Charge density waves in solids
Gor'kov, LP
2012-01-01
The latest addition to this series covers a field which is commonly referred to as charge density wave dynamics.The most thoroughly investigated materials are inorganic linear chain compounds with highly anisotropic electronic properties. The volume opens with an examination of their structural properties and the essential features which allow charge density waves to develop.The behaviour of the charge density waves, where interesting phenomena are observed, is treated both from a theoretical and an experimental standpoint. The role of impurities in statics and dynamics is considered and an
Central depression of nuclear charge density distribution
The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of 46Ar and 44S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in 46Ar and 44S prefer to occupy the 1d3/2 state rather than the 2s1/2 state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of 46Ar and 44S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.
Charge densities and charge noise in mesoscopic conductors
M Büttiker
2002-02-01
We introduce a hierarchy of density of states to characterize the charge distribution in a mesoscopic conductor. At the bottom of this hierarchy are the partial density of states which represent the contribution to the local density of states if both the incident and the out-going scattering channel is prescribed. The partial density of states play a prominent role in measurements with a scanning tunneling microscope on multiprobe conductors in the presence of current ﬂow. The partial density of states determine the degree of dephasing generated by a weakly coupled voltage probe. In addition the partial density of states determine the frequency-dependent response of mesoscopic conductors in the presence of slowly oscillating voltages applied to the contacts of the sample. The partial density of states permit the formulation of a Friedel sum rule which can be applied locally. We introduce the off-diagonal elements of the partial density of states matrix to describe charge ﬂuctuation processes. This generalization leads to a local Wigner–Smith life-time matrix.
Meaningful structural descriptors from charge density.
Stalke, Dietmar
2011-08-16
This paper provides a short introduction to the basics of electron density investigations. The two predominant approaches for the modelling and various interpretations of electron density distributions are presented. Their potential translations into chemical concepts are explained. The focus of the article lies on the deduction of chemical properties from charge density studies in some selected main group compounds. The relationship between the obtained numerical data and commonly accepted simple chemical concepts unfortunately is not always straightforward, and often the chemist relies on heuristic connections rather than rigorously defined ones. This article tries to demonstrate how charge density analyses can shed light on aspects of chemical bonding and reactivity resulting from the determined bonding situation. Sometimes this helps to identify misconceptions and sets the scene for new unconventional synthetic approaches. PMID:21717511
Charge density glass from fictions to facts
Thirty years ago Fukuyama [J. Phys. Soc. Jpn. 45 (1978) 1474] predicted a transition from charge density wave (CDW) state to the charge density glass (CDG) at a finite temperature as the consequence of the competition between the uniform commensurability pinning and the random impurity pinning. We present strong evidence that the CDG phase indeed exists as a generic feature of density wave systems. However, it arises from the competition of the random impurity pinning and the electrostatic intra-CDW interaction which tends to establish a uniform phase at low temperature. The glass transition occurs at the temperature at which the free carriers cannot efficiently screen the phase distortions. The characteristic length scale of the disorder, i.e. the size of the phase coherent domains, governs the glass properties
The number density of a charged relic
We investigate scenarios in which a charged, long-lived scalar particle decouples from the primordial plasma in the Early Universe. We compute the number density at time of freeze-out considering both the cases of abelian and non-abelian interactions and including the effect of Sommerfeld enhancement at low initial velocity. We also discuss as extreme case the maximal cross section that fulfils the unitarity bound. We then compare these number densities to the exotic nuclei searches for stable relics and to the BBN bounds on unstable relics and draw conclusions for the cases of a stau or stop NLSP in supersymmetric models with a gravitino or axino LSP. (orig.)
Density functional theory of charged colloidal systems
The phase behavior of charged colloidal systems has been studied recently by the density functional theory formalism (DFT) [R. van Roij, M. Dijkstra, and J. P. Hansen, Phys. Rev. E >59, 2010 (1999)]. A key feature of this approach is the appearance of a density and temperature-dependent effective Hamiltonian between the charged colloids. Under certain approximations, the effective Hamiltonian is made up only of a sum of position-independent one-body or volume terms and two-body colloid-separation dependent terms. In the limit of low colloidal densities, the DFT results do not reduce to the familiar Debye-Huckel limiting law nor do the results agree with previous work based on an identical approach but were developed using traditional statistical-mechanical methods [B. Beresford-Smith, D. Y. C. Chan, and D. J. Mitchell J. Colloid Interface Sci. >105, 216 (1985)]. This paper provides a reconciliation of these differences and comments on the significance of the one-body volume terms in the effective Hamiltonian of a system of charged colloids in determining thermodynamics and phase behavior
Charge density path in cold fusion reactions
Cold fusion reactions are very frequently employed to produce compound nuclei with a relatively low excitation energy, which is extremely important for a successful synthesis method, particularly in the region of superheavy nuclei. Usually the charge densities of the projectile, target, and compound nucleus are different. We present a method allowing to take into consideration this difference continuously during the fusion process. Applications are given both in the intermediate mass and the superheavy region. Different cold fusion paths are studied with respect to the change of the charge density within the overlapping region. A transition formula from separated fusion partners up to the compound nucleus is obtained as depending on the geometrical changes. Macroscopic-microscopic approach is used to compute the total deformation energy. Shell corrections are obtained with Strutinsky method, having the new deformed two-center single particle energy levels as an input. Yukawa-plus-exponential model is employed to compute the macroscopic part. Spheroidal deformations are taken into account. By changing the absolute value of semiaxes as well as their ratio, the charge densities of the partners are modified during fusion. As a result of minimization against different paths of the semiaxes ratios from projectile and target values to synthesized nucleus, charge density variation can lower the cold fusion deformation energy. This kind of influence is especially active in the last part of the fusion process, when the projectile is already at least half embedded in the target. For cold fusion of light and intermediate nuclei, the energy variation in the last part of the deformation path reaches 4 MeV for 102 Ru and 3.7 MeV for 152 Dy synthesis. For a possible superheavy production the influence of charge density changes are quantitatively more important. The energy difference in the cold fusion channel barrier of 292 116 reaches about 8 MeV in the last part of the
A Duality Between Unidirectional Charge Density Wave Order and Superconductivity
Lee, Dung-Hai
2001-01-01
This paper shows the existence of a duality between an unidirectional charge density wave order and a superconducting order. This duality predicts the existence of charge density wave near a superconducting vortex, and the existence of superconductivity near a charge density wave dislocation.
Device for measuring charge density distribution in charged particle beams
A device to measure charge density distribution in charged particle beams has been described. The device contains a set of hollow interinsulated current-receiving electrodes, recording system, and cooling system. The invention is aimed at the increase of admissible capacity of the beams measured at the expense of cooling efficiency increase. The aim is achieved by the fact, that in the device a dynamic evaporating-condensational cooling of electrodes is realized by means of cooling agent supply in perpendicular to their planes through the tubes introduced inside special cups. Spreading in radial direction over electrode surface the cooling agent gradually and intensively washes the side surface of the cup, after that, it enters the cooling cavity in the form of vapour-liquid mixture. In the cavity the cooling agent, supplied using dispensina and receiving collectors in which vapoUr is condensed, circulates. In the device suggested the surface of electrode cooling is decreased significantly at the expense of side surface of the cups which receives the electrode heat
Nuclear spectroscopy on charge density wave systems
This book is the first coherent presentation of investigations of charge density wave (CDW) systems by nuclear spectroscopic techniques. It is addressed to the graduate students and elder scientist who are interested in modern aspects of solid state physics and want to acquire a broader knowledge of nuclear spectroscopy techniques applied to CDW systems. Chapter 1 gives a short introduction to CDW's in general and to the question what can be learned about CDW's by nuclear spectroscopy techniques. Chapter 2 gives a Landau theory description of CDW formation in chain-like tetrachalcogenides. Chapter 3 treats experimental results on layered transition metal compounds. A short introduction to nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), time differential perturbed angular correlation (TDPAC), and the Moessbauer effect (ME) is included in this chapter because all three techniques have been extensively applied to Ta-dichalcogenides which are prominent members of this family of materials. Chapter 4 and 5 treat in great detail CDW dynamics and transport in chain-like like transition metal chalcogenides and molybdenum bronzes, respectively. Chapter 6 treats the one-dimensional inorganic complex salt K-2Pt(CN)4Br0.3.2H2O (KCP) studied by NMR on a variety of nuclei. Chapter 7 demonstrates the tremendous advances of high resolution NMR in yielding spin density maps of organic radical salts and is intended to stimulate the application of this powerful technique more directly to CDW phenomena
Doping-induced Charge-Density-Wave
Nomura, Atsushi; Yamaya, Kazuhiko; Takayanagi, Shigeru; Ichimura, Koichi; Matsuura, Toru; Tanda, Satoshi; Hokkaido University Team
Doping is a useful method for searching new characters in solids, as we can see in the discoveries of impurity semiconductors and high-temperature superconductors. If a Charge-Density-Wave (CDW) is induced in materials which do not exhibit a CDW, new CDW properties might be brought there. TaSe3 exhibits no CDW transition but a superconductivity transition at about 2 K while it has a quasi-one-dimensional chain structure as well as typical CDW conductors, NbSe3, TaS3, and NbS3. Therefore, TaSe3 is one of the suitable materials for the induction of a CDW by doping, and we tried to induce a CDW in TaSe3 by doping Cu. Cu concentration was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The high Cu concentration was consistent with the high value of residual resistance (R (4 . 5 K) / (R (280 K) - R (4 . 5 K))). Single-crystal X-ray diffraction pattern (XRD) showed an expansion of the c-axis in Cu-doped TaSe3. The temperature dependence of the resistivity showed the anomaly at 80-100 K in Cu-doped TaSe3, which was never observed in pure TaSe3. These results suggest that the Cu-doping induces a CDW. We will discuss the relation between the resistivity anomaly and superconductivity.
On the charge density and asymptotic tail of a monopole
Harland, Derek
2015-01-01
We propose a new definition for the abelian magnetic charge density of a non-abelian monopole, based on zero-modes of an associated Dirac operator. Unlike the standard definition of the charge density, this density is smooth in the core of the monopole. We show that this charge density induces a magnetic field whose expansion in powers of 1/r agrees with that of the conventional asymptotic magnetic field to all orders. We also show that the asymptotic field can be easily calculated from the spectral curve. Explicit examples are given for known monopole solutions.
Possibilities of increasing coal charge density by adding fuel oil
M. Fröhlichová
2010-01-01
Full Text Available The requirement of all coke-making facilities is to achieve the highest possible production of high quality coke from a chamber. It can be achieved by filling the effective capacity of the chamber with the highest possible amount of coal. One of the possibilities of meeting this requirement is to increase the charge density in the coke chamber. In case of a coke battery operating on bulk coal there are many methods to increase the charge density including the use of wetting agents in the charge. This article presents the results of the laboratory experiments aiming at the increase of the charge density using fuel oil as a wetting agent. The experiments were carried out by means of the Pitin’s device using 3 coal charges with various granularity composition and moisture content of 7, 8, 9 and 10 %.
A charge-density study of crystalline beryllium
The X-ray structure factors for crystalline beryllium measured by Brown [Phil. Mag. (1972), 26, 1377] have been analyzed with multipole deformation functions for charge-density information. Single exponential radial functions were used for the valence charge density. A valence monopole plus the three harmonics, P35(cos theta) sin 3phi, P6(cos theta) and P37(cos theta) sin 3phi, provide a least-squares fit to the data with Rsub(w)=0.0081. The superposition of these density functions describes a bonding charge density between Be atoms along the c axis through the tetrahedral vacancy. The results reported here are in qualitative agreement with a recent pseudo-potential calculation of metallic beryllium. The final residuals in the analysis are largest at high sin theta/lambda values. This suggests that core charge deformation is present and/or anharmonic motion of the nuclei is appreciable. (Auth.)
About Charge Density Wave for Electromagnetic Field-Drive
Guay, B T
1999-01-01
To generate a propulsive force without propellant and external couplings, it has been shown that two confined macroscopic and time-varying charge density waves well separated in space are needed. Here, some physical conditions will be proposed to support and maintain these particular collective modes of charge distributions.
Do plasma proteins distinguish between liposomes of varying charge density?
Capriotti, Anna Laura
2012-03-01
Cationic liposomes (CLs) are one of the most employed nonviral nanovector systems in gene therapy. However, their transfection efficiency is strongly affected by interactions with plasma components, that lead to the formation of a "protein corona" onto CL surface. The interactions between nanoparticles entering the body and biomolecules have an essential role for their biodistribution. Because the knowledge of proteins adsorbed onto vector surface could be useful in the screening of new, more efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry, and quantified with label-free spectral counting strategy. Fibrinogen displayed higher association with CLs with high membrane charge density, while apolipoproteins and C4b-binding protein with CLs with low membrane charge density. These results are discussed in terms of the different lipid compositions of CLs and may have a deep biological impact for in vivo applications. Surface charge of nanoparticles is emerging as a relevant factor determining the corona composition after interaction with plasma proteins. Remarkably, it is also shown that the charge of the protein corona formed around CLs is strongly related to their membrane charge density. © 2012 Elsevier B.V.
Nuclear charge radii: Density functional theory meets Bayesian neural networks
Utama, Raditya; Piekarewicz, Jorge
2016-01-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. We explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonst...
The effect of polymer charge density and charge distribution on the formation of multilayers
Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V
2003-01-01
Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.
K B Joshi; Nishant N Patel
2008-02-01
Charge density calculations and electronic band structures for GaAl1- = 1.0, 0.5 and 0.0 are presented in this work. The calculations are performed using the empirical pseudopotential method. The charge density is computed for a number of planes, i.e. = 0:0, 0.125 and 0.25 0 by generating the potential through a number of potential parameters available in the literature. The virtual crystal approximation was applied for the semiconducting alloy. The characteristics of the band structure and charge density are observed to be affected by the potential parameters. Calculated band gaps and the nature of gaps are in good agreement with the experimental data reported. The ionicity is also reasonably in good agreement with other scales proposed in the literature; however the formulation needs to be improved. The present work also demands indirect experimental band gap for the alloy.
Electron charge densities at conduction-band edges of semiconductors
We demonstrate that both the empirical pseudopotential method (EPM) and the linear combination of atomiclike orbitals (LCAO) approach are capable of producing consistent electronic charge distributions in a compound semiconductor. Since the EPM approach is known to produce total valence electron charge densities which compare well with experimental x-ray data (e.g., Si), this work serves as a further test for the LCAO method. In particular, the EPM scheme, which uses an extended plane-wave basis, and the LCAO scheme, which employs a localized Gaussian basis, are used, with the same empirical potential as input, to analyze both the total valence electron charge density and the charge density of the first conduction band at the GAMMA, L, and X k points of the Brillouin zone. These charge densities are decomposed into their s-, p-, and d-orbital contributions, and this information is used to interpret the differences in the topologies of the conduction bands at GAMMA, L, and X. Such differences are crucial for a comprehensive understanding of interstitial impurities and the response of specific band states to perturbations in compound semiconductors
Gravity dual of spin and charge density waves
Jokela, Niko; Järvinen, Matti(Crete Center for Theoretical Physics, Department of Physics, University of Crete, 71003, Heraklion, Greece); Lippert, Matthew
2014-01-01
At high enough charge density, the homogeneous state of the D3-D7’ model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.
Determination of charge densities in ReO3
The charge densities in ReO3 were investigated by the x-ray structural analysis. The anisotropic charge distributions were found around a Re atom, which is attributable to the π bond formed by Re 5d (tsub(2g) and O 2p electrons. The calculated difference electron density map by the DV-Xα cluster method supports qualitatively the present observation. The measured thermal vibrations of oxygen atoms were highly anisotropic. The M-mode oxygen displacements will be readily enhanced by the existence of high pressures. (author)
Pion transverse charge density and the edge of hadrons
Carmignotto, Marco [Catholic University of America; Horn, Tanja [Catholic University of America; Miller, Gerald A. [University of Washington
2014-08-01
We use the world data on the pion form factor for space-like kinematics and a technique used to extract the proton transverse densities, to extract the transverse pion charge density and its uncertainty due to experimental uncertainties and incomplete knowledge of the pion form factor at large values of Q2. The pion charge density at small values of b<0.1 fm is dominated by this incompleteness error while the range between 0.1-0.3 fm is relatively well constrained. A comparison of pion and proton charge densities shows that the pion is denser than the proton for values of b<0.2 fm. The pion and proton distributions seem to be the same for values of b=0.2-0.6 fm. Future data from Jlab 12 GeV and the EIC will increase the dynamic extent of the data to higher values of Q2 and thus reduce the uncertainties in the extracted pion charge density.
Branched–linear polyion complexes at variable charge densities
Structural behavior of complexes formed by a charged and branched copolymer and an oppositely charged and linear polyion was examined by Monte Carlo simulations employing a coarse-grained bead–spring model. The fractional bead charge and the branching density were systematically varied; the former between 0e and 1e and the latter such that both the comb-polymer and the bottle-brush limits were included. The number of beads of the main chain of the branched copolymer and of the linear polyion was always kept constant and equal, and a single side-chain length was used. Our analysis involved characterization of the complex as well as investigation of size, shape, and flexibility of the charged moieties. An interplay between Coulomb interaction and side-chain repulsion governed the structure of the polyion complex. At strong Coulomb interaction, the complexes underwent a gradual transition from a globular structure at low branching density to an extended one at high branching density. As the electrostatic coupling was decreased, the transition was smoothened and shifted to lower branching density, and, eventually, a behavior similar to that found for neutral branched polymer was observed. Structural analogies and dissimilarities with uncharged branched polymers in poor solutions are discussed. (paper)
Pressure induced Superconductivity in the Charge Density Wave Compound Tritelluride
Hamlin, J.J.; Zocco, D.A.; Sayles, T.A.; Maple, M.B.; /UC, Davis; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.
2010-02-15
A series of high-pressure electrical resistivity measurements on single crystals of TbTe{sub 3} reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave order. The onset of superconductivity reaches a maximum of almost 4 K (onset) near {approx} 12.4 GPa.
Charge density wave dynamics from ultrafast XUV ARPES
Frassetto F.
2013-03-01
Full Text Available Ultrafast angle–resolved XUV photoemission reveals the time- and momentum-dependent electronic structure of 1T–TaS2, a hybrid Mott and charge-density-wave insulator. Both electronic orderings melt well before the lattice responds, suggesting that electronic correlations play a role not just in the Mott localization but in the CDW ordering as well.
Gate effect in charge-density wave nanowires
Slot, E.; Holst, M.A.; Van der Zant, H.S.J.
2005-01-01
We have investigated transport characteristics of charge-density wave nanowires with a few hundred parallel chains. At temperatures below50K, these samples show power-law behavior in temperature and voltage, characteristic for one-dimensional transport. In this regime, gate dependent transport has b
Beyond Poisson-Boltzmann: Numerical Sampling of Charge Density Fluctuations.
Poitevin, Frédéric; Delarue, Marc; Orland, Henri
2016-07-01
We present a method aimed at sampling charge density fluctuations in Coulomb systems. The derivation follows from a functional integral representation of the partition function in terms of charge density fluctuations. Starting from the mean-field solution given by the Poisson-Boltzmann equation, an original approach is proposed to numerically sample fluctuations around it, through the propagation of a Langevin-like stochastic partial differential equation (SPDE). The diffusion tensor of the SPDE can be chosen so as to avoid the numerical complexity linked to long-range Coulomb interactions, effectively rendering the theory completely local. A finite-volume implementation of the SPDE is described, and the approach is illustrated with preliminary results on the study of a system made of two like-charge ions immersed in a bath of counterions. PMID:27075231
Battery peak charge voltage monitor for dual air density satellite
Shull, T. A.
1975-01-01
A battery peak charge voltage monitor was developed for use on the dual air density satellite (DADS). This device retains a reading of the maximum voltage reached by the spacecraft battery during periods of charging, and makes it available during periods of data transmission. The monitor is connected across the battery and operates solely from the battery; it is powered continuously with quiescent input current of only 3 milliamperes. Standard integrated circuits and a thin-film resistor network are utilized. The monitor occupies approximately 40 square centimeters of a printed-circuit board within a larger electronic package.
Jensen, Mogens Høgh; Lomdahl, P. S.
1982-01-01
lower and higher charge than ±2e / 3. The effect of discreteness is taken into account and gives rise to chaotic deformed solitons as the interchain coupling increases. The model may be applied to tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) under 19-kbar pressure.......We have studied the effect of interchain interaction on thermally excited solitons in a charge-density wave for a Peierls system of commensurability 3. In such a system solitons with charges ±2e / 3 are expected. It is shown that the interchain coupling in some cases will generate solitons with...
Geometric interpretation of density displacements and charge sensitivities
Roman F Nalewajski
2005-09-01
The ``geometric” interpretation of the electronic density displacements in the Hilbert space is given and the associated projection-operator partitioning of the hardness and softness operators (kernels) is developed. The eigenvectors |á 〉 = \\{| 〉 \\} of the hardness operator define the complete (identity) projector $\\hat{P}$ = | 〉 〈 = 1 for general density displacements, including the charge-transfer (CT) component, while the eigenvectors | i 〉 = { | 〉} of the linear response operator determine the polarizational -projector, $\\hat{P}$ = | 〉 〈 |. Their difference thus defines the complementary CT-projector: $\\hat{P}$ = 1 - $\\hat{P}$. The complete vector space for density displacements can be also spanned by supplementing the -modes with the homogeneous CT-mode. These subspaces separate the integral (normalization) and local aspects of density shifts in molecular systems.
Fast electronic resistance switching involving hidden charge density wave states
Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.
2016-05-01
The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.
Fast electronic resistance switching involving hidden charge density wave states.
Vaskivskyi, I; Mihailovic, I A; Brazovskii, S; Gospodaric, J; Mertelj, T; Svetin, D; Sutar, P; Mihailovic, D
2016-01-01
The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states. PMID:27181483
Scattered surface charge density: A tool for surface characterization
Naydenov, Borislav
2011-11-28
We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.
Pion transverse charge density from timelike form factor data
Gerald Miller, Mark Strikman, Christian Weiss
2011-01-01
The transverse charge density in the pion can be represented as a dispersion integral of the imaginary part of the pion form factor in the timelike region. This formulation incorporates information from e+e- annihilation experiments and allows one to reconstruct the transverse density much more accurately than from the spacelike pion form factor data alone. We calculate the transverse density using an empirical parametrization of the timelike pion form factor and estimate that it is determined to an accuracy of ~10% at a distance b ~ 0.1 fm, and significantly better at larger distances. The density is found to be close to that obtained from a zero-width rho meson pole over a wide range and shows a pronounced rise at small distances. The resulting two-dimensional image of the fast-moving pion can be interpreted in terms of its partonic structure in QCD. We argue that the singular behavior of the charge density at the center requires a substantial presence of pointlike configurations in the pion's partonic wave function, which can be probed in other high-momentum transfer processes.
