to the seismic activity of Earth. Further, the geological and atmospheric properties of Venus will shed light into the past and future of Earth. This paper presents a radioisotope power system (RPS) design for a small low-power Venus lander. The feasibility of the new power system is then compared to that of primary batteries. A requirement for the power source system is to avoid moving parts in order to not interfere with the primary objective of the mission - to collect data about the seismic activity of Venus using a seismometer. The target mission duration of the lander is 117 days, a significant leap from Venera 13, the longest-lived lander on the surface of Venus, which survived for 2 hours. One major assumption for this mission design is that the power source system will not provide cooling to the other components of the lander. This assumption is based on high-temperature electronics technology that will enable the electronics and components of the lander to operate at Venus surface temperature. For the proposed RPS, a customized General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHSRTG) is designed and analyzed. The GPHS-RTG is chosen primarily because it has no moving parts and it is capable of operating for long duration missions on the order of years. This power system is modeled as a spherical structure for a fundamental thermal analysis. The total mass and electrical output of the system are calculated to be 24 kilograms and 26 Watts, respectively. An alternative design for a battery-based power system uses Sodium Sulfur batteries. To deliver a similar electrical output for 117 days, the battery mass is calculated to be 234 kilograms. Reducing mission duration or power required will reduce the required battery mass

  7. The Impact of Flight Hardware Scavenging on Space Logistics

    Science.gov (United States)

    Oeftering, Richard C.

    2011-01-01

    For a given fixed launch vehicle capacity the logistics payload delivered to the moon may be only roughly 20 percent of the payload delivered to the International Space Station (ISS). This is compounded by the much lower flight frequency to the moon and thus low availability of spares for maintenance. This implies that lunar hardware is much more scarce and more costly per kilogram than ISS and thus there is much more incentive to preserve hardware. The Constellation Lunar Surface System (LSS) program is considering ways of utilizing hardware scavenged from vehicles including the Altair lunar lander. In general, the hardware will have only had a matter of hours of operation yet there may be years of operational life remaining. By scavenging this hardware the program, in effect, is treating vehicle hardware as part of the payload. Flight hardware may provide logistics spares for system maintenance and reduce the overall logistics footprint. This hardware has a wide array of potential applications including expanding the power infrastructure, and exploiting in-situ resources. Scavenging can also be seen as a way of recovering the value of, literally, billions of dollars worth of hardware that would normally be discarded. Scavenging flight hardware adds operational complexity and steps must be taken to augment the crew s capability with robotics, capabilities embedded in flight hardware itself, and external processes. New embedded technologies are needed to make hardware more serviceable and scavengable. Process technologies are needed to extract hardware, evaluate hardware, reconfigure or repair hardware, and reintegrate it into new applications. This paper also illustrates how scavenging can be used to drive down the cost of the overall program by exploiting the intrinsic value of otherwise discarded flight hardware.

  8. On the Thermal Protection Systems of Landers for Venus Exploration

    Science.gov (United States)

    Ekonomov, A. P.; Ksanfomality, L. V.

    2018-01-01

    The landers of the Soviet Venera series—from Venera-9 to Venera-14—designed at the Lavochkin Association are a man-made monument to spectacular achievements of Soviet space research. For more than 40 years, they have remained the uneclipsed Soviet results in space studies of the Solar System. Within the last almost half a century, the experiments carried out by the Venera-9 to Venera-14 probes for studying the surface of the planet have not been repeated by any space agency in the world, mainly due to quite substantial technical problems. Since that time, no Russian missions with landers have been sent to Venus either. On Venus, there is an anoxic carbon dioxide atmosphere, where the pressure is 9.2 MPa and the temperature is 735 K near the surface. A long-lived lander should experience these conditions for an appreciable length of time. What technical solutions could provide a longer operation time for a new probe investigating the surface of Venus, if its thermal scheme is constructed similar to that of the Venera series? Onboard new landers, there should be a sealed module, where the physical conditions required for operating scientific instruments are maintained for a long period. At the same time, new high-temperature electronic equipment that remains functional under the above-mentioned conditions have appeared. In this paper, we consider and discuss different variants of the system for a long-lived sealed lander, in particular, the absorption of the penetrating heat due to water evaporation and the thermal protection construction for the instruments with intermediate characteristics.

  9. Chandrayaan-2: India's First Soft-landing Mission to Moon

    Science.gov (United States)

    Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.

    2012-07-01

    The first Indian planetary mission to moon, Chandrayaan-1, launched on 22nd October, 2008 with a suite of Indian and International payloads on board, collected very significant data over its mission duration of close to one year. Important new findings from this mission include, discovery of hydroxyl and water molecule in sunlit lunar surface region around the poles, exposure of large anorthositic blocks confirming the global lunar magma hypothesis, signature of sub surface ice layers in permanently shadowed regions near the lunar north pole, evidence for a new refractory rock type, mapping of reflected lunar neutral atoms and identification of mini-magnetosphere, possible signature of water molecule in lunar exosphere, preserved lava tube that may provide site for future human habitation and radiation dose en-route and around the moon. Chandrayaan-2:, The success of Chandrayaan-1 orbiter mission provided impetus to implement the second approved Indian mission to moon, Chandrayaan-2, with an Orbiter-Lander-Rover configuration. The enhanced capabilities will enable addressing some of the questions raised by the results obtained from the Chandrayaan-1 and other recent lunar missions and also to enhance our understanding of origin and evolution of the moon. The orbiter that will carry payloads to further probe the morphological, mineralogical and chemical properties of the lunar surface material through remote sensing observations in X-ray, visible, infra-red and microwave regions. The Lander-Rover system will enable in-depth studies of a specific lunar location and probe various physical properties of the moon. The Chandrayaan-2 mission will be collaboration between Indian Space Research Organization (ISRO) and the Federal Space Agency of Russia. ISRO will be responsible for the Launch Vehicle, the Orbiter and the Rover while the Lander will be provided by Russia. Initial work to realize the different elements of the mission is currently in progress in both countries

  10. The Landers earthquake; preliminary instrumental results

    Science.gov (United States)

    Jones, L.; Mori, J.; Hauksson, E.

    1992-01-01

    Early on the morning of June 28, 1992, millions of people in southern California were awakened by the largest earthquake to occur in the western United States in the past 40 yrs. At 4:58 a.m PDT (local time), faulting associated with the magnitude 7.3 earthquake broke through to earth's surface near the town of Landers, California. the surface rupture then propagated 70km (45 mi) to the north and northwest along a band of faults passing through the middle of the Mojave Desert. Fortunately, the strongest shaking occurred in uninhabited regions of the Mojave Desert. Still one child was killed in Yucca Valley, and about 400 people were injured in the surrounding area. the desert communities of Landers, Yucca Valley, and Joshua Tree in San Bernardino Country suffered considerable damage to buildings and roads. Damage to water and power lines caused problems in many areas. 

  11. Atlantic Deep-Water Canyons (Benthic Landers) 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Each benthic lander contains a programmable sediment trap which can take 12 monthly samples, plus instruments to record temperature, salinity, dissolved oxygen,...

  12. Rock Moved by Mars Lander Arm

    Science.gov (United States)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location. 'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team. The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape. The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been. This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  13. Environmental Control and Life Support System (ECLSS) System Engineering Workshop

    Science.gov (United States)

    Peterson, Laurie J.

    2009-01-01

    This slide presentation begins with a recap on a previous lecture on the ECLSS subsystems, and the various types (i.e., Non-regenerative vs Regenerative, open loop vs closed loop, and physical-chemical vs bioregenerative) It also recaps the Equivalent system mass (ESM) metric. The presentation continues with a review of the ECLSS of the various NASA manned space exploration programs from Mercury, to the current planned Altair lunar landing, and Lunar base operations. There is also a team project to establish the ESM of two conceptualized missions.

  14. The Chang'e 3 Mission Overview

    Science.gov (United States)

    Li, Chunlai; Liu, Jianjun; Ren, Xin; Zuo, Wei; Tan, Xu; Wen, Weibin; Li, Han; Mu, Lingli; Su, Yan; Zhang, Hongbo; Yan, Jun; Ouyang, Ziyuan

    2015-07-01

    The Chang'e 3 (CE-3) mission was implemented as the first lander/rover mission of the Chinese Lunar Exploration Program (CLEP). After its successful launch at 01:30 local time on December 2, 2013, CE-3 was inserted into an eccentric polar lunar orbit on December 6, and landed to the east of a 430 m crater in northwestern Mare Imbrium (19.51°W, 44.12°N) at 21:11 on December 14, 2013. The Yutu rover separated from the lander at 04:35, December 15, and traversed for a total of 0.114 km. Acquisition of science data began during the descent of the lander and will continue for 12 months during the nominal mission. The CE-3 lander and rover each carry four science instruments. Instruments on the lander are: Landing Camera (LCAM), Terrain Camera (TCAM), Extreme Ultraviolet Camera (EUVC), and Moon-based Ultraviolet Telescope (MUVT). The four instruments on the rover are: Panoramic Camera (PCAM), VIS-NIR Imaging Spectrometer (VNIS), Active Particle induced X-ray Spectrometer (APXS), and Lunar Penetrating Radar (LPR). The science objectives of the CE-3 mission include: (1) investigation of the morphological features and geological structures of and near the landing area; (2) integrated in-situ analysis of mineral and chemical composition of and near the landing area; and (3) exploration of the terrestrial-lunar space environment and lunar-based astronomical observations. This paper describes the CE-3 objectives and measurements that address the science objectives outlined by the Comprehensive Demonstration Report of Phase II of CLEP. The CE-3 team has archived the initial science data, and we describe data accessibility by the science community.

  15. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic

  16. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  17. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    Science.gov (United States)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  18. Long-Lived Venus Lander Conceptual Design: How To Keep It Cool

    Science.gov (United States)

    Dyson, Ridger W.; Schmitz, Paul C.; Penswick, L. Barry; Bruder, Geoffrey A.

    2009-01-01

    Surprisingly little is known about Venus, our neighboring sister planet in the solar system, due to the challenges of operating in its extremely hot, corrosive, and dense environment. For example, after over two dozen missions to the planet, the longest-lived lander was the Soviet Venera 13, and it only survived two hours on the surface. Several conceptual Venus mission studies have been formulated in the past two decades proposing lander architectures that potentially extend lander lifetime. Most recently, the Venus Science and Technology Definition Team (STDT) was commissioned by NASA to study a Venus Flagship Mission potentially launching in the 2020- 2025 time-frame; the reference lander of this study is designed to survive for only a few hours more than Venera 13 launched back in 1981! Since Cytherean mission planners lack a viable approach to a long-lived surface architecture, specific scientific objectives outlined in the National Science Foundation Decadal Survey and Venus Exploration Advisory Group final report cannot be completed. These include: mapping the mineralogy and composition of the surface on a planetary scale determining the age of various rock samples on Venus, searching for evidence of changes in interior dynamics (seismometry) and its impact on climate and many other key observations that benefit with time scales of at least a full Venus day (Le. daylight/night cycle). This report reviews those studies and recommends a hybrid lander architecture that can survive for at least one Venus day (243 Earth days) by incorporating selective Stirling multi-stage active cooling and hybrid thermoacoustic power.

  19. Proceedings of the 40th Lunar and Planetary Science Conference

    Science.gov (United States)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology

  20. Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust

    Science.gov (United States)

    Gross, Juliane; Treiman, Allan H.; Mercer, Celestine N.

    2014-02-01

    The composition of the lunar crust provides clues about the processes that formed it and hence contains information on the origin and evolution of the Moon. Current understanding of lunar evolution is built on the Lunar Magma Ocean hypothesis that early in its history, the Moon was wholly or mostly molten. This hypothesis is based on analyses of Apollo samples of ferroan anorthosites (>90% plagioclase; molar Mg/(Mg+Fe)=Mg#Moon's surface, and remote sensing data, show that ferroan anorthosites are not globally distributed and that the Apollo highland samples, used as a basis for the model, are influenced by ejecta from the Imbrium basin. In this study we evaluate anorthosites from all currently available adequately described lunar highland meteorites, representing a more widespread sampling of the lunar highlands than Apollo samples alone, and find that ∼80% of them are significantly more magnesian than Apollo ferroan anorthosites. Interestingly, Luna mission anorthosites, collected outside the continuous Imbrium ejecta, are also highly magnesian. If the lunar highland crust consists dominantly of magnesian anorthosites, as suggested by their abundance in samples sourced outside Imbrium ejecta, a reevaluation of the Lunar Magma Ocean model is a sensible step forward in the endeavor to understand lunar evolution. Our results demonstrate that lunar anorthosites are more similar in their chemical trends and mineral abundance to terrestrial massif anorthosites than to anorthosites predicted in a Lunar Magma Ocean. This analysis does not invalidate the idea of a Lunar Magma Ocean, which seems a necessity under the giant impact hypothesis for the origin of the moon. However, it does indicate that most rocks now seen at the Moon's surface are not primary products of a magma ocean alone, but are products of more complex crustal processes.

  1. Digibaro pressure instrument onboard the Phoenix Lander

    Science.gov (United States)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  2. Photometric Lunar Surface Reconstruction

    Science.gov (United States)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  3. Student Employee Handbook. EP-2008-09-136-MSFC

    Science.gov (United States)

    National Aeronautics and Space Administration (NASA), 2007

    2007-01-01

    This student employee handbook offers tips on planning, design process, and presentation of a student Lunar Nautics project. Each section includes mission, task, challenge, and guide questions. With the activities presented, students will learn to design a Lunar Lander, Lunar Miner, and Lunar Base; investigate the geography and geology of the moon…

  4. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Industrialization

    Science.gov (United States)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Loucks, Mike; Carrico, John; Policastri, Daniel

    2017-01-01

    A new concept study was initiated to examine the architecture needed to gradually develop an economical, evolvable and sustainable lunar infrastructure using a public/private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop a lunar infrastructure system that would be mutually beneficial. This approach would also require NASA and its industry partners to share costs in the development phase and then transfer operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, communication towers and satellites, autonomous rover operations, landing pads and resource extraction operations. The public/private partnerships approach used in this study leveraged best practices from NASA's Commercial Orbital Transportation Services (COTS) program which introduced an innovative and economical approach for partnering with industry to develop commercial cargo services to the International Space Station. This program was planned together with the ISS Commercial Resupply Services (CRS) contracts which was responsible for initiating commercial cargo delivery services to the ISS for the first time. The public/private partnerships approach undertaken in the COTS program proved to be very successful in dramatically reducing development costs for these ISS cargo delivery services as well as substantially reducing operational costs. To continue on this successful path towards installing economical infrastructure services for LEO and beyond, this new study, named Lunar COTS (Commercial Operations and Transport Services), was conducted to examine extending the NASA COTS model to cis-lunar space and the lunar surface. The goals of the Lunar COTS concept are to: 1) develop and demonstrate affordable and commercial cis-lunar and surface capabilities, such as lunar cargo

  5. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

    Science.gov (United States)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman

    2017-10-01

    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.

  6. Development of Compact, Modular Lunar Heat Flow Probes

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2014-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey and previously the International Lunar Network. Because the lander for such a mission will be relatively small, the heat flow instrumentation must be a low-mass and low-power system. The instrument needs to measure both thermal gradient and thermal conductivity of the regolith penetrated. It also needs to be capable of excavating a deep enough hole (approx. 3 m) to avoid the effect of potential long-term changes of the surface thermal environment. The recently developed pneumatic excavation system can largely meet the low-power, low-mass, and the depth requirements. The system utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. The thermal sensors consist of resistance temperature detectors (RTDs) embedded on the stem and an insitu thermal conductivity probe attached to the cone tip. The thermal conductivity probe consists of a short 'needle' (2.4-mm diam. and 15- to 20-mm length) that contains a platinum RTD wrapped in a coil of heater wire. During a deployment, when the penetrating cone reaches a desired depth, it stops blowing gas, and the stem pushes the needle into the yet-to-be excavated, undisturbed bottom soil. Then, it begins heating and monitors the temperature. Thermal conductivity of the soil can determined from the rate of temperature increase with time. When the measurement is complete, the system resumes excavation until it reaches the next targeted depth.

  7. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    Science.gov (United States)

    Wallace, William; Jeevarajan, A. S.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

  8. Lunar horticulture.

    Science.gov (United States)

    Walkinshaw, C. H.

    1971-01-01

    Discussion of the role that lunar horticulture may fulfill in helping establish the life support system of an earth-independent lunar colony. Such a system is expected to be a hybrid between systems which depend on lunar horticulture and those which depend upon the chemical reclamation of metabolic waste and its resynthesis into nutrients and water. The feasibility of this approach has been established at several laboratories. Plants grow well under reduced pressures and with oxygen concentrations of less than 1% of the total pressure. The carbon dioxide collected from the lunar base personnel should provide sufficient gas pressure (approx. 100 mm Hg) for growing the plants.

  9. Hydrogen-Rich, Multifunctional Polymeric Nanocomposites for Radiation Shielding, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified the need for development of technologies to support Lunar Lander and Lunar Habitats programs and for transfer of relevant technology to Crew...

  10. Hydrogen-Rich, Multifunctional Polymeric Nanocomposites for Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified the need for the development of lightweight structures technologies to support Lunar Lander and Lunar Habitats programs and for the transfer of...

  11. Lunar transportation system

    Science.gov (United States)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  12. Petrology of lunar rocks and implication to lunar evolution

    Science.gov (United States)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  13. Multifunctional Polymers Incorporating High-Z Neutron-Capture Nanoparticles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified the need to develop lightweight structures to support Lunar Lander and Lunar Habitat programs and for the transfer of relevant technology to the...

  14. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  15. Lunar e-Library: A Research Tool Focused on the Lunar Environment

    Science.gov (United States)

    McMahan, Tracy A.; Shea, Charlotte A.; Finckenor, Miria; Ferguson, Dale

    2007-01-01

    As NASA plans and implements the Vision for Space Exploration, managers, engineers, and scientists need lunar environment information that is readily available and easily accessed. For this effort, lunar environment data was compiled from a variety of missions from Apollo to more recent remote sensing missions, such as Clementine. This valuable information comes not only in the form of measurements and images but also from the observations of astronauts who have visited the Moon and people who have designed spacecraft for lunar missions. To provide a research tool that makes the voluminous lunar data more accessible, the Space Environments and Effects (SEE) Program, managed at NASA's Marshall Space Flight Center (MSFC) in Huntsville, AL, organized the data into a DVD knowledgebase: the Lunar e-Library. This searchable collection of 1100 electronic (.PDF) documents and abstracts makes it easy to find critical technical data and lessons learned from past lunar missions and exploration studies. The SEE Program began distributing the Lunar e-Library DVD in 2006. This paper describes the Lunar e-Library development process (including a description of the databases and resources used to acquire the documents) and the contents of the DVD product, demonstrates its usefulness with focused searches, and provides information on how to obtain this free resource.

  16. International, private-public, multi-mission, next-generation lunar laser retroreflectors

    Science.gov (United States)

    Dell'Agnello, Simone

    2017-04-01

    for CNSA's Chang'E-4 mission). INRRI has been embarked on ESA's ExoMars lander "Schiaparelli" and it has been requested by NASA to ASI for the Mars 2020 Rover mission. LLR data are analized/simulated with the Planetary Ephemeris Program developed by CfA. INFN, UMD and MEI signed a private-public partnership, multi-mission agreement to deploy the big and the microreflectors on the Moon. Through existing MoUs between INFN and the Russian Academy of Sciences, international negotiations are also underway to propose the new lunar reflectors and the SCF_Lab services for the next robotic missions of the Russian space program. References: [1] Probing gravity with next-generation lunar la-ser ranging, M. Martini and S. Dell'Agnello, in R. Peron et al. (eds.), Gravity: Where Do We Stand?, DOI 10.1007/978-3-319-20224-2_5, Springer Inter-national Publishing, Switzerland (2016). [2] Formation flying, cosmology and general rel-ativity: a tribute to far-reaching dreams of Mino Freund, Currie, D.; Williams, J.; Dell'Agnello, S.; Monache, G.D.; Behr, B. and K. Zacny, in Springer Proceedings in Physics, vol. 150, ISBN-13: 978-3319022062, ISBN-10: 3319022067 (2014). [3] Williams, J. G., Turyshev, S. G., Boggs, D. H., Ratcliff, J. T., Lunar laser ranging science: Grav-itational physics and lunar interior and geodesy, Adv. Space Res. 37(1), 67-71 (2006). [4] Constraining spacetime torsion with Moon and Mercury, R. March, G. Bellettini, R. Taursaso, S. Dell'Agnello, Phys. Rev D 83, 104008 (2011). [5] Constraining nonminimally coupled gravity with laser ranging to the moon, N. Castel-Branco, J. Paramos, R. March and S. Dell'Agnello, in 3rd Euro-pean Lunar Symposium, Frascati, Italy (2014). [6] Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS, S. Dell'Agnello et al, Adv. Space Res. 47, 822-842 (2011). [7] Advanced Laser Retroreflectors for Astro-physics and Space Science, Dell'Agnello, S., et al, Journal of Applied Mathematics and Physics, 3

  17. Community Report and Recommendations from International Lunar Exploration Working Group (ILEWG)

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    Lunar Network for seismometry and other geophysical measurements - Lunar missions will be driven by exploration, resource utilization, and science; we should consider minimum science payload for every mission, e.g., landers and rovers should carry instruments to determine surface composition and mineralogy - It is felt important to have a shared database about previous missions available for free, so as to provide inputs to future missions, including a gap analysis of needed measurements. Highly resolved global data sets are required. Autonomous landing and hazard avoidance will depend on the best topographic map of the Moon, achievable by combining shared data. - New topics such as life sciences, partial gravity processes on the Moon should be followed in relation to future exploration needs. 2. Technologies and resources - A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and coordination. That should increase towards real cooperation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential. 3. Infrastructures and human aspects - It is recommended to have technical sessions and activities dealing with different aspects of human adaptation to space environments, the modeling of sub-systems, microbial protection and use of inflatable technologies - While the Moon is the best and next

  18. Are the Viking Lander sites representative of the surface of Mars?

    Science.gov (United States)

    Jakosky, B. M.; Christensen, P. R.

    1986-01-01

    Global remote sensing data of the Martian surface, collected by earth- and satellite-based instruments, are compared with data from the two Viking Landers to determine if the Lander data are representative of the Martian surface. The landing sites are boulder-strewn and feature abundant fine material and evidence of strong eolian forces. One site (VL-1) is in a plains-covered basin which is associated with volcanic activity; the VL-2 site is in the northern plains. Thermal IR, broadband albedo, color imaging and radar remote sensing has been carried out of the global Martian surface. The VL-1 data do not fit a general correlation observed between increases in 70-cm radar cross-sections and thermal inertia. A better fit is found with 12.5-cm cross sections, implying the presence of a thinner or discontinuous duricrust at the VL-1 site, compared to other higher-inertia regions. A thin dust layer is also present at the VL-2 site, based on the Lander reflectance data. The Lander sites are concluded to be among the three observed regions of anomalous reflectivity, which can be expected in low regions selected for the landings. Recommendations are furnished for landing sites of future surface probes in order to choose sites more typical of the global Martian surface.

  19. Report from International Lunar Exploration Working Group (ILEWG) to COSPAR

    Science.gov (United States)

    Foing, Bernard H.

    We refer to COSPAR and ILEWG ICEUM and lunar conferences and declarations [1-18]. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap. We present the GLUC/ICEUM11 declaration and give a report on ongoing relevant ILEWG community activities, with focus on: “1. Science and exploration - World-wide access to raw and derived (geophysical units) data products using consistent formats and coordinate systems will maximize return on investment. We call to develop and implement plans for generation, validation, and release of these data products. Data should be made available for scientific analysis and supporting the development and planning of future missions - There are still Outstanding Questions: Structure and composition of crust, mantle, and core and implications for the origin and evolution of the Earth-Moon system; Timing, origin, and consequences of late heavy bombardment; Impact processes and regolith evolution; Nature and origin of volatile emplacement; Implications for resource utilization. These questions require international cooperation and sharing of results in order to be answered in a cost-effective manner - Ground truth information on the lunar far side is missing and needed to address many important scientific questions, e.g. with a sample return from South Pole-Aitken Basin - Knowledge of the interior is poor relative to the surface, and is needed to address a number of key questions, e.g. with International Lunar Network for seismometry and other geophysical measurements - Lunar missions will be driven by exploration, resource utilization, and science; we should consider minimum science payload for every mission, e.g., landers and rovers should carry instruments to determine surface composition and mineralogy - It is felt important to have a shared database about previous missions available for free, so as to provide

  20. The ISHTE [In-Situ Heat Transfer Experiment] lander: Final report

    International Nuclear Information System (INIS)

    Olson, L.O.; Harrison, J.G.

    1986-12-01

    This report describes the design and development of a sea floor lander constructed to support the In-Situ Heat Transfer Experiment (ISHTE). The work entailed fabricating and testing a steel space frame that would support and accurately position delicate instruments which would monitor a heat source driven into the sediments of the deep ocean. This lander is capable of being (1) transported from Seattle to Hawaii and back several times; (2) deployed from a ship at sea; (3) operated on the sea floor to field delicate experimental equipment; and (4) recovered for retrofit to support a one-year experiment on the sea floor

  1. SIIOS in Alaska - Testing an `In-Vault' Option for a Europa Lander Seismometer.

    Science.gov (United States)

    Bray, V. J.; Weber, R. C.; DellaGiustina, D. N.; Bailey, H.; Schmerr, N. C.; Pettit, E. C.; Dahl, P.; Albert, D.; Avenson, B.; Byrne, S.; Siegler, M.; Bland, M. T.; Patterson, G. W.; Selznick, S.

    2017-12-01

    The surface environment of Europa within the radiation-heavy jovian system, poses extreme technical challenges for potential landed missions. The need for radiation shielding and protection from the cold requires instruments to be housed within a thermally insulated and radiation protected `vault'. Unfortunately, this is non-ideal for seismometers as instrument-to-surface coupling is an important factor in the quality of returned data. Delivering a seismic package to an icy world would therefore benefit from the development of a cold-tolerant, radiation-hardened sensor that can survive outside of a protective vault. If such an instrument package were not technologically mature enough, or if lander safety considerations prevent deployment on lander legs, an in-vault location is still a viable option. For such a case, a better understanding of the transmission of seismic signals received through the lander legs is necessary for interpretation of the received signals. The performance, mass, and volume of the `Seismometer to investigate ice and ocean structure' (SIIOS) already meet or exceed flight requirements identified in lander studies for the icy moon Europa. We are testing this flight-candidate in several configurations around and within a lander mock-up, assuming a 1x1 meter vault with extended legs. We compare the received signals from a SIIOS device on the ice with those received by an identical sensor directly above it in the `vault'. We also compare the data from these single-point receivers to that received by two short base-line arrays - A 4-point "in-vault" array and another 4-point array arranged at the ice surface at the base of the lander legs. Our field-testing is performed at Gulkana Glacier, Alaska. The summer melt season provides kilometer-scale regions of coexisting ice, water, and silicate material, thereby providing seismic contrasts analogous to the ice-water layers and possible sub-surface lakes expected at Europa. We demonstrate the

  2. OH/H2O Detection Capability Evaluation on Chang'e-5 Lunar Mineralogical Spectrometer (LMS)

    Science.gov (United States)

    Liu, Bin; Ren, Xin; Liu, Jianjun; Li, Chunlai; Mu, Lingli; Deng, Liyan

    2016-10-01

    The Chang'e-5 (CE-5) lunar sample return mission is scheduled to launch in 2017 to bring back lunar regolith and drill samples. The Chang'e-5 Lunar Mineralogical Spectrometer (LMS), as one of the three sets of scientific payload installed on the lander, is used to collect in-situ spectrum and analyze the mineralogical composition of the samplingsite. It can also help to select the sampling site, and to compare the measured laboratory spectrum of returned sample with in-situ data. LMS employs acousto-optic tunable filters (AOTFs) and is composed of a VIS/NIR module (0.48μm-1.45μm) and an IR module (1.4μm -3.2μm). It has spectral resolution ranging from 3 to 25 nm, with a field of view (FOV) of 4.24°×4.24°. Unlike Chang'e-3 VIS/NIR Imaging Spectrometer (VNIS), the spectral coverage of LMS is extended from 2.4μm to 3.2μm, which has capability to identify H2O/OH absorption features around 2.7μm. An aluminum plate and an Infragold plate are fixed in the dust cover, being used as calibration targets in the VIS/NIR and IR spectral range respectively when the dust cover is open. Before launch, a ground verification test of LMS needs to be conducted in order to: 1) test and verify the detection capability of LMS through evaluation on the quality of image and spectral data collected for the simulated lunar samples; and 2) evaluate the accuracy of data processing methods by the simulation of instrument working on the moon. The ground verification test will be conducted both in the lab and field. The spectra of simulated lunar regolith/mineral samples will be collected simultaneously by the LMS and two calibrated spectrometers: a FTIR spectrometer (Model 102F) and an ASD FieldSpec 4 Hi-Res spectrometer. In this study, the results of the LMS ground verification test will be reported, and OH/H2O Detection Capability will be evaluated especially.

  3. Lunar magnetism

    Science.gov (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  4. Novel Architecture for a Long-Life, Lightweight Venus Lander

    International Nuclear Information System (INIS)

    Bugby, D.; Seghi, S.; Kroliczek, E.; Pauken, M.

    2009-01-01

    This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480 deg. C, 90 atm, corrosive, mostly CO 2 Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to: (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high

  5. The Lunar Transit Telescope (LTT) - An early lunar-based science and engineering mission

    Science.gov (United States)

    Mcgraw, John T.

    1992-01-01

    The Sentinel, the soft-landed lunar telescope of the LTT project, is described. The Sentinel is a two-meter telescope with virtually no moving parts which accomplishes an imaging survey of the sky over almost five octaves of the electromagnetic spectrum from the ultraviolet into the infrared, with an angular resolution better than 0.1 arsec/pixel. The Sentinel will incorporate innovative techniques of interest for future lunar-based telescopes and will return significant engineering data which can be incorporated into future lunar missions. The discussion covers thermal mapping of the Sentinel, measurement of the cosmic ray flux, lunar dust, micrometeoroid flux, the lunar atmosphere, and lunar regolith stability and seismic activity.

  6. Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter

    Science.gov (United States)

    Bae, Jonghee; Song, Young-Joo; Kim, Young-Rok; Kim, Bangyeop

    2017-12-01

    The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon’s gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.

  7. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  8. View of the Lunar Module 'Orion' and Lunar Roving Vehicle during first EVA

    Science.gov (United States)

    1972-01-01

    A view of the Lunar Module (LM) 'Orion' and Lunar Roving Vehicle (LRV), as photographed by Astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA-1) at the Descates landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain.

  9. Lunar Reconnaissance Orbiter Lunar Workshops for Educators, Year 1 Report

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.; Dalton, H.

    2011-12-01

    This past summer, the Lunar Reconnaissance Orbiter (LRO) sponsored a series of weeklong professional development workshops designed to educate and inspire grade 6-12 science teachers: the Lunar Workshops for Educators. Participants learned about lunar science and exploration, gained tools to help address common student misconceptions about the Moon, heard some of the latest research results from LRO scientists, worked with LRO data, and learned how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks. Where possible, the workshops also included tours of science facilities or field trips intended to help the teachers better understand mission operations or geologic processes relevant to the Moon. The workshops were very successful. Participants demonstrated an improved understanding of lunar science concepts in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and productively share data from LRO with their students and provide them with authentic research experiences. Participant feedback on workshop surveys was also enthusiastically positive. 5 additional Lunar Workshops for Educators will be held around the country in the summer of 2012. For more information and to register, visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  10. LAPIS - LAnder Package Impacting a Seismometer - A Proposal for a Semi-Hard Lander Mission to the Moon

    Science.gov (United States)

    Lange, C.

    2009-04-01

    With an increased interest on the moon within the last years, at least with several missions in orbit or under development (SELENE/Japan, Chang'e/China, Chandrayaan/India and others), there is a strong demand within the German science community to participate in this initiative, building-up a national competence regarding lunar exploration. For this purpose, a Phase-0 analysis for a small lunar semi-hard landing scenario has been performed at DLR to foster future lunar exploration missions. This study's scope was to work out a more detailed insight into the design drivers and challenges and their impact on mass and cost budgets for such a mission. LAPIS has been dedicated to the investigation of the seismic activities of the moon, additionally to some other geophysical in-situ measurements at the lunar surface. In fact, the current status of the knowledge and understanding of lunar seismic activities leads to a range of open questions which have not been answered so far by the various Apollo missions in the past and could now possibly be answered by the studied LAPIS mission. Among these are the properties of the lunar core, the origin of deep and shallow moonquakes and the occurrence of micro-meteoroids. Therefore, as proposed first for LAPIS on the LEO mission, a payload of a short period micro-seismometer, based on European and American predevelopments, has been suggested. A staged mission scenario will be described, using a 2-module spacecraft with a propulsion part and a landing part, the so called LAPIS-PROP and LAPIS-LAND. In this scenario, the LAPIS-PROP module will do the cruise, until the spacecraft reaches an altitude of 100 m above the moon, after which the landing module will separate and continue to the actual semi-hard landing, which is based on deformable structures. Further technical details, e.g. considering the subsystem technologies, have been addressed within the performed study. These especially critical and uniquely challenging issues, such

  11. Mars' rotational state and tidal deformations from radio interferometry of a network of landers.

    Science.gov (United States)

    Iess, L.; Giuliani, S.; Dehant, V.

