WorldWideScience

Sample records for allyl alcohol cyclization

  1. Compound list: allyl alcohol [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available allyl alcohol AA 00010 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/allyl_alcohol....Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/allyl_alcohol...dbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/allyl_alcohol.Rat.in_vivo.Liver.Repeat.zip ftp:/.../ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/allyl_alcohol.Rat.in_vivo.Kidney....Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Repeat/allyl_alcohol.Rat.in_vivo.Kidney.Repeat.zip ...

  2. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin

    2017-01-01

    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  3. Decarbonylation and hydrogenation reactions of allyl alcohol and acrolein on Pd(110)

    Science.gov (United States)

    Shekhar, Ratna; Barteau, Mark A.

    1994-11-01

    Allyl alcohol and acrolein reactions on the Pd(110) surface were investigated using temperature programmed desorption. For both unsaturated oxygenates, three coverage-dependent reaction pathways were observed. At low coverages, allyl alcohol decomposed completely to CO, hydrogen and carbonaceous species on the surface. For θ > 0.15 monolayer, ethylene (and small amounts of ethane) desorbed at ca. 295 K. Near saturation coverages, desorption of propanal was detected at ca. 235 K. The parent molecule, allyl alcohol, desorbed only after exposures sufficient to saturate these channels. Acrolein decomposition spectra were similar to those observed for allyl alcohol decomposition on the clean surface. Additional experiments with allyl alcohol on hydrogen- and deuterium-precoveredPd(110) surfaces demonstrated increased hydrogenation of the C 2-hydrocarbon products along with hydrogenation of allyl alcohol to 1-propanol. However, in contrast to previous results for allyl alcohol on the Pd(111) surface, there was no evidence for C-O scission reactions of any C 3 oxygenate on Pd(110).

  4. A Divergent Mechanistic Course of Pd(0)-Catalyzed Aza-Claisen Rearrangement and Aza-Rautenstrauch-Type Cyclization of N-Allyl-Ynamides

    Science.gov (United States)

    DeKorver, Kyle A.; Hsung, Richard P.; Lohse, Andrew G.; Zhang, Yu

    2010-01-01

    A fascinating mechanistic study of ynamido-palladium-π-allyl complexes is described that features isolation of a unique silyl-ketenimine via aza-Claisen rearrangement, which can be accompanied by an unusual thermal N-to-C 1,3-Ts shift in the formation of tertiary nitriles, and a novel cyclopentenimine formation via a palladium catalyzed aza-Rautenstrauch-type cyclization pathway. PMID:20337418

  5. Vanadium-Catalyzed Enantioselective Desymmetrization of meso-Secondary Allylic Alcohols and Homoallylic Alcohols

    OpenAIRE

    Li, Zhi; Zhang, Wei; Hisashi Yamamoto, H.

    2008-01-01

    Vanadium-catalyzed epoxidation has extended substrate scope. In addition to various bis-allylic alcohols, bis-homoallylic alcohols can also be desymmetrized using our Vanadium-Bis-hydroxamic acid complexes.

  6. Carbocyclization cascades of allyl ketenimines via aza-Claisen rearrangements of N-phosphoryl-N-allyl-ynamides.

    Science.gov (United States)

    DeKorver, Kyle A; Wang, Xiao-Na; Walton, Mary C; Hsung, Richard P

    2012-04-06

    A series of carbocyclization cascades of allyl ketenimines initiated through a thermal aza-Claisen rearrangement of N-phosphoryl-N-allyl ynamides is described. Interceptions of the cationic intermediate via Meerwein-Wagner rearrangements and polyene-type cyclizations en route to fused bi- and tricyclic frameworks are featured.

  7. In situ cyclization modification in polymerization of butadiene by rare earth coordination catalyst

    International Nuclear Information System (INIS)

    Wang Chaoyang

    2005-01-01

    Butadiene was polymerized to a certain extent in the presence of a rare earth coordination catalyst, neodymium compound of neodymium chloride and i-propyl alcohol and triethyl aluminum (NdCl 3 ·3i-PrOH-AlEt 3 ) in toluene and the allyl chloride was then added to the reactive solution in order to in situ cyclize the formed polybutadiene and cyclopolymerize the unreacted butadiene monomers. Effects of molar ratio of allylchloride to AlEt 3 (Cl/Al), cyclization reaction time and temperature, butadiene and NdCl 3 ·3i-PrOH concentrations on the cyclization reaction have been investigated. The cyclization reaction is very quick, only several minutes. The cyclization reaction temperature has few effects on the properties of the cyclized product. Cl/Al is a very important condition for this reaction system. Cyclized polybutadiene has a low value of intrinsic viscosity, free gelling and high yield at high Cl/Al. The microstructures and properties of the cyclized products have been characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and gel permeation chromatography. The cyclization mechanism is put forward

  8. Selective epoxidation of allylic alcohols with a titania-silica aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Dusi, M.; Mallat, T.; Baiker, A. [Lab. of Technical Chemistry, Swiss Federal Inst. of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1998-12-31

    An amorphous mesoporous titania-silica aerogel (20 wt%TiO{sub 2} - 80 wt% SiO{sub 2}) and tert.-butylhydroperoxide (TBHP) have been used for the epoxidation of various allylic alcohols. Allylic alcohols possessing an internal double bond were more reactive than those with a terminal C=C bond. Epoxide selectivities could be improved by addition of (basic) zeolite 4 A and NaHCO{sub 3} to the reaction mixture. (orig.)

  9. Radiation initiated copolymerization of allyl alcohol with acrylonitrile

    International Nuclear Information System (INIS)

    Solpan, Dilek; Guven, Olgun

    1996-01-01

    Copolymerization of allyl alcohol (AA) with acrylonitrile (AN) initiated by γ-rays has been investigated to determine the respective reactivity ratios. Three different experimental techniques, namely Fourier Transform Infrared (FTIR), Ultraviolet (UV/vis) and elemental analysis (EA) have been used for the determination of copolymer compositions. Fineman-Ross (FR), Kelen-Tudos (KT), Non-Linear Least Square (NLLS) Analysis and Q-e methods have been applied to the three sets of experimental data. It has been concluded that data obtained from elemental analysis as applied to the Non-Linear Least Square approach gave the most reliable reactivity ratios as 2.09 and 0.40 for acrylonitrile and allyl alcohol, respectively. (Author)

  10. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Nils Klüver

    Full Text Available Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L. Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1 during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos. Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L. Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes

  11. One-Pot Multicomponent Coupling Methods for the Synthesis of Diastereo- and Enantioenriched (Z)-Trisubstituted Allylic Alcohols

    Science.gov (United States)

    Kerrigan, Michael H.; Jeon, Sang-Jin; Chen, Young K.; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.

    2009-01-01

    (Z)-Trisubstituted allylic alcohols are widespread structural motifs in natural products and biologically active compounds but are difficult to directly prepare. Introduced herein is a general one-pot multicomponent coupling method for the synthesis of (Z)-α,α,β-trisubstituted allylic alcohols. (Z)-Trisubstituted vinylzinc reagents are formed in situ by initial hydroboration of 1-bromo-1-alkynes. Addition of dialkylzinc reagents induces a 1,2-metallate rearrangement that is followed by a boron-to-zinc transmetallation. The resulting vinylzinc reagents add to a variety of prochiral aldehydes to produce racemic (Z)-trisubstituted allylic alcohols. When enantioenriched aldehyde substrates are employed (Z)-trisubstituted allylic alcohols are isolated with high dr (>20:1 in many cases). For example, vinylation of enantioenriched benzyl protected α- and β-hydroxy propanal derivatives furnished the expected anti-Felkin addition products via chelation control. Surprisingly, silyl protected α-hydroxy aldehydes also afford anti-Felkin addition products. A protocol for the catalytic asymmetric addition of (Z)-trisubstituted vinylzinc reagents to prochiral aldehydes with a (−)-MIB-based catalyst has also been developed. Several additives were investigated as inhibitors of the Lewis acidic alkylzinc halide byproducts, which promote the background reaction to form the racemate. α-Ethyl and α-cyclohexyl (Z)-trisubstituted allylic alcohols can now be synthesized with excellent levels of enantioselectivity in the presence of diamine inhibitors. PMID:19476375

  12. Concise stereocontrolled formal synthesis of (+/-)-quinine and total synthesis of (+/-)-7- hydroxyquinine via merged Morita-Baylis-Hillman-Tsuji-Trost cyclization.

    Science.gov (United States)

    Webber, Peter; Krische, Michael J

    2008-12-05

    Concise stereoselective syntheses of (+/-)-quinine and (+/-)-7-hydroxyquinine are achieved using a catalytic enone cycloallylation that combines the nucleophilic features of the Morita-Baylis-Hillman reaction and the electrophilic features of the Tsuji-Trost reaction. Cyclization of enone-allyl carbonate 11 delivers the product of cycloallylation 13 in 68% yield. Diastereoselective conjugate reduction of the enone 13 (>20:1 dr) followed by exchange of the N-protecting group provides the saturated N-Boc-protected methyl ketone 19, which upon aldol dehydration provides quinoline containing enone 15, possessing all carbon atoms of quinine. Exposure of ketone 15 to L-selectride enables diastereoselective carbonyl reduction (>20:1 dr) to furnish the allylic alcohol 16. Stereoselective hydroxyl-directed epoxidation using an oxovanadium catalyst modified by N-hydroxy-N-Me-pivalamide delivers epoxide 17 (17:1 dr). Cyclization of the resulting amine-epoxide 17 provides (+/-)-7-hydroxyquinine in 13 steps and 11% overall yield from aminoacetaldehyde diethyl acetal. Notably, highly stereoselective formation of five contiguous stereocenters is achieved through a series of 1,2-asymmetric induction events. Deoxygenation of the N-Cbz-protected allylic acetate 22 provides olefin 23, which previously has been converted to quinine. Thus, (+/-)-quinine is accessible in 16 steps and 4% overall yield from commercial aminoacetaldehyde diethyl acetal.

  13. Enantioselective epoxidation with chiral MN(III)(salen) catalysts: kinetic resolution of aryl-substituted allylic alcohols.

    Science.gov (United States)

    Adam, W; Humpf, H U; Roschmann, K J; Saha-Möller, C R

    2001-08-24

    A set of aryl-substituted allylic alcohols rac-2 has been epoxidized by chiral Mn(salen*) complexes 1 as the catalyst and iodosyl benzene (PhIO) as the oxygen source. Whereas one enantiomer of the allylic alcohol 2 is preferentially epoxidized to give the threo- or cis-epoxy alcohol 3 (up to 80% ee) as the main product (dr up to >95:5), the other enantiomer of 2 is enriched (up to 53% ee). In the case of 1,1-dimethyl-1,2-dihydronaphthalen-2-ol (2c), the CH oxidation to the enone 4c proceeds enantioselectively and competes with the epoxidation. The absolute configurations of the allylic alcohols 2 and their epoxides 3 have been determined by chemical correlation or CD spectroscopy. The observed diastereo- and enantioselectivities in the epoxidation reactions are rationalized in terms of a beneficial interplay between the hydroxy-directing effect and the attack along the Katsuki trajectory.

  14. Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic, and alkenyl alcohols.

    Science.gov (United States)

    Larionov, Evgeny; Lin, Luqing; Guénée, Laure; Mazet, Clément

    2014-12-03

    Herein we report the palladium-catalyzed isomerization of highly substituted allylic alcohols and alkenyl alcohols by means of a single catalytic system. The operationally simple reaction protocol is applicable to a broad range of substrates and displays a wide functional group tolerance, and the products are usually isolated in high chemical yield. Experimental and computational mechanistic investigations provide complementary and converging evidence for a chain-walking process consisting of repeated migratory insertion/β-H elimination sequences. Interestingly, the catalyst does not dissociate from the substrate in the isomerization of allylic alcohols, whereas it disengages during the isomerization of alkenyl alcohols when additional substituents are present on the alkyl chain.

  15. An XPS study of pulsed plasma polymerised allyl alcohol film growth on polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Lucy [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom); Bismarck, Alexander [Department of Chemical Engineering, Polymer and Composite Engineering (PaCE) Group, Imperial College London, London SW7 2AZ (United Kingdom); Lee, Adam F. [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom); Wilson, Darren [Smith and Nephew Research Centre, York Science Park, Heslington, York YO10 5DF (United Kingdom); Wilson, Karen [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom)]. E-mail: kw13@york.ac.uk

    2006-09-30

    The growth of highly functionalised poly allyl alcohol films by pulsed plasma polymerisation of CH{sub 2} =CHCH{sub 2}OH on biomedical grade polyurethane has been followed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Film thickness is observed to increase approximately linearly with plasma modification time, suggesting a layer-by-layer growth mode of poly allyl alcohol. Water contact angle measurements reveal the change in the surface free energy of wetting decreases linearly with plasma modification up to the monolayer point after which a constant limiting value of -24 mJ m{sup -2} was attained. Films prepared at 20 W plasma power with a duty cycle of 10 {mu}s:500 {mu}s exhibit a high degree of hydroxyl (-OH) retention with minimal fragmentation of the monomer observed. Increasing the plasma power up to 125 W is found to improve -OH retention at the expense of ether formation generating films close to the monomer stoichiometry. Duty cycle plays an important role in controlling both film composition and thickness, with longer off times increasing -OH retention, while longer on times enhance allyl alcohol film growth.

  16. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.

    Science.gov (United States)

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2015-07-11

    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  17. Direct activation of allylic alcohols in palladium catalyzed coupling reactions

    NARCIS (Netherlands)

    Gümrükçü, Y.

    2014-01-01

    The direct use of allylic alcohols in substitution reactions without pre-activation of the hydroxyl-group into a better leaving group or the use of additional stoichiometric in situ activators remains challenging due to the poor leaving group ability of the hydroxyl-group. Hence, it is important to

  18. Expression of liver functions following sub-lethal and non-lethal doses of allyl alcohol and acetaminophen in the rat

    DEFF Research Database (Denmark)

    Tygstrup, N; Jensen, S A; Krog, B

    1997-01-01

    BACKGROUND/AIMS: To relate severity of intoxication with allyl alcohol and acetaminophen to modulated hepatic gene expression of liver functions and regeneration. METHODS: Rats fasted for 12 h received acetaminophen 3.5 or 5.6 g per kg body weight, or allyl alcohol 100 or 125 microl by gastric tu...

  19. An iron/amine-catalyzed cascade process for the enantioselective functionalization of allylic alcohols.

    Science.gov (United States)

    Quintard, Adrien; Constantieux, Thierry; Rodriguez, Jean

    2013-12-02

    Three is a lucky number: An enantioselective transformation of allylic alcohols into β-chiral saturated alcohols has been developed by combining two distinct metal- and organocatalyzed catalytic cycles. This waste-free triple cascade process merges an iron-catalyzed borrowing-hydrogen step with an aminocatalyzed nucleophilic addition reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The reactivity of allyl and propargyl alcohols with solvated electrons: temperature and solvent effects

    International Nuclear Information System (INIS)

    Afanassiev, A.M.; Okazaki, K.; Freeman, G.R.

    1979-01-01

    The rate constants K 1 for the reaction of solvated electrons with allyl alcohol in a number of hydroxylic solvents differ by up to two orders of magnitude and decrease in the order tert-butyl alcohol > 2-propanol > l-propanol approximately ethanol > methanol approximately ethylene glycol > water. In methanol and ethylene glycol the rate constants (7 x 10 7 M -1 s -1 at 298 K) and activation energies (16 kJ/mol) are equal, in spite of a 32-fold difference in solvent viscosity (0.54 and 17.3 cP, respectively) and 3-fold difference in its activation energy (11 and 32 kJ/mol, respectively). The reaction in tert-butyl alcohol is nearly diffusion controlled and has a high activation energy that is characteristic of transport in that liquid (E 1 = 31 kJ/mol, E sub(eta) = 39 kJ/mol). The activation energies in the other alcohols are all 16 kJ/mol, and it is 14 kJ/mol in water. They do not correlate with transport properties. The solvent effect is connected primarily with the entropy of activation. The rate constants correlate with the solvated electron trap depth. When the electron affinity of the scavenger is small, a favorable configuration of solvent molecules about the electron/scavenger encounter pair is required for the electron jump to take place. The behavior of the rate parameters for propargyl alcohol is similar to that for allyl alcohol, but k 1 , A 1 , and E 1 are larger for the former. The ratio k(propargyl)/k(allyl) at 298 K equals 10.5 in water and decreases through the series, reaching 1.3 in tert-butyl alcohol. Rate parameters for several other scavengers are also reported. (author)

  1. Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study.

    Science.gov (United States)

    Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2015-09-21

    Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au-allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  2. Concise Stereocontrolled Formal Synthesis of (±)-Quinine and Total Synthesis of (±)-7-Hydroxyquinine via Merged Morita-Baylis-Hillman-Tsuji-Trost Cyclization

    Science.gov (United States)

    Webber, Peter; Krische, Michael J.

    2010-01-01

    Concise stereoselective syntheses of (±)-quinine and (±)-7-hydroxyquinine are achieved using a catalytic enone cycloallylation that combines the nucleophilic features of the Morita-Baylis-Hillman reaction and the electrophilic features of the Tsuji-Trost reaction. Cyclization of enone-allyl carbonate 11 delivers the product of cycloallylation 13 in 68% yield. Diastereoselective conjugate reduction of the enone 13 (>20:1 dr) followed by exchange of N-protecting groups provides the saturated N-Boc-protected methyl ketone 19, which upon aldol dehydration provides quinoline containing enone 15, possessing all carbon atoms of quinine. Exposure of ketone 15 to L-selectride enables diastereoselective carbonyl reduction (>20:1 dr) to furnish the allylic alcohol 16. Stereoselective hydroxyl-directed epoxidation using an oxovanadium catalyst modified by N-hydroxy-N-Me-pivalamide delivers epoxide 17 (17:1 dr). Cyclization of the resulting amine-epoxide 17 provides (±)-7-hydroxyquinine in 13 steps and 11% overall yield from aminoacetaldehyde diethyl acetal. Notably, highly stereoselective formation of five contiguous stereocenters is achieved through a series of 1,2-asymmetric induction events. A formal synthesis of (±)-quinine is achieved upon deoxygenation of the N-Cbz-protected allylic acetate 22 to provide olefin 23, which previously has been converted to quinine. Thus, (±)-quinine is accessible in 16 steps and 4% overall yield from commercial aminoacetaldehyde diethyl acetal, making this route the most concise approach to quinine, to date. PMID:18989927

  3. α,β-Unsaturated imines via Ru-catalyzed coupling of allylic alcohols and amines.

    Science.gov (United States)

    Rigoli, Jared W; Moyer, Sara A; Pearce, Simon D; Schomaker, Jennifer M

    2012-03-07

    A convenient synthesis of α,β-unsaturated imines requiring only an allylic alcohol, an amine and a Ru catalyst has been developed. The use of large excesses of oxidant and the purification of sensitive intermediates can be avoided.

  4. How phenyl makes a difference: mechanistic insights into the ruthenium( ii )-catalysed isomerisation of allylic alcohols

    KAUST Repository

    Manzini, Simone

    2013-10-16

    [RuCl(η5-3-phenylindenyl)(PPh3)2] (1) has been shown to be a highly active catalyst for the isomerisation of allylic alcohols to the corresponding ketones. A variety of substrates undergo the transformation, typically with 0.25-0.5 mol% of catalyst at room temperature, outperforming commonly-used complexes such as [RuCl(Cp)(PPh3) 2] and [RuCl(η5-indenyl)(PPh3) 2]. Mechanistic experiments and density functional theory have been employed to investigate the mechanism and understand the effect of catalyst structure on reactivity. These investigations suggest a oxo-π-allyl mechanism is in operation, avoiding intermediate ruthenium hydride complexes and leading to a characteristic 1,3-deuterium shift. Important mechanistic insights from DFT and experiments also allowed for the design of a protocol that expands the scope of the transformation to include primary allylic alcohols. © 2013 The Royal Society of Chemistry.

  5. How phenyl makes a difference: mechanistic insights into the ruthenium( ii )-catalysed isomerisation of allylic alcohols

    KAUST Repository

    Manzini, Simone; Poater, Albert; Nelson, David J.; Cavallo, Luigi; Nolan, Steven P.

    2013-01-01

    [RuCl(η5-3-phenylindenyl)(PPh3)2] (1) has been shown to be a highly active catalyst for the isomerisation of allylic alcohols to the corresponding ketones. A variety of substrates undergo the transformation, typically with 0.25-0.5 mol% of catalyst at room temperature, outperforming commonly-used complexes such as [RuCl(Cp)(PPh3) 2] and [RuCl(η5-indenyl)(PPh3) 2]. Mechanistic experiments and density functional theory have been employed to investigate the mechanism and understand the effect of catalyst structure on reactivity. These investigations suggest a oxo-π-allyl mechanism is in operation, avoiding intermediate ruthenium hydride complexes and leading to a characteristic 1,3-deuterium shift. Important mechanistic insights from DFT and experiments also allowed for the design of a protocol that expands the scope of the transformation to include primary allylic alcohols. © 2013 The Royal Society of Chemistry.

  6. Allylic azides as potential building blocks for the synthesis of nitrogenated compounds

    Directory of Open Access Journals (Sweden)

    Sá Marcus M.

    2003-01-01

    Full Text Available The synthetic potential of multifunctional allylic azides and imines in attempted intramolecular cyclizations to nitrogen-containing heterocycles was investigated. Tandem Staudinger/aza-Wittig reaction of (E-3-aryl-2-(azidomethylpropenoates with triphenylphosphine and aldehydes yielded N-allylic imines in good yield. The (E-stereochemistry of C=C and C=N bonds was assigned based on NOESY experiments. AlCl3 mediated formation of 3-carbomethoxyquinoline from methyl (E-2-(azidomethyl-3-phenylpropenoate is also described.

  7. Dual platinum and pyrrolidine catalysis in the direct alkylation of allylic alcohols: selective synthesis of monoallylation products.

    Science.gov (United States)

    Shibuya, Ryozo; Lin, Lu; Nakahara, Yasuhito; Mashima, Kazushi; Ohshima, Takashi

    2014-04-22

    A dual platinum- and pyrrolidine-catalyzed direct allylic alkylation of allylic alcohols with various active methylene compounds to produce products with high monoallylation selectivity was developed. The use of pyrrolidine and acetic acid was essential, not only for preventing undesirable side reactions, but also for obtaining high monoallylation selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 1,4-Hydroiodination of dienyl alcohols with TMSI to form homoallylic alcohols containing a multisubstituted Z-alkene and application to Prins cyclization.

    Science.gov (United States)

    Xu, Yongjin; Yin, Zhiping; Lin, Xinglong; Gan, Zubao; He, Yanyang; Gao, Lu; Song, Zhenlei

    2015-04-17

    A regioselective 1,4-hydroiodination of dienyl alcohols has been developed using trimethylsilyl iodide as Lewis acid and iodide source. A range of homoallylic alcohols containing a multisubstituted Z-alkene was synthesized with good to excellent configurational control. The approach was applied in sequential hydroiodination/Prins cyclization to afford multisubstituted tetrahydropyrans diastereoselectively.

  9. Iron(III) chloride catalyzed glycosylation of peracylated sugars with allyl/alkynyl alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Narayanaperumal, Senthil; Silva, Rodrigo Cesar da; Monteiro, Julia L.; Correa, Arlene G.; Paixao, Marcio W., E-mail: mwpaixao@ufscar.br [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica

    2012-11-15

    In this work, the use of ferric chloride as an efficient catalyst in glycosylation reactions of sugars in the presence of allyl and alkynyl alcohols is described. The corresponding glycosides were obtained with moderate to good yields. This new procedure presented greater selectivity when compared to classic methods found in the literature. Principal features of this simple method include non-hazardous reaction conditions, low-catalyst loading, good yields and high anomeric selectivity (author)

  10. Polymerization of allyl alcohol by radiation to obtain microencapsulated structure

    International Nuclear Information System (INIS)

    Usanmaz, A.; Saricilar, S.

    1989-01-01

    Allyl alcohol was polymerized by radiation under various conditions. The limiting conversions were about 30 % in bulk, 35 % when containing 0.03 mole fraction AlCl 3 and 50 % when water was contained at 27 % (v/v). Irradiation was done with Co-60 gamma rays at room temperature and under vacuum. The presence of oxygen did not cause any change in the reaction rate. Molecular weights were determined by viscosity and cryoscopic methods. K and α values were found to be 3.57 x 10 -4 and 0.62 for solutions in methanol at 25degC. The polymers up to about 10 % conversion were viscous liquids having microcapsular structures: at high conversions, they became hard and glassy. The microencapsulated structures were also retained in solutions in methanol, acetone, and isopropyl alcohol. The samples were insoluble in water, benzene, and toluence. (author)

  11. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls.

    Science.gov (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D; Krische, Michael J

    2015-10-14

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo-, and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k, and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k, and 6m, respectively. Primary alcohols 2a, 2l, and 2p were converted to the siloxy-crotylation products 3a, 3l, and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l, and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes.

  12. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    International Nuclear Information System (INIS)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F.

    2013-01-01

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  13. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F., E-mail: luizfsjr@iq.usp.br [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental

    2013-09-15

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  14. Surprisingly Mild Enolate-Counterion-Free Pd(0)-Catalyzed Intramolecular Allylic Alkylations

    DEFF Research Database (Denmark)

    Madec, David; Prestat, Guillaume; Martini, Elisabetta

    2005-01-01

    Palladium-catalyzed intramolecular allylic alkylations of unsaturated EWG-activated amides can take place under phase-transfer conditions or in the presence of a crown ether. These new reaction conditions are milder and higher yielding than those previously reported. A rationalization for such an...... for such an unexpected result is put forth and validated by DFT-B3LYP calculations. The results suggest cyclization via a counterion-free (E)-enolate TS....

  15. γ‐ and δ-Lactams through Palladium-Catalyzed Intramolecular Allylic Alkylation: Enantioselective Synthesis, NMR Investigation, and DFT Rationalization

    DEFF Research Database (Denmark)

    Bantreil, Xavier; Prestat, Guillaume; Moreno, Aitor

    2011-01-01

    the cyclization reactions to take place in up to 94:6 enantiomeric ratio. A model Pd-allyl complex has been prepared and studied through NMR spectroscopic analysis, which provided insight into the processes responsible for the observed enantiomeric ratios. DFT studies were used to characterize the diastereomeric...

  16. Cascade synthesis of dihydrobenzofuran via Claisen rearrangement of allyl aryl ethers using FeCl3/MCM-41 catalyst

    Directory of Open Access Journals (Sweden)

    Sachin S. Sakate

    2018-05-01

    Full Text Available Dihydrobenzofuran as one of the active ingredients of the naturally occurring motif is synthesized by using in situ generation of ortho allyl phenols. Aryl allyl ethers on reacting with catalytic amounts of non noble metal iron (III chloride supported on MCM-41 under moderate reaction conditions yield dihydrobenzofuran. First step via Claisen rearrangement gives ortho allyl phenol followed by its in situ cyclization to yield dihydrobenzofuran in very good yields. Both Lewis as well as Brønsted acidity of the catalyst as evidenced by Py-FTIR studies was found to catalyze the cascade synthesis of dihydrobenzofuran. The scope of the present strategy was successfully demonstrated for several substrates with varying electronic effects for the synthesis of corresponding dihydrobenzofuran with high yields in a range of 71–86%. Keywords: Claisen rearrangement, Dihydrobenzofuran, Aryl allyl ether, MCM-41, Ferric chloride

  17. Eosin Y-catalyzed, visible-light-promoted carbophosphinylation of allylic alcohols via a radical neophyl rearrangement.

    Science.gov (United States)

    Yin, Yao; Weng, Wei-Zhi; Sun, Jian-Guo; Zhang, Bo

    2018-03-28

    A visible-light-promoted phosphinylation of allylic alcohols with concomitant 1,2-aryl migration is described. This transformation proceeds smoothly under metal-free and mild conditions by using an inexpensive organic dye, eosin Y, as the photocatalyst, affording various β-aryl-γ-ketophosphine oxides in moderate to good yields. Mechanistic studies suggested that the 1,2-aryl migration proceeded through a radical (neophyl) rearrangement.

  18. Structure and stability of acrolein and allyl alcohol networks on Ag(111) from density functional theory based calculations with dispersion corrections

    Science.gov (United States)

    Ferullo, Ricardo M.; Branda, Maria Marta; Illas, Francesc

    2013-11-01

    The interaction of acrolein and allyl alcohol with the Ag(111) surface has been studied by means of periodic density functional theory based calculations including explicitly dispersion terms. Different coverage values have been explored going from isolated adsorbed molecules to isolated dimers, interacting dimers or ordered overlayers. The inclusion of the dispersion terms largely affects the calculated values of the adsorption energy and also the distance between adsorbed molecule and the metallic surface but much less the adsorbate-adsorbate interactions. Owing to the large dipole moment of acrolein, the present calculations predict that at high coverage this molecule forms a stable extensive two-dimensional network on the surface, caused by the alignment of the adsorbate dipoles. For the case of allyl alcohol, dimers and complex networks exhibit similar stability.

  19. Palladium-Catalyzed Anti-Markovnikov Oxidation of Allylic Amides to Protected beta-Amino Aldehydes

    NARCIS (Netherlands)

    Dong, Jiajia; Harvey, Emma C.; Fananas-Mastral, Martin; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    A general method for the preparation of N-protected beta-amino aldehydes from allylic amines or linear allylic alcohols is described. Here the Pd(II)-catalyzed oxidation of N-protected allylic amines with benzoquinone is achieved in tBuOH under ambient conditions with excellent selectivity toward

  20. Ion beam-induced topographical and chemical modification on the poly(styrene-co-allyl alcohol) and its effect on the molecular interaction between the modified surface and liquid crystals

    International Nuclear Information System (INIS)

    Jeong, Hae-Chang; Park, Hong-Gyu; Lee, Ju Hwan; Jang, Sang Bok; Oh, Byeong-Yun; Seo, Dae-Shik

    2016-01-01

    We demonstrated uniform liquid crystal (LC) alignment on ion beam (IB)-irradiated poly(styrene-co-allyl alcohol) by modifying the chemical bonding on the surface. An IB-irradiated copolymer was used for the alignment layer. We used physico-chemical analysis to determine the IB-irradiated surface modification and LC alignment mechanism on the surface. During IB treatment on poly(styrene-co-allyl alcohol), IB irradiation induces breaking of chemical bonds on the surface to give rise to new bonds with oxygen atoms. This causes a strong Van der Waals interaction between LCs and the modified surface, thereby resulting in uniform LC alignment. The results of contact angle (CA) studies of the copolymer support the chemical bonding changes that were investigated by XPS. We achieved uniform homogeneous LC alignment and obtained stable electro-optical performance by controlling the IB energy. Therefore, the LC cells with IB-irradiated poly(styrene-co-allyl alcohol) exhibited a good potential for alternative alignment of layers in LC applications.

  1. Ion beam-induced topographical and chemical modification on the poly(styrene-co-allyl alcohol) and its effect on the molecular interaction between the modified surface and liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Chang [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Park, Hong-Gyu [School of Electrical, Electronic & Control Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongsangnam-do, 51140 (Korea, Republic of); Lee, Ju Hwan; Jang, Sang Bok [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Oh, Byeong-Yun [ZeSHTech Co., Ltd., Business Incubator, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 500-712 (Korea, Republic of); Seo, Dae-Shik, E-mail: dsseo@yonsei.ac.kr [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)

    2016-10-01

    We demonstrated uniform liquid crystal (LC) alignment on ion beam (IB)-irradiated poly(styrene-co-allyl alcohol) by modifying the chemical bonding on the surface. An IB-irradiated copolymer was used for the alignment layer. We used physico-chemical analysis to determine the IB-irradiated surface modification and LC alignment mechanism on the surface. During IB treatment on poly(styrene-co-allyl alcohol), IB irradiation induces breaking of chemical bonds on the surface to give rise to new bonds with oxygen atoms. This causes a strong Van der Waals interaction between LCs and the modified surface, thereby resulting in uniform LC alignment. The results of contact angle (CA) studies of the copolymer support the chemical bonding changes that were investigated by XPS. We achieved uniform homogeneous LC alignment and obtained stable electro-optical performance by controlling the IB energy. Therefore, the LC cells with IB-irradiated poly(styrene-co-allyl alcohol) exhibited a good potential for alternative alignment of layers in LC applications.

  2. General Allylic C–H Alkylation with Tertiary Nucleophiles

    Science.gov (United States)

    2015-01-01

    A general method for intermolecular allylic C–H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C–H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C–H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C–H reactivity are illustrated in an allylic C–H alkylation/Diels–Alder reaction cascade: a reactive diene is generated via intermolecular allylic C–H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids. PMID:24641574

  3. General allylic C-H alkylation with tertiary nucleophiles.

    Science.gov (United States)

    Howell, Jennifer M; Liu, Wei; Young, Andrew J; White, M Christina

    2014-04-16

    A general method for intermolecular allylic C-H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C-H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C-H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C-H reactivity are illustrated in an allylic C-H alkylation/Diels-Alder reaction cascade: a reactive diene is generated via intermolecular allylic C-H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids.

  4. Solid radiation curable polyene compositions containing liquid polythiols and solid styrene-allyl copolymer based polyenes

    International Nuclear Information System (INIS)

    Morgan, C.R.

    1977-01-01

    Novel styrene-allyl alcohol copolymer based solid polyene compositions which when mixed with liquid polythiols can form solid curable polyene-polythiol systems are claimed. These solid polyenes, containing at least two reactive carbon-to-carbon unsaturated bonds, are urethane or ester derivatives of styrene-allyl alcohol copolymers. The solid polyenes are prepared by treating the hydroxyl groups of a styrene-allyl alcohol copolymer with a reactive unsaturated isocyanate, e.g., allyl isocyanate or a reactive unsaturated carboxylic acid, e.g., acrylic acid. Upon exposure to a free radical generator, e.g., actinic radiation, the solid polyene-polythiol compositions cure to solid, insoluble, chemically resistant, cross-linked polythioether products. Since the solid polyene-liquid polythiol composition can be cured in a solid state, such a curable system finds particular use in preparation of coatings, imaged surfaces such as photoresists, particularly solder-resistant photoresists, printing plates, etc

  5. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    Science.gov (United States)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  6. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    International Nuclear Information System (INIS)

    Visscher, A de; Dewulf, J; Durme, J van; Leys, C; Morent, R; Langenhove, H Van

    2008-01-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation

  7. Exciton Coupling in Circular Dichroic Spectroscopy as a Tool for Establishing the Absolute Configuration of alpha,beta-Unsaturated Esters of Allylic Alcohols

    DEFF Research Database (Denmark)

    Lauridsen, A.; Cornett, Claus; Christensen, S. B.

    1991-01-01

    alpha-beta-Unsaturated esters of allylic alcohols have been shown to exhibit exciton coupling by circular dichroic spectroscopy. This coupling permits the establishment of the absolute configuration. The method was used to prove the absolute configuration at C-2 of archangelolide. Detailed NMR sp...

  8. Copper-catalyzed decarboxylative trifluoromethylation of allylic bromodifluoroacetates.

    Science.gov (United States)

    Ambler, Brett R; Altman, Ryan A

    2013-11-01

    The development of new synthetic fluorination reactions has important implications in medicinal, agricultural, and materials chemistries. Given the prevalence and accessibility of alcohols, methods to convert alcohols to trifluoromethanes are desirable. However, this transformation typically requires four-step processes, specialty chemicals, and/or stoichiometric metals to access the trifluoromethyl-containing product. A two-step copper-catalyzed decarboxylative protocol for converting allylic alcohols to trifluoromethanes is reported. Preliminary mechanistic studies distinguish this reaction from previously reported Cu-mediated reactions.

  9. Preservation of beech and spruce wood by allyl alcohol-based copolymers

    International Nuclear Information System (INIS)

    Solpan, Dilek; Gueven, Olgun

    1999-01-01

    Allyl alcohol (AA), acrylonitrile (AN), methyl methacrylate (MMA), monomers and monomer mixtures AA+AN, AA+MMA were used to conserve and consolidate Beech and Spruce. After impregnation, copolymerisation and polymerisation were accomplished by gamma irradiation. The fine structure of wood+polymer(copolymer) composites was investigated by Scanning Electron Microscopy (SEM). It was observed that copolymer obtained from AA+MMA monomer mixture showed the optimum compatibility. The compressional strength and Brinell Hardness Numbers determined for untreated and treated wood samples indicated that the mechanical strength of wood+copolymer composites was increased. It was found that the mechanical strength of the wood samples containing the AA+MMA copolymer was higher than the others. In the presence of P(AA/MMA), at highest conversion, the compressive strength perpendicular to the fibres in Beech and Spruce increased approximately 100 times. The water uptake capacity of wood+copolymer composites was observed to decrease by more than 50% relative to the original samples, and biodegradation did not take place

  10. Total Synthesis of Plukenetione A

    Science.gov (United States)

    Zhang, Qiang; Mitasev, Branko; Qi, Ji; Porco, John A.

    2010-01-01

    We describe an alkylative dearomatization/acid-mediated adamantane annulation sequence which allows facile access to type A polyprenylated acylphloroglucinol (PPAP) natural products including plukenetione A. Introduction of the 2-methyl-1-propenyl moiety was achieved via stereodivergent SN2 and SN1 cyclizations of allylic alcohol substrates. PMID:20843036

  11. Catalyst-Directed Diastereoselective Isomerization of Allylic Alcohols for the Stereoselective Construction of C(20) in Steroid Side Chains: Scope and Topological Diversification.

    Science.gov (United States)

    Li, Houhua; Mazet, Clément

    2015-08-26

    The stereoselective construction of C20 in steroidal derivatives by a highly diastereoselective Ir-catalyzed isomerization of primary allylic alcohols is reported. A key aspect of this strategy is a straightforward access to geometrically pure steroidal enol tosylate and enol triflate intermediates for subsequent high yielding stereoretentive Negishi cross-coupling reactions to allow structural diversity to be introduced. A range of allylic alcohols participates in the diastereoselective isomerization under the optimized reaction conditions. Electron-rich and electron-poor aryl or heteroaryl substituents are particularly well-tolerated, and the stereospecific nature of the reaction provides indifferently access to the natural C20-(R) and unnatural C20-(S) configurations. Alkyl containing substrates are more challenging as they affect regioselectivity of iridium-hydride insertion. A rationale for the high diastereoselectivities observed is proposed for aryl containing precursors. The scope of our method is further highlighted through topological diversification in the side chain and within the polycyclic domain of advanced and complex steroidal architectures. These findings have the potential to greatly simplify access to epimeric structural analogues of important steroid scaffolds for applications in biological, pharmaceutical, and medical sciences.

  12. Oxidation of tertiary homoallylic alcohols by thallium trinitrate: fragmentation versus ring contraction

    International Nuclear Information System (INIS)

    Silva Junior, Luiz F.; Quintiliano, Samir A.P.; Ferraz, Helena M.C.; Santos, Leonardo S.; Eberlin, Marcos N.

    2006-01-01

    The oxidation of tertiary homoallylic alcohols with thallium trinitrate (TTN) was investigated. The alcohols bearing an allylic methyl group lose a molecule of acetone via a fragmentation reaction that leads to isomeric secondary allylic alcohols as major products, together with their corresponding acetylated derivatives. On the other hand, treating analogous tertiary alcohols without the allylic methyl group with TTN gives indans, through a ring contraction reaction. (author)

  13. Tsuji-Trost N-allylation with allylic acetates using cellulose-Pd catalyst

    Science.gov (United States)

    Allylic amines are synthesized using heterogeneous cellulose-Pd catalyst via N-allylation of amines; aliphatic and benzyl amines undergo facile reaction with substituted and unsubstituted allyl acetates in high yields.

  14. Adsorption of aliphatic alcohols on ruthenium

    International Nuclear Information System (INIS)

    Shapovalova, L.B.; Zakumbaeva, G.D.

    1977-01-01

    The adsorption is studied of allyl-, propyl- and propargyl alcohols on a ruthenium catalyst-electrode at 20, 30 and 40 deg C in H 2 SO 4 in helium. Above adsorption has been found to grow with increased concentration of the alcohols in the solution. In solutions with the same concentration, propargyl alcohol has been noted to show highest sorptive capacity, followed by that of allyl- and propyl alcohols. With variations in the ruthenium electrode potential, alcohol adsorption occurs via maximum at potential = 0.18

  15. Ruthenium Hydride/Brønsted Acid-Catalyzed Tandem Isomerization/N-Acyliminium Cyclization Sequence for the Synthesis of Tetrahydro-β-carbolines

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke; Clausen, Janie Regitse Waël; Ohm, Ragnhild Gaard

    2013-01-01

    This paper describes an efficient tandem sequence for the synthesis of 1,2,3,4-tetrahydro-β-carbolines (THBCs) relying on a ruthenium hydride/Brønsted acid- catalyzed isomerization of allylic amides to N-acyliminium ion intermediates which are trapped by a tethered indolenucleophile. The methodol...... the Suzuki cross-coupling reaction to the isomerization/N-acyliminium cyclization sequence. Finally, diastereo- and enantioselective versions of the title reaction have been examined using substrate control (with dr >15: 1) and asymmetric catalysis (ee up to 57%), respectively...

  16. Preconditioning with subneurotoxic allyl nitrile: protection against allyl nitrile neurotoxicity.

    Science.gov (United States)

    Tanii, H; Higashi, T; Saijoh, K

    2010-02-01

    High-dose cruciferous allyl nitrile can induce behavioral abnormalities in rodents, while repeated exposure to allyl nitrile at subneurotoxic levels can increase phase 2 detoxification enzymes in many tissues, although the brain has not been investigated yet. In the present study, we examined the effect of 5 days repeated exposure to subneurotoxic allyl nitrile (0-400 micromol/kg/day) on the brain. Elevated glutathione S-transferase activity was recorded in the striatum, hippocampus, medulla oblongata plus pons, and cortex. Enhancement of quinone reductase activity was observed in the medulla oblongata plus pons, hippocampus, and cortex. In the medulla oblongata plus pons, elevated glutathione levels were recorded. Following repeated subneurotoxic allyl nitrile exposure (0-400 micromol/kg/day), mice were administered a high-dose allyl nitrile (1.2 mmol/kg) which alone led to appearance of behavioral abnormalities. Compared with the 0 micromol/kg/day group, animals in the 200 and 400 micromol/kg/day pre-treatment groups exhibited decreased behavioral abnormalities and elevated GABA-positive cell counts in the substantia nigra pars reticulata and the interpeduncular nucleus. These data suggest that repeated exposure to subneurotoxic levels of allyl nitrile can induce phase 2 enzymes in the brain, which together with induction in other tissues, may contribute to protection against allyl nitrile neurotoxicity. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Total synthesis of broussonetine F: the orthoamide Overman rearrangement of an allylic diol.

    Science.gov (United States)

    Hama, Naoto; Aoki, Toshihiro; Miwa, Shohei; Yamazaki, Miki; Sato, Takaaki; Chida, Noritaka

    2011-02-18

    A first total synthesis of broussonetine F from diethyl L-tartrate was achieved. The cornerstone of our synthesis was an orthoamide Overman rearrangement, which provided an allylic amino alcohol with complete diastereoselectivity.

  18. ELECTROPHILIC CYCLIZATION OF DITERPENOIDS

    Directory of Open Access Journals (Sweden)

    Veaceslav Kulciţki

    2006-06-01

    Full Text Available A review of diterpenoid cyclization initiated by electrophilic reagents is provided. Conventional protonic and Lewis acids are examined along with superacids as initiators of cyclization cascade. An emphasis is placed on the use of cyclization reactions as a tool for the synthesis of compounds with potential practical utility. The review contains 74 references.

  19. Regiospecific decarboxylative allylation of nitriles

    Science.gov (United States)

    Recio, Antonio; Tunge, Jon A.

    2009-01-01

    Palladium-catalyzed decarboxylative α-allylation of nitriles readily occurs using Pd2(dba)3 and rac-BINAP. This catalyst mixture also allows the highly regiospecific α-allylation of nitriles in the presence of much more acidic α-protons. Thus, the reported method provides access to compounds that are not readily available via base-mediated allylation chemistries. Lastly, mechanistic investigations indicate that there is a competition between C- and N-allylation of an intermediate nitrile-stabilized anion and that N-allylation is followed by a rapid [3,3]-sigmatropic rearrangement. PMID:19921827

  20. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst

    Directory of Open Access Journals (Sweden)

    Viviane P. de Souza

    2016-11-01

    Full Text Available Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  1. Biosynthesis of (+)-cis- and (+)-trans-sabinene hydrate from geranyl pyrophosphate by a soluble enzyme system from sweet marjoram (Majorana hortensis)

    International Nuclear Information System (INIS)

    Hallahan, T.W.

    1988-01-01

    A soluble enzyme preparation from the leaves of sweet marjoram (Majorana hortensis Moench) catalyzes the divalent cation-dependent cyclization of [1- 3 H]geranyl pyrophosphate to the bicyclic monoterpene alcohols (+)-cis- and (+)-trans-[6 3 H]sabinene hydrate, providing labeling patterns consistent with current mechanistic considerations. The two enzymatic activities were inseparable by several chromatographic procedures, and differential inactivation studies suggesting that the two activities reside with the same enzyme. The enzymatic cyclization is considered to proceed by the initial ionization and isomerization of geranyl pyrophosphate to (-)-(3R)-linalyl pyrophosphate and the subsequent cyclization of this enzyme bound tertiary allylic intermediate to the monocyclic (+)-(4R)-α-terpinyl cation. A 1,2-hydride shift and a second cyclization with water capture of the resulting cation completes the reaction sequence. No free intermediates were detectable in the conversion of geranyl pyrophosphate to the sabinene hydrates as determined by isotopic dilution experiments

  2. One-Pot Catalytic Enantio- and Diastereoselective Syntheses of anti-, syn-cis-Disubstituted, and syn-Vinyl Cyclopropyl Alcohols

    Science.gov (United States)

    Kim, Hun Young; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.

    2009-01-01

    Highly enantio- and diastereoselective methods for the synthesis of a variety of cyclopropyl alcohols are reported. These methods represent the first one-pot approaches to syn-vinyl cyclopropyl alcohols, syn-cis-disubstituted cyclopropyl alcohols, and anti-cyclopropyl alcohols from achiral precursors. The methods begin with enantioselective C–C bond formations promoted by a MIB-based zinc catalyst to generate allylic alkoxide intermediates. The intermediates are then subjected to in situ alkoxide-directed cyclopropanation to provide cyclopropyl alcohols. In the synthesis of vinyl cyclopropyl alcohols, hydroboration of enynes is followed by transmetalation of the resulting dienylborane to zinc to provide dienylzinc reagents. Enantioselective addition to aldehydes generates the requisite dienyl zinc alkoxides, which are then subjected to in situ cyclopropanation to furnish vinyl cyclopropyl alcohols. Cyclopropanation occurs at the double bond allylic to the alkoxide. Using this method, syn-vinylcyclopropyl alcohols are obtained in 65–85% yield, 76–93% ee, and >19:1 dr. To prepare anti-cyclopropanols, enantioselective addition of alkylzinc reagents to conjugated enals provides allylic zinc alkoxides. Because direct cyclopropanation provides syn-cyclopropyl alcohols, the intermediate allylic alkoxides were treated with TMSCl/Et3N to generate intermediate silyl ethers. In situ cyclopropanation of the allylic silyl ether resulted in cyclopropanation to form the anti-cyclopropyl silyl ether. Workup with TBAF affords the anti-cyclopropyl alcohols in one-pot in 60–82% yield, 89–99% ee, and ≥10:1 dr. For the synthesis of cis-disubstituted cyclopropyl alcohols, in situ generated (Z)-vinyl zinc reagents were employed in asymmetric addition to aldehydes to generate (Z)-allylic zinc alkoxides. In situ cyclopropanation provides syn-cis-disubstituted cyclopropyl alcohols in 42–70% yield, 88–97% ee, and >19:1 dr. These one-pot procedures enable the synthesis of a

  3. Allyl nitrile: Toxicity and health effects.

    Science.gov (United States)

    Tanii, Hideji

    2017-03-28

    Allyl nitrile (3-butenenitrile) occurs naturally in the environment, in particular, in cruciferous vegetables, indicating a possible daily intake of the compound. There is no report on actual health effects of allyl nitrile in humans, although it is possible that individuals in the environment are at a risk of exposure to allyl nitrile. However, little is known about its quantitative assessment for the environment and bioactivity in the body. This study provides a review of previous accumulated studies on allyl nitrile. Published literature on allyl nitrile was examined for findings on toxicity, metabolism, risk of various cancers, generation, intake estimates, and low-dose effects in the body. High doses of allyl nitrile produce toxicity characterized by behavioral abnormalities, which are considered to be produced by an active metabolite, 3,4-epoxybutyronitrile. Cruciferous vegetables have been shown to have a potential role in reducing various cancers. Hydrolysis of the glucosinolate sinigrin, rich in cruciferous vegetables, results in the generation of allyl nitrile. An intake of allyl nitrile is estimated at 0.12 μmol/kg body weight in Japan. Repeated exposure to low doses of allyl nitrile upregulates antioxidant/phase II enzymes in various tissues; this may contribute to a reduction in neurotoxicity and skin inflammation. These high and low doses are far more than the intake estimate. Allyl nitrile in the environment is a compound with diverse bioactivities in the body, characterized by inducing behavioral abnormalities at high doses and some antioxidant/phase II enzymes at low doses.

  4. Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction

    Directory of Open Access Journals (Sweden)

    Thomas Zeuch

    2013-11-01

    Full Text Available Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn’s largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br, allyl chloride (C3H5Cl, and 1,5-hexadiene (CH2CH(CH22CHCH2 at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re- combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re- combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.

  5. The Cyclization of natural rubber

    International Nuclear Information System (INIS)

    Mirzataheri, M.

    2000-01-01

    The effect of solvent, temperature, time, weight percent of catalyst on the rate and mechanism of cyclization of natural rubber was studied in toluene and xylene solutions having tin tetra chloride catalyst (SnCl 4 ). Iodo metric titration show, with 8% SnCl 4 (based on polymer weight) cyclization occurs, leaving 27.4% of the total unsaturation. Infrared spectra of cyclized natural rubber show decreased absorption intensity at 840 and 780 cm -1 which are characteristic bands of the linear polymer and the appearance of absorption band at 890 cm -1 as cycles were formed. By using this chemical modification, natural rubber is transformed into a resinous thermoplastic, hard, non rubbery cyclized material with much less unsaturation than the original rubber, which could find commercial applications ad adhesives, printing inks, industrial and ship paints

  6. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu

    2013-05-17

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  7. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu; Zhu, Bo; Lee, Richmond; Yang, Wenguo; Tan, Davin; Yang, Caiyun; Han, Zhiqiang; Yan, Lin; Huang, Kuo-Wei; Jiang, Zhiyong

    2013-01-01

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  8. Chemoenzymatic synthesis of chiral 2,2'-bipyridine ligands and their N-oxide derivatives: applications in the asymmetric aminolysis of epoxides and asymmetric allylation of aldehydes.