Surface Phason-Polaritons in Charge Density Wave Films
Wonneberger, W.; Lamche, R.
1997-01-01
The coupled non-radiative excitations of the electromagnetic field and phasons in films with a quasi one-dimensional charge density wave (CDW) are evaluated for P--polarization and CDW conducting axis inside the film. The prominent features are two surface phason-polariton branches extending from the CDW pinning frequency to the frequency of the longitudinal optical phason. These surface phason-polariton states are confined to a finite band of longitudinal wave numbers. Besides surface polari...
Odd parity charge density-wave scattering in cuprates
Seibold, G; Grilli, M.; Lorenzana, J.
2009-01-01
We investigate a model where superconducting electrons are coupled to a frequency dependent charge-density wave (CDW) order parameter Delta(w). Our approach can reconcile the simultaneous existence of low energy Bogoljubov quasiparticles and high energy electronic order as observed in scanning tunneling microscopy (STM) experiments. The theory accounts for the contrast reversal in the STM spectra between positive and negative bias observed above the pairing gap. An intrinsic relation between ...
X-ray spectrum of a pinned charge density wave
Rosso, Alberto; Giamarchi, Thierry
2004-01-01
We calculate the x-ray diffraction spectrum produced by a pinned charge density wave (CDW). The signature of the presence of a CDW consists of two satellite peaks, asymmetric as a consequence of disorder. The shape and the intensity of these peaks are determined in the case of a collective weak pinning using the variational method. We predict divergent asymmetric peaks, revealing the presence of a Bragg glass phase. We deal also with the long range Coulomb interactions, concluding that both p...
Non-linear conductivity of charge-density-wave systems
Werner, C. R.; Eckern, U.
1997-01-01
We consider the problem of sliding motion of a charge-density-wave subject to static disorder within an elastic medium model. Starting with a field-theoretical formulation, which allows exact disorder averaging, we propose a self-consistent approximation scheme to obtain results beyond the standard large-velocity expansion. Explicit calculations are carried out in three spatial dimensions. For the conductivity, we find a strong-coupling regime at electrical fields just above the pinning thres...
Distribution of charge and matter in nuclei: Charge density difference of 206Pb and 205Tl
We contrast two calculations of the charge density difference of 206Pb and 205Tl. In the simplest model this difference in charge density is due to the occupation of an additional 3s/sub 1/2/ orbital in 206Pb. A standard mean-field calculation of the charge difference does not yield a satisfactory result. One may modify this result by assigning the 3s/sub 1/2/ orbital an occupation probability of seventy percent, with a corresponding increase to thirty percent of the occupation probability of a 2d/sub 3/2/ orbital. However, this modification of the mean-field analysis, while solving one problem, is seen to create a new problem in the fit to the data. In this work we present an alternative analysis: We maintain unit occupation probability for the 3s/sub 1/2/ orbital but use the medium-modified proton electromagnetic form factor we have calculated previously. Our model is able to give a better fit to the data without the introduction of free parameters into the analysis. Medium-modified form factors have recently been shown to be effective in explaining the charge distribution of 208Pb and their application to the interpretation of the 206Pb-205Tl charge density difference yields a result which is consistent with the experimental data and superior to that obtained in the adjusted mean-field analysis described above
Charge Order Induced in an Orbital Density-Wave State
Singh, Dheeraj Kumar; Takimoto, Tetsuya
2016-04-01
Motivated by recent angle resolved photoemission measurements [D. V. Evtushinsky et al., Phys. Rev. Lett. 105, 147201 (2010)] and evidence of the density-wave state for the charge and orbital ordering [J. García et al., Phys. Rev. Lett. 109, 107202 (2012)] in La0.5Sr1.5MnO4, the issue of charge and orbital ordering in a two-orbital tight-binding model for layered manganite near half doping is revisited. We find that the charge order with the ordering wavevector 2{Q} = (π ,π ) is induced by the orbital order of d-/d+-type having B1g representation with a different ordering wavevector Q, where the orbital order as the primary order results from the strong Fermi-surface nesting. It is shown that the induced charge order parameter develops according to TCO - T by decreasing the temperature below the orbital ordering temperature TCO, in addition to the usual mean-field behavior of the orbital order parameter. Moreover, the same orbital order is found to stabilize the CE-type spin arrangement observed experimentally below TCE < TCO.
Modeling charged defects inside density functional theory band gaps
Density functional theory (DFT) has emerged as an important tool to probe microscopic behavior in materials. The fundamental band gap defines the energy scale for charge transition energy levels of point defects in ionic and covalent materials. The eigenvalue gap between occupied and unoccupied states in conventional DFT, the Kohn–Sham gap, is often half or less of the experimental band gap, seemingly precluding quantitative studies of charged defects. Applying explicit and rigorous control of charge boundary conditions in supercells, we find that calculations of defect energy levels derived from total energy differences give accurate predictions of charge transition energy levels in Si and GaAs, unhampered by a band gap problem. The GaAs system provides a good theoretical laboratory for investigating band gap effects in defect level calculations: depending on the functional and pseudopotential, the Kohn–Sham gap can be as large as 1.1 eV or as small as 0.1 eV. We find that the effective defect band gap, the computed range in defect levels, is mostly insensitive to the Kohn–Sham gap, demonstrating it is often possible to use conventional DFT for quantitative studies of defect chemistry governing interesting materials behavior in semiconductors and oxides despite a band gap problem
Charge density waves in strongly correlated electron systems
Chen, Chih-Wei; Choe, Jesse; Morosan, E.
2016-08-01
Strong electron correlations are at the heart of many physical phenomena of current interest to the condensed matter community. Here we present a survey of the mechanisms underlying such correlations in charge density wave (CDW) systems, including the current theoretical understanding and experimental evidence for CDW transitions. The focus is on emergent phenomena that result as CDWs interact with other charge or spin states, such as magnetism and superconductivity. In addition to reviewing the CDW mechanisms in 1D, 2D, and 3D systems, we pay particular attention to the prevalence of this state in two particular classes of compounds, the high temperature superconductors (cuprates) and the layered transition metal dichalcogenides. The possibilities for quantum criticality resulting from the competition between magnetic fluctuations and electronic instabilities (CDW, unconventional superconductivity) are also discussed.
Charge-density waves physics revealed by photoconduction
Zaitsev-Zotov, S.V., E-mail: serzz@cplire.ru [Kotel' nikov Institute of Radio-engineering and Electronics of the RAS, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Nasretdinova, V.F.; Minakova, V.E. [Kotel' nikov Institute of Radio-engineering and Electronics of the RAS, 125009 Moscow (Russian Federation)
2015-03-01
The results of photoconduction study of the Peierls conductors are reviewed. The studied materials are quasi-one-dimensional conductors with the charge-density wave: K{sub 0.3}MoO{sub 3}, both monoclinic and orthorhombic TaS{sub 3} and also a semiconducting phase of NbS{sub 3} (phase I). Experimental methods, relaxation times, effects of illumination on linear and nonlinear charge transport, the electric-field effect on photoconduction and results of the spectral studies are described. We demonstrate, in particular, that a simple model of modulated energy gap slightly smoothed by fluctuations fits the available spectral data fairly well. The level of the fluctuations is surprisingly small and does not exceed a few percent of the optical energy gap value.
Charge density waves in strongly correlated electron systems.
Chen, Chih-Wei; Choe, Jesse; Morosan, E
2016-08-01
Strong electron correlations are at the heart of many physical phenomena of current interest to the condensed matter community. Here we present a survey of the mechanisms underlying such correlations in charge density wave (CDW) systems, including the current theoretical understanding and experimental evidence for CDW transitions. The focus is on emergent phenomena that result as CDWs interact with other charge or spin states, such as magnetism and superconductivity. In addition to reviewing the CDW mechanisms in 1D, 2D, and 3D systems, we pay particular attention to the prevalence of this state in two particular classes of compounds, the high temperature superconductors (cuprates) and the layered transition metal dichalcogenides. The possibilities for quantum criticality resulting from the competition between magnetic fluctuations and electronic instabilities (CDW, unconventional superconductivity) are also discussed. PMID:27376547
Measuring charge density of electron beam single nanosecond pulses
A description is presented of a probe design and electrometric repeater circuit and technique for measuring the charge (current) density of electron beam single pulses by integrating current at a reference capacitor with a subsequent registering of voltage across the capacitor. The probe consists of a band-type signal electrodes and two oval cross-section sleeves: external and internal with larger and smaller rectangular openings, respectively. The external sleeve has antidynatron grid located over the hole. The design employs integer nickel sleever - the cores of electron tube cathodes. The signal electrode is made of nickel band 0.15 mm thick. The probe elements are insulated from each other along the whole length with a layer of teflon band (30 μm), with rectangular openings cut in compliance with the sleeve openings. The measurement range is from 0.4x10-9 to 1x10-7 C/cm2. The rated accuracy of measurements is no worse than +-5% for the beam energy of 0.2 to 3 KeV. The ultimate parameters the charge density -6 C/cm2 and direct current density 3 mA/cm2 - are specified by the breakdown voltage (200 V) of the input capacitor and probe insulation
Leherte, Laurence; Vercauteren, Daniel P
2011-10-01
To generate reduced point charge models of proteins, we developed an original approach to hierarchically locate extrema in charge density distribution functions built from the Poisson equation applied to smoothed molecular electrostatic potential (MEP) functions. A charge fitting program was used to assign charge values to the so-obtained reduced representations. In continuation to a previous work, the Amber99 force field was selected. To easily generate reduced point charge models for protein structures, a library of amino acid templates was designed. Applications to four small peptides, a set of 53 protein structures, and four KcsA ion channel models, are presented. Electrostatic potential and solvation free energy values generated by the reduced models are compared with the corresponding values obtained using the original set of atomic charges. Results are in closer agreement with the original all-atom electrostatic properties than those obtained with a previous reduced model that was directly built from the smoothed MEP functions [Leherte and Vercauteren in J Chem Theory Comput 5:3279-3298, 2009]. PMID:21915750
Charge carrier density in Li-intercalated graphene
Kaloni, Thaneshwor P.
2012-05-01
The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.
Size dependence of the surface charge density in EDL-MF
Tourinho, F. A.; Campos, A. F. C.; Aquino, R.; Lara, M. C. F. L.; Depeyrot, J.
2002-11-01
We determine the surface charge density of electric double layered magnetic fluids based on manganese ferrite nanoparticles of two different sizes using simultaneous potentiometric-conductimetric titrations. The saturation superficial density of charge is reduced for smaller particles.
Size dependence of the surface charge density in EDL-MF
We determine the surface charge density of electric double layered magnetic fluids based on manganese ferrite nanoparticles of two different sizes using simultaneous potentiometric-conductimetric titrations. The saturation superficial density of charge is reduced for smaller particles
The gravitational effect on induced charge density for an obliquely rotating neutron star
The effect om the induced charge density of the gravitational field of a rotating neutron star with its magnetic axis inclined with respect to the rotational axis is investigated. While gravitation increases the charge density the obliquity reduces it
The gravitational effect on induced charge density for an obliquely rotating neutron star
De Paolis, F. [Delaware Univ., Newark (United States). Bartol Research Inst.; Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Qadir, A. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Tarman, I.H. [King Fahd University of Petroleum and Minerals, Dharan (Saudi Arabia). Dept. of Mathematical Sciences
1999-11-01
The effect om the induced charge density of the gravitational field of a rotating neutron star with its magnetic axis inclined with respect to the rotational axis is investigated. While gravitation increases the charge density the obliquity reduces it.
Shells of charge: a density functional theory for charged hard spheres.
Roth, Roland; Gillespie, Dirk
2016-06-22
A functional for the electrostatic excess free-energy for charged, hard sphere fluids is proposed. The functional is derived from two complementary, but equivalent, interpretations of the mean spherical approximation (MSA). The first combines fundamental measure theory (FMT) from hard-core interactions with the idea that MSA can be interpreted in terms of the interaction spherical shells of charge. This formulation gives the free-energy density as a function of weighted densities. When all the ions have the same size, the functional adopts an FMT-like form. The second in effect 'functionalizes' the derivation of MSA; that is, it generalizes the MSA as a functional-based version of MSA (fMSA). This formulation defines the free-energy density as a function of a position-dependent MSA screening parameter and the weighted densities of the FMT approach. This FMT/fMSA functional is shown to give accurate density profiles, as compared to Monte Carlo simulations, under a wide range of ion concentrations, size asymmetries, and valences. PMID:27116385
The Charge Density and Electrostatic Potential of Three Dinitramide Salts
Martin, Anthony
The aim of this dissertation was to obtain information about the redistribution of electrons due to effects such as chemical bonding using X-ray diffraction. There is a great deal of current interest in the production of new energetic materials. A new class of the salts based on the dinitramide anion, N(NO _2)_sp{2}{-}, DN has attracted some interest. Three dinitramide salts (ammonium, monoprotonated and diprotonated biguanidinium) have been selected for charge density analyses on the basis of the observed variation of the dinitramide anion in the room temperature structures and the potential applications of these compounds. However, while a good deal of work has gone into the methodology of charge density studies, relatively little has been done to improve the presentation of the results. As a result the quality of presentation has remained essentially unchanged for twenty years. While this may sound like a triviality, it is visualization of data that produces information. Existing programs have been modified to produce output suitable for improved visualization, in particular using color and 3D computer graphics. From a chemist's viewpoint there were two aims for this project. The first was to see if the difference in the geometries of the dinitramide ion is reflected in the size and shape of the bonding electron density using experimental methods. The second aim was to obtain the electrostatic potential of the materials based on the experimentally determined electron density distribution in order to obtain some insight into the reactivity of the dinitramide ion. The different geometries produce observable differences in the deformation density. The electrostatic potential derived from the experimental electron density also shows variations with respect to the geometry and environment. These potentials have different minima and are also different from potentials produced from gas phase semi-empirical and ab-initio calculations. Whether the reactivity can be
Spin and charge density waves in the Lieb lattice
Gouveia, J. D.; Dias, R. G.
2016-05-01
We study the mean-field phase diagram of the two-dimensional (2D) Hubbard model in the Lieb lattice allowing for spin and charge density waves. Previous studies of this diagram have shown that the mean-field magnetization surprisingly deviates from the value predicted by Lieb's theorem [1] as the on-site repulsive Coulomb interaction (U) becomes smaller [2]. Here, we show that in order for Lieb's theorem to be satisfied, a more complex mean-field approach should be followed in the case of bipartite lattices or other lattices whose unit cells contain more than two types of atoms. In the case of the Lieb lattice, we show that, by allowing the system to modulate the magnetization and charge density between sublattices, the difference in the absolute values of the magnetization of the sublattices, mLieb, at half-filling, saturates at the exact value 1/2 for any value of U, as predicted by Lieb. Additionally, Lieb's relation, mLieb = 1 / 2, is verified approximately for large U, in the n ∈ [ 2 / 3 , 4 / 3 ] range. This range includes not only the ferromagnetic region of the phase diagram of the Lieb lattice (see Ref. [2]), but also the adjacent spiral regions. In fact, in this lattice, below or at half-filling, mLieb is simply the filling of the quasi-flat bands in the mean-field energy dispersion both for large and small U.
Boson ground state fields in electroweak theory with non-zero charge densities
Syska, J.
2002-01-01
The "non-linear" self-consistent theory of classical fields in the electroweak model is proposed. Homogeneous boson ground state solutions in the GSW model at the presence of a non-zero extended fermionic charge densities are reviewed and fully reinterpreted to make the theory with non-zero charge densities fruitful. Consequences of charge density fluctuations are proposed.
Matveev, Oleg; Shvaika, Andrij; Devereaux, Thomas; Freericks, James
The charge-density-wave phase of the Falicov-Kimball model displays a number of anomalous behavior including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field. Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for this nonlinear response. We examine both the current and the order parameter of the conduction electrons as the ordered system is driven by a dc electric field. Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, Ukraine.
Electromagnetic form factors and charge densities from hadrons to nuclei
A simple exact covariant model in which a scalar particle Ψ is modeled as a bound state of two different particles is used to elucidate relativistic aspects of electromagnetic form factors F(Q2). The model form factor is computed using an exact covariant calculation of the lowest order triangle diagram. The light-front technique of integrating over the minus component of the virtual momentum gives the same result and is the same as the one obtained originally by Gunion et al. [Phys. Rev. D 8, 287 (1973)] by using time-ordered perturbation theory in the infinite-momentum frame. The meaning of the transverse density ρ(b) is explained by providing a general derivation, using three spatial coordinates, of its relationship with the form factor. This allows us to identify a mean-square transverse size 2>=∫d2b b2ρ(b)=-4(dF/dQ2)(Q2=0). The quantity 2> is a true measure of hadronic size because of its direct relationship with the transverse density. We show that the rest-frame charge distribution is generally not observable by studying the explicit failure to uphold current conservation. Neutral systems of two charged constituents are shown to obey the conventional lore that the heavier one is generally closer to the transverse origin than the lighter one. It is argued that the negative central charge density of the neutron arises, in pion-cloud models, from pions of high longitudinal momentum that reside at the center. The nonrelativistic limit is defined precisely, and the ratio of the binding energy B to the mass M of the lightest constituent is shown to govern the influence of relativistic effects. It is shown that the exact relativistic formula for F(Q2) is the same as the familiar one of the three-dimensional Fourier transform of a square of a wave function for very small values of B/M, but this only occurs for values of B/M less than about 0.001. For masses that mimic the quark-diquark model of the nucleon we find that there are substantial relativistic
Mapping of charge density of ion beams produced by laser
Krása, Josef; Parys, P.; Velyhan, Andriy; Margarone, Daniele; Krouský, Eduard; Ullschmied, Jiří
Vol. 38F. Mulhouse : European Physical Society, 2014 - (Ratynskaia, S.; Mantica, P.; Benuzzi-Mounaix, A.; Dilecce, G.; Bingham, R.; Hirsch, M.; Kemnitz, B.; Klinger, T.), "P2.094-1"-"P2.094-4" ISBN 2-914771-90-8. - (Europhysics Conference Abstracts (ECA)). [EPS Conference on Plasma Physics/41./. Berlin (DE), 23.06.2014-27.06.2014] R&D Projects: GA MŠk EE2.3.20.0279; GA ČR GAP205/12/0454 Grant ostatní: LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser ion sources * map of ion charge density * ion expansion * modeling Subject RIV: BL - Plasma and Gas Discharge Physics http://ocs.ciemat.es/EPS2014PAP/pdf/P2.094.pdf
Thermodynamics of superconductors with charge-density waves
Gabovich, A M; Szymczak, H; Voitenko, A I
2003-01-01
Equations for the temperature-(T-) dependent superconducting (DELTA(T)) and dielectric (SIGMA(T)) order parameters are solved self-consistently in the partial dielectric gapping model of Bilbro and McMillan for superconductors with charge-density waves (CDWs). It is shown that for the close enough structural phase transition temperature, T sub s , and superconducting one, T sub c , with T sub s > T sub c , SIGMA below T sub c may become smaller than DELTA. The electronic heat capacity C(T) is calculated. It is shown that the discontinuity DELTA C at T = T sub c is always smaller than the Bardeen-Cooper-Schrieffer value. The effect is detectable over a wide range of the model parameters. Experimental implications for CDW superconductors, such as A15 compounds, high-T sub c cuprates, and MgB sub 2 , are suggested and discussed.
Connection between charge-density-wave order and charge transport in the cuprate superconductors
Tabis, W.; Li, Y; Tacon, M. Le; Braicovich, L.; Kreyssig, A.; Minola, M.; Dellea, G.; Weschke, E.; Veit, M. J.; Ramazanoglu, M.; Goldman, A. I.; T. Schmitt; Ghiringhelli, G.; Barišić, N.; Chan, M. K.
2014-01-01
Charge-density-wave (CDW) correlations within the quintessential CuO$_2$ planes have been argued to either cause [1] or compete with [2] the superconductivity in the cuprates, and they might furthermore drive the Fermi-surface reconstruction in high magnetic fields implied by quantum oscillation (QO) experiments for YBa$_2$Cu$_3$O$_{6+{\\delta}}$ (YBCO) [3] and HgBa$_2$CuO$_{4+{\\delta}}$ (Hg1201) [4]. Consequently, the observation of bulk CDW order in YBCO was a significant development [5,6,7]...
Plane density of induced vacuum charge in a supercritical Coulomb potential
Khalilov, V R
2016-01-01
An expression for the density of a planar induced vacuum charge is obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in this potential. Induced vacuum charge density is calculated and analyzed at the subcritical and supercritical Coulomb potentials for massless and massive fermions. The behavior of the obtained vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. We calculate the real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in the supercritical Coulomb potential due to the so-called real vacuum polarization. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supe...
Validity of the evidence for a central depression in the charge density of 3He
The derivation of proton and neutron charge densities from experimentally obtained form factors is considered. The meson exchange current contribution to the 3He charge form factor for three models of neutron and proton charge form factors is calculated and it is shown that it is not valid to use the short range behavior of nucleon charge density to deduce information on the structure of 3He
Charge-density matching in organic-inorganic uranyl compounds
Single crystals of [C10H26N2][(UO2)(SeO4)2(H2O)](H2SeO4)0.85(H2O)2 (1), [C10H26N2][(UO2)(SeO4)2] (H2SeO4)0.50(H2O) (2), and [C8H20N]2[(UO2)(SeO4)2(H2O)] (H2O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO7 and SeO4 polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO2(SeO4)2(H2O)]2- chains are separated by mixed organic-inorganic layers comprising from [NH3(CH2)10NH3]2+ molecules, H2O molecules, and disordered electroneutral (H2SeO4) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO2(SeO4)2]2- sheet. The structure of 3 does not contain disordered (H2SeO4) groups but is based upon alternating [UO2(SeO4)2(H2O)]2- sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH3(CH2)7CH3]+. The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in general, actinyl) chemistry, it requires specific additional mechanisms: (a) in long-chain-amine-templated compounds, protonated amine molecules inter-digitate; (b) in long-chain-diamine-templated compounds, incorporation of acid-water interlayers into an organic substructure is necessary; (c) the inclination angle of the amine chains may vary in order to modify
Density Dependence of Charge-4 Vortex Splitting in Bose–Einstein Condensates
Shibayama, Hitoshi; Tsukada, Akinori; Yoshihara, Takahisa; Kuwamoto, Takeshi
2016-05-01
We studied the axial-direction density dependence of the splitting of a charge-4 vortex created in 87Rb Bose–Einstein condensates. Vortices were generated by topological phase imprinting, and the axial density of the condensates was controlled by an optical potential. Linear and triangular arrangements of four single-charged vortices that emerged through the charge-4 vortex collapse were observed. The splitting of the charge-4 vortices was suppressed by maintaining the density outside the l = 2 unstable mode regions where linear arrangements were formed. In addition, we studied vortex dynamics in a high density region for which investigations have not been previously performed.