    2012-04-01

    The precise determination of the rotational state of solar system bodies is one of the main tools to investigate their interior structure. Unfortunately the accuracies required for geophysical interpretations are very stringent, and generally unattainable from orbit using optical or radar tracking of surface landmarks. Radio tracking of a lander from ground or from a spacecraft orbiting the planet offers substantial improvements, especially if the lander lifetime is adequately long. The optimal configuration is however attained when two or more landers can be simultaneously tracked from a ground antenna in an interferometric mode. ESA has been considering a network of landers on Mars since many years, and recently this concept has been revived by the study of the Mars Network Science Mission (MNSM). The scientific rationale of MNSM is the investigation of the Mars' interior and atmosphere by means of a network of two or three landers, making it especially suitable for interferometric observations. In order to synthesize an interferometer, the MNSN landers must be tracked simultaneously from a single ground antenna in a coherent two-way mode. The uplink radio signal (at X- or Ka-band) is received by the landers' transponders and retransmitted to ground in the same frequency band. The signals received at ground station are then recorded (typically at few tens of kHz) and beaten against each other to form the output of the interferometer, a complex phasor. The differential phase retain information on Mars' rotational parameters and tidal deformations. A crucial aspect of the interferometric configuration is the rejection of common noise and error sources. Errors in the station location, Earth orientation parameters and ephemerides, path delays due to the Earth troposphere and ionosphere, and, to a good extent, interplanetary plasma are cancelled out. The main residual errors are due to differential path delays from Mars' atmosphere and differential drifts of the

  12. Lunar-A

    Indian Academy of Sciences (India)

    penetrators will be transmitted to the earth station via the Lunar-A mother spacecraft orbiting at an altitude of about .... to save the power consumption of the Lunar-A penetrator .... and an origin-time versus tidal-phases correlation. (Toksoz et al ...

  13. Lunar Sample Compendium

    Science.gov (United States)

    Meyer, Charles

    2005-01-01

    The purpose of the Lunar Sample Compendium will be to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon. This Compendium will be organized rock by rock in the manor of a catalog, but will not be as comprehensive, nor as complete, as the various lunar sample catalogs that are available. Likewise, this Compendium will not duplicate the various excellent books and reviews on the subject of lunar samples (Cadogen 1981, Heiken et al. 1991, Papike et al. 1998, Warren 2003, Eugster 2003). However, it is thought that an online Compendium, such as this, will prove useful to scientists proposing to study individual lunar samples and should help provide backup information for lunar sample displays. This Compendium will allow easy access to the scientific literature by briefly summarizing the significant findings of each rock along with the documentation of where the detailed scientific data are to be found. In general, discussion and interpretation of the results is left to the formal reviews found in the scientific literature. An advantage of this Compendium will be that it can be updated, expanded and corrected as need be.

  14. International lunar observatory / power station: from Hawaii to the Moon

    Science.gov (United States)

    Durst, S.

    -like lava flow geology adds to Mauna Kea / Moon similarities. Operating amidst the extinct volcano's fine grain lava and dust particles offers experience for major challenges posed by silicon-edged, powdery, deep and abundant lunar regolith. Power stations for lunar observatories, both robotic and low cost at first, are an immediate enabling necessity and will serve as a commercial-industrial driver for a wide range of lunar base technologies. Both microwave rectenna-transmitters and radio-optical telescopes, maybe 1-meter diameter, can be designed using the same, new ultra-lightweight materials. Five of the world's six major spacefaring powers - America, Russia, Japan, China and India, are located around Hawaii in the Pacific / Asia area. With Europe, which has many resources in the Pacific hemisphere including Arianespace offices in Tokyo and Singapore, they have 55-60% of the global population. New international business partnerships such as Sea Launch in the mid-Pacific, and national ventures like China's Hainan spaceport, Japan's Kiribati shuttle landing site, Australia and Indonesia's emerging launch sites, and Russia's Ekranoplane sea launcher / lander - all combine with still more and advancing technologies to provide the central Pacific a globally representative, state-of-the-art and profitable access to space in this new century. The astronomer / engineers tasked with operation of the lunar observatory / power station will be the first to voyage from Hawaii to the Moon, before this decade is out. Their scientific and technical training at the world's leading astronomical complex on the lunar-like landscape of Mauna Kea may be enhanced with the learning and transmission of local cultures. Following the astronomer / engineers, tourism and travel in the commercially and technologically dynamic Pacific hemisphere will open the new ocean of space to public access in the 21st century like they opened the old ocean of sea and air to Hawaii in the 20th - with Hawaii

  15. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  16. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  17. Lunar Circular Structure Classification from Chang 'e 2 High Resolution Lunar Images with Convolutional Neural Network

    Science.gov (United States)

    Zeng, X. G.; Liu, J. J.; Zuo, W.; Chen, W. L.; Liu, Y. X.

    2018-04-01

    Circular structures are widely distributed around the lunar surface. The most typical of them could be lunar impact crater, lunar dome, et.al. In this approach, we are trying to use the Convolutional Neural Network to classify the lunar circular structures from the lunar images.

  18. Lunar neutron source function

    International Nuclear Information System (INIS)

    Kornblum, J.J.

    1974-01-01

    The search for a quantitative neutron source function for the lunar surface region is justified because it contributes to our understanding of the history of the lunar surface and of nuclear process occurring on the moon since its formation. A knowledge of the neutron source function and neutron flux distribution is important for the interpretation of many experimental measurements. This dissertation uses the available pertinent experimental measurements together with theoretical calculations to obtain an estimate of the lunar neutron source function below 15 MeV. Based upon reasonable assumptions a lunar neutron source function having adjustable parameters is assumed for neutrons below 15 MeV. The lunar neutron source function is composed of several components resulting from the action of cosmic rays with lunar material. A comparison with previous neutron calculations is made and significant differences are discussed. Application of the results to the problem of lunar soil histories is examined using the statistical model for soil development proposed by Fireman. The conclusion is drawn that the moon is losing mass

  19. Lunar Quest in Second Life, Lunar Exploration Island, Phase II

    Science.gov (United States)

    Ireton, F. M.; Day, B. H.; Mitchell, B.; Hsu, B. C.

    2010-12-01

    Linden Lab’s Second Life is a virtual 3D metaverse created by users. At any one time there may be 40,000-50,000 users on line. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move through Second Life by walking, flying, or teleporting. Users form communities or groups of mutual interest such as music, computer graphics, and education. These groups communicate via e-mail, voice, and text within Second Life. Information on downloading the Second Life browser and joining can be found on the Second Life website: www.secondlife.com. This poster details Phase II in the development of Lunar Exploration Island (LEI) located in Second Life. Phase I LEI highlighted NASA’s LRO/LCROSS mission. Avatars enter LEI via teleportation arriving at a hall of flight housing interactive exhibits on the LRO/ LCROSS missions including full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the mission, both spacecraft’s instrument suites, and related EPO. Other lunar related activities such as My Moon and NLSI EPO programs. A special exhibit was designed for International Observe the Moon Night activities with links to websites for further information. The sim includes several sites for meetings, a conference stage to host talks, and a screen for viewing NASATV coverage of mission and other televised events. In Phase II exhibits are updated to reflect on-going lunar exploration highlights, discoveries, and future missions. A new section of LEI has been developed to showcase NASA’s Lunar Quest program. A new exhibit hall with Lunar Quest information has been designed and is being populated with Lunar Quest information, spacecraft models (LADEE is in place) and kiosks. A two stage interactive demonstration illustrates lunar phases with static and 3-D stations. As NASA’s Lunar Quest program matures further

  20. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  1. New analysis software for Viking Lander meteorological data

    Directory of Open Access Journals (Sweden)

    O. Kemppinen

    2013-02-01

    Full Text Available We have developed a set of tools that enable us to process Viking Lander meteorological data beyond what has been previously publicly available. Besides providing data for new periods of time, the existing data periods have been augmented by enhancing the data resolution significantly. This was accomplished by first transferring the original Prime computer version of the data analysis software to a standard Linux platform, and then by modifying the software to be able to process the data despite irregularities in the original raw data and reverse engineering various parameter files. In addition to this, the processing pipeline has been streamlined, making processing the data faster and easier. As a case example of new data, freshly processed Viking Lander 1 and 2 temperature records are described and briefly analyzed in ways that have not been previously possible due to the lack of data.

  2. Lunar Meteorites: A Global Geochemical Dataset

    Science.gov (United States)

    Zeigler, R. A.; Joy, K. H.; Arai, T.; Gross, J.; Korotev, R. L.; McCubbin, F. M.

    2017-01-01

    To date, the world's meteorite collections contain over 260 lunar meteorite stones representing at least 120 different lunar meteorites. Additionally, there are 20-30 as yet unnamed stones currently in the process of being classified. Collectively these lunar meteorites likely represent 40-50 distinct sampling locations from random locations on the Moon. Although the exact provenance of each individual lunar meteorite is unknown, collectively the lunar meteorites represent the best global average of the lunar crust. The Apollo sites are all within or near the Procellarum KREEP Terrane (PKT), thus lithologies from the PKT are overrepresented in the Apollo sample suite. Nearly all of the lithologies present in the Apollo sample suite are found within the lunar meteorites (high-Ti basalts are a notable exception), and the lunar meteorites contain several lithologies not present in the Apollo sample suite (e.g., magnesian anorthosite). This chapter will not be a sample-by-sample summary of each individual lunar meteorite. Rather, the chapter will summarize the different types of lunar meteorites and their relative abundances, comparing and contrasting the lunar meteorite sample suite with the Apollo sample suite. This chapter will act as one of the introductory chapters to the volume, introducing lunar samples in general and setting the stage for more detailed discussions in later more specialized chapters. The chapter will begin with a description of how lunar meteorites are ejected from the Moon, how deep samples are being excavated from, what the likely pairing relationships are among the lunar meteorite samples, and how the lunar meteorites can help to constrain the impactor flux in the inner solar system. There will be a discussion of the biases inherent to the lunar meteorite sample suite in terms of underrepresented lithologies or regions of the Moon, and an examination of the contamination and limitations of lunar meteorites due to terrestrial weathering. The

  3. Precision Lunar Laser Ranging For Lunar and Gravitational Science

    Science.gov (United States)

    Merkowitz, S. M.; Arnold, D.; Dabney, P. W.; Livas, J. C.; McGarry, J. F.; Neumann, G. A.; Zagwodzki, T. W.

    2008-01-01

    Laser ranging to retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Lunar missions over the past 39 years have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Significant advances in these areas will require placing modern retroreflectors and/or active laser ranging systems at new locations on the lunar surface. Ranging to new locations will enable better measurements of the lunar librations, aiding in our understanding of the interior structure of the moon. More precise range measurements will allow us to study effects that are too small to be observed by the current capabilities as well as enabling more stringent tests of Einstein's theory of General Relativity. Setting up retroreflectors was a key part of the Apollo missions so it is natural to ask if future lunar missions should include them as well. The Apollo retroreflectors are still being used today, and nearly 40 years of ranging data has been invaluable for scientific as well as other studies such as orbital dynamics. However, the available retroreflectors all lie within 26 degrees latitude of the equator, and the most useful ones within 24 degrees longitude of the sub-earth meridian. This clustering weakens their geometrical strength.

  4. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-01-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  5. Triggered seismicity and deformation between the Landers, California, and Little Skull Mountain, Nevada, earthquakes

    Science.gov (United States)

    Bodin, Paul; Gomberg, Joan

    1994-01-01

    This article presents evidence for the channeling of strain energy released by the Ms = 7.4 Landers, California, earthquake within the eastern California shear zone (ECSZ). We document an increase in seismicity levels during the 22-hr period starting with the Landers earthquake and culminating 22 hr later with the Ms = 5.4 Little Skull Mountain (LSM), Nevada, earthquake. We evaluate the completeness of regional seismicity catalogs during this period and find that the continuity of post-Landers strain release within the ECSZ is even more pronounced than is evident from the catalog data. We hypothesize that regional-scale connectivity of faults within the ECSZ and LSM region is a critical ingredient in the unprecedented scale and distribution of remotely triggered earthquakes and geodetically manifest strain changes that followed the Landers earthquake. The viability of static strain changes as triggering agents is tested using numerical models. Modeling results illustrate that regional-scale fault connectivity can increase the static strain changes by approximately an order of magnitude at distances of at least 280 km, the distance between the Landers and LSM epicenters. This is possible for models that include both a network of connected faults that slip “sympathetically” and realistic levels of tectonic prestrain. Alternatively, if dynamic strains are a more significant triggering agent than static strains, ECSZ structure may still be important in determining the distribution of triggered seismic and aseismic deformation.

  6. Best Practices for In-Situ Sediment-Water Incubations with Benthic Landers

    Science.gov (United States)

    Tengberg, Anders; Kononets, Mikhail; Hall, Per; Nilsson, Madeleine; Ekeroth, Nils

    2017-04-01

    Biological, chemical, physical and geological processes that take place at the seafloor are crucial in influencing and regulating many aquatic environments. One method to estimate exchange rates, fluxes, between the sediment and the overlying water is in-situ sediment-water incubations using autonomous chamber landers. As for all field sampling and measurements best practices methods are needed to obtain high quality data. With experiences form many years usage of the Gothenburg autonomous bottom lander systems this presentation will describe some of the experimental work that has been done with focus on quality control and data evaluation methods.

  7. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model.

    Science.gov (United States)

    Russell, Sara S; Joy, Katherine H; Jeffries, Teresa E; Consolmagno, Guy J; Kearsley, Anton

    2014-09-13

    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Propulsive Maneuver Design for the 2007 Mars Phoenix Lander Mission

    Science.gov (United States)

    Raofi, Behzad; Bhat, Ramachandra S.; Helfrich, Cliff

    2008-01-01

    On May 25, 2008, the Mars Phoenix Lander (PHX) successfully landed in the northern planes of Mars in order to continue and complement NASA's "follow the water" theme as its predecessor Mars missions, such as Mars Odyssey (ODY) and Mars Exploration Rovers, have done in recent years. Instruments on the lander, through a robotic arm able to deliver soil samples to the deck, will perform in-situ and remote-sensing investigations to characterize the chemistry of materials at the local surface, subsurface, and atmosphere. Lander instruments will also identify the potential history of key indicator elements of significance to the biological potential of Mars, including potential organics within any accessible water ice. Precise trajectory control and targeting were necessary in order to achieve the accurate atmospheric entry conditions required for arriving at the desired landing site. The challenge for the trajectory control maneuver design was to meet or exceed these requirements in the presence of spacecraft limitations as well as other mission constraints. This paper describes the strategies used, including the specialized targeting specifically developed for PHX, in order to design and successfully execute the propulsive maneuvers that delivered the spacecraft to its targeted landing site while satisfying the planetary protection requirements in the presence of flight system constraints.

  9. Ares V: Game Changer for National Security Launch

    Science.gov (United States)

    Sumrall, Phil; Morris, Bruce

    2009-01-01

    NASA is designing the Ares V cargo launch vehicle to vastly expand exploration of the Moon begun in the Apollo program and enable the exploration of Mars and beyond. As the largest launcher in history, Ares V also represents a national asset offering unprecedented opportunities for new science, national security, and commercial missions of unmatched size and scope. The Ares V is the heavy-lift component of NASA's dual-launch architecture that will replace the current space shuttle fleet, complete the International Space Station, and establish a permanent human presence on the Moon as a stepping-stone to destinations beyond. During extensive independent and internal architecture and vehicle trade studies as part of the Exploration Systems Architecture Study (ESAS), NASA selected the Ares I crew launch vehicle and the Ares V to support future exploration. The smaller Ares I will launch the Orion crew exploration vehicle with four to six astronauts into orbit. The Ares V is designed to carry the Altair lunar lander into orbit, rendezvous with Orion, and send the mated spacecraft toward lunar orbit. The Ares V will be the largest and most powerful launch vehicle in history, providing unprecedented payload mass and volume to establish a permanent lunar outpost and explore significantly more of the lunar surface than was done during the Apollo missions. The Ares V consists of a Core Stage, two Reusable Solid Rocket Boosters (RSRBs), Earth Departure Stage (EDS), and a payload shroud. For lunar missions, the shroud would cover the Lunar Surface Access Module (LSAM). The Ares V Core Stage is 33 feet in diameter and 212 feet in length, making it the largest rocket stage ever built. It is the same diameter as the Saturn V first stage, the S-IC. However, its length is about the same as the combined length of the Saturn V first and second stages. The Core Stage uses a cluster of five Pratt & Whitney Rocketdyne RS-68B rocket engines, each supplying about 700,000 pounds of thrust

  10. REE Partitioning in Lunar Minerals

    Science.gov (United States)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  11. Lunar resource base

    Science.gov (United States)

    Pulley, John; Wise, Todd K.; Roy, Claude; Richter, Phil

    A lunar base that exploits local resources to enhance the productivity of a total SEI scenario is discussed. The goals were to emphasize lunar science and to land men on Mars in 2016 using significant amounts of lunar resources. It was assumed that propulsion was chemical and the surface power was non-nuclear. Three phases of the base build-up are outlined, the robotic emplacement of the first elements is detailed and a discussion of future options is included.

  12. Network of Nano-Landers for In-Situ Characterization of Asteroid Impact Studies

    OpenAIRE

    Kalita, Himangshu; Asphaug, Erik; Schwartz, Stephen; Thangavelautham, Jekanthan

    2017-01-01

    Exploration of asteroids and comets can give insight into the origins of the solar system and can be instrumental in planetary defence and in-situ resource utilization (ISRU). Asteroids, due to their low gravity are a challenging target for surface exploration. Current missions envision performing touch-and-go operations over an asteroid surface. In this work, we analyse the feasibility of sending scores of nano-landers, each 1 kg in mass and volume of 1U, or 1000 cm3. These landers would hop...

  13. The International Lunar Decade Declaration

    Science.gov (United States)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.

    2015-10-01

    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - http://2014giantleap.aerospacehawaii.info/ and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies

  14. Telltale wind indicator for the Mars Phoenix lander

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Honstein-Rathlou, C.; Merrison, J.P.

    2008-01-01

    The Telltale wind indicator is a mechanical anemometer designed to operate on the Martian surface as part of the meteorological package on the NASA Phoenix lander. It consists of a lightweight cylinder suspended by Kevlar fibers and is deflected under the action of wind. Imaging of the Telltale...

  15. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration

    Science.gov (United States)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments

  16. Rock Moved by Mars Lander Arm, Stereo View

    Science.gov (United States)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location. 'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team. The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape. The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been. This left-eye and right-eye images for this stereo view were taken at about 12:30 p.m., local solar time on Mars. The scene appears three-dimensional when seen through blue-red glasses.The view is to the north northeast of the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  17. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  18. Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models

    Science.gov (United States)

    Carranza, Eric; Konopliv, Alex; Ryne, Mark

    1999-01-01

    The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.

  19. First-order optical analysis of a quasi-microscope for planetary landers

    Science.gov (United States)

    Huck, F. O.; Sinclair, A. R.; Burcher, E. E.

    1973-01-01

    A first-order geometrical optics analysis of a facsimile camera augmented with an auxiliary lens as magnifier is presented. This concept, called quasi-microscope, bridges the gap between surface resolutions of the order of 1 to 10 mm which can be obtained directly with planetary lander cameras and resolutions of the order of 0.2 to 10 microns which can be obtained only with relatively complex microscopes. A facsimile camera was considered in the analysis; however, the analytical results can also be applied to television and film cameras. It was found that quasi-microscope resolutions in the range from 10 to 100 microns are obtainable with current state-of-the-art lander facsimile cameras. For the Viking lander camera having an angular resolution of 0.04 deg, which was considered as a specific example, the best achievable resolution would be about 20 microns. The preferred approach to increase the resolution of the quasi-microscope would be, if possible, through an increase in angular resolution of the camera. A twofold to threefold improvement in resolution could also be achieved with a special camera focus position, but this approach tends to require larger and heavier auxiliary optics.

  20. Walking Wheel Design for Lunar Rove-Rand and Its Application Simulation Based on Virtual Lunar Environment

    Directory of Open Access Journals (Sweden)

    Zhao Yibing

    2014-05-01

    Full Text Available The lunar rover design is the key problem of planet exploration. It is extraordinarily important for researchers to fully understand the lunar terrain and propose the reasonable lunar rover. In this paper, one new type of walking wheel modeled on impeller is presented based on vehicle terramechanics. The passive earth pressure of soil mechanics put forward by C. A. Coulomb is employed to obtain the wheel traction force. Some kinematics simulations are conducted for lunar rover model. Besides, this paper presents how to model lunar landing terrain containing typical statistic characteristic including craters and boulders; then, the second step is to construct basal lunar surface by using Brown Fractal Motion and the next is to add craters and boulders by means of known diameter algorithm and Random-create Diameter Algorithm. By means of importing 2D plain of lunar surface into UG, 3D parasolid is modeled and finally imported to ADAMS, which is available for lunar rover kinematics and dynamics simulation. Lastly, based on power spectrum curve of lunar terrain, the spectral characteristic of three different lunar terrain roughness is educed by using reverse engineering algorithm. Simulation results demonstrated the frequency of vibration mechanics properties of different roughness surfaces.

  1. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  2. Lunar imaging and ionospheric calibration for the Lunar Cherenkov technique

    NARCIS (Netherlands)

    McFadden, R.; Scholten, O.; Mevius, M.

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the

  3. Kickstarting a New Era of Lunar Industrialization via Campaign of Lunar COTS Missions

    Science.gov (United States)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Pittman, Robert B.; Zapata, Edgar

    2016-01-01

    To support the goals of expanding our human presence and current economic sphere beyond LEO, a new plan was constructed for NASA to enter into partnerships with industry to foster and incentivize a new era of lunar industrialization. For NASA to finally be successful in achieving sustainable human exploration missions beyond LEO, lessons learned from our space history have shown that it is essential for current program planning to include affordable and economic development goals as well as address top national priorities to obtain much needed public support. In the last 58 years of NASA's existence, only Apollo's human exploration missions beyond LEO were successful since it was proclaimed to be a top national priority during the 1960's. However, the missions were not sustainable and ended abruptly in 1972 due to lack of funding and insufficient economic gain. Ever since Apollo, there have not been any human missions beyond LEO because none of the proposed program plans were economical or proclaimed a top national priority. The proposed plan outlines a new campaign of low-cost, commercial-enabled lunar COTS (Commercial Orbital Transfer Services) missions which is an update to the Lunar COTS plan previously described. The objectives of this new campaign of missions are to prospect for resources, determine the economic viability of extracting those resources and assess the value proposition of using these resources in future exploration architectures such as Mars. These missions would be accomplished in partnership with commercial industry using the wellproven COTS Program acquisition model. This model proved to be very beneficial to both NASA and its industry partners as NASA saved significantly in development and operational costs, as much as tenfold, while industry partners successfully expanded their market share and demonstrated substantial economic gain. Similar to COTS, the goals for this new initiative are 1) to develop and demonstrate cost-effective, cis-lunar

  4. Technicians work with Apollo 14 lunar sample material in Lunar Receiving Lab.

    Science.gov (United States)

    1971-01-01

    Glove handlers work with freshly opened Apollo 14 lunar sample material in modularized cabinets in the Lunar Receiving Laboratory at the Manned Spacecraft Center. The glove operator on the right starts to pour fine lunar material which he has just taken from a tote bag. This powdery sample was among the last to be revealed of the 90-odd pounds of material brought back to Earth by the Apollo 14 crewmen.

  5. Orbital studies of lunar magnetism

    Science.gov (United States)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1982-01-01

    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  6. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?

    Science.gov (United States)

    Rapp, Jennifer F.; Draper, David S.

    2013-01-01

    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  7. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  8. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    Science.gov (United States)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  9. Ares V: Enabling Unprecedented Payloads for Space in the 21st Century

    Science.gov (United States)

    Creech, Steve

    2010-01-01

    Numerous technical and programmatic studies since the U.S. space program began in the 1960s has emphasized the need for a heavy lift capability for exploration beyond low Earth orbit (LEO). The Saturn V once embodied that capability until it was retired. Now the Ares V cargo launch vehicle (CaLV) promises to restore and improve on that capability, providing unprecedented opportunities for human and robotic exploration, science, national security and commercial uses. This paper provides an overview of the capabilities of Ares V, both as an opportunity for payloads of increased mass and/or volume, and as a means of reducing risk in the payload design process. The Ares V is part of NASA s Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and Altair lunar lander. This architecture is designed to carry out the national space policy goals of completing the International Space Station (ISS), retiring the Space Shuttle fleet, and expanding human exploration beyond LEO. The Ares V is designed to loft upper stages and/or cargo, such as the Altair lander, into LEO. The Ares I is designed to put Orion into LEO with a crew of up to four for rendezvous with the ISS or with the Ares V Earth departure stage for journeys to the Moon. While retaining the goals of heritage hardware and commonality, the Ares V configuration continues to be refined through a series of internal trades. The current reference configuration was recommended by the Ares Projects and approved by the Constellation Program during the Lunar Capabilities Concept Review (LCCR) June 2008. The reference configuration defines the Ares V as 381 feet (116m) tall with a gross lift-off mass (GLOM) of 8.1 million pounds (3,704.5 mT). Its first stage will generate 11 million pounds of sea-level liftoff thrust. It will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual

  10. Viking lander tracking contributions to Mars mapping

    International Nuclear Information System (INIS)

    Michael, W.H. Jr.

    1979-01-01

    The major recent advances in planetary mapping have been accomplished through use of photography from orbiting satellites, as is the case for Mars with Mariner and Viking photographs. The requirement for greater precision demands that inputs to the photogrammatic process be more precisely defined. This paper describes how analyses of Doppler and ranging data from the Viking landers are contributing to more precise mapping of Mars in several specific areas. (Auth.)

  11. Landing on small bodies: From the Rosetta Lander to MASCOT and beyond

    Science.gov (United States)

    Ulamec, Stephan; Biele, Jens; Bousquet, Pierre-W.; Gaudon, Philippe; Geurts, Koen; Ho, Tra-Mi; Krause, Christian; Lange, Caroline; Willnecker, Rainer; Witte, Lars; The Philae; Mascot Teams

    2014-01-01

    Recent planning for science and exploration missions has emphasized the high interest in the close investigation of small bodies in the Solar System. In particular in-situ observations of asteroids and comets play an important role in this field and will contribute substantially to our understanding of the formation and history of the Solar System. The first dedicated comet Lander is Philae, an element of ESA's Rosetta mission to comet 67/P Churyumov-Gerasimenko. Rosetta was launched in 2004. After more than 7 years of cruise (including three Earth and one Mars swing-by as well as two asteroid flybys) the spacecraft has gone into a deep space hibernation in June 2011. When approaching the target comet in early 2014, Rosetta will be re-activated. The cometary nucleus will be characterized remotely to prepare for Lander delivery, currently foreseen for November 2014. The Rosetta Lander was developed and manufactured, similar to a scientific instrument, by a consortium consisting of international partners. Project management is located at DLR in Cologne/Germany, with co-project managers at CNES (France) and ASI (Italy). The scientific lead is at the Max Planck Institute for Solar System Science (Lindau, Germany) and the Institut d'Astrophysique Spatiale (Paris). Mainly scientific institutes provided the subsystems, instruments and the complete, qualified lander system. Operations are performed in two dedicated centers, the Lander Control Center (LCC) at DLR-MUSC and the Science Operations and Navigation Center (SONC) at CNES. This concept was adopted to reduce overall cost of the project and is foreseen also to be applied for development and operations of future small bodies landers. A mission profiting from experience gained during Philae development and operations is MASCOT, a surface package for the Japanese Hayabusa 2 mission. MASCOT is a small (˜10 kg) mobile device, delivered to the surface of asteroid 1999JU3. There it will operate for about 16 h. During this

  12. Lunar and Vesta Web Portals

    Science.gov (United States)

    Law, E.; JPL Luna Mapping; Modeling Project Team

    2015-06-01

    The Lunar Mapping and Modeling Project offers Lunar Mapping and Modeling Portal (http://lmmp.nasa.gov) and Vesta Trek Portal (http://vestatrek.jpl.nasa.gov) providing interactive visualization and analysis tools to enable users to access mapped Lunar and Vesta data products.

  13. X-ray proportional counter for the Viking Lander

    International Nuclear Information System (INIS)

    Glesius, F.L.; Kroon, J.C.; Castro, A.J.; Clark, B.C.

    1978-01-01

    A set of four sealed proportional counters with optimized energy response is employed in the X-ray fluorescence spectrometer units aboard the two Viking Landers. The instruments have provided quantitative elemental analyses of soil samples taken from the Martian surface. This paper discusses the design and development of these miniature proportional counters, and describes their performance on Mars

  14. The Lunar Magma Ocean (LMO) Paradigm Versus the Realities of Lunar Anorthosites

    Science.gov (United States)

    Treiman, A. H.; Gross, J.

    2018-05-01

    The paradigm of the Lunar Magma Ocean (LMO) is inconsistent with much chemical and compositional data on lunar anorthosites. The paradigm of serial anorthosite diapirism is more consistent, though not a panacea.

  15. Chronology of early lunar crust

    International Nuclear Information System (INIS)

    Dasch, E.J.; Nyquist, L.E.; Ryder, G.

    1988-01-01

    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed

  16. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  17. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    Science.gov (United States)

    Dai, Shun; Su, Yan; Xiao, Yuan; Feng, Jian-Qing; Xing, Shu-Guo; Ding, Chun-Yu

    2014-12-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.

  18. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    International Nuclear Information System (INIS)

    Dai Shun; Su Yan; Xiao Yuan; Feng Jian-Qing; Xing Shu-Guo; Ding Chun-Yu

    2014-01-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed

  19. Beneficiation of lunar ilmenite

    Science.gov (United States)

    Ruiz, Joaquin

    1991-01-01

    One of the most important commodities lacking in the moon is free oxygen which is required for life and used extensively for propellent. Free oxygen, however, can be obtained by liberating it from the oxides and silicates that form the lunar rocks and regolith. Ilmenite (FeTiO3) is considered one of the leading candidates for production of oxygen because it can be reduced with a reasonable amount of energy and it is an abundant mineral in the lunar regolith and many mare basalts. In order to obtain oxygen from ilmenite, a method must be developed to beneficiate ilmenite from lunar material. Two possible techniques are electrostatic or magnetic methods. Both methods have complications because lunar ilmenite completely lacks Fe(3+). Magnetic methods were tested on eucrite meteorites, which are a good chemical simulant for low Ti mare basalts. The ilmenite yields in the experiments were always very low and the eucrite had to be crushed to xxxx. These data suggest that magnetic separation of ilmenite from fine grain lunar basalts would not be cost effective. Presently, experiments are being performed with electrostatic separators, and lunar regolith is being waited for so that simulants do not have to be employed.

  20. The Philae lander mission and science overview.

    Science.gov (United States)

    Boehnhardt, Hermann; Bibring, Jean-Pierre; Apathy, Istvan; Auster, Hans Ulrich; Ercoli Finzi, Amalia; Goesmann, Fred; Klingelhöfer, Göstar; Knapmeyer, Martin; Kofman, Wlodek; Krüger, Harald; Mottola, Stefano; Schmidt, Walter; Seidensticker, Klaus; Spohn, Tilman; Wright, Ian

    2017-07-13

    The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12-14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the mission comes from eight of the 10 instruments on-board and focuses on morphological, thermal, mechanical and electrical properties of the surface as well as on the surface composition. It allows a first characterization of the local environment of the touch-down and landing sites. Unique conclusions on the organics in the cometary material, the nucleus interior, the comet formation and evolution became available through measurements of the Philae lander in the context of the Rosetta mission.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  1. Integral design method for simple and small Mars lander system using membrane aeroshell

    Science.gov (United States)

    Sakagami, Ryo; Takahashi, Ryohei; Wachi, Akifumi; Koshiro, Yuki; Maezawa, Hiroyuki; Kasai, Yasko; Nakasuka, Shinichi

    2018-03-01

    To execute Mars surface exploration missions, spacecraft need to overcome the difficulties of the Mars entry, descent, and landing (EDL) sequences. Previous landing missions overcame these challenges with complicated systems that could only be executed by organizations with mature technology and abundant financial resources. In this paper, we propose a novel integral design methodology for a small, simple Mars lander that is achievable even by organizations with limited technology and resources such as universities or emerging countries. We aim to design a lander (including its interplanetary cruise stage) whose size and mass are under 1 m3 and 150 kg, respectively. We adopted only two components for Mars EDL process: a "membrane aeroshell" for the Mars atmospheric entry and descent sequence and one additional mechanism for the landing sequence. The landing mechanism was selected from the following three candidates: (1) solid thrusters, (2) aluminum foam, and (3) a vented airbag. We present a reasonable design process, visualize dependencies among parameters, summarize sizing methods for each component, and propose the way to integrate these components into one system. To demonstrate the effectiveness, we applied this methodology to the actual Mars EDL mission led by the National Institute of Information and Communications Technology (NICT) and the University of Tokyo. As a result, an 80 kg class Mars lander with a 1.75 m radius membrane aeroshell and a vented airbag was designed, and the maximum landing shock that the lander will receive was 115 G.

  2. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    Science.gov (United States)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; hide

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  3. Visibility of lunar surface features - Apollo 14 orbital observations and lunar landing.

    Science.gov (United States)

    Ziedman, K.