    Science.gov (United States)

    Boyd, D R; Sharma, N D; Sbircea, L; Murphy, D; Malone, J F; James, S L; Allen, C C R; Hamilton, J T G

    2010-03-07

    A series of enantiopure 2,2'-bipyridines have been synthesised from the corresponding cis-dihydrodiol metabolites of 2-chloroquinolines. Several of the resulting hydroxylated 2,2'-bipyridines were found to be useful chiral ligands for the asymmetric aminolysis of meso-epoxides leading to the formation of enantioenriched amino alcohols (-->84% ee). N-oxide and N,N'-dioxide derivatives of these 2,2'-bipyridines, including separable atropisomers, have been synthesised and used as enantioselective organocatalysts in the asymmetric allylation of aldehydes to give allylic alcohols (-->86% ee).

  9. Green chemistry: solvent- and metal-free Prins cyclization. Application to sequential reactions.

    Science.gov (United States)

    Clarisse, Damien; Pelotier, Béatrice; Piva, Olivier; Fache, Fabienne

    2012-01-04

    Prins cyclization between a homoallylic alcohol and an aldehyde, promoted by trimethylsilyl halide, afforded 4-halo-tetrahydropyrans with good to excellent yields. Thanks to the absence of the solvent and metal, the THP thus obtained have been implicated without purification in several other reactions, in a sequential way, affording in particular new indole derivatives. This journal is © The Royal Society of Chemistry 2012

  10. Total Syntheses of Polycyclic Polyprenylated Acylphloroglucinol Natural Products and Analogs Utilizing Alkylative Dearomatizations and Cationic Cyclizations

    Science.gov (United States)

    Boyce, Jonathan H.

    Polycyclic polyprenylated acylphloroglucinols (PPAPs) are structurally complex natural products with promising biological activities. These compounds have interesting anticancer and anti-HIV properties as well as other biological activities making them highly attractive synthetic targets. We report a stereodivergent, asymmetric total synthesis of (-)-clusianone in six steps from commercial materials. We have implemented a challenging cationic cyclization forging a bond between two sterically encumbered quaternary carbon atoms. Mechanistic studies point to the unique ability of formic acid to mediate the cyclization forming the clusianone framework. We also present a biosynthesis-inspired, diversity-oriented synthesis approach for rapid construction of PPAP analogs via palladium-catalyzed dearomative conjunctive allylic alkylation (DCAA). These efficient palladium-catalyzed protocols construct the [3.3.1]-bicyclic PPAP core in a single step from their stable aromatic precursors. The first syntheses of 13,14-didehydroxyisogarcinol and garcimultiflorone A stereoisomers are reported in six steps from a commercially available phloroglucinol. Lewis acid-controlled, diastereoselective cationic oxycyclizations enabled asymmetric syntheses of (-)-6-epi-13,14-didehydroxyisogarcinol and (+)-30-epi-13,14-didehydroxyisogarcinol. A similar strategy enabled production of the meso-derived isomers (+/-)-6,30- epi-13,14-didehydroxyisogarcinol and (+/-)-6,30-epi -garcmultiflorone A. A convenient strategy for gram scale synthesis of these stereoisomers was developed utilizing diastereomer separation at a later stage in the synthesis that minimized the number of necessary synthetic operations to access all possible stereoisomers. Finally, we report cationic rearrangements of dearomatized acylphloroglucinols leading to the formation of unprecedented PPAP scaffolds. A novel type A [3.3.1]-bicyclic PPAP was produced as a major product and the structure confirmed by X-ray crystallographic

  11. Metal-Free α-C(sp3–H Functionalized Oxidative Cyclization of Tertiary N,N-Diaryl Amino Alcohols: Theoretical Approach for Mechanistic Pathway

    Directory of Open Access Journals (Sweden)

    Zakir Ullah

    2017-03-01

    Full Text Available The mechanistic pathway of TEMPO/I2-mediated oxidative cyclization of N,N-diaryl amino alcohols 1 was investigated. Based on direct empirical experiments, three key intermediates (aminium radical cation 3, α-aminoalkyl radical 4, and iminium 5, four types of reactive species (radical TEMPO, cationic TEMPO, TEMPO-I, and iodo radical, and three types of pathways ((1 SET/PCET mechanism; (2 HAT/1,6-H transfer mechanism; (3 ionic mechanism were assumed. Under the assumption, nine free energy diagrams were acquired through density functional theory calculations. From the comparison of solution-phase free energy, some possible mechanisms were excluded, and then the chosen plausible mechanisms were concretized using the more stable intermediate 7.

  12. Heterocycles by Transition Metals Catalyzed Intramolecular Cyclization of Acetylene Compounds

    International Nuclear Information System (INIS)

    Vizer, S.A.; Yerzhanov, K.B.; Dedeshko, E.C.

    2003-01-01

    Review shows the new strategies in the synthesis of heterocycles, having nitrogen, oxygen and sulfur atoms, via transition metals catalyzed intramolecular cyclization of acetylenic compounds on the data published at the last 30 years, Unsaturated heterocyclic compounds (pyrroles and pyrroline, furans, dihydro furans and benzofurans, indoles and iso-indoles, isoquinolines and isoquinolinones, aurones, iso coumarins and oxazolinone, lactams and lactones with various substitutes in heterocycles) are formed by transition metals, those salts [PdCl 2 , Pd(OAc) 2 , HgCl 2 , Hg(OAc) 2 , Hg(OCOCF 3 ) 2 , AuCl 3 ·2H 2 O, NaAuCl 4 ·2H 2 O, CuI, CuCl], oxides (HgO) and complexes [Pd(OAc) 2 (PPh 3 )2, Pd(PPh 3 ) 4 , PdCl 2 (MeCN) 2 , Pd(OAc ) 2 /TPPTS] catalyzed intramolecular cyclization of acetylenic amines, amides, ethers, alcohols, acids, ketones and βdiketones. More complex hetero polycyclic systems typical for natural alkaloids can to obtain similar. Proposed mechanisms of pyrroles, isoquinolines, iso indoles and indoles, benzofurans and iso coumarins, thiazolopyrimidinones formation are considered. (author)

  13. SYNTHESIS OF ALLYL PHENYL ETHER AND CLAISEN REARRANGEMENT

    Directory of Open Access Journals (Sweden)

    Gagik Torosyan

    2011-12-01

    Full Text Available It has been established the possibility for phenol allylation on natural zeolites and them analogs. Here is demonstrated the synthesis of allyl phenol, which has wide industrial applications. The offered method in comparison with the traditional methods has more advantages – higher selectivity, smaller material and power resources consumption. It has been obtained the mixture of allylating phenols (30% in general with allyl phenyl ether (1 with 80% yields. At 600 K is obtained allylphenyl ether, at 700 K beginning the formation of allyl phenols, which is the result of direct C-allylation of the aromatic ring. It has been investigated the possibility of Claisen rearrangement in the same conditions. All of that are established by gas-liquid chromatography and liquid chromatography data.

  14. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    Science.gov (United States)

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Direct Vinylation of Alcohols or Aldehydes Employing Alkynes as Vinyl Donors: A Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation

    Science.gov (United States)

    Patman, Ryan L.; Chaulagain, Mani Raj; Williams, Vanessa M.; Krische, Michael J.

    2011-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation, 2-butyne couples to benzylic and aliphatic alcohols 1a–1i to furnish allylic alcohols 2a–2i, constituting a direct C-H vinylation of alcohols employing alkynes as vinyl donors. Under related transfer hydrogenation conditions employing formic acid as terminal reductant, 2-butyne couples to aldehydes 4a, 4b, and 4e to furnish identical products of carbonyl vinylation 2a, 2b, and 2e. Thus, carbonyl vinylation is achieved from the alcohol or the aldehyde oxidation level in the absence of any stoichiometric metallic reagents. Nonsymmetric alkynes 6a–6c couple efficiently to aldehyde 4b to provide allylic alcohols 2m–2o as single regioisomers. Acetylenic aldehyde 7a engages in efficient intramolecular coupling to deliver cyclic allylic alcohol 8a. PMID:19173651

  16. Lewis base catalyzed enantioselective allylic hydroxylation of Morita-Baylis-Hillman carbonates with water

    KAUST Repository

    Zhu, Bo

    2011-08-19

    A Lewis base catalyzed allylic hydroxylation of Morita-Baylis-Hillman (MBH) carbonates has been developed. Various chiral MBH alcohols can be synthesized in high yields (up to 99%) and excellent enantioselectivities (up to 94% ee). This is the first report using water as a nucleophile in asymmetric organocatalysis. The nucleophilic role of water has been verified using 18O-labeling experiments. © 2011 American Chemical Society.

  17. Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)- and (-)-linalyl pyrophosphate to (+)- and (-)-pinene and (+)- and (-)-camphene

    International Nuclear Information System (INIS)

    Croteau, R.; Satterwhite, D.M.; Cane, D.E.; Chang, C.C.

    1988-01-01

    Cyclase I from Salvia officinalis leaf catalyzes the conversion of geranyl pyrophosphate to the stereo-chemically related bicyclic monoterpenes (+)-alpha-pinene and (+)-camphene and to lesser quantities of monocyclic and acyclic olefins, whereas cyclase II from this plant tissue converts the same acyclic precursor to (-)-alpha-pinene, (-)-beta-pinene and (-)-camphene as well as to lesser amounts of monocyclics and acyclics. These antipodal cyclizations are considered to proceed by the initial isomerization of the substrate to the respective bound tertiary allylic intermediates (-)-(3R)- and (+)-(3S)-linalyl pyrophosphate. [(3R)-8,9-14C,(3RS)-1E-3H]Linalyl pyrophosphate (3H:14C = 5.14) was tested as a substrate with both cyclases to determine the configuration of the cyclizing intermediate. This substrate with cyclase I yielded alpha-pinene and camphene with 3H:14C ratios of 3.1 and 4.2, respectively, indicating preferential, but not exclusive, utilization of the (3R)-enantiomer. With cyclase II, the doubly labeled substrate gave bicyclic olefins with 3H:14C ratios of from 13 to 20, indicating preferential, but not exclusive, utilization of the (3S)-enantiomer in this case. (3R)- and (3S)-[1Z-3H]linalyl pyrophosphate were separately compared to the achiral precursors [1-3H]geranyl pyrophosphate and [1-3H]neryl pyrophosphate (cis-isomer) as substrates for the cyclizations. With cyclase I, geranyl, neryl, and (3R)-linalyl pyrophosphate gave rise exclusively to (+)-alpha-pinene and (+)-camphene, whereas (3S)-linayl pyrophosphate produced, at relatively low rates, the (-)-isomers. With cyclase II, geranyl, neryl, and (3S)-linalyl pyrophosphate yielded exclusively the (-)-isomer series, whereas (3R)-linalyl pyrophosphate afforded the (+)-isomers at low rates

  18. Palladium-catalyzed allylation of tautomerizable heterocycles with alkynes.

    Science.gov (United States)

    Lu, Chuan-Jun; Chen, Dong-Kai; Chen, Hong; Wang, Hong; Jin, Hongwei; Huang, Xifu; Gao, Jianrong

    2017-07-21

    A method for the allylic amidation of tautomerizable heterocycles was developed by a palladium catalyzed allylation reaction with 100% atom economy. A series of structurally diverse N-allylic substituted heterocycles can be synthesized in good yields with high chemo-, regio-, and stereoselectivities under mild conditions.

  19. Engineering an Affinity-Enhanced Peptide through Optimization of Cyclization Chemistry.

    Science.gov (United States)

    Ngambenjawong, Chayanon; Pineda, Julio Marco B; Pun, Suzie H

    2016-12-21

    Peptide cyclization is a strategy used to improve stability and activity of peptides. The most commonly used cyclization method is disulfide bridge formation of cysteine-containing peptides, as is typically found in nature. Over the years, an increasing number of alternative chemistries for peptide cyclization with improved efficiency, kinetics, orthogonality, and stability have been reported. However, there has been less appreciation for the opportunity to fine-tune peptide activity via the diverse chemical entities introduced at the site of linkage by different cyclization strategies. Here, we demonstrate how cyclization optimization of an M2 "anti-inflammatory" macrophage-binding peptide (M2pep) resulted in a significant increase in binding affinity of the optimized analog to M2 macrophages while maintaining binding selectivity compared to M1 "pro-inflammatory" macrophages. In this study, we report synthesis and evaluation of four cyclic M2pep(RY) analogs with diverse cyclization strategies: (1) Asp-[amide]-Lys, (2) azido-Lys-[triazole(copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC))]-propargyl-Gly, (3) Cys-[decafluorobiphenyl (DFBP)]-Cys, and (4) Cys-[decafluorobiphenyl sulfone (DFS)]-Cys, whereby the chemical entity or linker at the linkage site is shown in the square bracket and is between the residues involved in cyclization. These peptides are compared to a disulfide-cyclized M2pep(RY) that we previously reported as a serum-stable, affinity-enhanced analog to the original linear M2pep. DFBP-cyclized M2pep(RY) exhibits the highest binding activity to M2 macrophages with apparent dissociation constant (K D ) about 2.03 μM compared to 36.3 μM for the original disulfide-cyclized M2pep(RY) and 220 μM for the original linear peptide. DFS-cyclized M2pep(RY) also binds more strongly than the original cyclized analog, whereas amide- and triazole-cyclized M2pep(RY) analogs bind less strongly. We verified that DFBP alone has negligible binding to M2

  20. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals

    Science.gov (United States)

    Kern, Nicolas; Plesniak, Mateusz P.; McDouall, Joseph J. W.; Procter, David J.

    2017-12-01

    The rapid generation of molecular complexity from simple starting materials is a key challenge in synthesis. Enantioselective radical cyclization cascades have the potential to deliver complex, densely packed, polycyclic architectures, with control of three-dimensional shape, in one step. Unfortunately, carrying out reactions with radicals in an enantiocontrolled fashion remains challenging due to their high reactivity. This is particularly the case for reactions of radicals generated using the classical reagent, SmI2. Here, we demonstrate that enantioselective SmI2-mediated radical cyclizations and cascades that exploit a simple, recyclable chiral ligand can convert symmetrical ketoesters to complex carbocyclic products bearing multiple stereocentres with high enantio- and diastereocontrol. A computational study has been used to probe the origin of the enantioselectivity. Our studies suggest that many processes that rely on SmI2 can be rendered enantioselective by the design of suitable ligands.

  1. Molecular Mechanics and Quantum Chemistry Based Study of Nickel-N-Allyl Urea and N-Allyl Thiourea Complexes

    Directory of Open Access Journals (Sweden)

    P. D. Sharma

    2009-01-01

    Full Text Available Eigenvalue, eigenvector and overlap matrix of nickel halide complex of N-allyl urea and N-allyl thiourea have been evaluated. Our results indicate that ligand field parameters (Dq, B’ and β evaluated earlier by electronic spectra are very close to values evaluated with the help of eigenvalues and eigenvectors. Eigenvector analysis and population analysis shows that in bonding 4s, 4p, and 3dx2-y2, 3dyz orbitals of nickel are involved but the coefficient values differ in different complexes. Out of 4px, 4py, 4pz the involvement of either 4pz or 4py, is noticeable. The theoretically evaluated positions of infrared bands indicate that N-allyl urea is coordinated to nickel through its oxygen and N-allyl thiourea is coordinated to nickel through its sulphur which is in conformity with the experimental results.

  2. Proton conductive membranes based on poly (styrene-co-allyl alcohol semi-IPN

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Moro Loureiro

    2014-01-01

    Full Text Available The optimization of fuel cell materials, particularly polymer membranes, for PEMFC has driven the development of methods and alternatives to achieve systems with more adequate properties to this application. The sulfonation of poly (styrene-co-allyl alcohol (PSAA, using sulfonating agent:styrene ratios of 2:1, 1:1, 1:2, 1:4, 1:6, 1:8 and 1:10, was previously performed to obtain proton conductive polymer membranes. Most of those membranes exhibited solubility in water with increasing temperature and showed conductivity of approximately 10-5 S cm-1. In order to optimize the PSAA properties, especially decreasing its solubility, semi-IPN (SIPN membranes are proposed in the present study. These membranes were obtained from the diglycidyl ether of bisphenol A (DGEBA, curing reactions in presence of DDS (4,4-diaminodiphenyl sulfone and PSAA. Different DGEBA/PSAA weight ratios were employed, varying the PSAA concentration between 9 and 50% and keeping the mass ratio of DGEBA:DDS as 1:1. The samples were characterized by FTIR and by electrochemical impedance spectroscopy. Unperturbed bands of PSAA were observed in the FTIR spectra of membranes, suggesting that chemical integrity of the polymer is maintained during the synthesis. In particular, bands involving C-C stretching (1450 cm-1, C=C (aromatic, ~ 3030 cm-1 and C-H (2818 and 2928 cm-1 were observed, unchanged after the synthesis. The disappearance or reduction of the intensity of the band at 916 cm-1, attributed to the DGEBA epoxy ring, is evidenced for all samples, indicating the epoxy ring opening and the DGEBA crosslinking. Conductivity of H3PO4 doped membranes increases with temperature, reaching 10-4 S cm-1.

  3. Study of cyclization of chelating compounds using electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Shi Ying; Campbell, J.A.

    2000-01-01

    Electrospray ionization mass spectrometry (ESI-MS) was used for the study of cyclization of organic chelating compounds (chelators). Four chelating compounds were studied: Symmetrical ethylenediaminediacetic acid (s-EDDA), Unsymmetrical ethylenediaminediacetic acid (u-EDDA), N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA), and N-(2-hydroxyethyl)iminodiacetic acid (HEIDA). The chelators were cyclized with treatments of acids and heating. The open and cyclized form of the chelators were semi-quantified by both positive and negative ion modes ESI-MS. The kinetics of chelator cyclization was studied as a function of reaction temperature and the pH of the matrix. The cyclization of s-EDDA was found to be a pseudo-first order reaction in s-EDDA and overall second order. The cyclizations of HEIDA and HEDTA are reversible reactions. Higher temperature and lower pH favors cyclization. (author)

  4. In vitro structure-activity relationship of Re-cyclized octreotide analogues

    Energy Technology Data Exchange (ETDEWEB)

    Dannoon, Shorouk F. [Department of Chemistry, University of Missouri, Columbia, MO 65211 (United States); Bigott-Hennkens, Heather M. [Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211 (United States); Ma Lixin [Department of Radiology, University of Missouri, Columbia, MO 65211 (United States); International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, MO 65211 (United States); Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO 65211 (United States); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Gallazzi, Fabio [Structural Biology Core, University of Missouri, Columbia, MO 65211 (United States); Lewis, Michael R., E-mail: lewismic@missouri.ed [Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211 (United States); Department of Radiology, University of Missouri, Columbia, MO 65211 (United States); Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO 65211 (United States); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Jurisson, Silvia S., E-mail: jurissons@missouri.ed [Department of Chemistry, University of Missouri, Columbia, MO 65211 (United States); Department of Radiology, University of Missouri, Columbia, MO 65211 (United States); Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO 65211 (United States)

    2010-07-15

    Introduction: Development of radiolabeled octreotide analogues is of interest for targeting somatostatin receptor (SSTR)-positive tumors for diagnostic and therapeutic purposes. We are investigating a direct labeling approach for incorporation of a Re ion into octreotide analogues, where the peptide sequences are cyclized via coordination to Re rather than through a disulfide bridge. Methods: Various octreotide analogue sequences and coordination systems (e.g., S{sub 2}N{sub 2} and S{sub 3}N) were synthesized and cyclized with nonradioactive Re. In vitro competitive binding assays with {sup 111}In-DOTA-Tyr{sup 3}-octreotide in AR42J rat pancreatic tumor cells yielded IC{sub 50} values as a measure of SSTR affinity of the Re-cyclized analogues. Three-dimensional structures of Re-cyclized Tyr{sup 3}-octreotate and its disulfide-bridged analogue were calculated from two-dimensional NMR experiments to visualize the effect of metal cyclization on the analogue's pharmacophore. Results: Only two of the 11 Re-cyclized analogues investigated showed moderate in vitro binding affinity toward somatostatin subtype 2 receptors. Three-dimensional molecular structures of Re- and disulfide-cyclized Tyr{sup 3}-octreotate were calculated, and both of their pharmacophore turns appear to be very similar with minor differences due to metal coordination to the amide nitrogen of one of the pharmacophore amino acids. Conclusions: Various Re-cyclized analogues were developed and analogue 4 had moderate affinity toward somatostatin subtype 2 receptors. In vitro stable studies that are in progress showed stable radiometal cyclization of octreotide analogues via NS{sub 3} and N{sub 2}S{sub 2} coordination forming five- and six-membered chelate rings. In vivo biodistribution studies are underway of {sup 99m}Tc-cyclized analogue 4.

  5. Enantioselective allylations of selected alpha, beta, gamma, delta-unsaturated aldehydes by axially chiral N,N'-dioxides. Synthesis of the left-hand part of papulacandin D

    Czech Academy of Sciences Publication Activity Database

    Vlašaná, K.; Betík, R.; Valterová, Irena; Nečas, D.; Kotora, M.

    2016-01-01

    Roč. 3, č. 3 (2016), s. 301-305 ISSN 2213-3372 Institutional support: RVO:61388963 Keywords : allylation * aldehyde * Lewis base * asymmetric synthesis * organocatalysis * homoallylic alcohol s Subject RIV: CC - Organic Chemistry

  6. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...... for the development of allylic C-H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions....

  7. Two-dimensional NMR studies of allyl palladium complexes of ...

    Indian Academy of Sciences (India)

    Administrator

    h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.

  8. Enzyme-Like Catalysis of the Nazarov Cyclization by Supramolecular Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Courtney; Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2010-03-29

    A primary goal in the design and synthesis of molecular hosts has been the selective recognition and binding of a variety of guests using non-covalent interactions. Supramolecular catalysis, which is the application of such hosts towards catalysis, has much in common with many enzymatic reactions, chiefly the use of both spatially appropriate binding pockets and precisely oriented functional groups to recognize and activate specific substrate molecules. Although there are now many examples which demonstrate how selective encapsulation in a host cavity can enhance the reactivity of a bound guest, all have failed to reach the degree of increased reactivity typical of enzymes. We now report the catalysis of the Nazarov cyclization by a self-assembled coordination cage, a carbon-carbon bond-forming reaction which proceeds under mild, aqueous conditions. The acceleration in this system is over a million-fold, and represents the first example of supramolecular catalysis that achieves the level of rate enhancement comparable to that observed in several enzymes. We explain the unprecedented degree of rate increase as due to the combination of (a) preorganization of the encapsulated substrate molecule, (b) stabilization of the transition state of the cyclization by constrictive binding, and (c) increase in the basicity of the complexed alcohol functionality.

  9. p-TSA/Base-Promoted Propargylation/Cyclization of β-Ketothioamides for the Regioselective Synthesis of Highly Substituted (Hydro)thiophenes.

    Science.gov (United States)

    Nandi, Ganesh Chandra; Singh, Maya Shankar

    2016-07-15

    Metal-free, p-toluenesulfonic acid (p-TSA)-mediated, straightforward propargylation of β-ketothioamides with aryl propargyl alcohol has been achieved at room temperature. In addition, the reaction also provided thiazole rings as byproducts. Furthermore, the propargylated thioamides undergo intramolecular 1,5-cyclization to afford fully substituted (hydro)thiophenes in the presence of base. Notably, the approach is pot, atom, and step economical (PASE).

  10. Cyclization of arylacetoacetates to indene and dihydronaphthalene derivatives in strong acids. Evidence for involvement of further protonation of O,O-diprotonated beta-ketoester, leading to enhancement of cyclization.

    Science.gov (United States)

    Kurouchi, Hiroaki; Sugimoto, Hiromichi; Otani, Yuko; Ohwada, Tomohiko

    2010-01-20

    The chemical features, such as substrate stability, product distribution, and substrate generality, and the reaction mechanism of Brønsted superacid-catalyzed cyclization reactions of aromatic ring-containing acetoacetates (beta-ketoesters) were examined in detail. While two types of carbonyl cyclization are possible, i.e., keto cyclization and ester cyclization, the former was found to take place exclusively. The reaction constitutes an efficient method to synthesize indene and 3,4-dihydronapthalene derivatives. Acid-base titration monitored with (13)C NMR spectroscopy showed that the acetoacetates are fully O(1),O(3)-diprotonated at H(0) = -11. While the five-membered ring cyclization of the arylacetoacetates proceeded slowly at H(0) = -11, a linear increase in the rate of the cyclization was found with increasing acidity in the high acidity region of H(0) = -11.8 to -13.3. Therefore, the O(1),O(3)-diprotonated acetoacetates exhibited some cyclizing reactivity, but they are not the reactive intermediates responsible for the acceleration of the cyclization in the high acidity region. The reactive cationic species might be formed by further protonation (or protosolvation) of the O(1),O(3)-diprotonated acetoacetates; i.e., they may be tricationic species. Thermochemical data on the acid-catalyzed cyclization of the arylacetoacetates showed that the activation energy is decreased significantly as compared with that of the related acid-catalyzed cyclization reaction of a compound bearing a single functional group, such as a ketone. These findings indicate that intervention of the trication contributes to the activation of the cyclization of arylacetoacetates in strong acid, and the electron-withdrawing nature of the O-protonated ester functionality significantly increases the electrophilicity of the ketone moiety.

  11. Structural determinants of reductive terpene cyclization in iridoid biosynthesis

    DEFF Research Database (Denmark)

    Kries, Hajo; Caputi, Lorenzo; Stevenson, Clare E M

    2016-01-01

    The carbon skeleton of ecologically and pharmacologically important iridoid monoterpenes is formed in a reductive cyclization reaction unrelated to canonical terpene cyclization. Here we report the crystal structure of the recently discovered iridoid cyclase (from Catharanthus roseus) bound...

  12. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst

    DEFF Research Database (Denmark)

    Nielsen, Inger Staunstrup; Taarning, Esben; Egeblad, Kresten

    2007-01-01

    Methyl esters can be produced in high yield by oxidising methanolic solutions of primary alcohols with dioxygen over a heterogeneous gold catalyst. The versatility of this new methodology is demonstrated by the fact that alkylic, benzylic and allylic alcohols, as well as alcohols containing...

  13. The nature of resonance in allyl ions and radical.

    Science.gov (United States)

    Linares, Mathieu; Humbel, Stéphane; Braïda, Benoît

    2008-12-18

    A recent valence bond scheme based on Lewis structures, the valence bond BOND (VBB) method (BOND: Breathing Orbitals Naturally Delocalized) method (Linares, M.; Braida, B.; Humbel, S. J. Phys. Chem. A 2006, 110, 2505-2509), is applied to explore the nature of resonance in allyl systems. Whereas allyl radical is correctly described by the resonance between the two traditional Lewis structures, a third "long-bonded" structure, which apparently creates a pi bond between the two distant carbon atoms, appears to plays an important role in allyl ions description. The similar vertical resonance energy (VRE) for both allyl ions is rather moderate (approximately 37 kcal/mol) in the two-structure description but is significantly enhanced when the long-bonded structure is included into the VBB wave function (by up to 20 kcal/mol). The allyl radical is much less resonant and is correctly described by the traditional two-structure picture. The development of VBB Lewis structures into "pure" valence bond determinants enlightens the role of the third structure in the description of allyl ions. The existence of a long bond between the two distant carbon atoms is clearly ruled out. Charge equilibration effect is shown to be a minor factor. The third structure is finally attributed to one- and three-electron bonding character revealed in the pi systems of the cation and anion, respectively. This makes these systems two surprising examples of odd electron bonding within a singlet state. Last, the two-structure description of allyl radical is improved by addition of missing ionic structures.

  14. Unusual selectivity-determining factors in the phosphine-free Heck arylation of allyl ethers

    DEFF Research Database (Denmark)

    Ambrogio, I.; Fabrizi, G.; Cacchi, S.

    2008-01-01

    The Heck reaction of aryl iodides and bromides with allyl ethers has been investigated. Using phosphinefree Pd(OAc)(2) in DNIF at 90 degrees C in the presence of Bu4NOAc, the reaction gave cinnamyl derivatives, usually in good to high yields, with a wide range of aryl halides. The reaction...... tolerates a variety of functional groups, including ether, amide, alcohol, aldehyde, ketone, ester, cyano, carboxylic acid, and nitro groups. Ortho-substituted arylating agents afforded moderate yields in some cases, though good to high yields were obtained with o-iodotoluene, iodovanillin, and 1...

  15. SHORT COMMUNICATION A CONVENIENT METHOD FOR ...

    African Journals Online (AJOL)

    Preferred Customer

    allyloxy chalcones to flavones encouraged us to use this reagent system for the cyclization of α- allyl esters. 2'-Allyloxy chalcones with iodine (20%) in dimethylsulphoxide result in attack of the allyloxy oxygen towards reactive alkene group. This results in the deallylation of 2'-allyloxy chalcones followed by cyclization to give ...

  16. Water promoted allylic nucleophilic substitution reactions of (E)-1,3 diphenylallyl acetate

    KAUST Repository

    Ghorpade, Seema Arun; Sawant, Dinesh N; Makki, Arwa; Sekar, N; Eppinger, Jö rg

    2017-01-01

    Transition metal free, water based, greener protocol for allylic alkylation, allylic amination, O-allylation of (E)-1,3-diphenylallyl acetate is described. The developed methodology is applicable for a wide range of nucleophiles furnishing excellent yields of corresponding products up to 87% under mild reaction conditions. A Distinct effect of water and base is explored for allylic nucleophilic substitution reactions of (E)-1,3-diphenylallyl acetate.

  17. Water promoted allylic nucleophilic substitution reactions of (E)-1,3 diphenylallyl acetate

    KAUST Repository

    Ghorpade, Seema Arun

    2017-11-30

    Transition metal free, water based, greener protocol for allylic alkylation, allylic amination, O-allylation of (E)-1,3-diphenylallyl acetate is described. The developed methodology is applicable for a wide range of nucleophiles furnishing excellent yields of corresponding products up to 87% under mild reaction conditions. A Distinct effect of water and base is explored for allylic nucleophilic substitution reactions of (E)-1,3-diphenylallyl acetate.

  18. Rapid synthesis of polyprenylated acylphloroglucinol analogs via dearomative conjunctive allylic annulation.

    Science.gov (United States)

    Grenning, Alexander J; Boyce, Jonathan H; Porco, John A

    2014-08-20

    Polyprenylated acylphloroglucinols (PPAPs) are structurally complex natural products with promising biological activities. Herein, we present a biosynthesis-inspired, diversity-oriented synthesis approach for rapid construction of PPAP analogs via double decarboxylative allylation (DcA) of acylphloroglucinol scaffolds to access allyl-desoxyhumulones followed by dearomative conjunctive allylic alkylation (DCAA).

  19. Construction of an Asymmetric Quaternary Carbon Center via Allylation of Hydrazones

    International Nuclear Information System (INIS)

    Kim, Jin Bum; Satyender, Apuri; Jang, Doo Ok

    2013-01-01

    Asymmetric indium-mediated allylation of imine derivatives bearing a chiral auxiliary is a reliable strategy for the synthesis of chiral homoallylic amines. Various techniques for indium-mediated stereoselective allylation of imines bearing a chiral auxiliary have been reported. In 1997 Loh and co-workers reported indium-mediated allylation with imines derived from L-valine methyl ester. Since then, many forms of indium-mediated allylation bearing a chiral auxiliary have been reported, including imines derived from (S)-valinol, (R)-phenylglycinol, uracil, (R)-phenylglycinol methyl ester, N-tert-butanesufinamide, and (1R,2S)-1-amino-2-indanol. However, the synthesis of chiral auxiliaries often involves a laborious multi-step synthesis with expensive reagents. Therefore, the development of readily accessible chiral auxiliaries for asymmetric indium-mediated all-ylation is in high demand

  20. Allyl borates: a novel class of polyhomologation initiators

    KAUST Repository

    Wang, De

    2016-12-24

    Allyl borates, a new class of monofunctional polyhomologation initiators, are reported. These monofunctional initiators are less sensitive and more effective towards polymethylene-based architectures. As an example, the synthesis of α-vinyl-ω-hydroxypolymethylenes is given. By designing/synthesizing different allylic borate initiators, and using 1H and 11B NMR spectroscopy, the initiation mechanism was elucidated.

  1. Knottin cyclization: impact on structure and dynamics

    Directory of Open Access Journals (Sweden)

    Gracy Jérôme

    2008-12-01

    Full Text Available Abstract Background Present in various species, the knottins (also referred to as inhibitor cystine knots constitute a group of extremely stable miniproteins with a plethora of biological activities. Owing to their small size and their high stability, knottins are considered as excellent leads or scaffolds in drug design. Two knottin families contain macrocyclic compounds, namely the cyclotides and the squash inhibitors. The cyclotide family nearly exclusively contains head-to-tail cyclized members. On the other hand, the squash family predominantly contains linear members. Head-to-tail cyclization is intuitively expected to improve bioactivities by increasing stability and lowering flexibility as well as sensitivity to proteolytic attack. Results In this paper, we report data on solution structure, thermal stability, and flexibility as inferred from NMR experiments and molecular dynamics simulations of a linear squash inhibitor EETI-II, a circular squash inhibitor MCoTI-II, and a linear analog lin-MCoTI. Strikingly, the head-to-tail linker in cyclic MCoTI-II is by far the most flexible region of all three compounds. Moreover, we show that cyclic and linear squash inhibitors do not display large differences in structure or flexibility in standard conditions, raising the question as to why few squash inhibitors have evolved into cyclic compounds. The simulations revealed however that the cyclization increases resistance to high temperatures by limiting structure unfolding. Conclusion In this work, we show that, in contrast to what could have been intuitively expected, cyclization of squash inhibitors does not provide clear stability or flexibility modification. Overall, our results suggest that, for squash inhibitors in standard conditions, the circularization impact might come from incorporation of an additional loop sequence, that can contribute to the miniprotein specificity and affinity, rather than from an increase in conformational rigidity

  2. Synthesis of anatoxin a via intramolecular cyclization of iminium salts

    International Nuclear Information System (INIS)

    Bates, H.A.; Rapoport, H.

    1979-01-01

    Anatoxin a (1) has been synthesized by exploiting intramolecular cyclization between an iminium salt and a nucleophilic carbon to construct the 9-azabicyclo[4.2.1]nonane ring system. Cyclization of malonate iminiumsalt 16 at alkaline pH afforded a low yield of bicyclic malonate 18 owing to an unfavorable equilibrium constant and lability of the iminium salt in base. In contrast, cyclization of ketoiminium salt 31 afforded a good yield of bicyclic ketone 34 in acidic methanol. Dihydropyrrolium salts 16 and 31 were generated quantitatively by decarbonylation of substituted N-methylprolines 15 and 30b, obtained by reduction of the corresponding pyrroles

  3. Self-Terminating, Oxidative Radical Cyclizations

    Directory of Open Access Journals (Sweden)

    Uta Wille

    2004-05-01

    Full Text Available The recently discovered novel concept of self-terminating, oxidative radical cyclizations, through which alkynes can be converted into carbonyl compounds under very mild reaction conditions using O-centered inorganic and organic radicals as oxidants, is described

  4. Tribromoisocyanuric acid/triphenylphosphine: a new system for conversion of alcohols into alkyl bromides

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Vitor S.C. de; Mattos, Marcio C.S. de, E-mail: mmattos@iq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Quimica. Departamento de Quimica Organica

    2014-05-15

    An efficient and facile method has been developed for the conversion of alcohols into alkyl bromides under neutral conditions using tribromoisocyanuric acid and triphenylphosphine (molar ratio 1.0:0.7:2.0, alcohol/tribromoisocyanuric acid/triphenylphosphine) in dichloromethane at room temperature. This method can be applied for the conversion of primary, secondary, benzilic and allylic alcohols, and their corresponding bromides are obtained in 67-82 % yield. Tertiary alcohols do not react under these conditions. (author)

  5. Tribromoisocyanuric acid/triphenylphosphine: a new system for conversion of alcohols into alkyl bromides

    International Nuclear Information System (INIS)

    Andrade, Vitor S.C. de; Mattos, Marcio C.S. de

    2014-01-01

    An efficient and facile method has been developed for the conversion of alcohols into alkyl bromides under neutral conditions using tribromoisocyanuric acid and triphenylphosphine (molar ratio 1.0:0.7:2.0, alcohol/tribromoisocyanuric acid/triphenylphosphine) in dichloromethane at room temperature. This method can be applied for the conversion of primary, secondary, benzilic and allylic alcohols, and their corresponding bromides are obtained in 67-82 % yield. Tertiary alcohols do not react under these conditions. (author)

  6. Redox-Neutral Rh(III)-Catalyzed Olefination of Carboxamides with Trifluoromethyl Allylic Carbonate.

    Science.gov (United States)

    Park, Jihye; Han, Sangil; Jeon, Mijin; Mishra, Neeraj Kumar; Lee, Seok-Yong; Lee, Jong Suk; Kwak, Jong Hwan; Um, Sung Hee; Kim, In Su

    2016-11-18

    The rhodium(III)-catalyzed olefination of various carboxamides with α-CF 3 -substituted allylic carbonate is described. This reaction provides direct access to linear CF 3 -allyl frameworks with complete trans-selectivity. In particular, a rhodium catalyst provided Heck-type γ-CF 3 -allylation products via the β-O-elimination of rhodacycle intermediate and subsequent olefin migration process.

  7. Energy profiles for ketene cyclizations. Interconversion of 1,3-oxazin-6-ones, mesoionic 1,3-oxazinium olates and acylketenes, imidoylketenes, oxoketenimines, and cyclization products.

    Science.gov (United States)

    Bornemann, Holger; Wentrup, Curt

    2005-07-22

    The energy surface connecting oxazinium olates 9, several possible conformers of ketenes 10 and 11, and the final cyclization products 12, 13 and 14, as well as the isomeric 1,3-oxazine-6-ones 15, ring opening of the latter to N-acylimidoylketenes 16, and subsequent rearrangement of 16 to oxoketenimines 17, azetinones 18, and the cyclization products 19 and 20 are evaluated computationally at the B3LYP/6-31G and B3LYP/6-311+G//B3LYP/6-31G levels. The cyclizations of ketenes to oxazinium olates 9 and oxazines 15 have the characteristics of pseudopericyclic reactions. Plots of the energy vs internal reaction coordinate for the cyclization of transoid acylketenes such as 10 to 9 (via TS1) and 16 to 15 (via TS7) feature two inflection points and indicate that the part of the energy surface above the lower inflection points describe internal rotation of the acyl function in the ketene moiety, and the part below this point describes the cyclization of the cisoid ketene to the planar mesoionic oxazinium olate 9 or oxazinone 15. The 1,3-shifts of the OR group that interconvert ketenes 16 and ketenimines 17 via four-membered cyclic transition states TS8 behave similarly, the first portion (from the ketenimine side) of the activation barrier being due largely to internal rotation of substituents, and the top part being due to the 1,3-shift proper.

  8. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.

    Science.gov (United States)

    Sharma, Pankaj; Liu, Rai-Shung

    2015-03-16

    A one-pot, two-step synthesis of α-O-, S-, and N-substituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N-hydroxyaminoallenes with NuH (Nu = OH, OR, NHR, and SR) to form 3-substituted 2-en-1-ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone-intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cyclization of the N-Terminal X-Asn-Gly Motif during Sample Preparation for Bottom-Up Proteomics

    DEFF Research Database (Denmark)

    Zhang, Xumin; Højrup, Peter

    2010-01-01

    We, herein, report a novel -17 Da peptide modification corresponding to an N-terminal cyclization of peptides possessing the N-terminal motif of X-Asn-Gly. The cyclization occurs spontaneously during sample preparation for bottom-up proteomics studies. Distinct from the two well-known N-terminal ......We, herein, report a novel -17 Da peptide modification corresponding to an N-terminal cyclization of peptides possessing the N-terminal motif of X-Asn-Gly. The cyclization occurs spontaneously during sample preparation for bottom-up proteomics studies. Distinct from the two well-known N......-terminal cyclizations, cyclization of N-terminal glutamine and S-carbamoylmethylcysteine, it is dependent on pH instead of [NH(4)(+)]. The data set from our recent study on large-scale N(α)-modified peptides revealed a sequence requirement for the cyclization event similar to the well-known deamidation of Asn to iso...

  10. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  11. Novel carbocationic rearrangements of 1-styrylpropargyl alcohols

    Directory of Open Access Journals (Sweden)

    Christine Basmadjian

    2015-06-01

    Full Text Available The dehydration and subsequent cyclization reactions of 1-styrylpropargyl alcohols was examined. In the course of these studies, numerous scaffolds were synthesized, including a furan, a cyclopentenone, an acyclic enone and even a naphthalenone. The diversity of these structural motifs lies in novel cascades of reactions originating from a common carbocationic manifold.

  12. Mechanism of the Suzuki–Miyaura Cross-Coupling Reaction Mediated by [Pd(NHC)(allyl)Cl] Precatalysts

    KAUST Repository

    Meconi, Giulia Magi

    2017-05-24

    Density functional theory calculations have been used to investigate the activation mechanism for the precatalyst series [Pd]-X-1–4 derived from [Pd(IPr)(R-allyl)X] species by substitutions at the terminal position of the allyl moiety ([Pd] = Pd(IPr); R = H (1), Me (2), gem-Me2 (3), Ph (4), X = Cl, Br). Next, we have investigated the Suzuki–Miyaura cross-coupling reaction for the active catalyst species IPr-Pd(0) using 4-chlorotoluene and phenylboronic acid as substrates and isopropyl alcohol as a solvent. Our theoretical findings predict an upper barrier trend, corresponding to the activation mechanism for the [Pd]-Cl-1–4 series, in good agreement with the experiments. They indeed provide a quantitative explanation of the low yield (12%) displayed by [Pd]-Cl-1 species (ΔG⧧ ≈ 30.0 kcal/mol) and of the high yields (≈90%) observed in the case of [Pd]-Cl-2–4 complexes (ΔG⧧ ≈ 20.0 kcal/mol). Additionally, the studied Suzuki–Miyaura reaction involving the IPr-Pd(0) species is calculated to be thermodynamically favorable and kinetically facile. Similar investigations for the [Pd]-Br-1–4 series, derived from [Pd(IPr)(R-allyl)Br], indicate that the oxidative addition step for IPr-Pd(0)-mediated catalysis with 4-bromotoluene is kinetically more favored than that with 4-chlorotoluene. Finally, we have explored the potential of Ni-based complexes [Ni((IPr)(R-allyl)X] (X = Cl, Br) as Suzuki–Miyaura reaction catalysts. Apart from a less endergonic reaction energy profile for both precatalyst activation and catalytic cycle, a steep increase in the predicted upper energy barriers (by 2.0–15.0 kcal/mol) is calculated in the activation mechanism for the [Ni]-X-1–4 series compared to the [Pd]-X-1–4 series. Overall, these results suggest that Ni-based precatalysts are expected to be less active than the Pd-based precatalysts for the studied Suzuki–Miyaura reaction.

  13. Practical Stannylation of Allyl Acetates Catalyzed by Nickel with Bu3 SnOMe.

    Science.gov (United States)

    Komeyama, Kimihiro; Itai, Yuuhei; Takaki, Ken

    2016-06-27

    A practical and scalable nickel-catalyzed allylic stannylation of allyl acetates with Bu3 SnOMe is described. A variety of acyclic and cyclic allyl acetates, even with base-sensitive moieties, undergoes the stannylation by using NiBr2 /4,4'-di-tert-butylbipyridine (dtbpy)/Mn catalyst system to afford highly functionalized allyl stannanes with excellent regioselectivity and yields. Furthermore, the scope of protocol is also extended by the reaction of propargyl acetates, giving rise to propargyl or allenyl stannanes. Additionally, a unique diastereoselectivity using the nickel catalyst different from the palladium was demonstrated for the stannylation of cyclic allyl acetates. In the reaction, inexpensive and stable nickel complexes, abundant reductant (Mn), and atom-economical stannyl source were used. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Oral Administration of (S)-Allyl-l-Cysteine and Aged Garlic Extract to Rats: Determination of Metabolites and Their Pharmacokinetics.

    Science.gov (United States)

    Park, Taehoon; Oh, Ju-Hee; Lee, Joo Hyun; Park, Sang Cheol; Jang, Young Pyo; Lee, Young-Joo

    2017-11-01

    ( S )-Allyl-l-cysteine is the major bioactive compound in garlic. ( S )-Allyl-l-cysteine is metabolized to ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide after oral administration. An accurate LC-MS/MS method was developed and validated for the simultaneous quantification of ( S )-allyl-l-cysteine and its metabolites in rat plasma, and the feasibility of using it in pharmacokinetic studies was tested. The analytes were quantified by multiple reaction monitoring using an atmospheric pressure ionization mass spectrometer. Because significant quantitative interference was observed between ( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine as a result of the decomposition of N -acetyl-( S )-allyl-l-cysteine at the detector source, chromatographic separation was required to discriminate ( S )-allyl-l-cysteine and its metabolites on a reversed-phase C 18 analytical column with a gradient mobile phase consisting of 0.1% formic acid and acetonitrile. The calibration curves of ( S )-allyl-l-cysteine, ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide were linear over each concentration range, and the lower limits of quantification were 0.1 µg/mL [( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine] and 0.25 µg/mL [( S )-allyl-l-cysteine sulfoxide and N -acetyl-( S )-allyl-l-cysteine sulfoxide]. Acceptable intraday and inter-day precisions and accuracies were obtained at three concentration levels. The method satisfied the regulatory requirements for matrix effects, recovery, and stability. The validated LC-MS/MS method was successfully used to determine the concentration of ( S )-allyl-l-cysteine and its metabolites in rat plasma samples after the administration of ( S )-allyl-l-cysteine or aged garlic extract. Georg Thieme Verlag KG Stuttgart · New York.

  15. SpyRing interrogation: analyzing how enzyme resilience can be achieved with phytase and distinct cyclization chemistries

    Science.gov (United States)

    Schoene, Christopher; Bennett, S. Paul; Howarth, Mark

    2016-01-01

    Enzymes catalyze reactions with exceptional selectivity and rate acceleration but are often limited by instability. Towards a generic route to thermo-resilience, we established the SpyRing approach, cyclizing enzymes by sandwiching between SpyTag and SpyCatcher (peptide and protein partners which lock together via a spontaneous isopeptide bond). Here we first investigated the basis for this resilience, comparing alternative reactive peptide/protein pairs we engineered from Gram-positive bacteria. Both SnoopRing and PilinRing cyclization gave dramatic enzyme resilience, but SpyRing cyclization was the best. Differential scanning calorimetry for each ring showed that cyclization did not inhibit unfolding of the inserted β-lactamase. Cyclization conferred resilience even at 100 °C, where the cyclizing domains themselves were unfolded. Phytases hydrolyze phytic acid and improve dietary absorption of phosphate and essential metal ions, important for agriculture and with potential against human malnutrition. SpyRing phytase (PhyC) resisted aggregation and retained catalytic activity even following heating at 100 °C. In addition, SpyRing cyclization made it possible to purify phytase simply by heating the cell lysate, to drive aggregation of non-cyclized proteins. Cyclization via domains forming spontaneous isopeptide bonds is a general strategy to generate resilient enzymes and may extend the range of conditions for isolation and application of enzymes. PMID:26861173

  16. Cyclization strategies of meditopes: affinity and diffraction studies of meditope–Fab complexes

    International Nuclear Information System (INIS)

    Bzymek, Krzysztof P.; Ma, Yuelong; Avery, Kendra A.; Horne, David A.; Williams, John C.

    2016-01-01

    An overview of cyclization strategies of a Fab-binding peptide to maximize affinity. Recently, a unique binding site for a cyclic 12-residue peptide was discovered within a cavity formed by the light and heavy chains of the cetuximab Fab domain. In order to better understand the interactions that drive this unique complex, a number of variants including the residues within the meditope peptide and the antibody, as well as the cyclization region of the meditope peptide, were created. Here, multiple crystal structures of meditope peptides incorporating different cyclization strategies bound to the central cavity of the cetuximab Fab domain are presented. The affinity of each cyclic derivative for the Fab was determined by surface plasmon resonance and correlated to structural differences. Overall, it was observed that the disulfide bond used to cyclize the peptide favorably packs against a hydrophobic ‘pocket’ and that amidation and acetylation of the original disulfide meditope increased the overall affinity ∼2.3-fold. Conversely, replacing the terminal cysteines with serines and thus creating a linear peptide reduced the affinity over 50-fold, with much of this difference being reflected in a decrease in the on-rate. Other cyclization methods, including the formation of a lactam, reduced the affinity but not to the extent of the linear peptide. Collectively, the structural and kinetic data presented here indicate that small perturbations introduced by different cyclization strategies can significantly affect the affinity of the meditope–Fab complex

  17. Cyclization strategies of meditopes: affinity and diffraction studies of meditope–Fab complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bzymek, Krzysztof P.; Ma, Yuelong; Avery, Kendra A.; Horne, David A.; Williams, John C., E-mail: jcwilliams@coh.org [Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91010 (United States)

    2016-05-23

    An overview of cyclization strategies of a Fab-binding peptide to maximize affinity. Recently, a unique binding site for a cyclic 12-residue peptide was discovered within a cavity formed by the light and heavy chains of the cetuximab Fab domain. In order to better understand the interactions that drive this unique complex, a number of variants including the residues within the meditope peptide and the antibody, as well as the cyclization region of the meditope peptide, were created. Here, multiple crystal structures of meditope peptides incorporating different cyclization strategies bound to the central cavity of the cetuximab Fab domain are presented. The affinity of each cyclic derivative for the Fab was determined by surface plasmon resonance and correlated to structural differences. Overall, it was observed that the disulfide bond used to cyclize the peptide favorably packs against a hydrophobic ‘pocket’ and that amidation and acetylation of the original disulfide meditope increased the overall affinity ∼2.3-fold. Conversely, replacing the terminal cysteines with serines and thus creating a linear peptide reduced the affinity over 50-fold, with much of this difference being reflected in a decrease in the on-rate. Other cyclization methods, including the formation of a lactam, reduced the affinity but not to the extent of the linear peptide. Collectively, the structural and kinetic data presented here indicate that small perturbations introduced by different cyclization strategies can significantly affect the affinity of the meditope–Fab complex.