D. K. Narvilkar
1979-07-01
Full Text Available In the present paper, the equations of internal ballistics of composite charge consisting of N component charge with quadratic form are solved. Largange density approximation and hydrodynamic flow behaviour, have been assumed and the solutions are obtained for the composite charge for these assumptions.
LI Zhi-Bing; WANG Wei-Liang
2006-01-01
We derive the analytic solution of induced electrostatic potential along single wall carbon nanotubes. Under the hypothesis of constant density of states in the charge-neutral level, we are able to obtain the linear density of excess charge in an external Geld parallel to the tube axis.
Li, Zhibing; Wang, Weiliang
2006-01-01
We derived the analytic solution of induced electrostatic potential along single wall carbon nanotubes. Under the hypothesis of constant density of states in the charge-neutral level, we are able to obtain the linear density of excess charge in an external field parallel to the tube axis.
Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano
2012-01-01
An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…
Tanner, D. B.; Cummings, K. D.; Jacobsen, Claus Schelde
1981-01-01
Detailed far-infrared measurements at temperatures from 25 to 300 K provide strong support for a charge-density-wave mechanism for the dc conductivity and microwave dielectric constant of tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ). At low temperatures the charge-density wave is pinned...
Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities
Harrison, Neil; Singleton, John; Migliori, Albert
2008-08-05
A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.
The charge form factors of elastic electron scattering for isotones with N=20 and N=28 are calculated using the phase-shift analysis method, with corresponding charge density distributions from relativistic mean-field theory. The results show that there are sharp variations at the inner parts of charge distributions with the proton number decreasing. The corresponding charge form factors are divided into two groups because of the unique properties of the s-states wave functions, though the proton numbers change uniformly in two isotonic chains. Meanwhile, the shift regularities of the minima are also discussed, and we give a clear relation between the minima of the charge form factors and the corresponding charge radii. This relation is caused by the diffraction effect of the electron. Under this conclusion, we calculate the charge density distributions and the charge form factors of the A=44 nuclei chain. The results are also useful for studying the central depression in light exotic nuclei. (authors)
Charge density waves in 1T-TaS2: an angle-resolved photoemission study
Clerc, F. [Institut de Physique, Universite de Neuchatel, Rue A.L. Breguet 1, CH-2000 Neuchatel (Switzerland); Bovet, M. [Institut de Physique, Universite de Neuchatel, Rue A.L. Breguet 1, CH-2000 Neuchatel (Switzerland); Berger, H. [Institut de Physique Appliquee, EPFL, CH-1015 Lausanne (Switzerland); Despont, L. [Institut de Physique, Universite de Neuchatel, Rue A.L. Breguet 1, CH-2000 Neuchatel (Switzerland); Koitzsch, C. [Institut de Physique, Universite de Neuchatel, Rue A.L. Breguet 1, CH-2000 Neuchatel (Switzerland); Garnier, M.G. [Institut de Physique, Universite de Neuchatel, Rue A.L. Breguet 1, CH-2000 Neuchatel (Switzerland); Aebi, P. [Institut de Physique, Universite de Neuchatel, Rue A.L. Breguet 1, CH-2000 Neuchatel (Switzerland)]. E-mail: philipp.aebi@unine.ch
2004-09-15
The transition metal dichalcogenide 1T-TaS2 is a layered material exhibiting charge density waves. Based on angle-resolved photoemission experiments mapping spectral weight at the Fermi surface and density functional theory calculations we discuss possible mechanisms involved with the creation of charge density waves. At first the flat parts of the elliptically shaped Fermi surface appear to play an important role via Fermi surface nesting. A closer analysis of the charge density wave induced new Brillouin zones and the possible energy balance between elastic deformation energy and electronic energy points to a more complicated scenario.
Charge density waves in 1T-TaS2: an angle-resolved photoemission study
The transition metal dichalcogenide 1T-TaS2 is a layered material exhibiting charge density waves. Based on angle-resolved photoemission experiments mapping spectral weight at the Fermi surface and density functional theory calculations we discuss possible mechanisms involved with the creation of charge density waves. At first the flat parts of the elliptically shaped Fermi surface appear to play an important role via Fermi surface nesting. A closer analysis of the charge density wave induced new Brillouin zones and the possible energy balance between elastic deformation energy and electronic energy points to a more complicated scenario
From super-charged nuclei to massive nuclear density cores
Popov, Vladimir
2010-01-01
Due to $e^+e^-$-pair production in the field of supercritical $(Z \\gg Z_{cr}\\approx 170 $) nucleus an electron shell, created out of the vacuum, is formed. The distribution of the vacuum charge in this shell has been determined for super-charged nuclei $Ze^3 \\ga 1$ within the framework of the Thomas-Fermi equation generalized to the relativistic case. For $Ze^3 \\gg 1$ the electron shell penetrates inside the nucleus and almost completely screens its charge. Inside such nucleus the potential takes a constant value equal to $V_0=-(3\\pi^2 n_p)^{1/3} \\sim -2m_{\\pi}c^2$, and super-charged nucleus represents an electrically neutral plasma consisting of $e,p$ and $n$. Near the edge of the nucleus a transition layer exists with a width $\\lambda \\approx \\alpha^{-1/2} \\hbar/m_{\\pi} c\\sim 15$ fm, which is independent of $Z~~ (\\hbar/m_{\\pi} c \\ll \\lambda \\ll \\hbar/m_e c)$. The electric field and surface charge are concentrated in this layer. These results, obtained earlier for hypothetical superheavy nuclei with $Z \\sim ...
Bond charge approximation for valence electron density in elemental semiconductors
The spatial valence electron distribution in silicon and diamond is calculated in adiabatic bond charge approximation at zero temperature when bond charges have the Gaussian shape and their tensor character is taken into account. An agreement between theory and experiment has been achieved. For this purpose Xia's ionic pseudopotentials and Schulze-Unger's dielectric function are used. By two additional parameters Asub(B) and Zsub(B)sup(') we describe the spatial extent of the bond charge and local-field corrections, respectively. The parameter Zsub(B)sup(') accounts for the ratio between the Coulomb and exchange correlation interactions of the valence electrons and its silicon and diamond values have different signs. (author)
穆海宝; 张冠军
2011-01-01
Surface charges greatly affect the discharge/flashover development process across an insulator. The relationship between surface charge distribution on insulating materials and measurement data based on Pockels technique is discussed, and an improved algorithm is built to calculate the real surface charge density from original data. In this algorithm, two-dimensional Fourier transform technique and Wiener filter are employed to reduce the amount of numerical calculation and improve the stability of computation, Moreover, this algorithm considers not only the influence of sample＇s thickness and permittivity, but also the impact of charges at different positions. The achievement of this calibration algorithm is demonstrated in details. Compared with traditional algorithms, the improved one supplies a better solution in the calibration of surface charge distribution on different samples with different thickness.
We report on the investigation of magnetic field induced charge density waves and Hall coefficient sign reversal in a quasi-two-dimensional electronic system of highly oriented pyrolytic graphite under very strong magnetic field. The change of Hall sign coefficient from negative to positive occurs at low temperature and high magnetic field just after the charge density wave transition, suggesting the role of hole-like quasi-particles in this effect. Angular dependent measurements show that the charge density wave transition and Hall sign reversal fields follow the magnetic field component along the c-axis of graphite.
Influence of electric charge and modified gravity on density irregularities
Bhatti, M.Z. Ul Haq; Yousaf, Z. [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2016-04-15
This work aims to identify some inhomogeneity factors for a plane symmetric topology with anisotropic and dissipative fluid under the effects of both electromagnetic field as well as Palatini f(R) gravity. We construct the modified field equations, kinematical quantities, and mass function to continue our analysis. We have explored the dynamical quantities, conservation equations and modified Ellis equations with the help of a viable f(R) model. Some particular cases are discussed with and without dissipation to investigate the corresponding inhomogeneity factors. For a non-radiating scenario, we examine such factors as dust, and isotropic and anisotropic matter in the presence of charge. For a dissipative fluid, we investigate the inhomogeneity factor with a charged dust cloud. We conclude that the electromagnetic field increases the inhomogeneity in matter while the extra curvature terms make the system more homogeneous with the evolution of time. (orig.)
Influence of Electric Charge and Modified Gravity on Density Irregularities
Bhatti, M Zaeem Ul Haq
2016-01-01
This work aims to identify some inhomogeneity factors for plane symmetric topology with anisotropic and dissipative fluid under the effects of both electromagnetic field as well as Palatini $f(R)$ gravity. We construct the modified field equations, kinematical quantities and mass function to continue our analysis. We have explored the dynamical quantities, conservation equations and modified Ellis equations with the help of a viable $f(R)$ model. Some particular cases are discussed with and without dissipation to investigate the corresponding inhomogeneity factors. For non-radiating scenario, we examine such factors with dust, isotropic and anisotropic matter in the presence of charge. For dissipative fluid, we investigate the inhomogeneity factor with charged dust cloud. We conclude that electromagnetic field increases the inhomogeneity in matter while the extra curvature terms make the system more homogeneous with the evolution of time.
Melting Point Of Metals In Relation Io Electron Charge Density
Boczkal G.
2015-09-01
Full Text Available The concept of spatial criterion of the electron charge concentration is applied to determine the metal melting point. Based on the model proposed for bcc metals, a model for hcp metals and general form for others has been developed. To calculate the melting point, only structural data and atomic number are required. The obtained results show good consistency with the experimental data for metals with atomic number Z < 70.
Finite temperature bosonic charge and current densities in compactified cosmic string spacetime
Mohammadi, Azadeh
2015-01-01
In this paper we study the expectation values of the induced charge and current densities for a massive bosonic field with nonzero chemical potential in the geometry of a higher dimensional compactified cosmic string with magnetic fluxes, along the string core and also enclosed by the compactified direction, in thermal equilibrium at finite temperature $T$. These densities are calculated by decomposing them into the vacuum expectation values and finite temperature contributions coming from the particles and antiparticles. The only nonzero components correspond to the charge, azimuthal and axial current densities. By using the Abel-Plana formula, we decompose the components of the densities into the part induced by the cosmic string and the one by the compactification. The charge density is an odd function of the chemical potential and even periodic function of the magnetic flux with a period equal to the quantum flux. Moreover, the azimuthal (axial) current density is an even function of the chemical potentia...
Mining for elastic constants of intermetallics from the charge density landscape
There is a significant challenge in designing new materials for targeted properties based on their electronic structure. While in principle this goal can be met using knowledge of the electron charge density, the relationships between the density and properties are largely unknown. To help overcome this problem we develop a quantitative structure–property relationship (QSPR) between the charge density and the elastic constants for B2 intermetallics. Using a combination of informatics techniques for screening all the potentially relevant charge density descriptors, we find that C11 and C44 are determined solely from the magnitude of the charge density at its critical points, while C12 is determined by the shape of the charge density at its critical points. From this reduced charge density selection space, we develop models for predicting the elastic constants of an expanded number of intermetallic systems, which we then use to predict the mechanical stability of new systems. Having reduced the descriptors necessary for modeling elastic constants, statistical learning approaches may then be used to predict the reduced knowledge-based required as a function of the constituent characteristics
Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics
Buividovich, P.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Polikarpov, M.I. [Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)
2011-11-15
We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)
Determination of charge carrier mobility in doped low density polyethylene using DC transients
Khalil, M.Salah; Henk, Peter O; Henriksen, Mogens
1989-01-01
Charge carrier mobility was determined for plain and doped low-density polyethylene (LDPE) using DC transient currents. Barium titanate was used as a strongly polar dopant and titanium dioxide as a semiconductor dopant. The values of the mobility obtained were on the order of 10-10 cm2 v-1 s-1...... a factor of five. Charge trapping and space charge formation were modified by the introduction of titanium dioxide...
Zelinka, Jiří; Oral, Martin; Radlička, Tomáš
Brno: Institute of Scientific Instruments AS CR, v. v. i, 2014. s. 91. ISBN 978-80-87441-11-4. [International Conference on Charged Parrticle Optics /9./. 31.08.2014-05.09.2014, Brno] Institutional support: RVO:68081731 Keywords : space charge * current density evaluation * self-consistent computation * remeshing * FEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Charge density distribution of transparent p-type semiconductor (LaO)CuS
Takase, Kouichi; Sato,Ken; Shoji, Osamu; Takahashi, Yumiko; Takano, Yoshiki; Sekizawa, Kazuko; Kuroiwa, Yoshihiro; GOTO, MANABU
2007-01-01
The charge density distributions of layered oxysulfide (LaO)CuS, known as a p-type transparent semiconductor, have been investigated by analyzing the synchrotron radiation powder diffraction profile with the maximum entropy method/Rietveld method. The bonding character of the Cu–S bond is revealed to be covalent. Meanwhile, the O–La bonding has both ionic and covalent characters. The number of electrons estimated by integrating the charge density around each atom gave direct evidence that eac...
Photoinduced Dynamics in the Charge Density Wave Compound 4HB-TaSe2
Demsar J.
2013-03-01
Full Text Available We report on ultrafast photoindued charge density wave (CDW dynamics in the transition-metal dichalcogenide 4Hb-TaSe2, studied with ultrafast electron diffraction. Fluence dependence of the lattice superstructure suppression show a phase transition from the commensurate to the incommensurate phase of 4Hb-TaSe2. Unusually long recovery times of perturbed charge density waves indicate th importance of a coupling between the two dimensional CDWs.
Chiral anomaly, Charge Density Waves, and Axion Strings from Weyl Semimetals
Wang, Zhong; Zhang, Shou-Cheng
2012-01-01
We study dynamical instability and chiral symmetry breaking in three dimensional Weyl semimetals, which turns Weyl semimetals into "axion insulators". Charge density waves (CDW) is found to be the natural consequence of the chiral symmetry breaking. The phase mode of this charge density wave state is identified as the axion, which couples to electromagnetic field in the topological $\\theta{\\bf E}\\cdot{\\bf B}$ term. One of our main results is that the "axion strings" can be realized as the (sc...
Kumar, Amit; POUMIROL, Jean-Marie; Escoffier, Walter; Goiran, Michel; Raquet, Bertrand; Pivin, Jean Claude
2010-01-01
We report on the investigation of magnetic field induced charge density wave and Hall coefficient sign reversal in a quasi-two dimensional electronic system of highly oriented pyrolytic graphite under very strong magnetic field. The change of Hall sign coefficient from negative to positive occurs at low temperature and high magnetic field just after the charge density wave transition, suggesting the role of hole-like quasi-particles in this effect. Angular dependent measurements show that the...
Mohammadi, A; Saharian, A A
2014-01-01
We investigate the finite temperature expectation values of the charge and current densities for a massive fermionic field with nonzero chemical potential, $\\mu$, in the geometry of a straight cosmic string with a magnetic flux running along its axis. These densities are decomposed into the vacuum expectation values and contributions coming from the particles and antiparticles. The charge density is an even periodic function of the magnetic flux with the period equal to the quantum flux and an odd function of the chemical potential. The only nonzero component of the current density corresponds to the azimuthal current. The latter is an odd periodic function of the magnetic flux and an even function of the chemical potential. At high temperatures, the parts in the charge density and azimuthal current induced by the planar angle deficit and magnetic flux are exponentially small. The asymptotic behavior at low temperatures crucially depends whether the value $|\\mu|$ is larger or smaller than the mass of the fiel...
Yongjun Ahn
Full Text Available The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive
Supergravity and the jet quenching parameter in the presence of R-charge densities
Avramis, S D; Avramis, Spyros D.; Sfetsos, Konstadinos
2007-01-01
We employ the AdS/CFT correspondence to compute the jet quenching parameter for N=4 Yang-Mills theory at nonzero R-charge densities. Using as dual supergravity backgrounds non-extremal rotating branes, we find that the presence of the R-charges generically enhances the jet quenching phenomenon. However, at fixed temperature, this enhancement might or might not be a monotonically increasing function of the R-charge density and depends on the number of independent angular momenta describing the solution. We perform our analysis for the canonical as well as for the grand canonical ensemble which give qualitatively similar results.
Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor
Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.; Zhigadlo, N. D.; Kazakov, S. M.; Burghammer, M.; Zimmermann, M. V.; Sprung, M.; Ricci, A.
2015-09-01
It has recently been established that the high-transition-temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high-temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant order that provides a basis for nanoscale phase separation remains a key open question, because experiments have yet to probe the unknown spatial distribution at both the nanoscale and mesoscale (between atomic and macroscopic scale). Here we report micro X-ray diffraction imaging of the spatial distribution of both short-range charge-density-wave `puddles' (domains with only a few wavelengths) and quenched disorder in HgBa2CuO4 + y, the single-layer cuprate with the highest Tc, 95 kelvin (refs 26, 27, 28). We found that the charge-density-wave puddles, like the steam bubbles in boiling water, have a fat-tailed size distribution that is typical of self-organization near a critical point. However, the quenched disorder, which arises from oxygen interstitials, has a distribution that is contrary to the usually assumed random, uncorrelated distribution. The interstitial-oxygen-rich domains are spatially anticorrelated with the charge-density-wave domains, because higher doping does not favour the stripy charge-density-wave puddles, leading to a complex emergent geometry of the spatial landscape for superconductivity.
Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor.
Campi, G; Bianconi, A; Poccia, N; Bianconi, G; Barba, L; Arrighetti, G; Innocenti, D; Karpinski, J; Zhigadlo, N D; Kazakov, S M; Burghammer, M; Zimmermann, M v; Sprung, M; Ricci, A
2015-09-17
It has recently been established that the high-transition-temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high-temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant order that provides a basis for nanoscale phase separation remains a key open question, because experiments have yet to probe the unknown spatial distribution at both the nanoscale and mesoscale (between atomic and macroscopic scale). Here we report micro X-ray diffraction imaging of the spatial distribution of both short-range charge-density-wave 'puddles' (domains with only a few wavelengths) and quenched disorder in HgBa2CuO4 + y, the single-layer cuprate with the highest Tc, 95 kelvin (refs 26-28). We found that the charge-density-wave puddles, like the steam bubbles in boiling water, have a fat-tailed size distribution that is typical of self-organization near a critical point. However, the quenched disorder, which arises from oxygen interstitials, has a distribution that is contrary to the usually assumed random, uncorrelated distribution. The interstitial-oxygen-rich domains are spatially anticorrelated with the charge-density-wave domains, because higher doping does not favour the stripy charge-density-wave puddles, leading to a complex emergent geometry of the spatial landscape for superconductivity. PMID:26381983
Finite temperature bosonic charge and current densities in compactified cosmic string spacetime
Mohammadi, A.; Bezerra de Mello, E. R.
2016-06-01
In this paper, we study the expectation values of the induced charge and current densities for a massive bosonic field with nonzero chemical potential in the geometry of a higher-dimensional compactified cosmic string with magnetic fluxes along the string core and also enclosed by the compactified direction in thermal equilibrium at finite temperature T . These densities are calculated by decomposing them into the vacuum expectation values and finite temperature contributions coming from the particles and antiparticles. The only nonzero components correspond to the charge, azimuthal, and axial current densities. By using the Abel-Plana formula, we decompose the components of the densities into the part induced by the cosmic string and the one by the compactification. The charge density is an odd function of the chemical potential and even periodic function of the magnetic flux with a period equal to the quantum flux. Moreover, the azimuthal (axial) current density is an even function of the chemical potential and an odd (even) periodic function of the magnetic flux with the same period. In this paper, our main concern is the thermal effect on the charge and current densities, including some limiting cases, the low- and high-temperature approximations. We show that in all cases, the temperature enhances the induced densities.
d-Density Wave Scenario Description of the New Hidden Charge Order in Cuprates
Makhfudz, Imam
2016-06-01
In this paper, we show that the theory of high Tc superconductivity based on a microscopic model with d-density wave (DDW) scenario in the pseudogap phase is able to reproduce some of the most important features of the recent experimentally discovered hidden charge order in several families of Cuprates. In particular, by computing and comparing energies of charge orders of different modulation directions derived from a full microscopic theory with d-density wave scenario, the axial charge order ϕX(Y) with wavevector {Q} = (Q0,0)((0,Q0)) is shown to be unambiguously energetically more favorable over the diagonal charge order ϕX±Y with wavevector {Q} = (Q0, ± Q0) at least in commensurate limit, to be expected also to hold even to more general incommensurate case, in agreement with experiment. The two types of axial charge order ϕX and ϕY are degenerate by symmetry. We find that within the superconducting background, biaxial (checkerboard) charge order is energetically more favorable than uniaxial (stripe) charge order, and therefore checkerboard axial charge order should be the one observed in experiments, assuming a single domain of charge ordered state on each CuO2 plane.
S Haddad
2010-09-01
The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable.
The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and the central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable. (author)
Low Density Phases in a Uniformly Charged Liquid
Knüpfer, Hans; Muratov, Cyrill B.; Novaga, Matteo
2016-07-01
This paper is concerned with the macroscopic behavior of global energy minimizers in the three-dimensional sharp interface unscreened Ohta-Kawasaki model of diblock copolymer melts. This model is also referred to as the nuclear liquid drop model in the studies of the structure of highly compressed nuclear matter found in the crust of neutron stars, and, more broadly, is a paradigm for energy-driven pattern forming systems in which spatial order arises as a result of the competition of short-range attractive and long-range repulsive forces. Here we investigate the large volume behavior of minimizers in the low volume fraction regime, in which one expects the formation of a periodic lattice of small droplets of the minority phase in a sea of the majority phase. Under periodic boundary conditions, we prove that the considered energy {Γ}-converges to an energy functional of the limit "homogenized" measure associated with the minority phase consisting of a local linear term and a non-local quadratic term mediated by the Coulomb kernel. As a consequence, asymptotically the mass of the minority phase in a minimizer spreads uniformly across the domain. Similarly, the energy spreads uniformly across the domain as well, with the limit energy density minimizing the energy of a single droplet per unit volume. Finally, we prove that in the macroscopic limit the connected components of the minimizers have volumes and diameters that are bounded above and below by universal constants, and that most of them converge to the minimizers of the energy divided by volume for the whole space problem.