    1972-01-01

    Description of an in-flight visibility test conducted during the Apollo 14 mission for the purpose of validating and extending the mathematical visibility models used previously in the course of the Apollo program to examine the constraints on descent operations imposed by lunar visibility limitations. Following a background review of the effects on mission planning of the visibility limitations due to downsun lunar surface detail 'washout' and a discussion of the visibility prediction techniques previously used for studying lunar visibility problems, the visibility test rationale and procedures are defined and the test results presented. The results appear to confirm the validity of the visibility prediction techniques employed in lunar visibility problem studies. These results provide also a basis for improving the accuracy of the prediction techniques by appropriate modifications.

  4. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  5. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  6. Lunar Regolith Particle Shape Analysis

    Science.gov (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  7. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  8. Structural design of liquid oxygen/liquid methane robotic lander JANUS

    Science.gov (United States)

    Chaidez, Mariana

    As the attempt to send humans to Mars has gained momentum in the last decade, the need to find alternative propellants that are safer, less toxic, and yields a better performance has become apparent [1]. Liquid methane and oxygen have emerged as a suitable alternative. In addition, the incorporation of liquid methane/liquid oxygen into the propulsion system has demonstrated an increase in engine performance, as well as a reduction in the volume, size and complexity of the propulsion system. In an attempt to further understand the technologies that are possible to develop using liquid oxygen (LO 2) and liquid methane (LCH4), a preliminary design of a robotic lander JANUS is being completed by the Center for Space Exploration and Technology Research (cSTER). The structural design of the vehicle is important because it acts as the skeleton of the vehicle and dictates the maneuverability of the robotic lander. To develop the structure of the robotic lander, six different design vehicle concepts with varying tank configurations were considered. Finite Element Analysis (FEA) was completed on each model to optimize each vehicle. Trade studies were completed to choose the best design for JANUS. Upon completion of the trade studies the design for the first prototype of JANUS was initiated in which the tank and thrust modules were designed. This thesis will describe the design process for the structural design of the JANUS.

  9. Flight Testing a Real-Time Hazard Detection System for Safe Lunar Landing on the Rocket-Powered Morpheus Vehicle

    Science.gov (United States)

    Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.

    2015-01-01

    The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.

  10. Influence of the Choice of Lunar Gravity Model on Orbit Determination for Lunar Orbiters

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2018-01-01

    Full Text Available We examine the influence of the lunar gravity model on the orbit determination (OD of a lunar orbiter operating in a 100 km high, lunar polar orbit. Doppler and sequential range measurements by three Deep Space Network antennas and one Korea Deep Space Antenna were used. For measurement simulation and OD analysis, STK11 and ODTK6 were utilized. GLGM2, LP100K, LP150Q, GRAIL420A, and GRAIL660B were used for investigation of lunar gravity model selection effect. OD results were assessed by position and velocity uncertainties with error covariance and an external orbit comparison using simulated true orbit. The effect of the lunar gravity models on the long-term OD, degree and order level, measurement-acquisition condition, and lunar altitude was investigated. For efficiency verification, computational times for the five lunar gravity models were compared. Results showed that significant improvements to OD accuracy are observed by applying a GRAIL-based model; however, applying a full order and degree gravity modeling is not always the best strategy, owing to the computational burden. Consequently, we consider that OD using GRAIL660B with 70 × 70 degree and order is the most efficient strategy for mission preanalysis. This study provides useful guideline for KPLO OD analysis during nominal mission operation.

  11. Photogrammetry of the Viking-Lander imagery.

    Science.gov (United States)

    Wu, S.S.C.; Schafer, F.J.

    1982-01-01

    We have solved the problem of photogrammetric mapping from the Viking Lander photography in two ways: 1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture by means of computerized rectification; and 2) by interfacing a high-speed, general-purpose computer to the AS-11A analytical plotter so that all computations of corrections can be performed in real time during the process of model orientation and map compilation. Examples are presented of photographs and maps of Earth and Mars. -from Authors

  12. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  13. The Lunar Source Disk: Old Lunar Datasets on a New CD-ROM

    Science.gov (United States)

    Hiesinger, H.

    1998-01-01

    A compilation of previously published datasets on CD-ROM is presented. This Lunar Source Disk is intended to be a first step in the improvement/expansion of the Lunar Consortium Disk, in order to create an "image-cube"-like data pool that can be easily accessed and might be useful for a variety of future lunar investigations. All datasets were transformed to a standard map projection that allows direct comparison of different types of information on a pixel-by pixel basis. Lunar observations have a long history and have been important to mankind for centuries, notably since the work of Plutarch and Galileo. As a consequence of centuries of lunar investigations, knowledge of the characteristics and properties of the Moon has accumulated over time. However, a side effect of this accumulation is that it has become more and more complicated for scientists to review all the datasets obtained through different techniques, to interpret them properly, to recognize their weaknesses and strengths in detail, and to combine them synoptically in geologic interpretations. Such synoptic geologic interpretations are crucial for the study of planetary bodies through remote-sensing data in order to avoid misinterpretation. In addition, many of the modem datasets, derived from Earth-based telescopes as well as from spacecraft missions, are acquired at different geometric and radiometric conditions. These differences make it challenging to compare or combine datasets directly or to extract information from different datasets on a pixel-by-pixel basis. Also, as there is no convention for the presentation of lunar datasets, different authors choose different map projections, depending on the location of the investigated areas and their personal interests. Insufficient or incomplete information on the map parameters used by different authors further complicates the reprojection of these datasets to a standard geometry. The goal of our efforts was to transfer previously published lunar

  14. The development of sine vibration test requirements for Viking lander capsule components

    Science.gov (United States)

    Barrett, S.

    1974-01-01

    In connection with the Viking project for exploring the planet Mars, two identical spacecraft, each consisting of an orbiter and a lander, will be launched in the third quarter of 1975. Upon arrival at the planet, the Viking lander will separate from the Viking orbiter and descend to a soft landing at a selected site on the Mars surface. It was decided to perform a sine vibration test on the Viking spacecraft, in its launch configuration, to qualify it for the booster-induced transient-dynamic environment. It is shown that component-level testing is a cost- and schedule-effective prerequisite to the system-level, sine-vibration test sequences.

  15. Mechanical properties of lunar regolith and lunar soil simulant

    Science.gov (United States)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  16. Mineralogical and chemical properties of the lunar regolith

    Science.gov (United States)

    Mckay, David S.; Ming, Douglas W.

    1989-01-01

    The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.

  17. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter.

    Science.gov (United States)

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-04-16

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h 2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise.

  18. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; Torrence, Mark H.; Barker, Michael K.; Oberst, Juergen; Duxbury, Thomas C.; Mao, Dandan; Barnouin, Olivier S.; Jha, Kopal; Rowlands, David D.; Goossens, Sander; Baker, David; Bauer, Sven; Gläser, Philipp; Lemelin, Myriam; Rosenburg, Margaret; Sori, Michael M.; Whitten, Jennifer; Mcclanahan, Timothy

    2017-02-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  19. Summary of the Results from the Lunar Orbiter Laser Altimeter after Seven Years in Lunar Orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; hide

    2016-01-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  20. Man-Made Debris In and From Lunar Orbit

    Science.gov (United States)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  1. Contingency Operations of Americas Next Moon Rocket, Ares V

    Science.gov (United States)

    Jaap, John; Richardson, Lea

    2010-01-01

    America has begun the development of a new space vehicle system which will enable humans to return to the moon and reach even farther destinations. The system is called Constellation: it has 2 earth-launch vehicles, Ares I and Ares V; a crew module, Orion; and a lander, Altair with descent and ascent stages. Ares V will launch an Earth Departure Stage (EDS) and Altair into low earth orbit. Ares I will launch the Orion crew module into low earth orbit where it will rendezvous and dock with the Altair and EDS "stack". After rendezvous, the stack will contain four complete rocket systems, each capable of independent operations. Of course this multiplicity of vehicles provides a multiplicity of opportunities for off-nominal behavior and multiple mitigation options for each. Contingency operations are complicated by the issues of crew safety and the possibility of debris from the very large components impacting the ground. This paper examines contingency operations of the EDS in low earth orbit, during the boost to translunar orbit, and after the translunar boost. Contingency operations under these conditions have not been a consideration since the Apollo era and analysis of the possible contingencies and mitigations will take some time to evolve. Since the vehicle has not been designed, much less built, it is not possible to evaluate contingencies from a root-cause basis or from a probability basis; rather they are discussed at an effects level (such as the reaction control system is consuming propellant at a high rate). Mitigations for the contingencies are based on the severity of the off-nominal condition, the time of occurrence, recovery options, options for alternate missions, crew safety, evaluation of the condition (forensics) and future prevention. Some proposed mitigations reflect innovation in thinking and make use of the multiplicity of on-orbit resources including the crew; example: Orion could do a "fly around" to allow the crew to determine the condition

  2. Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals

    Science.gov (United States)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2017-11-01

    The thickness of lunar regolith is an important index of evaluating the quantity of lunar resources such as 3He and relative geologic ages. Lunar penetrating radar (LPR) experiment of Chang'E-3 mission provided an opportunity of in situ lunar subsurface structure measurement in the northern mare imbrium area. However, prior work on analyzing LPR data obtained quite different conclusions of lunar regolith structure mainly because of the missing of clear interface reflectors in radar image. In this paper, we utilized finite-difference time-domain (FDTD) method and three models of regolith structures with different rock density, number of layers, shapes of interfaces, and etc. to simulate the LPR signals for the interpretation of radar image. The simulation results demonstrate that the scattering signals caused by numerous buried rocks in the regolith can mask the horizontal reflectors, and the die-out of radar echo does not indicate the bottom of lunar regolith layer and data processing such as migration method could recover some of the subsurface information but also result in fake signals. Based on analysis of simulation results, we conclude that LPR results uncover the subsurface layered structure containing the rework zone with multiple ejecta blankets of small crater, the ejecta blanket of Chang'E-3 crater, and the transition zone and estimate the thickness of the detected layer is about 3.25 m.

  3. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.

  4. Critical Robotic Lunar Missions

    Science.gov (United States)

    Plescia, J. B.

    2018-04-01

    Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.

  5. Relativistic time transfer for a Mars lander: from Areocentric Coordinate Time to Barycentric Coordinate Time

    Science.gov (United States)

    Yang, Wen-Zheng; Xu, De-Wang; Yu, Qing-Shan; Liu, Jie; Xie, Yi

    2017-08-01

    As the second step of relativistic time transfer for a Mars lander, we investigate the transformation between Areocentric Coordinate Time (TCA) and Barycentric Coordinate Time (TCB) in the framework of IAU Resolutions. TCA is a local time scale for Mars, which is analogous to the Geocentric Coordinate Time (TCG) for Earth. This transformation has two parts: contributions associated with gravitational bodies and those depending on the position of the lander. After setting the instability of an onboard clock to 10-13 and considering that the uncertainty in time is about 3.2 microseconds after one Earth year, we find that the contributions of the Sun, Mars, Jupiter and Saturn in the leading term associated with these bodies can reach a level exceeding the threshold and must be taken into account. Other terms can be safely ignored in this transformation for a Mars lander.

  6. Apollo Missions to the Lunar Surface

    Science.gov (United States)

    Graff, Paige V.

    2018-01-01

    Six Apollo missions to the Moon, from 1969-1972, enabled astronauts to collect and bring lunar rocks and materials from the lunar surface to Earth. Apollo lunar samples are curated by NASA Astromaterials at the NASA Johnson Space Center in Houston, TX. Samples continue to be studied and provide clues about our early Solar System. Learn more and view collected samples at: https://curator.jsc.nasa.gov/lunar.

  7. Lunar Exploration Missions Since 2006

    Science.gov (United States)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  8. What is a lunar standstill III?

    Directory of Open Access Journals (Sweden)

    Lionel Duke Sims

    2016-12-01

    Full Text Available Prehistoric monument alignments on lunar standstills are currently understood for horizon range, perturbation event, crossover event, eclipse prediction, solstice full Moon and the solarisation of the dark Moon. The first five models are found to fail the criteria of archaeoastronomy field methods. The final model of lunar-solar conflation draws upon all the observed components of lunar standstills – solarised reverse phased sidereal Moons culminating in solstice dark Moons in a roughly nine-year alternating cycle between major and minor standstills. This lunar-solar conflation model is a syncretic overlay upon an antecedent Palaeolithic template for lunar scheduled rituals and amenable to transformation.

  9. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  10. Effects of Rocket Exhaust on Lunar Soil Reflectance Properties

    Science.gov (United States)

    Clegg, R. N.; Jolliff, B. L.; Robinson, M. S.; Hapke, B. W.; Plescia, J. B.

    2012-12-01

    The Apollo, Surveyor, and Luna spacecraft descent engine plumes affected the regolith at and surrounding their landing sites. Owing to the lack of rapid weathering processes on the Moon, surface alterations are still visible as photometric anomalies in Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images. These areas are interpreted as disturbance of the regolith by rocket exhaust during descent of the spacecraft, which we refer to as "blast zones" (BZs). The BZs consist of an area of lower reflectance (LR-BZ) compared to the surroundings that extends up to a few meters out from the landers, as well as a broader halo of higher reflectance (HR-BZ) that extends tens to hundreds of meters out from the landers. We use phase-ratio images for each landing site to determine the spatial extent of the disturbed regions and to quantify differences in reflectance and backscattering characteristics within the BZs compared to nearby undisturbed regolith. We also compare the reflectance changes and BZ dimensions at the Apollo sites with those at Luna and Surveyor sites. We seek to determine the effects of rocket exhaust in terms of erosion and particle redistribution, as well as the cause(s) of the reflectance variations, i.e., physical changes at the regolith surface. When approximated as an ellipse, the average Apollo BZ area is ~29,000 m2 (~175 ± 60 m by 200 ± 27 m) which is 10x larger than the average Luna BZ, and over 100x larger than the average Surveyor BZ. Moreover, BZ area scales roughly with lander mass (as a proxy for thrust). The LR-BZs are evident at the Apollo sites, especially where astronaut bioturbation has roughened the soil, leading to a 2-14% reduction in reflectance at ~30° phase. The LR-BZs at the Luna and Surveyor sites are less evident and may be mostly confined to the area below the landers. The average normalized reflectance in the HR-BZs for images with a 30° phase angle is 2-16% higher than in the undisturbed surrounding

  11. Academic aspects of lunar water resources and their relevance to lunar protolife.

    Science.gov (United States)

    Green, Jack

    2011-01-01

    Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 10(9) metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My). Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino acids. Soluble

  12. Lunar domes properties and formation processes

    CERN Document Server

    Lena, Raffaello; Phillips, Jim; Chiocchetta, Maria Teresa

    2013-01-01

    Lunar domes are structures of volcanic origin which are usually difficult to observe due to their low heights. The Lunar Domes Handbook is a reference work on these elusive features. It provides a collection of images for a large number of lunar domes, including telescopic images acquired with advanced but still moderately intricate amateur equipment as well as recent orbital spacecraft images. Different methods for determining the morphometric properties of lunar domes (diameter, height, flank slope, edifice volume) from image data or orbital topographic data are discussed. Additionally, multispectral and hyperspectral image data are examined, providing insights into the composition of the dome material. Several classification schemes for lunar domes are described, including an approach based on the determined morphometric quantities and spectral analyses. Furthermore, the book provides a description of geophysical models of lunar domes, which yield information about the properties of the lava from which the...

  13. Searching for Lunar Horizon Glow With the Lunar Orbiter Laser Altimeter (LOLA)

    Science.gov (United States)

    Barker, M. K.; Mazarico, E. M.; McClanahan, T. P.; Sun, X.; Smith, D. E.; Neumann, G. A.; Zuber, M. T.; Head, J. W., III

    2017-12-01

    The dust environment of the Moon is sensitive to the interplanetary meteoroid population and dust transport processes near the lunar surface, and this affects many aspects of lunar surface science and planetary exploration. The interplanetary meteoroid population poses a significant risk to spacecraft, yet it remains one of the more uncertain constituents of the space environment. Observed and hypothesized lunar dust transport mechanisms have included impact-generated dust plumes, electrostatic levitation, and dynamic lofting. Many details of the impactor flux and impact ejection process are poorly understood, a fact highlighted by recent discrepant estimates of the regolith mixing rate. Apollo-era observations of lunar horizon glow (LHG) were interpreted as sunlight forward-scattered by exospheric dust grains levitating in the top meter above the surface or lofted to tens of kilometers in altitude. However, recent studies have placed limits on the dust density orders of magnitude less than what was originally inferred, raising new questions on the time variability of the dust environment. Motivated by the need to better understand dust transport processes and the meteoroid population, the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) is conducting a campaign to search for LHG with the LOLA Laser Ranging (LR) system. Advantages of this LOLA LHG search include: (1) the LOLA-LR telescope can observe arbitrarily close to the Sun at any time during the year without damaging itself or the other instruments, (2) a long temporal baseline with observations both during and outside of meteor streams, which will improve the chances of detecting LHG, and (3) a focus on altitudes methodology, and preliminary results.

  14. Feasibility of a Dragon-Derived Mars Lander for Scientific and Human-Precursor Missions

    Science.gov (United States)

    Karcz, John S.; Davis, Sanford S.; Allen, Gary A.; Glass, Brian J.; Gonzales, Andrew; Heldmann, Jennifer Lynne; Lemke, Lawrence G.; McKay, Chris; Stoker, Carol R.; Wooster, Paul Douglass; hide

    2013-01-01

    A minimally-modified SpaceX Dragon capsule launched on a Falcon Heavy rocket presents the possibility of a new low-cost, high-capacity Mars lander for robotic missions. We have been evaluating such a "Red Dragon" platform as an option for the Icebreaker Discovery Program mission concept. Dragon is currently in service ferrying cargo to and from the International Space Station, and a crew transport version is in development. The upcoming version, unlike other Earth-return vehicles, exhibits most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant "SuperDraco" engines integrated directly into the capsule that are intended for launch abort and powered landings on Earth. These thrusters provide the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface, a descent approach which would also scale well to larger future human landers. We will discuss the motivations for exploring a Red Dragon lander, the current results of our analysis of its feasibility and capabilities, and the implications of the platform for the Icebreaker mission concept. In particular, we will examine entry, descent, and landing (EDL) in detail. We will also describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface. Our analysis to date indicates that a Red Dragon lander is feasible and that it would be capable of delivering more than 1000 kg of payload to sites at elevations three kilometers below the Mars Orbiter Laser Altimeter (MOLA) reference, which includes sites throughout most of the northern plains and Hellas.

  15. Affordable, Lightweight, Compactly Stowable, High Strength / Stiffness Lander Solar Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a next-generation high performance solar array system specifically for NASA's future Lander and sample return...

  16. Affordable, Lightweight, Compactly Stowable, High Strength / Stiffness Lander Solar Array, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a next-generation high performance solar array system specifically for NASA's future Lander and sample return...

  17. Lunar surface engineering properties experiment definition

    Science.gov (United States)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  18. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  19. Hydrogen Distribution in the Lunar Polar Regions

    Science.gov (United States)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  20. Erosive Wear Characterization of Materials for Lunar Construction

    Science.gov (United States)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2012-01-01

    NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface.

  1. Respiratory Toxicity of Lunar Highland Dust

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Wallace, William T.

    2009-01-01

    Lunar dust exposures occurred during the Apollo missions while the crew was on the lunar surface and especially when microgravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes and in some cases respiratory symptoms were elicited. NASA s vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust need to be assessed. NASA has performed this assessment with a series of in vitro and in vivo tests on authentic lunar dust. Our approach is to "calibrate" the intrinsic toxicity of lunar dust by comparison to a nontoxic dust (TiO2) and a highly toxic dust (quartz) using intratrachael instillation of the dusts in mice. A battery of indices of toxicity is assessed at various time points after the instillations. Cultures of selected cells are exposed to test dusts to assess the adverse effects on the cells. Finally, chemical systems are used to assess the nature of the reactivity of various dusts and to determine the persistence of reactivity under various environmental conditions that are relevant to a space habitat. Similar systems are used to assess the dissolution of the dust. From these studies we will be able to set a defensible inhalation exposure standard for aged dust and predict whether we need a separate standard for reactive dust. Presently-available data suggest that aged lunar highland dust is slightly toxic, that it can adversely affect cultured cells, and that the surface reactivity induced by grinding the dust persists for a few hours after activation.

  2. [Possibility of exacerbation of allergy by lunar regolith].

    Science.gov (United States)

    Horie, Masanori; Kambara, Tatsunori; Kuroda, Etsushi; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2012-09-01

    Japan, U.S.A. and other foreign space agencies have plans for the construction of a lunar base and long-term stay of astronauts on the moon. The surface of the moon is covered by a thick layer of soil that includes fine particles called "lunar regolith", which is formed by meteorite impact and space weathering. Risk assessment of particulate matter on the moon is important for astronauts working in microgravity on the moon. However, there are few investigations about the biological influences of lunar regolith. Especially, there is no investigation about allergic activity to lunar regolith. The main chemical components of lunar regolith are SiO2, Al2O3, CaO, FeO, etc. Of particular interest, approximately 50% of lunar regolith consists of SiO2. There is a report that the astronauts felt hay fever-like symptoms from the inhalation of the lunar regolith. Yellow sand, whose chemical components are similar to lunar regolith, enhances allergenic reactions, suggesting the possibility that lunar regolith has an adjuvant-like activity. Although intraperitoneal administration of lunar regolith with ovalbumin to mouse did not show enhancement of allergenic reactions, further evaluation of lunar regolith's potential to exacerbate the effects of allergies is essential for development of the moon.

  3. Lunar phases and crisis center telephone calls.

    Science.gov (United States)

    Wilson, J E; Tobacyk, J J

    1990-02-01

    The lunar hypothesis, that is, the notion that lunar phases can directly affect human behavior, was tested by time-series analysis of 4,575 crisis center telephone calls (all calls recorded for a 6-month interval). As expected, the lunar hypothesis was not supported. The 28-day lunar cycle accounted for less than 1% of the variance of the frequency of crisis center calls. Also, as hypothesized from an attribution theory framework, crisis center workers reported significantly greater belief in lunar effects than a non-crisis-center-worker comparison group.

  4. Lunar magma transport phenomena

    Science.gov (United States)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  5. Cis-Lunar Base Camp

    Science.gov (United States)

    Merrill, Raymond G.; Goodliff, Kandyce E.; Mazanek, Daniel D.; Reeves, John D., Jr.

    2012-01-01

    Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign

  6. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  7. Overturn of magma ocean ilmenite cumulate layer: Implications for lunar magmatic evolution and formation of a lunar core

    Science.gov (United States)

    Hess, P. C.; Parmentier, E. M.

    1993-01-01

    We explore a model for the chemical evolution of the lunar interior that explains the origin and evolution of lunar magmatism and possibly the existence of a lunar core. A magma ocean formed during accretion differentiates into the anorthositic crust and chemically stratified cumulate mantle. The cumulative mantle is gravitationally unstable with dense ilmenite cumulate layers overlying olivine-orthopyroxene cumulates with Fe/Mg that decreases with depth. The dense ilmenite layer sinks to the center of the moon forming the core. The remainder of the gravitationally unstable cumulate pile also overturns. Any remaining primitive lunar mantle rises to its level of neutral buoyancy in the cumulate pile. Perhaps melting of primitive lunar mantle due to this decompression results in early lunar Mg-rich magmatism. Because of its high concentration of incompatible heat producing elements, the ilmenite core heats the overlying orthopyroxene-bearing cumulates. As a conductively thickening thermal boundary layer becomes unstable, the resulting mantle plumes rise, decompress, and partially melt to generate the mare basalts. This model explains both the timing and chemical characteristics of lunar magmatism.

  8. Lunar Dust Separation for Toxicology Studies

    Science.gov (United States)

    Cooper, Bonnie L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalex, C. P.

    2010-01-01

    During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (<2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.

  9. Status and Future of Lunar Geoscience.

    Science.gov (United States)

    1986

    A review of the status, progress, and future direction of lunar research is presented in this report from the lunar geoscience working group of the National Aeronautics and Space Administration. Information is synthesized and presented in four major sections. These include: (1) an introduction (stating the reasons for lunar study and identifying…

  10. Lunar landing and launch facilities and operations

    Science.gov (United States)

    1988-01-01

    A preliminary design of a lunar landing and launch facility for a Phase 3 lunar base is formulated. A single multipurpose vehicle for the lunar module is assumed. Three traffic levels are envisioned: 6, 12, and 24 landings/launches per year. The facility is broken down into nine major design items. A conceptual description of each of these items is included. Preliminary sizes, capacities, and/or other relevant design data for some of these items are obtained. A quonset hut tent-like structure constructed of aluminum rods and aluminized mylar panels is proposed. This structure is used to provide a constant thermal environment for the lunar modules. A structural design and thermal analysis is presented. Two independent designs for a bridge crane to unload/load heavy cargo from the lunar module are included. Preliminary investigations into cryogenic propellant storage and handling, landing/launch guidance and control, and lunar module maintenance requirements are performed. Also, an initial study into advanced concepts for application to Phase 4 or 5 lunar bases has been completed in a report on capturing, condensing, and recycling the exhaust plume from a lunar launch.

  11. Nanophase Fe0 in lunar soils

    Indian Academy of Sciences (India)

    globules that occur in the rinds of many soil grains and in the ... tinitic glass is a quenched product of silicate melts, also produced by micrometeorite impacts on lunar soils ..... stand impact processes and their products. ... cules at night; the earth's atmosphere by con- .... deep lunar interior from an inversion of lunar free oscil-.

  12. Lunar power systems. Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified

  13. Lunar Reconnaissance Orbiter Data Enable Science and Terrain Analysis of Potential Landing Sites in South Pole-Aitken Basin

    Science.gov (United States)

    Jolliff, B. L.

    2017-12-01

    Exploring the South Pole-Aitken basin (SPA), one of the key unsampled geologic terranes on the Moon, is a high priority for Solar System science. As the largest and oldest recognizable impact basin on the Moon, it anchors the heavy bombardment chronology. It is thus a key target for sample return to better understand the impact flux in the Solar System between formation of the Moon and 3.9 Ga when Imbrium, one of the last of the great lunar impact basins, formed. Exploration of SPA has implications for understanding early habitable environments on the terrestrial planets. Global mineralogical and compositional data exist from the Clementine UV-VIS camera, the Lunar Prospector Gamma Ray Spectrometer, the Moon Mineralogy Mapper (M3) on Chandrayaan-1, the Chang'E-1 Imaging Interferometer, the spectral suite on SELENE, and the Lunar Reconnaissance Orbiter Cameras (LROC) Wide Angle Camera (WAC) and Diviner thermal radiometer. Integration of data sets enables synergistic assessment of geology and distribution of units across multiple spatial scales. Mineralogical assessment using hyperspectral data indicates spatial relationships with mineralogical signatures, e.g., central peaks of complex craters, consistent with inferred SPA basin structure and melt differentiation (Moriarty & Pieters, 2015, JGR-P 118). Delineation of mare, cryptomare, and nonmare surfaces is key to interpreting compositional mixing in the formation of SPA regolith to interpret remotely sensed data, and for scientific assessment of landing sites. LROC Narrow Angle Camera (NAC) images show the location and distribution of >0.5 m boulders and fresh craters that constitute the main threats to automated landers and thus provide critical information for landing site assessment and planning. NAC images suitable for geometric stereo derivation and digital terrain models so derived, controlled with Lunar Orbiter Laser Altimeter (LOLA) data, and oblique NAC images made with large slews of the spacecraft, are

  14. Extraction of Water from Lunar Permafrost

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 5 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. Dielectric property measurements of lunar soil simulant have been measured. Microwave absorption and attenuation in lunar soil simulant has been correlated with measured dielectric properties. Future work will be discussed.

  15. Lunar Industry & Research Base Concept

    Science.gov (United States)

    Lysenko, J.; Kaliapin, M.; Osinovyy, G.

    2017-09-01

    Currently, all main space industry players, such as Europe, USA, Russia, China, etc., are looking back again at the idea of Moon exploration building there a manned lunar base. Alongside with other world spacefaring nations, Yuzhnoye State Design Office with its long-time development experience, technological and intellectual potential, organized its own conceptual work on development of the Lunar Industry & Research Base. In the frames of conceptual project "Lunar Industrial & Research Base" were formed its appearance, preliminary configuration and infrastructure at different stages of operation, trajectory and flight scheme to the Moon, as well as terms of the project's realization, and main technical characteristics of the systems under development, such as space transportation system for crew and cargo delivery to lunar surface and return to Earth, standardized designs of lunar modules, lunar surface vehicles, etc. The "Lunar Industrial & Research Base" project's preliminary risk assessment has shown a high value of its overall risk due to the lack of reliable information about the Moon, technical risks, long-term development of its elements, very high financial costs and dependence on state support. This points to the fact that it is reasonable to create such a global project in cooperation with other countries. International cooperation will expand the capabilities of any nation, reduce risks and increase the success probability of automated or manned space missions. It is necessary to create and bring into operation practical mechanisms for long-term space exploration on a global scale. One of the ways to do this is to create a multinational agency which would include both state enterprises and private companies.

  16. MetHumi - Humidity Device for Mars MetNet Lander

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Harri, Ari-Matti; Schmidt, Walter; Leinonen, Jussi; Mäkinen, Teemu; Haukka, Harri

    2010-05-01

    MetNet Mars Mission focused for Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetHumi is the humidity sensor of MetNet Lander designed to work on Martian surface. It is based on Humicap® technology developed by Vaisala, Inc. MetHumi is a capacitive type of sensing device where an active polymer film changes capacitance as function of relative humidity. One MetHumi device package consists of one humidity transducer including three Humicap® sensor heads, an accurate temperature sensor head (Thermocap® by Vaisala, Inc.) and constant reference channels. MetHumi is very small, lightweighed and has low power consumption. It weighs only about 15 g without wires, and consumes 15 mW of power. MetHumi can make meaningful relative humidity measurements in range of 0 - 100%RH down to -70°C ambient temperature, but it survives even -135°C ambient temperature.

  17. OPERA, an automatic PSF reconstruction software for Shack-Hartmann AO systems: application to Altair

    Science.gov (United States)

    Jolissaint, Laurent; Veran, Jean-Pierre; Marino, Jose

    2004-10-01

    When doing high angular resolution imaging with adaptive optics (AO), it is of crucial importance to have an accurate knowledge of the point spread function associated with each observation. Applications are numerous: image contrast enhancement by deconvolution, improved photometry and astrometry, as well as real time AO performance evaluation. In this paper, we present our work on automatic PSF reconstruction based on control loop data, acquired simultaneously with the observation. This problem has already been solved for curvature AO systems. To adapt this method to another type of WFS, a specific analytical noise propagation model must be established. For the Shack-Hartmann WFS, we are able to derive a very accurate estimate of the noise on each slope measurement, based on the covariances of the WFS CCD pixel values in the corresponding sub-aperture. These covariances can be either derived off-line from telemetry data, or calculated by the AO computer during the acquisition. We present improved methods to determine 1) r0 from the DM drive commands, which includes an estimation of the outer scale L0 2) the contribution of the high spatial frequency component of the turbulent phase, which is not corrected by the AO system and is scaled by r0. This new method has been implemented in an IDL-based software called OPERA (Performance of Adaptive Optics). We have tested OPERA on Altair, the recently commissioned Gemini-North AO system, and present our preliminary results. We also summarize the AO data required to run OPERA on any other AO system.

  18. Lunar phase-dependent expression of cryptochrome and a photoperiodic mechanism for lunar phase-recognition in a reef fish, goldlined spinefoot.

    Science.gov (United States)

    Fukushiro, Masato; Takeuchi, Takahiro; Takeuchi, Yuki; Hur, Sung-Pyo; Sugama, Nozomi; Takemura, Akihiro; Kubo, Yoko; Okano, Keiko; Okano, Toshiyuki

    2011-01-01

    Lunar cycle-associated physiology has been found in a wide variety of organisms. Recent study has revealed that mRNA levels of Cryptochrome (Cry), one of the circadian clock genes, were significantly higher on a full moon night than on a new moon night in coral, implying the involvement of a photoreception system in the lunar-synchronized spawning. To better establish the generalities surrounding such a mechanism and explore the underlying molecular mechanism, we focused on the relationship between lunar phase, Cry gene expression, and the spawning behavior in a lunar-synchronized spawner, the goldlined spinefoot (Siganus guttatus), and we identified two kinds of Cry genes in this animal. Their mRNA levels showed lunar cycle-dependent expression in the medial part of the brain (mesencephalon and diencephalon) peaking at the first quarter moon. Since this lunar phase coincided with the reproductive phase of the goldlined spinefoot, Cry gene expression was considered a state variable in the lunar phase recognition system. Based on the expression profiles of SgCrys together with the moonlight's pattern of timing and duration during its nightly lunar cycle, we have further speculated on a model of lunar phase recognition for reproductive control in the goldlined spinefoot, which integrates both moonlight and circadian signals in a manner similar to photoperiodic response.

  19. Lunar geophysics, geodesy, and dynamics

    Science.gov (United States)

    Williams, J. G.; Dickey, J. O.

    2002-01-01

    Experience with the dynamics and data analyses for earth and moon reveals both similarities and differences. Analysis of Lunar Laser Ranging (LLR) data provides information on the lunar orbit, rotation, solid-body tides, and retroreflector locations.

  20. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    Science.gov (United States)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in

  1. Building on 50 Years of Systems Engineering Experience for a New Era of Space Exploration

    Science.gov (United States)

    Dumbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul K.