  18. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    Science.gov (United States)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  19. Effect of allyl isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    John Russell Williams

    2015-01-01

    Full Text Available The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also reported to damage DNA and is toxic to aquatic organisms, the objective of the present study was to determine whether it possesses teratogenic properties. The frog embryo teratogenesis assay-Xenopus (FETAX was used to determine the following measures of developmental toxicity of the allyl isothiocyanate: (a 96-h LC50, defined as the median concentration causing 50% embryo lethality; (b 96-h EC50, defined as the median concentration causing 50% malformations of the surviving embryos; and (c teratogenic malformation index (TI, equal to 96-h LC50/96-h EC50. The quantitative results and the photographs of embryos before and after exposure suggest that allyl isothiocyanate seems to exhibit moderate teratogenic properties. The results also indicate differences in the toxicity of allyl isothiocyanate toward exposed embryos observed in the present study compared to reported adverse effects of allyl isothiocyanate in fish, rodents, and humans. The significance of the results for food safety and possible approaches to protect against adverse effects of allyl isothiocyanate are discussed.

  20. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters.

    Science.gov (United States)

    Thomas, Bryce N; Moon, Patrick J; Yin, Shengkang; Brown, Alex; Lundgren, Rylan J

    2018-01-07

    A well-defined Ir-allyl complex catalyzes the Z -selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E -products typically observed in metal-mediated coupling reactions to enable the synthesis of Z , E -dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir-carbene and Ir-allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E-H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt 3 .

  1. Asymmetric, Stereodivergent Synthesis of (−)-Clusianone Utilizing a Biomimetic Cationic Cyclization **

    Science.gov (United States)

    Boyce, Jonathan H.

    2014-01-01

    We report a stereodivergent, asymmetric total synthesis of (−)-clusianone in six steps from commercial materials. We implement a challenging cationic cyclization forging a bond between two sterically encumbered quaternary carbons. Mechanistic studies point to the unique ability of formic acid to bring about successful cyclization to the clusianone framework. PMID:24916169

  2. Ternary iron(II) complex with an emissive imidazopyridine arm from Schiff base cyclizations and its oxidative DNA cleavage activity

    OpenAIRE

    Mukherjee, Arindam; Dhar, Shanta; Nethaji, Munirathinam; Chakravarty, Akhil R

    2005-01-01

    The ternary iron(II) complex [Fe(L')(L")] $(PF_6)_3(1)$ as a synthetic model for the bleomycins, where L' and L" are formed from metal-mediated cyclizations of N,N -(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)(L), is synthesized and structurally characterized by X-ray crystallography. In the six-coordinate iron(II) complex, ligands L' and L" show tetradentate and bidentate chelating modes of bonding. Ligand L' is formed from an intramolecular attack of the alcoholic OH group of L to o...

  3. Nazarov cyclization initiated by peracid oxidation: the total synthesis of (+/-)-rocaglamide.

    Science.gov (United States)

    Malona, John A; Cariou, Kevin; Frontier, Alison J

    2009-06-10

    The total syntheses of aglafolin, rocagloic acid, and rocaglamide using Nazarov cyclization are described. Generation of the necessary oxyallyl cation intermediate was accomplished via peracid oxidation of an allenol ether to generate an unusual oxycarbenium ion species that undergoes cyclization. The synthesis is efficient, highly diastereoselective, and strategically distinct from previous syntheses of rocaglamide.

  4. Hypervalent iodine/TEMPO-mediated oxidation in flow systems: a fast and efficient protocol for alcohol oxidation

    Directory of Open Access Journals (Sweden)

    Nida Ambreen

    2013-07-01

    Full Text Available Hypervalent iodine(III/TEMPO-mediated oxidation of various aliphatic, aromatic and allylic alcohols to their corresponding carbonyl compounds was successfully achieved by using microreactor technology. This method can be used as an alternative for the oxidation of various alcohols achieving excellent yields and selectivities in significantly shortened reaction times.

  5. Zinc Mediated Tandem Fragmentation-Allylation of Methyl 5-Iodopentofuranosides

    DEFF Research Database (Denmark)

    Hyldtoft, Lene; Madsen, Robert

    1999-01-01

    In the presence of zinc and allyl bromide methyl 5-iodopentofuranosides undergo a tandem fragmentation alkylation to give functionalized dienes. These can undergo ring-closing olefin metathesis to produce cyclohexenes which on dihydroxylation give quercitols.......In the presence of zinc and allyl bromide methyl 5-iodopentofuranosides undergo a tandem fragmentation alkylation to give functionalized dienes. These can undergo ring-closing olefin metathesis to produce cyclohexenes which on dihydroxylation give quercitols....

  6. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    Science.gov (United States)

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  7. SYNTHESIS OF 4-ALLYL-2-METHOXY-6-AMINOPHENOL FROM NATURAL EUGENOL

    Directory of Open Access Journals (Sweden)

    I Made Sudarma

    2010-06-01

    Full Text Available The aim of this preliminary research was to synthesize derivatives of eugenol such as 4-allyl-2-methoxy-6-nitrophenol (2 and 4-allyl-2-methoxy-6-aminophenol (3. The result could be used as a reference on the transformation of eugenol to its derivatives. Theoriticaly nitration of eugenol (1 by nitric acid could produced 4-allyl-2-methoxy-6-nitrophenol (2 and followed by reduction could achieved 4-allyl-2-mehtoxy-6-aminophenol (3. The formation of this product was analyzed by analytical thin layer chromatography (TLC and GC-MS. These analysis showed the formation of product (2 and (3 were visible. TLC showed product (1 less polar than eugenol and gave orange colour, and supported by GC-MS which showed molecular ion at m/z 209 due to the presence of -NO2 by replacing one H at 6 position of eugenol. Product (3 was afforded by reduction of (2 with Sn/HCl and tlc analysis showed compound (3 more polar than eugenol (1 and (2 and supported by GC-MS which showed molecular ion at m/z 179 due to the presence of -NH2.   Keywords: Synthesis, 4-allyl-2-methoxy-6-aminophenol, Eugenol

  8. Acrolein toxicity involves oxidative stress caused by glutathione depletion in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kwolek-Mirek, M; Bednarska, S; Bartosz, G; Biliński, T

    2009-08-01

    Exposure of yeast cells to allyl alcohol results in intracellular production of acrolein. The toxicity of so formed acrolein involves oxidative stress, as (1) strains deficient in antioxidant defense are hypersensitive to allyl alcohol, (2) exposure to allyl alcohol increases the level of thiobarbituric-acid-reactive substances and decreases glutathione level in the cells, (3) hypoxic and anoxic atmosphere and antioxidants protect against allyl alcohol toxicity, and (4) allyl alcohol causes activation of Yap1p. No increased formation of reactive oxygen species was detected in cells exposed to allyl alcohol, so oxidative stress is due to depletion of cellular thiols and thus alteration in the redox state of yeast cells.

  9. Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme

    DEFF Research Database (Denmark)

    de Rond, Tristan; Stow, Parker; Eigl, Ian

    2017-01-01

    Prodiginines, which are tripyrrole alkaloids displaying a wide array of bioactivities, occur as linear and cyclic congeners. Identification of an unclustered biosynthetic gene led to the discovery of the enzyme responsible for catalyzing the regiospecific C–H activation and cyclization of prodigi...... of prodigiosin to cycloprodigiosin in Pseudoalteromonas rubra. This enzyme is related to alkylglycerol monooxygenase and unrelated to RedG, the Rieske oxygenase that produces cyclized prodiginines in Streptomyces, implying convergent evolution....

  10. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  11. SpyRings Declassified: A Blueprint for Using Isopeptide-Mediated Cyclization to Enhance Enzyme Thermal Resilience.

    Science.gov (United States)

    Schoene, C; Bennett, S P; Howarth, M

    2016-01-01

    Enzymes often have marginal stability, with unfolding typically leading to irreversible denaturation. This sensitivity is a major barrier, both for de novo enzyme development and for expanding enzyme impact beyond the laboratory. Seeking an approach to enhance resilience to denaturation that could be applied to a range of different enzymes, we developed SpyRing cyclization. SpyRings contain genetically encoded SpyTag (13 amino acids) on the N-terminus and SpyCatcher (12kDa) on the C-terminus of the enzyme, so that the Spy partners spontaneously react together through an irreversible isopeptide bond. SpyRing cyclization gave major increases in thermal resilience, including on a model for enzyme evolution, β-lactamase, and an industrially important enzyme in agriculture and nutrition, phytase. We outline the SpyRing rationale, including comparison of SpyRing cyclization to other cyclization strategies. The cloning strategy is presented for the simple insertion of enzyme genes for recombinant expression. We discuss structure-based approaches to select suitable enzyme cyclization targets. Approaches to evaluate the cyclization reaction and its effect on enzyme resilience are described. We also highlight the use of differential scanning calorimetry to understand how SpyRing cyclization promotes enzyme refolding. Efficiently searching sequence space will continue to be important for enzyme improvement, but the SpyRing platform may be a valuable rational adjunct for conferring resilience. © 2016 Elsevier Inc. All rights reserved.

  12. Conversion of alkyl radicals to allyl radicals in irradiated single crystal mats of polyethylene

    International Nuclear Information System (INIS)

    Fujimura, T.; Hayakawa, N.; Kuriyama, I.

    1978-01-01

    The decay of alkyl radicals, the conversion of alkyl radicals to allyl radicals and the trapping of allyl radicals in irradiated single crystal mats of polyethylene have been studied by electron spin resonance (e.s.r.). It has been suggested that in the crystal core alkyl radicals react with trans-vinylene double bonds and are converted into trans-vinylene allyl radicals; at the crystal surface, alkyl radicals react with vinyl end groups and are converted into allyl radicals with vinyl end groups. The decay of radical pairs and the formation of trans-vinylene double bonds are discussed. (author)

  13. Highly Stereoselective Intermolecular Haloetherification and Haloesterification of Allyl Amides

    Science.gov (United States)

    Soltanzadeh, Bardia; Jaganathan, Arvind; Staples, Richard J.

    2016-01-01

    An organocatalytic and highly regio-, diastereo-, and enantioselective intermolecular haloetherification and haloesterification reaction of allyl amides is reported. A variety of alkene substituents and substitution patterns are compatible with this chemistry. Notably, electronically unbiased alkene substrates exhibit exquisite regio- and diastereoselectivity for the title transformation. We also demonstrate that the same catalytic system can be used in both chlorination and bromination reactions of allyl amides with a variety of nucleophiles with little or no modification. PMID:26110812

  14. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    Science.gov (United States)

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.

  15. Urinary excretion of N-acetyl-S-allyl-L-cystein upon garlic consumption by human volunteers.

    NARCIS (Netherlands)

    de Rooij, B.M.; Boogaard, P.J.; Rijksen, D.A.; Commandeur, J.N.M.; Vermeulen, N.P.E.

    1996-01-01

    N-Acetyl-S-allyl-L-cysteine (allylmercapturic acid, ALMA) was previously detected in urine from humans consuming garlic. Exposure of rats to allyl halides is also known to lead to excretion of ALMA in urine. ALMA is a potential biomarker for exposure assessment of workers exposed to allyl halides.

  16. Interaction of water, alkyl hydroperoxide, and allylic alcohol with a single-site homogeneous Ti-Si epoxidation catalyst: A spectroscopic and computational study.

    Science.gov (United States)

    Urakawa, Atsushi; Bürgi, Thomas; Skrabal, Peter; Bangerter, Felix; Baiker, Alfons

    2005-02-17

    Tetrakis(trimethylsiloxy)titanium (TTMST, Ti(OSiMe3)4) possesses an isolated Ti center and is a highly active homogeneous catalyst in epoxidation of various olefins. The structure of TTMST resembles that of the active sites in some heterogeneous Ti-Si epoxidation catalysts, especially silylated titania-silica mixed oxides. Water cleaves the Ti-O-Si bond and deactivates the catalyst. An alkyl hydroperoxide, TBHP (tert-butyl hydroperoxide), does not cleave the Ti-O-Si bond, but interacts via weak hydrogen-bonding as supported by NMR, DOSY, IR, and computational studies. ATR-IR spectroscopy combined with computational investigations shows that more than one, that is, up to four, TBHP can undergo hydrogen-bonding with TTMST, leading to the activation of the O-O bond of TBHP. The greater the number of TBHP molecules that form hydrogen bonds to TTMST, the more electrophilic the O-O bond becomes, and the more active the complex is for epoxidation. An allylic alcohol, 2-cyclohexen-1-ol, does not interact strongly with TTMST, but the interaction is prominent when it interacts with the TTMST-TBHP complex. On the basis of the experimental and theoretical findings, a hydrogen-bond-assisted epoxidation mechanism of TTMST is suggested.

  17. Synthesis of 3-substituted 4-piperidinones via a one-pot tandem oxidation-cyclization-oxidation process: stereodivergent reduction to 3,4-disubstituted piperidines.

    Science.gov (United States)

    Bahia, Perdip S; Snaith, John S

    2004-04-30

    A novel approach to 3-substituted 4-piperidinones is described. The one-pot tandem oxidation-cyclization-oxidation of unsaturated alcohols 1a-e by PCC or PCC and trifluoromethanesulfonic acid affords piperidinones 2a-e in good yield. Reduction of 2a-e by L-Selectride gives the corresponding cis 3,4-disubstituted piperidines with diastereomeric ratios of >99:1. By contrast, reduction of 2a-e by Al-isopropoxydiisobutylalane gives the trans products with diastereomeric ratios of up to 99:1.

  18. Vapor-liquid equilibria of the binary system 1,5-hexadiene + allyl chloride

    NARCIS (Netherlands)

    Raeissi, S.; Florusse, L.J.; Peters, C.J.

    2014-01-01

    Knowledge of accurate vapor–liquid equilibrium data for mixtures of allyl chloride and 1,5-hexadiene is important for several industrial purposes. The bubble points of binary mixtures of allyl chloride and 1,5-hexadiene have been measured experimentally using a synthetic method. Measurements were

  19. Enantioconvergent synthesis by sequential asymmetric Horner-Wadsworth-Emmons and palladium-catalyzed allylic substitution reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Hansen, E. Louise; Kane, John

    2001-01-01

    A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed by asy...... the allylic stereocenter and the alkene geometry. Thus, a single $gamma@-substituted ester was obtained as the overall product, in high isomeric purity. The method was applied to a synthesis of a subunit of the iejimalides, a group of cytotoxic macrolides.......A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed...... by asymmetric HWE reactions into mixtures of two major $alpha@,$beta@-unsaturated esters, possessing opposite configurations at their allylic stereocenters as well as opposite alkene geometry. Subsequently, these isomeric mixtures of alkenes could be subjected to palladium-catalyzed allylic substitution...

  20. Formation of gas-phase π-allyl radicals from propylene over bismuth oxide and γ-bismuth molybdate catalysts

    International Nuclear Information System (INIS)

    Martir, W.; Lunsford, J.H.

    1981-01-01

    Gas-phase π-allyl radicals were produced when propylene reacted over Bi 2 O 3 and γ-bismuth molybdate catalysts at 723 K. The pressure in the catalyst zone was varied between 5 x 10 -3 and 1 torr. The radicals were detected by EPR spectroscopy together with a matrix isolation technique in which argon was used as the diluent. The matrix was formed on a sapphire rod at 12 K which was located 33-cm downstream from the catalyst. Bismuth oxide was more effective in the production of gas-phase allyl radicals than γ-bismuth molybdate. By contrast α-bismuth molybdate was ineffective in forming allyl radicals and MoO 3 acted as a sink for radicals which were produced elsewhere in the system. Comparison of the π-allyl radical and the stable product concentrations over Bi 2 O 3 revealed that gas-phase radical recombination reactions served as a major pathway for the formation of 1,5-hexadiene. Addition of small amounts of gas-phase oxygen increased the concentration of allyl radicals, and at greater oxygen levels allyl peroxy radicals were detected. Because of the effect of temperature on the equilibrium between allyl and allyl peroxy radicals, the latter product must be formed in the cooler part of the system

  1. REACTIVITY OF (η3-ALLYL)DICARBONYLNITROSYL IRON ...

    African Journals Online (AJOL)

    metal complexes can be synthesized from various organic precursors. Iron allyl ... iron complexes to develop a green chemistry approach [7]. Catalysis ...... Akermark, B.; Jutand, A. Addition of ketone enolates to π-allylpalladlum compounds.

  2. A facile and mild synthesis of trisubstituted allylic sulfones from Morita-Baylis-Hillman carbonates.

    Science.gov (United States)

    Jiang, Lin; Li, Yong-Gen; Zhou, Jiang-Feng; Chuan, Yong-Ming; Li, Hong-Li; Yuan, Ming-Long

    2015-05-07

    An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH) carbonates with sodium sulfinates has been developed. Under the optimized reaction conditions, a series of trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%-99%) with good to high selectivity (Z/E from 79:21 to >99:1). Compared with known synthetic methods, the current protocol features mild reaction temperature, high efficiency and easily available reagents.

  3. Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.

    Science.gov (United States)

    Feng, Ruozhu; Smith, Jake A; Moeller, Kevin D

    2017-09-19

    Oxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger. For example, consider oxidative cyclization reactions that are triggered by the removal of an electron from an electron-rich olefin and lead to cyclic products that are functionalized for further elaboration. For these reactions to be successful, the radical cation intermediate must first be generated using conditions that limit its polymerization and then channeled down a productive desired pathway. Following the cyclization, a second oxidation step is necessary for product formation, after which the resulting cation must be quenched in a controlled fashion to avoid undesired elimination reactions. Problems can arise at any one or all of these steps, a fact that frequently complicates reaction optimization and can discourage the development of new transformations. Fortunately, anodic electrochemistry offers an outstanding opportunity to systematically probe the mechanism of oxidative cyclization reactions. The use of electrochemical methods allows for the generation of radical cations under neutral conditions in an environment that helps prevent polymerization of the intermediate. Once the intermediates have been generated, a series of "telltale indicators" can be used to diagnose which step in an oxidative cyclization is problematic for less successful transformation. A set of potential solutions to address each type of problem encountered has been developed. For example, problems with the initial

  4. A Facile and Mild Synthesis of Trisubstituted Allylic Sulfones from Morita-Baylis-Hillman Carbonates

    Directory of Open Access Journals (Sweden)

    Lin Jiang

    2015-05-01

    Full Text Available An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH carbonates with sodium sulfinates has been developed. Under the optimized reaction conditions, a series of trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%–99% with good to high selectivity (Z/E from 79:21 to >99:1. Compared with known synthetic methods, the current protocol features mild reaction temperature, high efficiency and easily available reagents.

  5. Memory effects in palladium-catalyzed allylic Alkylations of 2-cyclohexen-1-yl acetate

    DEFF Research Database (Denmark)

    Svensen, Nina; Fristrup, Peter; Tanner, David Ackland

    2007-01-01

    The objective of this work was to characterize the enantiospecificity of the allylic alkylation of enantioenriched 2-cyclohexen-1-yl acetate with the enolate ion of dimethyl malonate catalyzed by unsymmetrical palladium catalysts. The precatalysts employed were (eta(3)-allyl)PdLCl, where L...

  6. Theoretical Studies of [2,3]-Sigmatropic Rearrangements of Allylic Selenoxides and Selenimides

    Directory of Open Access Journals (Sweden)

    Sonia Antony

    2009-08-01

    Full Text Available Density-functional theory is used to model the endo and exo transition states for [2,3]-sigmatropic rearrangement of allylic aryl-selenoxides and -selenimides. The endo transition state is generally preferred for selenoxides if there is no substitution at the 2 position of the allyl group. Based upon the relative energies of the endo and exo transition states, enantioselectivity of rearrangements is expected to be greatest for molecules with substitutions at the 1- or (E-3- position of the allyl group. Ortho substitution of a nitro group on the ancillary selenoxide phenyl ring reduces the activation barriers, increases the difference between the endo and exo activation barriers and shifts the equilibrium toward products.

  7. Ketenimines from Isocyanides and Allyl Carbonates: Palladium-Catalyzed Synthesis of β,γ-Unsaturated Amides and Tetrazoles.

    Science.gov (United States)

    Qiu, Guanyinsheng; Mamboury, Mathias; Wang, Qian; Zhu, Jieping

    2016-12-05

    The reaction of allyl ethyl carbonates with isocyanides in the presence of a catalytic amount of Pd(OAc) 2 provided ketenimines through β-hydride elimination of the allyl imidoylpalladium intermediates. The insertion of the isocyanide into the π-allyl Pd complex proceeded via an unusual η 1 -allyl Pd species. The resulting ketenimines were hydrolyzed to β,γ-unsaturated carboxamides during purification by flash column chromatography on silica gel or converted in situ into 1,5-disubstituted tetrazoles by [3+2] cycloaddition with hydrazoic acid or trimethylsilyl azide. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gold-catalyzed intermolecular coupling of sulfonylacetylene with allyl ethers: [3,3]- and [1,3]-rearrangements

    Directory of Open Access Journals (Sweden)

    Jungho Jun

    2013-08-01

    Full Text Available Gold-catalyzed intermolecular couplings of sulfonylacetylenes with allyl ethers are reported. A cooperative polarization of alkynes both by a gold catalyst and a sulfonyl substituent resulted in an efficient intermolecular tandem carboalkoxylation. Reactions of linear allyl ethers are consistent with the [3,3]-sigmatropic rearrangement mechanism, while those of branched allyl ethers provided [3,3]- and [1,3]-rearrangement products through the formation of a tight ion–dipole pair.

  9. Alcohols as discriminating agents for genetic sexing in the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Riva Francos, M.E.

    1990-01-01

    The locus of the alcohol dehydrogenase (ADH) has been used to develop a genetic sexing mechanism in the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). Previous work (1982-1984) has led to the isolation of a translocation linking a null mutant of this locus to the Y chromosome of the males. This strain, T-128, together with others showing different ADH electrophoretic patterns, have been assayed for their resistance to alcohols, such as allyl-alcohol, pentynol, ethanol and 2-propanol. The strains carrying the T-128 translocation show a differential, sex dependent survival to some of these alcohols. Part of this work is still in progress. The mutagenic ethyl methanesulphate (EMS) is being used to induce new ADH null mutants using the strain T-128 as a marker. Several hundred females have been treated with 0.04% EMS and then outcrossed to T-128 males. Their progeny is put through selective larval medium (0.08% allyl-alcohol) and the surviving F 1 individuals and subsequent F 2 are being analysed. Population studies have shown that the genetic sexing strain, T-128, is a double translocation with complete linkage between the Adh N allele (chromosome 2), and the Y chromosome, and incomplete linkage of the Y with the wild type allele of the apricot eye locus (ap + ) of chromosome 4. (author). 40 refs, 4 figs, 12 tabs

  10. Crystal structure of 4′-allyl-4,5,6,7,2′,7′-hexachlorofluorescein allyl ester unknown solvate

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-01-01

    Full Text Available In the title compound, 4′-allyl-4,5,6,7,2′,7′-hexachlorofluorescein allyl ester {systematic name: prop-2-en-1-yl 2,3,4,5-tetrachloro-6-[2,7-dichloro-6-hydroxy-3-oxo-4-(prop-2-en-1-yl-3H-xanthen-9-yl]benzoate}, C26H14Cl6O5, accompanied by unknown solvate molecules, the dihedral angle between the xanthene ring system (r.m.s. deviation = 0.046 Å and the pentasubstituted benzene ring is 71.67 (9°. Both allyl groups are disordered over two sets of sites in statistical ratios. The scattering contributions of the disordered solvent molecules (both Ph2O and CHCl3, as identified by NMR were removed with the PLATON SQUEEZE algorithm [Spek (2015. Acta Cryst. C71, 9–18]. In the crystal, tetrameric supramolecular aggregates linked by O—H...O hydrogen bonds occur; these further interact with neighboring aggregates through C—Cl...π interactions arising from the benzene rings, forming infinite two-dimensional sheets. Each C6Cl4 ring shifts in the direction perpendicular to the two-dimensional sheet, exhibiting a helical chain in which every C6Cl4 ring is utilized as both a donor and an acceptor of Cl...π contacts. Thus, these two-dimensional sheets pack in a helical fashion, constructing a three-dimensional network.

  11. Effect of allyl alcohol on hepatic transporter expression: Zonal patterns of expression and role of Kupffer cell function

    International Nuclear Information System (INIS)

    Campion, Sarah N.; Tatis-Rios, Cristina; Augustine, Lisa M.; Goedken, Michael J.; Rooijen, Nico van; Cherrington, Nathan J.; Manautou, Jose E.

    2009-01-01

    During APAP toxicity, activation of Kupffer cells is critical for protection from hepatotoxicity and up-regulation of multidrug resistance-associated protein 4 (Mrp4) in centrilobular hepatocytes. The present study was performed to determine the expression profile of uptake and efflux transporters in mouse liver following treatment with allyl alcohol (AlOH), a periportal hepatotoxicant. This study also investigated the role of Kupffer cells in AlOH hepatotoxicity, and whether changes in transport protein expression by AlOH are dependent on the presence of Kupffer cells. C57BL/6J mice received 0.1 ml clodronate liposomes to deplete Kupffer cells or empty liposomes 48 h prior to dosing with 60 mg/kg AlOH, i.p. Hepatotoxicity was assessed by plasma ALT and histopathology. Hepatic transporter mRNA and protein expression were determined by branched DNA signal amplification assay and Western blotting, respectively. Depletion of Kupffer cells by liposomal clodronate treatment resulted in heightened susceptibility to AlOH toxicity. Exposure to AlOH increased mRNA levels of several Mrp genes, while decreasing organic anion transporting polypeptides (Oatps) mRNA expression. Protein analysis mirrored many of these mRNA changes. The presence of Kupffer cells was not required for the observed changes in uptake and efflux transporters induced by AlOH. Immunofluorescent analysis revealed enhanced Mrp4 staining exclusively in centrilobular hepatocytes of AlOH treated mice. These findings demonstrate that Kupffer cells are protective from AlOH toxicity and that induction of Mrp4 occurs in liver regions away from areas of AlOH damage independent of Kupffer cell function. These results suggest that Kupffer cell mediators do not play a role in mediating centrilobular Mrp4 induction in response to periportal damage by AlOH

  12. Thermal aromatic Claisen rearrangement and Strecker reaction of alkyl(allyl-aryl ethers under green reaction conditions: Efficient and clean preparation of ortho-allyl phenols (naphthols and alkyl(allyloxyarene-based γ-amino nitriles

    Directory of Open Access Journals (Sweden)

    Kheila N. Silgado-Gómez

    2017-11-01

    Full Text Available Chemical transformations of 13 diverse allyl(alkyl-aryl ethers, easily prepared using Williamson reaction of different hydroxyarenes and allyl bromide and alkyl (n-butyl, n-octyl bromides, were studied. Thermal aromatic Claisen rearrangement of allyl-aryl ethers to obtain ortho-allyl phenols (naphthols employing propylene carbonate as a nontoxic and biodegradable solvent was described for the first time. The use of this green solvent allowed to enhance notably product yields and reduce significantly the reaction time comparing with the use of 1,2-dichlorobenzene, toxic solvent, which is traditionally employed in this type of Claisen rearrangement. Three-component Strecker reaction of selected alkyl(allyl-aryl ethers with formyl function on aryl fragment and, piperidine and potassium cyanide in the presence of sulfuric acid supported on silica gel (SSA, SiO2-O-SO3H under mild reaction conditions was used in the preparation of new γ-amino nitriles, analogues of alkaloid girgensohnine [2-(4-hydroxyphenyl-2-(piperidin-1-ylacetonitrile], a perspective biological model in the search for new insecticidal agrochemicals against Aedes aegypti. The use of SSA, an inexpensive and reusable solid catalyst, allowed to obtain new series of 2-[4-alkyl(allyloxyphenyl]-2-(piperidin-1-ylacetonitriles in short time at room temperature with good yields.

  13. Allyl borates: a novel class of polyhomologation initiators

    KAUST Repository

    Wang, De; Hadjichristidis, Nikolaos

    2016-01-01

    Allyl borates, a new class of monofunctional polyhomologation initiators, are reported. These monofunctional initiators are less sensitive and more effective towards polymethylene-based architectures. As an example, the synthesis of α

  14. Alkynes as Allylmetal Equivalents in Redox-Triggered C–C Couplings to Primary Alcohols: (Z)-Homoallylic Alcohols via Ruthenium-Catalyzed Propargyl C–H Oxidative Addition

    Science.gov (United States)

    2015-01-01

    The cationic ruthenium catalyst generated upon the acid–base reaction of H2Ru(CO)(PPh3)3 and 2,4,6-(2-Pr)3PhSO3H promotes the redox-triggered C–C coupling of 2-alkynes and primary alcohols to form (Z)-homoallylic alcohols with good to complete control of olefin geometry. Deuterium labeling studies, which reveal roughly equal isotopic compositions at the allylic and distal vinylic positions, along with other data, corroborate a catalytic mechanism involving ruthenium(0)-mediated allene–aldehyde oxidative coupling to form a transient oxaruthenacycle, an event that ultimately defines (Z)-olefin stereochemistry. PMID:25075434

  15. Synthesis of Chromane Derivatives via Indium-mediated Intramolecular Allenylation and Allylation to Imines

    International Nuclear Information System (INIS)

    Kang, Han Young; Yu, Yeon Kwon

    2004-01-01

    The results of preparing chromans by intramolecular allylation are shown in Table 2. The results indicated that the indium-mediated allylation was not as efficient as the allenylation. About 10-20% decrease in yields was observed. As mentioned above, in each case only a single isomer was observed, and the stereochemistry of the product was determined as cis by analysis of 1 H NMR and NOE spectra. There are, however, still some limitations in these transformations. Especially, in the case of allylation mixtures of cis and trans isomers are always produced in about 2 : 1 ratio (cis/trans). The ratio was not improved under the various reaction conditions we attempted. Since the indium-mediated addition to carbonyl groups has been successful, it occurred to us that it would be worthwhile to test the addition to carbon-nitrogen double bonds, that is, imine groups. We wish to report here the results of the investigations on allylation and allenylation to C=N bond to provide the chromane structures. The whole transformations

  16. Zirconocene-mediated preparation of precursors for estratriene synthesis

    Czech Academy of Sciences Publication Activity Database

    Herrmann, Pavel; Buděšínský, Miloš; Kotora, Martin

    2007-01-01

    Roč. 36, č. 10 (2007), s. 1268-1269 ISSN 0366-7022 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : zirconocene * cyclization * allylation Subject RIV: CC - Organic Chemistry Impact factor: 1.480, year: 2007

  17. Efficient total synthesis of (S)-14-azacamptothecin.

    Science.gov (United States)

    Liu, Guan-Sai; Yao, Yuan-Shan; Xu, Peng; Wang, Shaozhong; Yao, Zhu-Jun

    2010-06-01

    An efficient total synthesis of (S)-14-azacamptothecin has been accomplished in 10 steps and 56% overall yield from 5H-pyrano[4,3-d]pyrimidine 8. A mild Hendrickson reagent-triggered intramolecular cascade cyclization, a highly enantioselective dihydroxylation, and an efficient palladium-catalyzed transformation of an O-allyl into N-allyl group are the key steps in the synthesis. This work provides a much higher overall yield than the previous achievement and shows sound flexibility for the further applications that will lead to new bioactive analogues.

  18. Ruthenium-catalyzed cyclization of N-carbamoyl indolines with alkynes: an efficient route to pyrroloquinolinones.

    Science.gov (United States)

    Manoharan, Ramasamy; Jeganmohan, Masilamani

    2015-09-21

    A regioselective synthesis of substituted pyrroloquinolinones via a ruthenium-catalyzed oxidative cyclization of substituted N-carbamoyl indolines with alkynes is described. The cyclization reaction was compatible with various symmetrical and unsymmetrical alkynes including substituted propiolates. Later, we performed the aromatization of pyrroloquinolinones into indole derivatives in the presence of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ).

  19. Reaction of aryl diazonium tetrafluoro borates with allyl methacrylate in the presence of rhodanide-anion

    International Nuclear Information System (INIS)

    Grishchuk, B.D.; Baranovskij, V.S.; Simchak, R.V.; Tulajdan, G.N.; Gorbovoj, P.M.

    2006-01-01

    Reaction of aryl diazonium tetrafluoro borates (I) with allyl ester of methacrylic acid in the water-acetone (1:5) medium is studied by means of IR spectroscopy and 1 H NMR. It is established that (I) reacts with aryl methacrylate in the presence of rhodanide-anion and catalytic quantities of copper salts with the formation of allyl esters of 2-thiocyanato-2-methyl-3-aryl propionic acids with the yield of 32-56%. Allyl fragment of biunsaturated compound shows no reaction under the tested conditions [ru

  20. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    Science.gov (United States)

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  1. Tandem dinucleophilic cyclization of cyclohexane-1,3-diones with pyridinium salts

    Directory of Open Access Journals (Sweden)

    Mostafa Kiamehr

    2013-06-01

    Full Text Available The cyclization of cyclohexane-1,3-diones with various substituted pyridinium salts afforded functionalized 8-oxa-10-aza-tricyclo[7.3.1.02,7]trideca-2(7,11-dienes. The reaction proceeds by regioselective attack of the central carbon atom of the 1,3-dicarbonyl unit to 4-position of the pyridinium salt and subsequent cyclization by base-assisted proton migration and nucleophilic addition of the oxygen atom to the 2-position, as was elucidated by DFT computations. Fairly extensive screening of bases and additives revealed that the presence of potassium cations is essential for formation of the product.

  2. The effects of γ-irradiation on the garlic oil contents in garlic bulbs and the radiolysis of allyl trisulfide

    International Nuclear Information System (INIS)

    Wei Genshuan, Wang Guanghui; Yang Ruipu; Wu Jilan

    1995-01-01

    The study of the effects of γ-irradiation on the garlic oil contents in the garlic bulbs and the radiolysis of allyl trisulfide and disulfide were carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant as stored for 10 months long. The main components of the garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3 C HOH radical into acetaldehyde, which causes that the formation of 2,3-butanediol is extensively inhibited. (author)

  3. The effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide

    International Nuclear Information System (INIS)

    Wei Genshuan; Wang Guanghui; Yang Ruipu; Wu Jilan

    1996-01-01

    A study of the effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisufide and disulfide was carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant when stored for 10 months. The main components of garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3 C . HOH radical into acetaldehyde, which means that the formation of 2,3-butanediol is extensively inhibited. (author)

  4. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    Science.gov (United States)

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  5. Proline-catalysed asymmetric ketol cyclizations: The template ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A modified template mechanism based on modelling studies of energy minimised complexes is presented for the asymmetric proline-catalysed cyclization of triketones 1, 2 and 3 to the 2S,3S-ketols. 1a, 2a and 3a respectively. The template model involves a three-point contact as favoured in enzyme– substrate ...

  6. An Efficient Synthesis of de novo Imidates via Aza-Claisen Rearrangements of N-Allyl Ynamides

    Science.gov (United States)

    DeKorver, Kyle A.; North, Troy D.; Hsung, Richard P.

    2010-01-01

    A novel thermal 3-aza-Claisen rearrangement of N-allyl ynamides for the synthesis of α-allyl imidates is described. Also, a sequential aza-Claisen, Pd-catalyzed Overman rearrangement is described for the synthesis of azapine-2-ones. PMID:21278848

  7. Chain elongation and cyclization in type III PKS DpgA.

    Science.gov (United States)

    Wu, Hai-Chen; Li, Yi-San; Liu, Yu-Chen; Lyu, Syue-Yi; Wu, Chang-Jer; Li, Tsung-Lin

    2012-04-16

    Chain elongation and cyclization of precursors of dihydroxyphenylacetyl-CoA (DPA-CoA) catalyzed by the bacterial type III polyketide synthase DpgA were studied. Two labile intermediates, di- and tri-ketidyl-CoA (DK- and TK-CoA), were proposed and chemically synthesized. In the presence of DpgABD, each of these with [(13)C(3)]malonyl-CoA (MA-CoA) was able to form partially (13)C-enriched DPA-CoA. By NMR and MS analysis, the distribution of (13)C atoms in the partially (13)C-enriched DPA-CoA shed light on how the polyketide chain elongates and cyclizes in the DpgA-catalyzed reaction. Polyketone intermediates elongate in a manner different from that which had been believed: two molecules of DK-CoA, or one DK-CoA plus one acetoacetyl-CoA (AA-CoA), but not two molecules of AA-CoA can form one molecule of DPA-CoA. As a result, polyketidyl-CoA serves as both the starter and extender, whereas polyketone-CoA without the terminal carboxyl group can only act as an extender. The terminal carboxyl group is crucial for the cyclization that likely takes place on CoA. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bergman cyclization in polymer chemistry and material science.

    Science.gov (United States)

    Xiao, Yuli; Hu, Aiguo

    2011-11-01

    Bergman cyclization of enediynes, regarded as a promising strategy for anticancer drugs, now finds its own niche in the area of polymer chemistry and material science. The highly reactive aromatic diradicals generated from Bergman cyclization can undergo polymerization acting as either monomers or initiators of other vinyl monomers. The former, namely homopolymerization, leads to polyphenylenes and polynaphthalenes with excellent thermal stability, good solubility, and processability. The many remarkable properties of these aromatic polymers have further endowed them to be manufactured into carbon-rich materials, e.g., glassy carbons and carbon nanotubes. Whereas used as initiators, enediynes provide a novel resource for high molecular weight polymers with narrow polydispersities. The aromatic diradicals are also useful for introducing oligomers or polymers onto pristine carbonous nanomaterials, such as carbon nano-onions and carbon nanotubes, to improve their dispersibility in organic solvents and polymer solutions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Radiation synthesis and characterization of new hydrogels based on acrylamide copolymers cross-linked with 1-allyl-2-thiourea

    Energy Technology Data Exchange (ETDEWEB)

    Sahiner, Nurettin [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Malci, Savas [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Celikbicak, Oemuer [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Kantoglu, Oemer [Ankara Nuclear Research Center, Turkish Atomic Energy Authority, 06983 Ankara (Turkey); Salih, Bekir [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey)]. E-mail: bekir@hacettepe.edu.tr

    2005-10-01

    Poly(acrylamide-1-allyl-2-thiourea) hydrogels, Poly(AA-AT), were synthesized by gamma irradiation using {sup 60}Co {gamma} source in different irradiation dose and at different 1-allyl-2-thiourea content in the monomer mixture. For the characterization of the hydrogels, Fourier transform infrared spectrometer (FT-IR), thermogravimetric analyzer (TGA), elemental analyzer and the swellability of the hydrogels were used. It was noted that 1-allyl-2-thiourea in the synthesized hydrogels was increased by the increasing the content of the 1-allyl-2-thiourea in the irradiation monomer mixture and increasing the radiation dose for the hydrogel synthesis. sis.

  10. Synthesis of 2-iodobenzamides and 3-(iodoacetamide)benzamides linked to D-galactose and their tri-n-butyltin hydride-mediated radical carbocyclization reactions

    International Nuclear Information System (INIS)

    Leal, Daniel Henriques Soares; Queiroga, Carla Graziella; Pires, Magno Carvalho; Prado, Maria Auxiliadra Fontes; Alves, Ricardo Jose; Cesar, Amary

    2009-01-01

    Starting from methyl 6-O-allyl-4-azido-2,3-di-O-benzyl-4-deoxy-a-D-galactopyranoside, four new derivatives containing 2-iodobenzamide and 3-(iodoacetamide)benzamido groups were synthesized. These four compounds were submitted to tri-n-butyltin hydride mediated radical cyclization reactions, resulting in two macrolactams from 11- and 15-endo aryl radical cyclization. The corresponding four hydrogenolysis products were also obtained. The structures of the new compounds were elucidated by 1 H and 13 C NMR spectroscopy, DEPT, COSY, HMQC and HMBC experiments. (author)

  11. Screening of allyl alcohol resistant mutant of Rhizopus oryzae and ...

    African Journals Online (AJOL)

    Ethanol is a main by-product in the fermentation broth of Rhizopus oryzae during the production of high-optical purity L-lactic acid. By screening the lower activity of alcohol dehydrogenase (ADH) mutant, thus decreasing the flux of pyruvic acid to ethanol may be a virtual method for increasing the conversion rate of glucose ...

  12. Epimerization-free C-terminal peptide activation, elongation and cyclization

    NARCIS (Netherlands)

    Popović, S.

    2015-01-01

    C-terminal peptide activation and cyclization reactions are generally accompanied with epimerization (partial loss of C‐terminal stereointegrity). Therefore, the focus of this thesis was to develop epimerization-free methods for C-terminal peptide activation to enable C-terminal peptide elongation

  13. Deconvoluting the memory effect in Pd-catalyzed allylic alkylation; effect of leaving group and added chloride

    DEFF Research Database (Denmark)

    Fristrup, Peter; Jensen, Thomas; Hoppe, Jakob

    2006-01-01

    An analysis of product distributions in the Tsuji-Trost reaction indicates that several instances of reported memory effects can be attributed to slow interconversion of the initially formed syn- and anti-[Pd(eta3-allyl)] complexes. Addition of chloride triggers a true memory effect, in which...... the allylic terminus originally bearing the leaving group has a higher reactivity. The latter effect, termed regioretention, can be rationalized by ionization from a palladium complex bearing a chloride ion, forming an unsymmetrically substituted [Pd(eta3-allyl)] complex. DFT calculations verify...

  14. An intramolecular [2 + 2] cycloaddition of ketenimines via palladium-catalyzed rearrangements of N-allyl-ynamides.

    Science.gov (United States)

    DeKorver, Kyle A; Hsung, Richard P; Song, Wang-Ze; Wang, Xiao-Na; Walton, Mary C

    2012-06-15

    A cascade of Pd-catalyzed N-to-C allyl transfer-intramolecular ketenimine-[2 + 2] cycloadditions of N-allyl ynamides is described. This tandem sequence is highly stereoselective and the [2 + 2] cycloaddition could be rendered in a crossed or fused manner depending on alkene substitutions, leading to bridged and fused bicycloimines.

  15. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans.

    Science.gov (United States)

    Puentes-Cala, Edinson; Liebeke, Manuel; Markert, Stephanie; Harder, Jens

    2018-05-01

    The enzymatic functionalization of hydrocarbons is a central step in the global carbon cycle initiating the mineralization of methane, isoprene and monoterpenes, the most abundant biologically produced hydrocarbons. Also, terpene-modifying enzymes have found many applications in the energy-economic biotechnological production of fine chemicals. Here we describe a limonene dehydrogenase that was purified from the facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen grown on monoterpenes under denitrifying conditions in the absence of molecular oxygen. The purified limonene:ferrocenium oxidoreductase activity hydroxylated the methyl group of limonene (1-methyl-4-(1-methylethenyl)-cyclohex-1-ene) yielding perillyl alcohol ([4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol). The enzyme had a dithiothreitol:perillyl alcohol oxidoreductase activity yielding limonene. Mass spectrometry and molecular size determinations revealed a heterodimeric enzyme comprising CtmA and CtmB. Recently the two proteins had been identified by transposon mutagenesis and proteomics as part of the cyclic terpene metabolism ( ctm ) in Castellaniella defragrans and were annotated as FAD-dependent oxidoreductases of the protein domain family phytoene dehydrogenases and related proteins (COG1233). CtmAB is the first heterodimeric enzyme in this protein superfamily. Flavins in the purified CtmAB are oxidized by ferrocenium and are reduced by limonene. Heterologous expression of CtmA, CtmB and CtmAB in E. coli demonstrated that limonene dehydrogenase activity required both subunits carrying each a flavin cofactor. Native CtmAB oxidized a wide range of monocyclic monoterpenes containing the allylic methyl group motif (1-methyl-cyclohex-1-ene). In conclusion, we have identified CtmAB as a hydroxylating limonene dehydrogenase and the first heteromer in a family of FAD-dependent dehydrogenases acting on allylic methylene or methyl CH-bonds. We suggest a placement in EC 1

  16. Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of α-Fluoromethylated Tertiary Alcohols.

    Science.gov (United States)

    Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi

    2015-12-01

    A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Chiral synthesis of (Z)-3-cis-6,7-cis-9,10-diepoxyhenicosenes, sex pheromone components of the satin moth, Leucoma salicis.

    Science.gov (United States)

    Wimalaratne, Priyantha D C; Slessor, Keith N

    2004-06-01

    All four isomers of (Z)-3-cis-6,7-cis-9,10-diepoxyhenicosenes, 1-4, have been synthesized using D-xylose as the chirally pure starting material. D-Xylose was first converted to 2-deoxy-4,5-O-isopropylidene-3-t-butyldimethylsilyl-D-threopentose 11, via several steps of selective protection, dehydroxylation, and deprotection. Wittig coupling of 11 with nonyltriphenylphosphonium bromide followed by hydrogenation and acid catalyzed deprotection of hydroxyl groups yielded the chiral (2R,3R)-1,2,3-triol, 14, which was used as the precursor for the C-8 to C-21 unit of the (Z)-3-cis-6,7-cis-9,10-diepoxyhenicosenes. Selective tosylation of 14 followed by stereospecific cyclization yielded (2R,3R)-1,2-epoxytetradecan-3-ol, 16, which was then divergently converted to the t-butyldimethylsilyl ether 17 and tosylate 22, respectively. Establishment of the C-5 through C-7 unit of the target molecules was accomplished via regiospecific coupling of 17 with 1-t-butyldimethylsiloxy-2-propyne to form 18. Stepwise transformation of 18 via the formation of tosylate 19, desilylation, and stereospecific cyclization to form epoxy alcohol 20, followed by P2-Ni reduction yielded a key intermediate, allylic epoxy alcohol (Z)-2-(5S,6R)-cis-5,6-epoxyheptadecen-1-ol, 21. Similarly, the coupling of 22 with 1-t-butyldimethylsiloxy-2-propyne yielded 23, which was stereospecifically cyclized to form 24. Desilylation and P2-Ni reduction of 24 gave the antipodal intermediate, (Z)-2-(5R,6S)-cis-5,6-epoxyheptadecen-1-ol, 26. Asymmetric epoxidation of antipodes 21 and 26 with (L)- or (D)-diethyl tartrates resulted in the formation of diepoxy alcohols 27 and 29 from 21, and 33 and 31 from 26, respectively. Tosylation of these diepoxy alcohols followed by coupling with lithium dibutenyl cuprate yielded the four stereoisomers of (Z)-3-cis-6,7-cis-9,10-diepoxyhenicosenes, 1-4. Analysis of the retention characteristics of these materials revealed that one or both of the S*,R*,S*,R* stereoisomers comprise the

  18. Photochemical Aryl Radical Cyclizations to Give (E-3-Ylideneoxindoles

    Directory of Open Access Journals (Sweden)

    Michael Gurry

    2014-09-01

    Full Text Available (E-3-Ylideneoxindoles are prepared in methanol in reasonable to good yields, as adducts of photochemical 5-exo-trig of aryl radicals, in contrast to previously reported analogous radical cyclizations initiated by tris(trimethylsilylsilane and azo-initiators that gave reduced oxindole adducts.

  19. Microwave-assisted reductive cyclization: An easy entry to the indoloquinolines and spiro[2H-indole-2,30-oxindole].

    Digital Repository Service at National Institute of Oceanography (India)

    Parvatkar, P.T.; Majik, M.S.

    and 15 can be synthesized from a common intermediate 16 via reductive cyclization reaction. The key intermediate 16 in turn can be obtained by Wittig reaction of (2-nitrobenzyl)triphenylphosphonium bromide with isatin. Hence compound 16 could... be considered as an advance intermediate for preparation of alkaloids in present work. N N 1 N H N 11 N H N 15NH O O2NN H O O + PPh3 NO2 + Br- 16 17 18 N N13 Wittig reaction reductive cyclization N-Methylation N-Methylation reductive cyclization Scheme 1...

  20. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway.

    Science.gov (United States)

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway.

  1. Tandem catalytic allylic amination and [2,3]-Stevens rearrangement of tertiary amines.

    Science.gov (United States)

    Soheili, Arash; Tambar, Uttam K

    2011-08-24

    We have developed a catalytic allylic amination involving tertiary aminoesters and allylcarbonates, which is the first example of the use of tertiary amines as intermolecular nucleophiles in metal-catalyzed allylic substitution chemistry. This process is employed in a tandem ammonium ylide generation/[2,3]-rearrangement reaction, which formally represents a palladium-catalyzed Stevens rearrangement. Low catalyst loadings and mild reaction conditions are compatible with an unprecedented substrate scope for the ammonium ylide functionality, and products are generated in high yields and diastereoselectivities. Mechanistic studies suggested the reversible formation of an ammonium intermediate.

  2. Anti-Inflammatory and Antioxidant Effects of Repeated Exposure to Cruciferous Allyl Nitrile in Sensitizer-Induced Ear Edema in Mice.

    Science.gov (United States)

    Tanii, Hideji; Sugitani, Kayo; Saijoh, Kiyofumi

    2016-02-29

    Skin sensitizers induce allergic reactions through the induction of reactive oxygen species. Allyl nitrile from cruciferous vegetables has been reported to induce antioxidants and phase II detoxification enzymes in various tissues. We assessed the effects of repeated exposure to allyl nitrile on sensitizer-induced allergic reactions. Mice were dosed with allyl nitrile (0-200 µmol/kg), and then received a dermal application of 1 of 3 sensitizers on the left ear or 1 of 2 vehicles on the right ear. Quantitative assessment of edema was carried out by measuring the difference in weight between the portions taken from the right and left ears. We tested enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) in ears. Repeated exposure to allyl nitrile reduced edemas induced by glutaraldehyde and by 2, 4-dinitrochlorobenzene (DNCB), but not by formaldehyde. The repeated exposure decreased levels of TBARS, a marker of oxidative stress, induced by glutaraldehyde and by DNCB, but not by formaldehyde. Allyl nitrile elevated SOD levels for the 3 sensitizers, and CAT levels for formaldehyde and DNCB. Allyl nitrile also increased GPx levels for formaldehyde and DNCB, but not for glutaraldehyde. The reduced edemas were associated with changes in oxidative stress levels and antioxidant enzymes. Repeated exposure to allyl nitrile reduced allergic reactions induced by glutaraldehyde and by DNCB, but not by formaldehyde. This reduction was associated with changes in ROS levels and antioxidant enzyme activities.