Hoeng, Fanny; Denneulin, Aurore [Université Grenoble Alpes, LGP2 (France); Neuman, Charles [Poly-Ink (France); Bras, Julien, E-mail: julien.bras@grenoble-inp.fr [Université Grenoble Alpes, LGP2 (France)
2015-06-15
Synthesis of silver nanoparticles using cellulose nanocrystals (CNC) has been found to be a great method for producing metallic particles in a sustainable way. In this work, we propose to evaluate the influence of the charge density of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-oxidized CNC on the morphology and the stability of synthetized silver nanoparticles. Silver nanoparticles were obtained by sol–gel reaction using borohydride reduction, and charge density of TEMPO-oxidized CNC was tuned by an amine grafting. The grafting was performed at room temperature and neutral pH. Crystallinity and morphology were kept intact during the peptidic reaction on CNC allowing knowing the exact impact of the charge density. Charge density has been found to have a strong impact on shape, organization, and suspension stability of resulting silver particles. Results show an easy way to tune the charge density of CNC and propose a sustainable way to control the morphology and stability of silver nanoparticles in aqueous suspension.
Ghasemi, S. Alireza; Hofstetter, Albert; Saha, Santanu; Goedecker, Stefan
2015-07-01
Based on an analysis of the short-range chemical environment of each atom in a system, standard machine-learning-based approaches to the construction of interatomic potentials aim at determining directly the central quantity, which is the total energy. This prevents, for instance, an accurate description of the energetics of systems in which long-range charge transfer or ionization is important. We propose therefore not to target directly with machine-learning methods the total energy but an intermediate physical quantity, namely, the charge density, which then in turn allows us to determine the total energy. By allowing the electronic charge to distribute itself in an optimal way over the system, we can describe not only neutral but also ionized systems with unprecedented accuracy. We demonstrate the power of our approach for both neutral and ionized NaCl clusters where charge redistribution plays a decisive role for the energetics. We are able to obtain chemical accuracy, i.e., errors of less than a millihartree per atom compared to the reference density functional results for a huge data set of configurations with large structural variety. The introduction of physically motivated quantities which are determined by the short-range atomic environment via a neural network also leads to an increased stability of the machine-learning process and transferability of the potential.
Suppression of Three-Dimensional Charge Density Wave Ordering via Thickness Control
Kim, Gideok; Neumann, Michael; Kim, Minu; Le, Manh Duc; Kang, Tae Dong; Noh, Tae Won
2015-11-01
Barium bismuth oxide (BaBiO3 ) is the end member of two families of high-Tc superconductors, i.e., BaPb1 -xBix O3 and Ba1 -xKx BiO3 . The undoped parent compound is an insulator, exhibiting a charge density wave that is strongly linked to a static breathing distortion in the oxygen sublattice of the perovskite structure. We report a comprehensive spectroscopic and x-ray diffraction study of BaBiO3 thin films, showing that the minimum film thickness required to stabilize the breathing distortion and charge density wave is ≈11 unit cells, and that both phenomena are suppressed in thinner films. Our results constitute the first experimental observation of charge density wave suppression in bismuthate compounds without intentionally introducing dopants.
Elastic anomalies at the charge density wave transition in TbTe3
Saint-Paul, M.; Guttin, C.; Lejay, P.; Remenyi, G.; Leynaud, O.; Monceau, P.
2016-05-01
The set of elastic constants of the charge density wave (CDW) rare earth tritelluride TbTe3 has been measured at 15 MHz in the temperature range 300-360 K. Large anomalies in the velocity and ultrasonic attenuation of the longitudinal C11 and C33 modes are observed at the charge density wave phase transition TCDW=333 K. Anisotropic stress dependence ∂TCDW / ∂σ is found, the components ∂TCDW / ∂σ11 and ∂TCDW / ∂σ33 in the (a,c) plane are one order of magnitude larger than the component ∂TCDW / ∂σ22 perpendicular to it. The Landau theory has been used to explain the experimental data. Critical behaviour near the charge density wave phase transition is described in terms of a phenomenological dynamic scaling theory.
Full charge-density calculation of the surface energy of metals
Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt
1994-01-01
We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by means...... of a spherically symmetrized charge density, while the Coulomb and exchange-correlation contributions are calculated by means of the complete, nonspherically symmetric charge density within nonoverlapping, space-filling Wigner-Seitz cells. The functional is used to assess the convergence and the...... accuracy of the linear-muffin-tin-orbitals (LMTO) method and the ASA in surface calculations. We find that the full charge-density functional improves the agreement with recent full-potential LMTO calculations to a level where the average deviation in surface energy over the 4d series is down to 10%....
Zhou Dai Mei; Sá Ben-Hao; Li Zhong Dao
2002-01-01
Using a hadron and string cascade model, JPCIAE, and the corresponding Monte Carlo events generator, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p anti p experimental data and the PHOBOS and PHENIX Au + Au data could be reproduced fairly well without retuning the model parameters. The author shows that since is not a well defined physical variable both experimentally and theoretically, the charged particle pseudorapidity density per participant pair can increase and also can decrease with increasing of , so it may be hard to use charged particle pseudorapidity density per participant pair as a function of to distinguish various theoretical models for particle production
Using a hadron and string cascade model, JPCIAE, and the corresponding Monte Carlo events generator, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p anti p experimental data and the PHOBOS and PHENIX Au + Au data could be reproduced fairly well without retuning the model parameters. The author shows that since part> is not a well defined physical variable both experimentally and theoretically, the charged particle pseudorapidity density per participant pair can increase and also can decrease with increasing of part>, so it may be hard to use charged particle pseudorapidity density per participant pair as a function of part> to distinguish various theoretical models for particle production
Trapped charge densities in Al2O3-based silicon surface passivation layers
Jordan, Paul M.; Simon, Daniel K.; Mikolajick, Thomas; Dirnstorfer, Ingo
2016-06-01
In Al2O3-based passivation layers, the formation of fixed charges and trap sites can be strongly influenced by small modifications in the stack layout. Fixed and trapped charge densities are characterized with capacitance voltage profiling and trap spectroscopy by charge injection and sensing, respectively. Al2O3 layers are grown by atomic layer deposition with very thin (˜1 nm) SiO2 or HfO2 interlayers or interface layers. In SiO2/Al2O3 and HfO2/Al2O3 stacks, both fixed charges and trap sites are reduced by at least a factor of 5 compared with the value measured in pure Al2O3. In Al2O3/SiO2/Al2O3 or Al2O3/HfO2/Al2O3 stacks, very high total charge densities of up to 9 × 1012 cm-2 are achieved. These charge densities are described as functions of electrical stress voltage, time, and the Al2O3 layer thickness between silicon and the HfO2 or the SiO2 interlayer. Despite the strong variation of trap sites, all stacks reach very good effective carrier lifetimes of up to 8 and 20 ms on p- and n-type silicon substrates, respectively. Controlling the trap sites in Al2O3 layers opens the possibility to engineer the field-effect passivation in the solar cells.
Correlation between the extent of catalytic activity and charge density of montmorillonites.
Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer
2010-09-01
The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH₃-(CH₂)(n)-NH₃](+), where n = 3-16 and 18, and then measuring d(₀₀₁), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. PMID:20854214
Miranda Carreño, Rubén; Blanco Suárez, Ángeles; Fuente González, Elena de la; Negro Álvarez, Carlos Manuel
2008-01-01
The effect of charge density of 5 cationic polyacrylamides (C-PAMs)and 3 anionic polyacrylamides (A-PAMs) in single and in dual treatments with a coagulant on the flocculation and removal of dissolved and colloidal material by dissolved air flotation (DAF) in papermaking has been studied. In single systems, good results were achieved both with low and high charge C-PAMs(1.0and 3.0–3.5 meq/g). In dual sy tems, high charge C-PAMs (3.0–3.5 meq/g)and A-PAMs (1.5 meq/g), were the most efficient. R...
X-ray diffraction studies of charge density waves in cuprate superconductors: A brief review
High temperature superconductivity in the cuprates has fascinated scientists for more than 25 years, but there is still no consensus on the pairing mechanism. Soon after the discovery of high temperature superconductivity, it was suggested that the cuprates have an incipient tendency towards spatial electronic order – spin and charge order. In this paper, I will review X-ray diffraction studies of charge density waves in the cuprates. These results, by a number of different groups, indicate that short-range charge correlations exist across the cuprate family, and in many cases are clearly competing with the superconductivity
Effect of ground state correlations on the charge transition densities of vibrational states
The effect of ground state correlations on the charge transition densities of vibrational states in spherical nuclei is studied. The problem for the ground state correlations beyond RPA leads to a non-linear system of equations, which is solved numerically. The influence of the correlations on the pairing is taken into account too. The inclusion of ground state correlations beyond RPA results in an essential suppression of the charge transition density in the nuclear interior in comparison with the RPA calculations and enables one to reproduce the experimental data. 30 refs., 7 figs., 3 tabs
Laktionov, Andrey; Chemineau-Chalaye, Emilie; Wesolowski, Tomasz A
2016-08-21
Besides molecular electron densities obtained within the Born-Oppenheimer approximation (ρB(r)) to represent the environment, the ensemble averaged density (〈ρB〉(r)) is also admissible in frozen-density embedding theory (FDET) [Wesolowski, Phys. Rev. A, 2008, 77, 11444]. This makes it possible to introduce an approximation in the evaluation of the solvent effect on quantum mechanical observables consisting of replacing the ensemble averaged observable by the observable evaluated at ensemble averaged ρB(r). This approximation is shown to affect negligibly the solvatochromic shift in the absorption of hydrated acetone. The proposed model provides a continuum type of representation of the solvent, which reflects nevertheless its local structure, and it is to be applied as a post-simulation analysis tool in atomistic level simulations. PMID:26984532
Spatially separated charge densities of electrons and holes in organic-inorganic halide perovskites
Solution-processable methylammonium lead trihalide perovskites exhibit remarkable high-absorption and low-loss properties for solar energy conversion. Calculation from density functional theory indicates the presence of non-equivalent halogen atoms in the unit cell because of the specific orientation of the organic cation. Considering the 〈100〉 orientation as an example, I1, one of the halogen atoms, differs from the other iodine atoms (I2 and I3) in terms of its interaction with the organic cation. The valance-band-maximum (VBM) and conduction-band-minimum (CBM) states are derived mainly from 5p orbital of I1 atom and 6p orbital of Pb atom, respectively. The spatially separated charge densities of the electrons and holes justify the low recombination rate of the pure iodide perovskite. Chlorine substitution further strengthens the unique position of the I1 atom, leading to more localized charge density around the I1 atom and less charge density around the other atoms at the VBM state. The less overlap of charge densities between the VBM and CBM states explains the relatively lower carrier recombination rate of the iodine-chlorine mixed perovskite. Chlorine substitution significantly reduces the effective mass at a direction perpendicular to the Pb-Cl bond and organic axis, enhancing the carrier transport property of the mixed perovskite in this direction
Spatially separated charge densities of electrons and holes in organic-inorganic halide perovskites
Li, Dan; Liang, Chunjun, E-mail: chjliang@bjtu.edu.cn, E-mail: zhqhe@bjtu.edu.cn; Zhang, Huimin; You, Fangtian; He, Zhiqun, E-mail: chjliang@bjtu.edu.cn, E-mail: zhqhe@bjtu.edu.cn [Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chunxiu [Information Recording Materials Lab, Beijing Institute of Graphic Communication, Beijing 102600 (China)
2015-02-21
Solution-processable methylammonium lead trihalide perovskites exhibit remarkable high-absorption and low-loss properties for solar energy conversion. Calculation from density functional theory indicates the presence of non-equivalent halogen atoms in the unit cell because of the specific orientation of the organic cation. Considering the 〈100〉 orientation as an example, I{sub 1}, one of the halogen atoms, differs from the other iodine atoms (I{sub 2} and I{sub 3}) in terms of its interaction with the organic cation. The valance-band-maximum (VBM) and conduction-band-minimum (CBM) states are derived mainly from 5p orbital of I{sub 1} atom and 6p orbital of Pb atom, respectively. The spatially separated charge densities of the electrons and holes justify the low recombination rate of the pure iodide perovskite. Chlorine substitution further strengthens the unique position of the I{sub 1} atom, leading to more localized charge density around the I{sub 1} atom and less charge density around the other atoms at the VBM state. The less overlap of charge densities between the VBM and CBM states explains the relatively lower carrier recombination rate of the iodine-chlorine mixed perovskite. Chlorine substitution significantly reduces the effective mass at a direction perpendicular to the Pb-Cl bond and organic axis, enhancing the carrier transport property of the mixed perovskite in this direction.
Induced fermionic charge and current densities in two-dimensional rings
Bellucci, S; Grigoryan, A Kh
2016-01-01
For a massive quantum fermionic field, we investigate the vacuum expectation values (VEVs) of the charge and current densities induced by an external magnetic flux in a two-dimensional circular ring. Both the irreducible representations of the Clifford algebra are considered. On the ring edges the bag (infinite mass) boundary conditions are imposed for the field operator. This leads to the Casimir type effect on the vacuum characteristics. The radial current vanishes. The charge and the azimuthal current are decomposed into the boundary-free and boundary-induced contributions. Both these contributions are odd periodic functions of the magnetic flux with the period equal to the flux quantum. An important feature that distinguishes the VEVs of the charge and current densities from the VEV of the energy density, is their finiteness on the ring edges. The current density is equal to the charge density for the outer edge and has the opposite sign on the inner edge. The VEVs are peaked near the inner edge and, as f...
Density decrease in vanadium-base alloys irradiated in the dynamic helium charging experiment
Chung, H.M.; Galvin, T.M.; Smith, D.L. [Argonne National Laboratory, Chicago, IL (United States)
1996-04-01
Combined effects of dynamically charged helium and neutron damage on density decrease (swelling) of V-4Cr-4Ti, V-5Ti, V-3Ti-1Si, and V-8Cr-6Ti alloys have been determined after irradiation to 18-31 dpa at 425-600{degrees}C in the Dynamic helium Charging Experiment (DHCE). To ensure better accuracy in density measurement, broken pieces of tensile specimens {approx} 10 times heavier than a transmission electron microscopy (TEM) disk were used. Density increases of the four alloys irradiated in the DHCE were <0.5%. This small change seems to be consistent with the negligible number density of microcavities characterized by TEM. Most of the dynamically produced helium atoms seem to have been trapped in the grain matrix without significant cavity nucleation or growth.
Bellucci, S; Bragança, E; Saharian, A A
2016-01-01
We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even funct...
A High Power Density Three-level Parallel Resonant Converter for Capacitor Charging
Sheng, Honggang
2009-01-01
This dissertation proposes a high-power, high-frequency and high-density three-level parallel resonant converter for capacitor charging. DC-DC pulsed power converters are widely used in military and medical systems, where the power density requirement is often stringent. The primary means for reducing the power converter size has been to reduce loss for reduced cooling systems and to increase the frequency for reduced passive components. Three-level resonant converters, which combine the mer...
Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim
2001-01-01
Laser induced pressure pulse space charge measurements were made on 1.5 mm thick plaques of high purity low density polyethylene equipped with vacuum-evaporated aluminium electrodes. Temperature differences up to 20 °C were maintained across the samples, which were subjected to dc fields up to 1...
Equation of state for the detonation products of hexanitrostilbene at various charge densities
Lee, E. L.; Walton, J. R.; Kramer, P. E.
1976-05-01
An extensive description of the detonation behavior for the unique and useful high explosive hexanitrostilbene (HNS) is presented. To accomplish this the necessary experimental results measured by detonation of the pure material at charge densities of 1.00, 1.20, 1.40, 1.60, and 1.65 (g/cm/sup 3/ = Mg/m/sup 3/) were compiled and evaluated. Estimates of the equation of state of the detonation products were made for each charge density. To confirm these estimates two-dimensional hydrodynamic (HEMP code) calculations to simulate the cylinder test experiments for two charge densities of 1.2 and 1.6 Mg/m/sup 3/ were carried out. Detailed comparisons of the calculational and experimental results were made for these two tests. Interpolation and extrapolation of the equation of state parameters provided final estimates for the other charge densities. The results are summarized in five sets of Chapman-Jouguet parameters and JWL equation of state coefficients.
Scanning tunneling microscopy in TTF-TCNQ: Phase and amplitude modulated charge density waves
Wang, Z.Z.; Gorard, J.C.; Pasquier, C.; Jerome, D.; Bechgaard, K.
2003-01-01
Charge density waves (CDWs) have been studied at the surface of a cleaved tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) single crystal using a low temperature scanning tunneling microscope (STM) under ultrahigh-vacuum conditions, between 300 and 33 K with molecular resolution. All CDW...
Time-resolved Fermi surface mapping of the charge density wave material DyTe3
Wolf M.
2013-03-01
Full Text Available The femtosecond dynamics of the Fermi surface of DyTe3 and its band structure are investigated by time- and angle-resolved photoemission spectroscopy. We directly monitor the ultrafast collapse of the charge density wave gap within 200 fs.
Investigation of space charge in low-density polyethylene using a field probe technique
Khalil, M. Salah; Hansen, Bo Svarrer
1988-01-01
A test method that uses a capacitive field probe to investigate the space charge distribution in low-density polyethylene (LDPE) is described. Specimens of 7-mm thickness were stressed under 100 kV DC at room temperature and for different time periods. The results indicate that the LDPE insulation...
无
2000-01-01
Based on the density functional theory and the atom-bond electronegativity equalization model (ABEEM), a method is proposed to construct the softness matrix and to obtain the electron population normal modes (PNMs) for a closed system. Using this method the information about the bond charge polarization in a molecule can be obtained easily. The test calculation shows that the PNM obtained by this method includes all the modes about the bond charge polarization explicitly. And the bond charge polarization mode characterized by the biggest eigenvalue, which is the softest one of all modes related with chemical bonds, can describe the charge polarization process in a molecule as exquisitely as the corresponding ab initio method.
Blaise, G.; Pesty, F.; Garoche, P.
2009-02-01
Using a dedicated scanning electron microscope, operating in the spot mode, the charging properties of muscovite mica have been studied in the energy range of 100-8000 eV. The intrinsic yield curve σ0(E), representing the variation of the yield of the uncharged material with the energy E, has been established: the maximum value of the yield is 3.92 at E =300 eV and the two crossovers corresponding to σ0(E)=1 are, respectively, at energies EIexoemission (bursts of electrons) is produced at low energy when the net stored charge is positive. The interpretation of the current density effect on σ(D ) is based on the high rate of charging, the effect relative to negative charging is due to the expansion of the electron distribution, while the exoemission effect is due to the collective relaxation process of electrons.
Mokhtaria Drissi
2013-01-01
Full Text Available The molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the in-crystal molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. In this crystal, the molecules form dimers via N–HS intermolecular hydrogen bonds. The dimers are further linked by C–HO hydrogen bonds into chains along the c crystallographic axis. This study has also allowed us to determine the electrostatic potential and therefore locate the electropositive part and the electronegative part in molecular scale of the title compound.
Charge density wave crossover at low fillings in the fractional quantum Hall regime
We show that besides the Wigner Crystal, the lowest Landau level supports a state with the same crystalline symmetry but qualitatively different charge density distribution at low densities. Instead of periodic peaks the new state forms percolating ridges that may favor an energy decrease through correlated ring exchange contributions. For the case of half electron per cell a crossover is found close to filling 1/7 between this new state and the Wigner-like solid, showing that transitions may occur from one to the other as the electron density is varied. This result is consistent with recent experimental findings. (author)
The influence of oxidation on space charge formation in gamma-irradiated low-density polyethylene
Chen, G; Xie, H K; Banford, H M; Davies, A E
2003-01-01
The research presented in this paper investigates the role of oxidation in the formation of space charge in gamma-irradiated low-density polyethylene after being electrically stressed under dc voltage. Polyethylene plaques both with and without antioxidant were irradiated up to 500 kGy using a sup 6 sup 0 Co gamma source and space charge distributions were measured using the piezoelectric induced pressure wave propagation method. It has been found that a large amount of positive charge evolved adjacent to the cathode in the sample without antioxidant and was clearly associated with oxidation of the surface. The amount of charge formed for a given applied stress increased with the dose absorbed by the material. A model has been proposed to explain the formation of space charge and its profile. The charge decay after the removal of the external applied stress is dominated by a process being controlled by the cathode interfacial stress (charge injection) rather than a conventional RC circuit model. On the other ...
Transverse charge and magnetization densities in the nucleon's chiral periphery
Granados, Carlos G. [JLAB Newport News, VA (United States); Weiss, Christian [JLAB Newport News, VA (United States)
2014-01-01
In the light-front description of nucleon structure the electromagnetic form factors are expressed in terms of frame-independent transverse densities of charge and magnetization. Recent work has studied the transverse densities at peripheral distances b = O(M{pi}{sup -1}), where they are governed by universal chiral dynamics and can be computed in a model-independent manner. Of particular interest is the comparison of the peripheral charge and magnetization densities. We summarize (a) their interpretation as spin-independent and -dependent current matrix elements; (b) the leading-order chiral effective field theory results; (c) their mechanical interpretation in the light-front formulation; (d) the large-N_c limit of QCD and the role of {Delta} intermediate states; (e) the connection with generalized parton distributions and peripheral high-energy scattering processes.
Chemical bonding in view of electron charge density and kinetic energy density descriptors.