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States (US) capability for both crew and heavy cargo to low-Earth orbit to construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion crew exploration vehicle, while the heavy-lift Ares V will carry the Altair lunar lander, as well as the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. NASA's Marshall Space Flight Center manages the Shuttle's propulsion elements and is managing the design and development of the Ares rockets, along with a host of other engineering assignments in the field of scientific space exploration. Specifically, the Marshall Center's Engineering Directorate houses the skilled workforce and unique facilities needed to build capable systems upon the foundation laid by the Mercury, Gemini, Apollo, and Shuttle programs. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level testing activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural

  2. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    Science.gov (United States)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  3. Lunar and Planetary Science XXXV: Moon and Mercury

    Science.gov (United States)

    2004-01-01

    The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.

  4. Petrologic Characteristics of the Lunar Surface.

    Science.gov (United States)

    Wang, Xianmin; Pedrycz, Witold

    2015-11-27

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.

  5. The Future Lunar Flora Colony

    Science.gov (United States)

    Goel, E. G.; Guven, U. G.

    2017-10-01

    A constructional design for the primary establishment for a lunar colony using the micrometeorite rich soil is proposed. It highlights the potential of lunar regolith combined with Earth technology for water and oxygen for human outposts on the Moon.

  6. Moon 101: Introducing Students to Lunar Science and Exploration

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2011-12-01

    Moon 101 is designed with the purpose of familiarizing students with lunar geology and exploration. Armed with guiding questions, students read articles covering various lunar science topics and browse images from past and current lunar missions to familiarize themselves with available lunar data sets. Moon 101 was originally created for high school students preparing to conduct open-inquiry, lunar research. Most high school students' knowledge of lunar science is limited to lunar phases and tides, and their knowledge of lunar exploration is close to non-existent. Moon 101 provides a summary of the state of knowledge of the Moon's formation and evolution, and the exploration that has helped inform the lunar science community. Though designed for high school students, Moon 101 is highly appropriate for the undergraduate classroom, especially at the introductory level where resources for teaching lunar science are scarce. Moon 101 is comprised of two sections covering lunar science (formation and geologic evolution of the Moon) and one section covering lunar exploration. Students read information on the formation and geologic evolution of the Moon from sources such as the Planetary Science Research Discoveries (PSRD) website and the USGS professional paper A Geologic History of the Moon by Wilhelms. While these resources are not peer-reviewed journals, the information is presented at a level more advanced than articles from newspapers and popular science magazines. This ensures that the language is accessible to students who do not have a strong lunar/planetary science background, or a strong science background in general. Formation readings include information on older and current formation hypotheses, including the Giant Impact Hypothesis, the Magma Ocean hypothesis, and the age of the lunar crust. Lunar evolution articles describe ideas such as the Late Heavy Bombardment and geologic processes such as volcanism and impact cratering. After reading the articles

  7. Errors in Viking Lander Atmospheric Profiles Discovered Using MOLA Topography

    Science.gov (United States)

    Withers, Paul; Lorenz, R. D.; Neumann, G. A.

    2002-01-01

    Each Viking lander measured a topographic profile during entry. Comparing to MOLA (Mars Orbiter Laser Altimeter), we find a vertical error of 1-2 km in the Viking trajectory. This introduces a systematic error of 10-20% in the Viking densities and pressures at a given altitude. Additional information is contained in the original extended abstract.

  8. Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green

    2011-09-01

    Full Text Available Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 109 metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My. Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino

  9. Titan Aerial Daughtercraft (TAD) for Surface Studies from a Lander or Balloon

    Science.gov (United States)

    Matthies, L.; Tokumaru, P.; Sherrit, S.; Beauchamp, P.

    2014-06-01

    Recent rapid progress on autonomous navigation of micro air vehicles for terrestrial applications opens new possibilities for a small aerial vehicle that could deploy from a Titan lander or balloon to acquire samples for analysis on the mothership.

  10. Avionics for Hibernation and Recovery on Planetary Surfaces

    Data.gov (United States)

    National Aeronautics and Space Administration — Landers and rovers endure on the Martian equator but experience avionics failures in the cryogenic temperatures of lunar nights and Martian winters. The greatest...

  11. Educating the Next Generation of Lunar Scientists

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2010-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute (LPI) and NASA’s Johnson Space Center (JSC), is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA’s and NLSI’s objective to train the next generation of scientists, CLSE’s High School Lunar Research Project is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The High School Lunar Research Project engages teams of high school students in authentic lunar research that envelopes them in the process of science and supports the science goals of the CLSE. Most high school students’ lack of scientific research experience leaves them without an understanding of science as a process. Because of this, each team is paired with a lunar scientist mentor responsible for guiding students through the process of conducting a scientific investigation. Before beginning their research, students undertake “Moon 101,” designed to familiarize them with lunar geology and exploration. Students read articles covering various lunar geology topics and analyze images from past and current lunar missions to become familiar with available lunar data sets. At the end of “Moon 101”, students present a characterization of the geology and chronology of features surrounding the Apollo 11 landing site. To begin their research, teams choose a research subject from a pool of topics compiled by the CLSE staff. After choosing a topic, student teams ask their own research questions, within the context of the larger question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results and, after receiving feedback, create and present a conference style poster to a panel of

  12. The simulation of lunar gravity field recovery from D-VLBI of Chang’E-1 and SELENE lunar orbiters

    Science.gov (United States)

    Yan, Jianguo; Ping, Jingsong; Matsumoto, K.; Li, Fei

    2008-07-01

    The lunar gravity field is a foundation to study the lunar interior structure, and to recover the evolution history of the Moon. It is still an open and key topic for lunar science. For above mentioned reasons, it becomes one of the important scientific objectives of recent lunar missions, such as KAGUYA (SELENE) the Japanese lunar mission and Chang’E-1, the Chinese lunar mission. The Chang’E-1 and the SELENE were successfully launched in 2007. It is estimated that these two missions can fly around the Moon longer than 6 months simultaneously. In these two missions, the Chinese new VLBI (Very Long Baseline Interferometry) network will be applied for precise orbit determination (POD) by using a differential VLBI (D-VLBI) method during the mission period. The same-beam D-VLBI technique will contribute to recover the lunar gravity field together with other conventional observables, i.e. R&RR (Range and Range Rate) and multi-way Doppler. Taking VLBI tracking conditions into consideration and using the GEODYNII/SOVLE software of GSFC/NASA/USA [Rowlands, D.D., Marshall, J.A., Mccarthy, J., et al. GEODYN II System Description, vols. 1 5. Contractor Report, Hughes STX Corp. Greenbelt, MD, 1997; Ullman, R.E. SOLVE program: mathematical formulation and guide to user input, Hughes/STX Contractor Report, Contract NAS5-31760. NASA Goddard Space Flight Center, Greenbelt, Maryland, 1994], we simulated the lunar gravity field recovering ability with and without D-VLBI between the Chang’E-1 and SELENE main satellite. The cases of overlapped flying and tracking period of 30 days, 60 days and 90 days have been analyzed, respectively. The results show that D-VLBI tracking between two lunar satellites can improve the gravity field recovery remarkably. The results and methods introduced in this paper will benefit the actual missions.

  13. Lunar surface exploration using mobile robots

    Science.gov (United States)

    Nishida, Shin-Ichiro; Wakabayashi, Sachiko

    2012-06-01

    A lunar exploration architecture study is being carried out by space agencies. JAXA is carrying out research and development of a mobile robot (rover) to be deployed on the lunar surface for exploration and outpost construction. The main target areas for outpost construction and lunar exploration are mountainous zones. The moon's surface is covered by regolith. Achieving a steady traversal of such irregular terrain constitutes the major technical problem for rovers. A newly developed lightweight crawler mechanism can effectively traverse such irregular terrain because of its low contact force with the ground. This fact was determined on the basis of the mass and expected payload of the rover. This paper describes a plan for Japanese lunar surface exploration using mobile robots, and presents the results of testing and analysis needed in their development. This paper also gives an overview of the lunar exploration robot to be deployed in the SELENE follow-on mission, and the composition of its mobility, navigation, and control systems.

  14. Lunar nitrogen: Secular variation or mixing?

    International Nuclear Information System (INIS)

    Norris, S.J.; Wright, I.P.; Pillinger, C.T.

    1986-01-01

    The two current models to explain the nearly 40% variation of the lunar nitrogen isotopic composition are: (1) secular variation of solar wind nitrogen; and (2) a two component mixing model having a constant, heavy solar wind admixed with varying amounts of indigenous light lunar N (LLN). Both models are needed to explain the step pyrolysis extraction profile. The secular variation model proposes that the low temperature release is modern day solar wind implanted into grain surfaces, the 900 C to 1100 C release is from grain surfaces which were once exposed to the ancient solar wind but which are now trapped inside agglutinates, and the >1100 C release as spallogenic N produced by cosmic rays. The mixing model ascribes the components to solar wind, indigenous lunar N and spallogenic N respectively. An extension of either interpretation is that the light N seen in lunar breccias or deep drill cores represent conditions when more N-14 was available to the lunar surface

  15. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  16. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution

    Science.gov (United States)

    Khan, A.; Connolly, J. A. D.; Pommier, A.; Noir, J.

    2014-10-01

    Analysis of lunar laser ranging and seismic data has yielded evidence that has been interpreted to indicate a molten zone in the lowermost mantle overlying a fluid core. Such a zone provides strong constraints on models of lunar thermal evolution. Here we determine thermochemical and physical structure of the deep Moon by inverting lunar geophysical data (mean mass and moment of inertia, tidal Love number, and electromagnetic sounding data) in combination with phase-equilibrium computations. Specifically, we assess whether a molten layer is required by the geophysical data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is required to explain the geophysical data. This region is located within the mantle where the solidus is crossed at a depth of ˜1200 km (≥1600°C). Inverted compositions for the partially molten layer (150-200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. The melt phase is neutrally buoyant at pressures of ˜4.5-4.6 GPa but contains less TiO2 (<15 wt %) than the Ti-rich (˜16 wt %) melts that produced a set of high-density primitive lunar magmas (density of 3.4 g/cm3). Melt densities computed here range from 3.25 to 3.45 g/cm3 bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.

  17. Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Project Status

    Science.gov (United States)

    Gromski, J.; Majamaki, A. N.; Chianese, S. G.; Weinstock, V. D.; Kim, T.

    2010-01-01

    NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of the Exploration Initiative, with a particular focus on the needs of the Altair Project. To meet Altair requirements, several technical challenges need to be overcome, one of which is the ability for the lunar descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202, a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two phases of pintle injector testing. The first phase of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at several power levels across the designed 10:1 throttle range. The second phase of testing was performed on a calorimeter chamber and demonstrated injector performance at various power levels (75%, 50%, 25%, 10%, and 7.5%) across the throttle range as well as chamber heat flux to show that the engine can close an expander cycle design across the throttle range. This paper provides an overview of the TR202 program. It describes the different phases of the program with the key milestones of each phase. It then shows when those milestones were met. Next, it describes how the test data was used to update the conceptual design and how the test data has created a database for deep throttling cryogenic pintle technology that is readily scaleable and can be used to again update the design once the Altair program's requirements are firm. The final section of the paper describes the path forward, which includes

  18. First oxygen from lunar basalt

    Science.gov (United States)

    Gibson, M. A.; Knudsen, C. W.; Brueneman, D. J.; Kanamori, H.; Ness, R. O.; Sharp, L. L.; Brekke, D. W.; Allen, C. C.; Morris, R. V.; Keller, L. P.

    1993-01-01

    The Carbotek/Shimizu process to produce oxygen from lunar soils has been successfully demonstrated on actual lunar samples in laboratory facilities at Carbotek with Shimizu funding and support. Apollo sample 70035 containing approximately 25 percent ilmenite (FeTiO3) was used in seven separate reactions with hydrogen varying temperature and pressure: FeTiO3 + H2 yields Fe + TiO2 + H2O. The experiments gave extremely encouraging results as all ilmenite was reduced in every experiment. The lunar ilmenite was found to be about twice as reactive as terrestrial ilmenite samples. Analytical techniques of the lunar and terrestrial ilmenite experiments performed by NASA Johnson Space Center include iron Mossbauer spectroscopy (FeMS), optical microscopy, SEM, TEM, and XRD. The Energy and Environmental Research Center at the University of North Dakota performed three SEM techniques (point count method, morphology determination, elemental mapping), XRD, and optical microscopy.

  19. Thermodynamics of lunar ilmenite reduction

    Science.gov (United States)

    Altenberg, B. H.; Franklin, H. A.; Jones, C. H.

    1993-01-01

    With the prospect of returning to the moon, the development of a lunar occupation would fulfill one of the goals of the Space Exploration Initiative (SEI) of the late 1980's. Processing lunar resources into useful products, such as liquid oxygen for fuel and life support, would be one of many aspects of an active lunar base. ilmenite (FeTiO3) is found on the lunar surface and can be used as a feed stock to produce oxygen. Understanding the various ilmenite-reduction reactions elucidates many processing options. Defining the thermodynamic chemical behavior at equilibrium under various conditions of temperature and pressures can be helpful in specifying optimal operating conditions. Differences between a previous theoretical analysis and experimentally determined results has sparked interest in trying to understand the effect of operating pressure on the hydrogen-reduction-of-ilmenite reaction. Various aspects of this reduction reaction are discussed.

  20. The enigma of lunar magnetism

    Science.gov (United States)

    Hood, L. L.

    1981-01-01

    Current understandings of the nature and probable origin of lunar magnetism are surveyed. Results of examinations of returned lunar samples are discussed which reveal the main carrier of the observed natural remanent magnetization to be iron, occasionally alloyed with nickel and cobalt, but do not distinguish between thermoremanent and shock remanent origins, and surface magnetometer data is presented, which indicates small-scale magnetic fields with a wide range of field intensities implying localized, near-surface sources. A detailed examination is presented of orbital magnetometer and charged particle data concerning the geologic nature and origin of magnetic anomaly sources and the directional properties of the magnetization, which exhibit a random distribution except for a depletion in the north-south direction. A lunar magnetization survey with global coverage provided by a polar orbiting satellite is suggested as a means of placing stronger constraints on the origin of lunar crustal magnetization.

  1. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Science and Space Commerce

    Science.gov (United States)

    Zuniga, Allison; Turner, Mark; Rasky, Dan

    2017-01-01

    A new concept study was initiated to examine the framework needed to gradually develop an economical and sustainable lunar infrastructure using a public private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop cis-lunar and surface capabilities for mutual benefit while sharing cost and risk in the development phase and then allowing for transfer of operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, energy storage devices, communication relay satellites, local communication towers, and surface mobility operations.

  2. The Inferred Distribution of Liquid Water in Europa's Ice Shell: Implications for the Europa Lander Mission

    Science.gov (United States)

    Noviello, J. L.; Torrano, Z. A.; Rhoden, A.; Manga, M.

    2017-12-01

    A key objective of the Europa lander mission is to identify liquid water within 30 km of the lander (Europa Lander SDT report, 2017), to provide essential context with which to evaluate samples and enable assessment of Europa's overall habitability. To inform lander mission development, we utilize a model of surface feature formation that invokes liquid water within Europa's ice shell to map out the implied 3D distribution of liquid water and assess the likelihood of a lander to be within 30 km of liquid water given regional variability. Europa's surface displays a variety of microfeatures, also called lenticulae, including pits, domes, spots, and microchaos. A recent model by Manga and Michaut (2017) attributes these features to various stages in the thermal-mechanical evolution of liquid water intrusions (i.e. sills) within the ice shell, from sill emplacement to surface breaching (in the case of microchaos) to freezing of the sill. Pits are of particular interest because they appear only when liquid water is still present. Another key feature of the model is that the size of a microfeature at the surface is controlled by the depth of the sill. Hence, we can apply this model to regions of Europa that contain microfeatures to infer the size, depth, and spatial distribution of liquid water within the ice shell. We are creating a database of microfeatures that includes digitized, collated data from previous mapping efforts along with our own mapping study. We focus on images with 220 m/pixel resolution, which includes the regional mapping data sets. Analysis of a preliminary study area suggests that sills are typically located at depths of 2km or less from the surface. We will present analysis of the full database of microfeatures and the corresponding 3D distribution of sills implied by the model. Our preliminary analysis also shows that pits are clustered in some regions, consistent with previous results, although individual pits are also observed. We apply a

  3. The search for Ar in the lunar atmosphere using the Lunar Reconnaissance Orbiter's LAMP instrument.

    Science.gov (United States)

    Cook, J. C.; Stern, S. A.; Feldman, P. D.; Gladstone, R.; Retherford, K. D.; Greathouse, T. K.; Grava, C.

    2014-12-01

    The Apollo 17 mass spectrometer, LACE, first measured mass 40 particles in the lunar atmosphere, and over a nine-month period, detected variations correlated with the lunar day (Hoffman et al., 1973, LPSC, 4, 2865). LACE detected a high particle density at dusk (0.6-1.0x104 cm-3), decreasing through the lunar night to a few hundred cm-3, then increasing rapidly before dawn to levels 2-4 times greater than at dusk. No daytime measurements were made due to instrument saturation. Given the LACE measurements' periodic nature, and the Ar abundance in lunar regolith samples (Kaiser, 1972, EPSL, 13, 387), it was concluded that mass 40 was likely due to Ar. Benna et al. (2014, LPSC, 45, 1535) recently reported that the Neutral Mass Spectrometer (NMS) aboard LADEE also detected Ar (mass 40) with similar diurnal profiles. We report on UV spectra of the lunar atmosphere as obtained by the Lunar Reconnaissance Orbiter (LRO). Aboard LRO is the UV-spectrograph, LAMP (Lyman Alpha Mapping Project), spanning the spectral range 575 to 1965 Å. LAMP is typically oriented toward the surface and has been mapping the Moon since September 2009. LAMP also observes the tenuous lunar atmosphere when the surface is in darkness, but the atmospheric column below LRO is illuminated. We have previously used nadir oriented twilight observations to examine the sparse lunar atmosphere (Feldman et al., 2012, Icarus, 221, 854; Cook et al., 2013, Icarus, 225, 681; Stern et al., 2013, Icarus, 226, 1210; Cook & Stern 2014, Icarus, 236, 48). In Cook et al., 2013, we reported an upper limit for Ar of 2.3x104 cm-3. Since then, we have collected additional data and refined our search method by focusing on the regions (near equator) and local times (dawn and dusk) where Ar has been reported previously. We have carefully considered effective area calibration and g-factor accuracies and find these to be unlikely explanations for the order of magnitude differences. We will report new results, which provide much

  4. Tests of the lunar hypothesis

    Science.gov (United States)

    Taylor, S. R.

    1984-01-01

    The concept that the Moon was fissioned from the Earth after core separation is the most readily testable hypothesis of lunar origin, since direct comparisons of lunar and terrestrial compositions can be made. Differences found in such comparisons introduce so many ad hoc adjustments to the fission hypothesis that it becomes untestable. Further constraints may be obtained from attempting to date the volatile-refractory element fractionation. The combination of chemical and isotopic problems suggests that the fission hypothesis is no longer viable, and separate terrestrial and lunar accretion from a population of fractionated precursor planetesimals provides a more reasonable explanation.

  5. Development of a lunar infrastructure

    Science.gov (United States)

    Burke, J. D.

    1988-01-01

    The problem of building an infrastructure on the moon is discussed, assuming that earth-to-moon and moon-to-earth transport will be available. The sequence of events which would occur in the process of building an infrastructure is examined. The human needs which must be met on a lunar base are discussed, including minimal life support, quality of life, and growth stages. The technology available to meet these needs is reviewed and further research in fields related to a lunar base, such as the study of the moon's polar regions and the limits of lunar agriculture, is recommended.

  6. Science Goals, Objectives, and Investigations of the 2016 Europa Lander Science Definition Team Report

    Science.gov (United States)

    Hand, Kevin P.; Murray, Alison; Garvin, James; and the Europa Lander Science Definition Team, Project Science Team, and Project Engineering Team.

    2017-10-01

    In June of 2016 NASA convened a 21-person team of scientists to establish the science goals, objectives, investigations, measurement requirements, and model payload of a Europa lander mission concept. The NASA HQ Charter goals, in priority order, are as follows:1) Search for evidence of life on Europa, 2) Assess the habitability of Europa via in situ techniques uniquely available to a lander mission, 3) Characterize surface and subsurface properties at the scale of the lander to support future exploration of Europa.Within Goal 1, four Objectives were developed for seeking signs of life. These include the need to: a) detect and characterize any organic indicators of past or present life, b) identify and characterize morphological, textural, and other indicators of life, c) detect and characterize any inorganic indicators of past or present life, and d) determine the provenance of Lander-sampled material. Goal 2 focuses on Europa’s habitability and ensures that even in the absence of the detection of any potential biosignatures, significant ocean world science is still achieved. Goal 3 ensures that the landing site region is quantitatively characterized in the context needed for Goals 1 and 2, and that key measurements about Europa’s ice shell are made to enable future exploration.Critically, scientific success cannot be, and should never be, contingent on finding signs of life - such criteria would be levying requirements on how the universe works. Rather, scientific success is defined here as achieving a suite of measurements such that if convincing signs of life are present on Europa’s surface they could be detected at levels comparable to those found in benchmark environments on Earth, and, further, that even if no potential biosignatures are detected, the science return of the mission will significantly advance our fundamental understanding of Europa’s chemistry, geology, geophysics, and habitability.

  7. MetBaro - Pressure Instrument for Mars MetNet Lander

    Science.gov (United States)

    Polkko, J.; Haukka, H.; Harri, A.-M.; Schmidt, W.; Leinonen, J.; Mäkinen, T.

    2009-04-01

    THE METNET MISSION FOCUSED ON THE Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetBaro is the pressure instrument of MetNet Lander designed to work on Martian surface. It is based on Barocap® technology developed by Vaisala, Inc. MetBaro is a capacitic type of sensing device where capasitor plates are moved by ambient pressure. MetBaro device consists of two pressure transducers including a total of 6 Barocap® sensor heads of high-stability and high-resolution types. The long-term stability of MetBaro is in order of 20…50 µBar and resolution a few µBar. MetBaro is small, lightweighed and has low power consumption. It weighs about 50g without wires and controlling FPGA, and consumes 15 mW of power. A similar device has successfully flown in Phoenix mission, where it performed months of measurements on Martian ground. Another device is also part of the Mars Science Laboratory REMS instrument (to be launched in 2011).

  8. MetBaro - Pressure Device for Mars MetNet Lander

    Science.gov (United States)

    Haukka, Harri; Polkko, Jouni; Harri, Ari-Matti; Schmidt, Walter; Leinonen, Jussi; Genzer, Maria; Mäkinen, Teemu

    2010-05-01

    MetNet Mars Mission focused for Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetBaro is the pressure sensor of MetNet Lander designed to work on Martian surface. It is based on Barocap® technology developed by Vaisala, Inc. MetBaro is a capacitive type of sensing device where capasitor plates are moved by ambient pressure. MetBaro device consists of two pressure transducers including a total of 4 Barocap® sensor heads of high-stability and high-resolution types. The long-term stability of MetBaro is in order of 20…50 µBar and resolution a few µBar. MetBaro is small, lightweighed and has low power consumption. It weighs about 50g without wires and controlling FPGA, and consumes 15 mW of power. A similar device has successfully flown in Phoenix mission, where it performed months of measurements on Martian ground. Another device is also part of the Mars Science Laboratory REMS instrument (to be launched in 2011).

  9. New Age for Lunar Exploration

    Science.gov (United States)

    Taylor, G. J.; Martel, L. M. V.

    2018-04-01

    Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.

  10. The lunar tide in sporadic E

    Directory of Open Access Journals (Sweden)

    R. J. Stening

    1999-10-01

    Full Text Available It seems that the wind shear theory is accepted for the explanation of sporadic E at mid and low latitudes. Some examples from Arecibo are displayed to show this. The effect of lunar tides should then modify the wind-shear theory in a manner that yields the observed features of the lunar tide in the critical frequency foEs and the height h'Es of the sporadic E. This is shown to imply that the phase of the lunar tide in h'Es should be the same as the phase of the lunar tide in the eastward wind and that the phase of the lunar tide in foEs is three hours later. Hourly values of foEs, f bEs (the blanketing critical frequency and h'Es from several observatories are analysed for the lunar semidiurnal tide. It is found that the phase of the tide in foEs is often about 3 hours later than for h'Es in agreement with the theory. Seasonal variations in the tide are also examined with the statistically most significant results (largest amplitudes usually occurring in summer. After reviewing the many difficulties associated with determining the lunar tide in Es, both experimentally and theoretically, the analysed phase results are compared with what might be expected from Hagan's global scale wave model. Agreement is only fair (a success rate of 69% among the cases examined but probably as good as might be expected.Key words. Ionosphere (ionosphere – atmosphere interactions – ionospheric irregularities, Meteorology and atmosphere dynamics (waves and tides

  11. A novel lunar bed rest analogue.

    Science.gov (United States)

    Cavanagh, Peter R; Rice, Andrea J; Licata, Angelo A; Kuklis, Matthew M; Novotny, Sara C; Genc, Kerim O; Englehaupt, Ricki K; Hanson, Andrea M

    2013-11-01

    Humans will eventually return to the Moon and thus there is a need for a ground-based analogue to enable the study of physiological adaptations to lunar gravity. An important unanswered question is whether or not living on the lunar surface will provide adequate loading of the musculoskeletal system to prevent or attenuate the bone loss that is seen in microgravity. Previous simulations have involved tilting subjects to an approximately 9.5 degrees angle to achieve a lunar gravity component parallel to the long-axis of the body. However, subjects in these earlier simulations were not weight-bearing, and thus these protocols did not provide an analogue for load on the musculoskeletal system. We present a novel analogue which includes the capability to simulate standing and sitting in a lunar loading environment. A bed oriented at a 9.5 degrees angle was mounted on six linear bearings and was free to travel with one degree of freedom along rails. This allowed approximately 1/6 body weight loading of the feet during standing. "Lunar" sitting was also successfully simulated. A feasibility study demonstrated that the analogue was tolerated by subjects for 6 d of continuous bed rest and that the reaction forces at the feet during periods of standing were a reasonable simulation of lunar standing. During the 6 d, mean change in the volume of the quadriceps muscles was -1.6% +/- 1.7%. The proposed analogue would appear to be an acceptable simulation of lunar gravity and deserves further exploration in studies of longer duration.

  12. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.

    2013-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person.

  13. Modeling Respiratory Toxicity of Authentic Lunar Dust

    Science.gov (United States)

    Santana, Patricia A.; James, John T.; Lam, Chiu-Wing

    2010-01-01

    The lunar expeditions of the Apollo operations from the 60 s and early 70 s have generated awareness about lunar dust exposures and their implication towards future lunar explorations. Critical analyses on the reports from the Apollo crew members suggest that lunar dust is a mild respiratory and ocular irritant. Currently, NASA s space toxicology group is functioning with the Lunar Airborne Dust Toxicity Assessment Group (LADTAG) and the National Institute for Occupational Safety and Health (NIOSH) to investigate and examine toxic effects to the respiratory system of rats in order to establish permissible exposure levels (PELs) for human exposure to lunar dust. In collaboration with the space toxicology group, LADTAG and NIOSH the goal of the present research is to analyze dose-response curves from rat exposures seven and twenty-eight days after intrapharyngeal instillations, and model the response using BenchMark Dose Software (BMDS) from the Environmental Protection Agency (EPA). Via this analysis, the relative toxicities of three types of Apollo 14 lunar dust samples and two control dust samples, titanium dioxide (TiO2) and quartz will be determined. This will be executed for several toxicity endpoints such as cell counts and biochemical markers in bronchoaveolar lavage fluid (BALF) harvested from the rats.

  14. Small Radioisotope Power System Testing at NASA Glenn Research Center

    Science.gov (United States)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  15. CisLunar Habitat Internal Architecture Design Criteria

    Science.gov (United States)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    BACKGROUND: In preparation for human exploration to Mars, there is a need to define the development and test program that will validate deep space operations and systems. In that context, a Proving Grounds CisLunar habitat spacecraft is being defined as the next step towards this goal. This spacecraft will operate differently from the ISS or other spacecraft in human history. The performance envelope of this spacecraft (mass, volume, power, specifications, etc.) is being defined by the Future Capabilities Study Team. This team has recognized the need for a human-centered approach for the internal architecture of this spacecraft and has commissioned a CisLunar Phase-1 Habitat Internal Architecture Study Team to develop a NASA reference configuration, providing the Agency with a "smart buyer" approach for future acquisition. THE CISLUNAR HABITAT INTERNAL ARCHITECTURE STUDY: Overall, the CisLunar Habitat Internal Architecture study will address the most significant questions and risks in the current CisLunar architecture, habitation, and operations concept development. This effort is achieved through definition of design criteria, evaluation criteria and process, design of the CisLunar Habitat Phase-1 internal architecture, and the development and fabrication of internal architecture concepts combined with rigorous and methodical Human-in-the-Loop (HITL) evaluations and testing of the conceptual innovations in a controlled test environment. The vision of the CisLunar Habitat Internal Architecture Study is to design, build, and test a CisLunar Phase-1 Habitat Internal Architecture that will be used for habitation (e.g. habitability and human factors) evaluations. The evaluations will mature CisLunar habitat evaluation tools, guidelines, and standards, and will interface with other projects such as the Advanced Exploration Systems (AES) Program integrated Power, Avionics, Software (iPAS), and Logistics for integrated human-in-the-loop testing. The mission of the CisLunar

  16. The ROSETTA PHILAE Lander damping mechanism as probe for the Comet soil strength.

    Science.gov (United States)

    Roll, R.

    2015-10-01

    The ROSETTA Lander is equipped with an one axis damping mechanism to dissipate kinetic energy during the touch down. This damping is necessary to avoid damages to the Lander by a hard landing shock and more important to avoid re-bouncing from ground with high velocity. The damping mechanism works best for perpendicular impact, which means the velocity vector is parallel to the damper axis and all three feet touch the ground at the same time. That is usually not the case. Part of the impact energy can be transferred into rotational energy at ground contact if the impact is not perpendicular. This energy will lift up the Lander from the ground if the harpoons and the hold down thruster fail, as happen in mission. The damping mechanism itself is an electrical generator, driven by a spindle inside a telescopic tube. This tube was extended in mission for landing by 200mm. A maximum damping length of 140mm would be usually required to compensate a landing velocity of 1m/s, if the impact happens perpendicular on hard ground. After landing the potentiometer of the telescopic tube reading shows a total damping length of only 42,5mm. The damping mechanism and the overall mechanical behavior of the Lander at touch down are well tested and characterized and transferred to a multi-body computer model. The incoming and outgoing flightpath of PHILAE allow via computer-simulation the reconstruction of the touch down. It turns out, that the outgoing flight direction is dominated by the local ground slope and that the damping length is strongly dependent on the soil strength. Damping of soft comet ground must be included to fit the damping length measured. Scenario variations of the various feet contact with different local surface features (stone or regolith) and of different soil models finally lead to a restricted range for the soil strength at the touch down area.

  17. APOLLO 10 ASTRONAUT ENTERS LUNAR MODULE SIMULATOR

    Science.gov (United States)

    1969-01-01

    Apollo 10 lunar module pilot Eugene A. Cernan prepares to enter the lunar module simulator at the Flight Crew Training Building at the NASA Spaceport. Cernan, Apollo 10 commander Thomas P. Stafford and John W. Young, command module pilot, are to be launched May 18 on the Apollo 10 mission, a dress rehearsal for a lunar landing later this summer. Cernan and Stafford are to detach the lunar module and drop to within 10 miles of the moon's surface before rejoining Young in the command/service module. Looking on as Cernan puts on his soft helmet is Snoopy, the lovable cartoon mutt whose name will be the lunar module code name during the Apollo 10 flight. The command/service module is to bear the code name Charlie Brown.

  18. Lunar Wireless Power Transfer Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Freid, Sheldon [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Popovic, Zoya [Univ. of Colorado, Boulder, CO (United States); Beckett, David R. [Independent Consultant; Anderson, Scott R. [Independent Consultant; Mann, Diana [Independent Consultant; Walker, Stuart [Independent Consultant

    2008-03-01

    This study examines the feasibility of a multi-kilowatt wireless radio frequency (RF) power system to transfer power between lunar base facilities. Initial analyses, show that wireless power transfer (WPT) systems can be more efficient and less expensive than traditional wired approaches for certain lunar and terrestrial applications. The study includes evaluations of the fundamental limitations of lunar WPT systems, the interrelationships of possible operational parameters, and a baseline design approach for a notionial system that could be used in the near future to power remote facilities at a lunar base. Our notional system includes state-of-the-art photovoltaics (PVs), high-efficiency microwave transmitters, low-mass large-aperture high-power transmit antennas, high-efficiency large-area rectenna receiving arrays, and reconfigurable DC combining circuitry.

  19. Recent Projects in the KSC Applied Physics Lab

    Science.gov (United States)

    Starr, Stanley

    2013-01-01

    Topics include: Shuttle heritage; ISRU /RESOLVE: a) Payload for Lunar Lander/Rover on Polar Areas of Moon. b) Avionics/Software. New Technologies for Exploration: a) Radiation Shielding work. b) Cooperative Tractor Beams.

  20. Progress Towards the Development of a Long-Lived Venus Lander Duplex System

    Science.gov (United States)

    Dyson, Rodger, W.; Bruder, Geoffrey A.

    2011-01-01

    NASA has begun the development of a combined Stirling cycle power and cooling system (duplex) to enable the long-lived surface exploration of Venus and other harsh environments in the solar system. The duplex system will operate from the heat provided by decaying radioisotope plutonium-238 or its substitute. Since the surface of Venus has a thick, hot, and corrosive atmosphere, it is a challenging proposition to maintain sensitive lander electronics under survivable conditions. This development effort requires the integration of: a radioisotope or fission heat source; heat pipes; high-temperature, corrosion-resistant material; multistage cooling; a novel free-displacer Stirling convertor for the lander; and a minimal vibration thermoacoustic Stirling convertor for the seismometer. The first year effort includes conceptual system design and control studies, materials development, and prototype hardware testing. A summary of these findings and test results is presented in this report.