  3. Metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine in rats and dogs.

    Science.gov (United States)

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji; Kodera, Yukihiro

    2015-05-01

    The metabolism, excretion, and pharmacokinetics of S-allyl-l-cysteine (SAC), an active key component of garlic supplements, were examined in rats and dogs. A single dose of SAC was administered orally or i.v. to rats (5 mg/kg) and dogs (2 mg/kg). SAC was well absorbed (bioavailability >90%) and its four metabolites-N-acetyl-S-allyl-l-cysteine (NAc-SAC), N-acetyl-S-allyl-l-cysteine sulfoxide (NAc-SACS), S-allyl-l-cysteine sulfoxide (SACS), and l-γ-glutamyl-S-allyl-l-cysteine-were identified in the plasma and/or urine. Renal clearance values (l/h/kg) of SAC indicated its extensive renal reabsorption, which contributed to the long elimination half-life of SAC, especially in dogs (12 hours). The metabolism of SAC to NAc-SAC, principal metabolite of SAC, was studied in vitro and in vivo. Liver and kidney S9 fractions of rats and dogs catalyzed both N-acetylation of SAC and deacetylation of NAc-SAC. After i.v. administration of NAc-SAC, SAC appeared in the plasma and its concentration declined in parallel with that of NAc-SAC. These results suggest that the rate and extent of the formation of NAc-SAC are determined by the N-acetylation and deacetylation activities of liver and kidney. Also, NAc-SACS was detected in the plasma after i.v. administration of either NAc-SAC or SACS, suggesting that NAc-SACS could be formed via both N-acetylation of SACS and S-oxidation of NAc-SAC. In conclusion, this study demonstrated that the pharmacokinetics of SAC in rats and dogs is characterized by its high oral bioavailability, N-acetylation and S-oxidation metabolism, and extensive renal reabsorption, indicating the critical roles of liver and kidney in the elimination of SAC. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  4. N-Boc Amines to Oxazolidinones via Pd(II)/Bis-sulfoxide/Brønsted Acid Co-Catalyzed Allylic C–H Oxidation

    Science.gov (United States)

    2015-01-01

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C–H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C–H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C–H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration. PMID:24999765

  5. N-Boc amines to oxazolidinones via Pd(II)/bis-sulfoxide/Brønsted acid co-catalyzed allylic C-H oxidation.

    Science.gov (United States)

    Osberger, Thomas J; White, M Christina

    2014-08-06

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C-H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C-H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C-H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration.

  6. Double reductive cyclization: A facile synthesis of the indoloquinoline alkaloid cryptotackieine

    Digital Repository Service at National Institute of Oceanography (India)

    Parvatkar, P.T.; Parameswaran, P.S.; Tilve, S.G.

    A new synthesis of the indoloquinoline alkaloid cryptotackieine, isolated from Cryptolepis sanguinolenta, is described which involves a Perkin reaction, a tandem double reduction-double cyclization reaction followed by regioselective methylation...

  7. catena-Poly[[bromidocopper(I)]-?-?2,?1-3-(2-allyl-2H-tetra?zol-5-yl)pyridine

    OpenAIRE

    Wang, Wei

    2008-01-01

    The title compound, [CuBr(C9H9N5)] n , has been prepared by the solvothermal treatment of CuBr with 3-(2-allyl-2H-tetra?zol-5-yl)pyridine. It is a new homometallic CuI olefin coord?ination polymer in which the CuI atoms are linked by the 3-(2-allyl-2H-tetra?zol-5-yl)pyridine ligands and bonded to one terminal Br atom each. The organic ligand acts as a bidentate ligand connecting two neighboring Cu centers through the N atom of the pyridine ring and the double bond of the allyl group. A three-...

  8. Highly enantio- and diastereoselective synthesis of β-methyl-γ- monofluoromethyl-substituted alcohols

    KAUST Repository

    Yang, Wenguo

    2011-06-07

    Enanatiopure β-methyl-γ-monofluoromethyl alcohols were prepared from the allylic alkylation between fluorobis(phenylsulfonyl)methane with Morita-Baylis-Hillman carbonates. The reaction was catalyzed by using the Cinchona alkaloid derivative, (DHQD)2AQN. The origin of the stereoselectivity was verified by DFT methods. Calculated geometries and relative energies of various transition states strongly support the observed stereoselectivity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and mechanism of formation of oxadeazaflavines by microwave thermal cyclization of ortho-halobenzylidene barbiturates

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-Villar, J. Daniel; Oliveira, Sandra C.G. de, E-mail: figueroa@ime.eb.br [Grupo de Quimica Medicinal, Departamento de Quimica, Instituto Militar de Engenharia, Rio de Janeiro, RJ (Brazil)

    2011-09-15

    The thermal cyclization reaction of o-halobenzylidene barbiturates was developed as an efficient and simple method for the preparation of oxadeazaflavines. The use of solid state reaction conditions with microwave irradiation afforded the products in 5 min with 47 to 98% yield. Experimental synthetic results and thermogravimetric reaction analyses agree with the molecular modeling mechanism simulation, indicating that this reaction occurs through an intramolecular hetero-Diels-Alder cyclization followed by fast re-aromatization. (author)

  10. Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts.

    Science.gov (United States)

    Siddiki, S M A Hakim; Touchy, Abeda Sultana; Kon, Kenichi; Shimizu, Ken-Ichi

    2016-04-18

    Carbon-supported Pt nanoparticles (Pt/C) were found to be effective heterogeneous catalysts for the direct Julia olefination of alcohols in the presence of sulfones and KOtBu under oxidant-free conditions. Primary alcohols, including aryl, aliphatic, allyl, and heterocyclic alcohols, underwent olefination with dimethyl sulfone and aryl alkyl sulfones to give terminal and internal olefins, respectively. Secondary alcohols underwent methylenation with dimethyl sulfone. Under 2.5 bar H2, the same reaction system was effective for the transformation of alcohol OH groups to alkyl groups. Structural and mechanistic studies of the terminal olefination system suggested that Pt(0) sites on the Pt metal particles are responsible for the rate-limiting dehydrogenation of alcohols and that KOtBu may deprotonate the sulfone reagent. The Pt/C catalyst was reusable after the olefination, and this method showed a higher turnover number (TON) and a wider substrate scope than previously reported methods, which demonstrates the high catalytic efficiency of the present method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Labeling, stability and biodistribution studies of {sup 99m}Tc-cyclized Tyr{sup 3}-octreotate derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Bigott-Hennkens, Heather M. [Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211 (United States); Dannoon, Shorouk F.; Noll, Samantha M. [Department of Chemistry, University of Missouri, Columbia, MO 65211 (United States); Ruthengael, Varyanna C. [Research Service, Harry S Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Jurisson, Silvia S., E-mail: JurissonS@missouri.ed [Department of Chemistry, University of Missouri, Columbia, MO 65211 (United States); Lewis, Michael R., E-mail: LewisMic@missouri.ed [Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211 (United States); Research Service, Harry S Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States)

    2011-05-15

    Introduction: To probe the interplay between radiotracer stability and somatostatin receptor affinity, Tyr{sup 3}-octreotate and six variations of its peptide sequence, for which the Re-cyclized products were previously reported, were radiolabeled with {sup 99m}Tc and investigated for their in vitro stability. Methods: Radiolabeling of the peptides was effected by ligand exchange from {sup 99m}Tc-glucoheptonate, and the desired products were purified by radio-RP-HPLC. The in vitro stability in phosphate buffered saline, mouse serum and cysteine solutions at physiological temperature and pH for all seven {sup 99m}Tc-cyclized peptides was determined by radio-RP-HPLC and radio-TLC. Normal CF-1 mouse biodistribution studies were performed for three of the {sup 99m}Tc-cyclized peptides. Results: Based on the fully characterized Re-cyclized peptide analogues, four {sup 99m}Tc-coordination motifs were proposed for the {sup 99m}Tc-cyclized peptides. Technetium-99m-cyclized Tyr{sup 3}-octreotate derivatives with N{sub 2}S{sub 2} metal coordination modes and large metal ring sizes were susceptible to oxidation and loss of {sup 99m}Tc in the form of {sup 99m}TcO{sub 4}{sup -}, as evidenced by their instability in the various solutions under physiological conditions (15-58% intact at 24 h). As anticipated, the addition of a third cysteine to the sequence stabilized the {sup 99m}Tc metal coordination, and peptides with NS{sub 3} coordination modes remained >85% intact out to 24 h. No significant differences were observed in the biodistribution studies performed with three peptides of varying stabilities. Conclusions: Improvements in stability were not sufficient to outweigh the low somatostatin receptor affinity for the peptides in this study. Further improvements in the peptide sequence and/or metal coordination are needed to result in a radiodiagnostic/radiotherapeutic pair for targeting the somatostatin receptor.

  12. Photodecarboxylative Cyclizations of ω-Phthalimido-para-phenoxy Carboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ae Rhan; Lee, Younsik; Yoo, Dong Jin [Chonbuk National Univ., Jeonju (Korea, Republic of); Cho, Hyunseung [Seonam Univ., Namwon (Korea, Republic of)

    2012-10-15

    The chemistry of electronically-excited phthalimides is dictated by electron and/or hydrogen transfer reactions. The photochemistry of phthalimides has been intensively studied, and numerous synthetically useful transformations with high chemical and quantum yields have been developed. 3 Among the synthetic applications, intra- and intermolecular photodecarboxylation (PDC) of ω-phthalimidoalkyl carboxylates has been developed by Griesbeck and coworkers as a versatile pathway to medium- and large-ring heterocycles. Model reactions were further realized on macro- and micro-scales. We recently described PDC cyclizations of ω-phthalimidoalkynoates to produce macrocyclic alkynes with ring-sizes up to 17. In recent study, we expanded the portfolio of this reaction and investigated the photochemistry of related aryl-linked phthalimides in Scheme 1. Based on these approaches, we demonstrated that ω-phthalimido-ortho/meta-phenoxy carboxylates undergo efficient PDC cyclizations. While the yields of ω-phthalimido-ortho-phenoxy carboxylates steadily decreased with increasing chain-length and the maximum yield of the 6-membered product was obtained in 75%, the yields of meta-phenoxy carboxylates steadily increased with increasing chain-length and the extended 16-membered product was subsequently obtained in 48% yield.

  13. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by 3O2; Implications for Combustion Modeling and Simulation.

    Science.gov (United States)

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J

    2017-03-09

    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O 2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants

  14. SOCl 2 catalyzed cyclization of chalcones: Synthesis and spectral ...

    African Journals Online (AJOL)

    Some aryl-aryl 1H pyrazoles have been synthesised by cyclization of aryl chalcones and hydrazine hydrate in the presence of SOCl2. The yields of the pyrazoles are more than 85%. These pyrazoles are characterized by their physical constants and spectral data. The infrared, NMR spectral group frequencies of these ...

  15. Biosynthesis of monoterpenes: Stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to camphane and isocamphane monoterpenes

    International Nuclear Information System (INIS)

    Croteau, R.; Gershenzon, J.; Wheeler, C.J.; Satterwhite, D.M.

    1990-01-01

    The conversion of geranyl pyrophosphate to (+)-bornyl pyrophosphate and (+)-camphene is considered to proceed by the initial isomerization of the substrate to (-)-(3R)-linalyl pyrophosphate and the subsequent cyclization of this bound intermediate. In the case of (-)-bornyl pyrophosphate and (-)-camphene, isomerization of the substrate to the (+)-(3S)-linalyl intermediate precedes cyclization. The geranyl and linalyl precursors were shown to be mutually competitive substrates (inhibitors) of the relevant cyclization enzymes isolated from Salvia officinalis (sage) and Tanacetum vulgare (tansy) by the mixed substrate analysis method, demonstrating that isomerization and cyclization take place at the same active site. Incubation of partially purified enzyme preparations with (3R)-[1Z-3H]linalyl pyrophosphate plus [1-14C]geranyl pyrophosphate gave rise to double-labeled (+)-bornyl pyrophosphate and (+)-camphene, whereas incubation of enzyme preparations catalyzing the antipodal cyclizations with (3S)-[1Z-3H]-linalyl pyrophosphate plus [1-14C]geranyl pyrophosphate yielded double-labeled (-)-bornyl pyrophosphate and (-)-camphene. Each product was then transformed to the corresponding (+)- or (-)-camphor without change in the 3H:14C isotope ratio, and the location of the tritium label was deduced in each case by stereoselective, base-catalyzed exchange of the exo-alpha-hydrogen of the derived ketone. The finding that the 1Z-3H of the linalyl precursor was positioned at the endo-alpha-hydrogen of the corresponding camphor in all cases, coupled to the previously demonstrated retention of configuration at C1 of the geranyl substrate in these transformations, confirmed the syn-isomerization of geranyl pyrophosphate to linalyl pyrophosphate and the cyclization of the latter via the anti,endo- conformer

  16. A one-pot multistep cyclization yielding thiadiazoloimidazole derivatives

    Directory of Open Access Journals (Sweden)

    Debabrata Samanta

    2014-12-01

    Full Text Available A versatile synthetic procedure is described to prepare the benzimidazole-fused 1,2,4-thiadiazoles 2a–c via a methanesulfonyl chloride initiated multistep cyclization involving the intramolecular reaction of an in-situ generated carbodiimide with a thiourea unit. The structure of the intricate heterocycle 2a was confirmed by single-crystal X-ray analysis and its mechanism of formation supported by DFT computations.

  17. Asymmetric allylation of α-ketoester-derived N-benzoylhydrazones promoted by chiral sulfoxides/N-oxides Lewis bases: highly enantioselective synthesis of quaternary α-substituted α-allyl-α-amino acids.

    Science.gov (United States)

    Reyes-Rangel, Gloria; Bandala, Yamir; García-Flores, Fred; Juaristi, Eusebio

    2013-09-01

    Chiral sulfoxides/N-oxides (R)-1 and (R,R)-2 are effective chiral promoters in the enantioselective allylation of α-keto ester N-benzoylhydrazone derivatives 3a-g to generate the corresponding N-benzoylhydrazine derivatives 4a-g, with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a-b were subsequently treated with SmI2, and the resulting amino esters 5a-b with LiOH to obtain quaternary α-substituted α-allyl α-amino acids 6a-b, whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. © 2013 Wiley Periodicals, Inc.

  18. Mechanistic Investigation of Palladium–Catalyzed Allylic C–H Activation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Jensen, Thomas; Rodríguez-Rodríguez, Sergio

    2013-01-01

    The mechanism for the palladium–catalyzed allylic C–H activation was investigated using a combination of experimental and theoretical methods. A Hammett study revealed a buildup of a partial negative charge in the rate-determining step, while determination of the kinetic isotope effect (KIE...

  19. Utilizing redox-mediated Bergman cyclization toward the development of dual-action metalloenediyne therapeutics.

    Science.gov (United States)

    Lindahl, Sarah E; Park, Hyunsoo; Pink, Maren; Zaleski, Jeffrey M

    2013-03-13

    Reaction of 2 equiv of 1,2-bis((diphenylphosphino)ethynyl)benzene (dppeb, 1) with Pt(cod)Cl2 followed by treatment with N2H4 yields the reduced Pt(0) metalloenediyne, Pt(dppeb)2, 2. This complex is stable to both air oxidation and metal-mediated Bergman cyclization under ambient conditions due to the nearly idealized tetrahedral geometry. Reaction of 2 with 1 equiv of I2 in the presence of excess 1,4-cyclohexadiene (1,4-CHD) radical trap rapidly and near-quantitatively generates the cis-Bergman-cyclized, diiodo product 3 ((31)P: δ = 41 ppm, J(Pt-P) = 3346 Hz) with concomitant loss of 1 equiv of uncyclized phosphine chelate ((31)P: δ = -33 ppm). In contrast, addition of 2 equiv of I2 in the absence of additional radical trap instantaneously forms a metastable Pt(dppeb)2(2+) intermediate species, 4, that is characterized by δ = 51 ppm in the (31)P NMR (J(Pt-P) = 3171 Hz) and ν(C≡C) = 2169 cm(-1) in the Raman profile, indicating that it is an uncyclized, bis-ligated complex. Over 24 h, 4 undergoes ligand exchange to form a neutral, square planar complex that spontaneously Bergman cyclizes at ambient temperature to give the crystalline product Pt(dppnap-I2)I2 (dppnap-I2 = (1,4-diiodonaphthalene-2,3-diyl)bis(diphenylphosphine)), 5, in 52% isolated yield. Computational analysis of the oxidation reaction proposes two plausible flattened tetrahedral structures for intermediate 4: one where the phosphine core has migrated to a trans-spanning chelate geometry, and a second, higher energy structure (3.3 kcal/mol) with two cis-chelating phosphine ligands (41° dihedral angle) via a restricted alkyne-terminal starting point. While the energies are disparate, the common theme in both structures is the elongated Pt-P bond lengths (>2.4 Å), indicating that nucleophilic ligand substitution by I(-) is on the reaction trajectory to the cyclized product 5. The efficiency of the redox-mediated Bergman cyclization reaction of this stable Pt(0) metalloenediyne prodrug and

  20. On the Nature of the Intermediates and the Role of Chloride Ions in Pd-Catalyzed Allylic Alkylations: Added Insight from Density Functional Theory

    DEFF Research Database (Denmark)

    Fristrup, Peter; Ahlquist, Mårten Sten Gösta; Tanner, David Ackland

    2008-01-01

    The reactivity of intermediates in palladium-catalyzed allylic alkylation was investigated using DFT (B3LYP) calculations including a PB-SCRF solvation model. In the presence of both phosphine and chloride ligands, the allyl intermediate is in equilibrium between a cationic eta(3)-allylPd complex...

  1. 1,7-Cyclization of 1-diazo-2,4-pentadiene and its heteroanalogues: DFT study

    Science.gov (United States)

    Subbotina, Julia O.; Bakulev, V. A.; Herges, R.; Fabian, W. M. F.

    1,7-Dipolar cyclizations of 1-diazo-2,4-pentadiene 1a and its heteroanalogues 1b,c and 4c were studied using density functional theory (DFT). Although the heteroanalogue 1c has an appropriate electronic structure to allow for pseudopericyclic cyclization, natural bond order (NBO) analysis has provided evidence for the electrocyclic ring closure. Magnetic criteria (anisotropy of the induced current density [ACID], nucleus-independent chemical shifts [NICS]) confirmed the pericyclic character of the located transition states 2a,c and 5c. The activation barriers for the cyclization of 1-diazo-2,4-pentadiene 1a and its aza analogues 1c, 4c are 3.3, 8.2, and 12.3 kcal/mol at the B3LYP/6-31G(d) level, respectively. The higher barrier of the 1c?3c and 4c?3c reactions compared with 1a?3a is in line with the Hammond postulate. The out-of-plane distorted geometry of the cyclic product is an additional factor arguing against a pseudopericyclic mechanism.

  2. Parallel and four-step synthesis of natural-product-inspired scaffolds through modular assembly and divergent cyclization

    Directory of Open Access Journals (Sweden)

    Hiroki Oguri

    2012-06-01

    Full Text Available By emulating the universal biosynthetic strategy, which employs modular assembly and divergent cyclizations, we have developed a four-step synthetic process to yield a collection of natural-product-inspired scaffolds. Modular assembly of building blocks onto a piperidine-based manifold 6, having a carboxylic acid group, was achieved through Ugi condensation, N-acetoacetylation and diazotransfer, leading to cyclization precursors. The rhodium-catalyzed tandem cyclization and divergent cycloaddition gave rise to tetracyclic and hexacyclic scaffolds by the appropriate choice of dipolarophiles installed at modules 3 and 4. A different piperidine-based manifold 15 bearing an amino group was successfully applied to demonstrate the flexibility and scope of the unified four-step process for the generation of structural diversity in the fused scaffolds. Evaluation of in vitro antitrypanosomal activities of the collections and preliminary structure–activity relationship (SAR studies were also undertaken.

  3. Synthesis of praseodymium allyl iodide complex and its use in piperilene polymerization

    International Nuclear Information System (INIS)

    Gajlyunas, G.A.; Biktimirov, R.Kh.; Khajrullina, R.M.; Marina, N.G.; Manakov, Yu.B.; Tolstikov, G.A.

    1987-01-01

    Synthesis, structure and catalytic properties of tetrahydrofuran praseodymium allyl iodine complex (1) are described and studied. Complex 1 is formed during interaction of allyl iodine with metal praseodymium (the molar ratio is 2:1) in THF at room temperature with 97% yield. It represents the solid powder-like substance of the light-brown colour with a pale green shade, being sensitive to moisture and oxygen and decomposing at temperature >120 deg. On the basis of the IR-spectroscopy data the supposition about the dimeric (or n-dimensional) complex structure is made. The complex prepared in combination with tributyl aluminium during piperylene polymerization gives a high-stereoregular and high-molecular polypiperylene

  4. Activation of the microsomal glutathione-S-transferase and reduction of the glutathione dependent protection against lipid peroxidation by acrolein

    NARCIS (Netherlands)

    Haenen, G R; Vermeulen, N P; Tai Tin Tsoi, J N; Ragetli, H M; Timmerman, H; Blast, A

    1988-01-01

    Allyl alcohol is hepatotoxic. It is generally believed that acrolein, generated out of allyl alcohol by cytosolic alcohol dehydrogenase, is responsible for this toxicity. The effect of acrolein in vitro and in vivo on the glutathione (GSH) dependent protection of liver microsomes against lipid

  5. Smooth isoindolinone formation from isopropyl carbamates via Bischler-Napieralski-type cyclization.

    Science.gov (United States)

    Adachi, Satoshi; Onozuka, Masao; Yoshida, Yuko; Ide, Mitsuaki; Saikawa, Yoko; Nakata, Masaya

    2014-01-17

    Isopropyl carbamates derived from benzylamines provide isoindolinones by treatment with phosphorus pentoxide at room temperature. Utility of this Bischler-Napieralski-type cyclization and a new mechanism involving a carbamoyl cation for rationalization of this smooth conversion are discussed.

  6. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.

    2013-01-01

    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative

  7. Direct Synthesis of Medium-Bridged Twisted Amides via a Transannular Cyclization Strategy

    Science.gov (United States)

    Szostak, Michal; Aubé, Jeffrey

    2009-01-01

    The sequential RCM to construct a challenging medium-sized ring followed by a transannular cyclization across a medium-sized ring delivers previously unattainable twisted amides from simple acyclic precursors. PMID:19708701

  8. Direct Lactamization of Azido Amides via Staudinger-Type Reductive Cyclization

    Energy Technology Data Exchange (ETDEWEB)

    Heo, In Jung; Lee, Su Jeong; Cho, Chang Woo [Kyungpook National University, Daegu (Korea, Republic of)

    2012-01-15

    The direct lactamization of 1,3- and 1,4-azido amides has been achieved using triphenylphosphine and water, affording various γ- and δ-lactams in good to excellent yields. The direct lactamization of the azido amides was performed via the Staudinger-type reductive cyclization in which the amide group acts as the electrophile for lactam synthesis. This lactamization provides a mild, functional group tolerant and efficient route for the synthesis of various γ- and δ-lactams found in natural products and pharmaceuticals. Further studies will be conducted to develop new synthetic routes for the synthesis of various lactams. The lactam ring system is one of the most ubiquitous structural motifs found in natural products and pharmaceuticals. Owing to the prevalence of lactams, their synthesis has attracted considerable attention. Lactams are usually prepared by the coupling of activated carboxylic acid derivatives with amines. Alternative routes include the Beckmann rearrangement of oximes, the Schmidt reaction of cyclic ketones and hydrazoic acid, the Kinugasa reaction of nitrones and terminal acetylenes, the Diels-Alder reaction of cyclopentadiene and chlorosulfonyl isocyanate, transition metal catalyzed lactamization of amino alcohols, and iodolactamization of amides and alkenes. In particular, the intramolecular Staudinger ligation of azides and activated carboxy acids, including esters, is well known as an environmentally friendly and mild protocol for lactam synthesis.

  9. Direct Lactamization of Azido Amides via Staudinger-Type Reductive Cyclization

    International Nuclear Information System (INIS)

    Heo, In Jung; Lee, Su Jeong; Cho, Chang Woo

    2012-01-01

    The direct lactamization of 1,3- and 1,4-azido amides has been achieved using triphenylphosphine and water, affording various γ- and δ-lactams in good to excellent yields. The direct lactamization of the azido amides was performed via the Staudinger-type reductive cyclization in which the amide group acts as the electrophile for lactam synthesis. This lactamization provides a mild, functional group tolerant and efficient route for the synthesis of various γ- and δ-lactams found in natural products and pharmaceuticals. Further studies will be conducted to develop new synthetic routes for the synthesis of various lactams. The lactam ring system is one of the most ubiquitous structural motifs found in natural products and pharmaceuticals. Owing to the prevalence of lactams, their synthesis has attracted considerable attention. Lactams are usually prepared by the coupling of activated carboxylic acid derivatives with amines. Alternative routes include the Beckmann rearrangement of oximes, the Schmidt reaction of cyclic ketones and hydrazoic acid, the Kinugasa reaction of nitrones and terminal acetylenes, the Diels-Alder reaction of cyclopentadiene and chlorosulfonyl isocyanate, transition metal catalyzed lactamization of amino alcohols, and iodolactamization of amides and alkenes. In particular, the intramolecular Staudinger ligation of azides and activated carboxy acids, including esters, is well known as an environmentally friendly and mild protocol for lactam synthesis

  10. Allylic chlorination of terpenic olefins using a combination of MoCl{sub 5} and NaOCl

    Energy Technology Data Exchange (ETDEWEB)

    Boualy, Brahim; Firdoussi, Larbi El; Ali, Mustapha Ait; Karim, Abdellah, E-mail: elfirdoussi@ucam.ac.m [Universite Cadi Ayyad, Marrakech (Morocco). Faculte des Sciences Semlalia. Lab. de Chimie de Coordination

    2011-07-01

    MoCl{sub 5} is applied as efficient agent in allylic chlorination of terpenic olefins in the presence of NaOCl as chlorine donor. Various terpenes are converted to the corresponding allylic chlorides in moderate to good yield under mild and optimized reaction conditions. Different molybdenum precursors are also studied. Among them, MoO{sub 3} gives good yield, but after a longer reaction time. (author)

  11. Catalytic enantioselective alkene aminohalogenation/cyclization involving atom transfer.

    Science.gov (United States)

    Bovino, Michael T; Chemler, Sherry R

    2012-04-16

    Problem solved: the title reaction was used for the synthesis of chiral 2-bromo, chloro, and iodomethyl indolines and 2-iodomethyl pyrrolidines. Stereocenter formation is believed to occur by enantioselective cis aminocupration and C-X bond formation is believed to occur by atom transfer. The ultility of the products as versatile synthetic intermediates was demonstrated, as was a radical cascade cyclization sequence. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis of heterocyclic compounds through palladium-catalyzed C-H cyclization processes.

    Science.gov (United States)

    Inamoto, Kiyofumi

    2013-01-01

    Herein, we describe our development of synthetic methods for heterocyclic compounds based on the palladium-catalyzed carbon-hydrogen bond (C-H) functionalization/intramolecular carbon-heteroatom (nitrogen or sulfur) bond formation process. By this C-H cyclization method, we efficiently prepared various N-heterocycles, including indazoles, indoles, and 2-quinolinones, as well as S-heterocycles such as benzothiazoles and benzo[b]thiophenes. Yields are typically good to high and good functional-group tolerance is observed for each process, thereby indicating that the method provides a novel, highly applicable synthetic route to the abovementioned biologically important heterocyclic frameworks. As an application of this approach, an auto-tandem-type, one-pot process involving the oxidative Heck reaction and subsequent C-H cyclization using cinnamamides and arylboronic acids as starting materials in the presence of a palladium catalyst was also developed for the rapid construction of the 2-quinolinone nucleus.

  13. A convenient procedure for the synthesis of allyl and benzyl ethers ...

    Indian Academy of Sciences (India)

    Unknown

    Department of Chemistry, Pondicherry University, Pondicherry 605 014, .... organic synthesis we hope that the procedure described in this paper will find ... Allyl bromide (Fluka) and benzyl bromide (E Merck) were freshly distilled before use.

  14. Photodissociaton of allyl-d2 iodide excited at 193 nm: Stability of highly rotationally excited H2CDCH2 radicals to C-D fission

    International Nuclear Information System (INIS)

    Szpunar, D.E.; Liu, Y.; McCullagh, M.J.; Butler, L.J.; Shu, J.

    2003-01-01

    The photodissociation of allyl-d2 iodide (H2C=CDCH2I) and the dynamics of the nascent allyl-d2 radical (H2CCDCH2) were studied using photofragment translational spectroscopy. A previous study found the allyl radical stable at internal energies up to 15 kcal/mol higher than the 60 kcal/mol barrier to allene + H formation as the result of a centrifugal barrier. The deuterated allyl radical should then also show a stability to secondary dissociation at internal energies well above the barrier due to centrifugal effects. A comparison in this paper shows the allyl-d2 radical is stable to allene + D formation at energies of 2-3 kcal/mol higher than that of the non-deuterated allyl radical following photolysis of allyl iodide at 193 nm. This is most likely a result of a combination of the slight raising of the barrier from the difference in zero-point levels and a reduction of the impact parameter of the dissociative fragments due to the decrease in frequency of the C-D bending modes, and the refore allene + D product orbital angular momentum. Integrated signal taken at m/e = 40 (allene) and m/e = 41 (allene-d1 and propyne-d3) shows a minor fraction of the allyl-d2 radicals isomerize to the 2-propenyl radical, in qualitative support of earlier conclusions of the domination of direct allene + H formation over isomerization

  15. Extraction of hafnium by 1-phenyl-3-methyl-4-benzoyl-5-pyralozone from aqueous-alcoholic solutions

    International Nuclear Information System (INIS)

    Hala, J.; Prihoda, J.

    1975-01-01

    Extraction of hafnium by 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (HL) in benzene, toluene, chloroform and tetrachloromethane from aqueous-alcoholic solutions of the formal acidity of 2M-HClO 4 was studied. Methyl, ethyl, n- and isopropyl, tert-butyl and allyl alcohol as well as ethylene glycol monomethyl ether and propylene glycol were used as organic components of the mixed aqueous-organic phase. Their presence in some cases resulted in a synergic increase in the distribution ratio of hafnium. The increase is interpreted using the results of a slope analysis and measurements of the alcohol distribution and the relative permittivity of the organic phase. It is suggested that HfL 4 molecules were solvated by alcohol molecules in the organic phase. At high alcohol concentration synergism changed into antagonism. This was caused by changes in the distribution of HL and its interaction with the alcohol in the organic phase. (author)

  16. Nickel-Catalyzed Phosphine Free Direct N-Alkylation of Amides with Alcohols.

    Science.gov (United States)

    Das, Jagadish; Banerjee, Debasis

    2018-03-16

    Herein, we developed an operational simple, practical, and selective Ni-catalyzed synthesis of secondary amides. Application of renewable alcohols, earth-abundant and nonprecious nickel catalyst facilitates the transformations, releasing water as byproduct. The catalytic system is tolerant to a variety of functional groups including nitrile, allylic ether, and alkene and could be extended to the synthesis of bis-amide, antiemetic drug Tigan, and dopamine D2 receptor antagonist Itopride. Preliminary mechanistic studies revealed the participation of a benzylic C-H bond in the rate-determining step.

  17. Solvent-controlled regioselective protection of allyl-4,6-benzylidene glucopyranosides

    Directory of Open Access Journals (Sweden)

    Migaud Marie E

    2007-09-01

    Full Text Available Abstract We wish to report a simple synthetic procedure, which permits the regiospecific mono-acylation, alkylation and silylation at the 2-position of allyl 4,6-O-benzylidene α-D-glucopyranoside in high yields and which does not require the use of catalysts.

  18. Palladium-catalyzed aryl amination-heck cyclization cascade: A one-flask approach to 3-substituted Indoles

    DEFF Research Database (Denmark)

    Jensen, Thomas; Pedersen, Henrik; Bang-Andersen, B.

    2008-01-01

    Two for the price of one: A Pd/dppf-based catalyst provides access to the title compounds from 1,2-dihalogenated aromatic compounds and allylic amines in a single reaction flask. The initial aryl amination step occurs with excellent selectivity for the aryl iodide to ensure the formation of a sin......Two for the price of one: A Pd/dppf-based catalyst provides access to the title compounds from 1,2-dihalogenated aromatic compounds and allylic amines in a single reaction flask. The initial aryl amination step occurs with excellent selectivity for the aryl iodide to ensure the formation...

  19. Theoretical Study of Gold-Catalyzed Cyclization of 2-Alkynyl-N-propargylanilines and Rationalization of Kinetic Experimental Phenomena.

    Science.gov (United States)

    Duan, Yeqing; Liu, Yuxia; Bi, Siwei; Ling, Baoping; Jiang, Yuan-Ye; Liu, Peng

    2016-10-07

    Gold-catalyzed cyclization of 2-alkynyl-N-propargylanilines provides a step-economic method for the construction of three-dimensional indolines. In this article, the M06 functional of density functional theory was employed to gain deeper insights into the reaction mechanism and the associated intriguing experimental observations. The reaction was found to first undergo Au(I)-induced cyclization to form an indole intermediate, 1,3-propargyl migration, and substitution with the substrate 2-alkynyl-N-propargylaniline (R1) to generate the intermediate product P1, an allene species. Subsequently, Au(I)-catalyzed conversion of P1 into the final product P2, an indoline compound, occurs first through direct cyclization rather than via the previously proposed four-membered carbocycle intermediate. Thereafter, water-assisted oxygen heterocycle formation and proton transfer generate the final product. The calculated activation free energies indicate that P1 formation is 5.9 times slower than P2 formation, in accordance with the fact that P1 formation is rate-limiting. Futhermore, the intriguing experimental phenomenon that P2 can be accessed only after almost all the substrate R1 converts to P1 although P1 formation is rate-limiting was rationalized by employing an energetic span model. We found the initial facile cyclization to form a highly stable indole intermediate in the formation of P1 is the key to the intriguing experimental phenomenon.

  20. Tether-directed synthesis of highly substituted oxasilacycles via an intramolecular allylation employing allylsilanes

    Directory of Open Access Journals (Sweden)

    Cox Liam R

    2007-02-01

    Full Text Available Abstract Background Using a silyl tether to unite an aldehyde electrophile and allylsilane nucleophile into a single molecule allows a subsequent Lewis-acid-mediated allylation to proceed in an intramolecular sense and therefore receive all the benefits associated with such processes. However, with the ability to cleave the tether post allylation, a product that is the result of a net intermolecular reaction can be obtained. In the present study, four diastereoisomeric β-silyloxy-α-methyl aldehydes, which contain an allylsilane tethered through the β-carbinol centre, have been prepared, in order to probe how the relative configuration of the two stereogenic centres affects the efficiency and selectivity of the intramolecular allylation. Results Syn-aldehydes, syn-4a and syn-4b, both react poorly, affording all four possible diastereoisomeric oxasilacycle products. In contrast, the anti aldehydes anti-4a and anti-4b react analogously to substrates that lack substitution at the α-site, affording only two of the four possible allylation products. Conclusion The outcome of the reaction with anti-aldehydes is in accord with reaction proceeding through a chair-like transition state (T.S.. In these systems, the sense of 1,3-stereoinduction can be rationalised by the aldehyde electrophile adopting a pseudoaxial orientation, which will minimise dipole-dipole interactions in the T.S. The 1,4-stereoinduction in these substrates is modest and seems to be modulated by the R substituent in the starting material. In the case of the syn-substrates, cyclisation through a chair T.S. is unlikely as this would require the methyl substituent α to the reacting carbonyl group to adopt an unfavourable pseudoaxial position. It is therefore proposed that these substrates react through poorly-defined T.S.s and consequently exhibit essentially no stereoselectivity.

  1. Cyclization of lapachol induced by thallium salts

    International Nuclear Information System (INIS)

    Ribeiro, Carlos Magno R.; Souza, Pablo P. de; Ferreira, Leticia L.D.M.; Pinto, Lia A.; Almeida, Leonardo S. de; Jesus, Janaina G. de

    2008-01-01

    This work describes the cyclization of lapachol (1) induced by thallium triacetate (TTA) and thallium trinitrate (TTN) in several solvents using magnetic stirring and under microwave irradiation. α-Xyloidone (2) - dehydro-a-lapachone - was obtained as the main product in these reactions in 20 - 75% yield. However, rhinacanthin-A (4) was isolated as main product in a 40% yield, using TTA and acetic anhydride:water (1:1) as solvent, and dehydroiso- a-lapachone (3) in 21% yield, using TTA and dichloromethane as solvent. The reaction time decreased drastically under microwave conditions, but the yields of these reactions were not the expected. (author)

  2. Chalcogen-containing oxazolines in the palladium-catalyzed asymmetric allylic alkylation

    Directory of Open Access Journals (Sweden)

    Braga Antonio L.

    2006-01-01

    Full Text Available A comparative study about the ability of chiral chalcogen-containing oxazolines to act as chiral ligands in the palladium-catalyzed allylic alkylation of rac-1,3-diphenyl-2-propenyl acetate with dimethyl malonate is reported. Differences in the catalytic performance are observed with sulfur, selenium and tellurium analogues.

  3. Development and Comparison of the Substrate Scope of Pd-Catalysts for the Aerobic Oxidation of Alcohols

    Science.gov (United States)

    Schultz, Mitchell J.; Hamilton, Steven S.; Jensen, David R.; Sigman, Matthew S.

    2009-01-01

    Three catalysts for aerobic oxidation of alcohols are discussed and the effectiveness of each is evaluated for allylic, benzylic, aliphatic, and functionalized alcohols. Additionally, chiral nonracemic substrates as well as chemoselective and diastereoselective oxidations are investigated. In this study, the most convenient system for the Pd-catalyzed aerobic oxidation of alcohols is Pd(OAc)2 in combination with triethylamine. This system functions effectively for the majority of alcohols tested and uses mild conditions (3 to 5 mol % of catalyst, room temperature). Pd(IiPr)(OAc)2(H2O) (1) also successfully oxidizes the majority of alcohols evaluated. This system has the advantage of significantly lowering catalyst loadings but requires higher temperatures (0.1 to 1 mol % of catalyst, 60 °C). A new catalyst is also disclosed, Pd(IiPr)(OPiv)2 (2). This catalyst operates under very mild conditions (1 mol %, room temperature, and air as the O2 source) but with a more limited substrate scope. PMID:15844968

  4. One-pot cascade michael.cyclization reactions of ο-hydroxycinnamaldehydes: Synthesis of functionalized 2,3-dihydrobenzofuranes

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, Sung Hyuk; Kim, Sunggon [Kyonggi Univ., Suwon (Korea, Republic of)

    2012-04-15

    We described the cascade Michael.cyclization reaction of o-hydroxycinnamaldehydes with diethyl α-bromomalonate promoted by potassium carbonate. The reactions provided functionalized 2,3-dihydrobenzofurans in good yields for a variety of o-hydroxyaromatic α,β-unsaturated aldehydes. Current work focuses on expanding the scope of this reaction to other substrates such as sulfur yields, and on developing an efficient catalytic asymmetric variant. 2,3-Dihydrobenzofurans are found in numerous biologically active natural products and synthetic compounds. These are an attractive type of oxygenated compound because their basic core skeleton is present in neolignans, pterocarpans, and synthetic drugs used in the treatment of pulmonary hypertension, atherosclerotic peripheral arterial disease, and central nervous system trauma and ischemia. Owing to the importance of their structures, numerous synthetic methods for 2,3-dihydrobenzofurans have been developed, primarily: radical cyclizations, Lewis acid promoted reactions, anionic cyclizations, and transition-metal catalyzed processes. However, these methods cannot be generalized as much as is desirable, and they yielded poor chemo- and/or stereoselectivities. Hence, the development of an efficient enantioselective synthetic method for obtaining 2,3-dihydrobenzofuran scaffolds attracted our attention.

  5. One-pot cascade michael.cyclization reactions of ο-hydroxycinnamaldehydes: Synthesis of functionalized 2,3-dihydrobenzofuranes

    International Nuclear Information System (INIS)

    Gwon, Sung Hyuk; Kim, Sunggon

    2012-01-01

    We described the cascade Michael.cyclization reaction of o-hydroxycinnamaldehydes with diethyl α-bromomalonate promoted by potassium carbonate. The reactions provided functionalized 2,3-dihydrobenzofurans in good yields for a variety of o-hydroxyaromatic α,β-unsaturated aldehydes. Current work focuses on expanding the scope of this reaction to other substrates such as sulfur yields, and on developing an efficient catalytic asymmetric variant. 2,3-Dihydrobenzofurans are found in numerous biologically active natural products and synthetic compounds. These are an attractive type of oxygenated compound because their basic core skeleton is present in neolignans, pterocarpans, and synthetic drugs used in the treatment of pulmonary hypertension, atherosclerotic peripheral arterial disease, and central nervous system trauma and ischemia. Owing to the importance of their structures, numerous synthetic methods for 2,3-dihydrobenzofurans have been developed, primarily: radical cyclizations, Lewis acid promoted reactions, anionic cyclizations, and transition-metal catalyzed processes. However, these methods cannot be generalized as much as is desirable, and they yielded poor chemo- and/or stereoselectivities. Hence, the development of an efficient enantioselective synthetic method for obtaining 2,3-dihydrobenzofuran scaffolds attracted our attention

  6. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.; Bagdanoff, Jeffreyâ T.; Ferreira, Ericâ M.; McFadden, Ryanâ M.; Caspi, Danielâ D.; Trend, Raissaâ M.; Stoltz, Brianâ M.

    2009-01-01

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  7. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.

    2009-12-07

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  8. Synthesis of a Novel Allyl-Functionalized Deep Eutectic Solvent to Promote Dissolution of Cellulose

    Directory of Open Access Journals (Sweden)

    Hongwei Ren

    2016-08-01

    Full Text Available Deep eutectic solvents (DESs offer attractive options for the “green” dissolution of cellulose. However, the protic hydroxyl group causes weak dissolving ability of DESs, requiring the substitution of hydroxyl groups in the cation. In this study, a novel allyl-functionalized DES was synthesized and characterized, and its possible effect on improved dissolution of cellulose was investigated. The DES was synthesized by a eutectic mixture of allyl triethyl ammonium chloride ([ATEAm]Cl and oxalic acid (Oxa at a molar ratio of 1:1 and a freezing point of 49 °C. The [ATEAm]Cl-Oxa exhibited high polarity (56.40 kcal/mol, dipolarity/polarizability effects (1.10, hydrogen-bond donating acidity (0.41, hydrogen-bond basicity (0.89, and low viscosity (76 cP at 120 °C owing to the π-π conjugative effect induced by the allyl group. The correlation between temperature and viscosity on the [ATEAm]Cl-Oxa fit the Arrhenius equation well. The [ATEAm]Cl-Oxa showed low pseudo activation energy for viscous flow (44.56 kJ/mol. The improved properties of the [ATEAm]Cl-Oxa noticeably promoted the solubility (6.48 wt.% of cellulose.

  9. 1-Allyl-3-amino-1H-pyrazole-4-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Feng-Ling Yang

    2008-12-01

    Full Text Available The title compound, C7H9N3O2, was prepared by alkaline hydrolysis of ethyl 1-allyl-3-amino-1H-pyrazole-4-carboxylate. The crystal structure is stabilized by three types of intermolecular hydrogen bond (N—H...O, N—H...N and O—H...N.

  10. 40 CFR 116.4 - Designation of hazardous substances.

    Science.gov (United States)

    2010-07-01

    ... acetic acid, vinegar acid Acetic anhydride 108247 Acetic oxide, acetyl oxide Acetone cyanohydrin 75865 2... Allyl alcohol 107186 2-propen-1-ol, 1-propenol-3, vinyl carbinol Allyl chloride 107051 3-chloropropene..., mercaptomethane, methyl sulfhydrate, thiomethyl alcohol Methyl methacrylate 80626 Methacrylic acid methyl ester...

  11. Enantioselective Allylation of Thiophene-2-carbaldehyde: Formal Total Synthesis of Duloxetine

    Czech Academy of Sciences Publication Activity Database

    Motloch, P.; Valterová, Irena; Kotora, M.

    2014-01-01

    Roč. 356, č. 1 (2014), s. 199-204 ISSN 1615-4150 Grant - others:GA ČR(CZ) GAP207/11/0587 Institutional support: RVO:61388963 Keywords : aldehydes * allylation * Lewis bases * organocatalysis * synthetic methods Subject RIV: CC - Organic Chemistry Impact factor: 5.663, year: 2014

  12. An Intramolecular Heck reaction that Prefers a 5-endo- to a 6-exo-trig Cyclization Pathway

    DEFF Research Database (Denmark)

    Vital, Paulo; Norrby, Per-Ola; Tanner, David Ackland

    2006-01-01

    A regioselective aromatic Claisen rearrangement was used to prepare 17a, the precursor of triflate 17e. The intramolecular Heck reaction of 17e is promoted only by bidentate phosphine ligands, giving exclusively and in excellent yield 20, the product of a 5-endo-trig cyclization, despite the poss......A regioselective aromatic Claisen rearrangement was used to prepare 17a, the precursor of triflate 17e. The intramolecular Heck reaction of 17e is promoted only by bidentate phosphine ligands, giving exclusively and in excellent yield 20, the product of a 5-endo-trig cyclization, despite...

  13. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

    Science.gov (United States)

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel E; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  14. Genome wide association mapping in Arabidopsis thaliana identifies novel genes involved in linking allyl glucosinolate to altered biomass and defense

    Directory of Open Access Journals (Sweden)

    Marta Francisco

    2016-07-01

    Full Text Available A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL, may provide direct feedback regulation, linking defense metabolism outputs to the growth and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 µM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  15. Products and mechanism of the reaction of Cl atoms with unsaturated alcohols

    Science.gov (United States)

    Rodríguez, Ana; Rodríguez, Diana; Soto, Amparo; Bravo, Iván; Diaz-de-Mera, Yolanda; Notario, Alberto; Aranda, Alfonso

    2012-04-01

    The products of the chlorine atom initiated oxidation of different unsaturated alcohols were determined at atmospheric pressure and ambient temperature, in a 400 L teflon reaction chamber using GC-FID and GC-MS for the analysis. The major products detected (with molar yields in brackets) are: chloroacetaldehyde (50 ± 8%) and acrolein (27 ± 2%) from allyl alcohol; acetaldehyde (77 ± 11%), chloroacetaldehyde (75 ± 18%), and methyl vinyl ketone (17 ± 2%) from 3-buten-2-ol; acetone (55 ± 4%) and chloroacetaldehyde (59 ± 8%) from 2-methyl-3-buten-2-ol; chloroacetone (18 ± 1%) and methacrolein (8 ± 1%) from 2-methyl-2-propen-1-ol; acetaldehyde (20 ± 1%), crotonaldehyde (6 ± 3%), 3-choloro-4-hydroxy-2-butanone (2 ± 2%) and 2-chloro-propanal (4 ± 5%) from crotyl alcohol; and acetone (24 ± 3%) from 3-methyl-2-buten-1-ol. The experimental data suggests that addition of Cl to the double bond of the unsaturated alcohol is the dominant reaction pathway compared to the H-abstraction channel.

  16. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air

    Science.gov (United States)

    Hanson, Susan Kloek; Silks, Louis A; Wu, Ruilian

    2013-08-27

    The invention concerns processes for oxidizing an alcohol to produce a carbonyl compound. The processes comprise contacting the alcohol with (i) a gaseous mixture comprising oxygen; and (ii) an amine compound in the presence of a catalyst, having the formula: ##STR00001## where each of R.sup.1-R.sup.12 are independently H, alkyl, aryl, CF.sub.3, halogen, OR.sup.13, SO.sub.3R.sup.14, C(O)R.sup.15, CONR.sup.16R.sup.17 or CO.sub.2R.sup.18; each of R.sup.13-R.sup.18 is independently alkyl or aryl; and Z is alkl or aryl.

  17. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    Science.gov (United States)

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  18. Tandem Michael addition/radical cyclizations for the construction of highly functionalized cyclopentanes

    Czech Academy of Sciences Publication Activity Database

    Holan, Martin; Pohl, Radek; Císarová, I.; Jahn, Ullrich

    2012-01-01

    Roč. 106, - (2012), s1298-s1298 ISSN 0009-2770. [EuCheMS Chemistry Congress /4./. 26.08.2012-30.08.2012, Prague] Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclization * diastereoselectivity * Michael addiction * radical reactions * domino reactions Subject RIV: CC - Organic Chemistry

  19. Highly Functionalized Cyclopentane Derivatives by Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions

    Czech Academy of Sciences Publication Activity Database

    Holan, Martin; Pohl, Radek; Císařová, I.; Klepetářová, Blanka; Jones, P. G.; Jahn, Ullrich

    2015-01-01

    Roč. 21, č. 27 (2015), s. 9877-9888 ISSN 0947-6539 R&D Projects: GA ČR GA13-40188S Institutional support: RVO:61388963 Keywords : cyclization * domino reactions * electron transfer * Michael addition * radical reactions Subject RIV: CC - Organic Chemistry Impact factor: 5.771, year: 2015

  20. Direct preparation of 14C-labelled 5-allyl- and 5-propyl-2'-deoxyuridine from [2-14C]2'-deoxyuridine

    International Nuclear Information System (INIS)

    Ruth, J.L.; White, S.K.; Bergstrom, D.E.

    1982-01-01

    [2- 14 C]5-Allyl-2'-deoxyuridine was synthesized directly from [2- 14 C]2'-deoxyuridine using mercury, palladium, and 3-chloropropene. [2- 14 C]5-Propyl-2'-deoxyuridine was obtained by hydrogenation of the [ 14 C]5-allyl-2'-deoxyuridine. Advantages of the synthetic method and its application to the preparation of other radiolabeled 5-alkyl/alkenyl-2'-deoxyuridines are discussed. (author)

  1. Recent Advances in Substrate-Controlled Asymmetric Cyclization for Natural Product Synthesis

    Directory of Open Access Journals (Sweden)

    Jeyun Jo

    2017-06-01

    Full Text Available Asymmetric synthesis of naturally occurring diverse ring systems is an ongoing and challenging research topic. A large variety of remarkable reactions utilizing chiral substrates, auxiliaries, reagents, and catalysts have been intensively investigated. This review specifically describes recent advances in successful asymmetric cyclization reactions to generate cyclic architectures of various natural products in a substrate-controlled manner.

  2. In(OTf)3 catalyzed allylation reaction of imines with tetraallyltin

    Institute of Scientific and Technical Information of China (English)

    Xiao Ning Wei; Ling Yan Liu; Bing Wang; Wei Xing Chang; Jing Li

    2009-01-01

    In the presence of catalytic amount of In(OTf)3 (10 mol%), a series of aldimines reacted with tetraallyltin in a 2:1 molar ratio to afford the corresponding homoallylic amines in good yields. The good atom efficiency was achieved under mild reaction conditions and a new protocol (allyl)4Sn/In(OTf)3 for simple imines was developed.

  3. Modular Three-Component Synthesis of 4-Aminoquinolines via an Imidoylative Sonogashira/Cyclization Cascade

    NARCIS (Netherlands)

    Collet, Jurriën W.; Ackermans, Kelly; Lambregts, Jeffrey; Maes, Bert U.W.; Orru, Romano V.A.; Ruijter, Eelco

    2018-01-01

    We developed a one-pot, two-stage synthetic route to substituted 4-aminoquinolines involving an imidoylative Sonogashira coupling followed by acid-mediated cyclization. This three-component reaction affords pharmaceutically valuable 4-aminoquinolines in a one-pot procedure from readily available

  4. Hydroxyl-substituted ladder polyethers via selective tandem epoxidation/cyclization sequence.

    Science.gov (United States)

    Czabaniuk, Lara C; Jamison, Timothy F

    2015-02-20

    A new and highly selective method for the synthesis of hydroxyl-substituted tetrahydropyrans is described. This method utilizes titanium(IV) isopropoxide and diethyl tartrate to perform a diastereoselective epoxidation followed by in situ epoxide activation and highly selective endo-cyclization to form the desired tetrahydropyran ring. The HIJ ring fragment of the marine ladder polyether yessotoxin was synthesized using this two-stage tactic that proceeds with high efficiency and excellent regioselectivity.