Jacobsen, Heiko
2009-05-01
Stalke's dilemma, stating that different chemical interpretations are obtained when one and the same density is interpreted either by means of natural bond orbital (NBO) and subsequent natural resonance theory (NRT) application or by the quantum theory of atoms in molecules (QTAIM), is reinvestigated. It is shown that within the framework of QTAIM, the question as to whether for a given molecule two atoms are bonded or not is only meaningful in the context of a well-defined reference geometry. The localized-orbital-locator (LOL) is applied to map out patterns in covalent bonding interaction, and produces results that are consistent for a variety of reference geometries. Furthermore, LOL interpretations are in accord with NBO/NRT, and assist in an interpretation in terms of covalent bonding. PMID:19090572
The utility of charge pumping to measure Si-SiO2 interface trap density in irradiated four-terminal VDMOSFETs is demonstrated. A modification of the conventional charge pumping approach is employed, where recombination of charge through interface traps in the neck region is measured in the drain. Three components of drain current resulting from the charge pumping measurement are identified. When the device is properly biased, charge pumping current can be separated from the other components of drain current and modeled over a wide range of interface trap densities using standard charge pumping theory. When sources of error are accounted for, radiation-induced interface trap densities measured with charge pumping are in good quantitative agreement with those estimated with the midgap charge separation and subthreshold hump techniques
The extended Peierls-Hubbard model is used to study the competition of the spin-density-wave (SDW) and charge-density-wave (CDW) states as well as the attendant localized excitations in quasi-one-dimensional systems like MX-chains. The ground state properties are first studied as a function of the Coulomb interaction U and the on-site electron-phonon coupling λ2. The SDW state dominates in the region of large U and small λ2, while the CDW state prevails in the opposite limit. In the intermediate region these two states compete with each other, one being stable, whereas the other being metastable. The localized excitations (polarons and excitons) are studied in detail in each region using the Bogoliubov-de Gennes formalism. The self-trapped excitons (STE) in the CDW dominating regime contain locally non-vanishing SDW distortions and vice versa. As λ2 increases, the number of bound states changes from two to four for the exciton case and from two to three for the polaron case. Upon its further increase, one type of STE with a certain pattern of SDW distortion and charge transfer is transforming into another type of STE with a different pattern. The possibilities of verifying the ground state properties in optical and transport experiments and identifying these local excitations in Raman and ENDOR measurements are discussed. (author). 25 refs, 11 figs
Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction
Complex hydrides, such as lithium amide (LiNH2) and lithium imide (Li2NH), have recently been noticed as one of the most promising materials for reversible hydrogen storage. In this paper, we reveal the bonding nature of hydrogen in Li2NH crystal by synchrotron powder X-ray diffraction measurement at room temperature. The crystal structure was refined by Rietveld method and the charge density distribution was analyzed by maximum entropy method (MEM). The Li2NH crystal is anti-fluorite type structure (space group Fm3-bar m) consisting of Li and NH. Hydrogen atom occupies randomly the 48h (Wyckoff notation) sites around N atom. The refined lattice constant is a=5.0742(2)A. The charge density distribution around NH anion in Li2NH is almost spherical. The number of electrons within the sphere around the Li and NH is estimated from the obtained charge density distribution. As the result, the ionic charge is expressed as [Li0.99+]2[NH]1.21-. Therefore, it is confirmed experimentally that Li2NH is ionically bonded
Fractional-charge and fractional-spin errors in range-separated density-functional theory
Mussard, Bastien
2016-01-01
We investigate fractional-charge and fractional-spin errors in range-separated density-functional theory. Specifically, we consider the range-separated hybrid (RSH) method which combines long-range Hartree-Fock (HF) exchange with a short-range semilocal exchange-correlation density functional, and the RSH+MP2 method which adds long-range second-order M{{\\o}}ller-Plesset (MP2) correlation. Results on atoms and molecules show that the fractional-charge errors obtained in RSH are much smaller than in the standard Kohn-Sham (KS) scheme applied with semilocal or hybrid approximations, and also generally smaller than in the standard HF method. The RSH+MP2 method tends to have smaller fractional-charge errors than standard MP2 for the most diffuse systems, but larger fractional-charge errors for the more compact systems. Even though the individual contributions to the fractional-spin errors in the H atom coming from the short-range exchange and correlation density-functional approximations are smaller than the corre...
Standard hydrogen electrode and potential of zero charge in density functional calculations
Tripkovic, Vladimir; Björketun, Mårten; Skúlason, Egill;
2011-01-01
Methods to explicitly account for half-cell electrode potentials have recently appeared within the framework of density functional theory. The potential of the electrode relative to the standard hydrogen electrode is typically determined by subtracting the experimental value of the absolute...... functional setups. By analyzing a dozen different water structures, built up from water hexamers, in their uncharged [potential of zero charge (PZC)] states on Pt(111), we then determine three different criteria (no net dipole, no charge transfer, and high water flexibility) that a water structure should...
Jung, Ju-Hyun; Yakhshiev, Ulugbek; Kim, Hyun-Chul
2016-03-01
We investigate the medium modification of the generalized vector form factors of the nucleon, which include the electromagnetic and energy-momentum tensor form factors, based on an in-medium modified π -ρ -ω soliton model. We find that the vector form factors of the nucleon in nuclear matter fall off faster than those in free space, which implies that the charge radii of the nucleon become larger in nuclear medium than in free space. We also compute the corresponding transverse charge densities of the nucleon in nuclear matter, which clearly reveal the increasing of the nucleon size in nuclear medium.
Jung, Ju-Hyun; Kim, Hyun-Chul
2015-01-01
We investigate the medium modification of the generalized vector form factors of the nucleon, which include the electromagnetic and energy-momentum tensor form factors, based on an in-medium modified $\\pi$-$\\rho$-$\\omega$ soliton model. We find that the vector form factors of the nucleon in nuclear matter fall off faster than those in free space, which implies that the charge radii of the nucleon become larger in nuclear medium than in free space. We also compute the corresponding transverse charge densities of the nucleon in nuclear matter, which clearly reveal the increasing of the nucleon size in nuclear medium.
Tian, Kai; Cao, Zhou; Xue, Yu-Xiong; Yang, Shi-Yu
2010-01-01
Heavy ions and pulsed lasers are important means to simulate the ionization damage effects on semiconductor materials. The analytic solution of high-energy heavy ion energy loss in silicon has been obtained using the Bethe-Bloch formula and the Kobetich-Katz theory, and some ionization damage parameters of Fe ions in silicon, such as the track structure and ionized charge density distribution, have been calculated and analyzed according to the theoretical calculation results. Using the Gaussian function and Beer's law, the parameters of the track structure and charge density distribution induced by a pulsed laser in silicon have also been calculated and compared with those of Fe ions in silicon, which provides a theoretical basis for ionization damage effect modeling.
Pushing X-ray charge densities to the limit: Comparative study of CoSb3
Schmøkel, Mette Stokkebro; Larsen, Finn Krebs; Overgaard, Jacob; Bjerg, Lasse; Cenedese, Simone; Jørgensen, Mads Ry Vogel; Christensen, Mogens; Iversen, Bo Brummerstedt
CoSb3 is a highly important host-guest material for the engineering of high-performance thermoelectric materials.[1] Its crystal structure has empty cavities and when guest atoms are added to CoSb3, its thermoelectric properties are greatly enhanced due to decreased thermal conductivity.[2] In...... order to understand the origin of the thermoelectric properties of this family of materials, it is important to understand the crystal structure and chemical bonding of the un-doped host material.[3] This can be achieved through analysis of the charge density, which in principle can be obtained from...... modeling of accurate X-ray diffraction data.[4] However, considering the heavy elements, the high symmetry and the perfect crystallinity of this inorganic network structure one cannot think of a much more challenging case for experimental charge density analysis. In the present study we analyze several low...
Exploring effective interactions through transition charge density study of 70,72,74,76Ge nuclei
A Shukla; P K Raina; P K Rath
2005-02-01
Transition charge densities (TCD) for $0^{+} → 2_{1}^{+}$ excitation have been calculated for 70, 72, 74, 76Ge nuclei within microscopic variational framework employing 23/2, 15/2, 21/2 and 19/2 valence space. The calculated TCDs for different monopole variants of Kuo interaction are compared with available experimental results. Other systematics like reduced transition probabilities (2) and static quadrupole moments (2) are also presented. It is observed that the transition density study acts as a sensitive probe for discriminating the response of different parts of effective interactions.
Oberhofer, H
2009-01-01
We present a plane-wave basis set implementation of charge constrained density functional molecular dynamics (CDFT-MD) for simulation of electron transfer reactions in condensed phase systems. Following earlier work of Wu et al. Phys. Rev. A 72, 024502 (2005), the density functional is minimized under the constraint that the charge difference between donor and acceptor is equal to a given value. The classical ion dynamics is propagated on the Born-Oppenheimer surface of the charge constrained state. We investigate the dependence of the constrained energy and of the energy gap on the definition of the charge, and present expressions for the constraint forces. The method is applied to the Ru2+-Ru3+ electron self-exchange reaction in aqueous solution. Sampling the vertical energy gap along CDFT-MD trajectories, and correcting for finite size effects, a reorganization free energy of 1.6 eV is obtained. This is 0.1-0.2 eV lower than a previous estimate based on a continuum model for solvation. smaller value for re...
The malleability of uranium: manipulating the charge-density wave in epitaxial films
Springell, R.; Ward, R. C. C.; Bouchet, J.; Chivall, J.; Wermeille, D.; Normile, P. S.; Langridge, S.; Zochowski, S W; Lander, G. H.
2014-01-01
We report x-ray synchrotron experiments on epitaxial films of uranium, deposited on niobium and tungsten seed layers. Despite similar lattice parameters for these refractory metals, the uranium epitaxial arrangements are different and the strains propagated along the a-axis of the uranium layers are of opposite sign. At low temperatures these changes in epitaxy result in dramatic modifications to the behavior of the charge-density wave in uranium. The differences are explained with the curren...
Charge density wave in graphene: magnetic-field-induced Peierls instability
Fuchs, Jean-Noël; Lederer, Pascal
2006-01-01
We suggest that a magnetic-field-induced Peierls instability accounts for the recent experiment of Zhang et al. in which unexpected quantum Hall plateaus were observed at high magnetic fields in graphene on a substrate. This Peierls instability leads to an out-of-plane lattice distortion resulting in a charge density wave (CDW) on sublattices A and B of the graphene honeycomb lattice. We also discuss alternative microscopic scenarios proposed in the literature and leading to a similar CDW gro...
Charge density wave in graphene: magnetic-field-induced Peierls instability
Fuchs, Jean-Noël; Lederer, Pascal
2007-01-01
Proceeding of the "graphene conference" (25 September - 01 October 2006) held in Dresden. We suggest that a magnetic-field-induced Peierls instability accounts for the recent experiment of Zhang et al. in which unexpected quantum Hall plateaus were observed at high magnetic fields in graphene on a substrate. This Peierls instability leads to an out-of-plane lattice distortion resulting in a charge density wave (CDW) on sublattices A and B of the graphene honeycomb lattice. We also discuss ...
Astakhov, O.; Carius, R.; F. Finger; Petrusenko, Y.; Borysenko, V.; Barankov, D.
2009-01-01
The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparin...
Thermal ageing and its impact on charge trap density and breakdown strength in ldpe LDPE
Li, Ziyun; Chen, George; Fu, Mingli; Hou, Shuai
2015-01-01
Low-density polyethylene (LDPE) has been widely used as power cable insulation, because of its good electrical performance and stable chemical characteristics. However, in recent years, with the rise of large-capacity and long-distance HVDC transmission systems, the effect of space charge has a significant impact on the insulation selection and design. Furthermore, the change in the electrical performance of insulation after ageing is also required to be understood. It has been reported that ...
Infrared signature of the charge-density-wave gap in $ZrTe_3$
Perucchi, A.; Degiorgi, L.; Berger, H.
2005-01-01
The chain-like $ZrTe_3$ compound undergoes a charge-density-wave (CDW) transition at $T_{CDW}=63$ $K$, most strongly affecting the conductivity perpendicular to the chains. We measure the temperature ($T$) dependence of the optical reflectivity from the far infrared up to the ultraviolet with polarized light. The CDW gap $\\Delta(T)$ along the direction perpendicular to the chains is compatible for $T
Nuclear charge-exchange excitations in localized covariant density functional theory
The recent progress in the studies of nuclear charge-exchange excitations with localized covariant density functional theory is briefly presented, by taking the fine structure of spin-dipole excitations in 16O as an example. It is shown that the constraints introduced by the Fock terms of the relativistic Hartree-Fock scheme into the particle-hole residual interactions are straightforward and robust. (authors)
Effect of high magnetic fields on the charge density wave properties of KMo 6O 17
Rötger, A.; Dumas, J.; Marcus, J.; Schlenker, C.; Ulmet, J. P.; Audouard, A.; Askenazy, S.
1992-03-01
The electrical resistivity of the purple bronze KMo 6O 17 has been studied between 2 and 88 K with pulsed magnetic fields up to 35 T. Several anomalies are found on the curves Δρ/ρ(B) at different temperatures. The low field results are compared with previous measurements of susceptibility and magnetization. A phase diagram which may show a field displaced charge density wave instability and field induced transitions is proposed.
Nuclear charge-exchange excitations in localized covariant density functional theory
Liang, H Z; Nakatsukasa, T; Niu, Z M; Ring, P; Roca-Maza, X; Van Giai, N; Zhao, P W
2014-01-01
The recent progress in the studies of nuclear charge-exchange excitations with localized covariant density functional theory is briefly presented, by taking the fine structure of spin-dipole excitations in 16O as an example. It is shown that the constraints introduced by the Fock terms of the relativistic Hartree-Fock scheme into the particle-hole residual interactions are straightforward and robust.
Correlation of scanning-tunneling-microscope image profiles and charge-density-wave amplitudes
Scanning-tunneling-microscope (STM) studies of 4Hb-TaS2 and 4Hb-TaSe2 at 4.2 K show systematic correlation between the charge-density-wave (CDW) amplitude and the STM deflection. The 4Hb phases have both weak and strong CDW's in the trigonal prismatic and octahedral sandwiches, respectively. Scans on opposite faces of the same cleave allow a comparison of the STM response to the two types of CDW
In this paper we discuss representations of charge particle densities in particle-in-cell (PIC) simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2d code of Bassi, designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform (TFCT); and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into Bassi's CSR code, and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
Balsa Terzic, Gabriele Bassi
2011-07-01
In this paper we discuss representations of charge particle densities in particle-in-cell (PIC) simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2d code of Bassi, designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform (TFCT); and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into Bassi's CSR code, and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
Modelling of passive charge exchange emission and neutral background density deduction in JET
Passive Charge Exchange (PCX) emission induced by the interaction of neutral deuterium entering the plasma from the walls, and fully ionised light impurities in a tokamak fusion plasma have been investigated. The incentive was to improve the evaluation accuracy of active charge exchange (ACX) spectra, leading to ion temperature, impurity density and plasma rotation. The reconstruction of synthetic line-of-sight-integrated PCX emission spectra is based on a modelled neutral density profile as derived from the FRANTIC code, local emission rates for D0(1s) and D0(2s) donor states and finally local impurity ion densities (C6+, He2+) from CX analysis. As a result of the PCX modelling the experimental errors in ion temperature values can be reduced and the range of accessible PCX spectra extended from magnetic axis to separatrix. A comparison between the modelled intensity of the synthetic spectra and experimental PCX data allows also a consistency check of neutral density and its radial distribution. (author)
Overlap fermions, which preserve exact chiral symmetry on the lattice, provide a powerful tool for investigating the topological structure of the vacuum. Applying this formulation to zerotemperature quenched SU(3) configurations generated by means of the Luescher-Weisz action, we define the topological charge density with and without UV filtering and study its properties by looking at the density profile and the two-point correlation function. We observe that the density possesses global sign coherent structures, which get increasingly tangled as more and more modes are included. This change of the structure is also detected by the increasing negative tail of the two-point function. We also study the inverse participation ratio of the eigenmodes and discuss their dimensionality. (orig.)
Lagström, Tove; Gmür, Tobias A; Quaroni, Luca; Goel, Alok; Brown, Matthew A
2015-03-31
We show that attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy can be used to determine the surface charge density (SCD) of colloidal silica nanoparticles (NPs) in aqueous solution. We identify the Si-O stretch vibrations of neutral surface bound silanol, ≡Si-OH, and of the deprotonated group, ≡Si-O(-). The position of the Si-(OH) stretch vibration is shown to directly correlate with the NPs SCD as determined by traditional potentiometric titrations, shifting to lower wavenumber (cm(-1)) with increasing density of ≡Si-O(-). The origin of this shift is discussed in terms of inductive effects that reduce the ionic character of the Si-(OH) bond after delocalization of the negative charge left on a terminal ≡Si-O(-) group across the atoms within ∼1 nm of the charged site. Using this new methodology, we quantitatively determine the SCD of 9, 14, and 25 nm diameter colloidal silica in varying concentrations of NaCl electrolyte at different bulk pH. This novel spectroscopic approach to investigate SCDs provides several opportunities for in situ coupling, for example, in microfluidic channels or with liquid microjets, and requires only very little sample—all potential advantages over a traditional potentiometric titration. PMID:25761506
Long-range charge-density-wave proximity effect at cuprate/manganate interfaces
Frano, A.; Blanco-Canosa, S.; Schierle, E.; Lu, Y.; Wu, M.; Bluschke, M.; Minola, M.; Christiani, G.; Habermeier, H. U.; Logvenov, G.; Wang, Y.; van Aken, P. A.; Benckiser, E.; Weschke, E.; Le Tacon, M.; Keimer, B.
2016-08-01
The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ ~ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides.
Growth dynamics, charge density, and structure of polyamide thin-film composite membranes
Matthews, Tamlin
The main objectives of this dissertation are to characterize polyamide layers formed on polysulfone supports, without physical or chemical removal, so that it is close to its native form, which has been used in industrial reverse osmosis applications. Growth dynamics by diffuse reflectance spectroscopy was developed for the polymerization of polyamide on porous polysulfone supports using varying concentrations of m-phenylenediamine (MPD) in water of 0.1-- 100 g/L with a fixed concentration of trimesoyl chloride (TMC) in hexane of 1 g/L, and varying TMC concentrations of 0.1--10 g/L with a fixed MPD concentration of 20 g/L. A relationship was developed between diffuse reflectance and polyamide thickness. The diffuse reflectance data shows that ~50% of the polyamide thickness is produced in 2 g/L. All studied concentrations of TMC at a fixed 20 g/L MPD concentration produced a polyamide thickness of ≈120 nm. Polyamide thickness increases from ≈10 to 110 nm with increasing concentration of MPD at 1 g/L TMC. The roughness measured with AFM increases with increasing MPD concentration but decreases with increasing TMC concentration. At MPD concentrations polyamide does not grow on top of the polysulfone. The charge density of polyamide layers arises from unpolymerized free amine and carboxylic groups contributing positive and negative charges, respectively. The negative charge groups from carboxylic acid were tagged with Ag+. Using the same concentration ranges as the growth dynamics study, the charge densities were characterized in the bulk by RBS and in the near-surface by XPS. With increasing concentration of MPD, the charge density in the near-surface region is constant and ≈0.3 M, due to constant surface contact with the carboxylic acid containing TMC monomer. The charge density decreases from 0.3 M to 0.1 M in the polyamide bulk with increasing MPD concentration. TMC showed a 30x increase in charge density from 0.02 to 0.61 g/L in the bulk polyamide between 0
Changes in Surface Charge Density of Blood Cells in Fatal Accidental Hypothermia.
Szeremeta, Michał; Petelska, Aneta Dorota; Kotyńska, Joanna; Pepiński, Witold; Naumowicz, Monika; Figaszewski, Zbigniew Artur; Niemcunowicz-Janica, Anna
2015-12-01
The objective of this research was to evaluate postmortem changes concerning electric charge of human erythrocytes and thrombocytes in fatal accidental hypothermia. The surface charge density values were determined on the basis of the electrophoretic mobility measurements of the cells conducted at various pH values of electrolyte solution. The surface charge of erythrocyte membranes after fatal accidental hypothermia increased compared to the control group within whole range of experimental pH values. Moreover, a slight shift of the isoelectric point of erythrocyte membranes towards high pH values was observed. The surface charge of thrombocyte membranes in fatal accidental hypothermia decreased at low pH compared to the control group. However, at pH range 4-9, the values increased compared to the control group. The isoelectric point of thrombocyte membranes after fatal accidental hypothermia was slightly shifted towards low pH values compared to the control group. The observed changes are probably connected with the partial destruction and functional changes of the blood cell structure. PMID:26364031
Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team
Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.
Space Charge Neutralization of DEMO Relevant Negative Ion Beams at Low Gas Density
The application of neutral beams to future power plant devices (DEMO) is dependent on achieving significantly improved electrical efficiency and the most promising route to achieving this is by implementing a photoneutralizer in place of the traditional gas neutralizer. A corollary of this innovation would be a significant reduction in the background gas density through which the beam is transported between the accelerator and the neutralizer. This background gas is responsible for the space charge neutralization of the beam, enabling distances of several metres to be traversed without significant beam expansion. This work investigates the sensitivity of a D- beam to reduced levels of space charge compensation for energies from 100 keV to 1.5 MeV, representative of a scaled prototype experiment, commissioning and full energy operation. A beam transport code, following the evolution of the phase space ellipse, is employed to investigate the effect of space charge on the beam optics. This shows that the higher energy beams are insensitive to large degrees of under compensation, unlike the lower energies. The probable degree of compensation at low gas density is then investigated through a simple, two component beam-plasma model that allows the potential to be negative. The degree of under-compensation is dependent on the positive plasma ion energy, one source of which is dissociation of the gas by the beam. The subsequent space charge state of the beam is shown to depend upon the relative times for equilibration of the dissociation energy and ionization by the beam ions.
Terzić, Balša; Bassi, Gabriele
2011-07-01
In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. [G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock, Phys. Rev. ST Accel. Beams 12, 080704 (2009); PRABFM1098-440210.1103/PhysRevSTAB.12.080704G. Bassi and B. Terzić, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), TH5PFP043], designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform; and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code [G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock, Phys. Rev. ST Accel. Beams 12, 080704 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.080704], and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. (G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)G. Bassi and B. Terzic, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), TH5PFP043), designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform; and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code (G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)), and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
Calculation of the Nuclear Transition Charge Density in a Microscopic sdgIBM-1
ZHANG Zhan-Jun; SANG Jian-ping; LIU Yong
2000-01-01
Formulae of proton and neutron boson structure functions (BSF's) are deduced in terms of a microscopic approach of sdgIBM (namely, microscopic sdgIBM). For the nucleus 190Os, the value of BSF's is worked out. Due to the high similarity, the maximum F-spin truncation is made under the full-symmetry approximation. Thereafter, calculations of E2 and E4 transition charge densities (TCD's) are performed in the sdgIBM-1. It is found that the E2 and E4 TCD's can be reproduced quite satisfactorily in the uniform frame of microscopic sdgIBM-1.
Charge-density-wave phase slip in NbSe3
We have studied the phase-slip process by which charge-density-wave (CDW) current is converted to single-particle current at electrical contacts. Transport and X-ray scattering measurements indicate that an excess voltage Vps dropped between current contacts induces a large static deformation of the CDW phase. The measured Vps- and temperature-dependent phase-slip rates are consistent with a model in which CDW dislocation loops are thermally nucleated in the presence of these deformations. The effects of impurities and contact perturbations on the phase slip process are also discussed. (orig.)