  1. Spinel-rich lithologies in the lunar highland crust: Linking lunar samples, crystallization experiments and remote sensing

    Science.gov (United States)

    Gross, J.; Treiman, A. H.

    2012-12-01

    The discovery of areas rich in (Mg,Fe)-Al spinel on the rims and central peaks of lunar impact basins (by the M3 mapping spectrometer on Chandrayaan-1) has revived the old puzzle of the origin of lunar spinel. (Mg,Fe)-Al spinel is rare but widespread in lunar highlands rocks, and thus might be an important component of the lunar crust [1-3]. However, the origin of this spinel is not clear. Lunar (Mg,Fe)-Al spinel could have formed (1) during 'normal' basalt petrogenesis at high pressure; (2) during low-pressure crystallization of melts rich in olivine and plagioclase components, e.g. impact-melted lunar troctolite; or (3) formed at low pressure during assimilation of anorthosite into picritic magma; thus, lunar spinel-rich areas represent old (pre-impact) intrusions of magma. In the absence of spinel-rich samples from the Moon, however, these ideas have been highly speculative. Here we describe a rock fragment from lunar meteorite ALHA 81005 that we recently reported [4] that not only contains spinel, but is the first spinel-rich lunar sample described. This fragment contains ~30% (Mg,Fe)Al spinel and is so fine grained that it reasonably could represent a larger rock body. However, the fragment is so rich in spinel that it could not have formed by melting a peridotitic mantle or a basaltic lunar crust. The clast's small grain size and its apparent disequilibrium between spinel and pyroxene suggest fairly rapid crystallization at low pressure. It could have formed as a spinel cumulate from an impact melt of troctolitic composition; or from a picritic magma that assimilated crustal anorthosite on its margins. The latter mechanism is preferred because it explains the petrographic and chemical features of our clast, and is consistent with the regional setting of the Moscoviense spinel deposit [4]. To better understand the origin and formation history(s) of spinel-rich rocks, we also performed liquidus/crystallization experiments at low-pressure as analogues for impact

  2. On the control of magnetic perturbing field onboard landers: the Magnetometer Protection program for the ESA ExoMars/Humboldt MSMO magnetometer experiment

    DEFF Research Database (Denmark)

    Menvielle, M.; Primdahl, Fritz; Brauer, Peter

    to planetary research. The major difficulty in implementing a magnetometer experiment onboard a lander is to achieve at acceptable costs a good Magnetometer Protection, namely to control the perturbing magnetic field generated by the lander during operations at the planetary surfa ce, so as to achieve...... scientific payload in the frame of the ESA ExoMars mission. Experience from previous missions constitutes the background for the MSMO Magnetometer Protection strategy. DC and AC lander generated magnetic perturbations are discussed, with particular attention to those related to solar generators. Emphasis...... and very resource consuming....

  3. Sound velocity and compressibility for lunar rocks 17 and 46 and for glass spheres from the lunar soil.

    Science.gov (United States)

    Schreiber, E; Anderson, O L; Sogat, N; Warren, N; Scholz, C

    1970-01-30

    Four experiments on lunar materials are reported: (i) resonance on glass spheres from the soil; (ii) compressibility of rock 10017; (iii) sound velocities of rocks 10046 and 10017; (iv) sound velocity of the lunar fines. The data overlap and are mutually consistent. The glass beads and rock 10017 have mechanical properties which correspond to terrestrial materials. Results of (iv) are consistent with low seismic travel times in the lunar maria. Results of analysis of the microbreccia (10046) agreed with the soil during the first pressure cycle, but after overpressure the rock changed, and it then resembled rock 10017. Three models of the lunar surface were constructed giving density and velocity profiles.

  4. Lunar Radio Telescopes: A Staged Approach for Lunar Science, Heliophysics, Astrobiology, Cosmology, and Exploration

    Science.gov (United States)

    Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.

    2012-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes

  5. Structural Analysis of Lunar Subsurface with Chang'E 3 Lunar Penetrating Radar

    Science.gov (United States)

    Xu, Yi; Lai, Jialong; Tang, Zesheng

    2015-04-01

    Geological structure of the subsurface of the Moon provides valuable information for our understanding of lunar evolution. Recently, Chang'E 3 has utilized lunar penetrating radar (LPR), which is equipped on the lunar rover named as Yutu, to detect the lunar geological structure in Northern Imbrium (44.1260N, 19.5014W) for the first time. As an in-situ detector, Chang'E 3 LPR has higher horizontal and vertical resolution and less clutter impact compared to spaceborne radars such as Chandrayaan-1 and Kaguya. In this work, we analyze the LPR data at 500 MHz transmission frequency to obtain the shallow subsurface structure of the landing area of Chang'E 3 in Mare Imbrium. First, filter method and amplitude recover algorithms are introduced for data processing to alleviate the adverse effects of environment and system noises and compensate the amplitude losses during signal propagation. Next, based on the processed LPR data, we present the methods to determine the interfaces between layers. A three-layered structure of the shallow surface of the Moon has been observed. The corresponding real part of relative dielectric constant is inverted with deconvolution method. The average dielectric constants of the surface, second and third layer is 2.8, 3.2 and 3.6, respectively. The phenomenon that the average dielectric constant increases with the depth is consistent with prior art. With the obtained dielectric constants, the thickness of each layer can be calculated. One possible geological picture of the observed three-layered structure is presented as follows. The top layer is lunar regolith with its thickness ranging from 0.59 m to 0.9 m. The second layer is the ejecta blanket of the nearby impact crater, and the corresponding thickness is between 3.6m to 3.9m, which is in good agreement with the model of ejecta blanket thickness (height) as a function of distance from the crater center proposed by Melosh in 1989. The third layer is regarded as early lunar regolith with 4

  6. Radiation Shielding of Lunar Regolith/Polyethylene Composites and Lunar Regolith/Water Mixtures

    Science.gov (United States)

    Johnson, Quincy F.; Gersey, Brad; Wilkins, Richard; Zhou, Jianren

    2011-01-01

    Space radiation is a complex mixed field of ionizing radiation that can pose hazardous risks to sophisticated electronics and humans. Mission planning for lunar exploration and long duration habitat construction will face tremendous challenges of shielding against various types of space radiation in an attempt to minimize the detrimental effects it may have on materials, electronics, and humans. In late 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) discovered that water content in lunar regolith found in certain areas on the moon can be up to 5.6 +/-2.8 weight percent (wt%) [A. Colaprete, et. al., Science, Vol. 330, 463 (2010). ]. In this work, shielding studies were performed utilizing ultra high molecular weight polyethylene (UHMWPE) and aluminum, both being standard space shielding materials, simulated lunar regolith/ polyethylene composites, and simulated lunar regolith mixed with UHMWPE particles and water. Based on the LCROSS findings, radiation shielding experiments were conducted to test for shielding efficiency of regolith/UHMWPE/water mixtures with various percentages of water to compare relative shielding characteristics of these materials. One set of radiation studies were performed using the proton synchrotron at the Loma Linda Medical University where high energy protons similar to those found on the surface of the moon can be generated. A similar experimental protocol was also used at a high energy spalation neutron source at Los Alamos Neutron Science Center (LANSCE). These experiments studied the shielding efficiency against secondary neutrons, another major component of space radiation field. In both the proton and neutron studies, shielding efficiency was determined by utilizing a tissue equivalent proportional counter (TEPC) behind various thicknesses of shielding composite panels or mixture materials. Preliminary results from these studies indicated that adding 2 wt% water to regolith particles could increase shielding of

  7. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  8. Mechanical properties of lunar materials under anhydrous, hard vacuum conditions: applications of lunar glass structural components

    International Nuclear Information System (INIS)

    Blacic, J.D.

    1984-01-01

    Lunar materials and derivatives such as glass may possess very high tensile strengths compared to equivalent materials on earth because of the absence of hydrolytic weakening processes on the moon and in the hard vacuum of free space. Hydrolyzation of Si-O bonds at crack tips or dislocations reduces the strength of silicates by about an order of magnitude in earth environments. However, lunar materials are extremely anhydrous and hydrolytic weakening will be suppressed in free space. Thus, the geomechanical properties of the moon and engineering properties of lunar silicate materials in space environments will be very different than equivalent materials under earth conditions where the action of water cannot be conveniently avoided. Possible substitution of lunar glass for structural metals in a variety of space engineering applications enhances the economic utilization of the moon. 26 references, 3 figures, 2 tables

  9. A Synthesis of VIIRS Solar and Lunar Calibrations

    Science.gov (United States)

    Eplee, Robert E.; Turpie, Kevin R.; Meister, Gerhard; Patt, Frederick S.; Fireman, Gwyn F.; Franz, Bryan A.; McClain, Charles R.

    2013-01-01

    The NASA VIIRS Ocean Science Team (VOST) has developed two independent calibrations of the SNPP VIIRS moderate resolution reflective solar bands using solar diffuser and lunar observations through June 2013. Fits to the solar calibration time series show mean residuals per band of 0.078-0.10%. There are apparent residual lunar libration correlations in the lunar calibration time series that are not accounted for by the ROLO photometric model of the Moon. Fits to the lunar time series that account for residual librations show mean residuals per band of 0.071-0.17%. Comparison of the solar and lunar time series shows that the relative differences in the two calibrations are 0.12-0.31%. Relative uncertainties in the VIIRS solar and lunar calibration time series are comparable to those achieved for SeaWiFS, Aqua MODIS, and Terra MODIS. Intercomparison of the VIIRS lunar time series with those from SeaWiFS, Aqua MODIS, and Terra MODIS shows that the scatter in the VIIRS lunar observations is consistent with that observed for the heritage instruments. Based on these analyses, the VOST has derived a calibration lookup table for VIIRS ocean color data based on fits to the solar calibration time series.

  10. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution (Invited)

    Science.gov (United States)

    Khan, A.; Connolly, J. A.; Pommier, A.

    2013-12-01

    Analysis of lunar seismic and lunar laser ranging data has yielded evidence that has been interpreted to indicate a molten zone in the lower-most mantle and/or the outer core of the Moon. Such a zone would provide strong constraints on models of the thermal evolution of the Moon. Here we invert lunar geophysical data in combination with phase-equilibrium modeling to derive information about the thermo-chemical and physical structure of the deep lunar interior. Specifically, we assess whether a molten layer is required by the geophysical data and, if so, its likely composition and physical properties (e.g., density and seismic wave speeds). The data considered are mean mass and moment of inertia, second-degree tidal Love number, and frequency-dependent electromagnetic sounding data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is indeed required to explain the geophysical data. If this dissipative region is located within the mantle, then the solidus is crossed at a depth of ~1200 km (>1600 deg C). The apparent absence of far-side deep moonquakes (DMQs) is supporting evidence for a highly dissipative layer. Inverted compositions for the partially molten layer (typically 100--200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. While the melt phase in >95 % of inverted models is neutrally buoyant at pressures of ~4.5--4.6 GPa, the melt contains less TiO2 (>~4 wt %) than the Ti-rich (~16 wt % TiO2) melts that produced a set of high-density primitive lunar magmas (~3.4 g/ccm). Melt densities computed here range from 3.3 to 3.4 g/ccm bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.

  11. Uranium in the rock fragments from Lunar soil

    International Nuclear Information System (INIS)

    Komarov, A.N.; Sergeev, S.A.

    1983-01-01

    Uranium content and distribution in Lunar rock fragments 0.4-0.9 mm in size from ''Lunar-16+ -20, -24'' stations were studied by the method of autoradiography. Uranium is almost absent in rock-forming minerals and is concentrated in some accessory mineral. Uranium content in microgabro fragments from ''Lunar-20 and -24'' equals (0.0n - n.0)16 -6 g/g. Variations are not related to fragment representation. Radiogra-- phies of fragments from Lunar soil showed the uranium distribution from uniform (in glasses) to extremely nonuniform in some holocrystalline rocks. It was pointed out, that uranium micro distributions in Lunar and Earth (effusive and magmatic) rocks have common features. In both cases rock-forming minerals don't contain appreciable uranium amount in the form of isomorphic admixture; uranium is highly concentrated in some accessory minerais. The difference lies in tne absence of hydroxyl -containing secondary minerals, which are enriched with uranium on Earth, in Lunar rocks. ''Film'' uranium micromineralization, which occurs in rocks of the Earth along the boundaries of mineral grains is absent in Lunar rocks as well

  12. Dragonfly: Exploring Titan's Surface with a New Frontiers Relocatable Lander

    Science.gov (United States)

    Barnes, Jason W.; Turtle, Elizabeth P.; Trainer, Melissa G.; Lorenz, Ralph

    2017-10-01

    We proposed to the NASA New Frontiers 4 mission call a lander to assess Titan's prebiotic chemistry, evaluate its habitability, and search for biosignatures on its surface. Titan as an Ocean World is ideal for the study of prebiotic chemical processes and the habitability of an extraterrestrial environment due to its abundant complex carbon-rich chemistry and because both liquid water and liquid hydrocarbons can occur on its surface. Transient liquid water surface environments can be created by both impacts and cryovolcanic processes. In both cases, the water could mix with surface organics to form a primordial soup. The mission would sample both organic sediments and water ice to measure surface composition, achieving surface mobility by using rotors to take off, fly, and land at new sites. The Dragonfly rotorcraft lander can thus convey a single capable instrument suite to multiple locations providing the capability to explore diverse locations 10s to 100s of kilometers apart to characterize the habitability of Titan's environment, investigate how far prebiotic chemistry has progressed, and search for chemical signatures indicative of water- and/or hydrocarbon-based life.

  13. Experimental Fractional Crystallization of the Lunar Magma Ocean

    Science.gov (United States)

    Rapp, J. F.; Draper, D. S.

    2012-01-01

    The current paradigm for lunar evolution is of crystallization of a global scale magma ocean, giving rise to the anorthositic crust and mafic cumulate interior. It is thought that all other lunar rocks have arisen from this differentiated interior. However, until recently this paradigm has remained untested experimentally. Presented here are the first experimental results of fractional crystallization of a Lunar Magma Ocean (LMO) using the Taylor Whole Moon (TWM) bulk lunar composition [1].

  14. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor Project

    Science.gov (United States)

    Metzger, Philip T.

    2014-01-01

    Demonstrate feasibility of the simplest, lowest-mass method of measuring density of a cloud of lunar soil ejected by rocket exhaust, using new math techniques with a small baseline laser/camera system. Focus is on exploring the erosion process that occurs when the exhaust plume of a lunar rocket impacts the regolith. Also, predicting the behavior of the lunar soil that would be blasted from a lunar landing/launch site shall assist in better design and protection of any future lunar settlement from scouring of structures and equipment. NASA is gathering experimental data to improve soil erosion models and understand how lunar particles enter the plume flow.

  15. Experimental reduction of simulated lunar glass by carbon and hydrogen and implications for lunar base oxygen production

    International Nuclear Information System (INIS)

    Mckay, D.S.; Morris, R.V.; Jurewicz, A.J.

    1991-01-01

    The most abundant element in lunar rocks and soils is oxygen which makes up approximately 45 percent by weight of the typical lunar samples returned during the Apollo missions. This oxygen is not present as a gas but is tightly bound to other elements in mineral or glass. When people return to the Moon to explore and live, the extraction of this oxygen at a lunar outpost may be a major goal during the early years of operation. Among the most studied processes for oxygen extraction is the reduction of ilmenite by hydrogen gas to form metallic iron, titanium oxide, and oxygen. A related process is proposed which overcomes some of the disadvantages of ilmenite reduction. It is proposed that oxygen can be extracted by direct reduction of native lunar pyroclactic glass using either carbon, carbon monoxide, or hydrogen. In order to evaluate the feasibility of this proposed process a series of experiments on synthetic lunar glass are presented. The results and a discussion of the experiments are presented

  16. Lunar sample studies

    International Nuclear Information System (INIS)

    1977-01-01

    Lunar samples discussed and the nature of their analyses are: (1) an Apollo 15 breccia which is thoroughly analyzed as to the nature of the mature regolith from which it derived and the time and nature of the lithification process, (2) two Apollo 11 and one Apollo 12 basalts analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography, (3) eight Apollo 17 mare basalts, also analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography. The first seven are shown to be chemically similar although of two main textural groups; the eighth is seen to be distinct in both chemistry and mineralogy, (4) a troctolitic clast from a Fra Mauro breccia, analyzed and contrasted with other high-temperature lunar mineral assemblages. Two basaltic clasts from the same breccia are shown to have affinities with rock 14053, and (5) the uranium-thorium-lead systematics of three Apollo 16 samples are determined; serious terrestrial-lead contamination of the first two samples is attributed to bandsaw cutting in the lunar curatorial facility

  17. Infrared Lunar Laser Ranging at Calern : Impact on Lunar Dynamics

    Science.gov (United States)

    Viswanathan, Vishnu; Fienga, Agnes; Manche, Herve; Gastineau, Mickael; Courde, Clement; Torre, Jean Marie; Exertier, Pierre; Laskar, Jacques

    2017-04-01

    Introduction: Since 2015, in addition to the traditional green (532nm), infrared (1064nm) has been the preferred wavelength for lunar laser ranging at the Calern lunar laser ranging (LLR) site in France. Due to the better atmospheric transmission of IR with respect to Green, nearly 3 times the number of normal points have been obtained in IR than in Green [1]. Dataset: In our study, in addition to the historical data obtained from various other LLR sites, we include the recent IR normal points obtained from Calern over the 1 year time span (2015-2016), constituting about 4.2% of data spread over 46 years of LLR. Near even distribution of data provided by IR on both the spatial and temporal domain, helps us to improve constraints on the internal structure of the Moon modeled within the planetary ephemeris : INPOP [2]. Data reduction: IERS recommended models have been used in the data reduction software GINS (GRGS,CNES) [3]. Constraints provided by GRAIL [4], on the Lunar gravitational potential and Love numbers have been taken into account in the least-square fit procedure. Earth orientation parameters from KEOF series have been used as per a recent study [5]. Results: New estimates on the dynamical parameters of the lunar core will be presented. Acknowledgements: We thank the lunar laser ranging observers at Observatoire de la Côte d'Azur, France, McDonald Observatory, Texas, Haleakala Observatory, Hawaii, and Apache Point Observatory in New Mexico for providing LLR observations that made this study possible. The research described in this abstract was carried out at Geoazur-CNRS, France, as a part of a PhD thesis funded by Observatoire de Paris and French Ministry of Education and Research. References: [1] Clement C. et al. (2016) submitted to A&A [2] Fienga A. et al. (2015) Celest Mech Dyn Astr, 123: 325. doi:10.1007/s10569-015-9639-y [3] Viswanathan V. et al. (2015) EGU, Abstract 18, 13995 [4] Konopliv A. S. et al. (2013) J. Geophys. Res. Planets, 118, 1415

  18. Isotopes as tracers of the sources of the lunar material and processes of lunar origin.

    Science.gov (United States)

    Pahlevan, Kaveh

    2014-09-13

    Ever since the Apollo programme, isotopic abundances have been used as tracers to study lunar formation, in particular to study the sources of the lunar material. In the past decade, increasingly precise isotopic data have been reported that give strong indications that the Moon and the Earth's mantle have a common heritage. To reconcile these observations with the origin of the Moon via the collision of two distinct planetary bodies, it has been proposed (i) that the Earth-Moon system underwent convective mixing into a single isotopic reservoir during the approximately 10(3) year molten disc epoch after the giant impact but before lunar accretion, or (ii) that a high angular momentum impact injected a silicate disc into orbit sourced directly from the mantle of the proto-Earth and the impacting planet in the right proportions to match the isotopic observations. Recently, it has also become recognized that liquid-vapour fractionation in the energetic aftermath of the giant impact is capable of generating measurable mass-dependent isotopic offsets between the silicate Earth and Moon, rendering isotopic measurements sensitive not only to the sources of the lunar material, but also to the processes accompanying lunar origin. Here, we review the isotopic evidence that the silicate-Earth-Moon system represents a single planetary reservoir. We then discuss the development of new isotopic tracers sensitive to processes in the melt-vapour lunar disc and how theoretical calculations of their behaviour and sample observations can constrain scenarios of post-impact evolution in the earliest history of the Earth-Moon system. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Lunar plant biology--a review of the Apollo era.

    Science.gov (United States)

    Ferl, Robert J; Paul, Anna-Lisa

    2010-04-01

    Recent plans for human return to the Moon have significantly elevated scientific interest in the lunar environment with emphasis on the science to be done in preparation for the return and while on the lunar surface. Since the return to the Moon is envisioned as a dedicated and potentially longer-term commitment to lunar exploration, questions of the lunar environment and particularly its impact on biology and biological systems have become a significant part of the lunar science discussion. Plants are integral to the discussion of biology on the Moon. Plants are envisioned as important components of advanced habitats and fundamental components of advanced life-support systems. Moreover, plants are sophisticated multicellular eukaryotic life-forms with highly orchestrated developmental processes, well-characterized signal transduction pathways, and exceedingly fine-tuned responses to their environments. Therefore, plants represent key test organisms for understanding the biological impact of the lunar environment on terrestrial life-forms. Indeed, plants were among the initial and primary organisms that were exposed to returned lunar regolith from the Apollo lunar missions. This review discusses the original experiments involving plants in association with the Apollo samples, with the intent of understanding those studies within the context of the first lunar exploration program and drawing from those experiments the data to inform the studies critical within the next lunar exploration science agenda.

  20. The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2

    Science.gov (United States)

    Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S. E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; Kachlicki, J.; Pforte, B.; Terzer, R.; Tschentscher, M.; Weisse, S.; Mueller, U.; Perez-Prieto, L.; Broll, B.; Kruselburger, A.; Ho, T.-M.; Biele, J.; Ulamec, S.; Krause, C.; Grott, M.; Bibring, J.-P.; Watanabe, S.; Sugita, S.; Okada, T.; Yoshikawa, M.; Yabuta, H.

    2017-07-01

    The MASCOT Camera (MasCam) is part of the Mobile Asteroid Surface Scout (MASCOT) lander's science payload. MASCOT has been launched to asteroid (162173) Ryugu onboard JAXA's Hayabusa 2 asteroid sample return mission on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth by 2020. MasCam was designed and built by DLR's Institute of Planetary Research, together with Airbus-DS Germany. The scientific goals of the MasCam investigation are to provide ground truth for the orbiter's remote sensing observations, provide context for measurements by the other lander instruments (radiometer, spectrometer and magnetometer), the orbiter sampling experiment, and characterize the geological context, compositional variations and physical properties of the surface (e.g. rock and regolith particle size distributions). During daytime, clear filter images will be acquired. During night, illumination of the dark surface is performed by an LED array, equipped with 4×36 monochromatic light-emitting diodes (LEDs) working in four spectral bands. Color imaging will allow the identification of spectrally distinct surface units. Continued imaging during the surface mission phase and the acquisition of image series at different sun angles over the course of an asteroid day will contribute to the physical characterization of the surface and also allow the investigation of time-dependent processes and to determine the photometric properties of the regolith. The MasCam observations, combined with the MASCOT hyperspectral microscope (MMEGA) and radiometer (MARA) thermal observations, will cover a wide range of observational scales and serve as a strong tie point between Hayabusa 2's remote-sensing scales (103-10^{-3} m) and sample scales (10^{-3}-10^{-6} m). The descent sequence and the close-up images will reveal the surface features over a broad range of scales, allowing an assessment of the surface's diversity and close the gap between the orbital observations

  1. Global silicate mineralogy of the Moon from the Diviner lunar radiometer.

    Science.gov (United States)

    Greenhagen, Benjamin T; Lucey, Paul G; Wyatt, Michael B; Glotch, Timothy D; Allen, Carlton C; Arnold, Jessica A; Bandfield, Joshua L; Bowles, Neil E; Donaldson Hanna, Kerri L; Hayne, Paul O; Song, Eugenie; Thomas, Ian R; Paige, David A

    2010-09-17

    We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes.

  2. Lunar heat-flow experiment

    Science.gov (United States)

    Langseth, M. G.

    1977-01-01

    The principal components of the experiment were probes, each with twelve thermometers of exceptional accuracy and stability, that recorded temperature variations at the surface and in the regolith down to 2.5 m. The Apollo 15 experiment and the Apollo 17 probes recorded lunar surface and subsurface temperatures. These data provided a unique and valuable history of the interaction of solar energy with lunar surface and the effects of heat flowing from the deep interior out through the surface of the moon. The interpretation of these data resulted in a clearer definition of the thermal and mechanical properties of the upper two meters of lunar regolith, direct measurements of the gradient in mean temperature due to heat flow from the interior and a determination of the heat flow at the Apollo 15 and Apollo 17 sites.

  3. Lunar Flashlight

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Flashlight (LF) is an innovative cubesat mission sponsored by NASA’s Advanced Exploration Systems (AES) division to be launched on the Space Launch System...

  4. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  5. Line Profile Measurements of the Lunar Exospheric Sodium

    Science.gov (United States)

    Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Line, Michael R.; Roesler, Fred L.; Lupie, Olivia L.

    2012-01-01

    We report ongoing results of a program to measure the lunar sodium exospheric line profile from near the lunar limb out to two lunar radii (approx 3500 km). These observations are conducted from the National Solar Observatory McMath-Pierce telescope using a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,600 (1.7 km/s) to measure line widths and velocity shifts of the Na D2 (5889 950 A) emission line in equatorial and polar regions at different lunar phases. The typical field of view (FOV) is 3 arcmin (approx 360 km) with an occasional smaller 1 arcmin FOV used right at the limb edge. The first data were obtained from full Moon to 3 days following full Moon (waning phase) in March 2009 as part of a demonstration run aimed at establishing techniques for a thorough study of temperatures and velocity variations in the lunar sodium exosphere. These data indicate velocity displacements from different locations off the lunar limb range between 150 and 600 m/s from the lunar rest velocity with a precision of +/- 20 to +/- 50 m/s depending on brightness. The measured Doppler line widths for observations within 10.5 arcmin of the east and south lunar limbs for observations between 5 deg and 40 deg lunar phase imply temperatures ranging decreasing from 3250 +/- 260K to 1175 +/- 150K. Additional data is now being collected on a quarterly basis since March 2011 and preliminary results will be reported.

  6. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  7. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  8. 2007 Lunar Regolith Simulant Workshop Overview

    Science.gov (United States)

    McLemore, Carole A.; Fikes, John C.; Howell, Joe T.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) vision has as a cornerstone, the establishment of an Outpost on the Moon. This Lunar Outpost will eventually provide the necessary planning, technology development, and training for a manned mission to Mars in the future. As part of the overall activity, NASA is conducting Earth-based research and advancing technologies to a Technology Readiness Level (TRL) 6 maturity under the Exploration Technology Development Program that will be incorporated into the Constellation Project as well as other projects. All aspects of the Lunar environment, including the Lunar regolith and its properties, are important in understanding the long-term impacts to hardware, scientific instruments, and humans prior to returning to the Moon and living on the Moon. With the goal of reducing risk to humans and hardware and increasing mission success on the Lunar surface, it is vital that terrestrial investigations including both development and verification testing have access to Lunar-like environments. The Marshall Space Flight Center (MSFC) is supporting this endeavor by developing, characterizing, and producing Lunar simulants in addition to analyzing existing simulants for appropriate applications. A Lunar Regolith Simulant Workshop was conducted by MSFC in Huntsville, Alabama, in October 2007. The purpose of the Workshop was to bring together simulant developers, simulant users, and program and project managers from ETDP and Constellation with the goals of understanding users' simulant needs and their applications. A status of current simulant developments such as the JSC-1A (Mare Type Simulant) and the NASA/U.S. Geological Survey Lunar Highlands-Type Pilot Simulant (NU-LHT-1 M) was provided. The method for evaluating simulants, performed via Figures of Merit (FoMs) algorithms, was presented and a demonstration was provided. The four FoM properties currently being assessed are: size, shape, density, and composition. Some of the

  9. Indigenous lunar construction materials

    Science.gov (United States)

    Rogers, Wayne P.; Sture, Stein

    1991-01-01

    The utilization of local resources for the construction and operation of a lunar base can significantly reduce the cost of transporting materials and supplies from Earth. The feasibility of processing lunar regolith to form construction materials and structural components is investigated. A preliminary review of potential processing methods such as sintering, hot-pressing, liquification, and cast basalt techniques, was completed. The processing method proposed is a variation on the cast basalt technique. It involves liquification of the regolith at 1200-1300 C, casting the liquid into a form, and controlled cooling. While the process temperature is higher than that for sintering or hot-pressing (1000-1100 C), this method is expected to yield a true engineering material with low variability in properties, high strength, and the potential to form large structural components. A scenario for this processing method was integrated with a design for a representative lunar base structure and potential construction techniques. The lunar shelter design is for a modular, segmented, pressurized, hemispherical dome which could serve as habitation and laboratory space. Based on this design, estimates of requirements for power, processing equipment, and construction equipment were made. This proposed combination of material processing method, structural design, and support requirements will help to establish the feasibility of lunar base construction using indigenous materials. Future work will refine the steps of the processing method. Specific areas where more information is needed are: furnace characteristics in vacuum; heat transfer during liquification; viscosity, pouring and forming behavior of molten regolith; design of high temperature forms; heat transfer during cooling; recrystallization of basalt; and refinement of estimates of elastic moduli, compressive and tensile strength, thermal expansion coefficient, thermal conductivity, and heat capacity. The preliminary

  10. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    Science.gov (United States)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  11. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    International Nuclear Information System (INIS)

    Lisin, E A; Tarakanov, V P; Petrov, O F; Popel, S I

    2015-01-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered. (paper)

  12. Chemistry and structure of lunar and synthetic armalcolite

    International Nuclear Information System (INIS)

    Wechsler, B.A.; Prewitt, C.T.; Papike, J.J.

    1976-01-01

    A study of the chemical trends displayed by lunar armalcolites has been made in conjunction with single-crystal X-ray structure refinements of lunar and synthetic armalcolite in order to assess the possible importance of Ti 3+ in lunar armalcolite and to characterize the effects of cation substitutions on the structure. The apparent cation deficiences found in lunar armalcolites analyzed with the electron microprobe most likely reflect the presence of Ti 3+ , although the existence of vacancies cannot be ruled out. Structure refinements of an Apollo 17 armalcolite are consistent with either interpretation. These results support experimental evidence suggesting the presence of Ti 3+ in armalcolite and indicate that virtually all lunar armalcolites probably contain approximately 4-11 mol.% Ti 2 3+ Ti 4+ 0 5 component in solid solution. The cation distribution in lunar armalcolite is essentially completely ordered. However, synthetic crystals quenched from near 1200 0 C have been found to retain significant cation disorder. (Auth.)

  13. Zinnia Germination and Lunar Soil Amendment

    Science.gov (United States)

    Reese, Laura

    2017-01-01

    Germination testing was performed to determine the best method for germinating zinnias. This method will be used to attempt to germinate the zinnia seeds produced in space. It was found that seed shape may be critically important in determining whether a seed will germinate or not. The ability of compost and worm castings to remediate lunar regolith simulant for plant growth was tested. It was found that neither treatment effectively improves plant growth in lunar regolith simulant. A potential method of improving lunar regolith simulant by mixing it with arcillite was discovered.

  14. Adsorption of Hg on lunar samples

    International Nuclear Information System (INIS)

    Reed, G.W. Jr.; Jovanovic, S.

    1985-01-01

    Understanding the presence, migration mechanisms and trapping of indigneous gases and volatiles on the moon is the objective of this study. The rare gases Ar and Xe and highly volatile Hg 0 and Br 0 (and/or their compounds) have been determined to be present in the lunar regolith. Evidence for these elements in the moon was recently reviewed. Studies of the sorption behavior of Xe on lunar material have been carried out. We report here preliminary results of a study designed to rationalize the behavior of Hg in lunar material

  15. Perspectives on Lunar Helium-3

    Science.gov (United States)

    Schmitt, Harrison H.