  5. No metabolic effects of mustard allyl-isothiocyanate compared with placebo in men

    NARCIS (Netherlands)

    Langeveld, Mirjam; Tan, Chong Yew; Soeters, Maarten R.; Virtue, Samuel; Watson, Laura Pe; Murgatroyd, Peter R.; Ambler, Graeme K.; Vidal-Puig, Santiago; Chatterjee, Krishna V.; Vidal-Puig, Antonio

    2017-01-01

    Background: Induction of nonshivering thermogenesis can be used to influence energy balance to prevent or even treat obesity. The pungent component of mustard, allyl-isothiocyanate (AITC), activates the extreme cold receptor transient receptor potential channel, subfamily A, member 1 and may thus

  6. Cobalt-catalyzed C-H olefination of aromatics with unactivated alkenes.

    Science.gov (United States)

    Manoharan, Ramasamy; Sivakumar, Ganesan; Jeganmohan, Masilamani

    2016-08-18

    A cobalt-catalyzed C-H olefination of aromatic and heteroaromatic amides with unactivated alkenes, allyl acetates and allyl alcohols is described. This method offers an efficient route for the synthesis of vinyl and allyl benzamides in a highly stereoselective manner. It is observed that the ortho substituent on the benzamide moiety is crucial for the observation of allylated products in unactivated alkenes.

  7. One-pot synthesis of 2,5-dihydropyrroles from terminal alkynes, azides, and propargylic alcohols by relay actions of copper, rhodium, and gold.

    Science.gov (United States)

    Miura, Tomoya; Tanaka, Takamasa; Matsumoto, Kohei; Murakami, Masahiro

    2014-12-01

    Relay actions of copper, rhodium, and gold formulate a one-pot multistep pathway, which directly gives 2,5-dihydropyrroles starting from terminal alkynes, sulfonyl azides, and propargylic alcohols. Initially, copper-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with propargylic alcohols under the catalysis of rhodium. The resulting alkenyl propargyl ethers subsequently undergo the thermal Claisen rearrangement to give α-allenyl-α-amino ketones. Finally, a gold catalyst prompts 5-endo cyclization to produce 2,5-dihydropyrroles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Organocatalytic asymmetric allylic amination of Morita–Baylis–Hillman carbonates of isatins

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2012-08-01

    Full Text Available The investigation of a Lewis base catalyzed asymmetric allylic amination of Morita–Baylis–Hillman carbonates derived from isatins afforded an electrophilic pathway to access multifunctional oxindoles bearing a C3-quaternary stereocenter, provided with good to excellent enantioselectivity (up to 94% ee and in high yields (up to 97%.

  9. Hydroxyl Radical-Mediated Novel Modification of Peptides: N-Terminal Cyclization through the Formation of α-Ketoamide.

    Science.gov (United States)

    Lee, Seon Hwa; Kyung, Hyunsook; Yokota, Ryo; Goto, Takaaki; Oe, Tomoyuki

    2015-01-20

    The hydroxyl radical-mediated oxidation of peptides and proteins constitutes a large group of post-translational modifications that can result in structural and functional changes. These oxidations can lead to hydroxylation, sulfoxidation, or carbonylation of certain amino acid residues and cleavage of peptide bonds. In addition, hydroxyl radicals can convert the N-terminus of peptides to an α-ketoamide via abstraction of the N-terminal α-hydrogen and hydrolysis of the ketimine intermediate. In the present study, we identified N-terminal cyclization as a novel modification mediated by a hydroxyl radical. The reaction of angiotensin (Ang) II (DRVYIHPF) and the hydroxyl radical generated by the Cu(II)/ascorbic acid (AA) system or UV/hydrogen peroxide system produced N-terminal cyclized-Ang II (Ang C) and pyruvamide-Ang II (Ang P, CH3COCONH-RVYIHPF). The structure of Ang C was confirmed by mass spectrometry and comparison to an authentic standard. The subsequent incubation of isolated Ang P in the presence of Cu(II)/AA revealed that Ang P was the direct precursor of Ang C. The proposed mechanism involves the formation of a nitrogen-centered (aminyl) radical, which cyclizes to form a five-membered ring containing the alkoxy radical. The subsequent β-scission reaction of the alkoxyl radical results in the cleavage of the terminal CH3CO group. The initial aminyl radical can be stabilized by chelation to the Cu(II) ions. The affinity of Ang C toward the Ang II type 1 receptor was significantly lower than that of Ang II or Ang P. Ang C was not further metabolized by aminopeptidase A, which converts Ang II to Ang III. Hydroxyl radical-mediated N-terminal cyclization was also observed in other Ang peptides containing N-terminal alanine, arginine, valine, and amyloid β 1-11 (DAEFRHDSGYE).

  10. A Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Hoover, Jessica M.; Stahl, Shannon S.

    2011-01-01

    Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O2 as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)CuI/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups. PMID:21861488

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Allyl and benzyl ethers of alcohols can be prepared conveniently and in high yield with allyl and benzyl bromide in the presence of solid potassium hydroxide without use of any solvent. Phenols can be converted to allyl ethers but are inert to benzylation under above conditions.

  12. Synthetic approach of norbadione A: new preparation of alcohols from sulfones and boron compounds

    International Nuclear Information System (INIS)

    Billaud, C.

    2005-12-01

    The synthetic approach of norbadione A, a pigment from mushrooms related to pulvinic acids, was studied. This compound has the property to complex caesium and has shown an antioxidant activity. The first strategy, based on a double Suzuki-Miyaura coupling between a naphtho-lactone with two boron functions and two pulvinic moieties with a triflate was unsuccessful and has shown a deactivating effect of the lactone. Modifications aimed to inhibit the electro-attracting character of the lactone permitted to obtain a bis(coupled) product with a poor yield. A second approach based on a the cyclization of enol aryl-acetates was studied in order to build the pulvinic moiety in several steps. The important reaction of introduction of an alkyl-acetate from a triflate was realised by a palladium-mediated coupling. The cyclization attempts carried out using a naphthalenic compound allowed us to isolate a monocyclised product. A parallel study was to first build a tetronic moiety and then to construct the exocyclic double bond by a method developed in the laboratory for the preparation of an iodated pulvinic compound. Finally, a new preparation of alcohols from sulfones and boron compounds was developed. Two known reactions in the chemistry of boron were combined. The first one is the reaction between anions of sulfones and tri-alkyl-boranes, the second one is a thermal isomerization which places the boron atom in a terminal position. A new preparation of primary alcohols was thus carried out. (author)

  13. Reactivity of olefin and allyl ligands in π-complexes of metals

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    The data on reactivity of olefin and allyl ligands in transition metal (Ru, W) π-complexes, published up to 1984 are presented. Metal ion coordination of olefins causes their appreciable reactivity change. Transformations of π-olefin ligands into σ-alkyl ones, interaction of π-complexes with oxygen nucleophilic reagents, amines, halogenides and pseudohalogenides are considered

  14. Gold-Catalyzed Cyclizations of Alkynol-Based Compounds: Synthesis of Natural Products and Derivatives

    Directory of Open Access Journals (Sweden)

    Pedro Almendros

    2011-09-01

    Full Text Available The last decade has witnessed dramatic growth in the number of reactions catalyzed by gold complexes because of their powerful soft Lewis acid nature. In particular, the gold-catalyzed activation of propargylic compounds has progressively emerged in recent years. Some of these gold-catalyzed reactions in alkynes have been optimized and show significant utility in organic synthesis. Thus, apart from significant methodology work, in the meantime gold-catalyzed cyclizations in alkynol derivatives have become an efficient tool in total synthesis. However, there is a lack of specific review articles covering the joined importance of both gold salts and alkynol-based compounds for the synthesis of natural products and derivatives. The aim of this Review is to survey the chemistry of alkynol derivatives under gold-catalyzed cyclization conditions and its utility in total synthesis, concentrating on the advances that have been made in the last decade, and in particular in the last quinquennium.

  15. Cu-Catalyzed Asymmetric Allylic Alkylation of Phosphonates and Phosphine Oxides with Grignard Reagents

    NARCIS (Netherlands)

    Hornillos, Valentin; Perez, Manuel; Fananas-Mastral, Martin; Feringa, Ben L.

    An efficient and highly enantioselective copper-catalyzed allylic alkylation of phosphonates and phosphine oxides with Grignard reagents and Taniaphos or phosphoramidites as chiral ligands is reported. Transformation of these products leads to a variety of new phosphorus-containing chiral

  16. Synthesis of fused azole-piperidionoses: A free radical cyclization approach

    Energy Technology Data Exchange (ETDEWEB)

    Marco-Contelles, Jose; Alhambra Jimenez, Carolina [Instituto de Quimica Organica General (CSIC), Madrid (Spain)

    1999-08-01

    A new strategy has been reported for the synthesis of fused azole-piperidinoses featuring and unprecedented and very efficient 6-exo-trig free radical cyclization onto heterocyclic sugar templates. These compounds are key intermediates for the synthesis of known or analogues of azole-glycosidase inhibitors. In this communication we describe our recent and successful results on the synthesis of fused triazole-piperidinoses. Radical precursors have been prepared by standard methodologies from 1, 2:5, 6-bis-O-isopropylidene-{alpha}-D-glucofuranose (4) via triazoles linked at C3 with {beta}-orientation, readily obtained by 1, 3-dipolar cycloaddition of azide 5 with diethyl acetylenedicarboxylate or methyl propiolate, and by S{sub N}2 displacement of the tosylate at C3 with 1, 2, 4-triazole in compound 20. The key 6-exp-trig free radical cyclizations proceeded in the usual conditions [tributyltin hydride or tris(trimethylsily)silane, AIBN, toluene] yielding the azaannulated sugars 9, 11, 19 and 23 in good or excellent yields. A mechanism for these cyclizations has been proposed. [Spanish] Se ha informado una nueva estrategia para la sintesis azol-piperidinosas fusionadas mediante una ciclizacion 6-exo-trig muy eficiente y sin precedentes, sobre plantillas de azucares heterociclicos. Estos compuestos son intermediarios claves para la sintesis de inhibidores de azol-glicosidasa conocidos analogos de ellos. En esta comunicacion describimos nuestros resultados recientes y exitosos sobre la sintesis de triazol-piperidinosas. Los precursores de radicales fueron preparados por la metodologia usual a partir de 1, 2:5, 6-bis-O-isopropiliden-{alpha}-D-glucofuranosa (4) via triazoles unidos en C3, con orientacion {beta}, los cuales se obtienen facilmente por cicloadicion 1, 3-dipolar de la azida 5 con acetilendicarboxilato de dietilo o propiolato de metilo y por desplazamiento S{sub N}2 del tosilato en C3 con 1, 2, 4-triazol en el compuesto 20. Las ciclizaciones 6-exo

  17. Side Chain Cyclized Aromatic Amino Acids

    DEFF Research Database (Denmark)

    Van der Poorten, Olivier; Knuhtsen, Astrid; Sejer Pedersen, Daniel

    2016-01-01

    Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute...... the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected...... to the peptide backbone to provide control of χ(1)- and χ(2)-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors....

  18. Total Synthesis of Ustiloxin D Utilizing an Ammonia-Ugi Reaction.

    Science.gov (United States)

    Brown, Aaron L; Churches, Quentin I; Hutton, Craig A

    2015-10-16

    Total synthesis of the highly functionalized cyclic peptide natural product, ustiloxin D, has been achieved in a convergent manner. Our strategy incorporates an asymmetric allylic alkylation to construct the tert-alkyl aryl ether linkage between the dopa and isoleucine residues. The elaborated β-hydroxydopa derivative is rapidly converted to a linear tripeptide through an ammonia-Ugi reaction. Subsequent cyclization and global deprotection affords ustiloxin D in six steps from a known β-hydroxydopa derivative.

  19. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation.

    Science.gov (United States)

    Krügener, Sven; Krings, Ulrich; Zorn, Holger; Berger, Ralf G

    2010-01-01

    A selective and highly efficient allylic oxidation of the sesquiterpene (+)-valencene to the grapefruit flavour compound (+)-nootkatone was achieved with lyophilisate of the edible mushroom Pleurotus sapidus. The catalytic reaction sequence was elucidated through the identification of intermediate, (+)-valencene derived hydroperoxides. A specific staining of hydroperoxides allowed the semi-preparative isolation of two secondary (+)-valencene hydroperoxides, 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-4(S)-yl-hydroperoxide and 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-2(R)-yl-hydroperoxide. Chemical reduction of the biotransformation products yielded a tertiary alcohol identified as 2(R)-Isopropenyl-8(R),8a(S)-dimethyl-1,3,4,7,8,8a-hexahydro-2H-naphthalen-4a(R)-ol. This suggested a lipoxygenase-type oxidation of (+)-valencene via secondary and tertiary hydroperoxides and confirmed homology data of the key enzyme obtained previously from amino acid sequencing.

  20. Biomarkers derived from heterolytic and homolytic cleavage of allylic hydroperoxides resulting from alkenone autoxidation

    Digital Repository Service at National Institute of Oceanography (India)

    Rontania, J.F.; Harji, R.; Volkmanc, J.K.

    Laboratory incubation of alkenone mixtures with tert-butyl hydroperoxide and di-tert-butyl nitroxide (radical initiator) in hexane, as a means to simulate alkenone autoxidation processes, rapidly led to the formation of allylic hydroperoxides, whose...

  1. Gold(I-catalyzed domino cyclization for the synthesis of polyaromatic heterocycles

    Directory of Open Access Journals (Sweden)

    Mathieu Morin

    2013-11-01

    Full Text Available Gold(I complexes have emerged as powerful and useful catalysts for the formation of new C–C, C–O and C–N bonds. Taking advantage of the specificity of [IPrAuNCMe][SbF6] complexes to favor the 5-exo-dig cyclization over the 6-endo-dig pathway, we report a high yielding and efficient method to generate substituted polyaromatic heterocycles under remarkably mild reaction conditions.

  2. Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

    Directory of Open Access Journals (Sweden)

    David Porter

    2015-12-01

    Full Text Available Iron(II complexes of the tetradentate amines tris(2-pyridylmethylamine (TPA and N,N′-bis(2-pyridylmethyl-N,N′-dimethylethane-1,2-diamine (BPMEN are established catalysts of C–O bond formation, oxidising hydrocarbon substrates via hydroxylation, epoxidation and dihydroxylation pathways. Herein we report the capacity of these catalysts to promote C–N bond formation, via allylic amination of alkenes. The combination of N-Boc-hydroxylamine with either FeTPA (1 mol % or FeBPMEN (10 mol % converts cyclohexene to the allylic hydroxylamine (tert-butyl cyclohex-2-en-1-yl(hydroxycarbamate in moderate yields. Spectroscopic studies and trapping experiments suggest the reaction proceeds via a nitroso–ene mechanism, with involvement of a free N-Boc-nitroso intermediate. Asymmetric induction is not observed using the chiral tetramine ligand (+-(2R,2′R-1,1′-bis(2-pyridylmethyl-2,2′-bipyrrolidine ((R,R′-PDP.

  3. Development of chiral terminal-alkene-phosphine hybrid ligands for palladium-catalyzed asymmetric allylic substitutions.

    Science.gov (United States)

    Liu, Zhaoqun; Du, Haifeng

    2010-07-02

    A variety of novel chiral terminal-alkene-phosphine hybrid ligands were successfully developed from diethyl L-tartrate for palladium-catalyzed asymmetric allylic alkylations, etherifications, and amination to give the desired products in excellent yields and ee's.

  4. Synthesis, Characterization, and In Vitro Evaluation of New (99m)Tc/Re(V)-Cyclized Octreotide Analogues: An Experimental and Computational Approach.

    Science.gov (United States)

    Li, Yawen; Ma, Lixin; Gaddam, Vikram; Gallazzi, Fabio; Hennkens, Heather M; Harmata, Michael; Lewis, Michael R; Deakyne, Carol A; Jurisson, Silvia S

    2016-02-01

    Radiolabeled proteolytic degradation-resistant somatostatin analogues have been of long-standing interest as cancer imaging and radiotherapy agents for targeting somatostatin receptor-positive tumors. Our interest in developing (186)Re- and (188)Re-based therapeutic radiopharmaceuticals led to investigation of a new Re(V)-cyclized octreotide analogue, Re(V)-cyclized, thiolated-DPhe(1)-Cys(2)-Tyr(3)-DTrp(4)-Lys(5)-Thr(6)-Cys(7)-Thr(OH)(8) (Re-SDPhe-TATE) using both experimental and quantum chemical methods. The metal is directly coordinated to SDPhe-TATE through cyclization of the peptide around the [ReO](3+) core. Upon complexation, four isomers were observed; the isolated/semi-isolated isomers exhibited different somatostatin receptor (sstr) binding affinities, 0.13 to 1.5 μM, in rat pancreatic tumor cells. Two-dimensional NMR experiments and electronic structure calculations were employed to elucidate the structural differences among the different isomers. According to NMR studies, the metal is coordinated to three thiolates and the backbone amide of Cys(2) in isomers 1 and 4, whereas the metal is coordinated to three thiolates and the backbone amide of Tyr(3) in isomer 2. Quantum chemical methods clarified the stereochemistry of Re-SDPhe-TATE and the possible peptide arrangements around the [ReO](3+) core. The re-cyclization reaction was translated to the (99m)Tc radiotracer level with four isomers observed on complexation with comparable HPLC retention times as the Re-SDPhe-TATE isomers. About 85% total (99m)Tc labeling yield was achieved by ligand exchange from (99m)Tc-glucoheptonate at 60 °C for an hour. About 100% and 51% of (99m)Tc(V)-cyclized SDPhe-TATE remained intact in phosphate buffered saline and 1 mM cysteine solution under physiological conditions at 6 h, respectively.

  5. Combination of Lewis Basic Selenium Catalysis and Redox Selenium Chemistry: Synthesis of Trifluoromethylthiolated Tertiary Alcohols with Alkenes.

    Science.gov (United States)

    Zhu, Zechen; Luo, Jie; Zhao, Xiaodan

    2017-09-15

    A new and efficient method for diaryl selenide catalyzed vicinal CF 3 S hydroxylation of 1,1-multisubstitued alkenes has been developed. Various trifluoromethylthiolated tertiary alcohols could be readily synthesized under mild conditions. This method is also effective for the intramolecular cyclization of alkenes tethered by carboxylic acid, hydroxy, sulfamide, or ester groups and is associated with the introduction of a CF 3 S group. Mechanistic studies have revealed that the pathway involves a redox cycle between Se(II) and Se(IV) and Lewis basic selenium catalysis.

  6. Potassium hydroxide/dimethyl sulfoxide promoted intramolecular cyclization for the synthesis of benzimidazol-2-ones.

    Science.gov (United States)

    Beyer, Astrid; Reucher, Christine M M; Bolm, Carsten

    2011-06-03

    A new protocol for intramolecular N-arylations of ureas to form benzimidazol-2-ones has been developed. The cyclization reaction occurs in the presence of KOH and DMSO at close to ambient temperature. Under these conditions the yields are high and a wide range of functional groups are tolerated.

  7. Antiviral activity of an N-allyl acridone against dengue virus

    OpenAIRE

    Mazzucco, María Belén; Talarico, Laura Beatriz; Vatansever, Sezen; Carro, Ana Clara; Fascio, Mirta Liliana; D'Accorso, Norma Beatriz; Garcia, Cybele; Damonte, Elsa Beatriz

    2016-01-01

    Dengue virus (DENV), a member of the family Flaviviridae, is at present the most widespread causative agent of a human viral disease transmitted by mosquitoes. Despite the increasing incidence of this pathogen, there are no antiviral drugs or vaccines currently available for treatment or prevention. In a previous screening assay, we identified a group of N-allyl acridones as effective virus inhibitors. Here, the antiviral activity and mode of action targeted to viral RNA replication of one of...

  8. Elucidation of the regio- and chemoselectivity of enzymatic allylic oxidations with Pleurotus sapidus – conversion of selected spirocyclic terpenoids and computational analysis

    Directory of Open Access Journals (Sweden)

    Verena Weidmann

    2013-10-01

    Full Text Available Allylic oxidations of olefins to enones allow the efficient synthesis of value-added products from simple olefinic precursors like terpenes or terpenoids. Biocatalytic variants have a large potential for industrial applications, particularly in the pharmaceutical and food industry. Herein we report efficient biocatalytic allylic oxidations of spirocyclic terpenoids by a lyophilisate of the edible fungus Pleurotus sapidus. This ‘’mushroom catalysis’’ is operationally simple and allows the conversion of various unsaturated spirocyclic terpenoids. A number of new spirocyclic enones have thus been obtained with good regio- and chemoselectivity and chiral separation protocols for enantiomeric mixtures have been developed. The oxidations follow a radical mechanism and the regioselectivity of the reaction is mainly determined by bond-dissociation energies of the available allylic CH-bonds and steric accessibility of the oxidation site.

  9. Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and alkynes.

    Science.gov (United States)

    Zeng, Wei; Wu, Wanqing; Jiang, Huanfeng; Huang, Liangbin; Sun, Yadong; Chen, Zhengwang; Li, Xianwei

    2013-07-28

    Regioselective synthesis of polysubstituted benzofurans using a copper catalyst and molecular oxygen from phenols and alkynes in a one-pot procedure has been reported. The transformation consists of a sequential nucleophilic addition of phenols to alkynes and oxidative cyclization. A wide variety of phenols and alkynes can be used in the same manner.

  10. Combined experimental and theoretical mechanistic investigation of the Barbier allylation in aqueous media

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Fristrup, Peter; Madsen, Robert

    2008-01-01

    -determining step. For Zn, In, Sn, Sb, and Bi, an inverse secondary kinetic isotope effect was found (k(H)/k(D) = 0.75-0.95), which was compatible with the formation of a discrete organometallic species prior to allylation via a closed six-membered transition state. With Mg, a significantly larger build...

  11. Nickel-catalyzed cyclization of alpha, omega-dienes: formation vs. cleavage of C-C bonds

    Czech Academy of Sciences Publication Activity Database

    Nečas, D.; Turský, M.; Tišlerová, I.; Kotora, Martin

    2006-01-01

    Roč. 30, č. 4 (2006), s. 671-674 ISSN 1144-0546 R&D Projects: GA MŠk 1M0508; GA ČR GD203/03/H140 Institutional research plan: CEZ:AV0Z40550506 Keywords : catalysis * nickel * cyclization * diene * cyclopentane Subject RIV: CC - Organic Chemistry Impact factor: 2.647, year: 2006

  12. Oxidation reaction of 4-allyl-4-hydroperoxy-2-methoxycyclohexa-2,5-dienone in the presence of potassium permanganate without a co-oxidant

    Directory of Open Access Journals (Sweden)

    Mehmet Serdar Gültekin

    2016-12-01

    Full Text Available 4-Allyl-4-hydroperoxy-2-methoxycyclohexa-2,5-dienone (5 was synthesized by photooxygenation of commercially available Eugenol in the presence of tetraphenylporphyrin (TPP as a singlet oxygen sensitizer. The brief and one-pot syntheses of some natural product skeletons were conducted using the corresponding allylic hydroperoxide at different temperatures (0 oC and room temperature with potassium permanganate (KMnO 4 in mild condition at N 2(g atm.

  13. Asymmetric Construction of Benzindoloquinolizidine: Application of An Organocatalytic Enantioselective Conjugate Addition-Cyclization Cascade Reaction

    International Nuclear Information System (INIS)

    Kim, Cheolwoong; Seo, Seung Woo; Lee, Yona; Kim, Sunggon

    2014-01-01

    We have developed the synthetic methodology of enantioenriched benzindoloquinolizidines based on the organocatalytic enantioselective conjugate addition-cyclization cascade reaction of o-N-(3-indoleacetyl)amino-cinnamaldehydes with malonates followed by an acid-catalyzed intramolecular Pictet-Spengler type cyclization. The asymmetric reaction using diphenylprolinol TMS ether as an organocatalyst produces the desired products with good to excellent yields and high enantioselectivities (up to 98% ee). The evaluation of the applications of this synthetic methodology for generating enantioenriched benzindolo-quinolizidines and studies on the biological activity of these compounds against human prostate cancer in particular are now in progress. Results of these studies will be presented in due course. Many new types of chemical reactions have been developed to facilitate easier synthesis of complex compounds. Among the strategies, domino reactions, which have been utilized for the efficient and stereoselective construction of complex molecules from simple precursors in a single process, are widely used due to their high synthetic efficiency by reducing both the number of synthetic operation required and the quantities of chemicals and solvents used

  14. Polymerizations of beta-substituted allylic arsonium ylides with catalytic amounts of organoboron compounds

    International Nuclear Information System (INIS)

    Mondiere, R.

    2004-01-01

    My Ph.D. work consisted in the generalization and optimization of a new polymerization reaction involving allylic arsonium ylides and catalytic amounts of various boron compounds. Thus, various β-substituted allylic arsonium salts were produced according to synthetic strategies that depended on the nature of the functional group born by the salt. These salts were converted in situ to the corresponding arsonium ylides which were then treated with boron compounds to yield polymers. Our new method of polymerization afforded either non conjugated polyenes that are functionalized every three atoms of carbon, or statistic copolymers, depending on the nature of the group R born on the β position of the ylide. These new polymers cannot be synthesized by usual methods of polymerization. Initial molar ratios of reactants were found to give molar mass control of the synthesized polymers. This controlled polymerization allowed us to produce several bloc copolymers. All the polymers were characterized by NMR techniques, by size exclusion chromatography and, for some of them, by mass spectrometry. Investigation of their physicochemical properties will need additional experiments. (author)

  15. Dissociation of protonated N-(3-phenyl-2H-chromen-2-ylidene)-benzenesulfonamide in the gas phase: cyclization via sulfonyl cation transfer.

    Science.gov (United States)

    Wang, Shanshan; Dong, Cheng; Yu, Lian; Guo, Cheng; Jiang, Kezhi

    2016-01-15

    In the tandem mass spectrometry of protonated N-(3-phenyl-2H-chromen-2-ylidene)benzenesulfonamides, the precursor ions have been observed to undergo gas-phase dissociation via two competing channels: (a) the predominant channel involves migration of the sulfonyl cation to the phenyl C atom and the subsequent loss of benzenesulfinic acid along with cyclization reaction, and (b) the minor one involves dissociation of the precursor ion to give an ion/neutral complex of [sulfonyl cation/imine], followed by decomposition to afford sulfonyl cation or the INC-mediated electron transfer to give an imine radical cation. The proposed reaction channels have been supported by theoretical calculations and D-labeling experiments. The gas-phase cyclization reaction originating from the N- to C-sulfonyl cation transfer has been first reported to the best of our knowledge. For the substituted sulfonamides, the presence of electron-donating groups (R(2) -) at the C-ring effectively facilitates the reaction channel of cyclization reaction, whereas that of electron-withdrawing groups inhibits this pathway. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Electrooxidative Tandem Cyclization of Activated Alkynes with Sulfinic Acids To Access Sulfonated Indenones

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jiangwei [The; Center; Shi, Wenyan [The; Zhang, Fan [The; Liu, Dong [The; Tang, Shan [The; Wang, Huamin [The; Lin, Xiao-Min [Center; Lei, Aiwen [The

    2017-05-25

    An,electrooxidative direct arylsulfonlylation of yones sulfintc acids via a radical tandem cyclization strategy has been developed for the construction of sulfonated ilicIenones:under oxidant, free conditions. This method provides a simple and efficient approach to prepare various sulfonylindenones in good to,excellent:Tyidds,, demonstrating the tremendous prospect of utilizing electrocatalysis in oxidative coupling, Notably, this reaction could Be easily scaled up with good, efficiency.

  17. Tandem electrophilic cyclization-[3+2] cycloaddition-rearrangement reactions of 2-alkynylbenzaldoxime, DMAD, and Br2.

    Science.gov (United States)

    Ding, Qiuping; Wang, Zhiyong; Wu, Jie

    2009-01-16

    Tandem electrophilic cyclization-[3+2] cycloaddition-rearrangement reactions of 2-alkynylbenzaldoximes, DMAD, and bromine are described, which afford the unexpected isoquinoline-based azomethine ylides in good to excellent yields. The products could be further elaborated via palladium-catalyzed cross-coupling reactions to generate highly functionalized isoquinoline-based stable azomethine ylides.

  18. Pd-Catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines.

    Science.gov (United States)

    Gao, Yang; Huang, Yubing; Wu, Wanqing; Huang, Kefan; Jiang, Huanfeng

    2014-08-07

    An efficient Pd-catalyzed oxidative cyclization reaction for the synthesis of functionalized indolines by direct C-H activation of acetanilide has been developed. The norbornylpalladium species formed via direct ortho C-H activation of acetanilides is supposed to be a key intermediate in this transformation.

  19. Ternary iron(II) complex with an emissive imidazopyridine arm from Schiff base cyclizations and its oxidative DNA cleavage activity.

    Science.gov (United States)

    Mukherjee, Arindam; Dhar, Shanta; Nethaji, Munirathinam; Chakravarty, Akhil R

    2005-01-21

    The ternary iron(II) complex [Fe(L')(L")](PF6)3(1) as a synthetic model for the bleomycins, where L' and L" are formed from metal-mediated cyclizations of N,N'-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)(L), is synthesized and structurally characterized by X-ray crystallography. In the six-coordinate iron(ii) complex, ligands L' and L" show tetradentate and bidentate chelating modes of bonding. Ligand L' is formed from an intramolecular attack of the alcoholic OH group of L to one imine moiety leading to the formation of a stereochemically constrained five-membered ring. Ligand L" which is formed from an intermolecular reaction involving one imine moiety of L and pyridine-2-carbaldehyde has an emissive cationic imidazopyridine pendant arm. The complex binds to double-stranded DNA in the minor groove giving a Kapp value of 4.1 x 10(5) M(-1) and displays oxidative cleavage of supercoiled DNA in the presence of H2O2 following a hydroxyl radical pathway. The complex also shows photo-induced DNA cleavage activity on UV light exposure involving formation of singlet oxygen as the reactive species.

  20. Modification of Bisphenol-A Based Bismaleimide Resin (BPA-BMI) with an Allyl-Terminated Hyperbranched Polyimide (AT-PAEKI)

    National Research Council Canada - National Science Library

    Qin, Haihu; Mather, Patrick T; Baek, Jong-Beom; Tan, Loon-Seng

    2006-01-01

    As a continuation of previous work involving synthesis of an allyl-functionalized hyperbranched polyimide, AT-PAEKI, we have studied the use of this reactive polymer as a modifier of bisphenol-A based...

  1. Catalytic Enantioselective Synthesis of Naturally Occurring Butenolides via Hetero-Allylic Alkylation and Ring Closing Metathesis

    NARCIS (Netherlands)

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; Zijl, Anthoni W. van; Fletcher, Stephen P.; Minnaard, Adriaan J.; Feringa, Bernard

    2011-01-01

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey

  2. Catalytic stereoselective synthesis of highly substituted indanones via tandem Nazarov cyclization and electrophilic fluorination trapping.

    Science.gov (United States)

    Nie, Jing; Zhu, Hong-Wei; Cui, Han-Feng; Hua, Ming-Qing; Ma, Jun-An

    2007-08-02

    A new catalytic stereoselective tandem transformation via Nazarov cyclization/electrophilic fluorination has been accomplished. This sequence is efficiently catalyzed by a Cu(II) complex to afford fluorine-containing 1-indanone derivatives with two new stereocenters with high diastereoselectivity (trans/cis up to 49/1). Three examples of catalytic enantioselective tandem transformation are presented.

  3. One-pot synthesis of enantiomerically pure N-protected allylic amines from N-protected α-amino esters

    Directory of Open Access Journals (Sweden)

    Gastón Silveira-Dorta

    2016-05-01

    Full Text Available An improved protocol for the synthesis of enantiomerically pure allylic amines is reported. N-Protected α-amino esters derived from natural amino acids were submitted to a one-pot tandem reduction–olefination process. The sequential reduction with DIBAL-H at −78 °C and subsequent in situ addition of organophosphorus reagents yielded the corresponding allylic amines without the need to isolate the intermediate aldehyde. This circumvents the problem of instability of the aldehydes. The method tolerates well both Wittig and Horner–Wadsworth–Emmons organophosphorus reagents. A better Z-(diastereoselectivity was observed when compared to the previous one-pot method. The (diastereoselectivity of the process was affected neither by the reaction solvent nor by the amount of DIBAL-H employed. The method is compatible with the presence of free hydroxy groups as shown with serine and threonine derivatives.

  4. Synthesis of prostanoids; enantiomeric purity of alcohols by a 31P NMR technique

    International Nuclear Information System (INIS)

    Penning, T.D.

    1985-01-01

    The enone, 2,2-diemthyl-3aβ, 6aβ-dihydro-4H-cyclopenta-1,3-dioxol-4-one, has been synthesized in six steps from cyclopentadiene, resolved using sulfoximine chemistry, and converted into (-)-prostaglandin E 2 methyl ester in three steps. Introduction of the optically pure omega side-chain using a conjugate addition of a stabilized organocopper reagent, followed by direct alkylation of the enolate with the α side-chain allylic iodide in the presence of hexamethylphosphoramide, afforded a trans, vicinally disubstituted cyclopentanone. Deprotection of the C-15 alcohol, followed by aluminum amalgam reduction of the C-10/oxygen bond, provided (-)-PGE 2 methyl ester in 47% overall yield from the enone. In an extension of previously described work, 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide, prepared from l-ephedrine and thiophosphoryl chloride, was used to determine the enantiomeric excess of chiral alcohols in conjunction with 31 P NMR. Chiral primary and secondary alcohols added quantitatively to the phospholidine to give diastereomers which could be analyzed by 31 P NMR and HPLC. A number of other phosphorus heterocycles were also explored as potential chiral derivatizing reagents

  5. Palladium Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Fristrup, Peter

    2011-01-01

    are highlighted with emphasis on those leading to C-C bond formation, but where it was deemed necessary for the general understanding of the process closely related C-H oxidations and aminations are also included. It is found that C-H cleavage is most likely achieved by ligand participation which could involve......-H alkylation reaction which is the topic of the current review. Particular emphasis is put on current mechanistic proposals for the three reaction types comprising the overall transformation: C-H activation, nucleophillic addition, and re-oxidation of the active catalyst. Recent advances in C-H bond activation...... an acetate ion coordinated to Pd. Several of the reported systems rely on benzoquinone for re-oxidation of the active catalyst. The scope for nucleophilic addition in allylic C-H alkylation is currently limited, due to demands on pKa of the nucleophile. This limitation could be due to the pH dependence...

  6. Comparative Studies on Conventional and Ultrasound-Assisted Synthesis of Novel Homoallylic Alcohol Derivatives Linked to Sulfonyl Dibenzene Moiety in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Mohamed F. Mady

    2013-01-01

    Full Text Available Novel homoallylic alcohols incorporating sulfone moieties were synthesized by the treatment of different carbonyl compounds with allylic bromides in aqueous media via sonochemical Barbier-type reaction conditions. Sulfonation of α-bromoketones with sodium benzenesulfinate in presence of CuI/2,6-lutidine rapidly gave β-keto-sulfones in good yields. In general, ultrasound irradiation offered the advantages of high yields, short reaction times, and simplicity compared to the conventional methods. The structures of all the compounds were confirmed by analytical and spectral data.

  7. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters† †Electronic supplementary information (ESI) available: Full procedures, computational details and characterization data. See DOI: 10.1039/c7sc04283c

    Science.gov (United States)

    Thomas, Bryce N.; Moon, Patrick J.; Yin, Shengkang; Brown, Alex

    2017-01-01

    A well-defined Ir–allyl complex catalyzes the Z-selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E-products typically observed in metal-mediated coupling reactions to enable the synthesis of Z,E-dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir–carbene and Ir–allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E–H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt3. PMID:29629093

  8. FT-IR study of gamma-radiation induced degradation of polyvinyl alcohol (PVA) and PVA/humic acids blends

    International Nuclear Information System (INIS)

    Ilcin, M.; Hola, O.; Bakajova, B.; Kucerik, J.

    2010-01-01

    Samples of pure polyvinyl alcohol (PVA) and PVA doped with humic acids were exposed to gamma radiation. Gamma rays induced the degradation of the pure polymer. Degradation changes were observed using ATR FT-IR equipment. Dehydration, double bond creation, and their subsequent oxidation (surrounding atmosphere was air) were found out. Also, other degradation reactions (e.g. chain scission, cyclization) occur simultaneously. Formation of C=C and C=O bonds is apparent from FT-IR spectra. In contrast the presence of humic acids in the PVA sample showed stabilizing effect on PVA structure within the concentration range 0.5-10%. (author)

  9. Synthesis of benzimidazoles by potassium tert-butoxide-promoted intermolecular cyclization reaction of 2-iodoanilines with nitriles.

    Science.gov (United States)

    Xiang, Shi-Kai; Tan, Wen; Zhang, Dong-Xue; Tian, Xian-Li; Feng, Chun; Wang, Bi-Qin; Zhao, Ke-Qing; Hu, Ping; Yang, Hua

    2013-11-14

    The synthesis of benzimidazoles by intermolecular cyclization reaction of 2-iodoanilines with nitriles has been developed. These reactions proceeded without the aid of any transition metals or ligands and just using KOBu(t) as the base. A variety of substituted benzimidazole derivatives can be synthesized by the approach.

  10. Ascorbic Acid-Initiated Tandem Radical Cyclization of N-Arylacrylamides to Give 3,3-Disubstituted Oxindoles

    Directory of Open Access Journals (Sweden)

    Sheng Liu

    2015-08-01

    Full Text Available An ascorbic acid-promoted and metal-free tandem room temperature cyclization of N-arylacrylamides with 4-nitrobenzenediazonium generated in situ was developed. This reaction proceeds smoothly through a radical mechanism and provides an environmentally friendly alternative approach to biologically active 3-alkyl-3-benzyloxindoles, avoiding the use of excess oxidants and light irradiation.

  11. Development of the Vinylogous Pictet-Spengler Cyclization and Total Synthesis of (±)-Lundurine A.

    Science.gov (United States)

    Nash, Aaron; Qi, Xiangbing; Maity, Pradip; Owens, Kyle; Tambar, Uttam K

    2018-04-16

    A novel vinylogous Pictet-Spengler cyclization has been developed for the generation of indole-annulated medium-sized rings. The method enables the synthesis of tetrahydroazocinoindoles with a fully substituted carbon center, a prevalent structural motif in many biologically active alkaloids. The strategy has been applied to the total synthesis of (±)-lundurine A. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis of 1-(2-Ethynyl-6-methylphenyl)- and 1-(2-Ethynyl-6-methoxyphenyl)-Naphthalene and Their Cyclization

    Czech Academy of Sciences Publication Activity Database

    Storch, Jan; Čermák, Jan; Karban, Jindřich

    2007-01-01

    Roč. 48, č. 38 (2007), s. 6814-6816 ISSN 0040-4039 R&D Projects: GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40720504 Keywords : aromate * cyclization * cycloizomerization Subject RIV: CC - Organic Chemistry Impact factor: 2.615, year: 2007

  13. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters.

    Science.gov (United States)

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin

    2015-12-04

    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps.

  14. Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2015-09-01

    Full Text Available Heterogeneous semiconductor photoredox catalysis (SCPC, particularly with TiO2, is evolving to provide radically new synthetic applications. In this review we describe how photoactivated SCPCs can either (i interact with a precursor that donates an electron to the semiconductor thus generating a radical cation; or (ii interact with an acceptor precursor that picks up an electron with production of a radical anion. The radical cations of appropriate donors convert to neutral radicals usually by loss of a proton. The most efficient donors for synthetic purposes contain adjacent functional groups such that the neutral radicals are resonance stabilized. Thus, ET from allylic alkenes and enol ethers generated allyl type radicals that reacted with 1,2-diazine or imine co-reactants to yield functionalized hydrazones or benzylanilines. SCPC with tertiary amines enabled electron-deficient alkenes to be alkylated and furoquinolinones to be accessed. Primary amines on their own led to self-reactions involving C–N coupling and, with terminal diamines, cyclic amines were produced. Carboxylic acids were particularly fruitful affording C-centered radicals that alkylated alkenes and took part in tandem addition cyclizations producing chromenopyrroles; decarboxylative homo-dimerizations were also observed. Acceptors initially yielding radical anions included nitroaromatics and aromatic iodides. The latter led to hydrodehalogenations and cyclizations with suitable precursors. Reductive SCPC also enabled electron-deficient alkenes and aromatic aldehydes to be hydrogenated without the need for hydrogen gas.

  15. Effect of three 2-allyl-p-mentha-6,8-dien-2-ols on inhibition of mild steel corrosion in 1 M HCl

    Directory of Open Access Journals (Sweden)

    S. Kharchouf

    2014-11-01

    Full Text Available 2-Allyl-p-mentha-6,8-dien-2-ols P1−P3 synthesized from carvone P are tested as corrosion inhibitors of steel in 1 M HCl using weight loss measurements, potentiodynamic polarisation and impedance spectroscopy (EIS methods. The addition of 2-allyl-p-mentha-6,8-dien-2-ols reduced the corrosion rate. Potentiodynamic polarisation studies clearly reveal that the presence of inhibitors does not change the mechanism of hydrogen evolution and that they act essentially as cathodic inhibitors. 2-Allyl-p-mentha-6,8-dien-2-ols tested adsorb on the steel surface according to Langmuir isotherm. From the adsorption isotherm some thermodynamic data for the adsorption process are calculated and discussed. EIS measurements show the increase of the charge-transfer resistance with the inhibitor concentration. The highest inhibition efficiency (92% is obtained for P1 at 3 g/L. The corrosion rate decreases with the rise of temperature. The corresponding activation energies are determined.

  16. Inactivation of Salmonella in tomato stem scars by organic acid wash and chitosan-allyl isothiocyanate coating

    Science.gov (United States)

    The objective of this study was to evaluate inactivation of inoculated Salmonella enterica on tomato stem scars exploiting integrated treatment of organic acid wash (AW) followed by chitosan-allyl isothiocyanate (CT-AIT) coating. The treatment effect on microbial loads and fruit quality during 21 d...

  17. Expedient pyrrolizidine synthesis by propargylsilane addition to N-acyliminium ions followed by gold-catalyzed α-allenyl amide cyclization

    NARCIS (Netherlands)

    Breman, A.C.; Dijkink, J.; van Maarseveen, J.H.; Kinderman, S.S.; Hiemstra, H.

    2009-01-01

    A reaction sequence, involving the addition of (substituted) propargylsilanes to lactate-derived N-acyliminium ions followed by gold-catalyzed cyclization of the resulting alpha-allenyl amide, is applied in expedient syntheses of pyrrolizidine alkaloids heliotridine and ent-retronecine in five steps

  18. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.

    Science.gov (United States)

    Boire, Timothy C; Gupta, Mukesh K; Zachman, Angela L; Lee, Sue Hyun; Balikov, Daniel A; Kim, Kwangho; Bellan, Leon M; Sung, Hak-Joon

    2015-09-01

    Thermo-responsive shape memory polymers (SMPs) can be programmed to fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly(ε-caprolactone)-co-y%(α-allyl carboxylate ε-caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit highly elastic, switch-like shape recovery near 37°C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. With the ongoing thrust to make surgeries minimally-invasive, it is prudent to develop new biomaterials that are highly compatible and effective in this workflow. Thermo-responsive shape memory polymers (SMPs) have great potential for minimally-invasive applications because SMP medical devices (e.g. stents, grafts) can fit into small-bore minimally-invasive surgical devices and recover their functional shape when deployed in the body. To realize their potential, it is imperative to devise

  19. Mechanistic Dichotomy in the Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes Catalyzed by Chiral Pyridine N-Oxides

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Stončius, S.; Bell, M.; Castelluzzo, F.; Ramírez-López, P.; Biedermannová, Lada; Langer, V.; Rulíšek, Lubomír; Kočovský, P.

    2013-01-01

    Roč. 19, č. 28 (2013), s. 9167-9185 ISSN 0947-6539 R&D Projects: GA MŠk LC512 Institutional support: RVO:61388963 ; RVO:86652036 Keywords : allylation * allylsilanes * calculations * organocatalysis * pyridine N-oxides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013

  20. N,2,3,4-Tetrasubstituted Pyrrolidines through Tandem Lithium Amide Conjugate Addition/Radical Cyclization/Oxygenation Reactions

    Czech Academy of Sciences Publication Activity Database

    Kafka, František; Pohl, Radek; Císařová, I.; Mackman, R.; Bahador, G.; Jahn, Ullrich

    2016-01-01

    Roč. 2016, č. 22 (2016), s. 3862-3871 ISSN 1434-193X R&D Projects: GA ČR GA13-40188S Grant - others:COST(XE) CM1201 Institutional support: RVO:61388963 Keywords : tandem reactions * nitrogen heterocycles * Michael addition * radical reactions * cyclization * enolates Subject RIV: CC - Organic Chemistry Impact factor: 2.834, year: 2016

  1. The direct oxidative diene cyclization and related reactions in natural product synthesis

    Directory of Open Access Journals (Sweden)

    Juliane Adrian

    2016-09-01

    Full Text Available The direct oxidative cyclization of 1,5-dienes is a valuable synthetic method for the (diastereoselective preparation of substituted tetrahydrofurans. Closely related reactions start from 5,6-dihydroxy or 5-hydroxyalkenes to generate similar products in a mechanistically analogous manner. After a brief overview on the history of this group of transformations and a survey on mechanistic and stereochemical aspects, this review article provides a summary on applications in natural product synthesis. Moreover, current limitations and future directions in this area of chemistry are discussed.

  2. Enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase.

    Science.gov (United States)

    Chen, Yi-Yu; Lo, Huei-Fen; Wang, Tzu-Fan; Lin, Min-Guan; Lin, Long-Liu; Chi, Meng-Chun

    2015-01-01

    In the practical application of Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT), we describe a straightforward enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine (GSAC), a naturally occurring organosulfur compound found in garlic, based on a transpeptidation reaction involving glutamine as the γ-glutamyl donor and S-allyl-L-cysteine as the acceptor. With the help of thin layer chromatography technique and computer-assisted image analysis, we performed the quantitative determination of GSAC. The optimum conditions for a biocatalyzed synthesis of GSAC were 200 mM glutamine, 200 mM S-allyl-L-cysteine, 50 mM Tris-HCl buffer (pH 9.0), and BlGGT at a final concentration of 1.0 U/mL. After a 15-h incubation of the reaction mixture at 60 °C, the GSAC yield for the free and immobilized enzymes was 19.3% and 18.3%, respectively. The enzymatic synthesis of GSAC was repeated under optimal conditions at 1-mmol preparative level. The reaction products together with the commercially available GSAC were further subjected to an ESI-MS/MS analysis. A significant signal with m/z of 291.1 and the protonated fragments at m/z of 73.0, 130.1, 145.0, and 162.1 were observed in the positive ESI-MS/MS spectrum, which is consistent with those of the standard compound. These results confirm the successful synthesis of GSAC from glutamine and S-allyl-L-cysteine by BlGGT. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Improving the stability of alpha-conotoxin AuIB through N-to-C cyclization

    DEFF Research Database (Denmark)

    Armishaw, Christopher J; Jensen, Anders A; Balle, Lena D

    2011-01-01

    Modification of alpha-conotoxin frameworks through cyclization via an oligopeptide linker has previously been shown as an effective strategy for improving in vivo stability. We have extended this strategy by investigating cyclic analogs of alpha-conotoxin AuIB, a selective alpha3beta4 nicotinic a......-AuIB. As such, the cAuIB-2 globular isomer could constitute a useful probe for studying the role of the alpha3beta4 nicotinic acetylcholine receptor in a range of in vivo experimental paradigms....

  4. Preparation of pyrrolizinone derivatives via sequential transformations of cyclic allyl imides: synthesis of quinolactacide and marinamide.

    Science.gov (United States)

    Simic, Milena; Tasic, Gordana; Jovanovic, Predrag; Petkovic, Milos; Savic, Vladimir

    2018-03-28

    A facile synthetic route has been developed for the preparation of pyrrolizinone derivatives employing N-allyl imides as starting materials. The nucleophilic addition of a vinyl Grignard reagent/RCM/elimination sequence afforded pyrrolizinones in good yields and has been applied for the preparation of naturally occurring quinolactacide and marinamide.

  5. Synthesis of Heterocycles through a Ruthenium‐Catalyzed Tandem Ring‐Closing Metathesis/Isomerization/N‐Acyliminium Cyclization Sequence

    DEFF Research Database (Denmark)

    Ascic, Erhad; Jensen, Jakob Feldthusen; Nielsen, Thomas Eiland

    2011-01-01

    Tandem bicycle: In the title reaction double bonds created during ring-closing metathesis isomerize to generate reactive iminium intermediates that undergo intramolecular cyclization reactions with tethered heteroatom and carbon nucleophiles. In this way, a series of biologically interesting hete...... heterocyclic compounds can be made, including a known precursor for the total synthesis of the antiparasitic natural product harmicine....

  6. Post-Ugi gold-catalyzed diastereoselective domino cyclization for the synthesis of diversely substituted spiroindolines

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2013-10-01

    Full Text Available An Ugi four-component reaction of propargylamine with 3-formylindole and various acids and isonitriles produces adducts which are subjected to a cationic gold-catalyzed diastereoselective domino cyclization to furnish diversely substituted spiroindolines. All the reactions run via an exo-dig attack in the hydroarylation step followed by an intramolecular diastereoselective trapping of the imminium ion. The whole sequence is atom economic and the application of a multicomponent reaction assures diversity.

  7. Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of N,N-dimethylanilines with maleimides.

    Science.gov (United States)

    Liang, Zhongwei; Xu, Song; Tian, Wenyan; Zhang, Ronghua

    2015-01-01

    A novel and simple strategy for the efficient synthesis of the corresponding tetrahydroquinolines from N,N-dimethylanilines and maleimides using visible light in an air atmosphere in the presence of Eosin Y as a photocatalyst has been developed. The metal-free protocol involves aerobic oxidative cyclization via sp(3) C-H bond functionalization process to afford good yields in a one-pot procedure under mild conditions.