Instability and Charge Density Wave of Metallic Quantum Chains on a Silicon Surface
Yeom, H.W. [Research Center for Spectrochemistry, the University of Tokyo, Tokyo 113-0033 (Japan); Takeda, S.; Horikoshi, K.; Nagao, T.; Hasegawa, S. [Department of Physics, the University of Tokyo, Tokyo 113-0033 (Japan); Rotenberg, E.; Lee, C.M. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Matsuda, I.; Ohta, T. [Department of Chemistry, the University of Tokyo, Tokyo 113-0033 (Japan); Schaefer, J.; Kevan, S.D. [Department of Physics, University of Oregon, Eugene, Oregon 97403 (United States); Nagao, T.; Hasegawa, S. [CREST, the Japan Science and Technology Corporation, Saitama 332-0012 (Japan)
1999-06-01
Self-assembled indium linear chains on the Si(111) surface are found to exhibit instability of the metallic phase and 1D charge density wave (CDW). The room-temperature metallic phase of these chains undergoes a temperature-induced, reversible transition into a semiconducting phase. The 1D CDW along the chains is observed directly in real space by scanning tunneling microscopy at low temperature. The Fermi contours of the metallic phase measured by angle-resolved photoemission exhibit a perfect nesting predicting precisely the CDW periodicity. {copyright} {ital 1999} {ital The American Physical Society }
Instability and Charge Density Wave of Metallic Quantum Chains on a Silicon Surface
Self-assembled indium linear chains on the Si(111) surface are found to exhibit instability of the metallic phase and 1D charge density wave (CDW). The room-temperature metallic phase of these chains undergoes a temperature-induced, reversible transition into a semiconducting phase. The 1D CDW along the chains is observed directly in real space by scanning tunneling microscopy at low temperature. The Fermi contours of the metallic phase measured by angle-resolved photoemission exhibit a perfect nesting predicting precisely the CDW periodicity. copyright 1999 The American Physical Society
Distance-of-flight spectra of charge density of ions generated with a low laser intensity
Krása, Josef; Velardi, L.; Lorusso, A.; Delle Side, D.; Nassisi, V.
Vol. 508. Bristol : IOP Publishing, 2014, "012004-1"-"012004-5". ISSN 1742-6588. [Plasma Physics by Laser and Applications 2013 Conference (PPLA2013). Lecce (IT), 02.10.2013-04.10.2013] R&D Projects: GA MŠk EE2.3.20.0279; GA ČR GAP205/12/0454 Grant ostatní: LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : laser ion sources * map of ion charge density * ion expansion * modeling Subject RIV: BL - Plasma and Gas Discharge Physics
Instanton Aharonov-Bohm effect and macroscopic quantum coherence in charge-density-wave systems
It is predicted that in a charge-density-wave (CDW) ring-shaped conductor, placed in an external vector-potential field, there should appear a new Aharonov-Bohm contribution to the magnetic susceptibility and the electrical conductivity oscillating as a function of the flux with the period φ0=hc/2e. This contribution arises from instanton transitions between degenerate vacua of the CDW-condensate and is the solid-state realization of θ-vacuum in the quantum field theory. The period transforms into φ0/N in N strongly correlated parallel CDW chains. (author). 27 refs, 2 figs
Time-of-flight spectra for mapping of charge density of ionsproduced by laser
Krása, Josef; Parys, P.; Velardy, L.; Velyhan, Andriy; Ryc, L.; Delle Side, D.; Nassisi, V.
2014-01-01
Roč. 32, č. 1 (2014), s. 15-20. ISSN 0263-0346 R&D Projects: GA MŠk EE2.3.20.0279; GA ČR GAP205/12/0454 Grant ostatní: Laser Zdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : laser ion sources * map of ion charge density * ion expansion * modeling Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.295, year: 2014
Pressure dependence of the charge-density-wave gap in rare-earth tritellurides.
Sacchetti, A; Arcangeletti, E; Perucchi, A; Baldassarre, L; Postorino, P; Lupi, S; Ru, N; Fisher, I R; Degiorgi, L
2007-01-12
We investigate the pressure dependence of the optical properties of CeTe3, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the midinfrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe3. PMID:17358625
Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides
Sacchetti, A.; /Zurich, ETH; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.; Degiorgi, L.; /Zurich, ETH
2009-12-14
We investigate the pressure dependence of the optical properties of CeTe{sub 3}, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe{sub 3}.
Pressure dependence of the charge-density-wave gap in rare-earth tri-tellurides
A. Sacchetti; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; Ru, N.; Fisher, I. R.; Degiorgi, L.
2006-01-01
We investigate the pressure dependence of the optical properties of CeTe$_3$, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice com...
Optical properties of the Ce and La ditelluride charge density wave compounds
Lavagnini, M.; Sacchetti, A.; Degiorgi, L.; /Zurich, ETH; Shin, K.Y.; Fisher, I.R.; /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept.
2010-02-15
The La and Ce di-tellurides LaTe{sub 2} and CeTe{sub 2} are deep in the charge-density-wave (CDW) ground state even at 300 K. We have collected their electrodynamic response over a broad spectral range from the far infrared up to the ultraviolet. We establish the energy scale of the single particle excitation across the CDW gap. Moreover, we find that the CDW collective state gaps a very large portion of the Fermi surface. Similarly to the related rare earth tri-tellurides, we envisage that interactions and Umklapp processes play a role in the onset of the CDW broken symmetry ground state.
Nucleon to $\\Delta$ transition form factors and empirical transverse charge densities
Chakrabarti, Dipankar
2016-01-01
We investigate the nucleon to $\\Delta$ transition form factors in a soft-wall AdS/QCD model and a light-front quark-diquark model inspired by AdS/QCD. From the transition form factors we evaluate the transition charge densities which influences the nucleon to $\\Delta$ excitation. Here we consider both the unpolarized and the transversely polarized cases. The AdS/QCD predictions are compared with available experimental data and with the results of the global parameterization, MAID2007.
Calculation of the nuclear transition charge density in a microscopic adgIBM-1
Formulae of proton and neutron boson structure functions (BFS's) are deduced in terms of a microscopic approach of sdgIBM (namely, microscopic sdgIBM). For the nucleus 190Os, the value of BSF's is worked out. Due to the high similarity, the maximum F-spin truncation is made under the full-symmetry approximation. Thereafter, calculations of E2 and E4 transition charge densities (TCD's) are performed in the sdgIBM-1. It is found that the E2 and E4 TCD's can be reproduced quite satisfactorily in the uniform frame of microscopic sdgIBM-1
Scanning tunneling microscopy of charge-density waves in NbSe3
The charge-density wave (CDW) structure in NbSe3 due to the two independent CDW's has been imaged by scanning microscopy. As predicted by band-structure considerations, the CDW modulation is observed to be substantially localized on different chains for the separate CDW's. AT 77 K where only the high-temperature CDW exists, a relatively weak modulation with a single component along the b axis is observed. At 4.2 K the low-temperature CDW contributes a much stronger ∼4b0 x 2c0 superlattice modulation
Origin of the charge density wave in 1T-TiSe2
Zhu, Zhiyong
2012-06-27
All-electron ab initio calculations are used to study the microscopic origin of the charge density wave (CDW) in 1T-TiSe2. A purely electronic picture is ruled out as a possible scenario, indicating that the CDW transition in the present system is merely a structural phase transition. The CDW instability is the result of a symmetry lowering by electron correlations occurring with electron localization. Suppression of the CDW in pressurized and in Cu-intercalated 1T-TiSe2 is explained by a delocalization of the electrons, which weakens the correlations and counteracts the symmetry lowering.
Electronic properties and charge density of BeZn1−Te alloys
C B Swarnkar; U Paliwal; N N Patel; K B Joshi
2011-06-01
Electronic band structure calculations are performed for the BeZn1−Te (0 ≤ ≤ 1 in steps of 0.2) alloys following the empirical pseudopotential method. The alloying effects are modelled through the modified virtual crystal approximation. Throughout the composition, valence band maximum resides at the point. The conduction band minimum, however, shifts from to point of symmetry when = 0.27. The observed crossover from direct to indirect bandgap is well in accordance with the experimental observations. Effect of alloying on the density of states is also discussed. The charge density distribution along a few major planes is computed and discussed. The electronic band structure related parameters like bandwidths, bandgaps and ionicity are reported and compared with experimental data wherever available. We also give estimates of cohesive energy and bulk modulus for the alloys.
Harris, Alexander R; Molino, Paul J; Kapsa, Robert M I; Clark, Graeme M; Paolini, Antonio G; Wallace, Gordon G
2015-01-01
Neural stimulation is used in the cochlear implant, bionic eye, and deep brain stimulation, which involves implantation of an array of electrodes into a patient's brain. The current passed through the electrodes is used to provide sensory queues or reduce symptoms associated with movement disorders and increasingly for psychological and pain therapies. Poor control of electrode properties can lead to suboptimal performance; however, there are currently no standard methods to assess them, including the electrode area and charge density. Here we demonstrate optical and electrochemical methods for measuring these electrode properties and show the charge density is dependent on electrode geometry. This technique highlights that materials can have widely different charge densities but also large variation in performance. Measurement of charge density from an electroactive area may result in new materials and electrode geometries that improve patient outcomes and reduce side effects. PMID:25495574
Carnal, Fabrice; Stoll, Serge
2011-01-01
Complex formation between a weak flexible polyelectrolyte chain and one positively charged nanoparticle in presence of explicit counterions and salt particles is investigated using Monte Carlo simulations. The influence of parameters such as the nanoparticle surface charge density, salt valency, and solution property such as the pH on the chain protonation/deprotonation process and monomer adsorption at the nanoparticle surface are systematically investigated. It is shown that the nanoparticl...
Topology density correlator on dynamical domain-wall ensembles with nearly frozen topological charge
Fukaya, H; Cossu, G; Hashimoto, S; Kaneko, T; Noaki, J
2014-01-01
Global topological charge decorrelates very slowly or even freezes in fine lattice simulations. On the other hand, its local fluctuations are expected to survive and lead to the correct physical results as long as the volume is large enough. We investigate this issue on recently generated configurations including dynamical domain-wall fermions at lattice spacings a = 0.08 fm and finer. We utilize the Yang-Mills gradient flow to define the topological charge density operator and calculate its long-distance correlation, through which we propose a new method for extracting the topological susceptibility in a sub-volume. This method takes care of the finite volume correction, which reduces the bias caused by the global topological charge. Our lattice data clearly show a shorter auto-correlation time than that of the naive definition using the whole lattice, and are less sensitive to the global topological history. Numerical results show a clear sea-quark mass dependence, which agrees well with the prediction of c...
Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces
Van Regemorter, Tanguy
2012-09-15
In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.
Space Charge Trapping and Conduction in Low-Density Polyethylene/Silica Nanocomposite
Wu; Jiandong; Yin; Yi; Lan; Li; Wang; Qiaohua; Li; Xuguang; Xiao; Dengming
2012-04-01
The high field conduction and space charge distribution were investigated in low-density polyethylene (LDPE) and LDPE/silica nanocomposites filled with various concentrations of nanosilica. The results indicate that nanosilica could effectively suppress space charge accumulation at nanofiller concentrations from 0.1 to 5.0 wt %. However, the conduction current at a high field significantly increases at low concentrations from 0.1 to 0.5 wt % and remarkably reduces at high concentrations from 0.5 to 5.0 wt %. It is shown that the trap depth corresponding to the time from 2 to 3600 s significantly decreases at low nanofiller concentrations from 0.1 to 0.5 wt %. However, the depth of deep traps corresponding to the time from 100 to 3600 s increases with the increase in nanofiller concentration from 0.5 to 5.0 wt %. Moreover, the depth of shallow traps corresponding to the time from 2 to 100 s increases at concentrations from 0.5 to 2.0 wt %, and then it decreases at concentrations from 2.0 to 5.0 wt %. In addition, the apparent mobility varies with the modification of trap depth caused by the introduction of nanofiller. The threshold field EΩ-t for remarkable charge injection and Et-c proportional to the total trap density H are significantly lower in the nanocomposite with a low nanosilica concentration, i.e., 0.1 and 0.5 wt %, while both of them increase at concentrations from 0.5 to 5.0 wt %. It is considered that the impurity effect is greater than the nanofiller effect at a low nanofiller concentration. The deep trap is speculated as the chemical trap in the interface of the nanofiller bonding strongly with the polymer chain, while the shallow trap may be related to the chemical trap in the weakly bonded interface. It is clear that the space charge behavior and conduction are significantly affected by modification of the trap depth and density distribution owing to the introduction of nanofiller.
Charge and spin density in s-stable rare earth intermetallic compounds
This thesis deals with a study of the electronic structure of rare earth intermetallic compounds, in particular the electronic charge and spin density distribution. These are closely related to the properties of the rare earth ions, which carry the partly filled 4f shell. In chapter 1 a survey of the theory of hyperfine interaction as far as it has a bearing on the Moessbauer effect of 155Gd and 151Eu is given. Also some details of the Moessbauer spectra, which have practical importance are discussed. In chapter 2 the experimental set-up is described. Special attention is paid to the gamma radiation source and gamma detection requirements. In chapter 3 the author introduces the theoretical framework which will be used to interpret the measurements. In chapter 4 the results of the 155Gd Moessbauer measurements are presented. Also it is discussed how the result can be understood in terms of the charge and spin density in rare earth intermetallic compounds. In order to lend support to the picture emerging from the previous chapter, in chapter 5 the conduction electron band structure of some representative Gd intermetallics is computed with an approximate semi-empirical LCAO method. The results are compared with those from chapter 4. Finally, in chapter 6, the 151Eu resonance is used to investigate the temperature dependence of the hyperfine field and line width in the Eu intermetallic compounds Eu2Mg17 and EuMg5. (Auth.)
Computational analysis of the influence of initial fixed charge density on pH-sensitive hydrogels
In this paper, we conduct a computational analysis of the effects of initial fixed charge density on the responsive performance of pH-sensitive hydrogels to environmental change in solution pH. The analysis is based on a chemo-electro-mechanical formulation previously termed the multi-effect-coupling pH-stimulus (MECpH) model. In this work, we improve the MECpH model by incorporating the finite deformation formulation into the mechanical equilibrium equation. The present model consisting of coupled nonlinear partial differential equations is solved via a meshless numerical technique called the Hermite-cloud method with the modified Newton iteration methodology. After validation of the MECpH model by comparing the computational results with experimental data available in the literature, several computational case studies are carried out for analysis of the effects of initial fixed charge density on the distributive variations of the diffusive ion concentrations and electric potential and on the deformation of the pH-stimulus-responsive hydrogels, when they are immersed in different buffered solutions
Yu-ling Chu; Zhong Yang; Zhe-feng Pan; Jing Liu; Yue-yi Han; Yong Ding; Peng Song
2012-01-01
Density functional theory and time-dependent density-functional theory have been used to investigate the photophysical properties and relaxation dynamics of dimethylaminobenzophenone (DMABP) and its hydrogen-bonded DMABP-MeOH dimer.It is found that,in nonpolar aprotic solvent,the transitions from S0 to S1 and S2 states of DMABP have both n→π* and π→π* characters,with the locally excited feature mainly located on the C=O group and the partial CT one characterized by electron transfer mainly from the dimethylaminophenyl group to the C=O group.But when the intermolecular hydrogen bond C=O…H-O is formed,the highly polar intramolecular charge transfer character switches over to the first excited state of DMABP-MeOH dimer and the energy difference between the two lowlying electronically excited states increases.To gain insight into the relaxation dynamics of DMABP and DMABP-MeOH dimer in the excited state,the potential energy curves for conformational relaxation are calculated.The formation of twisted intramolecular charge transfer state via diffusive twisting motion of the dimethylamino/dimethylaminophenyl groups is found to be the major relaxation process.In addition,the decay of the S1 state of DMABP-MeOH dimer to the ground state,through nonradiative intermolecular hydrogen bond stretching vibrations,is facilitated by the formation of the hydrogen bond between DMABP and alcohols.
Goiffon, Vincent; Virmontois, Cédric; Magnan, Pierre; Girard, Sylvain; Paillet, Philippe
2010-01-01
The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0,18 um CMOS image sensor process and exposed to 10 keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhanceme...
Hammer, Maria S; Rauh, Daniel; Deibel, Carsten; Dyakonov, Vladimir
2008-01-01
Charge transport properties of thin films of sol--gel processed undoped and Al-doped zinc oxide nanoparticles with variable doping level between 0.8 at% and 10 at% were investigated. The X-ray diffraction studies revealed a decrease of the average crystallite sizes in highly doped samples. We provide estimates of the conductivity and the resulting charge carrier densities with respect to the doping level. The increase of charge carrier density due to extrinsic doping were compared to the accu...
Interplay of charge density wave and multiband superconductivity in 2H-PdxTaSe2.
Bhoi, D; Khim, S; Nam, W; Lee, B S; Kim, Chanhee; Jeon, B-G; Min, B H; Park, S; Kim, Kee Hoon
2016-01-01
2H-TaSe2 has been one of unique transition metal dichalcogenides exhibiting several phase transitions due to a delicate balance among competing electronic ground states. An unusual metallic state at high-T is sequentially followed by an incommensurate charge density wave (ICDW) state at ≈122 K and a commensurate charge density wave (CCDW) state at ≈90 K, and superconductivity at TC ~ 0.14 K. Upon systematic intercalation of Pd ions into TaSe2, we find that CCDW order is destabilized more rapidly than ICDW to indicate a hidden quantum phase transition point at x ~ 0.09-0.10. Moreover, TC shows a dramatic enhancement up to 3.3 K at x = 0.08, ~24 times of TC in 2H-TaSe2, in proportional to the density of states N(EF). Investigations of upper critical fields Hc2 in single crystals reveal evidences of multiband superconductivity as temperature-dependent anisotropy factor γH = , quasi-linear increase of , and an upward, positive-curvature in near TC. Furthermore, analysis of temperature-dependent electronic specific heat corroborates the presence of multiple superconducting gaps. Based on above findings and electronic phase diagram vs x, we propose that the increase of N(EF) and effective electron-phonon coupling in the vicinity of CDW quantum phase transition should be a key to the large enhancement of TC in PdxTaSe2. PMID:27045426
Sun, Guangyu; Kurti, Jeno; Kertesz, Miklos; Baughman, Ray H.
2002-10-01
Charge-induced dimensional changes allow conducting polymers and single walled carbon nanotubes to function as electromechanical actuators. The unit cell of the prototypical conducting polymer, trans-polyacetylene, was calculated as a function of charge injection using density functional theory in combination with ultrasoft pseudopotentials using the solid-state Vienna ab initio simulation package. Test calculations on the charged pyridinium molecular ion give results in good agreement with the experimental geometry. Strain versus charge relationships are predicted from dimensional changes calculated using a uniform background charge ("jellium") for representing the counterions, which we show provides results consistent with experiment for doped polyacetylenes. These jellium calculations are consistent with further presented calculations that include specific counterions, showing that hybridization between the guest dopant ions and the host polyacetylene chains is unimportant. The lack of guest-host orbital hybridization allows a qualitative rigid band interpretation of the amount of charge transfer for both acceptor and donor doping. For polyacetylene, asymmetry of strain along the chain with respect to the sign of the charge is predicted: negative charge elongates and positive charge shortens the polymer. For charge less than 0.05e per carbon, an approximately linear dependence is obtained for the dependence of chain-direction strain on the amount of injected charge.
Kaihan Fakhar
Full Text Available OBJECTIVE: We aimed in this investigation to study deep brain stimulation (DBS battery drain with special attention directed toward patient symptoms prior to and following battery replacement. BACKGROUND: Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. METHODS: A cohort of 320 patients undergoing DBS battery replacement from 2002-2012 were included in an IRB approved study. Statistical analysis was performed using SPSS 20.0 (IBM, Armonk, NY. RESULTS: The mean charge density for treatment of Parkinson's disease was 7.2 µC/cm(2/phase (SD = 3.82, for dystonia was 17.5 µC/cm(2/phase (SD = 8.53, for essential tremor was 8.3 µC/cm(2/phase (SD = 4.85, and for OCD was 18.0 µC/cm(2/phase (SD = 4.35. There was a significant relationship between charge density and battery life (r = -.59, p<.001, as well as total power and battery life (r = -.64, p<.001. The UF estimator (r = .67, p<.001 and the Medtronic helpline (r = .74, p<.001 predictions of battery life were significantly positively associated with actual battery life. Battery status indicators on Soletra and Kinetra were poor predictors of battery life. In 38 cases, the symptoms improved following a battery change, suggesting that the neurostimulator was likely responsible for symptom worsening. For these cases, both the UF estimator and the Medtronic helpline were significantly correlated with battery life (r = .65 and r = .70, respectively, both p<.001. CONCLUSIONS: Battery estimations, charge density, total power and clinical symptoms were important factors. The observation of clinical worsening that was rescued following neurostimulator replacement reinforces the notion that changes in clinical symptoms can be associated with battery drain.
On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.
Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo
2015-12-30
A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices. PMID:26618751
Ayuel, K.; de Châtel, P. F.; Amani, Salah
2002-04-01
Charge, current and spin densities are calculated for a two-electron system, maintaining the explicit form of the wave functions, in terms of Slater determinants. The two-electron Russell-Saunders spin-orbit coupled eigenstates | L, S, J, MJ> are expressed as four-component spinors, and the operators of the above densities as 4×4 matrices. The contributions of various one-electron states to these densities are identified.
Impurity-Mediated Early Condensation of a Charge Density Wave in an Atomic Wire Array.