    1999-01-01

    Global demand for energy will likely increase by a factor of six or eight by the mid-point of the 21st Century due to a combination of population increase, new energy intensive technologies, and aspirations for improved standards of living in the less-developed world (1). Lunar helium-3 (3He), with a resource base in the Tranquillitatis titanium-rich lunar maria (2,3) of at least 10,000 tonnes (4), represents one potential energy source to meet this rapidly escalating demand. The energy equivalent value of 3He delivered to operating fusion power plants on Earth would be about 3 billion per tonne relative to today's coal which supplies most of the approximately 90 billion domestic electrical power market (5). These numbers illustrate the magnitude of the business opportunity. The results from the Lunar Prospector neutron spectrometer (6) suggests that 3He also may be concentrated at the lunar poles along with solar wind hydrogen (7). Mining, extraction, processing, and transportation of helium to Earth requires new innovations in engineering but no known new engineering concepts (1). By-products of lunar 3He extraction, largely hydrogen, oxygen, and water, have large potential markets in space and ultimately will add to the economic attractiveness of this business opportunity (5). Inertial electrostatic confinement (IEC) fusion technology appears to be the most attractive and least capital intensive approach to terrestrial fusion power plants (8). Heavy lift launch costs comprise the largest cost uncertainty facing initial business planning, however, many factors, particularly long term production contracts, promise to lower these costs into the range of 1-2000 per kilogram versus about 70,000 per kilogram fully burdened for the Apollo Saturn V rocket (1). A private enterprise approach to developing lunar 3He and terrestrial IEC fusion power would be the most expeditious means of realizing this unique opportunity (9). In spite of the large, long-term potential

  16. Towards the Next International Lunar Decade

    Science.gov (United States)

    Beldavs, Vidvuds

    2016-07-01

    The idea of an International Lunar Decade (ILD) germinated in work underway in the International Lunar Working Group (ILEWG) coordinated by ESA starting before 2000. Envisioned was an International Geophysical Year (IGY) inspired global collaborative undertaking to better understand the Moon, its origins and resources as a step towards lunar development and possible human settlement. By 2006 the ILD idea had evolved sufficiently that the ILEWG endorsed it and endorsement was also received from COSPAR [1] The Planetary Society under the leadership of Louis Friedman championed the ILD idea, received a grant from the Secure World Foundation to promote it at various conferences as well as to the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS). Friedman made a presentation about ILD to COPUOS in February, 2007 [2]. Despite positive interest in the idea no member state of COPUOS chose to promote it. The ILD agenda was adopted by ILEWG and largely fulfilled by the member space agencies in the decade from 2007-2014, but without UN endorsement as a global initiative. In 2013 an idea for an International Lunar Decade took hold among a group of space activists that included ideas for an International Lunar Research Park [3], an International Lunar Geophysical Year and other elements including an article published by V. Beldavs in the Space Review on January 14, 2014 [4]. These various thought streams were brought to focus at the conference "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space", November 9-13, 2014 in Hawaii that resulted in the International Lunar Decade Declaration [3] and the formation of the working group (ILDWG) to promote implementation of ILD. In 2015 numerous organizations and influential persons were approached and informed about the idea of a framework for international collaboration sustained over a decade to gain an understanding of the Moon and its resources and to develop the technologies and

  17. Endogenous Lunar Volatiles: Insights into the Abundances of Volatiles in the Moon from Lunar Apatite

    Science.gov (United States)

    McCubbin, Francis

    2016-01-01

    At the time of publication of New Views of the Moon, it was thought that the Moon was bone dry with less than about 1 ppb H2O. However in 2007, initial reports at the 38th Lunar and Planetary Science Conference speculated that H-species were present in both apatites and pyroclastic volcanic lunar glasses. These early reports were later confirmed through peer-review, which motivated many subsequent studies on magmatic volatiles in and on the Moon within the last decade. Some of these studies have cast into question the post-Apollo view of lunar formation, the distribution and sources of volatiles in the Earth-Moon system, and the thermal and magmatic evolution of the Moon. The mineral apatite has been one of the pillars of this new field of study, and it will be the primary focus of this abstract. Although apatite has been used both to understand the abundances of volatiles in lunar systems as well as the isotopic compositions of those volatiles, the focus here will be on the abundances of F, Cl, and H2O. This work demonstrates the utility of apatite in advancing our understanding of lunar volatiles, hence apatite should be among the topics covered in the endogenous lunar volatile chapter in NVM II. Truncated ternary plot of apatite X-site occupancy (mol%) from highlands apatite and mare basalt apatite plotted on the relative volatile abundance diagram from. The solid black lines delineate fields of relative abundances of F, Cl, and H2O (on a weight basis) in the melt from which the apatite crystallized. The diagram was constructed using available apatite/melt partitioning data for fluorine, chlorine, and hydroxyl.

  18. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.

    2012-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science

  19. Lunar Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — We present an open design for a first plant growth module on the Moon (LPX). The primary science goal of lunar habitat is to investigate germination and initial...

  20. Lunar soil as shielding against space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. [Lawrence Berkeley National Laboratory, MS 83R0101, 1 Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: miller@lbl.gov; Taylor, L. [Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 (United States); Zeitlin, C. [Southwest Research Institute, Boulder, CO 80302 (United States); Heilbronn, L. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Guetersloh, S. [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); DiGiuseppe, M. [Northrop Grumman Corporation, Bethpage, NY 11714 (United States); Iwata, Y.; Murakami, T. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2009-02-15

    We have measured the radiation transport and dose reduction properties of lunar soil with respect to selected heavy ion beams with charges and energies comparable to some components of the galactic cosmic radiation (GCR), using soil samples returned by the Apollo missions and several types of synthetic soil glasses and lunar soil simulants. The suitability for shielding studies of synthetic soil and soil simulants as surrogates for lunar soil was established, and the energy deposition as a function of depth for a particular heavy ion beam passing through a new type of lunar highland simulant was measured. A fragmentation and energy loss model was used to extend the results over a range of heavy ion charges and energies, including protons at solar particle event (SPE) energies. The measurements and model calculations indicate that a modest amount of lunar soil affords substantial protection against primary GCR nuclei and SPE, with only modest residual dose from surviving charged fragments of the heavy beams.

  1. Integrated lunar materials manufacturing process

    Science.gov (United States)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  2. Review of lunar telescope studies at MSFC

    Science.gov (United States)

    Hilchey, John D.; Nein, Max E.

    1993-09-01

    In the near future astronomers can take advantage of the lunar surface as the new 'high ground' from which to study the universe. Optical telescopes placed and operated on the lunar surface would be successors to NASA's Great Observatories. Four telescopes, ranging in aperture from a 16-m, IR/Vis/UV observatory down to a 1-m, UV 'transit' instrument, have been studied by the Lunar Telescope Working Group and the LUTE (lunar telescope ultraviolet experiment) Task Team of the Marshall Space Flight Center (MSFC). This paper presents conceptual designs of the telescopes, provides descriptions of the telescope subsystem options selected for each concept, and outlines the potential evolution of their science capabilities.

  3. Stratigraphy, Sequence, and Crater Populations of Lunar Impact Basins from Lunar Orbiter Laser Altimeter (LOLA) Data: Implications for the Late Heavy Bombardment

    Science.gov (United States)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    New measurements of the topography of the Moon from the Lunar Orbiter Laser Altimeter (LOLA)[1] provide an excellent base-map for analyzing the large crater population (D.20 km)of the lunar surface [2, 3]. We have recently used this data to calculate crater size-frequency distributions (CSFD) for 30 lunar impact basins, which have implications for their stratigraphy and sequence. These data provide an avenue for assessing the timing of the transitions between distinct crater populations characteristic of ancient and young lunar terrains, which has been linked to the late heavy bombardment (LHB). We also use LOLA data to re-examine relative stratigraphic relationships between key lunar basins.

  4. The Near Side : Regional Lunar Gravity Field Determination

    NARCIS (Netherlands)

    Goossens, S.

    2005-01-01

    In the past ten years the Moon has come fully back into focus, resulting in missions such as Clementine and Lunar Prospector. Data from these missions resulted in a boost in lunar gravity field modelling. Until this date, the lunar gravity field has mainly been expressed in a global representation,

  5. ''Fast track'' lunar NTR systems assessment for NASA's first lunar outpost and its evolvability to Mars

    International Nuclear Information System (INIS)

    Borowski, S.K.; Alexander, S.W.

    1993-01-01

    Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportion system (STS) based on nuclear thermal rocket (NTR) technology. A ''standardized'' set of engine and stage components are identified and used in a ''building block'' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (I sp ) of 900 seconds, and an engine thrust-to-weight ratio of 4.3. For the National Aeronautics and Space Administration's (NASA) First Lunar Outpost (FLO) mission, an expendable NTR stage powered by two such engines can deliver ∼96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of ∼198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH 2 ) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH 2 capacity to ∼20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH 2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The ''modular'' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions

  6. Rationale for a Mars Pathfinder mission to Chryse Planitia and the Viking 1 lander

    Science.gov (United States)

    Craddock, Robert A.

    1994-01-01

    Presently the landing site for Mars Pathfinder will be constrained to latitudes between 0 deg and 30 deg N to facilitate communication with earth and to allow the lander and rover solar arrays to generate the maximum possible power. The reference elevation of the site must also be below 0 km so that the descent parachute, a Viking derivative, has sufficient time to open and slow the lander to the correct terminal velocity. Although Mars has as much land surface area as the continental crust of the earth, such engineering constraints immediately limit the number of possible landing sites to only three broad areas: Amazonis, Chryse, and Isidis Planitia. Of these, both Chryse and Isidis Planitia stand out as the sites offering the most information to address several broad scientific topics.

  7. Modeling lunar volcanic eruptions

    Science.gov (United States)

    Housley, R. M.

    1978-01-01

    Simple physical arguments are used to show that basaltic volcanos on different planetary bodies would fountain to the same height if the mole fraction of gas in the magma scaled with the acceleration of gravity. It is suggested that the actual eruption velocities and fountain heights are controlled by the velocities of sound in the two phase gas/liquid flows. These velocities are in turn determined by the gas contents in the magma. Predicted characteristics of Hawaiian volcanos are in excellent accord with observations. Assuming that the only gas in lunar volcano is the CO which would be produced if the observed Fe metal in lunar basalts resulted from graphite reduction, lunar volcanos would fountain vigorously, but not as spectacularly as their terrestrial counterparts. The volatile trace metals, halogens, and sulfur released would be transported over the entire moon by the transient atmosphere. Orange and black glass type pyroclastic materials would be transported in sufficient amounts to produce the observed dark mantle deposits.

  8. Using the Lunar Phases Concept Inventory to Investigate College Students' Pre-instructional Mental Models of Lunar Phases

    Science.gov (United States)

    Lindell, Rebecca S.; Sommer, Steven R.

    2004-09-01

    The Lunar Phases Concept Inventory (LPCI) is a twenty-item multiple-choice inventory developed to aid instructors in assessing the mental models their students utilize when answering questions concerning phases of the moon. Based upon an in-depth qualitative investigation of students' understanding of lunar phases, the LPCI was designed to take advantage of the innovative model analysis theory to probe the different dimensions of students' mental models of lunar phases. As part of a national field test, pre-instructional LPCI data was collected for over 750 students from multiple post-secondary institutions across the United States and Canada. Application of model analysis theory to this data set allowed researchers to probe the different mental models of lunar phases students across the country utilize prior to instruction. Results of this analysis display strikingly similar results for the different institutions, suggesting a potential underlying cognitive framework.

  9. Concept of Lunar Energy Park

    Science.gov (United States)

    Niino, Masayuki; Kisara, Katsuto; Chen, Lidong

    1993-10-01

    This paper presents a new concept of energy supply system named Lunar Energy Park (LEP) as one of the next-generation clean energy sources. In this concept, electricity is generated by nuclear power plants built on the moon and then transmitted to receiving stations on the earth by laser beam through transporting systems situated in geostationary orbit. The lunar nuclear power plants use a high-efficiency composite energy conversion system consisting of thermionic and thermoelectric generators to change nuclear thermal energy into electricity directly. The nuclear resources are considered to be available from the moon, and nuclear fuel transport from earth to moon is not necessary. Because direct energy conversion systems are employed, the lunar nuclear plants can be operated and controlled by robots and are maintenance-free, and so will cause no pollution to humans. The key technologies for LEP include improvements of conversion efficiency of both thermionic and thermoelectric converters, and developments of laser-beam power transmission technology as well. The details, including the construction of lunar nuclear plants, energy conversion and energy transmission systems, as well as the research plan strategies for this concept are reviewed.

  10. Strength and compressibility of returned lunar soil.

    Science.gov (United States)

    Carrier, W. D., III; Bromwell, L. G.; Martin, R. T.

    1972-01-01

    Two oedometer and three direct shear tests have been performed in vacuum on a 200 g sample of lunar soil from Apollo 12 (12001, 119). The compressibility data have been used to calculate bulk density and shear wave velocity versus depth on the lunar surface. The shear wave velocity was found to increase approximately with the one-fourth power of the depth, and the results suggest that the Apollo 14 Active Seismic Experiment may not have detected the Fra Mauro formation at a depth of 8.5 m, but only naturally consolidated lunar soil. The shear data indicate that the strength of the lunar soil sample is about 65% that of a ground basalt simulant at the same void ratio.

  11. Measurement of the lunar neutron density profile

    International Nuclear Information System (INIS)

    Woolum, D.S.; Burnett, D.S.; Furst, M.; Weiss, J.R.

    1975-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g cm -2 depth below the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment (LNPE) using particle tracks produced by the 10 B (n,α) 7 Li reaction. Both the absolute magnitude and the depth profile of the neutron density are in good agreement with theoretical calculations by Lingenfelter, Canfield, and Hampel. However, relatively small deviations between experiment and theory in the effect of Cd absorption on the neutron density and in the relative 149 Sm to 157 Gd capture rates reported previously (Russ et al., 1972) imply that the true lunar 157 Gd capture rate is about one half of that calculated theoretically. (Auth.)

  12. Physical properties of the martian surface from the Viking 1 lander: preliminary results

    International Nuclear Information System (INIS)

    Shorthill, R.W.; Hutton, R.E.; Moore, H.J. II; Scott, R.E.; Spitzer, C.R.

    1976-01-01

    The purpose of the physical properties experiment is to determine the characteristics of the martian ''soil'' based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of two of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of ''soil'' properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface

  13. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment

    Science.gov (United States)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.

    2015-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  14. Gardening process of lunar surface layer inferred from the galactic cosmic-ray exposure ages of lunar samples

    International Nuclear Information System (INIS)

    Iriyama, Jun; Honda, Masatake.

    1979-01-01

    From the cosmic-ray exposure age data, (time scale 10 7 - 10 8 years), of the lunar surface materials, we discuss the gardening process of the lunar surface layer caused by the meteoroid impact cratering. At steady state, it is calculated that, in the region within 10 - 50 m of the surface, a mixing rate of 10 -4 to 10 -5 mm/yr is necessary to match the exposure ages. Observed exposure ages of the lunar samples could be explained by the gardening effect calculated using a crater formation rate which is slightly modified from the current crater population data. (author)

  15. MOONLIGHT: A NEW LUNAR LASER RANGING RETROREFLECTOR AND THE LUNAR GEODETIC PRECESSION

    Directory of Open Access Journals (Sweden)

    M. Martini

    2013-12-01

    Full Text Available Since the 1970s Lunar Laser Ranging (LLR to the Apollo Cube Corner Retroreflector (CCR arrays (developed by the University of Maryland, UMD supplied almost all significant tests of General Relativity (Alley et al., 1970; Chang et al., 1971; Bender et al.,1973: possible changes in the gravitational constant, gravitational self-energy, weak equivalence principle, geodetic precession, inverse-square force-law. The LNF group, in fact, has just completed a new measurement of the lunar geodetic precession with Apollo array, with accuracy of 9 × 10−3, comparable to the best measurement to date. LLR has also provided significant information on the composition and origin of the moon. This is the only Apollo experiment still in operation. In the 1970s Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Since the ranging capabilities of ground stations improved by more than two orders of magnitude, now, because of the lunar librations, Apollo CCR arrays dominate the error budget. With the project MoonLIGHT (Moon Laser Instrumentation for General relativity High-accuracy Tests, in 2006 INFN-LNF joined UMD in the development and test of a new-generation LLR payload made by a single, large CCR (100mm diameter unaffected by the effect of librations. With MoonLIGHT CCRs the accuracy of the measurement of the lunar geodetic precession can be improved up to a factor 100 compared to Apollo arrays. From a technological point of view, INFN-LNF built and is operating a new experimental apparatus (Satellite/lunar laser ranging Characterization Facility, SCF and created a new industry-standard test procedure (SCF-Test to characterize and model the detailed thermal behavior and the optical performance of CCRs in accurately laboratory-simulated space conditions, for industrial and scientific applications. Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP and the

  16. Moonstruck how lunar cycles affect life

    CERN Document Server

    Naylor, Ernest

    2015-01-01

    Throughout history, the influence of the full Moon on humans and animals has featured in folklore and myths. Yet it has become increasingly apparent that many organisms really are influenced indirectly, and in some cases directly, by the lunar cycle. Breeding behaviour among some marine animals has been demonstrated to be controlled by internal circalunar biological clocks, to the point where lunar-daily and lunar-monthly patterns of Moon-generated tides are embedded in their genes. Yet, intriguingly, Moon-related behaviours are also found in dry land and fresh water species living far beyond the influence of any tides. In Moonstruck, Ernest Naylor dismisses the myths concerning the influence of the Moon, but shows through a range of fascinating examples the remarkable real effects that we are now finding through science. He suggests that since the advent of evolution on Earth, which occurred shortly after the formation of the Moon, animals evolved adaptations to the lunar cycle, and considers whether, if Moo...

  17. Thermal Performance of Low Layer Density Multilayer Insu1ation Using Liquid Nitrogen

    Science.gov (United States)

    Johnson, Wesley L.; Fesmire, James E.

    2011-01-01

    In order to support long duration cryogenic propellant storage, the Cryogenic Fluid Management (CFM) Project of the Exploration Technology Development Program (ETDP) is investigating the long duration storage propertie$ of liquid methane on the lunar surface. The Methane Lunar Surface Thermal Control (MLSTC) testing is using a tank of the approximate dimensions of the Altair ascent tanks inside of a vacuum chamber to simulate the environment in low earth orbit and on the lunar surface. The thermal performance testing of multilayer insulation (MLI) coupons that are fabricated identically to the tank applied insulation is necessary to understand the performance of the blankets and to be able to predict the performance of the insulation prior to testing. This coupon testing was completed in Cryostat-100 at the Cryogenics Test Laboratory. The results showed the properties of the insulation as a function of layer density, number of layers, and warm boundary temperature. These results aid in the understanding of the performance parameters o fMLI and help to complete the body of literature on the topic.

  18. Living matter: the "lunar eclipse" phenomena.

    Science.gov (United States)

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  19. Design of a lunar oxygen production plant

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  20. Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site

    OpenAIRE

    Ding, Chunyu; Su, Yan; Xing, Shuguo; Dai, Shun; Xiao, Yuan; Feng, Jianqing; Liu, Danqing; Li, Chunlai

    2017-01-01

    In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar) data. In this paper, the random medium theory and Apollo drilling core data are used to co...

  1. Mars Atmosphere and Regolith COllector/PrOcessor for Lander Ops (MARCO POLO) Atmospheric Processing Module

    Data.gov (United States)

    National Aeronautics and Space Administration — The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a...

  2. Lunar ranging instrument for Chandrayaan-1

    Indian Academy of Sciences (India)

    ... Committee on Scientific Values · Project Lifescape · Scientific Data of Public Interest ... Lunar Laser Ranging Instrument (LLRI)proposed for the first Indian lunar ... field by precisely measuring the altitude from a polar orbit around the Moon. ... Laboratory for Electro-Optics Systems, Indian Space Research Organization ...

  3. Detecting Volatiles Deep in the Lunar Regolith

    Science.gov (United States)

    Crotts, A.; Heggy, E.; Ciarletti, V.; Colaprete, A.; Moghaddam, M.; Siegler, M. A.

    2015-12-01

    There is increasing theoretical and empirical evidence, from the Apollo era and after, of volatiles deep in the lunar interior, in the crust and deeper, both hydrogen-rich and otherwise. This comes in the form of fire fountain samples from Apollo 15 and Apollo 17, of hydrated minerals excavated by impacts which reach the base of the lunar crust e.g., crater Bullialdus, of hydration of apatite and other minerals, as well as predictions of a water-concentrated layer along with the KREEP material at the base of the lunar crust. We discuss how the presence of these volatiles might be directly explored. In particular water vapor molecules percolating to the surface through lunar regolith might be expected to stick and freeze into the regolith, at depths of several meters depending on the regolith temperature profile, porosity and particle size distribution, quantities that are not well known beyond two meters depth. To explore these depths in the regolith we use and propose several modes of penetrating radar. We will present results using the SELENE/Kaguya's Lunar Sounding RADAR (LSR) to probe the bulk volatile dielectric and loss structure properties of the regolith in various locations, both within permanently shadowed regions (PSRs) and without, and within neutron suppression regions (NSRs) as traced by epithermal neutrons and without. We also propose installation of ground penetrating RADAR (GPR) on a roving lunar platform that should be able to probe between 0.2 and 1.6 GHz, which will provide a probe of the entire depth of the lunar regolith as well as a high-resolution (about 4 cm FWHM) probe of the upper meter or two of the lunar soil, where other probes of volatiles such as epithermal neutron absorption or drilling might be employed. We discuss predictions for what kinds of volatile density profiles might be distinguished in this way, and whether these will be detected from orbit as NSRs, whether these must be restricted to PSRs, and how these might appear in

  4. Introduction of JAXA Lunar and Planetary Exploration Data Analysis Group: Landing Site Analysis for Future Lunar Polar Exploration Missions

    Science.gov (United States)

    Otake, H.; Ohtake, M.; Ishihara, Y.; Masuda, K.; Sato, H.; Inoue, H.; Yamamoto, M.; Hoshino, T.; Wakabayashi, S.; Hashimoto, T.

    2018-04-01

    JAXA established JAXA Lunar and Planetary Exploration Data Analysis Group (JLPEDA) at 2016. Our group has been analyzing lunar and planetary data for various missions. Here, we introduce one of our activities.

  5. Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study

    Science.gov (United States)

    McIntosh, E. C.; Rapp, J. F.; Draper, D. S.

    2016-01-01

    The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.

  6. Armstrong practices in Lunar Module simulator

    Science.gov (United States)

    1969-01-01

    Neil A. Armstrong, Commander for the Apollo 11 Moon-landing mission, practices for the historic event in a Lunar Module simulator in the Flight Crew Training building at KSC. Accompanying Armstrong on the Moon flight will be Command Module Pilot Michael Collins and Lunar Module Pilot Edwin E. Aldrin Jr.

  7. Trajectory Design for the Lunar Polar Hydrogen Mapper Mission

    Science.gov (United States)

    Genova, Anthony L.; Dunham, David W.

    2017-01-01

    The presented trajectory was designed for the Lunar Polar Hydrogen Mapper (LunaH-Map) 6U CubeSat, which was awarded a ride on NASAs Space Launch System (SLS) with Exploration Mission 1 (EM-1) via NASAs 2015 SIMPLEX proposal call. After deployment from EM-1s upper stage (which is planned to enter heliocentric space via a lunar flyby), the LunaH-Map CubeSat will alter its trajectory via its low-thrust ion engine to target a lunar flyby that yields a Sun-Earth-Moon weak stability boundary transfer to set up a ballistic lunar capture. Finally, the orbit energy is lowered to reach the required quasi-frozen science orbit with periselene above the lunar south pole.

  8. Constraining the volatile budget of the lunar interior

    Science.gov (United States)

    Potts, N. J.; Bromiley, G. D.

    2017-12-01

    Measurements of volatiles (F, Cl, S, H2O) in a range of lunar samples confirm the presence of volatile material in lunar magmas. It remains unknown, however, where this volatile material is stored and when it was delivered to the Moon. On Earth, point defects within mantle olivine, and its high-pressure polymorphs, are thought to be the largest reservoir of volatile material. However, as volatiles have been cycled into and out of the Earth's mantle throughout geological time, via subduction and volcanism, this masks any original volatile signatures. As the Moon has no plate tectonics, it is expected that any volatile material present in the deep lunar interior would have been inherited during accretion and differentiation, providing insight into the delivery of volatiles to the early Earth-Moon system. Our aim was, therefore, to test the volatile storage capacity of the deep lunar mantle and determine mineral/melt partitioning for key volatiles. Experiments were performed in a primitive lunar mantle composition and run at relevant T, P, and at fO2 below the IW buffer. Experiments replicated the initial stages of LMO solidification with either olivine + melt, olivine + pyroxene + melt, or pyroxene + melt as the only phases present. Mineral-melt partition coefficients (Dx) derived for volatile material (F, Cl, S, H2O) vary significantly compared to those derived for terrestrial conditions. An order of magnitude more H2O was found to partition into lunar olivine compared to the terrestrial upper mantle. DF derived for lunar olivine are comparable to the highest terrestrial derived values whilst no Cl was found to partition into lunar olivine under these conditions. Furthermore, an inverse trend between DF and DOH hints towards coupled-substitution mechanisms between H and F under low-fO2/lunar bulk composition. These results suggest that if volatile material was present in the LMO a significant proportion could be partitioned into the lower lunar mantle. The

  9. Lunar Cycles, Catchability of Penaeid Shrimps and Implications for ...

    African Journals Online (AJOL)

    Keywords: Penaeidae, fishing effort, lunar phases, profitability, spatial closures. ... closures during periods of the lunar cycle with predictably low catch-per- ... each lunar phase and month using two-way ANOVA. ... shrimps, for which the CPUE declined throughout the fishing season ... (Garcia, 1988) and abundance of.

  10. Moonlight controls lunar-phase-dependency and regular oscillation of clock gene expressions in a lunar-synchronized spawner fish, Goldlined spinefoot.

    Science.gov (United States)

    Takeuchi, Yuki; Kabutomori, Ryo; Yamauchi, Chihiro; Miyagi, Hitomi; Takemura, Akihiro; Okano, Keiko; Okano, Toshiyuki

    2018-04-18

    Goldlined spinefoot, Siganus guttatus, inhabits tropical and subtropical waters and synchronizes its spawning around the first quarter moon likely using an hourglass-like lunar timer. In previous studies, we have found that clock genes (Cryptochrome3 and Period1) could play the role of state variable in the diencephalon when determining the lunar phase for spawning. Here, we identified three Cry, two Per, two Clock, and two Bmal genes in S. guttatus and investigated their expression patterns in the diencephalon and pituitary gland. We further evaluated the effect on their expression patterns by daily interruptions of moonlight stimuli for 1 lunar cycle beginning at the new moon. It significantly modified the expression patterns in many of the examined clock(-related) genes including Cry3 in the diencephalon and/or pituitary gland. Acute interruptions of moonlight around the waxing gibbous moon upregulated nocturnal expressions of Cry1b and Cry2 in the diencephalon and pituitary gland, respectively, but did not affect expression levels of the other clock genes. These results highlighted the importance of repetitive moonlight illumination for stable or lunar-phase-specific daily expression of clock genes in the next lunar cycle that may be important for the lunar-phase-synchronized spawning on the next first quarter moon.

  11. Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site

    Directory of Open Access Journals (Sweden)

    Chunyu Ding

    2017-01-01

    Full Text Available In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar data. In this paper, the random medium theory and Apollo drilling core data are used to construct a modeling method based on discrete heterogeneous random media, and the simulation data are processed and collected by the electromagnetic numerical method FDTD (finite-difference time domain. When comparing the LPR data with the simulated data, the heterogeneous random medium model is more consistent with the actual distribution of the media in the lunar regolith layer. It is indicated that the interior structure of the lunar regolith layer at the landing site is not a pure lunar regolith medium but rather a regolith-rock mixture, with rocks of different sizes and shapes. Finally, several reasons are given to explain the formation of the geological structures of the lunar regolith layer at the Chang’E 3 landing site, as well as the possible geological stratification structure.

  12. Thermal Analysis of the Driving Component Based on the Thermal Network Method in a Lunar Drilling System and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Dewei Tang

    2017-03-01

    Full Text Available The main task of the third Chinese lunar exploration project is to obtain soil samples that are greater than two meters in length and to acquire bedding information from the surface of the moon. The driving component is the power output unit of the drilling system in the lander; it provides drilling power for core drilling tools. High temperatures can cause the sensors, permanent magnet, gears, and bearings to suffer irreversible damage. In this paper, a thermal analysis model for this driving component, based on the thermal network method (TNM was established and the model was solved using the quasi-Newton method. A vacuum test platform was built and an experimental verification method (EVM was applied to measure the surface temperature of the driving component. Then, the TNM was optimized, based on the principle of heat distribution. Through comparative analyses, the reasonableness of the TNM is validated. Finally, the static temperature field of the driving component was predicted and the “safe working times” of every mode are given.

  13. LADEE UVS Observations of Atoms and Dust in the Lunar Tail

    Science.gov (United States)

    Wooden, Diane H.; Colaprete, Anthony; Cook, Amanda M.; Shirley, Mark H.; Vargo, Kara E.; Elphic, Richard C.; Stubbs, Timothy J.; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) was a lunar orbiter launched in September 2013 that investigated the composition and temporal variation of the tenuous lunar exosphere and dust environment. A major goal of the mission was to characterize the dust exosphere prior to future lunar exploration activities, which may alter the lunar environment. The Ultraviolet/Visible Spectrometer (UVS) onboard LADEE addresses this goal, utilizing two sets of optics: a limbviewing telescope, and a solar-viewing telescope. We report on spectroscopic (approximately 280 - 820 nm) observations viewing down the lunar wake or along the 'lunar tail' from lunar orbit. Prior groundbased studies have observed the emission from neutral sodium atoms extended along the lunar tail, so often this region is referred to as the lunar sodium tail. UVS measurements were made on the dark side of the moon, with the UVS limb-viewing telescope pointed outward in the direction of the Moon's wake (almost anti-sun), during different lunar phases. These UVS observation activities sample a long column and allow the characterization of scattered light from dust and emission lines from atoms in the lunar tail. Observations in this UVS configuration show the largest excess of scattered blue light in our data set, indicative of the presence of small dust grains in the tail. Once lofted, nanoparticles may become charged and picked up by the solar wind, similar to the phenomena witnessed above Enceladus's northern hemisphere or by the STEREO/WAVES instrument while close to Earth's orbit. The UVS data show that small dust grains as well as atoms become entrained in the lunar tail.

  14. Modeling and experimental validation of sawing based lander anchoring and sampling methods for asteroid exploration

    Science.gov (United States)

    Zhang, Jun; Dong, Chengcheng; Zhang, Hui; Li, Song; Song, Aiguo

    2018-05-01

    This paper presents a novel lander anchoring system based on sawing method for asteroid exploration. The system is composed of three robotic arms, three cutting discs, and a control system. The discs mounted at the end of the arms are able to penetrate into the rock surface of asteroids. After the discs cut into the rock surface, the self-locking function of the arms provides forces to fix the lander on the surface. Modeling, trajectory planning, simulations, mechanism design, and prototype fabrication of the anchoring system are discussed, respectively. The performances of the system are tested on different kinds of rocks, at different sawing angles, locations, and speeds. Results show that the system can cut 15 mm deep into granite rock in 180 s at sawing angle of 60°, with the average power of 58.41 W, and the "weight on bit" (WOB) of 8.637 N. The 7.8 kg anchoring system is capable of providing omni-directional anchoring forces, at least 225 N normal and 157 N tangent to the surface of the rock. The system has the advantages of low-weight, low energy consumption and balance forces, high anchoring efficiency and reliability, and could enable the lander to move and sample or assist astronauts and robots in walking and sampling on asteroids.

  15. Design of guidance laws for lunar pinpoint soft landing

    NARCIS (Netherlands)

    Guo, J.; Han, C.

    2009-01-01

    Future lunar missions ask for the capability to perform precise Guidance, Navigation and Control (GNC) to the selected landing sites on the lunar surface. This paper studies the guidance issues for the lunar pinpoint soft landing problem. The primary contribution of this paper is the design of

  16. Studies in matter antimatter separation and in the origin of lunar magnetism

    Science.gov (United States)

    Barker, W. A.; Greeley, R.; Parkin, C.; Aggarwal, H.; Schultz, P.

    1975-01-01

    A progress report, covering lunar and planetary research is introduced. Data cover lunar ionospheric models, lunar and planetary geology, and lunar magnetism. Wind tunnel simulations of Mars aeolian problems and a comparative study of basaltic analogs of Lunar and Martial volcanic features was discussed.

  17. Exploration of the Moon:Chandrayaan1 and Chandrayaan-2

    Science.gov (United States)

    Goswami, J. N.

    The Indian mission to Moon, Chandrayaan-1, has discovered signatures of water (H2O) molecule and hydroxyl (OH) on surface layers of exposed lunar surface (rocks and soils) that is more prominent near the cooler lunar polar regions. Several new and some unexpected results obtained in this mission are:(i)Possible presence of water and carbon-di-oxide molecules in the tenuous lunar atmosphere, an unexpected result, (ii)Sub-surface ice in permanently shadowed crater in the polar region confirming previous indication from the Clementine mission,(iii)Detection of reflected solar wind component as well as presence of solar wind on night side, unexpected new results, (iv)localized mini-magnetosphere, confirmation of earlier result using a new improved approach,(v)Presence of “refractory” rock-types not identified earlier (also reported by “Kaguya” mission), (vi)Elemental (Mg, Al, Si, Ca and Fe) composition of several areas of lunar surface by X-ray fluorescence technique, a new result,(vii)Three dimensional high resolution map of the lunar surface revealing new features,(viii)Radiation environment in the earth-moon and lunar space, and (ix) High energy X-ray continuum background on moon due to cosmic ray interactions with lunar surface. These results coupled with those obtained by Kaguya (Japan) and LRO and LCROSS (USA) missions have revealed a new face of the moon. The Chandrayaan-2 mission, that will have a Orbiter-Lander-Rover configuration, will carry close to a dozen payloads. The instruments on the Orbiter will extend studies conducted by Chandrayyan-1 mission with higher sensitivity. This will be supplemented by in-depth investigations of lunar surface properties in the polar region using several instruments in the lander and the rover. The present status of the mission and expected scientific results will be presented.

  18. How Do You Answer the Life on Mars Question? Use Multiple Small Landers Like Beagle 2

    Science.gov (United States)

    Gibson, Everett K.; Pillinger, C. T.; Wright, I. P.; Hurst, S. J.; Richter, L.; Sims, M. R.

    2012-01-01

    To address one of the most important questions in planetary science Is there life on Mars? The scientific community must turn to less costly means of exploring the surface of the Red Planet. The United Kingdom's Beagle 2 Mars lander concept was a small meter-size lander with a scientific payload constituting a large proportion of the flown mass designed to supply answers to the question about life on Mars. A possible reason why Beagle 2 did not send any data was that it was a one-off attempt to land. As Steve Squyres said at the time: "It's difficult to land on Mars - if you want to succeed you have to send two of everything".