  8. Aqueous protocol for allylic arylation of cinnamyl acetates with sodium tetraphenylborate using Bedford-type palladacycle catalyst

    KAUST Repository

    Ghorpade, Seema Arun; Sawant, Dinesh N; Renn, Dominik; Zernickel, Anna; Du, Weiyuan; Sekar, Nethi; Eppinger, Jö rg

    2018-01-01

    Allylic arylation of cinnamyl acetates with sodium tetraphenylborate using 0.002 mol % of Bedford-type palladacycle catalyst is described. The developed methodology is applicable for wide range of cinnamyl acetates furnishing excellent yields up to 93%. Notably all reactions proceed smoothly under mild reaction conditions in water under air atmosphere.

  9. Aqueous protocol for allylic arylation of cinnamyl acetates with sodium tetraphenylborate using Bedford-type palladacycle catalyst

    KAUST Repository

    Ghorpade, Seema Arun

    2018-03-19

    Allylic arylation of cinnamyl acetates with sodium tetraphenylborate using 0.002 mol % of Bedford-type palladacycle catalyst is described. The developed methodology is applicable for wide range of cinnamyl acetates furnishing excellent yields up to 93%. Notably all reactions proceed smoothly under mild reaction conditions in water under air atmosphere.

  10. An Approach for Expanding Triterpenoid Complexity via Divergent Norrish-Yang Photocyclization

    Science.gov (United States)

    Ignatenko, Vasily A.; Tochtrop, Gregory P.

    2013-01-01

    Triterpenoids comprise a very diverse family of polycyclic molecules that is well-known to possess a myriad of medicinal properties. Therefore, triterpenoids constitute an attractive target for medicinal chemistry and diversity-oriented synthesis. Photochemical transformations provide a promising tool for the rapid, green and inexpensive generation of skeletal diversity in the construction of natural product-like libraries. With this in mind, we have developed a diversity-oriented strategy, whereby the parent triterpenoids bryonolic acid and lanosterol are converted to the pseudo-symmetrical polyketones by sequential allylic oxidation and oxidative cleavage of the bridging double bond at the B/C-ring fusion. The resultant polyketones were hypothesized to undergo divergent Norrish-Yang cyclization to produce unique 6/4/8-fused triterpenoid analogs. The subtle differences between parent triterpenoids led to dramatically different spatial arrangements of reactive functionalities. This finding was rationalized through conformational analysis to explain unanticipated photoinduced pinacolization, as well as the regio- and stereochemical outcome of the desired Norrish-Yang cyclization. PMID:23544445

  11. Direct asymmetric allylic alkenylation of N-itaconimides with Morita-Baylis-Hillman carbonates

    KAUST Repository

    Yang, Wenguo

    2012-08-03

    The asymmetric allylic alkenylation of Morita-Baylis-Hillman (MBH) carbonates with N-itaconimides as nucleophiles has been developed using a commercially available Cinchona alkaloid catalyst. A variety of multifunctional chiral α-methylene-β-maleimide esters were attained in moderate to excellent yields (up to 99%) and good to excellent enantioselectivities (up to 91% ee). The origin of the regio- and stereoselectivity was verified by DFT methods. Calculated geometries and relative energies of various transition states strongly support the observed regio- and enantioselectivity. © 2012 American Chemical Society.

  12. Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of N,N-dimethylanilines with maleimides

    Directory of Open Access Journals (Sweden)

    Zhongwei Liang

    2015-04-01

    Full Text Available A novel and simple strategy for the efficient synthesis of the corresponding tetrahydroquinolines from N,N-dimethylanilines and maleimides using visible light in an air atmosphere in the presence of Eosin Y as a photocatalyst has been developed. The metal-free protocol involves aerobic oxidative cyclization via sp3 C–H bond functionalization process to afford good yields in a one-pot procedure under mild conditions.

  13. Transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates: Catalysts for asymmetric olefin hydroamination and acceptorless alcohol decarbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal [Ames Lab., Ames, IA (United States)

    2012-12-17

    The research presented and discussed in this dissertation involves the synthesis of transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates, and their application in catalytic enantioselective olefin hydroamination and acceptorless alcohol decarbonylation. Neutral oxazolinylboranes are excellent synthetic intermediates for preparing new borate ligands and also developing organometallic complexes. Achiral and optically active bis(oxazolinyl)phenylboranes are synthesized by reaction of 2-lithio-2-oxazolide and 0.50 equiv of dichlorophenylborane. These bis(oxazolinyl)phenylboranes are oligomeric species in solid state resulting from the coordination of an oxazoline to the boron center of another borane monomer. The treatment of chiral bis(oxazolinyl)phenylboranes with sodium cyclopentadienide provide optically active cyclopentadienyl-bis(oxazolinyl)borates H[PhB(C5H5)(OxR)2] [OxR = Ox4S-iPr,Me2, Ox4R-iPr,Me2, Ox4S-tBu]. These optically active proligands react with an equivalent of M(NMe2)4 (M = Ti, Zr, Hf) to afford corresponding cyclopentadienyl-bis(oxazolinyl)borato group 4 complexes {PhB(C5H4)(OxR)2}M(NMe2)2 in high yields. These group 4 compounds catalyze cyclization of aminoalkenes at room temperature or below, providing pyrrolidine, piperidine, and azepane with enantiomeric excesses up to 99%. Our mechanistic investigations suggest a non-insertive mechanism involving concerted C-N/C-H bond formation in the turnover limiting step of the catalytic cycle. Among cyclopentadienyl-bis(oxazolinyl)borato group 4 catalysts, the zirconium complex {PhB(C5H4)(Ox4S-iPr,Me2)2}Zr(NMe2)2 ({S-2}Zr(NMe2)2) displays highest activity and enantioselectivity. Interestingly, S-2

  14. Biosynthesis of monoterpenes. Stereochemistry of the enzymatic cyclizations of geranyl pyrophosphate to (+)-alpha-pinene and (-)-beta-pinene

    International Nuclear Information System (INIS)

    Croteau, R.; Satterwhite, D.M.; Wheeler, C.J.; Felton, N.M.

    1989-01-01

    The conversion of geranyl pyrophosphate to (+)-alpha-pinene and to (-)-beta-pinene is considered to proceed by the initial isomerization of the substrate to (-)-(3R)- and to (+)-(3S)-linalyl pyrophosphate, respectively, and the subsequent cyclization of the anti, endo-conformer of these bound intermediates by mirror-image sequences which should result in the net retention of configuration at C1 of the geranyl precursor. Incubation of (1R)-[2-14C,1-3H]- and (1S)-[2-14C,1-3H]geranyl pyrophosphate with (+)-pinene cyclase and with (-)-pinene cyclase from common sage (Salvia officinalis) gave labeled (+)-alpha- and (-)-beta-pinene of unchanged 3H/14C ratio in all cases, and the (+)- and (-)-olefins were stereoselectively converted to (+)- and (-)-borneol, respectively, which were oxidized to the corresponding (+)- and (-)-isomers of camphor, again without change in isotope ratio. The location of the tritium was determined in each case by stereoselective, base-catalyzed exchange of the exo-alpha-hydrogens of these derived ketones. The results indicated that the configuration at C1 of the substrate was retained in the enzymatic transformations to the (+)- and (-)-pinenes, which is entirely consistent with the syn-isomerization of geranyl pyrophosphate to linalyl pyrophosphate, transoid to cisoid rotation, and anti, endo-cyclization of the latter. The absolute stereochemical elements of the antipodal reaction sequences were confirmed by the selective enzymatic conversions of (3R)- and (3S)-1Z-[1-3H]linalyl pyrophosphate to (+)-alpha-pinene and (-)-beta-pinene, respectively, and by the location of the tritium in the derived camphors as before. The summation of the results fully defines the overall stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to the antipodal pinenes

  15. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract.

    Science.gov (United States)

    Bruns, Merissa M; Kakarla, Prathusha; Floyd, Jared T; Mukherjee, Mun Mun; Ponce, Robert C; Garcia, John A; Ranaweera, Indrika; Sanford, Leslie M; Hernandez, Alberto J; Willmon, T Mark; Tolson, Grace L; Varela, Manuel F

    2017-10-01

    The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.

  16. Oxidative radical cyclizations of diketopiperazines bearing an amidomalonate unit. Heterointermediate reaction sequences toward the asperparalines and stephacidins

    Czech Academy of Sciences Publication Activity Database

    Amatov, Tynchtyk; Gebauer, Martin; Pohl, Radek; Císařová, I.; Jahn, Ullrich

    2016-01-01

    Roč. 50, Suppl 1 (2016), S6-S17 ISSN 1071-5762 Grant - others:COST(XE) CM1201 Institutional support: RVO:61388963 Keywords : alkaloids * diketopiperazines * radical cyclizations * single electron transfer * oxidation Subject RIV: CC - Organic Chemistry Impact factor: 3.188, year: 2016 http://www.tandfonline.com/doi/full/10.1080/10715762.2016.1223295

  17. Synthesis and characterization of sulfolane-based amino alcohols: A combined experimental and computational study

    Science.gov (United States)

    Palchykov, Vitalii A.; Zarovnaya, Iryna S.; Tretiakov, Serhii V.; Reshetnyak, Alyona V.; Omelchenko, Iryna V.; Shishkin, Oleg V.; Okovytyy, Sergiy I.

    2018-04-01

    Aminolysis of 3,4-epoxysulfolane in aqueous media leads to a very complex mixture of products with unresolved stereochemistry. Herein, we report a detailed theoretical and experimental mechanistic investigation of this reaction along with extensive spectroscopic characterization of the resulting amino alcohols, using 1D and 2D NMR techniques (1H, 13C, NOE, NOESY, COSY, HSQC, HMBC) as well as XRD analysis. In addition to simple amines such as ammonia and benzylamine, our study also employed the more sterically hindered endo-bicyclo[2.2.1]hept-5-en-2-ylmethanamine. The mechanism of the aminolysis of 3,4-epoxysulfolane by aqueous ammonia was studied in more detail using quantum chemical calculations at the M06-2X/6-31++G** level of theory. The computational results led us to conclude that the most probable way of initial epoxide transformation is base-catalyzed rearrangement to a corresponding allylic alcohol. Subsequent formation of vicinal amino alcohols and diols proceeds via addition of ammonia or hydroxy-anions to activated double Cdbnd C bond with some preference of a cis-attack. Detailed analytical data obtained in the course of our work will be useful for the stereochemical identification of new sulfolane derivatives.

  18. S-Allyl cysteine improves nonalcoholic fatty liver disease in type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats via regulation of hepatic lipogenesis and glucose metabolism

    OpenAIRE

    Takemura, Shigekazu; Minamiyama, Yukiko; Kodai, Shintaro; Shinkawa, Hiroji; Tsukioka, Takuma; Okada, Shigeru; Azuma, Hideki; Kubo, Shoji

    2013-01-01

    It is important to prevent and improve diabetes mellitus and its complications in a safe and low-cost manner. S-Allyl cysteine, an aged garlic extract with antioxidant activity, was investigated to determine whether S-allyl cysteine can improve type 2 diabetes in Otsuka Long-Evans Tokushima Fatty rats with nonalcoholic fatty liver disease. Male Otsuka Long-Evans Tokushima Fatty rats and age-matched Long-Evans Tokushima Otsuka rats were used and were divided into two groups at 29 weeks of age....

  19. Therapeutic Efficacy of Allyl Isothiocyanate Evaluated on N-Nitrosodiethylamine/Phenobarbitol induced Hepatocarcinogenesis in Wistar Rats

    Directory of Open Access Journals (Sweden)

    G. Thiyagarajan

    2010-07-01

    Full Text Available N-nitrosodiethylamine (NDEA is a potential carcinogenic agent that induces liver cancer. To evaluate the chemotherapeutic effect of Allyl isothiocyanate in the experimental model, Wistar male rats were administered single dose of intraperitoneal (IP injection of NDEA. Two weeks after administration of NDEA, Phenobarbital at the concentration of 0.05% was incorporated in rat chow for up to 14 successive weeks to promote liver cancer. Allyl isothiocyanate (AITC (2mg/kg body weight in addition with 0.5ml of corn oil was given orally on a daily basis. At the end of this experimental period, the rats were sacrificed and the blood samples were taken for biochemical studies. The levels of the marker enzymes for liver function were measured in serum. The results of the biochemical studies showed that NDEA administration followed by phenobarbital induces macro and microscopic liver tumors that increase the levels of marker enzymes and decreases the level of antioxidant in the serum in addition to loss of body weight. Conclusively, the administration of AITC as therapeutic treatment for hepatocarcinoma has significantly reduced the tumor development and counteracted all the biochemical effects induced by NDEA.

  20. Gold(I)-catalyzed diazo cross-coupling: a selective and ligand-controlled denitrogenation/cyclization cascade.

    Science.gov (United States)

    Xu, Guangyang; Zhu, Chenghao; Gu, Weijin; Li, Jian; Sun, Jiangtao

    2015-01-12

    An unprecedented gold-catalyzed ligand-controlled cross-coupling of diazo compounds by sequential selective denitrogenation and cyclization affords N-substituted pyrazoles in a position-switchable mode. This novel transformation features selective decomposition of one diazo moiety and simultaneous preservation of the other one from two substrates. Notably, the choice of the ancillary ligand to the gold complex plays a pivotal role on the chemo- and regioselectivity of the reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  2. Synthesis of New Chiral 2,2'-bipyridine ligands and their application in copper-catalyzed asymmetric allylic oxidation and cyclopropanation

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Pernazza, D.; Bell, M.; Bella, M.; Massa, A.; Teplý, Filip; Meghani, P.; Kočovský, P.

    2003-01-01

    Roč. 68, č. 12 (2003), s. 4727-4742 ISSN 0022-3263 Institutional research plan: CEZ:AV0Z4055905 Keywords : optically-active bipyridine * enantioselective cyclopropanation * allylic oxidation Subject RIV: CC - Organic Chemistry Impact factor: 3.297, year: 2003

  3. Highly Diastereoselective Indium-Mediated Allylation of Proline-Derived Hydrazones

    International Nuclear Information System (INIS)

    Satyender, Apuri; Jang, Doo Ok

    2013-01-01

    A highly diastereoselective indium-mediated addition reaction to L-proline-derived hydrazones has been developed. The method affords an efficient and general synthesis of homoallylic amines of high optically purity in high yields and diastereomeric ratios up to 98:2. It is well known that (S)-1-amino-2-methoxymethylpyrro-lidine and (S)-4-isopropyl- or (S)-4-phenylmethyl-oxa-zolidin-2-one-derived hydrazones have been used for metal-mediated diastereoselective allylation additions to produce chiral homoallylic amines. However, the optically pure hydrazine precursors are either commercially expensive and/or involve laborious synthetic procedures employing toxic reagents for their preparation. Thus, the design of novel classes of chiral hydrazines that would further broaden the scope of asymmetric synthesis to access optically pure homoallylic amines is highly desirable

  4. Formation of Ketenimines via the Palladium-Catalyzed Decarboxylative π-Allylic Rearrangement of N-Alloc Ynamides.

    Science.gov (United States)

    Alexander, Juliana R; Cook, Matthew J

    2017-11-03

    A new approach for the formation of ketenimines via a decarboxylative allylic rearrangement pathway that does not require strong stabilizing or protecting groups has been developed. The products can be readily hydrolyzed into their corresponding secondary amides or reacted with sulfur ylides to perform an additional [2,3]-Wittig process. Mechanistic studies suggest an outer-sphere process in which reductive alkylation is rate-limiting.

  5. Oxidant-free Rh(III)-catalyzed direct C-H olefination of arenes with allyl acetates.

    Science.gov (United States)

    Feng, Chao; Feng, Daming; Loh, Teck-Peng

    2013-07-19

    Rh(III)-catalyzed direct olefination of arenes with allyl acetate via C-H bond activation is described using N,N-disubstituted aminocarbonyl as the directing group. The catalyst undergoes a redox neutral process, and high to excellent yields of trans-products are obtained. This protocol exhibits a wide spectrum of functionality compatibility because of the simple reaction conditions employed and provides a highly effective synthetic method in the realm of C-H olefination.

  6. 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide analogues for melanoma imaging.

    Science.gov (United States)

    Miao, Yubin; Gallazzi, Fabio; Guo, Haixun; Quinn, Thomas P

    2008-02-01

    The purpose of this study was to examine the influence of the lactam bridge cyclization on melanoma targeting and biodistribution properties of the radiolabeled conjugates. Two novel lactam bridge-cyclized alpha-MSH peptide analogues, DOTA-CycMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]) and DOTA-GlyGlu-CycMSH (DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]), were synthesized and radiolabeled with (111)In. The internalization and efflux of (111)In-labeled CycMSH peptides were examined in B16/F1 melanoma cells. The melanoma targeting properties, pharmacokinetics, and SPECT/CT imaging of (111)In-labeled CycMSH peptides were determined in B16/F1 melanoma-bearing C57 mice. Both (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH exhibited fast internalization and extended retention in B16/F1 cells. The tumor uptake values of (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH were 9.53+/-1.41% injected dose/gram (% ID/g) and 10.40+/-1.40% ID/g at 2 h postinjection, respectively. Flank melanoma tumors were clearly visualized with (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH by SPECT/CT images at 2 h postinjection. Whole-body clearance of the peptides was fast, with greater than 90% of the radioactivities cleared through urinary system by 2 h postinjection. There was low radioactivity (<0.8% ID/g) accumulated in blood and normal organs except kidneys at all time points investigated. Introduction of a negatively charged linker (-Gly-Glu-) into the peptide sequence decreased the renal uptake by 44% without affecting the tumor uptake at 4 h postinjection. High receptor-mediated melanoma uptakes coupled with fast whole-body clearance in B16/F1 melanoma-bearing C57 mice demonstrated the feasibility of using (111)In-labeled lactam bridge-cyclized alpha-MSH peptide analogues as a novel class of imaging probes for receptor-targeting melanoma imaging.

  7. Trajectory Calculations for Bergman Cyclization Predict H/D Kinetic Isotope Effects Due to Nonstatistical Dynamics in the Product.

    Science.gov (United States)

    Doubleday, Charles; Boguslav, Mayla; Howell, Caronae; Korotkin, Scott D; Shaked, David

    2016-06-22

    An unusual H/D kinetic isotope effect (KIE) is described, in which isotopic selectivity arises primarily from nonstatistical dynamics in the product. In DFT-based quasiclassical trajectories of Bergman cyclization of (Z)-3-hexen-1,5-diyne (1) at 470 K, the new CC bond retains its energy, and 28% of nascent p-benzyne recrosses back to the enediyne on a vibrational time scale. The competing process of intramolecular vibrational redistribution (IVR) in p-benzyne is too slow to prevent this. Deuteration increases the rate of IVR, which decreases the fraction of recrossing and increases the yield of statistical (trapable) p-benzyne, 2. Trapable yields for three isotopomers of 2 range from 72% to 86%. The resulting KIEs for Bergman cyclization differ substantially from KIEs predicted by transition state theory, which suggests that IVR in this reaction can be studied by conventional KIEs. Leakage of vibrational zero point energy (ZPE) into the reaction coordinate was probed by trajectories in which initial ZPE in the CH/CD stretching modes was reduced by 25%. This did not change the predicted KIEs.

  8. Fluorinated benzamide neuroleptics--III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[{sup 18}F]fluoropropyl)-2,3- dimethoxybenzamide as an improved dopamine D-2 receptor tracer

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Jogeshwar; Zhiying, Yang; Das, Malay K; Brown, Terry

    1995-04-01

    We have prepared five new analogs (n-propyl, iso-propyl, allyl, n-butyl, and iso-butyl) of the dopamine D-2 receptor antagonist, FPMB which result from modifications of the ethyl group at the pyrrolidine nitrogen in FPMB. As expected, all new derivatives showed higher apparent lipophilicity (log k{sub w}), with iso-butyl being the most lipophilic (log k{sub w} = 2.52), followed by the allyl derivative (log k{sub w} = 2.43). The allyl group showed the largest increase in affinity (from 0.26 nM for the ethyl substituent to 0.03 nM for the allyl substituent, almost 10-fold), followed by the n-propyl substituent which showed approximately five-fold better affinity than did the ethyl substituent. Radiosynthesis of S-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[{sup 18}F]fluoropropyl)-2,3-dimethoxybenzamide ([{sup 18}F]fallypride) was carried out by nucleophilic substitution reaction of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-tosyloxypropyl)-2,3- dimethoxybenzamide with no carrier added {sup 18}F{sup -}. [{sup 18}F]Fallypride was obtained in approximately 20-40% yields (EOS/EOB, decay corrected) in specific activities of 900-1700 Ci/mmol after reverse phase HPLC purification in 60 min from EOB. High striatal uptake (upto 2.5% injected dose/g) of [{sup 18}F]fallypride in rats was observed with striatal/cerebellar ratios of 17, 42, 63 and 122 at 30, 60, 90 and 120 min post-injection, respectively. PET experiments with [{sup 18}F]fallypride in a cebus monkey showed a brain uptake of 0.10% injected dose/cc. In rhesus monkeys [{sup 18}F]fallypride showed rapid specific uptake in the striata (0.04-0.06% injected dose/cc) with striata/cerebellum ratios of approx. 3.0 at 14 min, 5.0 at 35 min and 8 at 70 min post-injection. Specifically bound [{sup 18}F]fallypride was displaced with haloperidol (1 mg/kg) with a half-life of 18 min in the rhesus monkey.

  9. Drug Delivery by an Enzyme-Mediated Cyclization of a Lipid Prodrug with Unique Bilayer-Formation Properties

    DEFF Research Database (Denmark)

    Linderoth, Lars; Peters, Günther H.j.; Madsen, Robert

    2009-01-01

    Special delivery: Liposomal drug-delivery systems in which prodrugs are activated specifically by disease-associated enzymes have great potential for the treatment of severe diseases, such as cancer. A new type of phospholipid-based prodrug has the ability to form stable small unilamellar vesicle...... (see picture). Activation of the prodrug vesicles by the enzyme sPLA2 initiates a cyclization reaction, which leads to the release of the drug....

  10. Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes**

    Science.gov (United States)

    Bovino, Michael T.; Liwosz, Timothy W.; Kendel, Nicole E.; Miller, Yan; Tyminska, Nina

    2014-01-01

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein is reported a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols that terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  11. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.

    Science.gov (United States)

    Boire, Timothy C; Gupta, Mukesh K; Zachman, Angela L; Lee, Sue Hyun; Balikov, Daniel A; Kim, Kwangho; Bellan, Leon M; Sung, Hak-Joon

    2016-04-01

    Thermo-responsive shape memory polymers (SMPs) can be programmed to fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly(ε-caprolactone)-co-y%(α-allyl carboxylate ε-caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit highly elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. With the ongoing thrust to make surgeries minimally-invasive, it is prudent to develop new biomaterials that are highly compatible and effective in this workflow. Thermo-responsive shape memory polymers (SMPs) have great potential for minimally-invasive applications because SMP medical devices (e.g. stents, grafts) can fit into small-bore minimally-invasive surgical devices and recover their functional shape when deployed in the body. To realize their potential, it is imperative to devise

  12. Isovanillin derived N-(un)substituted hydroxylamines possessing an ortho-allylic group: valuable precursors to bioactive N-heterocycles.

    Science.gov (United States)

    Dulla, Balakrishna; Tangellamudi, Neelima D; Balasubramanian, Sridhar; Yellanki, Swapna; Medishetti, Raghavender; Kumar Banote, Rakesh; Hari Chaudhari, Girish; Kulkarni, Pushkar; Iqbal, Javed; Reiser, Oliver; Pal, Manojit

    2014-04-28

    The intramolecular 1,3-dipolar cycloaddition of isovanillin derived N-aryl hydroxylamines possessing ortho-allylic dipolarophiles affords novel benzo analogues of tricyclic isoxazolidines that can be readily transformed into functionalized lactams, γ-aminoalcohols and oxazepines. The corresponding N-unsubstituted hydroxylamines give rise to tetrahydroisoquinolines. Anxiogenic properties of these compounds are tested in zebra fish.

  13. Raman spectroscopic approach to monitor the in vitro cyclization of creatine → creatinine

    Science.gov (United States)

    Gangopadhyay, Debraj; Sharma, Poornima; Singh, Sachin Kumar; Singh, Pushkar; Tarcea, Nicolae; Deckert, Volker; Popp, Jürgen; Singh, Ranjan K.

    2015-01-01

    The creatine → creatinine cyclization, an important metabolic phenomenon has been initiated in vitro at acidic pH and studied through Raman spectroscopic and DFT approach. The equilibrium composition of neutral, zwitterionic and protonated microspecies of creatine has been monitored with time as the reaction proceeds. Time series Raman spectra show clear signature of creatinine formation at pH 3 after ∼240 min at room temperature and reaction is faster at higher temperature. The spectra at pH 1 and pH 5 do not show such signature up to 270 min implying faster reaction rate at pH 3.

  14. Efficient Nazarov cyclization/Wagner-Meerwein rearrangement terminated by a Cu(II)-promoted oxidation: synthesis of 4-alkylidene cyclopentenones.

    Science.gov (United States)

    Lebœuf, David; Theiste, Eric; Gandon, Vincent; Daifuku, Stephanie L; Neidig, Michael L; Frontier, Alison J

    2013-04-08

    The discovery and elucidation of a new Nazarov cyclization/Wagner-Meerwein rearrangement/oxidation sequence is described that constitutes an efficient strategy for the synthesis of 4-alkylidene cyclopentenones. DFT computations and EPR experiments were conducted to gain further mechanistic insight into the reaction pathways. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Facile Preparation of (2Z,4E)-Dienamides by the Olefination of Electron-deficient Alkenes with Allyl Acetate.

    Science.gov (United States)

    Ding, Liyuan; Yu, Chunbing; Zhao, Zhenqiang; Li, Feifei; Zhang, Jian; Zhong, Guofu

    2017-06-21

    Direct cross-coupling between two alkenes via vinylic C-H bond activation represents an efficient strategy for the synthesis of butadienes with high atomic and step economy. However, this functionality-directed cross-coupling reaction has not been developed, as there are still limited directing groups in practical use. In particular, a stoichiometric amount of oxidant is usually required, producing a large amount of waste. Due to our interest in novel 1,3-butadiene synthesis, we describe the ruthenium-catalyzed olefination of electron-deficient alkenes using allyl acetate and without external oxidant. The reaction of 2-phenyl acrylamide and allyl acetate was chosen as a model reaction, and the desired diene product was obtained in 80% isolated yield with good stereoselectivity (Z,E/Z,Z = 88:12) under optimal conditions: [Ru(p-cymene) Cl2]2 (3 mol %) and AgSbF6 (20 mol %) in DCE at 110 ºC for 16 h. With the optimized catalytic conditions in hand, representative α- and/or β-substituted acrylamides were investigated, and all reacted smoothly, regardless of aliphatic or aromatic groups. Also, differently N-substituted acrylamides have proven to be good substrates. Moreover, we examined the reactivity of different allyl derivatives, suggesting that the chelation of acetate oxygen to the metal is crucial for the catalytic process. Deuterium-labeled experiments were also conducted to investigate the reaction mechanism. Only Z-selective H/D exchanges on acrylamide were observed, indicating a reversible cyclometalation event. In addition, a kinetic isotope effect (KIE) of 3.2 was observed in the intermolecular isotopic study, suggesting that the olefinic C-H metalation step is probably involved in the rate-determining step.

  16. Azirinium ylides from α-diazoketones and 2H-azirines on the route to 2H-1,4-oxazines: three-membered ring opening vs 1,5-cyclization

    Directory of Open Access Journals (Sweden)

    Nikolai V. Rostovskii

    2015-03-01

    Full Text Available Strained azirinium ylides derived from 2H-azirines and α-diazoketones under Rh(II-catalysis can undergo either irreversible ring opening across the N–C2 bond to 2-azabuta-1,3-dienes that further cyclize to 2H-1,4-oxazines or reversibly undergo a 1,5-cyclization to dihydroazireno[2,1-b]oxazoles. Dihydroazireno[2,1-b]oxazoles derived from 3-aryl-2H-azirines and 3-diazoacetylacetone or ethyl diazoacetoacetate are able to cycloadd to acetyl(methylketene generated from 3-diazoacetylacetone under Rh(II catalysis to give 4,6-dioxa-1-azabicyclo[3.2.1]oct-2-ene and/or 5,7-dioxa-1-azabicyclo[4.3.1]deca-3,8-diene-2-one derivatives. According to DFT calculations (B3LYP/6-31+G(d,p, the cycloaddition can involve two modes of nucleophilic attack of the dihydroazireno[2,1-b]oxazole intermediate on acetyl(methylketene followed by aziridine ring opening into atropoisomeric oxazolium betaines and cyclization. Azirinium ylides generated from 2,3-di- and 2,2,3-triaryl-substituted azirines give rise to only 2-azabuta-1,3-dienes and/or 2H-1,4-oxazines.

  17. Living catalyzed-chain-growth polymerization and block copolymerization of isoprene by rare-earth metal allyl precursors bearing a constrained-geometry-conformation ligand.

    Science.gov (United States)

    Jian, Zhongbao; Cui, Dongmei; Hou, Zhaomin; Li, Xiaofang

    2010-05-07

    Aminophenyl functionalized cyclopentadienyl ligated rare-earth metal allyl mediated cationic systems display high cis-1,4 selectivity for the polymerization of isoprene, and living reversible and rapid chain transfer to aluminium additives.

  18. Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins.

    Science.gov (United States)

    Poth, Aaron G; Colgrave, Michelle L; Philip, Reynold; Kerenga, Bomai; Daly, Norelle L; Anderson, Marilyn A; Craik, David J

    2011-04-15

    Cyclotides are plant proteins whose defining structural features are a head-to-tail cyclized backbone and three interlocking disulfide bonds, which in combination are known as a cyclic cystine knot. This unique structural motif confers cyclotides with exceptional resistance to proteolysis. Their endogenous function is thought to be as plant defense agents, associated with their insecticidal and larval growth-inhibitory properties. However, in addition, an array of pharmaceutically relevant biological activities has been ascribed to cyclotides, including anti-HIV, anthelmintic, uterotonic, and antimicrobial effects. So far, >150 cyclotides have been elucidated from members of the Rubiaceae, Violaceae, and Cucurbitaceae plant families, but their wider distribution among other plant families remains unclear. Clitoria ternatea (Butterfly pea) is a member of plant family Fabaceae and through its usage in traditional medicine to aid childbirth bears similarity to Oldenlandia affinis, from which many cyclotides have been isolated. Using a combination of nanospray and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) analyses, we examined seed extracts of C. ternatea and discovered cyclotides in the Fabaceae, the third-largest family of flowering plants. We characterized 12 novel cyclotides, thus expanding knowledge of cyclotide distribution and evolution within the plant kingdom. The discovery of cyclotides containing novel sequence motifs near the in planta cyclization site has provided new insights into cyclotide biosynthesis. In particular, MS analyses of the novel cyclotides from C. ternatea suggest that Asn to Asp variants at the cyclization site are more common than previously recognized. Moreover, this study provides impetus for the examination of other economically and agriculturally significant species within Fabaceae, now the largest plant family from which cyclotides have been described.

  19. Mechanism of copper(I)-catalyzed allylic alkylation of phosphorothioate esters: influence of the leaving group on α regioselectivity.

    Science.gov (United States)

    Sheng, Wenhao; Wang, Mian; Lein, Matthias; Jiang, Linbin; Wei, Wanxing; Wang, Jianyi

    2013-10-11

    The mechanism of Cu(I) -catalyzed allylic alkylation and the influence of the leaving groups (OPiv, SPiv, Cl, SPO(OiPr)2 ; Piv: pivavloyl) on the regioselectivity of the reaction have been explored by using density functional theory (DFT). A comprehensive comparison of many possible reaction pathways shows that [(iPr)2 Cu](-) prefers to bind first oxidatively to the double bond of the allylic substrate at the anti position with respect to the leaving group, and this is followed by dissociation of the leaving group. If the leaving group is not taken into account, the reaction then undergoes an isomerization and a reductive elimination process to give the α- or γ-selective product. If OPiv, SPiv, Cl, or SPO(OiPr)2 groups are present, the optimal route for the formation of both α- and γ-substituted products changes from the stepwise elimination to the direct process, in which the leaving group plays a stabilizing role for the reactant and destabilizes the transition state. The differences to the energy barrier for the α- and γ-substituted products are 2.75 kcal mol(-1) with SPO(OiPr)2 , 2.44 kcal mol(-1) with SPiv, 2.33 kcal mol(-1) with OPiv, and 1.98 kcal mol(-1) with Cl, respectively; these values show that α regioselectivity in the allylic alkylation follows a SPO(OiPr)2 >SPiv>OPiv>Cl trend, which is in satisfactory agreement with the experimental findings. This trend mainly originates in the differences between the attractive electrostatic forces and the repelling steric interactions of the SPO(OiPr)2 , SPiv, OPiv, and Cl groups on the Cu group. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A simple approach to unsymmetric atropoisomeric bipyridine N,N'-dioxides and their application in enantioselective allylation of aldehydes

    Czech Academy of Sciences Publication Activity Database

    Hrdina, R.; Valterová, Irena; Hodačová, Jana; Císařová, I.; Kotora, Martin

    2007-01-01

    Roč. 349, č. 6 (2007), s. 822-826 ISSN 1615-4150 R&D Projects: GA ČR(CZ) GA203/05/0102; GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40550506 Keywords : allylation * asymmetric catalysis * Lewis bases Subject RIV: CC - Organic Chemistry Impact factor: 4.977, year: 2007

  1. Aldehyde Selective Wacker Oxidations of Phthalimide Protected Allylic Amines : A New Catalytic Route to beta(3)-Amino Acids

    NARCIS (Netherlands)

    Weiner, Barbara; Baeza Garcia, Alejandro; Jerphagnon, Thomas; Feringa, Ben L.

    2009-01-01

    A new method for the synthesis of B-3-amino acids is presented. Phthalimide protected allylic amines are oxidized under Wacker conditions selectively to aldehydes using PdCl2 and CuCl or Pd(MeCN)(2)Cl(NO2) and CuCl2 as complementary catalyst systems. The aldehydes are produced in excellent yields

  2. Petasis/Diels-Alder/Cyclization Cascade Reactions for the Generation of Scaffolds with Multiple Stereogenic Centers and Orthogonal Handles for Library Production

    DEFF Research Database (Denmark)

    Flagstad, Thomas; Azevedo, Carlos M. G.; Min, Geanna

    2018-01-01

    A new effective strategy for the synthesis of sp3‐rich small molecules for library production is presented. The key steps to generate complexity highlight Petasis 3‐component reaction followed by an intramolecular Diels‐Alder and cyclization to generate a densely enriched tricyclic or tetracyclic...

  3. Olefination of Electron-Deficient Alkenes with Allyl Acetate: Stereo- and Regioselective Access to (2Z,4E)-Dienamides.

    Science.gov (United States)

    Li, Feifei; Yu, Chunbing; Zhang, Jian; Zhong, Guofu

    2016-09-16

    A Ru-catalyzed direct olefination of electron-deficient alkenes with allyl acetate via C-H bond activation is disclosed. By using N,N-disubstituted aminocarbonyl as the directing group, this external oxidant-free protocol resulted in high reaction efficiency and good stereo- and regioselectivities, which opens a novel synthetic passway for access to (Z,E)-butadiene skeletons.

  4. Exploring asymmetric catalytic transformations

    NARCIS (Netherlands)

    Guduguntla, Sureshbabu

    2017-01-01

    In Chapter 2, we report a highly enantioselective synthesis of β-alkyl-substituted alcohols through a one-pot Cu- catalyzed asymmetric allylic alkylation with organolithium reagents followed by reductive ozonolysis. The synthesis of γ-alkyl-substituted alcohols was also achieved through Cu-catalyzed

  5. Pd(II)-Catalyzed Hydroxyl-Directed C–H Olefination Enabled by Mono-Protected Amino Acid Ligands

    Science.gov (United States)

    Lu, Yi; Wang, Dong-Hui; Engle, Keary M.

    2010-01-01

    A novel Pd(II)-catalyzed ortho-C–H olefination protocol has been developed using spatially remote, unprotected tertiary, secondary, and primary alcohols as the directing groups. Mono-N-protected amino acid ligands were found to promote the reaction, and an array of olefin coupling partners could be used. When electron-deficient alkenes were used, the resulting olefinated intermediates underwent subsequent Pd(II)-catalyzed oxidative intramolecular cyclization to give the corresponding pyran products, which could be converted into ortho-alkylated alcohols under hydrogenolysis conditions. The mechanistic details of the oxidative cyclization step are discussed and situated in the context of the overall catalytic cycle. PMID:20359184

  6. Neutron radiographic characteristics of MA-ND type (allyl-diglycol-carbonate) nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ilic, R.; Rant, J.; Humar, M.; Somogyi, G.; Hunyadi, I.

    1986-01-01

    Neutron radiographic properties of recently developed new nuclear track detectors (MA-ND/..cap alpha.., MA-ND/p and MA-ND/p1), manufactured from allyl diglycol carbonate, were studied. It was found that the quality of radiographic image has an optimum at a removed layer thickness of about 0.8 ..mu..m. The image obtained under this condition is characterized by high detection sensitivity to neutrons (approx. 8.10/sup -3/ tracks/nsub(th) when using B converter) and by excellent inherent unsharpness (approx. 5 ..mu..m) as well as high image contrast (maximum value of net optical density is approx. 1.4).

  7. An Expeditious Synthesis of [1,2]Isoxazolidin-5-ones and [1,2]Oxazin-6-ones from Functional Allyl Bromide Derivatives

    Directory of Open Access Journals (Sweden)

    Imen Beltaïef

    2010-06-01

    Full Text Available Reaction of allyl bromide (Z-1 and (Z-2 with N-substituted hydroxylamine hydrochlorides in presence of tert-butoxide in tert-butanol at reflux provides a short and effective route to [1,2]isoxazolidin-5-ones 3 and [1,2]oxazin-6-ones 4.

  8. Biological distribution of iodo-allyl Gabapentin and iodo-Gabapentin

    International Nuclear Information System (INIS)

    Akat, H.; Yildirim, Y.; Balcan, M.; Yurt Lambrecht, F.; Yilmaz, O.; Duman, Y.

    2008-01-01

    Gabapentin (GBP) is an anticonvulsant and is widely used in the treatment of epilepsy. In this study, GBP and an allyl derivative of GBP were radioiodinated with 131 I using the iodogen method; then their radiopharmaceutical potential in rats and rabbits was investigated. The radiochemical purity of 131 I-GBP and its derivatives was determined by RTLC. The labeling yield was 95±2%. Biological evaluation was performed in normal rats and rabbits. Labeled compounds were intravenously injected into two rabbits via the ear vein after anesthetizing. The dynamic and static scintigrams were obtained using a gamma camera at different time. Then the labeled compounds were administered intravenously into the rats. The distribution was studied by counting the radioactivity in the removed organs. The results of biodistribution in the rats showed the clearance of 131 IALGBP was faster than 131 I-GBP. On the other hand, the uptake of 131 I-ALGBP in the brain was higher than 131 I-GBP at 60 minutes. (author)

  9. Total Synthesis of 15-F2t-Isoprostane by Using a New Oxidative Cyclization of Distonic Radical Anions as the Key Step

    Czech Academy of Sciences Publication Activity Database

    Jahn, Ullrich; Dinca, E.

    2009-01-01

    Roč. 15, č. 1 (2009), s. 58-62 ISSN 0947-6539 Grant - others:DFG(DE) Ja896/3-1 Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclization * electron transfer * prostanoids * radical ions Subject RIV: CC - Organic Chemistry Impact factor: 5.382, year: 2009

  10. A highly selective turn-on fluorescent probe for hypochlorous acid based on hypochlorous acid-induced oxidative intramolecular cyclization of boron dipyrromethene-hydrazone

    International Nuclear Information System (INIS)

    Chen, Wei-Chieh; Venkatesan, Parthiban; Wu, Shu-Pao

    2015-01-01

    Highlights: • A BODIPY-based fluorescent probe for sensing HOCl was developed. • The probe utilizes the HOCl-promoted cyclization in response to the amount of HOCl. • The probe might have application in the investigation of HOCl in biological systems. - Abstract: A BODIPY-based fluorescent probe, HBP, was developed for the detection of hypochlorous acid based on the specific hypochlorous acid-promoted oxidative intramolecular cyclization of heterocyclic hydrazone in response to the amount of HOCl. The reaction is accompanied by a 41-fold increase in the fluorescent quantum yield (from 0.004 to 0.164). The fluorescence intensity of the reaction between HOCl and HBP is linear in the HOCl concentration range of 1–8 μM with a detection limit of 2.4 nM (S/N = 3). Confocal fluorescence microscopy imaging using RAW264.7 cells showed that the new probe HBP could be used as an effective fluorescent probe for detecting HOCl in living cells

  11. A highly selective turn-on fluorescent probe for hypochlorous acid based on hypochlorous acid-induced oxidative intramolecular cyclization of boron dipyrromethene-hydrazone

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Chieh; Venkatesan, Parthiban; Wu, Shu-Pao, E-mail: spwu@mail.nctu.edu.tw

    2015-07-02

    Highlights: • A BODIPY-based fluorescent probe for sensing HOCl was developed. • The probe utilizes the HOCl-promoted cyclization in response to the amount of HOCl. • The probe might have application in the investigation of HOCl in biological systems. - Abstract: A BODIPY-based fluorescent probe, HBP, was developed for the detection of hypochlorous acid based on the specific hypochlorous acid-promoted oxidative intramolecular cyclization of heterocyclic hydrazone in response to the amount of HOCl. The reaction is accompanied by a 41-fold increase in the fluorescent quantum yield (from 0.004 to 0.164). The fluorescence intensity of the reaction between HOCl and HBP is linear in the HOCl concentration range of 1–8 μM with a detection limit of 2.4 nM (S/N = 3). Confocal fluorescence microscopy imaging using RAW264.7 cells showed that the new probe HBP could be used as an effective fluorescent probe for detecting HOCl in living cells.

  12. Redox regulation of protein tyrosine phosphatase 1B (PTP1B): Importance of steric and electronic effects on the unusual cyclization of the sulfenic acid intermediate to a sulfenyl amide

    Science.gov (United States)

    Sarma, Bani Kanta

    2013-09-01

    The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by nO → σ*S-OH orbital interactions, which force the -OH group to adopt a position trans to the S⋯O interaction, leading to an almost linear arrangement of the O⋯S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S⋯N or S⋯O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.

  13. Palladium-Catalyzed Asymmetric Allylic Alkylation of 4-Substituted Isoxazolidin-5-ones: Straightforward Access to β2,2 -Amino Acids.

    Science.gov (United States)

    Nascimento de Oliveira, Marllon; Arseniyadis, Stellios; Cossy, Janine

    2018-04-03

    We report here an unprecedented and highly enantioselective palladium-catalyzed allylic alkylation applied to 4-substituted isoxazolidin-5-ones. Ultimately, the process provides a straightforward access to β 2,2 -amino acids bearing an all-carbon quaternary stereogenic center in great yields and a high degree of enantioselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    Science.gov (United States)

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. One-Pot Synthesis of Cyclopropane-Fused Cyclic Amidines: An Oxidative Carbanion Cyclization.

    Science.gov (United States)

    Veeranna, Kirana Devarahosahalli; Das, Kanak Kanti; Baskaran, Sundarababu

    2017-12-18

    A novel and efficient one-pot method has been developed for the synthesis of cyclopropane-fused bicyclic amidines on the basis of a CuBr 2 -mediated oxidative cyclization of carbanions. The usefulness of this unique multicomponent strategy has been demonstrated by the use of a wide variety of substrates to furnish novel cyclopropane-containing amidines with a quaternary center in very good yields. This ketenimine-based approach provides straightforward access to biologically active and pharmaceutically important 3-azabicyclo[n.1.0]alkane frameworks under mild conditions. The synthetic power of this methodology is exemplified in the concise synthesis of the pharmaceutically important antidepressant drug candidate GSK1360707 and key intermediates for the synthesis of amitifadine, bicifadine, and narlaprevir. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Trifluoroethylation of Alkynes: Synthesis of Allylic-CF3 Compounds by Visible-Light Photocatalysis

    Institute of Scientific and Technical Information of China (English)

    Geum-bee Roh; Naeem Iqbal; Eun Jin Cho

    2016-01-01

    Two types of allylic trifluoromethylated compounds were synthesized by reacting alkynes with CF3CH2I using visible-light photocatalysis.Subtle differences in the catalytic system controlled the selectivity of iodotrifluoroethylation and hydrotrifluoroethylation.The iodotrifluoroethylated products were obtained in the presence of [Ru(bpy)3]C12 and TMEDA in CH3CN under visible-light irradiation,whereas hydrotrifluoroethylated products were synthesized usingfac-[Ir(ppy)3] and a mixture of DBU and K2CO3 in DMF.The iodotrifluoroethylation reaction worked particularly well,even at gram-scale,and the synthetic utility of iodotrifluoroethylated products was proved by their coupling reactions,providing complex CF3-containing products.

  17. Asymmetric Benzylic Allylic Alkylation Reaction of 3-Furfural Derivatives by Dearomatizative Dienamine Activation.

    Science.gov (United States)

    He, Xiao-Long; Zhao, Hui-Ru; Duan, Chuan-Qi; Han, Xu; Du, Wei; Chen, Ying-Chun

    2018-04-20

    The dearomatizative dienamine-type ortho-quinodimethane species are smoothly generated between 2-alkyl-3-furfurals and chiral secondary amine catalysts, which undergo asymmetric benzylic allylic alkylation reactions with 2-nitroallylic acetates efficiently. A spectrum of densely functionalized 3-furfural derivatives are delivered in moderate to high yields with good to excellent diastereo- and enantioselectivity (up to 98 % yield, >19:1 d.r., >99 % ee). The latent transformations allow the facile production of some enantioenriched architectures, such as 1,1,2,2-tetraarylethanes and triarylmethanes, which are not easily available from other protocols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecular detection and in vitro antioxidant activity of S-allyl-L-cysteine (SAC) extracted from Allium sativum.

    Science.gov (United States)

    Sun, Y-E; Wang, W-D

    2016-06-30

    It is well known that Allium sativum has potential applications to clinical treatment of various cancers due to its remarkable ability in eliminating free radicals and increasing metabolism. An allyl-substituted cysteine derivative - S-allyl-L-cysteine (SAC) was separated and identified from Allium sativum. The extracted SAC was reacted with 1-pyrenemethanol to obtain pyrene-labelled SAC (Py-SAC) to give SAC fluorescence properties. Molecular detection of Py-SAC was conducted by steady-state fluorescence spectroscopy and time-resolved fluorescence method to quantitatively measure concentrations of Py-SAC solutions. The ability of removing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical using Py-SAC was determined through oxygen radical absorbance capacity (ORAC). Results showed the activity of Py-SAC and Vitamin C (VC) with ORAC as index, the concentrations of Py-SAC and VC were 58.43 mg/L and 5.72 mg/L respectively to scavenge DPPH, and 8.16 mg/L and 1.67 mg/L to scavenge •OH respectively. Compared with VC, the clearance rates of Py-SAC to scavenge DPPH were much higher, Py-SAC could inhibit hydroxyl radical. The ability of removing radical showed a dose-dependent relationship within the scope of the drug concentration.

  19. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  20. Synthesis of Substituted 1,4-Dioxenes through O-H Insertion and Cyclization Using Keto-Diazo Compounds.

    Science.gov (United States)

    Davis, Owen A; Croft, Rosemary A; Bull, James A

    2016-11-18

    1,4-Dioxenes present interesting potential as synthetic intermediates and as unusual motifs for incorporation into biologically active compounds. Here, an efficient synthesis of functionalized 1,4-dioxenes is achieved in two steps. Using keto-diazo compounds, a ruthenium catalyzed O-H insertion with β-halohydrins followed by treatment with base results in cyclization with excellent selectivity, through O-alkylation of the keto-enolate. A variety of halohydrins and anion-stabilizing groups in the diazo-component are tolerated, affording novel functionalized dioxenes. Enantioenriched β-bromohydrins provide enantioenriched 1,4-dioxenes.

  1. Zirconium(IV)-Catalyzed Ring Opening of on-DNA Epoxides in Water.

    Science.gov (United States)

    Fan, Lijun; Davie, Christopher P

    2017-05-04

    DNA-encoded library technology (ELT) has spurred wide interest in the pharmaceutical industry as a powerful tool for hit and lead generation. In recent years a number of "DNA-compatible" chemical modifications have been published and used to synthesize vastly diverse screening libraries. Herein we report a newly developed, zirconium tetrakis(dodecyl sulfate) [Zr(DS) 4 ] catalyzed ring-opening of on-DNA epoxides in water with amines, including anilines. Subsequent cyclization of the resulting on-DNA β-amino alcohols leads to a variety of biologically interesting, nonaromatic heterocycles. Under these conditions, a library of 137 million on-DNA β-amino alcohols and their cyclization products was assembled. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Convenient synthesis of benzothiazoles and benzimidazoles through Brønsted acid catalyzed cyclization of 2-amino thiophenols/anilines with β-diketones.

    Science.gov (United States)

    Mayo, Muhammad Shareef; Yu, Xiaoqiang; Zhou, Xiaoyu; Feng, Xiujuan; Yamamoto, Yoshinori; Bao, Ming

    2014-02-07

    Brønsted acid catalyzed cyclization reactions of 2-amino thiophenols/anilines with β-diketones under oxidant-, metal-, and radiation-free conditions are described. Various 2-substituted benzothiazoles/benzimidazoles are obtained in satisfactory to excellent yields. Different groups such as methyl, chloro, nitro, and methoxy linked on benzene rings were tolerated under the optimized reaction conditions.

  3. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    International Nuclear Information System (INIS)

    Tian Binghui; Luan Zhaokun; Li Mingming

    2005-01-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC

  4. Pyridine synthesis by reactions of allyl amines and alkynes proceeding through a Cu(OAc)2 oxidation and Rh(III)-catalyzed N-annulation sequence.

    Science.gov (United States)

    Kim, Dong-Su; Park, Jung-Woo; Jun, Chul-Ho

    2012-11-28

    A new methodology has been developed for the synthesis of pyridines from allyl amines and alkynes, which involves sequential Cu(II)-promoted dehydrogenation of the allylamine and Rh(III)-catalyzed N-annulation of the resulting α,β-unsaturated imine and alkyne.

  5. Thermal studies on unirradiated and γ-irradiated polymer of allyl diglycol carbonate

    International Nuclear Information System (INIS)

    Kalsi, P.C.; Pandey, A.K.; Iyer, R.H.; Singh Mudher, K.D.