Yeom, Han Woong; Oh, Deok Mahn; Wippermann, Stefan; Schmidt, Wolf Gero
2016-01-26
We directly show how impurity atoms induce the condensation of a representative electronic phase, the charge density wave (CDW) phase, in atomic scale with scanning tunneling microscopy. Oxygen impurity atoms on the self-assembled metallic atomic wire array on a silicon crystal condense the CDW locally above the pristine transition temperature. More interestingly, the CDW along the wires is induced not by a single atomic impurity but by the cooperation of multiple impurities. First-principles calculations disclose the mechanism of the cooperation as the coherent superposition of the local lattice strain induced by impurities, stressing the coupled electronic and lattice degrees of freedom for the CDW. This opens the possibility of the strain engineering over electronic phases of atomic-scale systems. PMID:26634634
After having recalled that elastic electron scattering allows the determination of nucleus charge density with a high precision, and that a sufficiently high momentum transfer is required for the precision of analysis methods, this research thesis presents the results obtained by an experiment performed on 208Pb with a high momentum transfer. This nucleus meets at best the approximations required by theoretical calculations. In a first part, the author discusses the use of this nucleus, discusses the available data and outlines the lacking ones. He presents the experimental installation and aspects: the linear accelerator, the scattering angle, the solid angle, the number of incident neutrons, the target thermal toughness, and the number of elastically scattered neutrons. He reports the reduction of data: experiment-based corrections, radiative corrections, spectrum deconvolution methods, data normalisation, diaphragm aperture corrections and multiple scattering corrections. The next part proposes an analysis of data, and the last one compares the obtained results with theoretical ones
Subgap Collective Tunneling and Its Staircase Structure in Charge Density Waves
Tunneling spectra of chain materials NbSe3 and TaS3 were studied in nanoscale mesa devices. Current-voltage I-V characteristics related to all charge density waves (CDWs) reveal universal spectra within the normally forbidden region of low V, below the electronic CDW gap 2Δ. The tunneling always demonstrates a threshold Vt≅0.2Δ, followed, for both CDWs in NbSe3, by a staircase fine structure. T dependencies of Vt(T) and Δ(T) scale together for each CDW, while the low T values Vt(0) correlate with the CDWs' transition temperatures Tp. Fine structures of CDWs perfectly coincide when scaled along V/Δ. The results evidence the sequential entering of CDW vortices (dislocations) in the junction area with the tunneling current concentrated in their cores. The subgap tunneling proceeds via the phase channel: coherent phase slips at neighboring chains
Non-thermal separation of electronic and structural orders in a persisting charge density wave
Porer, M; Ménard, J -M; Dachraoui, H; Mouchliadis, L; Perakis, I E; Heinzmann, U; Demsar, J; Rossnagel, K; Huber, R
2016-01-01
The simultaneous ordering of different degrees of freedom in complex materials undergoing spontaneous symmetry-breaking transitions often involves intricate couplings that have remained elusive in phenomena as wide ranging as stripe formation, unconventional superconductivity or colossal magnetoresistance. Ultrafast optical, x-ray and electron pulses can elucidate the microscopic interplay between these orders by probing the electronic and lattice dynamics separately, but a simultaneous direct observation of multiple orders on the femtosecond scale has been challenging. Here we show that ultrabroadband terahertz pulses can simultaneously trace the ultrafast evolution of coexisting lattice and electronic orders. For the example of a charge-density-wave (CDW) in 1T-TiSe2, we demonstrate that two components of the CDW order parameter - excitonic correlations and a periodic lattice distortion (PLD) - respond very differently to 12-fs optical excitation. Even when the excitonic order of the CDW is quenched, the PL...
Possibility of charge density wave transition in a SrPt2Sb2 superconductor
Ibuka, Soshi; Imai, Motoharu
2016-04-01
The first-order transition at T 0 = 270 K for the platinum-based SrPt2Sb2 superconductor was investigated using x-ray diffraction and magnetic susceptibility measurements. When polycrystalline SrPt2Sb2 was cooled down through T 0, the structure was transformed from monoclinic to a modulated orthorhombic structure, and no magnetic order was formed, which illustrates the possibility of a charge density wave (CDW) transition at T 0. SrPt2Sb2 can thus be a new example to examine the interplay of CDW and superconductivity in addition to SrPt2As2, BaPt2As2, and LaPt2Si2. It is unique that the average structure of the low-temperature phase has higher symmetry than that of the high-temperature phase.
Possibility of charge density wave transition in a SrPt2Sb2 superconductor.
Ibuka, Soshi; Imai, Motoharu
2016-04-27
The first-order transition at T 0 = 270 K for the platinum-based SrPt2Sb2 superconductor was investigated using x-ray diffraction and magnetic susceptibility measurements. When polycrystalline SrPt2Sb2 was cooled down through T 0, the structure was transformed from monoclinic to a modulated orthorhombic structure, and no magnetic order was formed, which illustrates the possibility of a charge density wave (CDW) transition at T 0. SrPt2Sb2 can thus be a new example to examine the interplay of CDW and superconductivity in addition to SrPt2As2, BaPt2As2, and LaPt2Si2. It is unique that the average structure of the low-temperature phase has higher symmetry than that of the high-temperature phase. PMID:27023674
$\\eta^\\prime$ meson mass from topological charge density correlator in QCD
Fukaya, H; Cossu, G; Hashimoto, S; Kaneko, T; Noaki, J
2015-01-01
The flavor-singlet component of the eta prime meson is related to the topological structure of the SU(3) gauge field through the chiral anomaly. We perform a 2+1-flavor lattice QCD calculation and demonstrate that the two-point function of a gluonically defined topological charge density after a short Yang-Mills gradient flow contains the propagation of the eta prime meson, by showing that its mass in the chiral and continuum limit is consistent with the experimental value. The gluonic correlator does not suffer from the contamination of the pion contribution, and the clean signal is obtained at significantly lower numerical cost compared to the conventional method with the quark bilinear operators.
Atomic displacements in the incommensurable charge-density wave in alpha-uranium
A detailed examination is presented of the incommensurable charge-density wave (ICDW) in α-uranium below 43K. The q vectors have been measured as a function of temperature and the structure factors of a large number of first-order satellites with neutron diffraction. From the structure factors the atomic displacements that occur at the onset of the CDW have been determined in all three independent crystallographic directions. Uniaxial stress up to 3.5kbar has been applied along 2 directions but does not change the satellite intensities, thus leaving ambiguity whether the structure is single or multi q. The relationship between the present results and the observations of Smith et al is discussed. (author)
Nonlinear response, and homoclinic chaos of driven charge density in plasma
A strongly nonlinear and driven charge density in plasma is developed using a formalism of two-fluid model. For the standard reduced model 'neglecting electron inertia effects' and assuming quasineutrality to hold, results are presented which show that self-excited ion-sound instability in a plasma behaves in a similar manner to a modified Van der Pol oscillator with Φ6 potential, both in the single mode regime (primary resonance) and, in a multi-mode regime (sub-superharmonic resonance). Also, investigation of the chaotic behavior of the model studied using a perturbation method based from the Melnikov theorem is achieved. Since the case of the three-well potential is considered, we obtain the conditions for the existence of homoclinic and heteroclinic chaos, which are complemented by the numerical simulations from which we illustrate the Melnikov threshold function and the erosion of the basin of attraction when a specific parameter varies. (author)
Charge density A probe for the nuclear interaction in microscopic transport models
Galíchet, E; Lecolley, J F; Bougault, R; Butà, A; Colin, J; Cussol, D; Durand, D; Guinet, D; Lautesse, P; Rivet, M F; Borderie, B; Auger, G; Bouriquet, B; Chbihi, A; Frankland, J D; Guiot, B; Hudan, S; Charvet, J L; Dayras, R; Lavaud, F; Neindre, N L; López, O; Manduci, L; Marie, J; Nalpas, L; Normand, J; Pârlog, M; Pawlowski, P; Plagnol, E; Rosato, E; Steckmeyer, J C; Tamain, B; Lauwe, A V; Vient, E; Volant, C; Wieleczko, J P
2003-01-01
The transport properties of the sup 3 sup 6 Ar+ sup 5 sup 8 Ni system at 95 A .MeV measured with the INDRA array, are studied within the BNV kinetic equation. A general protocol of comparison between the N-body experimental fragment information and the one-body distribution function is developed using global variables, with a special focus on charge density. This procedure avoids any definition of sources and any use of an afterburner in the simulation. We shall discuss the feasibility of such an approach and the distortions induced by the finite detection efficiency and the completeness requirements of the data selection. The sensitivity of the different global observables to the macroscopic parameters of the effective nuclear interaction will be studied in detail.
The Scanning tunneling microscope (STM) has been used to study the effects of Fe doping on the charge-density wave (CDW) structure in NbSe3 and 1T-TaS2. In NbSe3 small amounts of Fe reduce both CDW gaps by 25--30% and change the relative CDW amplitudes of the high and low temperature CDWs. The CDW amplitudes remain strong on all three chains of the surface unit cell with no evident disorder. In 1T-Fe0.05Ta0.95S2 the Fe introduces substantial disorder in the CDW pattern, but the local CDW amplitude remains strong. The CDW energy gap is reduced by approximately 50% and the resistive anomaly at the commensurate-incommensurate transition is removed. The STM in both the image and spectroscopy modes can detect subtle changes in CDW structure due to impurities
Scanning tunneling microscopy of charge-density waves in NbSe3
The charge-density wave (CDW) structure in NbSe3 due to the two independent CDWs has been imaged by scanning tunneling microscopy. As predicted by band structure considerations the CDW modulation is observed to be substantially localized on different chains for the separate CDWs. At 77K where only the high temperature CDW exists a relatively weak modulation with a single component along the /bar b/-axis is observed. At 4.2K the low temperature CDW contributes a much stronger /approximately/4/bar b/0 /times/ 2/rvec c/0 superlattice modulation. The combination of atomic resolution and CDW modulations allows an unambiguous identification of the chain structure to be made. 9 refs., 5 figs
Nanometer period metallic multilayers are ideal structures to investigate electronic phenomena at interfaces between metal films since interfacial atoms comprise a large atomic fraction of the samples. The Cu/Cr binary pair is especially suited to study the interfaces in metals since these elements are mutually insoluble, thus eliminating mixing effects and compound formation and the lattice mismatch is very small. This allows the fabrication of high structural quality Cu/Cr multilayers that have a structure which can be approximated in calculations based on idealized atomic arrangements. The electronic structure of the Cu and the Cr layers in several samples of thin Cu/Cr multilayers were studied using x-ray absorption spectroscopy (XAS). Total electron yield was measured and used to study the white lines at the Cu L(sub 2) and L(sub 3) absorption edges. The white lines at the Cu absorption edges are strongly related to the unoccupied d-orbitals and are used to calculate the amount of charge transfer between the Cr and Cu atoms in interfaces. Analysis of the Cu white lines show a charge transfer of 0.026 electrons/interfacial Cu atom to the interfacial Cr atoms. In the Cu XAS spectra we also observe a van Hove singularity between the L(sub 2) and L(sub 3) absorption edges as expected from the structural analysis. The absorption spectra are compared to partial density of states obtained from a full-potential linear muffin-tin orbital calculation. The calculations support the presence of charge transfer and indicate that it is localized to the first two interfacial layers in both Cu and Cr
Surface Charge Density Determines the Efficiency of Cationic Gemini Surfactant Based Lipofection
Ryhänen, Samppa J.; Säily, Matti J.; Paukku, Tommi; Borocci, Stefano; Mancini, Giovanna; Holopainen, Juha M.; Kinnunen, Paavo K. J.
2003-01-01
The efficiencies of the binary liposomes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and cationic gemini surfactant, (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide as transfection vectors, were measured using the enhanced green fluorescent protein coding plasmid and COS-1 cells. Strong correlation between the transfection efficiency and lipid stoichiometry was observed. Accordingly, liposomes with XSR−1 ≥ 0.50 conveyed the enhanced green fluorescent protein coding plasmid effectively into cells. The condensation of DNA by liposomes with XSR−1 > 0.50 was indicated by static light scattering and ethidium bromide intercalation assay, whereas differential scanning calorimetry and fluorescence anisotropy of diphenylhexatriene revealed stoichiometry dependent reorganization in the headgroup region of the liposome bilayer, in alignment with our previous Langmuir-balance study. Surface charge density and the organization of positive charges appear to determine the mode of interaction of DNA with (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide/1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes, only resulting in DNA condensation when XSR−1 > 0.50. Condensation of DNA in turn seems to be required for efficient transfection. PMID:12524311
Central depressions in the charge density profiles of the nuclei around $^{46}$Ar
Song, Jun Ling; Long, Wen Hui
2015-01-01
The occurrence of the proton bubble-like structure has been studied within the relativistic Hartree-Fock-Bogoliubov (RHFB) and relativistic Hartree-Bogoliubov (RHB) theories by exploring the bulk properties, the charge density profiles and single proton spectra of argon isotopes and $N = 28$ isotones. It is found that the RHFB calculations with PKA1 effective interaction, which can properly reproduce the charge radii of argon isotopes and the $Z=16$ proton shell nearby, do not support the occurrence of the proton bubble-like structure in argon isotopes due to the prediction of deeper bound proton orbit $\\pi2s_{1/2}$ than $\\pi1d_{3/2}$. For $N = 28$ isotones, $^{42}$Si and $^{40}$Mg are predicted by both RHFB and RHB models to have the proton bubble-like structure, owing to the large gap between the proton $\\pi2s_{1/2}$ and $\\pi1d_{5/2}$ orbits, namely the $Z=14$ proton shell. Therefore, $^{42}$Si is proposed as the potential candidate of proton bubble nucleus, which has longer life-time than $^{40}$Mg.
Charge density waves and local states in quasi-one-dimensional mixed valence inorganic complexes
The ground state structures and local states associated with chemical defects in quasi-one-dimensional halogen (X) bridged transition metal (M) mixed valence solids of MX and MMX type have been studied. An adiabatic Hartree-Fock theoretical framework is presented and representative members are classified. The MX materials provide a class whose strong electron-phonon coupling usually favors a charge-density-wave (CDW) ground state. However, the coupling strength can be chemically tuned (e.g., by extension to MMX systems) or altered by pressure, driving the ground state structures towards, e.g., a bond-order-wave (BOW) phase. Electron-phonon driven self-trapped states are expected in both the CDW or BOW regimes. Resonance Raman spectra of the MMX solid K4(Pt2(P2O5H2)4Cl)·H2O show, in addition to the homogeneous ground state modes, sharp new features with excitation profiles shifted to the red of the intervalence-charge-transfer (IVCT) band. We attribute these new bands to a local polaron state formed by oxidation of the Pt2 Cl chain by a chemical defect. The observed spectral characteristics of this local state are in good agreement with theoretical predictions. (author). 28 refs, 4 figs, 1 tab
Charge density-dependent modifications of hydration shell waters by Hofmeister ions.
Guo, Feng; Friedman, Joel M
2009-08-12
Gadolinium (Gd(3+)) vibronic sideband luminescence spectroscopy (GVSBLS) is used to probe, as a function of added Hofmeister series salts, changes in the OH stretching frequency derived from first-shell waters of aqueous Gd(3+) and of Gd(3+) coordinated to three different types of molecules: (i) a chelate (EDTA), (ii) structured peptides (mSE3/SE2) of the lanthanide-binding tags (LBTs) family with a single high-affinity binding site, and (iii) a calcium-binding protein (calmodulin) with four binding sites. The vibronic sideband (VSB) corresponding to the OH stretching mode of waters coordinated to Gd(3+), whose frequency is inversely correlated with the strength of the hydrogen bonding to neighboring waters, exhibits an increase in frequency when Gd(3+) becomes coordinated to either EDTA, calmodulin, or mSE3 peptide. In all of these cases, the addition of cation chloride or acetate salts to the solution increases the frequency of the vibronic band originating from the OH stretching mode of the coordinated waters in a cation- and concentration-dependent fashion. The cation dependence of the frequency increase scales with charge density of the cations, giving rise to an ordering consistent with the Hofmeister ordering. On the other hand, water Raman spectroscopy shows no significant change upon addition of these salts. Additionally, it is shown that the cation effect is modulated by the specific anion used. The results indicate a mechanism of action for Hofmeister series ions in which hydrogen bonding among hydration shell waters is modulated by several factors. High charge density cations sequester waters in a configuration that precludes strong hydrogen bonding to neighboring waters. Under such conditions, anion effects emerge as anions compete for hydrogen-bonding sites with the remaining free waters on the surface of the hydration shell. The magnitude of the anion effect is both cation and Gd(3+)-binding site specific. PMID:19603752
In an advanced fusion, fusion-produced charged particles must be separated from each other for efficient energy conversion to electricity. The CuspDEC performs this function of separation and direct energy conversion. Analysis of working characteristics of CuspDEC on plasma density is an important subject. This paper summarizes and discusses experimental and theoretical works for high density plasma by using a small scale experimental device employing a slanted cusp magnetic field. When the incident plasma is low-density, good separation of the charged particles can be accomplished and this is explained by the theory based on a single particle motion. In high density plasma, however, this theory cannot be always applied due to space charge effects. In the experiment, as gradient of the field line increases, separation capability of the charged particles becomes higher. As plasma density becomes higher, however, separation capability becomes lower. This can be qualitatively explained by using calculations of the modified Störmer potential including space charge potential. (author)
Imaging the local density of free charge carriers in doped InAs nanowires
Hauer, Benedikt; Taubner, Thomas [I. Institute of Physics (1A), RWTH Aachen Univerity, Sommerfeldstrasse 14, 52074 Aachen (Germany); Sladek, Kamil; Haas, Fabian; Schaepers, Thomas; Hardtdegen, Hilde [Peter Gruenberg Institute (PGI-9), Forschungszentrum Juelich, 52425 Juelich (Germany)
2013-07-01
Semiconductor nanowires are promising candidates for future nanoelectronic devices. While the bottom-up approach for their growth could simplify the device fabrication, their quantitative characterization remains challenging. We use scattering-type scanning near-field optical microscopy (s-SNOM) to investigate the local density of free electrons in Si-doped InAs nanowires grown by selective-area metalorganic vapor phase epitaxy (SA-MOVPE). In s-SNOM the evanescent electric field at the apex of an illuminated tip is used to probe a sample at a strongly sub-wavelength resolution. This method is highly sensitive to variations in the sample permittivity around Re(ε) ∼ -2. The use of tunable mid-infrared lasers therefore allows addressing the plasma frequency of free charge carriers in highly doped nanowires. Here, we demonstrate that the sensitivity of s-SNOM is sufficient to detect a slight unintended variation in the carrier concentration during the growth process. Furthermore, using model calculations, we give an estimate of the local density of free electrons.
Superconductivity in Pd-intercalated charge-density-wave rare earth poly-tellurides RETe n
He, J. B.; Wang, P. P.; Yang, H. X.; Long, Y. J.; Zhao, L. X.; Ma, C.; Yang, M.; Wang, D. M.; Shangguan, X. C.; Xue, M. Q.; Zhang, P.; Ren, Z. A.; Li, J. Q.; Liu, W. M.; Chen, G. F.
2016-06-01
Charge density waves (CDWs) are periodic modulations of the conduction electron density in solids, which are generally considered to remove electrons from the Fermi level, and thus preclude a superconducting state. However, in a variety of CDW materials, such as the prototypical transition metal chalcogenides, superconductivity has also been observed at very low temperature (Yokoya et al 2001 Science 294 2518; Morosan et al 2006 Nat. Phys. 2 544; Kiss et al 2007 Nat. Phys. 3 720), in which, although the two electronic correlated states are believed to occur in different parts of Fermi surface sheets derived mainly from chalcogen p-states and transition metal d-states, the nature of the relationship between them has not yet been unambiguously determined. Here we report the discovery of superconductivity in Pd-intercalated RETe n (RE = rare earth; n = 2.5, 3) CDW systems, in which the chalcogen layers alone are responsible for both superconductivity and CDW instability. Our finding could provide an ideal model system for comprehensive study of the interplay between CDW and superconductivity due to the remarkable simplicity of the electronic structure of Te planes.
Li Cheng-Bin; Li Ming-Kai; Yin Dong; Liu Fu-Qing; Fan Xiang-Jun
2005-01-01
A first principles study of the electronic properties and bulk modulus (B0) of the fcc and bcc transition metals,transition metal carbides and nitrides is presented. The calculations were performed by plane-wave pseudopotential method in the framework of the density functional theory with local density approximation. The density of states and the valence charge densities of these solids are plotted. The results show that B0 does not vary monotonically when the number of the valence d electrons increases. B0 reaches a maximum and then decreases for each of the four sorts of solids. It is related to the occupation of the bonding and anti-bonding states in the solid. The value of the valence charge density at the midpoint between the two nearest metal atoms tends to be proportional to B0.
Campos, A. F. C.; Tourinho, F. A.; da Silva, G. J.; Lara, M. C. F. L.; Depeyrot, J.
2001-09-01
We analyze potentiometric and conductimetric measurements simultaneously performed on Electric Double-Layer Magnetic Fluid based on cobalt ferrite nanoparticles, in order to obtain the pH-dependence of the particle surface charge density. We propose a mechanism for the charging of the particle surface. This model considers the ferrofluid solution as a mixture of strong and weak diprotic acids. We show how an exact analytical treatment involving proton transfer between the particle surface and the bulk solution allows the construction of a speciation diagram of the charged superficial sites. The saturation value of the superficial density of charge is found to be equal to 0.326 ± 0.065 C m^{-2}.
The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0.18-μm CMOS image sensor process and exposed to 10-keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhancement of interface state SRH generation current. Isochronal annealing tests show that STI interface states anneal out at temperature lower than 100 C whereas about a third of the trapped charge remains after 30 min at 300 C. (authors)
Synchrotron X-Ray Charge-Density Study of Coordination Polymer (Mn(HCOO)2(H2O)2)∞
Three high-quality single-crystal X-ray diffraction data sets have been measured under very different conditions on a structurally simple, but magnetically complex, coordination polymer, (Mn(HCOO)2(H2O)2)∞ (1). The first data set is a conventional 100(2) K MoKα data set, the second is a very high resolution 100(2) K data set measured on a second-generation synchrotron source, while the third data set was measured with a tiny crystal on a high brilliance third-generation synchrotron source at 16(2) K. Furthermore, the magnetic susceptibility (χ) and the heat capacity (Cp) have been measured from 2 to 300 K on pressed powder. The charge density of 1 was determined from multipole modeling of the experimental structure factors, and overall there is good agreement between the densities obtained separately from the three data sets. When considering the fine density features, the two 100 K data sets agree well with each other, but show small differences to the 16 K data set. Comparison with ab initio theory suggests that the 16 K APS data set provides the most accurate density. Topological analysis of the metal-ligand bonding, experimental 3d orbital populations on the Mn atoms, and Bader atomic charges indicate quite ionic, high-spin metal atoms. This picture is supported by the effective moment estimated from the magnetization measurements (5.840(2)μB), but it is at variance with earlier spin density measurements from polarized neutron diffraction. The magnetic ordering originates from superexchange involving covalent interactions with the ligands, and non-ionic effects are observed in the static deformation density maps as well as in plots of the valence shell charge concentrations. Overall, the present study provides a benchmark charge density that can be used in comparison with future metal formate dihydrate charge densities.
Strain Tuning of the Charge Density Wave in Monolayer and Bilayer 1T-TaS2
Gan, Liyong
2015-12-07
By first-principles calculations, we investigate the strain effects on the charge density wave states of monolayer and bilayer 1T-TaS2. The modified stability of the charge density wave in the monolayer is understood in terms of the strain dependent electron localization, which determines the distortion amplitude. On the other hand, in the bilayer the effect of strain on the interlayer interaction is also crucial. The rich phase diagram under strain opens new venues for applications of 1T-TaS2. We interpret the experimentally observed insulating state of bulk 1T-TaS2 as inherited from the monolayer by effective interlayer decoupling.