  19. Lunar Impact Basins: Stratigraphy, Sequence and Ages from Superposed Impact Crater Populations Measured from Lunar Orbiter Laser Altimeter (LOLA) Data

    Science.gov (United States)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D = 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.

  20. Lunar transportation scenarios utilising the Space Elevator.

    Science.gov (United States)

    Engel, Kilian A

    2005-01-01

    The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required delta v, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo. c2005 Elsevier Ltd. All rights reserved.

  1. Lunar transportation scenarios utilising the Space Elevator

    Science.gov (United States)

    Engel, Kilian A.

    2005-07-01

    The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator-launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required Δv, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo.

  2. Astronaut Neil Armstrong participates in lunar surface siumlation training

    Science.gov (United States)

    1969-01-01

    Suited Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, participates in lunar surface simulation training on April 18, 1969, in bldg 9, Manned Spacecraft Center (MSC). Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he simulates scooping up a lunar surface sample.

  3. LOTT: A new small telescope to monitor lunar orientation parameters

    Science.gov (United States)

    Huang, Cheng-Li

    2015-08-01

    The lunar orientation (mostly libration) is so far mostly determined by lunar laser ranging (LLR), but due to the bad geometry among thelaser ray direction and the lunar reflector array, the lunar orientation parameters (LOP) are determined with precision worse than 0.1 arcsecond, especially of the components perpendicular to the direction pointing to geocenter. The LOP with such bad precision is almost nonsense for studying the lunar interior, and the error in the modeling of LOP becomes also a major error in the lunar ephemerides. Here, we propose a small optical telescope (LOTT: Lunar Orientation Trinity Telescope), with a brand-new design of tri-field of view and to be placed on the Moon, to monitor LOP and its variation. Its precision of LOP determination can be expected to be several milliarcsecond (mas) after two months observation. With this precision, LOP can then be used to derive meaningful information of the physics of the lunar interior. The concept and design of this LOTT will be introduced, and the test observation data of EOP by this principled sample machine on the earth, as well as the design of the second generation of LOTT, will be also presented.

  4. Collisionless encounters and the origin of the lunar inclination.

    Science.gov (United States)

    Pahlevan, Kaveh; Morbidelli, Alessandro

    2015-11-26

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.

  5. Yes, there was a moon race

    Science.gov (United States)

    Oberg, James E.

    1990-01-01

    Examination of newly disclosed evidence confirms that the Soviets were indeed striving to reach the moon before the U.S. in 1969. It is noted that a Soviet unmanned lunar probe crashed on the moon's surface only hours before the U.S. Apollo landing. Now confirmed openly are moon-exploration schedules that were competitive with Apollo plans, the names and histories of Soviet lunar boosters and landers, identities of the lunar cosmonauts; and even photos of manned lunar craft are available. Additional details on the troubled moon-probe program are presented: technical problems, continuous changes in goals, schedules, and planning, vehicle and personnel disasters, transfer of authority between ministries, and political power struggles in the scientific community.

  6. Lunar Map Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Map Catalog includes various maps of the moon's surface, including Apollo landing sites; earthside, farside, and polar charts; photography index maps; zone...

  7. External and internal controls of lunar-related reproductive rhythms in fishes.

    Science.gov (United States)

    Takemura, A; Rahman, M S; Park, Y J

    2010-01-01

    Reproductive activities of many fish species are, to some extent, entrained to cues from the moon. During the spawning season, synchronous spawning is repeated at intervals of c. 1 month (lunar spawning cycle) and 2 weeks (semi-lunar spawning cycle) or daily according to tidal changes (tidal spawning cycle). In species showing lunar-related spawning cycles, oocytes in the ovary develop towards and mature around a specific moon phase for lunar spawners, around spring tides for semi-lunar spawners and at daytime high tides for tidal spawners. The production of sex steroid hormones also changes in accordance with synchronous oocyte development. Since the production of the steroid hormones with lunar-related reproductive periodicity is regulated by gonadotropins, it is considered that the higher parts of the hypothalamus-pituitary-gonad axis play important roles in the perception and regulation of lunar-related periodicity. It is likely that fishes perceive cues from the moon by sensory organs; however, it is still unknown how lunar cues are transduced as an endogenous rhythm exerting lunar-related spawning rhythmicity. Recent research has revealed that melatonin fluctuated according to the brightness at night, magnetic fields and the tidal cycle. In addition, cyclic changes in hydrostatic pressure had an effect on monoamine contents in the brain. These factors may be indirectly related to the exertion of lunar-related periodicity. Molecular approaches have revealed that mRNA expressions of light-sensitive clock genes change with moonlight, suggesting that brightness at night plays a role in phase-shifting or resetting of biological clocks. Some species may have evolved biological clocks in relation to lunar cycles, although it is still not known how lunar periodicities are endogenously regulated in fishes. This review demonstrates that lunar-related periodicity is utilized and incorporated by ecological and physiological mechanisms governing the reproductive success

  8. Use of a Lunar Outpost for Developing Space Settlement Technologies

    Science.gov (United States)

    Purves, Lloyd R.

    2008-01-01

    The type of polar lunar outpost being considered in the NASA Vision for Space Exploration (VSE) can effectively support the development of technologies that will not only significantly enhance lunar exploration, but also enable long term crewed space missions, including space settlement. The critical technologies are: artificial gravity, radiation protection, Closed Ecological Life Support Systems (CELSS) and In-Situ Resource Utilization (ISRU). These enhance lunar exploration by extending the time an astronaut can remain on the moon and reducing the need for supplies from Earth, and they seem required for space settlement. A polar lunar outpost provides a location to perform the research and testing required to develop these technologies, as well as to determine if there are viable countermeasures that can reduce the need for Earth-surface-equivalent gravity and radiation protection on long human space missions. The types of spinning space vehicles or stations envisioned to provide artificial gravity can be implemented and tested on the lunar surface, where they can create any level of effective gravity above the 1/6 Earth gravity that naturally exists on the lunar surface. Likewise, varying degrees of radiation protection can provide a natural radiation environment on the lunar surface less than or equal to 1/2 that of open space at 1 AU. Lunar ISRU has the potential of providing most of the material needed for radiation protection, the centrifuge that provides artificial gravity; and the atmosphere, water and soil for a CELSS. Lunar ISRU both saves the cost of transporting these materials from Earth and helps define the requirements for ISRU on other planetary bodies. Biosphere II provides a reference point for estimating what is required for an initial habitat with a CELSS. Previous studies provide initial estimates of what would be required to provide such a lunar habitat with the gravity and radiation environment of the Earth s surface. While much preparatory

  9. Solar water heating system for a lunar base

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  10. Krypton and xenon in lunar fines

    Science.gov (United States)

    Basford, J. R.; Dragon, J. C.; Pepin, R. O.; Coscio, M. R., Jr.; Murthy, V. R.

    1973-01-01

    Data from grain-size separates, stepwise-heated fractions, and bulk analyses of 20 samples of fines and breccias from five lunar sites are used to define three-isotope and ordinate intercept correlations in an attempt to resolve the lunar heavy rare gas system in a statistically valid approach. Tables of concentrations and isotope compositions are given.

  11. Lunar eclipses: Probing the atmosphere of an inhabited planet

    Science.gov (United States)

    García Muñoz, A.

    2013-04-01

    The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.

  12. A Survey of Ballistic Transfers to Low Lunar Orbit

    Science.gov (United States)

    Parker, Jeffrey S.; Anderson, Rodney L.; Peterson, Andrew

    2011-01-01

    A simple strategy is identified to generate ballistic transfers between the Earth and Moon, i.e., transfers that perform two maneuvers: a trans-lunar injection maneuver to depart the Earth and a Lunar Orbit Insertion maneuver to insert into orbit at the Moon. This strategy is used to survey the performance of numerous transfers between varying Earth parking orbits and varying low lunar target orbits. The transfers surveyed include short 3-6 day direct transfers, longer 3-4 month low energy transfers, and variants that include Earth phasing orbits and/or lunar flybys.

  13. Lunar eclipses: Probing the atmosphere of an inhabited planet

    Directory of Open Access Journals (Sweden)

    Muñoz A. García

    2013-04-01

    Full Text Available The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.

  14. Consolidated Lunar Atlas

    Data.gov (United States)

    National Aeronautics and Space Administration — The Consolidated Lunar Atlas is a collection of the best photographic images of the moon, including low-oblique photography, full-moon photography, and tabular and...

  15. Astronaut Neil Armstrong participates in lunar surface simulation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969 in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he is standing on Lunar Module mockup foot pad preparing to ascend steps.

  16. High-Resolution Spectroscopy of the Lunar Sodium Exosphere

    Science.gov (United States)

    Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.

    2014-01-01

    We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.

  17. Ocular toxicity of authentic lunar dust.

    Science.gov (United States)

    Meyers, Valerie E; Garcìa, Hector D; Monds, Kathryn; Cooper, Bonnie L; James, John T

    2012-07-20

    Dust exposure is a well-known occupational hazard for terrestrial workers and astronauts alike and will continue to be a concern as humankind pursues exploration and habitation of objects beyond Earth. Humankind's limited exploration experience with the Apollo Program indicates that exposure to dust will be unavoidable. Therefore, NASA must assess potential toxicity and recommend appropriate mitigation measures to ensure that explorers are adequately protected. Visual acuity is critical during exploration activities and operations aboard spacecraft. Therefore, the present research was performed to ascertain the ocular toxicity of authentic lunar dust. Small (mean particle diameter = 2.9 ± 1.0 μm), reactive lunar dust particles were produced by grinding bulk dust under ultrapure nitrogen conditions. Chemical reactivity and cytotoxicity testing were performed using the commercially available EpiOcularTM assay. Subsequent in vivo Draize testing utilized a larger size fraction of unground lunar dust that is more relevant to ocular exposures (particles lunar dust was minimally irritating. Minor irritation of the upper eyelids was noted at the 1-hour observation point, but these effects resolved within 24 hours. In addition, no corneal scratching was observed using fluorescein stain. Low-titanium mare lunar dust is minimally irritating to the eyes and is considered a nuisance dust for ocular exposure. No special precautions are recommended to protect against ocular exposures, but fully shielded goggles may be used if dust becomes a nuisance.

  18. Dielectric properties of lunar surface

    Science.gov (United States)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  19. Life Sciences Implications of Lunar Surface Operations

    Science.gov (United States)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  20. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  1. Lightweight Bulldozer Attachment for Construction and Excavation on the Lunar Surface

    Science.gov (United States)

    Mueller, Robert; Wilkinson, R. Allen; Gallo, Christopher A.; Nick, Andrew J.; Schuler, Jason M.; King, Robert H.

    2009-01-01

    A lightweight bulldozer blade prototype has been designed and built to be used as an excavation implement in conjunction with the NASA Chariot lunar mobility platform prototype. The combined system was then used in a variety of field tests in order to characterize structural loads, excavation performance and learn about the operational behavior of lunar excavation in geotechnical lunar simulants. The purpose of this effort was to evaluate the feasibility of lunar excavation for site preparation at a planned NASA lunar outpost. Once the feasibility has been determined then the technology will become available as a candidate element in the NASA Lunar Surface Systems Architecture. In addition to NASA experimental testing of the LANCE blade, NASA engineers completed analytical work on the expected draft forces using classical soil mechanics methods. The Colorado School of Mines (CSM) team utilized finite element analysis (FEA) to study the interaction between the cutting edge of the LANCE blade and the surface of soil. FEA was also used to examine various load cases and their effect on the lightweight structure of the LANCE blade. Overall it has been determined that a lunar bulldozer blade is a viable technology for lunar outpost site preparation, but further work is required to characterize the behavior in 1/6th G and actual lunar regolith in a vacuum lunar environment.

  2. Apollo 11 Astronaut Neil Armstrong During Lunar Rock Collection Training

    Science.gov (United States)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil A. Armstrong uses a geologist's hammer in selecting rock specimens during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas. Armstrong, alongside astronaut Edwin (Buzz) Aldrin, practiced gathering rock specimens using special lunar geological tools in preparation for the first Lunar landing. Mission was accomplished in July of the same year. Aboard the Marshall Space Fight center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Armstrong, commander; Aldrin, Lunar Module pilot; and a third astronaut Michael Collins, Command Module pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin, while Collins remained in lunar orbit. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The lunar surface exploration was concluded in 2½ hours.

  3. Lunar atmosphere. How surface composition and meteoroid impacts mediate sodium and potassium in the lunar exosphere.

    Science.gov (United States)

    Colaprete, A; Sarantos, M; Wooden, D H; Stubbs, T J; Cook, A M; Shirley, M

    2016-01-15

    Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition. Copyright © 2016, American Association for the Advancement of Science.

  4. Radiation transport of cosmic ray nuclei in lunar material and radiation doses

    International Nuclear Information System (INIS)

    Silberberg, R.; Tsao, C.H.; Adams, J.H. Jr.; Letaw, J.R.

    1985-01-01

    The radiation environment on the lunar surface is inhospitable. The permanent settlers may work ten hours per 24-hour interval for the two-week-long lunar day on the lunar surface, or 20 percent of the total time. At moderate depths below the lunar surface (less than 200 g/sq cm) the flux of secondary neutrons exceeds considerably that in the upper atmosphere of the earth, due to cosmic-ray interactions with lunar material. The annual dose equivalent due to neutrons is about 20 or 25 rem within the upper meter of the lunar surface. The dose equivalent due to gamma rays generated by nuclear interactions near the lunar surface is only on the order of 1 percent of that due to neutrons. However, gamma-ray line emission from excited nuclei and nuclear spallation products generated by cosmic rays near the lunar surface is of considerable interest: these lines permit the partial determination of lunar composition by gamma spectroscopy. 12 references

  5. Production of electronic grade lunar silicon by disproportionation of silicon difluoride

    Science.gov (United States)

    Agosto, William N.

    1993-01-01

    Waldron has proposed to extract lunar silicon by sodium reduction of sodium fluorosilicate derived from reacting sodium fluoride with lunar silicon tetrafluoride. Silicon tetrafluoride is obtained by the action of hydrofluoric acid on lunar silicates. While these reactions are well understood, the resulting lunar silicon is not likely to meet electronic specifications of 5 nines purity. Dale and Margrave have shown that silicon difluoride can be obtained by the action of silicon tetrafluoride on elemental silicon at elevated temperatures (1100-1200 C) and low pressures (1-2 torr). The resulting silicon difluoride will then spontaneously disproportionate into hyperpure silicon and silicon tetrafluoride in vacuum at approximately 400 C. On its own merits, silicon difluoride polymerizes into a tough waxy solid in the temperature range from liquid nitrogen to about 100 C. It is the silicon analog of teflon. Silicon difluoride ignites in moist air but is stable under lunar surface conditions and may prove to be a valuable industrial material that is largely lunar derived for lunar surface applications. The most effective driver for lunar industrialization may be the prospects for industrial space solar power systems in orbit or on the moon that are built with lunar materials. Such systems would require large quantities of electronic grade silicon or compound semiconductors for photovoltaics and electronic controls. Since silicon is the most abundant semimetal in the silicate portion of any solar system rock (approximately 20 wt percent), lunar silicon production is bound to be an important process in such a solar power project. The lunar silicon extraction process is discussed.

  6. Gender disparity in BMD conversion: a comparison between Lunar and Hologic densitometers.

    Science.gov (United States)

    Ganda, Kirtan; Nguyen, Tuan V; Pocock, Nicholas

    2014-01-01

    Female-derived inter-conversion and standardised BMD equations at the lumbar spine and hip have not been validated in men. This study of 110 male subjects scanned on Hologic and Lunar densitometers demonstrates that published equations may not applicable to men at the lumbar spine. Male inter-conversion equations have also been derived. Currently, available equations for inter-manufacturer conversion of bone mineral density (BMD) and calculation of standardised BMD (sBMD) are used in both males and females, despite being derived and validated only in women. Our aim was to test the validity of the published equations in men. One hundred ten men underwent lumbar spine (L2-4), femoral neck (FN) and total hip (TH) dual X-ray absorptiometry (DXA) using Hologic and Lunar scanners. Hologic BMD was converted to Lunar using published equations derived from women for L2-4 and FN. Actual Lunar BMD (A-Lunar) was compared to converted (Lunar equivalent) Hologic BMD values (H-Lunar). sBMD was calculated separately using Hologic (sBMD-H) and Lunar BMD (sBMD-L) at L2-4, FN and TH. Conversion equations in men for Hologic to Lunar BMD were derived using Deming regression analysis. There was a strong linear correlation between Lunar and Hologic BMD at all skeletal sites. A-Lunar BMD was however significantly higher than derived H-Lunar BMD (p Lunar BMD to Hologic BMD, and formulae for lumbar spine sBMD, derived in women may not be applicable to men.

  7. Lunar UV-visible-IR mapping interferometric spectrometer

    Science.gov (United States)

    Smith, W. Hayden; Haskin, L.; Korotev, R.; Arvidson, R.; Mckinnon, W.; Hapke, B.; Larson, S.; Lucey, P.

    1992-01-01

    Ultraviolet-visible-infrared mapping digital array scanned interferometers for lunar compositional surveys was developed. The research has defined a no-moving-parts, low-weight and low-power, high-throughput, and electronically adaptable digital array scanned interferometer that achieves measurement objectives encompassing and improving upon all the requirements defined by the LEXSWIG for lunar mineralogical investigation. In addition, LUMIS provides a new, important, ultraviolet spectral mapping, high-spatial-resolution line scan camera, and multispectral camera capabilities. An instrument configuration optimized for spectral mapping and imaging of the lunar surface and provide spectral results in support of the instrument design are described.

  8. Ilmenite-rich pyroclastic deposits - An ideal lunar resource

    Science.gov (United States)

    Hawke, B. R.; Clark, B.; Coombs, C. R.

    1990-01-01

    With a view of investigating possible economic benefits that a permanent lunar settlement might provide to the near-earth space infrastructures, consideration was given to the ilmenite-rich pyroclastic deposits as sources of oxygen (for use as a propellant) and He-3 (for nuclear fusion fuel). This paper demonstrates that ilmenite-rich pyroclastic deposits would be excellent sources of a wide variety of valuable elements besides O and He-3, including Fe, Ti, H2, N, C, S, Cu, Zn, Cd, Bi, and Pb. It is shown that several ilmenite-rich pyroclastic deposits of regional extent exist on the lunar surface. The suitability of regional pyroclastic deposits for lunar mining operations, construction activities, and the establishment of permanent lunar settlements is examined.

  9. Persistence and origin of the lunar core dynamo

    Science.gov (United States)

    Suavet, Clément; Weiss, Benjamin P.; Cassata, William S.; Shuster, David L.; Gattacceca, Jérôme; Chan, Lindsey; Garrick-Bethell, Ian; Head, James W.; Grove, Timothy L.; Fuller, Michael D.

    2013-01-01

    The lifetime of the ancient lunar core dynamo has implications for its power source and the mechanism of field generation. Here, we report analyses of two 3.56-Gy-old mare basalts demonstrating that they were magnetized in a stable and surprisingly intense dynamo magnetic field of at least ∼13 μT. These data extend the known lifetime of the lunar dynamo by ∼160 My and indicate that the field was likely continuously active until well after the final large basin-forming impact. This likely excludes impact-driven changes in rotation rate as the source of the dynamo at this time in lunar history. Rather, our results require a persistent power source like precession of the lunar mantle or a compositional convection dynamo. PMID:23650386

  10. Restoration of Apollo Data by the Lunar Data Project/PDS Lunar Data Node: An Update

    Science.gov (United States)

    Williams, David R.; Hills, H. Kent; Taylor, Patrick T.; Grayzeck, Edwin J.; Guinness, Edward A.

    2016-01-01

    The Apollo 11, 12, and 14 through 17 missions orbited and landed on the Moon, carrying scientific instruments that returned data from all phases of the missions, included long-lived Apollo Lunar Surface Experiments Packages (ALSEPs) deployed by the astronauts on the lunar surface. Much of these data were never archived, and some of the archived data were on media and in formats that are outmoded, or were deposited with little or no useful documentation to aid outside users. This is particularly true of the ALSEP data returned autonomously for many years after the Apollo missions ended. The purpose of the Lunar Data Project and the Planetary Data System (PDS) Lunar Data Node is to take data collections already archived at the NASA Space Science Data Coordinated Archive (NSSDCA) and prepare them for archiving through PDS, and to locate lunar data that were never archived, bring them into NSSDCA, and then archive them through PDS. Preparing these data for archiving involves reading the data from the original media, be it magnetic tape, microfilm, microfiche, or hard-copy document, converting the outmoded, often binary, formats when necessary, putting them into a standard digital form accepted by PDS, collecting the necessary ancillary data and documentation (metadata) to ensure that the data are usable and well-described, summarizing the metadata in documentation to be included in the data set, adding other information such as references, mission and instrument descriptions, contact information, and related documentation, and packaging the results in a PDS-compliant data set. The data set is then validated and reviewed by a group of external scientists as part of the PDS final archive process. We present a status report on some of the data sets that we are processing.

  11. First lunar outpost

    Science.gov (United States)

    Andino, Aureo F.; Silva, Daniel; Ortiz, Nelson; Alvarez, Omar; Colon, Julio A.; Colon, Myrelle; Diaz, Alicia; Escobar, Xochiquetzal Y.; Garcia, Alberto; Gonzalez, Isabel C.

    1992-01-01

    Design and research efforts at the University of Puerto Rico have focused on the evaluation and refinement of the Habitability Criteria for a prolonged human presence in space during the last four years. Living quarters for a Mars mission and a third generation lunar base concept were proposed. This academic year, 1991-92, work on further refinement of the habitability criteria and design of partial gravity furniture was carried on. During the first semester, design alternatives for furniture necessary in a habitat design optimized for lunar and Martian environments were developed. Designs are based on recent research data from lunar and Mars gravity simulations, and current NASA standards. Artifacts will be submitted to NASA architects to be tested in KC-135 flights. Test findings will be submitted for incorporation in future updates to NASA habitat design standards. Second semester work was aimed at integrating these findings into the First Lunar Outpost (FLO), a mission scenario currently being considered by NASA. The mission consists of a manned return to the moon by crews of four astronauts for periods of 45 days. The major hardware components of the mission are as follows: (1) a Crew Module for the delivery of the crew and their supplies, and (2) the Habitat Module, which will arrive on the Moon unmanned. Our design efforts concentrated on this Habitat Module and on application of habitability criteria. Different geometries for the pressure vessel and their impact on the interior architecture were studied. Upon the selection of a geometry, a more detailed analysis of the interior design was performed, taking into consideration the reduced gravity, and the protection against radiation, micrometeorites, and the extreme temperature variation. A proposal for a FLO was submitted by the students, consisting essentially of a 24-feet (7.3 m.) by 35-feet (10.67 m) high vertical cylinder with work areas, crew quarters, galley, wardroom, leisure facilities, health

  12. First Results from ARTEMIS, A New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake

    Science.gov (United States)

    Halekas, J. S.; Angelopoulos, V.; Sibeck, D. G.; Khurana, K. K.; Russell, C. T.; Delory, G. T.; Farrell, W. M.; McFadden, J. P.; Bonnell, J. W.; Larson, D.; hide

    2014-01-01

    We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at approximately 3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang'E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.

  13. Lunar and solar daily variations of ionospheric electron content at Delhi

    International Nuclear Information System (INIS)

    Bhuyan, P.K.; Tyagi, T.R.

    1986-01-01

    Ionospheric electron content measurements obtained at Delhi during the period 1975-1980 have been analysed by the Chapman-Miller method to compute lunar and solar daily variations. The results show that the magnitude of the lunar harmonic components is about one-tenth that of the solar harmonic components. Significant seasonal and solar cycle variations were observed for both the lunar and the solar terms. The lunar semi-diurnal component, the most significant term, can be explained as due to the additional 'fountain' effect caused by the lunar semi-diurnal variation of the electric field at the equatorial region. The lunar semi-diurnal variations were found to have significant oceanic and ionospheric components. (author)

  14. Electrical conductivity of the lunar interior - Theory, error sources, and estimates

    Science.gov (United States)

    Goldstein, B. E.

    1979-01-01

    Estimates of the electrical conductivity of the lunar interior were previously obtained by comparison of magnetometer data at the lunar surface and in near lunar space. In studies based on solar wind observations, IR was assumed that fields induced in the lunar interior by time-varying external fields are confined by the solar wind within the lunar interior on the dayside and within a cylindrical plasma cavity on the nightside. In the present paper, the induced fields are calculated for a more realistic conical plasma cavity geometry.

  15. Pulmonary and Systemic Immune Response to Chronic Lunar Dust Inhalation

    Science.gov (United States)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    Background: Due to millennia of meteorite impact with virtually no erosive effects, the surface of the Moon is covered by a layer of ultra-fine, reactive Lunar dust. Very little is known regarding the toxicity of Lunar dust on human physiology. Given the size and electrostatic characteristics of Lunar dust, countermeasures to ensure non-exposure of astronauts will be difficult. To ensure astronaut safety during any future prolonged Lunar missions, it is necessary to establish the effect of chronic pulmonary Lunar dust exposure on all physiological systems. Methods: This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and system immune system parameters. Rats were exposed to 0, 20.8, or 60.8 mg/m3 of lunar dust (6h/d; 5d/wk) for up to 13 weeks. Sacrifices occurred after exposure durations of 1day, 7 days, 4 weeks and 13 weeks post-exposure, when both blood and lung lavage fluid were collected for analysis. Lavage and blood assays included leukocyte distribution by flow cytometry, electron/fluorescent microscopy, and cytokine concentration. Cytokine production profiles following mitogenic stimulation were performed on whole blood only. Results: Untreated lavage fluid was comprised primarily of pulmonary macrophages. Lunar dust inhalation resulted in an influx of neutrophils and lymphocytes. Although the percentage of lymphocytes increased, the T cell CD4:CD8 ratio was unchanged. Cytokine analysis of the lavage fluid showed increased levels of IL-1b and TNFa. These alterations generally persisted through the 13 week sampling. Blood analysis showed few systemic effects from the lunar dust inhalation. By week 4, the peripheral granulocyte percentage was elevated in the treated rats. Plasma cytokine levels were unchanged in all treated rats compared to controls. Peripheral blood analysis showed an increased granulocyte percentage and altered cytokine production profiles consisting of increased in IL-1b and IL-6, and decreased IL-2

  16. Determination of lunar ilmenite abundances from remotely sensed data

    Science.gov (United States)

    Larson, Stephen M.; Johnson, Jeffrey R.; Singer, Robert B.

    1991-01-01

    The mineral ilmenite (FeTiO3) was found in abundance in lunar mare soils returned during the Apollo project. Lunar ilmenite often contains greater than 50 weight-percent titanium dioxide (TiO2), and is a primary potential resource for oxygen and other raw materials to supply future lunar bases. Chemical and spectroscopic analysis of the returned lunar soils produced an empirical function that relates the spectral reflectance ratio at 400 and 560 nm to the weight percent abundance of TiO2. This allowed mapping of the lunar TiO2 distribution using telescopic vidicon multispectral imaging from the ground; however, the time variant photometric response of the vidicon detectors produced abundance uncertainties of at least 2 to 5 percent. Since that time, solid-state charge-coupled device (CCD) detector technology capable of much improved photometric response has become available. An investigation of the lunar TiO2 distribution was carried out utilizing groundbased telescopic CCD multispectral imagery and spectroscopy. The work was approached in phases to develop optimum technique based upon initial results. The goal is to achieve the best possible TiO2 abundance maps from the ground as a precursor to lunar orbiter and robotic sample return missions, and to produce a better idea of the peak abundances of TiO2 for benefaction studies. These phases and the results are summarized.

  17. Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements

    Science.gov (United States)

    Steenstra, E. S.; Seegers, A. X.; Eising, J.; Tomassen, B. G. J.; Webers, F. P. F.; Berndt, J.; Klemme, S.; Matveev, S.; van Westrenen, W.

    2018-06-01

    Sulfur concentrations at sulfide saturation (SCSS) were determined for a range of low- to high-Ti lunar melt compositions (synthetic equivalents of Apollo 14 black and yellow glass, Apollo 15 green glass, Apollo 17 orange glass and a late-stage lunar magma ocean melt, containing between 0.2 and 25 wt.% TiO2) as a function of pressure (1-2.5 GPa) and temperature (1683-1883 K). For the same experiments, sulfide-silicate partition coefficients were derived for elements V, Cr, Mn, Co, Cu, Zn, Ga, Ge, As, Se, Mo, Sn, Sb, Te, W and Pb. The SCSS is a strong function of silicate melt composition, most notably FeO content. An increase in temperature increases the SCSS and an increase in pressure decreases the SCSS, both in agreement with previous work on terrestrial, lunar and martian compositions. Previously reported SCSS values for high-FeO melts were combined with the experimental data reported here to obtain a new predictive equation to calculate the SCSS for high-FeO lunar melt compositions. Calculated SCSS values, combined with previously estimated S contents of lunar low-Ti basalts and primitive pyroclastic glasses, suggest their source regions were not sulfide saturated. Even when correcting for the currently inferred maximum extent of S degassing during or after eruption, sample S abundances are still > 700 ppm lower than the calculated SCSS values for these compositions. To achieve sulfide saturation in the source regions of low-Ti basalts and lunar pyroclastic glasses, the extent of degassing of S in lunar magma would have to be orders of magnitude higher than currently thought, inconsistent with S isotopic and core-to-rim S diffusion profile data. The only lunar samples that could have experienced sulfide saturation are some of the more evolved A17 high-Ti basalts, if sulfides are Ni- and/or Cu rich. Sulfide saturation in the source regions of lunar melts is also inconsistent with the sulfide-silicate partitioning systematics of Ni, Co and Cu. Segregation of

  18. Reactions of atmospheric vapors with lunar soil

    International Nuclear Information System (INIS)

    Fuller, E.L. Jr.; Agron, P.A.

    1976-03-01

    Detailed experimental data have been acquired for the hydration of the surfaces of lunar fines. Inert vapor adsorption has been employed to measure the surface properties (surface energy, surface area, porosity, etc.) and changes wrought in the hydration-dehydration processes. Plausible mechanisms have been considered and the predominant process involves hydration of the metamict metallosilicate surfaces to form a hydrated laminar structure akin to terrestrial clays. Additional credence for this interpretation is obtained by comparison to existing geochemical literature concerning terrestrial weathering of primary metallosilicates. The surface properties of the hydrated lunar fines are compared favorably to those of terrestrial clay minerals. In addition, experimental results are given to show that fresh disordered surfaces of volcanic sand react with water vapor in a manner virtually identical to the majority of the lunar fines. The results show that ion track etching and/or grain boundary attack are minor contributions in the weathering of lunar fines in the realm of our microgravimetric experimental conditions. 14 references

  19. Lunar Cube Transfer Trajectory Options

    Science.gov (United States)

    Folta, David; Dichmann, Donald James; Clark, Pamela E.; Haapala, Amanda; Howell, Kathleen

    2015-01-01

    Numerous Earth-Moon trajectory and lunar orbit options are available for Cubesat missions. Given the limited Cubesat injection infrastructure, transfer trajectories are contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these transfers can be restricted by the selection or designs of Cubesat subsystems such as propulsion or communication. Nonetheless, many trajectory options can b e considered which have a wide range of transfer duration, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several options including deployment from low Earth orbit (LEO) geostationary transfer orbits (GTO) and higher energy direct lunar transfer and the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory.

  20. Lunar Rotation, Orientation and Science

    Science.gov (United States)

    Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.

    2004-12-01

    The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.

  1. Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase

    Science.gov (United States)

    Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.

    2015-01-01

    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.

  2. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY

    International Nuclear Information System (INIS)

    Crotts, Arlin P. S.

    2009-01-01

    Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a 'feature' as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. These reports begin almost exclusively after 1955, when TLPs became widely known and many more (and inexperienced) observers searched for TLPs. In a companion paper, we compare the spatial distribution of robust TLP sites to transient outgassing (seen by Apollo and Lunar Prospector instruments). To a high confidence, robust TLP sites and those of lunar outgassing correlate strongly, further arguing for the reality of TLPs.

  3. Lunar South Pole Illumination: Review, Reassessment, and Power System Implications

    Science.gov (United States)

    Fincannon, James

    2007-01-01

    This paper reviews past analyses and research related to lunar south pole illumination and presents results of independent illumination analyses using an analytical tool and a radar digital elevation model. The analysis tool enables assessment at most locations near the lunar poles for any time and any year. Average illumination fraction, energy storage duration, solar/horizon terrain elevation profiles and illumination fraction profiles are presented for various highly illuminated sites which have been identified for manned or unmanned operations. The format of the data can be used by power system designers to develop mass optimized solar and energy storage systems. Data are presented for the worse case lunar day (a critical power planning bottleneck) as well as three lunar days during lunar south pole winter. The main site under consideration by present lunar mission planners (on the Crater Shackleton rim) is shown to have, for the worse case lunar day, a 0.71 average illumination fraction and 73 to 117 hours required for energy storage (depending on power system type). Linking other sites and including towers at either site are shown to not completely eliminate the need for energy storage.

  4. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  5. Archiving InSight Lander Science Data Using PDS4 Standards

    Science.gov (United States)

    Stein, T.; Guinness, E. A.; Slavney, S.