    1995-01-01

    The thermal decomposition of unirradiated and γ-irradiated (5.93-15.5 MRad dose range) allyl diglycol carbonate polymer (trade name, CR-39) was studied by thermogravimetry (TG) and differential thermal analysis (DTA). These studies indicate four main decomposition steps in CR-39 polymer in air. Assessment of the influence of radiation dose on the above range shows that while the 5.93 MRad γ-irradiated polymer CR-39 degrades in three steps, the 15.5 MRad γ-irradiated polymer degrades in only two steps. The kinetics of the different stages of degradation were also evaluated from the TG curves. Irradiation enhances the decomposition rate and the effect increases further with increasing radiation dose. The activation energy values calculated for all the decomposition stages decrease on irradiation

  6. Allyl isothiocyanate enhances shelf life of minimally processed shredded cabbage.

    Science.gov (United States)

    Banerjee, Aparajita; Penna, Suprasanna; Variyar, Prasad S

    2015-09-15

    The effect of allyl isothiocyanate (AITC), in combination with low temperature (10°C) storage on post harvest quality of minimally processed shredded cabbage was investigated. An optimum concentration of 0.05μL/mL AITC was found to be effective in maintaining the microbial and sensory quality of the product for a period of 12days. Inhibition of browning was shown to result from a down-regulation (1.4-fold) of phenylalanine ammonia lyase (PAL) gene expression and a consequent decrease in PAL enzyme activity and o-quinone content. In the untreated control samples, PAL activity increased following up-regulation in PAL gene expression that could be linearly correlated with enhanced o-quinone formation and browning. The efficacy of AITC in extending the shelf life of minimally processed shredded cabbage and its role in down-regulation of PAL gene expression resulting in browning inhibition in the product is reported here for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microwave-assisted efficient synthesis of 2-arylbenzo[b]furans and 2 ...

    Indian Academy of Sciences (India)

    ferrocenylbenzo[b]furans from readily prepared propargylic alcohols, ... reported microwave-enhanced Sonogashira coupling and cyclization reactions on alumina,10c but his method needs expensive trimethylsilyl-acetylene as monopro-.

  8. Deconstructing selectivity in the gold-promoted cyclization of alkynyl benzothioamides to six-membered mesoionic carbene or acyclic carbene complexes

    KAUST Repository

    Vummaleti, Sai V. C.; Falivene, Laura; Poater, Albert; Cavallo, Luigi

    2014-01-01

    We demonstrate that the experimentally observed switch in selectivity from 5-exo-dig to 6-endo-dig cyclization of an alkynyl substrate, promoted by Au I and AuIII complexes, is connected to a switch from thermodynamic to kinetic reaction control. The AuIII center pushes alkyne coordination toward a single Au-C(alkyne) σ-bond, conferring carbocationic character (and reactivity) to the distal alkyne C atom. © 2014 American Chemical Society.

  9. Deconstructing selectivity in the gold-promoted cyclization of alkynyl benzothioamides to six-membered mesoionic carbene or acyclic carbene complexes

    KAUST Repository

    Vummaleti, Sai V. C.

    2014-05-02

    We demonstrate that the experimentally observed switch in selectivity from 5-exo-dig to 6-endo-dig cyclization of an alkynyl substrate, promoted by Au I and AuIII complexes, is connected to a switch from thermodynamic to kinetic reaction control. The AuIII center pushes alkyne coordination toward a single Au-C(alkyne) σ-bond, conferring carbocationic character (and reactivity) to the distal alkyne C atom. © 2014 American Chemical Society.

  10. Protection of Grain Products from Sitophilus oryzae (L.) Contamination by Anti-Insect Pest Repellent Sachet Containing Allyl Mercaptan Microcapsule.

    Science.gov (United States)

    Chang, Yoonjee; Lee, Soo-Hyun; Na, Ja Hyun; Chang, Pahn-Shick; Han, Jaejoon

    2017-11-01

    The purpose of this study was to develop an anti-insect pest repellent sachet to prevent Sitophilus oryzae (L.) (Coleoptera: Curculionidae) contamination in grain packaging. The anti-insect pest activities of essential oils (EOs) from garlic (Allium Sativum), ginger (Zingiber Officinalis), black pepper (Piper nigrum), onion (Allium cepa), and fennel (Foeniculum vulgare) as well as major compounds (allyl disulfide, AD; allyl mercaptan, AM) isolated from of garlic and onion (AD and AM) were measured against S. oryzae. The results revealed that garlic EO, onion EO, AD, and AM showed strong fumigant insecticidal activities. Among these, AM showed the highest acetylcholinesterase (AChE) inhibition rate, indicating that the fumigation insecticidal efficacy of AM is related with its AChE inhibition ability. Subsequently, the microcapsules were produced with a high efficiency (80.02%) by using AM as a core material and rice flour as a wall material. Finally, sachet composed of rice flour microcapsule containing 2% AM (RAM) was produced. Repellent assay was performed to measure anti-insect pest ability of the RAM sachet, showed remarkable repelling effect within 48 h both in the presence or absence of attractant. In a release profile of RAM sachet, it was expected to last over 20 mo during the distribution period of brown rice. Moreover, RAM sachet showed no undesirable changes to the sensory properties of the rice both before and after cooking. Taken together, these results suggest that the newly developed RAM sachet could be used as a packaging material to protect grain products from S. oryzae contamination. The rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), causes damages to stored products and its contamination in grain products has become a major problem in cereal market. To preserve brown rice, an anti-insect pest repellent sachet containing 2% allyl mercaptan was newly developed and it showed remarkable repellent abilities against S. oryzae. It

  11. Microwave-assisted cyclizations promoted by polyphosphoric acid esters: a general method for 1-aryl-2-iminoazacycloalkanes

    Directory of Open Access Journals (Sweden)

    Jimena E. Díaz

    2016-09-01

    Full Text Available The first general procedure for the synthesis of 5 to 7-membered 1-aryl-2-iminoazacycloalkanes is presented, by microwave-assisted ring closure of ω-arylaminonitriles promoted by polyphosphoric acid (PPA esters. 1-Aryl-2-iminopyrrolidines were easily prepared from the acyclic precursors employing a chloroformic solution of ethyl polyphosphate (PPE. The use of trimethylsilyl polyphosphate (PPSE in solvent-free conditions allowed for the synthesis of 1-aryl-2-iminopiperidines and hitherto unreported 1-aryl-2-iminoazepanes. The cyclization reaction involves good to high yields and short reaction times, and represents a novel application of PPA esters in heterocyclic synthesis.

  12. Gold(I)-assisted catalysis - a comprehensive view on the [3,3]-sigmatropic rearrangement of allyl acetate

    Science.gov (United States)

    Freindorf, Marek; Cremer, Dieter; Kraka, Elfi

    2018-03-01

    The unified reaction valley approach (URVA) combined with the local mode, ring puckering and electron density analysis is applied to elucidate the mechanistic differences of the non-catalysed and the Au[I]-N-heterocyclic carbene (NHC)-catalysed [3,3]-sigmatropic rearrangement of allyl acetate. Using a dual-level approach (DFT and DLPNO-CCSD(T)), the influence of solvation, counter-ions, bulky and electron withdrawing/donating substituents as well as the exchange of the Au[I]-NHC with a Au[I]-phosphine catalyst is investigated. The catalyst breaks up the rearrangement into two steps by switching between Au[I]-π and Au[I]-σ complexation, thus avoiding the energy-consuming CO cleavage in the first step. Based on local stretching force constants ka(C=C), we derive for the first time a quantitative measure of the π-acidity of the Au[I] catalyst; in all catalysed reactions, the bond order n(C=C) drops from 2 to 1.65. The ring puckering analysis clarifies that all reactions start and end via a six-membered ring with a boat form. All Au[I]-σ-complex intermediates show a considerable admixture of the chair form. The non-catalysed [3,3]-sigmatropic rearrangement goes through a maximum of charge separation between the allyl and acetate units at the transition state, while all catalysed reactions proceed via a minimum of charge separation reached in the region of the Au[I]-σ-complex.

  13. The quantum-chemical investigation of N-cyclization reaction mechanism for epichlorohydrin aminolysis products

    Directory of Open Access Journals (Sweden)

    Andrey V. Tokar

    2014-12-01

    Full Text Available The mechanism of intramolecular cyclization for products of epichlorohydrin aminolysis by secondary amines has been investigated at ab initio level of theory. By comparative analysis of energetic characteristics, which obtained in vacuo as well as in acetonitrile solution with the trace quantities of water as an «active» solvation partner of reaction, it has been shown a decisive role of solvent, which occurs mainly at the expense of the polarizable effects for nonspecific solvation. Indeed, the addition to the substrate of one water molecule have decreased corresponding EACT values only 24.1 kJ/mol, while the appearance of acetonitrile surroundings have the same influence ~42.0 kJ/mol. The results of calculations are in good agreement with that data, which have been obtained for such type modeling previously.

  14. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    Science.gov (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis, Molecular Structure and Characterization of Allylic Derivatives of 6-Amino-3-methyl-1,2,4-triazolo[3,4-f][1,2,4]-triazin-8(7H-one

    Directory of Open Access Journals (Sweden)

    Gene-Hsiang Lee

    2006-06-01

    Full Text Available 1-Allyl- (2 and 7-allyl-6-amino-3-methyl-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one (3 were obtained via the 18-crown-6-ether catalyzed room temperature reactionof 6-amino-3-methyl-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one (1 with potassiumcarbonate and allyl bromide in dry acetone. The structures of these two derivatives wereverified by 2D-NMR measurements, including gHSQC and gHMBC measurements. Theminor compound 2 may possess aromatic character. A single crystal X-ray diffractionexperiment indicated that the major compound 3 crystallizes from dimethyl sulfoxide in themonoclinic space group P21/n and its molecular structure includes an attached dimethylsulfoxide molecule, resulting in the molecular formula C10H16N6O2S. Molecular structuresof 3 are linked by extensive intermolecular N-H···N hydrogen bonding [graph set C 1 (7]. 1Each molecule is attached to the dimethyl sulfoxide oxygen via N-H···O intermolecularhydrogen bonding. The structure is further stabilized by π-π stacking interactions.

  16. Poly(allyl methacrylate) functionalized hydroxyapatite nanocrystals via the combination of surface-initiated RAFT polymerization and thiol-ene protocol: a potential anticancer drug nanocarrier.

    Science.gov (United States)

    Bach, Long Giang; Islam, Md Rafiqul; Vo, Thanh-Sang; Kim, Se-Kwon; Lim, Kwon Taek

    2013-03-15

    Hydroxyapatite nanocrystals (HAP NCs) were encapsulated by poly(allyl methacrylate) (PolyAMA) employing controlled surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization of allyl methacrylate to afford HAP-PolyAMA nanohybrids. The subsequent thiol-ene coupling of nanohybrids with 2-mercaptosuccinic acid resulted HAP-Poly(AMA-COOH) possessing multicarboxyl group. The formation of the nanohybrids was confirmed by FT-IR and EDS analyses. The TGA and FE-SEM investigation were further suggested the grafting of PolyAMA onto HAP NCs. The utility of the HAP-PolyAMA nanohybrid as drug carrier was also explored. The pendant carboxyl groups on the external layers of nanohybrids were conjugated with anticancer drug cisplatin to afford HAP-Poly(AMA-COOH)/Pt complex. The formation of the complex was confirmed by FT-IR, XPS, and FE-SEM. In vitro evaluation of the synthesized complex as nanomedicine revealed its potential chemotherapeutic efficacy against cancer cell lines. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Structural analysis by reductive cleavage with LiAlH4 of an allyl ether choline-phospholipid, archaetidylcholine, from the hyperthermophilic methanoarchaeon Methanopyrus kandleri

    Directory of Open Access Journals (Sweden)

    Masateru Nishihara

    2002-01-01

    Full Text Available A choline-containing phospholipid (PL-4 in Methanopyrus kandleri cells was identified as archaetidylcholine, which has been described by Sprott et al. (1997. The PL-4 consisted of a variety of molecular species differing in hydrocarbon composition. Most of the PL-4 was acid-labile because of its allyl ether bond. The identity of PL-4 was confirmed by thin-layer chromatography (TLC followed by positive staining with Dragendorff-reagent and fast-atom bombardment–mass spectrometry. A new method of LiAlH4 hydrogenolysis was developed to cleave allyl ether bonds and recover the corresponding hydrocarbons. We confirmed the validity of the LiAlH4 method in a study of the model compound synthetic unsaturated archaetidic acid (2,3-di-O-geranylgeranyl-sn-glycerol-1-phosphate. Saturated ether bonds were not cleaved by the LiAlH4 method. The hydrocarbons formed following LiAlH4 hydrogenolysis of PL-4 were identified by gas–liquid chromatography and mass spectrometry. Four kinds of hydrocarbons with one to four double bonds were detected: 47% of the hydrocarbons had four double bonds; 11% had three double bonds; 14% had two double bonds; 7% had one double bond; and 6% were saturated species. The molecular species composition of PL-4 was also estimated based on acid lability: 77% of the molecular species had two acid-labile hydrocarbons; 11% had one acid-labile and one acid-stable hydrocarbon; and 11% had two acid-stable hydrocarbons. To our knowledge, this is the first report of a specific chemical degradation method for the structural analysis of allyl ether phospholipid in archaea.

  18. Stereoselective synthesis of 1,3-disubstituted isoindolines via Rh(III)-catalyzed tandem oxidative olefination-cyclization of 4-aryl cyclic sulfamidates.

    Science.gov (United States)

    Son, Se-Mi; Seo, Yeon Ji; Lee, Hyeon-Kyu

    2016-03-21

    Rh(III)-catalyzed tandem ortho C-H olefination of cyclic 4-aryl sulfamidates (1) and subsequent intramolecular cyclization are described. This reaction serves as a method for the direct and stereoselective synthesis of 1,3-disubstituted isoindolines (3) starting with enantiomerically enriched 4-aryl cyclic sulfamidates. In this process, the configurational integrity of the stereogenic center in the starting cyclic sulfamidate is completely retained. In addition, the process generates trans-1,3-disubstituted isoindolines exclusively.

  19. Palladium-Catalyzed Atom-Transfer Radical Cyclization at Remote Unactivated C(sp3 )-H Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates.

    Science.gov (United States)

    Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir

    2018-03-01

    A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mode selectivity in the intramolecular cyclization of ketenimines bearing N-acylimino units: a computational and experimental study.

    Science.gov (United States)

    Alajarín, Mateo; Sánchez-Andrada, Pilar; Vidal, Angel; Tovar, Fulgencio

    2005-02-18

    [reaction: see text] The mode selectivity in the intramolecular cyclization of a particular class of ketenimines bearing N-acylimino units has been studied by ab initio and DFT calculations. In the model compounds the carbonyl carbon atom and the keteniminic nitrogen atom are linked either by a vinylic or an o-phenylene tether. Two cyclization modes have been analyzed: the [2+2] cycloaddition furnishing compounds with an azeto[2,1-b]pyrimidinone moiety and a 6pi-electrocyclic ring closure leading to compounds enclosing a 1,3-oxazine ring. The [2+2] cycloaddition reaction takes place via a two-step process with formation of a zwitterionic intermediate, which has been characterized as a cross-conjugated mesomeric betaine. The 6pi-electrocyclic ring closure occurs via a transition state whose pseudopericyclic character has been established on the basis of its magnetic properties, geometry, and NBO analysis. The 6pi-electrocyclic ring closure is energetically favored over the [2+2] cycloaddition, although the [2+2] cycloadducts are the thermodynamically controlled products. A quantitative kinetic analysis predicts that 1,3-oxazines would be the kinetically controlled products, but they should transform rapidly and totally into the [2+2] cycloadducts at room temperature. In the experimental study, a number of N-acylimino-ketenimines, in which both reactive functions are supported on an o-phenylene scaffold, have been successfully synthesized in three steps starting from 2-azidobenzoyl chloride. These compounds rapidly convert into azeto[2,1-b]quinazolin-8-ones in moderate to good yields as a result of a formal [2+2] cycloaddition.

  1. Ready synthesis of free N-H 2-arylindoles via the copper-catalyzed amination of 2-bromo-arylacetylenes with aqueous ammonia and sequential intramolecular cyclization.

    Science.gov (United States)

    Wang, Huifeng; Li, Yaming; Jiang, Linlin; Zhang, Rong; Jin, Kun; Zhao, Defeng; Duan, Chunying

    2011-07-07

    A wide range of free N-H 2-arylindoles were synthesised via the copper(II)-catalyzed amination of 2-bromo-arylacetylenes with aqueous ammonia and sequential intramolecular cyclization. The convenience and atom economy of aqueous ammonia, and the low cost of the copper catalytic system make this protocol readily superior in practical application.

  2. Titanocene Dichloride Complexes Bonded to Carbosilane Dendrimers Via a Spacer of Variable Length – Molecular Dynamics Calculations and Catalysis of Allylic Coupling Reactions

    Czech Academy of Sciences Publication Activity Database

    Strašák, Tomáš; Jaroschik, F.; Malý, M.; Čermák, Jan; Sýkora, Jan; Fajgar, Radek; Karban, Jindřich; Harakat, D.

    2014-01-01

    Roč. 409, SI (2014), s. 137-146 ISSN 0020-1693 R&D Projects: GA MŠk(CZ) LC06070 Grant - others:UJEP(CZ) GA13-06989S Institutional support: RVO:67985858 Keywords : metallodendrimers * titanocene dichloride * allylic homocoupling * molecular dynamics Subject RIV: CC - Organic Chemistry Impact factor: 2.046, year: 2014

  3. Diversity-Oriented Synthesis of Coumarin-Linked Benzimidazoles via a One-Pot, Three-Step, Intramolecular Knoevenagel Cyclization.

    Science.gov (United States)

    Yao, Po-Hsin Eric; Kumar, Sunil; Liu, Yu-Li; Fang, Chiu-Ping; Liu, Chia-Chen; Sun, Chung-Ming

    2017-04-10

    Diversity-oriented synthesis of coumarin-linked benzimidazoles from N-(2-aminophenyl)-2-cyanoacetamide was achieved via a one-pot, three-step sequential reaction in excellent yields. In situ intramolecular cyclization of the cyanoacetamide afforded benzimidazoles which subsequently underwent a Knoevenagel condensation of the 2-cyanomethylbenzimidazoles with salicylaldehydes promoted by triethylamine to reach the target compounds. An important intermediate, 2-(2-imino-2H-chromen-3-yl)-1H-benzimidazole was characterized by X-ray analysis and further hydrolyzed to 2-(coumarin-3-yl)benzimidazole in acidic condition. Among the synthesized compounds, some were found to be promising inhibitors of porcine kidney d-amino acid oxidase (pkDAO).

  4. Contact and fumigant toxicity of Armoracia rusticana essential oil, allyl isothiocyanate and related compounds to Dermatophagoides farinae.

    Science.gov (United States)

    Yun, Yeon-Kyeong; Kim, Hyun-Kyung; Kim, Jun-Ran; Hwang, Kumnara; Ahn, Young-Joon

    2012-05-01

    The toxicity to adult Dermatophagoides farinae of allyl isothiocyanate identified in horseradish, Armoracia rusticana, oil and another 27 organic isothiocyanates was evaluated using contact + fumigant and vapour-phase mortality bioassays. Results were compared with those of two conventional acaricides, benzyl benzoate and dibutyl phthalate. Horseradish oil (24 h LC(50), 1.54 µg cm(-2)) and allyl isothiocyanate (2.52 µg cm(-2)) were highly toxic. Benzyl isothiocyanate (LC(50) , 0.62 µg cm(-2)) was the most toxic compound, followed by 4-chlorophenyl, 3-bromophenyl, 3,5-bis(trifluoromethyl)phenyl, cyclohexyl, 2-chlorophenyl, 4-bromophenyl and 2-bromophenyl isothiocyanates (0.93-1.41 µg cm(-2)). All were more effective than either benzyl benzoate (LC(50) , 4.58 µg cm(-2)) or dibutyl phthalate (24.49 µg cm(-2)). The structure-activity relationship indicates that types of functional group and chemical structure appear to play a role in determining the isothiocyanate toxicities to adult D. farinae. In the vapour-phase mortality bioassay, these isothiocyanates were consistently more toxic in closed versus open containers, indicating that their mode of delivery was, in part, a result of vapour action. In the light of global efforts to reduce the level of highly toxic synthetic acaricides in indoor environments, the horseradish oil-derived compounds and the isothiocyanates described herein merit further study as potential acaricides for the control of house dust mite populations as fumigants with contact action. Copyright © 2011 Society of Chemical Industry.

  5. Effect of allyl isothiocyanate on ultra-structure and the activities of four enzymes in adult Sitophilus zeamais.

    Science.gov (United States)

    Wu, Hua; Liu, Xue-ru; Yu, Dong-dong; Zhang, Xing; Feng, Jun-tao

    2014-02-01

    Rarefaction and vacuolization of the mitochondrial matrix of AITC-treated (allyl isothiocyanate-treated) adult Sitophilus zeamais were evident according to the ultra-structural by TEM. Four important enzymes in adult S. zeamais were further studied after fumigation treatment with allyl isothiocyanate (AITC) extracted from Armoracia rusticana roots and shoots. The enzymes were glutathione S-transferase (GST), catalase (CAT), cytochrome c oxidase, and acetylcholinesterase (AChE). The results indicated that the activities of the four enzymes were strongly time and dose depended. With prolonged exposure time, treatment with 0.74μg/mL AITC inhibited the activities of cytochrome c oxidase, AChE, and CAT, but induced the activity of GST. The activities of cytochrome c oxidase, AChE, and CAT were remarkably induced at a low AITC dosage (0.25μg/mL), but were restrained with increased AITC dosage. The activity of GST was inhibited at a low AITC dosage (0.5μg/mL), but was induced at a high AITC dosage (1.5μg/mL). According to the results of TEM, toxic symptoms and enzymes activities, it suggested that mitochondrial maybe the one site of action of AITC against the adult S. zeamais and it also suggested that cytochrome c oxidase maybe one target protein of AITC against the adult S. zeamais, which need to further confirmed by protein function tested. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Cyclization Reaction of Acyl Thiourea Chitosan: Enhanced Antifungal Properties via Structural Optimization.

    Science.gov (United States)

    Qin, Yukun; Liu, Weixiang; Xing, Ronge; Liu, Song; Li, Kecheng; Li, Pengcheng

    2018-03-06

    In this study, 3-methyl-1,2,4-triazolyl chitosan (MTACS) and 3-chloromethyl-1,2,4-triazolyl chitosan (CMTACS) were prepared via cyclization of acyl thiourea chitosan (TUCS). Their structures were confirmed by FT-IR, ¹H-NMR, elemental analysis, DSC, XRD, and SEM. The conformations were predicted using the Gaussian 09 program. Additionally, the antifungal properties of MTACS and CMTACS against Stemphylium solani weber ( S. solani ), Alternaria porri ( A. porri ), and Gloeosporium theae-sinensis ( G. theae-sinensis ) were assayed in vitro and ranged from 250 μg/mL to 1000 μg/mL. The results showed that MTACS and CMTACS exhibited enhanced inhibitory effect on the selected fungi compared to the original chitosan and TUCS. In particular, they displayed better antifungal activities against A. porri and G. theae-sinensis than that of the positive control, Triadimefon. The findings described here may lead to them being used as antifungal agents for crop protection.

  7. Cyclization Reaction of Acyl Thiourea Chitosan: Enhanced Antifungal Properties via Structural Optimization

    Directory of Open Access Journals (Sweden)

    Yukun Qin

    2018-03-01

    Full Text Available In this study, 3-methyl-1,2,4-triazolyl chitosan (MTACS and 3-chloromethyl-1,2,4-triazolyl chitosan (CMTACS were prepared via cyclization of acyl thiourea chitosan (TUCS. Their structures were confirmed by FT-IR, 1H-NMR, elemental analysis, DSC, XRD, and SEM. The conformations were predicted using the Gaussian 09 program. Additionally, the antifungal properties of MTACS and CMTACS against Stemphylium solani weber (S. solani, Alternaria porri (A. porri, and Gloeosporium theae-sinensis (G. theae-sinensis were assayed in vitro and ranged from 250 μg/mL to 1000 μg/mL. The results showed that MTACS and CMTACS exhibited enhanced inhibitory effect on the selected fungi compared to the original chitosan and TUCS. In particular, they displayed better antifungal activities against A. porri and G. theae-sinensis than that of the positive control, Triadimefon. The findings described here may lead to them being used as antifungal agents for crop protection.

  8. Syntheses of the hexahydroindene cores of indanomycin and stawamycin by combinations of iridium-catalyzed asymmetric allylic alkylations and intramolecular Diels-Alder reactions.

    Science.gov (United States)

    Gärtner, Martin; Satyanarayana, Gedu; Förster, Sebastian; Helmchen, Günter

    2013-01-02

    Short and concise syntheses of the hexahydroindene cores of the antibiotics indanomycin (X-14547 A) and stawamycin are presented. Key methods used are an asymmetric iridium-catalyzed allylic alkylation, a modified Julia olefination, a Suzuki-Miyaura coupling, and an intramolecular Diels-Alder reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Immobilization/hybridization of amino-modified DNA on plasma-polymerized allyl chloride

    International Nuclear Information System (INIS)

    Zhang Zhihong; Feng Chuanliang

    2007-01-01

    The present work describes the fabrication and characterization of chloride-derivatized polymer coatings prepared by continuous wave (cw) plasma polymerization as adhesion layers in DNA immobilization/hybridization. The stability of plasma-polymerized allyl chloride (ppAC) in H 2 O was characterized by variation of the thickness of polymer films and its wettability was examined by water contact angle technique. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to study polymer matrix properties and oligonucleotide/DNA binding interaction. With the same carrier gas rate and process pressure, plasma polymers deposited at different input powers show various comparable immobilization properties; nevertheless, low input power plasma-polymerized films gives a lower sensitivity toward DNA binding than that from high input power plasma-deposited films. The following DNA immobilization on chloride-functionalized surfaces was found dependence on the macromolecular architecture of the plasma films. The hybridization between probe DNA and total mismatch target DNA shows no non-specific adsorption between target and ppAC

  10. Lanthanum triflate triggered synthesis of tetrahydroquinazolinone derivatives of N-allyl quinolone and their biological assessment

    Directory of Open Access Journals (Sweden)

    Jardosh Hardik H.

    2012-01-01

    Full Text Available A series of 24 derivatives of tetrahydroquinazolinone has been synthesized by one-pot cyclocondensation reaction of N-allyl quinolones, cyclic β-diketones and (thiourea/N-phenylthiourea in presence of lanthanum triflate catalyst. This methodology allowed us to achieve the products in excellent yield by stirring at room temperature. All the synthesized compounds were investigated against a representative panel of pathogenic strains using broth microdilution MIC (minimum inhibitory concentration method for their in vitro antimicrobial activity. Amongst these sets of heterocyclic compounds 5h, 6b, 6h, 5f, 5l, 5n and 6g found to have admirable activity.

  11. Effect of DOTA position on melanoma targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide.

    Science.gov (United States)

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Prossnitz, Eric R; Sklar, Larry A; Miao, Yubin

    2009-11-01

    The purpose of this study was to examine the effect of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) position on melanoma targeting and pharmacokinetics of radiolabeled lactam bridge-cyclized alpha-melanocyte stimulating hormone (alpha-MSH) peptide. A novel lactam bridge-cyclized alpha-MSH peptide, Ac-GluGlu-CycMSH[DOTA] {Ac-Glu-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Lys(DOTA)]}, was synthesized using standard 9-fluorenylmethyloxycarbonyl (Fmoc) chemistry. DOTA was directly attached to the alpha-amino group of Lys in the cyclic ring, while the N-terminus of the peptide was acetylated to generate Ac-GluGlu-CycMSH[DOTA]. The MC1 receptor binding affinity of Ac-GluGlu-CycMSH[DOTA] was determined in B16/F1 melanoma cells. Melanoma targeting and pharmacokinetic properties of Ac-GluGlu-CycMSH[DOTA]-111In were determined in B16/F1 melanoma-bearing C57 mice and compared to that of 111In-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp] (111In-DOTA-GlyGlu-CycMSH; DOTA was coupled to the N-terminus of the peptide). Ac-GluGlu-CycMSH[DOTA] displayed 0.6 nM MC1 receptor binding affinity in B16/F1 cells. Ac-GluGlu-CycMSH[DOTA]-111In was readily prepared with greater than 95% radiolabeling yield. Ac-GluGlu-CycMSH[DOTA]-111In exhibited high tumor uptake (11.42 +/- 2.20% ID/g 2 h postinjection) and prolonged tumor retention (9.42 +/- 2.41% ID/g 4 h postinjection) in B16/F1 melanoma-bearing C57 mice. The uptake values for nontarget organs were generally low (<1.3% ID/g) except for the kidneys 2, 4, and 24 h postinjection. DOTA position exhibited profound effect on melanoma targeting and pharmacokinetic properties of Ac-GluGlu-CycMSH[DOTA]-111In, providing a new insight into the design of lactam bridge-cyclized peptide for melanoma imaging and therapy.

  12. Synthesis of Some New 2-(3-Aryl-1-phenyl-4-pyrazolyl-benzoxazoles Using Hypervalent Iodine Mediated Oxidative Cyclization of Schiff’s Bases

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2006-01-01

    Full Text Available Ten new 2-(3-aryl-1-phenyl-4-pyrazolylbenzoxazoles have been synthesized by oxidative intramolecular cyclization of the corresponding Schiff’s bases using iodobenzene diacetate in methanol as an oxidant.

  13. Copper-catalyzed difunctionalization of activated alkynes by radical oxidation-tandem cyclization/dearomatization to synthesize 3-trifluoromethyl spiro[4.5]trienones.

    Science.gov (United States)

    Hua, Hui-Liang; He, Yu-Tao; Qiu, Yi-Feng; Li, Ying-Xiu; Song, Bo; Gao, Pin; Song, Xian-Rong; Guo, Dong-Hui; Liu, Xue-Yuan; Liang, Yong-Min

    2015-01-19

    A copper-catalyzed difunctionalizing trifluoromethylation of activated alkynes with the cheap reagent sodium trifluoromethanesulfinate (NaSO2CF3 or Langlois' reagent) has been developed incorporating a tandem cyclization/dearomatization process. This strategy affords a straightforward route to synthesis of 3-(trifluoromethyl)-spiro[4.5]trienones, and presents an example of difunctionalization of alkynes for simultaneous formation of two carbon-carbon single bonds and one carbon-oxygen double bond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. SOCl2 catalyzed cyclization of chalcones: Synthesis and spectral studies of some bio-potent 1H pyrazoles

    Directory of Open Access Journals (Sweden)

    K. Ranganathan

    2014-05-01

    Full Text Available Some aryl-aryl 1H pyrazoles have been synthesised by cyclization of aryl chalcones and hydrazine hydrate in the presence of SOCl2. The yields of the pyrazoles are more than 85%. These pyrazoles are characterized by their physical constants and spectral data. The infrared, NMR spectral group frequencies of these pyrazolines have been correlated with Hammett substituent constants, F and R parameters. From the results of statistical analyses the effects of substituent on the spectral frequencies have been studied. The antimicrobial activities of all synthesised pyrazolines have been studied using Bauer-Kirby method. DOI: http://dx.doi.org/10.4314/bcse.v28i2.11

  15. Mass spectrometric investigation of cyclication of diazo compounds. XI. Cyclization of 1-diazo-4-methoxycarbonyl-2-butanones

    International Nuclear Information System (INIS)

    Lebedev, A.T.; Kazaryan, A.G.; Sharbatyan, P.A.; Sipyagin, A.M.; Kartsev, V.G.; Petrosyan, V.S.

    1988-01-01

    On the basis of the electron-impact mass spectra of a series of 1-diazo-4-methoxycarbonyl-2-butanones, the data from high-solution mass spectrometry, and the spectrum of the deuterated analog it was shown that the [M-N 2 ] +center-dot ions formed at the first stage in the fragmentation of the molecular ions of these compounds are partly stabilized with the formation of pseudomolecular ions of oxolanones. The molecular ions of the diazo ketones themselves can dissociate in various directions. The many-path dissociation makes it possible to suppose that the yield of oxolanones formed during cyclization in solution under the influence of acidic agents is small

  16. Melanoma targeting with [99mTc(N)(PNP3)]-labeled α-melanocyte stimulating hormone peptide analogs: Effects of cyclization on the radiopharmaceutical properties

    International Nuclear Information System (INIS)

    Carta, Davide; Salvarese, Nicola; Morellato, Nicolò; Gao, Feng; Sihver, Wiebke; Pietzsch, Hans Jurgen; Biondi, Barbara; Ruzza, Paolo; Refosco, Fiorenzo; Carpanese, Debora; Rosato, Antonio; Bolzati, Cristina

    2016-01-01

    The purpose of this study was to evaluate the effect of cyclization on the biological profile of a [ 99m Tc(N)(PNP3)]-labeled α-melanocyte stimulating hormone peptide analog. A lactam bridge-cyclized H-Cys-Ahx-βAla 3 -c[Lys 4 -Glu-His-D-Phe-Arg-Trp-Glu 10 ]-Arg 11 -Pro-Val-NH 2 (NAP―NS2) and the corresponding linear H-Cys-Ahx-βAla-Nle-Asp-His-D-Phe-Arg-Trp-Gly-NH 2 (NAP―NS1) peptide were synthetized, characterized by ESI-MS spectroscopy and their melanocortin-1 receptor (MC1R) binding affinity was determined in B16/F10 melanoma cells. The consistent [ 99m Tc(N)(PNP3)]-labeled compounds were readily obtained in high specific activity and their stability and biological properties were assessed. As an example, the chemical identity of [ 99m Tc(N)(NAP–NS1)(PNP3)] + was confirmed by carrier added experiments supported by radio/UV HPLC analysis combined with ESI(+)-MS. Compared with the linear peptide, cyclization negatively affected the biological properties of NAP–NS2 peptide by reducing its binding affinity for MC1R and by decreasing the overall excretion rate of the corresponding [ 99m Tc(N)(PNP3)]-labeled peptide from the body as well as its in vivo stability. [ 99m Tc(N)(NAP–NS1)(PNP3)] + was evaluated for its potential as melanoma imaging probe in murine melanoma model. Data from in vitro and in vivo studies on B16/F10 melanoma model of [ 99m Tc(N)(NAP–NS1)(PNP3)] + clearly evidenced that the radiolabeled linear peptide keeps its biological properties up on the conjugation to the [ 99m Tc(N)(PNP3)]-building block. The progressive increase of the tumor-to-nontarget ratios over the time indicates a quite stable interaction between the radio-complex and the MC1R.

  17. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Signe Elisabeth Åsberg

    2015-05-01

    Full Text Available Isothiocyanates (ITCs are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants.

  18. Conformational analysis of a Chlamydia-specific disaccharide α-Kdo-(2→8)-α-Kdo-(2→O)-allyl in aqueous solution and bound to a monoclonal antibody: Observation of intermolecular transfer NOEs

    International Nuclear Information System (INIS)

    Sokolowski, Tobias; Haselhorst, Thomas; Scheffler, Karoline; Weisemann, Ruediger; Kosma, Paul; Brade, Helmut; Brade, Lore; Peters, Thomas

    1998-01-01

    The disaccharide α-Kdo-(2 → 8)-α-Kdo (Kdo: 3-deoxy-d-manno-oct-2-ulosonic acid) represents a genus-specific epitope of the lipopolysaccharide of the obligate intracellular human pathogen Chlamydia. The conformation of the synthetically derived disaccharide α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl was studied in aqueous solution, and complexed to a monoclonal antibody S25-2. Various NMR experiments based on the detection of NOEs (or transfer NOEs) and ROEs (or transfer ROEs) were performed. A major problem was the extensive overlap of almost all 1 H NMR signals of α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl. To overcome this difficulty, HMQC-NOESY and HMQC-trNOESY experiments were employed. Spin diffusion effects were identified using trROESY experiments, QUIET-trNOESY experiments and MINSY experiments. It was found that protein protons contribute to the observed spin diffusion effects. At 800 MHz, intermolecular trNOEs were observed between ligand protons and aromatic protons in the antibody binding site. From NMR experiments and Metropolis Monte Carlo simulations, it was concluded that α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl in aqueous solution exists as a complex conformational mixture. Upon binding to the monoclonal antibody S25-2, only a limited range of conformations is available to α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl. These possible bound conformations were derived from a distance geometry analysis using transfer NOEs as experimental constraints. It is clear that a conformation is selected which lies within a part of the conformational space that is highly populated in solution. This conformational space also includes the conformation found in the crystal structure. Our results provide a basis for modeling studies of the antibody-disaccharide complex

  19. Design of the passive personal dosimeter for miners using an allyl diglycol carbonate plastic. Phase 1

    International Nuclear Information System (INIS)

    1983-12-01

    The report summarizes the results of the feasibility study on the design and development of a passive personal dosimeter incorporating an allyl diglycol carbonate plastic (CR39) detector, for use by uranium miners. Based upon the feasibility study, a passive personal dosimeter using a capacitor-type electrostatic enhancement device has been designed. Preliminary tests indicate that the prototype could be used in the mine environment to differentiate radon and thoron daughters with a detection efficiency comparable to that of a typical active device. Further study is required, however, into the possible influence in the mine environment of local variations in charged fraction, upon the calibration of this dosimeter

  20. Alcoholism and Alcohol Abuse

    Science.gov (United States)

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... the liver, brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the ...

  1. Synthesis and characterization of cyclic polystyrene using copper-catalyzed alkyne-azide cycloaddition coupling - evaluation of physical properties and optimization of cyclization conditions

    Science.gov (United States)

    Elupula, Ravinder

    Polymers with a cyclic topology exhibit a range of unique and potentially useful physical properties, including reduced rates of degradation and increased rates of diffusion in bulk relative to linear analogs. However the synthesis of high purity cyclic polymers, and verification of their structural purity remains challenging. The copper-catalyzed azide-alkyne "click" cyclization route toward cyclic polymers has been used widely, due to its synthetic ease and its compatibility with diverse polymer backbones. Yet unoptimized click cyclization conditions have been observed to generate oligomeric byproducts. In order to optimize these cyclization conditions, and to better understand the structure of the higher molecular weight oligomers, these impurities have been isolated by size exclusion chromatography (SEC) and characterized by mass spectrometry (MS). Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF) MS is a particularly valuable characterization tool and was used to determine that the high molecular weight impurities are predominantly cyclic oligomers. It should also be noted that the rapid analysis and small analyte requirements of this MS technique make it particularly attractive as a general tool for elucidating polymer architecture. Ability to tailor the physical properties of polymers by changing the architecture alone has garnered a lot of attention over the past few decades. Compared to their linear analogues, these novel polymer architectures behave completely different in nanoscale regime. Cyclic polymers are especially intriguing since we can compare the differences in the physical properties with that of the linear chains. One of the major physical property changes are T g-confinement effect. Using ATRP and "click chemistry" we have produced highly pure cyclic PS (c-PS) with number-average molecular weight (MW) of 3.4 kg/mol and 9.1 kg/mol. Bulk glass transition temperatures for c-PS were weakly depended on MWs

  2. A comprehensive mechanistic picture of the isomerizing alkoxycarbonylation of plant oils

    KAUST Repository

    Roesle, Philipp; Caporaso, Lucia; Schnitte, Manuel; Goldbach, Verena; Cavallo, Luigi; Mecking, Stefan

    2014-01-01

    . The alcoholysis reaction is slowed down for higher alcohols, evidenced by pressure reactor and NMR studies. Multiple unsaturated fatty acids were observed to form a terminal Pd-allyl species upon reaction with the catalytically active Pd-hydride species

  3. In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme.

    Science.gov (United States)

    Pelay-Gimeno, Marta; Bange, Tanja; Hennig, Sven; Grossmann, Tom N

    2018-05-30

    Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. So far, macrocyclization approaches utilize a very limited structural diversity which complicates the design process. Here, we report an approach that enables cyclization via the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface exposed cysteines which are reacted with a triselectrophile resulting in the in situ cylization of the protein (INCYPRO). A bicyclic version of Sortase A was designed exhibiting increased tolerance towards thermal as well as chemical denaturation, and proved efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain resulting in up to 24 °C increased thermal stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Solvent and electronic effects on kinetics of cyclization of thermolabile aryllithium reagents. A comparison between 1-bromo-2-(2-bromoethylbenzene and 4,5-dimethoxy-1-bromo-2-(2-bromoethylbenzene

    Directory of Open Access Journals (Sweden)

    David A. Hunt

    2009-05-01

    Full Text Available A dramatic solvent effect on the stability and kinetics of intramolecular cyclization is described for the aryllithium species generated from 2-bromo-4,5-dimethoxy-(2-bromoethylbenzene. The aryllithium generated by the halogen-metal exchange reaction with n-butyllithium, is stable for > 1h when generated at -95 to -100 oC in diethyl ether/hexane and can be trapped with electrophiles. However, when the reaction is conducted in a THF/hexane mixture, the intermediate undergoes instantaneous intramolecular cyclization to afford 4,5-dimethoxybenzocyclobutene. By comparison, the corresponding 1-lithio-2-(2-bromoethyl-benzene intermediate is stable for >1h in either THF/hexane or diethyl ether/hexane at -95 to -100 oC. These results indicate that substituent effects as well as the nature of aggregation of these intermediates play key roles in determining the reaction pathway of functionalized aryllithium intermediates when quenched with electrophiles.

  5. Preformulation stability study of the EGFR inhibitor HKI-272 (Neratinib) and mechanism of degradation.

    Science.gov (United States)

    Lu, Qinghong; Ku, Mannching Sherry

    2012-03-01

    The stability in solution of HKI-272 (Neratinib) was studied as a function of pH. The drug is most stable from pH 3 to 4, and degradation rate increases rapidly around pH 6 and appears to approach a maximum asymptotic limit in the range of pH 812. Pseudo first-order reaction kinetics was observed at all pH values. The structure of the major degradation product indicates that it is formed by a cascade of reactions within the dimethylamino crotonamide group of HKI-272. It is assumed that the rate-determining step is the initial isomerization from allyl amine to enamine functionality, followed by hydrolysis and subsequent cyclization to a stable lactam. The maximum change in degradation rate as a function of pH occurs at about pH 6, which corresponds closely to the theoretical pKa value of the dimethylamino group of HKI-272 when accounting for solvent/temperature effects. The observed relationship between pH and degradation rate is discussed, and a self-catalyzed mechanism for the allylamine-enamine isomerization reaction is proposed. The relevance of these findings to other allylamine drugs is discussed in terms of the relative stability of the allylic anion intermediate through which, the isomerization occurs.

  6. Expedite Protocol for Construction of Chiral Regioselectively N-Protected Monosubstituted Piperazine, 1,4-Diazepane, and 1,4-Diazocane Building Blocks

    DEFF Research Database (Denmark)

    Crestey, François; Witt, Matthias; Jaroszewski, Jerzy W.

    2009-01-01

    This paper describes the first study of solution-phase synthesis of chiral monosubstituted piperazine building blocks from nosylamide-activated aziridines. The protocol, involving aminolysis of the starting aziridines with ω-amino alcohols and subsequent Fukuyama−Mitsunobu cyclization, offers the...

  7. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Saini AkalRachna K

    2011-11-01

    Full Text Available Abstract Background Allyl isothiocyanate (AITC from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard seed was improved to allow the measurement of AITC release in the first minutes after exposure of ground mustard seed to water. Using this assay, we determined that temperatures above 67°C decreased sinigrin conversion to AITC in hydrated ground B. juncea seed. A pH near 6.0 was found to be necessary for AITC release. RT-qPCR revealed no significant change in HSP70A mRNA expression at low concentrations of AITC ( 1.0 μM resulted in a four- to five-fold increase in expression. A HSP70 ELISA showed that AITC toxicity in C. elegans was ameliorated by the presence of ground seed from low sinigrin B. juncea cv. Arrid. Conclusions • AITC induced toxicity in C. elegans, as measured by HSP70 expression. • Conditions required for the conversion of sinigrin to AITC in ground B. juncea seed were determined. • The use of C. elegans as a bioassay to test AITC or mustard biopesticide efficacy is discussed.

  8. Olefin cross metathesis based de novo synthesis of a partially protected L-amicetose and a fully protected L-cinerulose derivative

    Directory of Open Access Journals (Sweden)

    Bernd Schmidt

    2014-05-01

    Full Text Available Cross metathesis of a lactate derived allylic alcohol and acrolein is the entry point to a de novo synthesis of 4-benzoate protected L-amicetose and a cinerulose derivative protected at C5 and C1.

  9. Bioinspired total synthesis of tetrahydrofuran lignans by tandem nucleophilic addition/redox isomerization/oxidative coupling and cycloetherification reactions as key steps

    Czech Academy of Sciences Publication Activity Database

    Jagtap, Pratap; Císařová, I.; Jahn, Ullrich

    2018-01-01

    Roč. 16, č. 5 (2018), s. 750-755 ISSN 1477-0520 R&D Projects: GA ČR GA203/09/1936 Institutional support: RVO:61388963 Keywords : oxygenated benzylic alcohols * transition metal complexes * allylic alcohols Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 3.564, year: 2016 http://pubs.rsc.org/en/content/articlehtml/2018/ob/c7ob02848b

  10. Synthesis of 2-azaindolizines by using an iodine-mediated oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamides and an investigation of their photophysical properties.

    Science.gov (United States)

    Shibahara, Fumitoshi; Kitagawa, Asumi; Yamaguchi, Eiji; Murai, Toshiaki

    2006-11-23

    Iodine-mediated, oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamides serves as an efficient and versatile method for the preparation of 2-azaindolizines (imidazo[1,5-a]pyridines) and rare 2-azaindolizine sulfur-bridged dimers. The 2-azaindolizines prepared in this manner are readily converted to a variety of fluorescent compounds by using transition-metal-catalyzed cross-coupling reactions. [reaction: see text].

  11. LEWIS ACID CATALYZED FORMATION OF TETRAHYDROPYRANS IN IONIC LIQUID

    Science.gov (United States)

    Tetrahydropyrans are integral moieties in innumerable natural products and have inspired the development of a variety of different methodologies. A Prins-type cyclization involving the coupling of a homoallylic alcohol and an aldehyde in the presence of catalytic scandium triflat...

  12. Stereoselective Hydrogenation and Ozonolysis of Iridoids. Conversion into Carbocyclic Nucleoside Analogues

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Stermitz, Frank R.

    1999-01-01

    Stereoselective hydrogenation of the iridoids geniposide (9) and aucubin (19) was achieved by using the 1-methyl-1-methoxyethyl ether (MIP) as protecting group for the allylic alcohol, as it enhanced the stereoselectivity and prevented undesired hydrogenolysis. Ozonolysis of the hydrogenation...

  13. Mechanistic Insights into Solvent and Ligand Dependency in Cu(I)-Catalyzed Allylic Alkylation with gem-Diborylalkanes.

    Science.gov (United States)

    Zhang, Qi; Wang, Bing; Liu, Jia-Qin; Fu, Yao; Wu, Yu-Cheng

    2018-01-19

    The recent Cu-catalyzed allylic substitution reaction between gem-diboryalkane and allyl electrophiles shows intriguing solvent and ligand-controlled regioselectivity. The α-alkylation product was obtained in DMF solvent, while γ-alkylation product was obtained in dioxane solvent and the dioxane and NHC ligand situation. In the present study, density functional theory calculations have been used to investigate the reaction mechanism and origin of the regioselectivity. For both dioxane and DMF, γ-alkylation undergoes successive oxidative addition (CH 2 Bpin trans to leaving group) and direct Cγ-C reductive elimination. The α-alkylation is found to undergo oxidative addition (CH 2 Bpin trans to leaving group), isomerization, and Cα-C reductive elimination rather than the previously proposed oxidative addition (-CH 2 Bpin cis to the leaving group) and Cα-C reductive elimination. The γ-alkylation and α-alkylation is, respectively, favorable for dioxane and DMF solvent, which is consistent with the γ- and α-selectivity in experiment. The solvent interferes the isomerization step, thereby affects the relative facility of the α- and γ-alkylation. Further investigation shows that η 1 -intermediate formation promoted by solvent is the rate-determining step of the isomerization. The stronger electron-donating ability of DMF than dioxane facilitates the η 1 -intermediate formation and finally results in the easier isomerization in DMF. For dioxane and NHC situation, in the presence of neutral NHC ligand, the -PO 4 Et 2 group tightly coordinates with the Cu center after the oxidative addition, preventing the isomerization process. The regioselectivity is determined by the relative facility of the oxidative addition step. Therefore, the favorable oxidative addition (in which -CH 2 Bpin trans to the leaving group) results in the facility of γ-alkylation.

  14. Rhodium(III)-Catalyzed ortho-Alkylation of Phenoxy Substrates with Diazo Compounds via C-H Activation: A Case of Decarboxylative Pyrimidine/Pyridine Migratory Cyclization Rather than Removal of Pyrimidine/Pyridine Directing Group.

    Science.gov (United States)

    Ravi, Manjula; Allu, Srinivasarao; Swamy, K C Kumara

    2017-03-03

    An efficient Rh(III)-catalyzed ortho-alkylation of phenoxy substrates with diazo compounds has been achieved for the first time using pyrimidine or pyridine as the directing group. Furthermore, bis-alkylation has also been achieved using para-substituted phenoxypyrimidine and 3 mol equiv of the diazo ester. The ortho-alkylated derivatives of phenoxy products possessing the ester functionality undergo decarboxylative pyrimidine/pyridine migratory cyclization (rather than deprotection of pyrimidine/pyridine group) using 20% NaOEt in EtOH affording a novel class of 3-(pyrimidin-2(1H)-ylidene)benzofuran-2(3H)-ones and 6-methyl-3-(pyridin-2(1H)-ylidene)benzofuran-2(3H)-one. The ortho-alkylated phenoxypyridine possessing ester functionality also undergoes decarboxylative pyridine migratory cyclization using MeOTf/NaOMe in toluene providing 6-methyl-3-(1-methylpyridin-2(1H)-ylidene)benzofuran-2(3H)-one.

  15. Conformational analysis of a Chlamydia-specific disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl in aqueous solution and bound to a monoclonal antibody: Observation of intermolecular transfer NOEs

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Tobias; Haselhorst, Thomas; Scheffler, Karoline [Medizinische Universitaet, Institut fuer Chemie (Germany); Weisemann, Ruediger [Bruker Analytik GmbH, Silberstreifen (Germany); Kosma, Paul [Institut fuer Chemie der Universitaet fuer Bodenkultur Wien (Austria); Brade, Helmut; Brade, Lore [Forschungszentrum Borstel, Zentrum fuer Medizin und Biowissenschaften Parkallee 22 (Germany); Peters, Thomas [Medizinische Universitaet, Institut fuer Chemie (Germany)

    1998-07-15

    The disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo (Kdo: 3-deoxy-d-manno-oct-2-ulosonic acid) represents a genus-specific epitope of the lipopolysaccharide of the obligate intracellular human pathogen Chlamydia. The conformation of the synthetically derived disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl was studied in aqueous solution, and complexed to a monoclonal antibody S25-2. Various NMR experiments based on the detection of NOEs (or transfer NOEs) and ROEs (or transfer ROEs) were performed. A major problem was the extensive overlap of almost all {sup 1}H NMR signals of {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl. To overcome this difficulty, HMQC-NOESY and HMQC-trNOESY experiments were employed. Spin diffusion effects were identified using trROESY experiments, QUIET-trNOESY experiments and MINSY experiments. It was found that protein protons contribute to the observed spin diffusion effects. At 800 MHz, intermolecular trNOEs were observed between ligand protons and aromatic protons in the antibody binding site. From NMR experiments and Metropolis Monte Carlo simulations, it was concluded that {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl in aqueous solution exists as a complex conformational mixture. Upon binding to the monoclonal antibody S25-2, only a limited range of conformations is available to {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl. These possible bound conformations were derived from a distance geometry analysis using transfer NOEs as experimental constraints. It is clear that a conformation is selected which lies within a part of the conformational space that is highly populated in solution. This conformational space also includes the conformation found in the crystal structure. Our results provide a basis for modeling studies of the antibody-disaccharide complex.