Chung, H.M.; Nowicki, L.; Gazda, J. [Argonne National Lab., Chicago, IL (United States)] [and others
1995-04-01
The objective of this work is to determine void structure, distribution, and density changes of several promising vanadium-base alloys irradiated in the Dynamic Helium Charging Experiment (DHCE). Combined effects of dynamically charged helium and neutron damage on density change, void distribution, and microstructural evolution of V-4Cr-4Ti alloy have been determined after irradiation to 18-31 dpa at 425-600{degree}C in the DHCE, and the results compared with those from a non-DHCE in which helium generation was negligible.
Microscopic theory of charges density wave instability in NbSe2
The microscopic theory of Sinha and Harmon for electronically driven lattice instabilities is used to explain the ''Kohn-like'' anomalies in the Σ1 phonon branch and the observed incommensurate superlattice Bragg peak in 2H-NbSe2, characteristic of the charge density wave at low temperatures in the neutron scattering experiments of Moncton et al. In accordance with the APW and LCAO band-structure calculations of Mattheiss of 2H-NbSe2, the presence of three narrow d bands of atomic symmetry xy, x2-y2 and 3z2-r2 at the Fermi level is assumed. Thus the conduction-band wave function is represented by a linear combination of tight-binding Gaussian atomic orbitals with neglect of the variation of the radial wave function across the bands. The screened electron-ion interaction and the Coulomb energy of the charge fluctuation on the d shells of Nb atoms is represented by a pseudopotential screened by the Lindhard dielectric function. The phonon eigenvectors needed for estimating the electron-phonon interaction were calculated using a simple force constant model. In agreement with the experimental results, it was found that the phonon frequencies for the Σ1 and Σ3 branches are very strongly renormalized as one approaches the zone boundary. By introducing the electronic relaxation effects a central peak appears at the q vector of the instability and the actual phonon renormalization is partially suppressed. This explains the superlattice Bragg peaks observed at low temperatures and ''Kohn-like'' anomalies in the Σ1 phonon branch of NbSe2
Charge pumping at radio frequencies [MOSFET device interface state density measurement
Sasse, G.T.; Vries, de, P.M.; Schmitz, J
2005-01-01
In this work, for the first time, charge pump results are shown that are obtained at frequencies in the GHz range. A comparison is made with charge pump results at lower frequencies. A very good agreement is seen between the low frequency charge pump data and the RF charge pump data. Measurement results on dielectrics that suffer from a high leakage current show that a charge pump current can be measured at frequencies above 500 MHz. At lower frequencies the charge pump current is completely ...
The maximum-entropy charge densities of six amino acids and peptides reveal systematic dependencies of the properties at bond critical points on bond lengths. MEM densities demonstrate that low-order multipoles (lmax = 1) and isotropic atomic displacement parameters for H atoms in the multipole model are insufficient for capturing all the features of charge densities in hydrogen bonds. Charge densities have been determined by the Maximum Entropy Method (MEM) from the high-resolution, low-temperature (T ≃ 20 K) X-ray diffraction data of six different crystals of amino acids and peptides. A comparison of dynamic deformation densities of the MEM with static and dynamic deformation densities of multipole models shows that the MEM may lead to a better description of the electron density in hydrogen bonds in cases where the multipole model has been restricted to isotropic displacement parameters and low-order multipoles (lmax = 1) for the H atoms. Topological properties at bond critical points (BCPs) are found to depend systematically on the bond length, but with different functions for covalent C—C, C—N and C—O bonds, and for hydrogen bonds together with covalent C—H and N—H bonds. Similar dependencies are known for AIM properties derived from static multipole densities. The ratio of potential and kinetic energy densities |V(BCP)|/G(BCP) is successfully used for a classification of hydrogen bonds according to their distance d(H⋯O) between the H atom and the acceptor atom. The classification based on MEM densities coincides with the usual classification of hydrogen bonds as strong, intermediate and weak [Jeffrey (1997) ▶. An Introduction to Hydrogen Bonding. Oxford University Press]. MEM and procrystal densities lead to similar values of the densities at the BCPs of hydrogen bonds, but differences are shown to prevail, such that it is found that only the true charge density, represented by MEM densities, the multipole model or some other method can lead
Snapshots of cooperative atomic motions in the optical suppression of charge density waves.
Eichberger, Maximilian; Schäfer, Hanjo; Krumova, Marina; Beyer, Markus; Demsar, Jure; Berger, Helmuth; Moriena, Gustavo; Sciaini, Germán; Miller, R J Dwayne
2010-12-01
Macroscopic quantum phenomena such as high-temperature superconductivity, colossal magnetoresistance, ferrimagnetism and ferromagnetism arise from a delicate balance of different interactions among electrons, phonons and spins on the nanoscale. The study of the interplay among these various degrees of freedom in strongly coupled electron-lattice systems is thus crucial to their understanding and for optimizing their properties. Charge-density-wave (CDW) materials, with their inherent modulation of the electron density and associated periodic lattice distortion, represent ideal model systems for the study of such highly cooperative phenomena. With femtosecond time-resolved techniques, it is possible to observe these interactions directly by abruptly perturbing the electronic distribution while keeping track of energy relaxation pathways and coupling strengths among the different subsystems. Numerous time-resolved experiments have been performed on CDWs, probing the dynamics of the electronic subsystem. However, the dynamics of the periodic lattice distortion have been only indirectly inferred. Here we provide direct atomic-level information on the structural dynamics by using femtosecond electron diffraction to study the quasi two-dimensional CDW system 1T-TaS(2). Effectively, we have directly observed the atomic motions that result from the optically induced change in the electronic spatial distribution. The periodic lattice distortion, which has an amplitude of ∼0.1 Å, is suppressed by about 20% on a timescale (∼250 femtoseconds) comparable to half the period of the corresponding collective mode. These highly cooperative, electronically driven atomic motions are accompanied by a rapid electron-phonon energy transfer (∼350 femtoseconds) and are followed by fast recovery of the CDW (∼4 picoseconds). The degree of cooperativity in the observed structural dynamics is remarkable and illustrates the importance of obtaining atomic-level perspectives of the
The interplay between electron-phonon and electron-electron interactions in quasi-one-dimensional systems can give rise to competition and possible coexistence of various symmetry broken ground states like bond-order-wave (BOW), charge-density-wave (CDW) and spin-density-wave (SDW). The halogen-bridged mixed-valence transition-metal linear chain complexes (HMMC or MX chains) is a typical example of such systems. In this and a companion paper, we study the ground states and localized excitations like polarons and excitons in these competing systems using a single band Peierls-Hubbard model and the Bogoliubov-de Gennes formalism. We first focus on configurations of these excitations and number of bound states within the gap in competing BOW and CDW systems as functions of the electron-phonon coupling strength. The lattice relaxation approach to quasi-one-dimensional systems, developed by Su and Yu earlier, has been applied to study the radiative and non-radiative transitions of these excitations. A non-monotonic dependence of the relaxation rate on the coupling strength is predicted from the theory and is mainly due to the emergence of new bound states inside the gap. The possible connection of this effect with photoluminescence experiments is discussed. Similar phenomena may occur in other quasi-one-dimensional systems as well. (author). 28 refs, 13 figs, 1 tab
Three-dimensional charge density wave order in YBCO at high magnetic field
Lee, Wei-Sheng
Charge density wave (CDW) correlations have been shown to universally exist in cuprate superconductors. However, their nature at high magnetic fields, e . g . inferred from nuclear magnetic resonance, Hall coefficient, and sound velocity measurements, is distinct from that measured by x-ray scattering at zero and low fields. In this talk, I will discuss our recent experiment which combines a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below ~150 K, is essentially two dimensional, a three-dimensionally ordered CDW emerges at magnetic fields beyond 15 Tesla and at temperatures below the zero-field superconducting transition temperature. While the two CDW arrange differently along the c-axis, they share the same incommensurate periodicity in the CuO2plane. Our observations imply that the two forms of CDW and high-temperature superconductivity are intimately linked.
First-principles studies on the charge density wave in uranium
Qiu, Ruizhi; Lu, Haiyan; Ao, Bingyun; Tang, Tao; Chen, Piheng
2016-06-01
The charge density wave (CDW) state of α-U (called {α1} -U) was studied through a first-principles total-energy minimization using the conjugate gradient algorithm. The optimized crystal structure of {α1} -U was found to have the space group Pbnm, which was proposed in the earlier Landau-type theory and is isostructural with the α-Np structure. In particular, the changes in the lattice parameters of Pbnm-U with respect to α-U are consistent with the experimental observations. In addition, the energetic stability of Pbnm-U with respect to α-U was confirmed by enthalpy calculations, and the value of the critical pressure in the pressure-induced quantum transition from Pbnm-U to α-U is in good agreement with the experimental result. Moreover, the phonon calculation verified the dynamical instability of α-U and the stability of Pbnm-U. Finally, the calculated electronic structures exhibit features of the CDW state.
Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density
Espejel-Morales, R.; Murguía-Romero, G.; Calles, A.; Cabrera-Bravo, E.; Morán-López, J. L.
2016-07-01
We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell-like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder.
Novel charge density wave transition in crystals of R5Ir4Si10
S Ramakrishnan
2002-05-01
We review the observation of novel charge density wave (CDW) transitions in ternary R5Ir4Si10 compounds. A high quality single crystal of Lu5Ir4Si10 shows the formation of a commensurate CDW along -axis below 80 K in the (ℎ, 0, ) plane that coexists with BCS type superconductivity below 3.9 K. However, in a single crystal of Er5Ir4Si10, one observes the development of a 1D-incommensurate CDW at 155 K, which then locks into a purely commensurate state below 55 K. The well-localized Er3 moments are antiferromagnetically ordered below 2.8 K which results in the coexistence of strongly coupled CDW with local moment antiferromagnetism in Er5Ir4Si10. Unlike conventional CDW systems, extremely sharp transition (width ∼ 1.5 K) in all bulk properties along with huge heat capacity anomalies in these compounds makes this CDW transition an interesting one.
Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density
Chen, Guang; Das, Siddhartha
2015-05-01
"Smart" polyelectrolyte-grafted or "soft" nanochannels with pH-responsiveness have shown great promise for applications like manipulation of ion transport, ion sensing and selection, current rectification, and many more. In this paper, we develop a theory to study the electroosmotic transport in a polyelectrolyte-grafted (or soft) nanochannel with pH-dependent charge density. In one of our recent studies, we have identified that explicit consideration of hydrogen ion concentration is mandatory for appropriately describing the electrostatics of such systems and the resulting monomer concentration must obey a non-unique, cubic distribution. Here, we use this electrostatic calculation to study the corresponding electroosmotic transport. We establish that the effect of pH in the electroosmotic transport in polyelectrolyte-grafted nanochannels introduces two separate issues: first is the consideration of the hydrogen and hydroxyl ion concentrations in describing the electroosmotic body force, and second is the consideration of the appropriate drag force that bears the signature of this cubic monomeric distribution. Our results indicate that the strength of the electroosmotic velocity for the pH-dependent case is always smaller than that for the pH-independent case, with the extent of this difference being a function of the system parameters. Such nature of the electroosmotic transport will be extremely significant in suppressing the electroosmotic flow strength with implications in large number applications such as capillary electrophoresis induced separation, electric field mediated DNA elongation, electrophoretic DNA nanopore sequencing, and many more.
Basurto, Luis; Zope, Rajendra R.; Baruah, Tunna
2016-05-01
We report an electronic structure study of a multichromophoric molecular complex containing two of each borondipyrromethane dye, Zn-tetraphenyl-porphyrin, bisphenyl anthracene and a fullerene. The snowflake shaped molecule behaves like an antenna capturing photon at different frequencies and transferring the photon energy to the porphyrin where electron transfer occurs from the porphyrin to the fullerene. The study is performed within density functional formalism using large polarized Guassian basis sets (12,478 basis functions in total). The energies of the HOMO and LUMO states in the complex, as adjudged by the ionization potential and the electron affinity values, show significant differences with respect to their values in participating subunits in isolation. These differences are also larger than the variations of the ionization potential and electron affinity values observed in non-bonded C60-ZnTPP complexes in co-facial arrangement or end-on orientations. An understanding of the origin of these differences is obtained by a systematic study of the effect of structural strain, the presence of ligands, the effect of orbital delocalization on the ionization energy and the electron affinity. Finally, a few lowest charge transfer energies involving electronic transitions from the porphyrin component to the fullerene subunit of the complex are predicted.
Charge-exchange measurements of fully-stripped oxygen and carbon ion radial density profiles in TFR
Fully-ionized oxygen and carbon ions have been detected in TFR via charge-exchange recombination spectroscopy using a modulated auxiliary neutral beam, thus allowing their radial density profiles to be obtained. An impurity transport numerical code is then used to deduce the impurity transport parameters
Fleischer, F.; Weber, T.; Deloudi, S.; Palatinus, Lukáš; Steurer, W.
2010-01-01
Roč. 43, - (2010), s. 89-100. ISSN 0021-8898 Institutional research plan: CEZ:AV0Z10100521 Keywords : phase retrieval * charge flipping * low-density elimination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.794, year: 2010
Quintanilha, A.T.; Packer, L.; Szyszlo Davies, J.M.; Racanelli, T.L.; Davies, K.J.A.
1981-12-01
Vitamin E (dl-..cap alpha..-tocopherol) deficiency in rats increased the sensitivity of liver and muscle mitochondria to damage during incubation at various temperatures, irradiation with visible light, or steady state respiration with substrates. In all cases, vitamin E deficient mitochondria exhibited increased lipid peroxidation, reduced transmembrane potential, decreased respiratory coupling, and lower rates of electron transport, compared to control mitochondria. Muscle mitochondria always showed greater negative inner membrane surface charge density, and were also more sensitive to damage than were liver mitochondria. Vitamin E deficient mitochondria also showed slightly more negative inner membrane surface charge density compared to controls. The relationship between greater negative surface potential and increased sensitivity to damage observed, provides for a new and sensitive method to further probe the role of surface charge in membrane structure and function. Implications of these new findings for the well known human muscle myopathies and those experimentally induced by Vitamin E deficiency in animals, are discussed.
杨忠志; 王长生
2000-01-01
Based on the density functional theory and the atom-bond electronegativity equalization model (ABEEM), a method is proposed to construct the softness matrix and to obtain the electron population normal modes (PNMs) for a closed system. Using this method the information about the bond charge polarization in a molecule can be obtained easily. The test calculation shows that the PNM obtained by this method includes all the modes about the bond charge polarization explicitly. And the bond charge polarization mode characterized by the biggest eigenvalue, which is the softest one of all modes related with chemical bonds, can describe the charge polarization process in a molecule as exquisitely as the corresponding ab initio method.
Yamakawa, Youichi; Kontani, Hiroshi
2015-06-26
We present a microscopic derivation of the nematic charge-density wave (CDW) formation in cuprate superconductors based on the three-orbital d-p Hubbard model by introducing the vertex correction (VC) into the charge susceptibility. The CDW instability at q=(Δ(FS),0), (0,Δ(FS)) appears when the spin fluctuations are strong, due to the strong charge-spin interference represented by the VC. Here, Δ(FS) is the wave number between the neighboring hot spots. The obtained spin-fluctuation-driven CDW is expressed as the "intra-unit-cell orbital order" accompanied by the charge transfer between the neighboring atomic orbitals, which is actually observed by the scanning tunneling microscope measurements. We predict that the cuprate CDW and the nematic orbital order in Fe-based superconductors are closely related spin-fluctuation-driven phenomena. PMID:26197139
Ghasemi, S. Alireza; Hofstetter, Albert; Saha, Santanu; Goedecker, Stefan
2015-01-01
Based on an analysis of the short range chemical environment of each atom in a system, standard machine learning based approaches to the construction of interatomic potentials aim at determining directly the central quantity which is the total energy. This prevents for instance an accurate description of the energetics of systems where long range charge transfer is important as well as of ionized systems. We propose therefore not to target directly with machine learning methods the total ener...
Crystal structure and charge density analysis of Ca(BH4)2
Calcium borohydride Ca(BH4)2 is one of the promising new hydrogen storage materials because of its large amount of hydrogen desorption capability (9.6 mass%). The crystal structures of α-Ca(BH4)2 (space group: Fddd, lattice constants: a = 8.7782(2) A, b = 13.129(1) A, c = 7.4887(9) A) and β-Ca(BH4)2 (P42/m, a = 6.9509(5) A, c = 4.3688(3) A) were refined by synchrotron X-ray diffraction at 300 and 433 K, respectively. The unsolved structures of γ-Ca(BH4)2 (Pbca, a = 7.525(1) A, b = 13.109(2) A, c = 8.403(1) A) and Ca(BH4)2.H2O (Pnma, a = 8.200(1) A, b = 5.8366(7) A, c = 11.851(2) A) were determined. In α-, β- and γ-Ca(BH4)2 structures, six boron atoms around a calcium atom construct CaB6 octahedron. The polymorphism of Ca(BH4)2 is formed by the different connection with adjacent octahedrons sharing vertexes and edges of the CaB6 octahedron. Furthermore, the charge density distribution in α-Ca(BH4)2 was experimentally determined by maximum entropy method. It is clarified that the bonding nature in α-Ca(BH4)2 ionic crystal is constructed from Ca2+ cation and BH4- anion.
Dacuña, Javier
2011-11-28
We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.
Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2
Barja, Sara; Wickenburg, Sebastian; Liu, Zhen-Fei; Zhang, Yi; Ryu, Hyejin; Ugeda, Miguel M.; Hussain, Zahid; Shen, Zhi-Xun; Mo, Sung-Kwan; Wong, Ed; Salmeron, Miquel B.; Wang, Feng; Crommie, Michael F.; Ogletree, D. Frank; Neaton, Jeffrey B.; Weber-Bargioni, Alexander
2016-08-01
We provide direct evidence for the existence of isolated, one-dimensional charge density waves at mirror twin boundaries (MTBs) of single-layer semiconducting MoSe2. Such MTBs have been previously observed by transmission electron microscopy and have been predicted to be metallic in MoSe2 and MoS2. Our low-temperature scanning tunnelling microscopy/spectroscopy measurements revealed a substantial bandgap of 100 meV opening at the Fermi energy in the otherwise metallic one-dimensional structures. We found a periodic modulation in the density of states along the MTB, with a wavelength of approximately three lattice constants. In addition to mapping the energy-dependent density of states, we determined the atomic structure and bonding of the MTB through simultaneous high-resolution non-contact atomic force microscopy. Density functional theory calculations based on the observed structure reproduced both the gap opening and the spatially resolved density of states.
A charge exchange recombination spectroscopy (CXRS) diagnostic has been established on JET to study fully stripped low-Z species. Ion temperature in the plasma centre is measured from visible lines of helium, carbon and oxygen excited by charge exchange with heating neutral beam particles. Coincident cold components produced at the plasma edge are apparent on helium and carbon spectra and most spectra are subject to accidental blending from other species' edge plasma emission. The charge exchange feature can be isolated from the various composite lines and all three impurities agree on the same temperature within experimental error. Observed column emissivities are converted into absolute impurity densities using a neutral beam attenuation code and charge exchange effective rate coefficients. Comprehensive new calculations have been performed to obtain the effective rate coefficients. The models take detailed account of cascading and the influence of the plasma environment in causing l-mixing, and allow the n-dependence of the rate coefficients to be addressed experimentally. The effective ion charge reconstructed from simultaneous measurements of the densities of dominant impurities shows good agreement with the value inferred from visible Bremsstrahlung. Some illustrative results are shown for helium (helium discharge or minority r.f.. heating), carbon and oxygen concentrations monitored during characteristic operating regimes. (author)
Surajit Ghosh; K V S Girish; Subhadip Ghosh
2013-07-01
Intramolecular charge transfer of 4-,-dimethylamino cinnamaldehyde (DMACA) in vacuum and in five different aprotic solvents has been studied by using time-dependent density functional theory (TDDFT). Polarizable continuum model (PCM) was employed to consider solvent-solute interactions. The potential energy curves were constructed at different torsional angle of ,-dimethylamino moiety with respect to the adjacent phenyl ring. A large bathochromic shift in our calculated emission and absorption energies for polar solvents is a clear reminiscent of charge transfer nature of the excited state. Finally, the reported results are in agreement with experimental findings.
In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (O = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.
An analytical model for surrounding gate metal—oxide—semiconductor field effect transistors (MOSFETs) considering quantum effects is presented. To achieve this goal, we have used a variational approach for solving the Poissonand Schrodinger equations. This model is developed to provide an analytical expression for the inversion charge distribution function for all regions of the device operation. This expression is used to calculate the other important parameters like the inversion charge centroid, threshold voltage and inversion charge density. The calculated expressions for the above parameters are simple and accurate. The validity of this model was checked for the devices with different device dimensions and bias voltages. The calculated results are compared with the simulation results and they show good agreement. (semiconductor devices)
Charged-Particle Pseudorapidity Density Distributions from Au+Au Collisions at (sNN) = 130 GeV
Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hołyński, R.; Holzman, B.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2001-09-01
The charged-particle pseudorapidity density dNch/dη has been measured for Au+Au collisions at (sNN) = 130 GeV at RHIC, using the PHOBOS apparatus. The total number of charged particles produced for the 3% most-central Au+Au collisions for \\|η\\|<=5.4 is found to be 4200+/-470. The evolution of dNch/dη with centrality is discussed, and compared to model calculations and to data from proton-induced collisions. The data show an enhancement in charged-particle production at midrapidity, while in the fragmentation regions, the results are consistent with expectations from pp and pA scattering.
Reji Thomas; Shrinwantu Pal; Ayan Datta; Mariusz K Marchewka; Henryk Ratajczak; Swapan K Pati; G U Kulkarni
2008-11-01
An experimental charge density study has been carried out on proton-transfer complexes exhibiting nonlinear optical (NLO) properties-melaminium tartrate monohydrate and L-asparaginium picrate employing high-resolution X-ray diffraction at 100 K. Both the complexes crystallize in non-centric space group P21 and the structures exhibit interesting patterns of N-H…O and O-H…O hydrogen bonding. Experimental determination of the dipole moment () for the asymmetric unit reveals that for both the crystals, there is a large cooperative enhancement in the crystalline arising essentially due to hydrogen bond mediated charge transfer between the melaminium ion and the L-tartrate in one case, between the Lasparaginium ion and the picrate in the other complex. We have additionally performed theoretical calculations at the density functional theory (DFT) level to understand the origin of enhancement of the dipole moments in the two systems.
Spin polarization driven by a charge-density wave in monolayer 1T−TaS2
Zhang, Qingyun
2014-08-06
Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.
Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R
2014-10-01
Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. PMID:25092587