    2017-12-01

    The InSight Mars Lander is scheduled for launch in 2018, and science data from the mission will be archived in the NASA Planetary Data System (PDS) using the new PDS4 standards. InSight is a geophysical lander with a science payload that includes a seismometer, a probe to measure subsurface temperatures and heat flow, a suite of meteorology instruments, a magnetometer, an experiment using radio tracking, and a robotic arm that will provide soil physical property information based on interactions with the surface. InSight is not the first science mission to archive its data using PDS4. However, PDS4 archives do not currently contain examples of the kinds of data that several of the InSight instruments will produce. Whereas the existing common PDS4 standards were sufficient for most of archiving requirements of InSight, the data generated by a few instruments required development of several extensions to the PDS4 information model. For example, the seismometer will deliver a version of its data in SEED format, which is standard for the terrestrial seismology community. This format required the design of a new product type in the PDS4 information model. A local data dictionary has also been developed for InSight that contains attributes that are not part of the common PDS4 dictionary. The local dictionary provides metadata relevant to all InSight data sets, and attributes specific to several of the instruments. Additional classes and attributes were designed for the existing PDS4 geometry dictionary that will capture metadata for the lander position and orientation, along with camera models for stereo image processing. Much of the InSight archive planning and design work has been done by a Data Archiving Working Group (DAWG), which has members from the InSight project and the PDS. The group coordinates archive design, schedules and peer review of the archive documentation and test products. The InSight DAWG archiving effort for PDS is being led by the PDS Geosciences

  6. Structural analysis of lunar subsurface with Chang'E-3 lunar penetrating radar

    Science.gov (United States)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2016-01-01

    Geological structure of the subsurface of the Moon provides valuable information on lunar evolution. Recently, Chang'E-3 has utilized lunar penetrating radar (LPR), which is equipped on the lunar rover named as Yutu, to detect the lunar geological structure in Northern Imbrium (44.1260N, 19.5014W) for the first time. As an in situ detector, Chang'E-3 LPR has relative higher horizontal and vertical resolution and less clutter impact compared to spaceborne radars and earth-based radars. In this work, we analyze the LPR data at 500 MHz transmission frequency to obtain the shallow subsurface structure of the landing area of Chang'E-3 in Mare Imbrium. Filter method and amplitude recovery algorithms are utilized to alleviate the adverse effects of environment and system noises and compensate the amplitude losses during signal propagation. Based on the processed radar image, we observe numerous diffraction hyperbolae, which may be caused by discrete reflectors beneath the lunar surface. Hyperbolae fitting method is utilized to reverse the average dielectric constant to certain depth (ε bar). Overall, the estimated ε bar increases with the depth and ε bar could be classified into three categories. Average ε bar of each category is 2.47, 3.40 and 6.16, respectively. Because of the large gap between the values of ε bar of neighboring categories, we speculate a three-layered structure of the shallow surface of LPR exploration region. One possible geological picture of the speculated three-layered structure is presented as follows. The top layer is weathered layer of ejecta blanket with its average thickness and bound on error is 0.95±0.02 m. The second layer is the ejecta blanket of the nearby impact crater, and the corresponding average thickness is about 2.30±0.07 m, which is in good agreement with the two primary models of ejecta blanket thickness as a function of distance from the crater center. The third layer is regarded as a mixture of stones and soil. The

  7. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    Science.gov (United States)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  8. Integration of Apollo Lunar Sample Data into Google Moon

    Science.gov (United States)

    Dawson, Melissa D.; Todd, Nancy S.; Lofgren, Gary

    2010-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is a continuation of the Apollo 15 Google Moon Add-On project, which provides a scientific and educational tool for the study of the Moon and its geologic features. The main goal of this project is to provide a user-friendly interface for an interactive and educational outreach and learning tool for the Apollo missions. Specifically, this project?s focus is the dissemination of information about the lunar samples collected during the Apollo missions by providing any additional information needed to enhance the Apollo mission data on Google Moon. Apollo missions 15 and 16 were chosen to be completed first due to the availability of digitized lunar sample photographs and the amount of media associated with these missions. The user will be able to learn about the lunar samples collected in these Apollo missions, as well as see videos, pictures, and 360 degree panoramas of the lunar surface depicting the lunar samples in their natural state, following collection and during processing at NASA. Once completed, these interactive data layers will be submitted for inclusion into the Apollo 15 and 16 missions on Google Moon.

  9. Uses for lunar crawler transporters

    Science.gov (United States)

    Kaden, Richard A.

    This article discusses state-of-the-art crawler transporters and expresses the need for additional research and development for lunar crawlers. The thrust of the paper illustrates how the basic crawler technology has progressed to a point where extremely large modules can be shop fabricated and move to some distant location at a considerable savings. Also, extremely heavy loads may be lifted by large crawler cranes and placed in designed locations. The Transi-Lift Crawler crane with its traveling counterweight is an attractive concept for lunar construction.

  10. Space station accommodations for lunar base elements: A study

    Science.gov (United States)

    Weidman, Deene J.; Cirillo, William; Llewellyn, Charles; Kaszubowski, Martin; Kienlen, E. Michael, Jr.

    1987-01-01

    The results of a study conducted at NASA-LaRC to assess the impact on the space station of accommodating a Manned Lunar Base are documented. Included in the study are assembly activities for all infrastructure components, resupply and operations support for lunar base elements, crew activity requirements, the effect of lunar activities on Cape Kennedy operations, and the effect on space station science missions. Technology needs to prepare for such missions are also defined. Results of the study indicate that the space station can support the manned lunar base missions with the addition of a Fuel Depot Facility and a heavy lift launch vehicle to support the large launch requirements.

  11. Inhalation Toxicity of Ground Lunar Dust Prepared from Apollo-14 Soil

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Scully, Robert R.; Cooper, Bonnie L.

    2011-01-01

    Within the decade one or more space-faring nations intend to return humans to the moon for more in depth exploration of the lunar surface and subsurface than was conducted during the Apollo days. The lunar surface is blanketed with fine dust, much of it in the respirable size range (<10 micron). Eventually, there is likely to be a habitable base and rovers available to reach distant targets for sample acquisition. Despite designs that could minimize the entry of dust into habitats and rovers, it is reasonable to expect lunar dust to pollute both as operations progress. Apollo astronauts were exposed briefly to dust at nuisance levels, but stays of up to 6 months on the lunar surface are envisioned. Will repeated episodic exposures to lunar dust present a health hazard to those engaged in lunar exploration? Using rats exposed to lunar dust by nose-only inhalation, we set out to investigate that question.

  12. Bullialdus - Strengthening the case for lunar plutons

    Science.gov (United States)

    Pieters, Carle M.

    1991-01-01

    Although many craters expose materials of a composition different from that of the local surroundings, Bullialdus has excavated material representing three distinct stratigraphic zones that occur in the upper 6 km of crust, the top two of which are gabbroic and the deepest of which is noritic. This three-component stratigraphy at Bullialdus provides strong evidence that the lunar crust includes pockets of compositionally layered material reminiscent of mafic layered plutons. When combined with previous information on the compositional diversity at other large craters, these remote analyses obtained in a geologic context substantially strengthen the hypothesis suggested from lunar samples that plutons play an integral role in lunar crustal evolution.

  13. Concentrations of radioactive elements in lunar materials

    Science.gov (United States)

    Korotev, Randy L.

    1998-01-01

    As an aid to interpreting data obtained remotely on the distribution of radioactive elements on the lunar surface, average concentrations of K, U, and Th as well as Al, Fe, and Ti in different types of lunar rocks and soils are tabulated. The U/Th ratio in representative samples of lunar rocks and regolith is constant at 0.27; K/Th ratios are more variable because K and Th are carried by different mineral phases. In nonmare regoliths at the Apollo sites, the main carriers of radioactive elements are mafic (i.e., 6-8 percent Fe) impact-melt breccias created at the time of basin formation and products derived therefrom.

  14. Polar lunar power ring: Propulsion energy resource

    Science.gov (United States)

    Galloway, Graham Scott

    1990-01-01

    A ring shaped grid of photovoltaic solar collectors encircling a lunar pole at 80 to 85 degrees latitude is proposed as the primary research, development, and construction goal for an initial lunar base. The polar Lunar Power Ring (LPR) is designed to provide continuous electrical power in ever increasing amounts as collectors are added to the ring grid. The LPR can provide electricity for any purpose indefinitely, barring a meteor strike. The associated rail infrastructure and inherently expandable power levels place the LPR as an ideal tool to power an innovative propulsion research facility or a trans-Jovian fleet. The proposed initial output range is 90 Mw to 90 Gw.

  15. When did the lunar core dynamo cease?

    Science.gov (United States)

    Tikoo, S. M.; Weiss, B. P.; Shuster, D. L.; Fuller, M.

    2013-12-01

    Remanent magnetization in the lunar crust and in returned Apollo samples has long suggested that the Moon formed a metallic core and an ancient dynamo magnetic field. Recent paleomagnetic investigations of lunar samples demonstrate that the Moon had a core dynamo which produced ~30-110 μT surface fields between at least 4.2 and 3.56 billion years ago (Ga). Tikoo et al. (1) recently found that the field declined to below several μT by 3.19 Ga. However, given that even values of a few μT are at the upper end of the intensities predicted by dynamo theory for this late in lunar history, it remains uncertain when the lunar dynamo actually ceased completely. Determining this requires a young lunar rock with extraordinarily high magnetic recording fidelity. With this goal, we are conducting a new analysis of young regolith breccia 15498. Although the breccia's age is currently uncertain, the presence of Apollo 15-type mare basalt clasts provides an upper limit constraint of ~3.3 Ga, while trapped Ar data suggest a lithification age of ~1.3 Ga. In stark contrast to the multidomain character of virtually all lunar crystalline rocks, the magnetic carriers in 15498 are on average pseudo-single domain to superparamagnetic, indicating that the sample should provide high-fidelity paleointensity records. A previous alternating field (AF) and thermal demagnetization study of 15498 by Gose et al. (2) observed that the sample carries stable remanent magnetization which persists to unblocking temperatures of at least 650°C. Using a modified Thellier technique, they reported a paleointensity of 2 μT. Although this value may have been influenced by spurious remanence acquired during pretreatment with AF demagnetization, our results confirm the presence of an extremely stable (blocked to coercivities >290 mT) magnetization in the glassy matrix. We also found that this magnetization is largely unidirectional across mutually oriented subsamples. The cooling timescale of this rock (~1

  16. The Lunar Potential Determination Using Apollo-Era Data and Modern Measurements and Models

    Science.gov (United States)

    Collier, Michael R.; Farrell, William M.; Espley, Jared; Webb, Phillip; Stubbs, Timothy J.; Webb, Phillip; Hills, H. Kent; Delory, Greg

    2008-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. More recently, the Lunar Prospector (LP) Electron Reflectometer used electron distributions to infer negative lunar surface potentials, primarily in shadow. We will present initial results from a study to combine lunar surface potential measurements from both SIDE and the LP/Electron Reflectometer to calibrate an advanced model of lunar surface charging which includes effects from the plasma environment, photoemission, secondaries ejected by ion impact onto the lunar surface, and the lunar wake created downstream by the solar wind-lunar interaction.

  17. Lunar Penetrating Radar onboard the Chang'e-3 mission

    Science.gov (United States)

    Fang, Guang-You; Zhou, Bin; Ji, Yi-Cai; Zhang, Qun-Ying; Shen, Shao-Xiang; Li, Yu-Xi; Guan, Hong-Fei; Tang, Chuan-Jun; Gao, Yun-Ze; Lu, Wei; Ye, Sheng-Bo; Han, Hai-Dong; Zheng, Jin; Wang, Shu-Zhi

    2014-12-01

    Lunar Penetrating Radar (LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.

  18. NASA Lunar and Meteorite Sample Disk Program

    Science.gov (United States)

    Foxworth, Suzanne

    2017-01-01

    The Lunar and Meteorite Sample Disk Program is designed for K-12 classroom educators who work in K-12 schools, museums, libraries, or planetariums. Educators have to be certified to borrow the Lunar and Meteorite Sample Disks by attending a NASA Certification Workshop provided by a NASA Authorized Sample Disk Certifier.

  19. Recreating Galileo's 1609 Discovery of Lunar Mountains

    Science.gov (United States)

    Pasachoff, Jay M.; Needham, Paul S.; Wright, Ernest T.; Gingerich, Owen

    2014-11-01

    The question of exactly which lunar features persuaded Galileo that there were mountains on the moon has not yet been definitively answered; Galileo was famously more interested in the concepts rather than the topographic mapping in his drawings and the eventual engravings. Since the pioneering work of Ewen Whitaker on trying to identify which specific lunar-terminator features were those that Galileo identified as mountains on the moon in his 1609 observations reported in his Sidereus Nuncius (Venice, 1610), and since the important work on the sequence of Galileo's observations by Owen Gingerich (see "The Mystery of the Missing 2" in Galilaeana IX, 2010, in which he concludes that "the Florentine bifolium sheet [with Galileo's watercolor images] is Galileo's source for the reworked lunar diagrams in Sidereus Nuncius"), there have been advances in lunar topographical measurements that should advance the discussion. In particular, one of us (E.T.W.) at the Scientific Visualization Studio of NASA's Goddard Space Flight Center has used laser-topography from NASA's Lunar Reconnaissance Orbiter to recreate what Galileo would have seen over a sequence of dates in late November and early December 1609, and provided animations both at native resolution and at the degraded resolution that Galileo would have observed with his telescope. The Japanese Kaguya spacecraft also provides modern laser-mapped topographical maps.

  20. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  1. The Sooner Lunar Schooner: Lunar engineering education

    Science.gov (United States)

    Miller, D. P.; Hougen, D. F.; Shirley, D.

    2003-06-01

    The Sooner Lunar Schooner is a multi-disciplinary ongoing project at the University of Oklahoma to plan, design, prototype, cost and (when funds become available) build/contract and fly a robotic mission to the Moon. The goal of the flight will be to explore a small section of the Moon; conduct a materials analysis of the materials left there by an Apollo mission thirty years earlier; and to perform a selenographic survey of areas that were too distant or considered too dangerous to be done by the Apollo crew. The goal of the Sooner Lunar Schooner Project is to improve the science and engineering educations of the hundreds of undergraduate and graduate students working on the project. The participants, while primarily from engineering and physics, will also include representatives from business, art, journalism, law and education. This project ties together numerous existing research programs at the University, and provides a framework for the creation of many new research proposals. The authors were excited and motivated by the Apollo missions to the Moon. When we asked what we could do to similarly motivate students we realized that nothing is as exciting as going to the Moon. The students seem to agree.

  2. Lunar remote sensing and measurements

    Science.gov (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  3. Lunar Airborne Dust Toxicity Hazard Assessments (Invited)

    Science.gov (United States)

    Cooper, B. L.; McKay, D. S.; Taylor, L. A.; Wallace, W. T.; James, J.; Riofrio, L.; Gonzalez, C. P.

    2009-12-01

    The Lunar Airborne Dust Toxicity Assessment Group (LADTAG) is developing data to set the permissible limits for human exposure to lunar dust. This standard will guide the design of airlocks and ports for EVA, as well as the requirements for filtering and monitoring the atmosphere in habitable vehicles, rovers and other modules. LADTAG’s recommendation for permissible exposure limits will be delivered to the Constellation Program in late 2010. The current worst-case exposure limit of 0.05 mg/m3, estimated by LADTAG in 2006, reflects the concern that lunar dust may be as toxic as quartz dust. Freshly-ground quartz is known to be more toxic than un-ground quartz dust. Our research has shown that the surfaces of lunar soil grains can be more readily activated by grinding than quartz. Activation was measured by the amount of free radicals generated—activated simulants generate Reactive Oxygen Species (ROS) i.e., production of hydroxyl free radicals. Of the various influences in the lunar environment, micrometeorite bombardment probably creates the most long-lasting reactivity on the surfaces of grains, although solar wind impingement and short-wavelength UV radiation also contribute. The comminution process creates fractured surfaces with unsatisfied bonds. When these grains are inhaled and carried into the lungs, they will react with lung surfactant and cells, potentially causing tissue damage and disease. Tests on lunar simulants have shown that dissolution and leaching of metals can occur when the grains are exposed to water—the primary component of lung fluid. However, simulants may behave differently than actual lunar soils. Rodent toxicity testing will be done using the respirable fraction of actual lunar soils (particles with physical size of less than 2.5 micrometers). We are currently separating the fine material from the coarser material that comprises >95% of the mass of each soil sample. Dry sieving is not practical in this size range, so a new system

  4. Optimized Radiator Geometries for Hot Lunar Thermal Environments

    Science.gov (United States)

    Ochoa, Dustin

    2013-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft's vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approximately 325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Intense Thermal Infrared Reflector (ITIR), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of ITIR is the absence of louvers or other moving parts and its simple geometry (no parabolic shapes). ITIR consists of a specularly reflective shielding surface and a diffuse radiating surface joined to form a horizontally oriented V-shape (shielding surface on top). The point of intersection of these surfaces is defined by two angles, those which define the tilt of each surface with respect to the local horizontal. The optimum set of these angles is determined on a case-by-case basis. The idea assumes minimal conductive heat transfer between shielding and radiating surfaces, and a practical design would likely stack sets of these surfaces on top of one another to reduce radiator thickness.

  5. Simulations of Water Migration in the Lunar Exosphere

    Science.gov (United States)

    Hurley, D.; Benna, M.; Mahaffy, P. R.; Elphic, R. C.; Goldstein, D. B.

    2014-12-01

    We perform modeling and analysis of water in the lunar exosphere. There were two controlled experiments of water interactions with the surface of the Moon observed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS). The Chang'e 3 landing on the Moon on 14 Dec 2013 putatively sprayed ~120 kg of water on the surface on the Moon at a mid-morning local time. Observations by LADEE near the noon meridian on six of the orbits in the 24 hours following the landing constrain the propagation of water vapor. Further, on 4 Apr 2014, LADEE's Orbital Maintenance Manuever (OMM) #21 sprayed the surface of the Moon with an estimated 0.73 kg of water in the pre-dawn sector. Observations of this maneuver and later in the day constrain the adsorption and release at dawn of adsorbed materials. Using the Chang'e 3 exhaust plume and LADEE's OMM-21 as control experiments, we set limits to the adsorption and thermalization of water with lunar regolith. This enables us to predict the efficiency of the migration of water as a delivery mechanism to the lunar poles. Then we simulate the migration of water through the lunar exosphere using the rate of sporadic inputs from meteoritic sources (Benna et al., this session). Simulations predict the amount of water adsorbed to the surface of the Moon and the effective delivery rate to the lunar polar cold traps.

  6. Landing Site Selection and Surface Traverse Planning using the Lunar Mapping & Modeling Portal

    Science.gov (United States)

    Law, E.; Chang, G.; Bui, B.; Sadaqathullah, S.; Kim, R.; Dodge, K.; Malhotra, S.

    2013-12-01

    Introduction: The Lunar Mapping and Modeling Portal (LMMP), is a web-based Portal and a suite of interactive visualization and analysis tools for users to access mapped lunar data products (including image mosaics, digital elevation models, etc.) from past and current lunar missions (e.g., Lunar Reconnaissance Orbiter, Apollo, etc.), and to perform in-depth analyses to support lunar surface mission planning and system design for future lunar exploration and science missions. It has been widely used by many scientists mission planners, as well as educators and public outreach (e.g., Google Lunar XPRICE teams, RESOLVE project, museums etc.) This year, LMMP was used by the Lunar and Planetary Institute (LPI)'s Lunar Exploration internship program to perform lighting analysis and local hazard assessments, such as, slope, surface roughness and crater/boulder distribution to research landing sites and surface pathfinding and traversal. Our talk will include an overview of LMMP, a demonstration of the tools as well as a summary of the LPI Lunar Exploration summer interns' experience in using those tools.

  7. Hydrogen and fluorine in the surfaces of lunar samples

    International Nuclear Information System (INIS)

    Leich, D.A.; Goldberg, R.H.; Burnett, D.S.; Tombrello, T.A.

    1974-04-01

    The resonant nuclear reaction F-19 (p, alpha gamma)O-16 was used to perform depth sensitive analyses for both fluorine and hydrogen in lunar samples. The resonance at 0.83 MeV (center-of-mass) in this reaction was applied to the measurement of the distribution of trapped solar protons in lunar samples to depths of about 1 / 2 micrometer. These results are interpreted in terms of terrestrial H 2 O surface contamination and a redistribution of the implanted solar H which has been influenced by heavy radiation damage in the surface region. Results are also presented for an experiment to test the penetration of H 2 O into laboratory glass samples which have been irradiated with O-16 to simulate the radiation damaged surfaces of lunar glasses. Fluorine determinations were performed in a 1 pm surface layer on lunar samples using the same F-19(alpha gamma)O-16 resonance. The data are discussed from the standpoint of lunar fluorine and Teflon contamination. (U.S.)

  8. MOONLIGHT: A NEW LUNAR LASER RANGING RETROREFLECTOR INSTRUMENT

    Directory of Open Access Journals (Sweden)

    M. Garattini

    2013-12-01

    Full Text Available Since 1969 Lunar Laser Ranging (LLR to the Apollo Cube Corner Reflector (CCR arrays has supplied several significant tests of gravity: Geodetic Precession, the Strong and Weak Equivalence Principle (SEP, WEP, the Parametrized Post Newtonian (PPN parameter , the time change of the Gravitational constant (G, 1/r2 deviations and new gravitational theories beyond General Relativity (GR, like the unified braneworld theory (G. Dvali et al., 2003. Now a new generation of LLR can do better using evolved laser retroreflectors, developed from tight collaboration between my institution, INFN–LNF (Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati, and Douglas Currie (University of Maryland, USA, one of the fathers of LLR. The new lunar CCR is developing and characterizing at the “Satellite/Lunar laser ranging Characterization Facility” (SCF, in Frascati, performing our new industry standard space test procedure, the “SCF-Test”; this work contains the experimental results of the SCF-Test applied to the new lunar CCR, and all the new payload developments, including the future SCF tests. The International Lunar Network (ILN research project considers our new retroreflector as one of the possible “Core Instruments”

  9. Apollo Lunar Sample Photographs: Digitizing the Moon Rock Collection

    Science.gov (United States)

    Lofgren, Gary E.; Todd, Nancy S.; Runco, S. K.; Stefanov, W. L.

    2011-01-01

    The Acquisition and Curation Office at JSC has undertaken a 4-year data restoration project effort for the lunar science community funded by the LASER program (Lunar Advanced Science and Exploration Research) to digitize photographs of the Apollo lunar rock samples and create high resolution digital images. These sample photographs are not easily accessible outside of JSC, and currently exist only on degradable film in the Curation Data Storage Facility

  10. A Proof of Concept for In-Situ Lunar Dating

    Science.gov (United States)

    Anderson, F. S.; Whitaker, T.; Levine, J.; Draper, D. S.; Harris, W.; Olansen, J.; Devolites, J.

    2015-12-01

    We have obtained improved 87Rb-87Sr isochrons for the Duluth Gabbro, an analog for lunar KREEP rocks, using a prototype spaceflight laser ablation resonance ionization mass spectrometer (LARIMS). The near-side of the Moon comprises previously un-sampled, KREEP rich, young-lunar basalts critical for calibrating the dating to constrain lunar history. Using a novel normalization approach, and by correcting for matrix-dependent isotope effects, we have been able to obtain a date of 1100 ± 200 Ma (Figure 1), compared to the previously established thermal ionization mass spectrometry measurement of 1096 ± 14 Ma. The precision of LARIMS is sufficient to constrain the current 1 Ga uncertainty of the lunar flux curve, allowing us to reassess the timing of peak lunar volcanism, and constrain lunar thermal evolution. Furthermore, an updated lunar flux curve has implications throughout the solar system. For example, Mars could have undergone a longer epoch of voluminous, shield-forming volcanism and associated mantle evolution, as well as a longer era of abundant volatiles and hence potential habitability. These alternative chronologies could even affect our understanding of the evolution of life on Earth: under the classic chronology, life is thought to have originated after the dwindling of bombardment, but under the alternative chronology, it might have appeared during heavy bombardment. In order to resolve the science questions regarding the history of the Moon, and in light of the Duluth Gabbro results, we recently proposed a Discovery mission called MARE: The Moon Age and Regolith Explorer. MARE would accomplish these goals by landing on a young, nearside lunar basalt flow southwest of Aristarchus that has a crater density corresponding to a highly uncertain absolute age, collecting >10 rock samples, and assessing their radioisotopic age, geochemistry, and mineralogy.

  11. Effect of lunar materials on plant tissue culture.

    Science.gov (United States)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  12. Green Bank Lunar Interferometer for Neutrino Transients: GLINT

    Energy Technology Data Exchange (ETDEWEB)

    Langston, Glen I. [NRAO, P.O. Box 2, Green Bank, WV 24944 (United States)], E-mail: glangsto@nrao.edu; Bradley, Rich [NRAO, 520 Edgemont Rd, Charlottesville, VA 22901 (United States); Hankins, Tim [New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Mutel, Bob [University of Iowa, 706 Van Allen Hall, Iowa City, IA 52242 (United States)

    2009-06-01

    The Green Bank Lunar Interferometer for Neutrino Transients (GLINT) project is a wide band (0.3-2.6 GHz) interferometric radio array dedicated to observations of transient events. The target is detection of few bright (>2000Jy) short duration (few nano-second) pulses from the lunar regolith. The GLINT project has three goals: (1) Maximize detection of statistically significant pulses originating from the lunar surface. (2) Unambiguously differentiate neutrino pulses from other sources of interference. (3) Localize the direction of the incoming radio pulse resulting from neutrino interactions.

  13. Model of the fine-grain component of martian soil based on Viking lander data

    International Nuclear Information System (INIS)

    Nussinov, M.D.; Chernyak, Y.B.; Ettinger, J.L.

    1978-01-01

    A model of the fine-grain component of the Martian soil is proposed. The model is based on well-known physical phenomena, and enables an explanation of the evolution of the gases released in the GEX (gas exchange experiments) and GCMS (gas chromatography-mass spectrometer experiments) of the Viking landers. (author)

  14. Methane Lunar Surface Thermal Control Test

    Science.gov (United States)

    Plachta, David W.; Sutherlin, Steven G.; Johnson, Wesley L.; Feller, Jeffrey R.; Jurns, John M.

    2012-01-01

    NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages.

  15. Lunar Global Heat Flow: Predictions and Constraints

    Science.gov (United States)

    Siegler, M.; Williams, J. P.; Paige, D. A.; Feng, J.

    2017-12-01

    The global thermal state of the Moon provides fundamental information on its bulk composition and interior evolution. The Moon is known to have a highly asymmetric surface composition [e.g. Lawrence et al., 2003] and crustal thickness [Wieczorek et al.,2012], which is suspected to result from interior asymmetries [Wieczorek and Phillips, 2000; Laneuville et al., 2013]. This is likely to cause a highly asymmetric surface heat flux, both past and present. Our understanding the thermal evolution and composition of the bulk moon therefore requires a global picture of the present lunar thermal state, well beyond our two-point Apollo era measurement. As on the on the Earth, heat flow measurements need to be taken in carefully selected locations to truly characterize the state of the planet's interior. Future surface heat flux and seismic observations will be affected by the presence of interior temperature and crustal radiogenic anomalies, so placement of such instruments is critically important for understanding the lunar interior. The unfortunate coincidence that Apollo geophysical measurements lie areas within or directly abutting the highly radiogenic, anomalously thin-crusted Procellarum region highlights the importance of location for in situ geophysical study [e.g. Siegler and Smrekar, 2014]. Here we present the results of new models of global lunar geothermal heat flux. We synthesize data from several recent missions to constrain lunar crustal composition, thickness and density to provide global predictions of the surface heat flux of the Moon. We also discuss implications from new surface heat flux constraints from the LRO Diviner Lunar Radiometer Experiment and Chang'E 2 Microwave Radiometer. We will identify areas with the highest uncertainty to provide insight on the placement of future landed geophysical missions, such as the proposed Lunar Geophysical Network, to better aim our future exploration of the Moon.

  16. LRO-LAMP Observations of the Lunar Exosphere Coordinated with LADEE

    Science.gov (United States)

    Grava, C.; Retherford, K. D.; Greathouse, T. K.; Gladstone, R.; Hurley, D.; Cook, J. C.; Stern, S. A.; Feldman, P. D.; Kaufmann, D. E.; Miles, P. F.; Pryor, W. R.; Halekas, J. S.

    2014-12-01

    The polar orbiting Lunar Reconnaissance Orbiter's (LRO) Lyman Alpha Mapping Project (LAMP) carried out an atmospheric campaign during the month of December 2013, at the same time the Lunar Atmospheric and Dust Environment Explorer (LADEE) mission was sampling the lunar exosphere in a retrograde equatorial orbit. Observations of the lunar exosphere were performed by LAMP during a solar "beta-90" geometry, i.e. riding along the lunar terminator. During this geometry, the LAMP nadir-pointed line of sight to the nightside surface also includes illuminated columns of foreground emissions from exospheric species, which is invaluable in the study of the tenuous lunar exosphere. Other types of maneuvers to probe the lunar exosphere were also performed by LAMP/LRO during this campaign. During backward pitch slews, the LRO spacecraft was pitched to look opposite its direction of motion to a point just inside the limb in the nightside region around the polar terminator. Forward pitch slews were also obtained, and the angles of 63 deg or 77 deg from nadir were set depending on the polar region observed. Finally, during lateral roll slews, LRO rotated by ~60 deg towards the nightside limb, maximizing the amount of illuminated atmosphere in the foreground probed by the LAMP field of view. We extract day to day density variations on helium and/or upper limits for numerous other species that were accessible to both LAMP and LADEE (e.g., Ar, Ne, O, and H2). Moreover, constraints on helium density will complement measurements of solar wind alpha particles (He++) from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon's Interaction with the Sun) mission. This comparison will provide a comprehensive picture of composition, abundance, and spatial and temporal variations of volatiles of the lunar exosphere, combining equatorial (LADEE) and polar (LAMP) measurements for the first time. Volatiles in the lunar exosphere, especially water, are of paramount

  17. Molecular gas species in the lunar atmosphere

    International Nuclear Information System (INIS)

    Hoffman, J.H.; Hodges, R.R. Jr.

    1975-01-01

    There is good evidence for the existence of very small amounts of methane, ammonia and carbon dioxide in the very tenuous lunar atmosphere which consists primarily of the rare gases helium, neon and argon. All of these gases, except 40 Ar, originate from solar wind particles which impinge on the lunar surface and are imbedded in the surface material. Here they may form molecules before being released into the atmosphere, or may be released directly, as is the case for rare gases. Evidence for the existence of the molecular gas species is based on the pre-dawn enhancement of the mass peaks attributable to these compounds in the data from the Apollo 17 Lunar Mass Spectrometer. Methane is the most abundant molecular gas but its concentration is exceedingly low, 1 x 10 3 mol cm -3 , slightly less than 36 Ar, whereas the solar wind flux of carbon is approximately 2000 times that of 36 Ar. Several reasons are advanced for the very low concentration of methane in the lunar atmosphere

  18. System-level Analysis of Food Moisture Content Requirements for the Mars Dual Lander Transit Mission

    Science.gov (United States)

    Levri, Julie A.; Perchonok, Michele H.

    2004-01-01

    In order to ensure that adequate water resources are available during a mission, any net water loss from the habitat must be balanced with an equivalent amount of required makeup water. Makeup water may come from a variety of sources, including water in shipped tanks, water stored in prepackaged food, product water from fuel cells, and in-situ water resources. This paper specifically addresses the issue of storing required makeup water in prepackaged food versus storing the water in shipped tanks for the Mars Dual Lander Transit Mission, one of the Advanced Life Support Reference Missions. In this paper, water mass balances have been performed for the Dual Lander Transit Mission, to determine the necessary requirement of makeup water under nominal operation (i.e. no consideration of contingency needs), on a daily basis. Contingency issues are briefly discussed with respect to impacts on makeup water storage (shipped tanks versus storage in prepackaged food). The Dual Lander Transit Mission was selected for study because it has been considered by the Johnson Space Center Exploration Office in enough detail to define a reasonable set of scenario options for nominal system operation and contingencies. This study also illustrates the concept that there are multiple, reasonable life support system scenarios for any one particular mission. Thus, the need for a particular commodity can depend upon many variables in the system. In this study, we examine the need for makeup water as it depends upon the configuration of the rest of the life support system.

  19. COMPARATIVE STUDY OF LUNAR ROUGHNESS FROM MULTI - SOURCE DATA

    Directory of Open Access Journals (Sweden)

    Y. Lou

    2017-07-01

    Full Text Available The lunar terrain can show its collision and volcanic history. The lunar surface roughness can give a deep indication of the effects of lunar surface magma, sedimentation and uplift. This paper aims to get different information from the roughness through different data sources. Besides introducing the classical Root-mean-square height method and Morphological Surface Roughness (MSR algorithm, this paper takes the area of the Jurassic mountain uplift in the Sinus Iridum and the Plato Crater area as experimental areas. And then make the comparison and contrast of the lunar roughness derived from LRO's DEM and CE-2 DOM. The experimental results show that the roughness obtained by the traditional roughness calculation method reflect the ups and downs of the topography, while the results obtained by morphological surface roughness algorithm show the smoothness of the lunar surface. So, we can first use the surface fluctuation situation derived from RMSH to select the landing area range which ensures the lands are gentle. Then the morphological results determine whether the landing area is suitable for the detector walking and observing. The results obtained at two different scales provide a more complete evaluation system for selecting the landing site of the lunar probe.

  20. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview

    Science.gov (United States)

    Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.

    2010-01-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.