  16. Origin of Stereodivergence in Cooperative Asymmetric Catalysis with Simultaneous Involvement of Two Chiral Catalysts.

    Science.gov (United States)

    Bhaskararao, Bangaru; Sunoj, Raghavan B

    2015-12-23

    Accomplishing high diastereo- and enantioselectivities simultaneously is a persistent challenge in asymmetric catalysis. The use of two chiral catalysts in one-pot conditions might offer new avenues to this end. Chirality transfer from a catalyst to product gets increasingly complex due to potential chiral match-mismatch issues. The origin of high enantio- and diastereoselectivities in the reaction between a racemic aldehyde and an allyl alcohol, catalyzed by using axially chiral iridium phosphoramidites PR/S-Ir and cinchona amine is established through transition-state modeling. The multipoint contact analysis of the stereocontrolling transition state revealed how the stereodivergence could be achieved by inverting the configuration of the chiral catalysts that are involved in the activation of the reacting partners. While the enantiocontrol is identified as being decided in the generation of PR/S-Ir-π-allyl intermediate from the allyl alcohol, the diastereocontrol arises due to the differential stabilizations in the C-C bond formation transition states. The analysis of the weak interactions in the transition states responsible for chiral induction revealed that the geometric disposition of the quinoline ring at the C8 chiral carbon of cinchona-enamine plays an anchoring role. The quinolone ring is noted as participating in a π-stacking interaction with the phenyl ring of the Ir-π-allyl moiety in the case of PR with the (8R,9R)-cinchona catalyst combination, whereas a series of C-H···π interactions is identified as vital to the relative stabilization of the stereocontrolling transition states when PR is used with (8S,9S)-cinchona.

  17. Cyclization of 1,2:3,4-di-O-isopropylidene-α-D-galacto-1,6-hexodialdo-1,5-pyranose acylhydrazone and semicarbazone

    OpenAIRE

    Martins Alho, Miriam Amelia; Baggio, Ricardo Fortunato; D'accorso, Norma Beatriz

    2015-01-01

    Cyclization of 1,2:3,4-di-O-isopropylidene-α-D-galacto-1,6-hexodialdo-1,5-pyranose benzoylhydrazone using acetylating mixtures led us to the corresponding (2R)- and (2S)-5- phenyl-1,3,4-oxadiazoline derivatives. The same conditions applied to the semicarbazone produced the 5-methyl-1,3,4-oxadiazoline derivative as the main compound, which is formed with acetylating mixtures even at room temperature. X-Ray analysis and NMR techniques were used to determine the stereochemistry of the new asymme...

  18. Practical synthesis, anticonvulsant, and antimicrobial activity of N-allyl and N-propargyl di(indolyl)indolin-2-ones.

    Science.gov (United States)

    Praveen, Chandrasekaran; Ayyanar, Asairajan; Perumal, Paramasivan Thirumalai

    2011-07-01

    An operation friendly protocol for the synthesis of novel di(indolyl)indolin-2-ones via Cu(OTf)(2) catalyzed bis-addition of N-allyl and N-propargyl indole with isatin was developed. This methodology allowed us to achieve the products in excellent yields without requiring purification technique like column chromatography. All the synthesized compounds were evaluated for their in vivo anticonvulsant activity against maximal electroshock test. Six compounds showed maximum activity compared to the standard drug phenytoin. The scope of the new molecules as antimicrobial agents were tested against two bacterial strains (Staphylococcus aureus and Escherichia coli) and one fungal strain (Candida albicans). Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Nitrile anion cyclization with epoxysilanes followed by Brook rearrangement/ring-opening of cyclopropane nitriles/alkylation.

    Science.gov (United States)

    Okugawa, Seigo; Masu, Hyuma; Yamaguchi, Kentaro; Takeda, Kei

    2005-12-09

    [reactions: see text] The reaction of delta-silyl-gamma,delta-epoxypentanenitrile derivatives 9-12 with a base and an alkylating agent affords (Z)-delta-siloxy-gamma,delta-unsaturated pentanenitrile derivatives via a tandem process that involves the formation of a cyclopropane derivative by epoxy nitrile cyclization followed by Brook rearrangement and an anion-induced cleavage of the cyclopropane ring. Exclusive formation of a (Z)-derivative from trans-epoxides is explained by the reaction pathway that involves a backside displacement of the epoxide by the alpha-nitrile carbanion and the O-Si bond formation followed by concerted processes involving Brook rearrangement and the anti-mode of eliminative ring fission of the cyclopropane from the rotamer 19. The fact that (E)-isomers are exclusively obtained from cis-epoxides and alpha-cyclopropyl-alpha-silylcarbinol derivative 26 provides experimental support for the proposed pathway.

  20. Tandem Rh-Catalyzed Oxidative C-H Olefination and Cyclization of Enantiomerically Enriched Benzo-1,3-Sulfamidates: Stereoselective Synthesis of trans-1,3-Disubstituted Isoindolines.

    Science.gov (United States)

    Achary, Raghavendra; Jung, In-A; Lee, Hyeon-Kyu

    2018-04-06

    A tandem process, involving Rh(III)-catalyzed oxidative C-H olefination of enantiomerically enriched 4-aryl-benzo-1,3-sulfamidates and subsequent intramolecular aza-Michael cyclization has been developed. The reaction produces trans-benzosulfamidate-fused-1,3-disubstituted isoindolines as major products, in which the configurational integrity of the stereogenic center in the starting material is preserved. Further transformations of the benzosulfamidate-fused-1,3-disubstituted isoindolines are described.

  1. Graphene oxide as a catalyst for the diastereoselective transfer hydrogenation in the synthesis of prostaglandin derivatives.

    Science.gov (United States)

    Coman, Simona M; Podolean, Iunia; Tudorache, Madalina; Cojocaru, Bogdan; Parvulescu, Vasile I; Puche, Marta; Garcia, Hermenegildo

    2017-09-14

    Modification of GO by organic molecules changes its catalytic activity in the hydrogen transfer from i-propanol to enones, affecting the selectivity to allyl alcohol and diastereoselectivity to the resulting stereoisomers. It is noteworthy the system does not contain metals and is recyclable.

  2. Vanadium-Catalyzed Deoxydehydration of Glycerol Without an External Reductant

    DEFF Research Database (Denmark)

    Petersen, Allan Robertson; Nielsen, Lasse Bo; Dethlefsen, Johannes Rytter

    2018-01-01

    A vanadium‐catalysed deoxydehydration (DODH) of neat glycerol has been developed. Cheap and readily available ammonium metavanadate (NH4VO3) affords higher yields of allyl alcohol than the well‐established catalyst methyltrioxorhenium. A study in which deuterium‐labelled glycerol was used...

  3. Synthesis of Cyclohexane-Fused Isocoumarins via Cationic Palladium(II)-Catalyzed Cascade Cyclization Reaction of Alkyne-Tethered Carbonyl Compounds Initiated by Intramolecular Oxypalladation of Ester-Substituted Aryl Alkynes.

    Science.gov (United States)

    Zhang, Jianbo; Han, Xiuling; Lu, Xiyan

    2016-04-15

    A cationic Pd(II)-catalyzed cascade cyclization reaction of alkyne-tethered carbonyl compounds was developed. This reaction is initiated by intramolecular oxypalladation of alkynes with an ester group followed by 1,2-addition of the formed C-Pd(II) bond to the carbonyl group, providing a highly efficient method for the synthesis of cyclohexane-fused isocoumarins.

  4. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 whi...

  5. SYNTHESIS AND ANTITUMOR ACTIVITY OF COPPER, NICKEL AND COBALT COORDINATION COMPOUNDS WITH 1-(2-HYDROXYPHENYL)ETHANONE N(4)-ALLYL-3-THIOSEMICARBAZONE

    OpenAIRE

    Vasilii GRAUR; Serghei SAVCIN; Victor TSAPKOV; Aurelian GULEA

    2015-01-01

    The paper presents the synthesis of the ligand 1-(2-hydroxyphenyl)ethanone N(4)-allyl-3-thiosemicarbazone (H2L) and six coordination compounds of copper, nickel and cobalt with this ligand. The structure of thiosemicarbazone H2L was studied using 1H and 13С NMR spectroscopy. The synthesized coordination compounds were studied using elemental analysis, gravimetric analysis of water content, molar conductivity, and magnetochemistry. For H2L the antitumor activity towards human leukemia HL-60 ce...

  6. On the X-ray reflectivity by poly allyl diglycol carbonate (PADC)

    International Nuclear Information System (INIS)

    Ghazaly, M. El

    2011-01-01

    X-ray reflectivity via the poly allyl diglycol carbonate (CR-39 polymer sheet) was investigated. X-ray reflectivity was measured for a pristine and a chemically etched CR-39 detector in 6.25N NaOH at (70 ± 0.5) .deg. C for different durations. Far from the spectral peak, the reflectivity of the CR-39 polymer sheet has a wide peak at 2θ = 20.1 .deg. , and its intensity is decreased by increasing the etching time. Moreover, the integrated counts under the peaks, C(t e ), vary linearly as a function of the etching time t e . Data are fitted using a linear function C(t e ) = A+Bt e , with fitting parameters A = (3271 ± 170) and B = (- 960 ± 84). The reflectivity deterioration is attributed to the increase of CR-39 surface's roughness due to the chemical etching. The rocking curves of X-ray reflectivity were measured for a pristine and an etched CR-39 polymer sheet. Specular reflections are observed, as well as Yoneda wings, which broaden and move away from the specular reflections due to the increase in the CR-39 surface's roughness.

  7. THE PRODUCTS OF THE CYCLIZING DEHYDRATION OF 1-BETA-PHENYLETHYLCYCLOHEXANOL-1 AND THE SYNTHESIS OF SPIROCYCLOHEXANE-1,1-INDANONE-3.

    Science.gov (United States)

    Levitz, M; Perlman, D; Bogert, M T

    1939-08-04

    (1) Spirocyclohexane-1,1-indanone (VI) has been found among the oxidation products of the hydrocarbon mixture which results when 1-beta-phenylethylcyclohexanol-1 is dehydrated, or when 1-beta-phenylethylcyclohexene is cyclized by aluminum trichloride, and its constitution has been proved by synthesis (2) Its oxime melts at 137-137.8 degrees (corr.). The oxime of m.p. 187.5 degrees , reported by Cook et al. therefore must be derived from some other ketone, perhaps the trans-ketoöctahydrophenanthrene, since we were unable to isolate any oxime of m.p. 177 degrees , the figure which they reported for this compound.

  8. Efficient and highly enantioselective formation of the all-carbon quaternary stereocentre of lyngbyatoxin A

    DEFF Research Database (Denmark)

    Vital, Paulo J.V.; Tanner, David

    2006-01-01

    Indole 25, an advanced intermediate in a projected enantioselective total synthesis of lyngbyatoxin A 1, was prepared from allylic alcohol 11 in 9 steps and >95% ee, key transformations being the enantiospecific rearrangement of vinyl epoxide 14 and the Hemetsberger-Knittel reaction of azide 24....

  9. Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K

    International Nuclear Information System (INIS)

    Wisniak, Jaime; Peralta, Rene D.; Infante, Ramiro; Cortez, Gladis

    2005-01-01

    Densities of the binary systems of 1,1-dimethylethyl methyl ether (MTBE) with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate have been measured as a function of the composition, at 298.15 and 308.15 K and atmospheric pressure, using an Anton Paar DMA 5000 oscillating U-tube densimeter. The calculated excess molar volumes were correlated with the Redlich-Kister equation and with a series of Legendre polynomials. The excess molar volumes are negative for the binaries of MTBE + methacrylates; the system MTBE with vinyl acetate presents near ideal behavior. The excess coefficient of thermal expansion is positive for all the systems studied here; the value of the coefficient for the system MTBE + allyl methacrylate is at least three times larger than that for the other systems

  10. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    KAUST Repository

    Behenna, Douglas C.

    2011-12-18

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  11. A STUDY ON THE DEGRADATION MECHANISM OF PHOTOCROSSLINKING PRODUCTS FORMED BY CYCLIZED POLYISOPRENE-DIAZIDE SYSTEM UNDER THE INFLUENCE OF ALKYL BENZENE SULFONIC ACIDS

    Institute of Scientific and Technical Information of China (English)

    HUANG Junlian; SUN Meng

    1989-01-01

    The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects ofalkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.

  12. Synthesis of carbonate esters by carboxymethylation using NaAlO2 as a highly active heterogeneous catalyst

    OpenAIRE

    Ramesh, Sreerangappa; Indukuri, Kiran; Riant, Olivier; Debecker, Damien

    2018-01-01

    Sodium aluminate is presented as a highly active heterogeneous catalyst able to convert a range of alcohols into the corresponding mixed carbonate esters, in high yield and under green conditions. The reaction is carried out using dimethyl carbonate both as a reactant and solvent, at 90°C. Allylic, aliphatic and aromatic alcohols are converted in good yields. The solid catalyst is shown to be truly heterogeneous, resistant to leaching, and recyclable.

  13. Iodine, a Mild Reagent for the Aromatization of Terpenoids.

    Science.gov (United States)

    Domingo, Victoriano; Prieto, Consuelo; Silva, Lucia; Rodilla, Jesús M L; Quílez del Moral, José F; Barrero, Alejandro F

    2016-04-22

    Efficient procedures based on the use of iodine for the aromatization of a series of terpenoids possessing diene and homoallylic or allylic alcohol functionalities are described. Different examples are reported as a proof-of-concept study. Furthermore, iodine also proved to mediate the dehydrogenation of testosterone.

  14. Rhodium(I)-catalyzed cyclization of allenynes with a carbonyl group through unusual insertion of a C-O bond into a rhodacycle intermediate.

    Science.gov (United States)

    Oonishi, Yoshihiro; Yokoe, Takayuki; Hosotani, Akihito; Sato, Yoshihiro

    2014-01-20

    Rhodium(I)-catalyzed cyclization of allenynes with a tethered carbonyl group was investigated. An unusual insertion of a CO bond into the C(sp(2) )-rhodium bond of a rhodacycle intermediate occurs via a highly strained transition state. Direct reductive elimination from the obtained rhodacyle intermediate proceeds to give a tricyclic product containing an 8-oxabicyclo[3.2.1]octane skeleton, while β-hydride elimination from the same intermediate gives products that contain fused five- and seven-membered rings in high yields. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Scope and Limitations of Auxiliary-Assisted, Palladium-Catalyzed Arylation and Alkylation of sp2 and sp3 C-H Bonds

    Science.gov (United States)

    Nadres, Enrico T.; Santos, Gerson Ivan Franco; Shabashov, Dmitry; Daugulis, Olafs

    2013-01-01

    The scope of palladium-catalyzed, auxiliary-assisted direct arylation and alkylation of sp2 and sp3 C-H bonds of amine and carboxylic acid derivatives has been investigated. The method employs a palladium acetate catalyst, substrate, aryl, alkyl, benzyl, or allyl halide, and inorganic base in t-amyl alcohol or water solvent at 100-140 °C. Aryl and alkyl iodides as well as benzyl and allyl bromides are competent reagents in this transformation. Picolinic acid auxiliary is used for amine γ-functionalization and 8-aminoquinoline auxiliary is used for carboxylic acid β-functionalization. Some optimization of base, additives, and solvent is required for achieving best results. PMID:24090404

  16. Process for making propenyl ethers and photopolymerizable compositions containing them

    Science.gov (United States)

    Crivello, James V.

    1996-01-01

    Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  17. Controlling hydrogenation activity and selectivity of bimetallic surfaces and catalysts

    Science.gov (United States)

    Murillo, Luis E.

    also discussed. Chemisorption, TPD, FTIR using a batch reactor for the self-hydrogenation of cyclohexene and CO adsorbed on the bimetallic surfaces were carried out to correlate surface science findings with experiments on supported bimetallic catalysts. To expand the studies on the effect of bimetallic structures on hydrogenation reactions, molecules with multiple functional groups such as alpha,beta-unsaturated aldehydes were also investigated. Studies of selective hydrogenation of a,ss-unsaturated aldehydes toward the desired unsaturated alcohols are of interest for the production of fine chemicals and pharmaceuticals. In these compounds, competitive hydrogenation of the C=C and C=O bonds occurs. TPD and HREELS experiments of acrolein (CH2=CH-CH=O) on Pt-based bimetallic surfaces are performed to investigate their effects on the hydrogenation activity of the C-O bond. The production of the desired unsaturated alcohol, allyl alcohol, has been observed for the first time on Pt-Ni-Pt(111) under UHV conditions. However, the propionaldehyde yield is five times higher than the allyl alcohol yield. Thus, a preferential isomerization reaction of allyl alcohol to propionaldehyde is very likely to occur on the Pt-Ni-Pt(111) surface as observed on the desorption studies of allyl alcohol on this surface. The hydrogenation of acrolein is also carried out under UHV conditions on other 3d-transition metal/Pt(111) surfaces such as Co/Pt(111), Fe/Pt(111), and Cu/Pt(111). So far, the highest activity and allyl alcohol yield are found on the Pt-Ni-Pt(111) surface with pre-adsorbed hydrogen.

  18. Synthesis of 2-(2-R1-Hydrazino-5-(R2-benzyl-2-thiazolines on the Basis of Meerweins Arylation Products of Allyl Isothiocyanate

    Directory of Open Access Journals (Sweden)

    Mykola I. Ganushchak

    2003-02-01

    Full Text Available 3-Aryl-2-chloropropylisothiocyanates (1 are formed by interaction of arenediazonium chlorides with allyl isothiocyanate. Adducts 1 react with monoacylhydrazines to form 1-acyl-4-(3-aryl-2-chloropropylthiosemicarbazides (2a–d. Thiosemicarbazides 2a–d in the presence of bases selectively transform into 2-(2-R1-hydrazino-5-(R2-benzyl-2-thiazolines (3a–d.

  19. Rhodium-Catalyzed Asymmetric N-H Functionalization of Quinazolinones with Allenes and Allylic Carbonates: The First Enantioselective Formal Total Synthesis of (-)-Chaetominine.

    Science.gov (United States)

    Zhou, Yirong; Breit, Bernhard

    2017-12-22

    An unprecedented asymmetric N-H functionalization of quinazolinones with allenes and allylic carbonates was successfully achieved by rhodium catalysis with the assistance of chiral bidentate diphosphine ligands. The high efficiency and practicality of this method was demonstrated by a low catalyst loading of 1 mol % as well as excellent chemo-, regio-, and enantioselectivities with broad functional group compatibility. Furthermore, this newly developed strategy was applied as key step in the first enantioselective formal total synthesis of (-)-chaetominine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Parental alcohol use, alcohol-related problems, and alcohol-specific attitudes, alcohol-specific communication, and adolescent excessive alcohol use and alcohol-related problems: An indirect path model

    NARCIS (Netherlands)

    Mares, S.H.W.; Vorst, H. van der; Engels, R.C.M.E.; Lichtwarck-Aschoff, A.

    2011-01-01

    Alcohol-specific parent-child communication has often been studied in relation to regular alcohol use of adolescents. However, it might be as important to focus on adolescent problematic alcohol use. In addition, the way parents communicate with their children about alcohol might depend on their own

  1. Hydrolysis of cellulose catalyzed by quaternary ammonium perrhenates in 1-allyl-3-methylimidazolium chloride.

    Science.gov (United States)

    Wang, Jingyun; Zhou, Mingdong; Yuan, Yuguo; Zhang, Quan; Fang, Xiangchen; Zang, Shuliang

    2015-12-01

    Quaternary ammonium perrhenates were applied as catalyst to promote the hydrolysis of cellulose in 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The quaternary ammonium perrhenates displayed good catalytic performance for cellulose hydrolysis. Water was also proven to be effective to promote cellulose hydrolysis. Accordingly, 97% of total reduced sugar (TRS) and 42% of glucose yields could be obtained under the condition of using 5mol% of tetramethyl ammonium perrhenate as catalyst, 70μL of water, ca. 0.6mmol of microcrystalline cellulose (MCC) and 2.0g of [Amim]Cl as solvent under microwave irradiation for 30min at 150°C (optimal conditions). The influence of quaternary ammonium cation on the efficiency of cellulose hydrolysis was examined based on different cation structures of perrhenates. The mechanism on perrhenate catalyzed cellulose hydrolysis is also discussed, whereas hydrogen bonding between ReO4 anion and hydroxyl groups of cellulose is assumed to be the key step for depolymerization of cellulose. Copyright © 2015. Published by Elsevier Ltd.

  2. Density Functional Calculation of the 0.5ML-Terminated Allyl Mercaptan/Si(100)-(2 × 1) Surface

    International Nuclear Information System (INIS)

    Chun-Mei, Tang; Kai-Ming, Deng; Xuan, Chen; Chuan-Yun, Xiao; Yu-Zhen, Liu; Qun-Xiang, Li

    2009-01-01

    The structural and electronic properties of the 0.5 ML-terminated allyl mercaptan (ALM)/Si(100)-(2 × 1) surface are studied using the density functional method. The calculated absorption energy of the ALM molecule on the 0.5 ML-terminated ALM/Si(100)-(2 × 1) surface is 3.36 eV, implying that adsorption is strongly favorable. The electronic structure calculations show that the ALM/Si(100)-(2 × 1), the clean Si(100)-(2 × 1), and the fully-terminated H/Si(100)-(2 × 1) surfaces have the nature of an indirect band gap semiconductor. The highest occupied molecular orbital is dominated by the ALM, confirming the mechanism proposed by Hossain for its chain reaction. (condensed matter: structure, mechanical and thermal properties)

  3. Inhibition of high affinity choline uptake by N-allyl-3-quinuclidinol

    International Nuclear Information System (INIS)

    Asermely, K.E.; O'Neill, J.J.

    1986-01-01

    The peripheral actions of N-allyl-3-quinuclidinol (N-Al-3-OHQ) on high affinity choline uptake (HAChU) on rat phrenic nerve diaphragm are described. Endplate regions (EPA) identified by the Koelle histochemical techniques for acetylcholinesterase, were dissected from adult rat hemidiaphragms and placed in cold Krebs solution (pH-7.35). All measurements of HAChU were at 37 0 C in buffers containing tritium choline (5 μM 0.124 μC/mmole) at intervals of 1, 2, 4, 8, 15 and 30 min. Tissues were washed 3x, digested in 1N NaOH and counted for tritium in Chaikoff's solution. All data are expressed as pmole Ch/g wet weight. Comparison between EPA and non-EPA tissue demonstrate HAChU and slow choline diffusion, respectively. Steady state is observed in 15 min. N-Al-3-OHQ produces 15% inhibition at 5 x 10 -5 M compared with 50% inhibition on brain synaptosomes. At 5 x 10 -4 M N-Al-3-OHQ, 30% inhibition is observed. Attempts to deplete ACh by pre-stimulation with high K + -ion (25 mM) were unsuccessful; tissue 3 H-choline uptake appeared to oscillate over a 30 min period

  4. Inhibition of high affinity choline uptake by N-allyl-3-quinuclidinol

    Energy Technology Data Exchange (ETDEWEB)

    Asermely, K.E.; O' Neill, J.J.

    1986-03-01

    The peripheral actions of N-allyl-3-quinuclidinol (N-Al-3-OHQ) on high affinity choline uptake (HAChU) on rat phrenic nerve diaphragm are described. Endplate regions (EPA) identified by the Koelle histochemical techniques for acetylcholinesterase, were dissected from adult rat hemidiaphragms and placed in cold Krebs solution (pH-7.35). All measurements of HAChU were at 37/sup 0/C in buffers containing tritium choline (5 ..mu..M 0.124 ..mu..C/mmole) at intervals of 1, 2, 4, 8, 15 and 30 min. Tissues were washed 3x, digested in 1N NaOH and counted for tritium in Chaikoff's solution. All data are expressed as pmole Ch/g wet weight. Comparison between EPA and non-EPA tissue demonstrate HAChU and slow choline diffusion, respectively. Steady state is observed in 15 min. N-Al-3-OHQ produces 15% inhibition at 5 x 10/sup -5/ M compared with 50% inhibition on brain synaptosomes. At 5 x 10/sup -4/ M N-Al-3-OHQ, 30% inhibition is observed. Attempts to deplete ACh by pre-stimulation with high K/sup +/-ion (25 mM) were unsuccessful; tissue /sup 3/H-choline uptake appeared to oscillate over a 30 min period.

  5. Neuroprotective effect of S-allyl-l-cysteine derivatives against endoplasmic reticulum stress-induced cytotoxicity is independent of calpain inhibition.

    Science.gov (United States)

    Imai, Toru; Kosuge, Yasuhiro; Saito, Hiroaki; Uchiyama, Taketo; Wada, Taira; Shimba, Shigeki; Ishige, Kumiko; Miyairi, Shinichi; Makishima, Makoto; Ito, Yoshihisa

    2016-03-01

    S-allyl-l-cysteine (SAC) is known to have neuroprotective properties. We synthesized various SAC derivatives and tested their effects on endoplasmic reticulum stress-induced neurotoxicity in cultured hippocampal neurons (HPNs). Among the compounds tested, S-propyl-l-cysteine (SPC) exhibited the strongest neuroprotective activity in HPNs, followed by S-ethyl-l-cysteine (SEC) and S-methyl-l-cysteine (SMC). Unlike SAC and SMC, SPC and SEC did not have inhibitory activity on μ-calpain, suggesting that the mechanism underlying the protective activity of SPC and SEC differs from that of SAC. Copyright © 2016 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  6. Alcoholics' selective attention to alcohol stimuli: automated processing?

    Science.gov (United States)

    Stormark, K M; Laberg, J C; Nordby, H; Hugdahl, K

    2000-01-01

    This study investigated alcoholics' selective attention to alcohol words in a version of the Stroop color-naming task. Alcoholic subjects (n = 23) and nonalcoholic control subjects (n = 23) identified the color of Stroop versions of alcohol, emotional, neutral and color words. Manual reaction times (RTs), skin conductance responses (SCRs) and heart rate (HR) were recorded. Alcoholics showed overall longer RTs than controls while both groups were slower in responding to the incongruent color words than to the other words. Alcoholics showed longer RTs to both alcohol (1522.7 milliseconds [ms]) and emotional words (1523.7 ms) than to neutral words (1450.8 ms) which suggests that the content of these words interfered with the ability to attend to the color of the words. There was also a negative correlation (r = -.41) between RT and response accuracy to alcohol words for the alcoholics, reflecting that the longer time the alcoholics used to respond to the color of the alcohol words, the more incorrect their responses were. The alcoholics also showed significantly greater SCRs to alcohol words (0.16 microSiemens) than to any of the other words (ranging from 0.04-0.08 microSiemens), probably reflecting the emotional significance of the alcohol words. Finally, the alcoholics evidenced smaller HR acceleration to alcohol (1.9 delta bpm) compared to neutral (2.8 delta bpm), which could be related to difficulties alcoholics experience in terminating their attention to the alcohol words. These findings indicate that it is difficult for alcoholics to regulate their attention to alcohol stimuli, suggesting that alcoholics' processing of alcohol information is automated.

  7. Allyl m-Trifluoromethyldiazirine Mephobarbital: An Unusually Potent Enantioselective and Photoreactive Barbiturate General Anesthetic

    Energy Technology Data Exchange (ETDEWEB)

    Savechenkov, Pavel Y.; Zhang, Xi; Chiara, David C.; Stewart, Deirdre S.; Ge, Rile; Zhou, Xiaojuan; Raines, Douglas E.; Cohen, Jonathan B.; Forman, Stuart A.; Miller, Keith W.; Bruzik, Karol S. (Harvard-Med); (Mass. Gen. Hosp.); (UIC)

    2012-12-10

    We synthesized 5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (14), a trifluoromethyldiazirine-containing derivative of general anesthetic mephobarbital, separated the racemic mixture into enantiomers by chiral chromatography, and determined the configuration of the (+)-enantiomer as S by X-ray crystallography. Additionally, we obtained the {sup 3}H-labeled ligand with high specific radioactivity. R-(-)-14 is an order of magnitude more potent than the most potent clinically used barbiturate, thiopental, and its general anesthetic EC{sub 50} approaches those for propofol and etomidate, whereas S-(+)-14 is 10-fold less potent. Furthermore, at concentrations close to its anesthetic potency, R-(-)-14 both potentiated GABA-induced currents and increased the affinity for the agonist muscimol in human {alpha}1{beta}2/3{gamma}2L GABA{sub A} receptors. Finally, R-(-)-14 was found to be an exceptionally efficient photolabeling reagent, incorporating into both {alpha}1 and {beta}3 subunits of human {alpha}1{beta}3 GABAA receptors. These results indicate R-(-)-14 is a functional general anesthetic that is well-suited for identifying barbiturate binding sites on Cys-loop receptors.

  8. Quantification of allyl hexanoate in pineapple beverages and yogurts as a case study to characterise a source of uncertainty in dietary exposure assessment to flavouring substances.

    Science.gov (United States)

    Raffo, A; D'Aloise, A; Magrì, A D; Leclercq, C

    2012-01-01

    One source of uncertainty in the estimation of dietary exposure to flavouring substances is the uncertainty in the occurrence and concentration levels of these substances naturally present or added to foodstuffs. The aim of this study was to assess the variability of concentration levels of allyl hexanoate, considered as a case study, in two main food categories to which it is often added: pineapple juice-based beverages and yogurts containing pineapple. Thirty-four beverages and 29 yogurts, with pineapple fruit or juice and added flavourings declared as ingredients on the package, were purchased from the local market (in Rome) and analysed. Analytical methods based on the stir bar sorptive extraction (SBSE) technique for the isolation of the target analyte, and on GC-MS analysis for final determination, were developed for the two food categories. In beverages, allyl hexanoate concentrations ranged from less than 0.01 to 16.71 mg l(-1), whereas in yogurts they ranged from 0.02 to 89.41 mg kg(-1). Average concentrations in beverages and yogurts with pineapple as the main fruit ingredient (1.91 mg l(-1) for beverages, 9.61 mg kg(-1) for yogurts) were in fair agreement with average use level data reported from industry surveys for the relevant food categories (4.5 and 6.0 mg kg(-1), respectively). Within the group of yogurts a single product was found to contain a level of allyl hexanoate more than 10-fold higher than the average reported use level. The screening techniques developed by the European Food Safety Authority (EFSA) using use level data provided by industry gave estimates of exposure that were of the same order of magnitude as the estimates obtained for regular consumers who would be loyal to the pineapple yogurt and beverage products containing the highest observed concentration of the substance of interest. In this specific case the uncertainty in the results obtained with the use of standard screening techniques for exposure assessment based on industry

  9. Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO3, –MnO2, and –Mn2O3 Nanocomposites for Aerial Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Mohamed E. Assal

    2017-01-01

    Full Text Available Zinc oxide nanoparticles doped manganese carbonate catalysts [X% ZnOx–MnCO3] (where X = 0–7 were prepared via a facile and straightforward coprecipitation procedure, which upon different calcination treatments yields different manganese oxides, that is, [X% ZnOx–MnO2] and [X% ZnOx–Mn2O3]. A comparative catalytic study was conducted to evaluate the catalytic efficiency between carbonates and oxides for the selective oxidation of secondary alcohols to corresponding ketones using molecular oxygen as a green oxidizing agent without using any additives or bases. The prepared catalysts were characterized by different techniques such as SEM, EDX, XRD, TEM, TGA, BET, and FTIR spectroscopy. The 1% ZnOx–MnCO3 calcined at 300°C exhibited the best catalytic performance and possessed highest surface area, suggesting that the calcination temperature and surface area play a significant role in the alcohol oxidation. The 1% ZnOx–MnCO3 catalyst exhibited superior catalytic performance and selectivity in the aerial oxidation of 1-phenylethanol, where 100% alcohol conversion and more than 99% product selectivity were obtained in only 5 min with superior specific activity (48 mmol·g−1·h−1 and 390.6 turnover frequency (TOF. The specific activity obtained is the highest so far (to the best of our knowledge compared to the catalysts already reported in the literatures used for the oxidation of 1-phenylethanol. It was found that ZnOx nanoparticles play an essential role in enhancing the catalytic efficiency for the selective oxidation of alcohols. The scope of the oxidation process is extended to different types of alcohols. A variety of primary, benzylic, aliphatic, allylic, and heteroaromatic alcohols were selectively oxidized into their corresponding carbonyls with 100% convertibility without overoxidation to the carboxylic acids under base-free conditions.

  10. An efficient, heterogeneous and reusable catalyst for -alkylation of ...

    Indian Academy of Sciences (India)

    Fe(HSO4)3(FHS) was used as an efficient catalyst for the heterogeneous addition of a series of benzylic and allylic alcohols to various -dicarbonyl compounds, which afforded moderate to excellent yields of -alkylated products in 1,2-dichloroethane. In comparison with the previous methods, the present research ...

  11. Stereocontrolled Introduction of the Quaternary Stereogenic Centre in Lyngbyatoxin A

    DEFF Research Database (Denmark)

    Tønder, Janne Ejrnæs; Tanner, David Ackland

    , a methodology developed by Jung et al(1). For model studies, the requisite vinyl epoxides were obtained by Sharpless asymmetric epoxidation of the corresponding allylic alcohols, followed by a TPAP oxidation and a Wittig reaction. It was observed that the choice of protective group on the indole nitrogen in had...

  12. Assembly of Four Diverse Heterocyclic Libraries Enabled by Prins Cyclization, Au-Catalyzed Enyne Cycloisomerization, and Automated Amide Synthesis

    Science.gov (United States)

    Cui, Jiayue; Chai, David I.; Miller, Christopher; Hao, Jason; Thomas, Christopher; Wang, JingQi; Scheidt, Karl A.; Kozmin, Sergey A.

    2013-01-01

    We describe a unified synthetic strategy for efficient assembly of four new heterocyclic libraries. The synthesis began by creating a range of structurally diverse pyrrolidinones or piperidinones. Such compounds were obtained in a simple one-flask operation starting with readily available amines, ketoesters, and unsaturated anhydrides. The use of tetrahydropyran-containing ketoesters, which were rapidly assembled by our Prins cyclization protocol, enabled efficient fusion of pyran and piperidinone cores. A newly developed Au(I)-catalyzed cycloisomerization of alkyne-containing enamides further expanded heterocyclic diversity by providing rapid entry into a wide range of bicyclic and tricyclic dienamides. The final stage of the process entailed diversification of each of the initially produced carboxylic acids using a fully automated platform for amide synthesis, which delivered 1872 compounds in high diastereomeric and chemical purity. PMID:22860634

  13. Alcohol Alert

    Science.gov (United States)

    ... of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol Exposure Support & Treatment Alcohol Policy Special ... 466 KB] No. 81: Exploring Treatment Options for Alcohol Use Disorders [ PDF - 539K] No. 80: Alcohol and HIV/AIDS: ...

  14. A Modular Approach to Aryl-C-ribonucleosides via the Allylic Substitution and Ring-Closing Metathesis Sequence. A Stereocontrolled Synthesis of All Four alpha-/beta- and D-/L-C-Nucleoside Stereoisomers

    Czech Academy of Sciences Publication Activity Database

    Štambaský, J.; Kapras, V.; Štefko, Martin; Kysilka, O.; Hocek, Michal; Malkov, A. V.; Kočovský, P.

    2011-01-01

    Roč. 76, č. 19 (2011), s. 7781-7803 ISSN 0022-3263 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : C-nucleosides * allylic substitution * metathesis * dihydroxylation Subject RIV: CC - Organic Chemistry Impact factor: 4.450, year: 2011

  15. Use of Elemental Sulfur or Selenium in a Novel One-Pot Copper-Catalyzed Tandem Cyclization of Functionalized Ynamides Leading to Benzosultams.

    Science.gov (United States)

    Siva Reddy, Alla; Kumara Swamy, K C

    2015-06-19

    A novel and efficient [Cu]-catalyzed one-pot regio- and stereospecific synthesis of benzo[1,4,2]dithiazine 1,1-dioxides and benzo[1,4,2]thiaselenazine 1,1-dioxides by cyclization of functionalized ynamides with elemental sulfur/selenium has been developed. Its generality is elegantly illustrated by extension to benzodithiazepines and benzothiaselenazepines. Involvement of water in the reaction is demonstrated by the incorporation of (2)D at the olefinic site by using D2O in place of water. Selective oxidation at sulfur in benzo[1,4,2]dithiazine 1,1-dioxide by using mCPBA as the oxidizing agent is also described.

  16. Is proximity to alcohol outlets associated with alcohol consumption and alcohol-related harm in Denmark?

    DEFF Research Database (Denmark)

    Kedir, Abdu; Berg-Beckhoff, Gabriele; Stock, Christiane

    2018-01-01

    Background: This study examined the associations between distance from residence to the nearest alcohol outlet with alcohol consumption as well as with alcohol-related harm. Methods: Data on alcohol consumption, alcohol-related harm and sociodemographics were obtained from the 2011 Danish Drug...... and Alcohol Survey (n=5133) with respondents aged 15–79 years. The information on distances from residence to the nearest alcohol outlets was obtained from Statistics Denmark. Multiple logistic and linear regressions were used to examine the association between distances to outlets and alcohol consumption...... whereas alcohol-related harm was analysed using negative binomial regression. Results: Among women it was found that those living closer to alcohol outlets were more likely to report alcohol-related harm (p

  17. Is proximity to alcohol outlets associated with alcohol consumption and alcohol-related harm in Denmark?

    DEFF Research Database (Denmark)

    Seid, Abdu K.; Berg-Beckhoff, Gabriele; Stock, Christiane

    2018-01-01

    Background: This study examined the associations between distance from residence to the nearest alcohol outlet with alcohol consumption as well as with alcohol-related harm. Methods: Data on alcohol consumption, alcohol-related harm and sociodemographics were obtained from the 2011 Danish Drug...... and Alcohol Survey (n = 5133) with respondents aged 15–79 years. The information on distances from residence to the nearest alcohol outlets was obtained from Statistics Denmark. Multiple logistic and linear regressions were used to examine the association between distances to outlets and alcohol consumption...... whereas alcohol-related harm was analysed using negative binomial regression. Results: Among women it was found that those living closer to alcohol outlets were more likely to report alcohol-related harm (p

  18. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  19. Global alcohol policy and the alcohol industry.

    Science.gov (United States)

    Anderson, Peter

    2009-05-01

    The WHO is preparing its global strategy on alcohol, and, in so doing, has been asked to consult with the alcohol industry on ways it could contribute in reducing the harm done by alcohol. This review asks which is more effective in reducing harm: the regulatory approaches that the industry does not favour; or the educational approaches that it does favour. The current literature overwhelmingly finds that regulatory approaches (including those that manage the price, availability, and marketing of alcohol) reduce the risk of and the experience of alcohol-related harm, whereas educational approaches (including school-based education and public education campaigns) do not, with industry-funded education actually increasing the risk of harm. The alcohol industry should not be involved in making alcohol policy. Its involvement in implementing policy should be restricted to its role as a producer, distributor, and marketer of alcohol. In particular, the alcohol industry should not be involved in educational programmes, as such involvement could actually lead to an increase in harm.

  20. Fetal Alcohol Spectrum Disorders (FASDs): Alcohol Use Quiz

    Science.gov (United States)

    ... Links to Other Websites About Us More CDC Alcohol Topics CDC Alcohol Portal Excessive Alcohol Use Binge ... of alcohol screening and counseling for all women Alcohol Use Quiz Recommend on Facebook Tweet Share Compartir ...

  1. Sequential Au(I-catalyzed reaction of water with o-acetylenyl-substituted phenyldiazoacetates

    Directory of Open Access Journals (Sweden)

    Jianbo Wang

    2011-05-01

    Full Text Available The gold(I-catalyzed reaction of water with o-acetylenyl-substituted phenyldiazoacetates provides 1H-isochromene derivatives in good yields. The reaction follows a catalytic sequence of gold carbene formation/water O–H insertion/alcohol-alkyne cyclization. The gold(I complex is the only catalyst in each of these steps.

  2. Internet Alcohol Marketing and Underage Alcohol Use.

    Science.gov (United States)

    McClure, Auden C; Tanski, Susanne E; Li, Zhigang; Jackson, Kristina; Morgenstern, Matthis; Li, Zhongze; Sargent, James D

    2016-02-01

    Internet alcohol marketing is not well studied despite its prevalence and potential accessibility and attractiveness to youth. The objective was to examine longitudinal associations between self-reported engagement with Internet alcohol marketing and alcohol use transitions in youth. A US sample of 2012 youths aged 15 to 20 was surveyed in 2011. An Internet alcohol marketing receptivity score was developed, based on number of positive responses to seeing alcohol advertising on the Internet, visiting alcohol brand Web sites, being an online alcohol brand fan, and cued recall of alcohol brand home page images. We assessed the association between baseline marketing receptivity and both ever drinking and binge drinking (≥6 drinks per occasion) at 1-year follow-up with multiple logistic regression, controlling for baseline drinking status, Internet use, sociodemographics, personality characteristics, and peer or parent drinking. At baseline, ever-drinking and binge-drinking prevalence was 55% and 27%, respectively. Many (59%) reported seeing Internet alcohol advertising, but few reported going to an alcohol Web site (6%) or being an online fan (3%). Higher Internet use, sensation seeking, having family or peers who drank, and past alcohol use were associated with Internet alcohol marketing receptivity, and a score of 1 or 2 was independently associated with greater adjusted odds of initiating binge drinking (odds ratio 1.77; 95% confidence interval, 1.13-2.78 and odds ratio 2.15; 95% confidence interval, 1.06-4.37 respectively) but not with initiation of ever drinking. Although high levels of engagement with Internet alcohol marketing were uncommon, most underage youths reported seeing it, and we found a prospective association between receptivity to this type of alcohol marketing and future problem drinking, making additional research and ongoing surveillance important. Copyright © 2016 by the American Academy of Pediatrics.

  3. Internet Alcohol Marketing and Underage Alcohol Use

    Science.gov (United States)

    McClure, Auden C.; Tanski, Susanne E.; Li, Zhigang; Jackson, Kristina; Morgenstern, Matthis; Li, Zhongze; Sargent, James D.

    2016-01-01

    BACKGROUND AND OBJECTIVE Internet alcohol marketing is not well studied despite its prevalence and potential accessibility and attractiveness to youth. The objective was to examine longitudinal associations between self-reported engagement with Internet alcohol marketing and alcohol use transitions in youth. METHODS A US sample of 2012 youths aged 15 to 20 was surveyed in 2011. An Internet alcohol marketing receptivity score was developed, based on number of positive responses to seeing alcohol advertising on the Internet, visiting alcohol brand Web sites, being an online alcohol brand fan, and cued recall of alcohol brand home page images. We assessed the association between baseline marketing receptivity and both ever drinking and binge drinking (≥6 drinks per occasion) at 1-year follow-up with multiple logistic regression, controlling for baseline drinking status, Internet use, sociodemographics, personality characteristics, and peer or parent drinking. RESULTS At baseline, ever-drinking and binge-drinking prevalence was 55% and 27%, respectively. Many (59%) reported seeing Internet alcohol advertising, but few reported going to an alcohol Web site (6%) or being an online fan (3%). Higher Internet use, sensation seeking, having family or peers who drank, and past alcohol use were associated with Internet alcohol marketing receptivity, and a score of 1 or 2 was independently associated with greater adjusted odds of initiating binge drinking (odds ratio 1.77; 95% confidence interval, 1.13–2.78 and odds ratio 2.15; 95% confidence interval, 1.06–4.37 respectively) but not with initiation of ever drinking. CONCLUSIONS Although high levels of engagement with Internet alcohol marketing were uncommon, most underage youths reported seeing it, and we found a prospective association between receptivity to this type of alcohol marketing and future problem drinking, making additional research and ongoing surveillance important. PMID:26738886

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. S P Senthilkumar. Articles written in Journal of Chemical Sciences. Volume 113 Issue 3 June 2001 pp 191-196 Organic. A convenient procedure for the synthesis of allyl and benzyl ethers from alcohols and phenols · H Surya Prakash Rao S P Senthilkumar · More Details ...

  5. ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID

    Science.gov (United States)

    An aldol-type and a Mannich-type reaction via the cross-coupling of aldehydes and imines with allylic alcohols catalyzed by RuCl2(PPh3)3 was developed with ionic liquid as the solvent. The solvent/catalyst system could be reused for at least five times with no loss of reactiv...

  6. Diastereosseletividade na redução de enonas bicíclicas com hidretos volumosos

    OpenAIRE

    Camozzato,Andreza C.; Tenius,Beatriz S. M.; Oliveira,Eduardo R. de; Viegas Jr.,Cláudio; Victor,Maurício M.; Silveira,Leandro G. da

    2008-01-01

    Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride®) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring.

  7. Diastereoselectivity in the reduction of bicyclic enones with hindered hydrides

    OpenAIRE

    Camozzato, Andreza C.; Tenius, Beatriz S. M.; Oliveira, Eduardo R. de; Viegas Jr., Cláudio; Victor, Maurício M.; Silveira, Leandro G. da

    2008-01-01

    Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride®) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring.

  8. Diastereoselectivity in the reduction of bicyclic enones with hindered hydrides

    International Nuclear Information System (INIS)

    Camozzato, Andreza C.; Tenius, Beatriz S. M.; Oliveira, Eduardo R. de; Viegas Junior, Claudio; Victor, Mauricio M.; Silveira, Leandro G. da

    2008-01-01

    Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride R ) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring. (author)

  9. Gallium-67-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide for primary and metastatic melanoma imaging.

    Science.gov (United States)

    Guo, Haixun; Yang, Jianquan; Shenoy, Nalini; Miao, Yubin

    2009-12-01

    The purpose of this study was to examine the melanoma imaging properties of a novel 67Ga-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone (alpha-MSH) peptide. A lactam bridge-cyclized alpha-MSH peptide, DOTA-GlyGlu-CycMSH {DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]}, was synthesized and radiolabeled with 67Ga. The melanoma targeting and pharmacokinetic properties of 67Ga-DOTA-GlyGlu-CycMSH were determined in B16/F1 flank primary melanoma-bearing and B16/F10 pulmonary metastatic melanoma-bearing C57 mice. Flank primary melanoma and pulmonary metastatic melanoma imaging were performed by small animal single photon emission computed tomography (SPECT)/CT using 67Ga-DOTA-GlyGlu-CycMSH as an imaging probe. 67Ga-DOTA-GlyGlu-CycMSH was readily prepared with greater than 95% radiolabeling yield. 67Ga-DOTA-GlyGlu-CycMSH exhibited substantial tumor uptake (12.93 +/- 1.63%ID/g at 2 h postinjection) and prolonged tumor retention (5.02 +/- 1.35%ID/g at 24 h postinjection) in B16/F1 melanoma-bearing C57 mice. The uptake values for nontarget organs were generally low (<0.30%ID/g) except for the kidneys at 2, 4, and 24 h postinjection. 67Ga-DOTA-GlyGlu-CycMSH exhibited significantly (p < 0.05) higher uptakes (1.44 +/- 0.75%ID/g at 2 h postinjection and 1.49 +/- 0.69%ID/g at 4 h postinjection) in metastatic melanoma-bearing lung than those in normal lung (0.15 +/- 0.10%ID/g and 0.17 +/- 0.11%ID/g at 2 and 4 h postinjection, respectively). Both flank primary B16/F1 melanoma and B16/F10 pulmonary melanoma metastases were clearly visualized by SPECT/CT using 67Ga-DOTA-GlyGlu-CycMSH as an imaging probe 2 h postinjection. 67Ga-DOTA-GlyGlu-CycMSH exhibited favorable melanoma targeting and imaging properties, highlighting its potential as an effective imaging probe for early detection of primary and metastatic melanoma.

  10. Cutting thin sheets of allyl diglycol carbonate (CR-39) with a CW CO2, laser

    International Nuclear Information System (INIS)

    Kukreja, L.M.; Bhawalkar, D.D.; Basu, C.; Goswami, J.N.

    1984-01-01

    Recent studies have shown that Allyl Diglycol Carbonate, commercially known as CR-39 (the most sensitive among etch track detectors) can detect relativistic oxygen and other heavier nuclei. We are using large sheets of special grade CR-39 (DOP) in our experiment in Space Shuttle-Spacelab-3. As CR-39 is a highly brittle substance, special care is required to cut CR-39 shetts, especially in case of large sheets and circular cuts. A study of cutting of CR-39 sheets using laser light is described in this paper. It has been found that this method is sufficiently fast to handle large number of sheets and also equally safe for big sheets. A maximum speed up to 200 cm/min with a 5 x 10 4 W/cm 2 laser is obtained during the present study. This study also shows that laser cutting does not affect the track properties of CR-39. (orig.)

  11. Varenicline Reduces Alcohol Intake During Repeated Cycles of Alcohol Reaccess Following Deprivation in Alcohol-Preferring (P) Rats.

    Science.gov (United States)

    Froehlich, Janice C; Nicholson, Emily R; Dilley, Julian E; Filosa, Nick J; Rademacher, Logan C; Smith, Teal N

    2017-08-01

    Most alcoholics experience periods of voluntary alcohol abstinence or imposed alcohol deprivation followed by a return to alcohol drinking. This study examined whether varenicline (VAR) reduces alcohol intake during a return to drinking after periods of alcohol deprivation in rats selectively bred for high alcohol drinking (the alcohol preferring or "P" rats). Alcohol-experienced P rats were given 24-hour access to food and water and scheduled access to alcohol (15% and 30% v/v) for 2 h/d. After 4 weeks, rats were deprived of alcohol for 2 weeks, followed by reaccess to alcohol for 2 weeks, and this pattern was repeated for a total of 3 cycles. Rats were fed either vehicle (VEH) or VAR, in doses of 0.5, 1.0, or 2.0 mg/kg BW, at 1 hour prior to onset of the daily alcohol reaccess period for the first 5 days of each of the 3 alcohol reaccess cycles. Low-dose VAR (0.5 mg/kg BW) reduced alcohol intake during the 5 days of drug treatment in alcohol reaccess cycles 1 and 2. Higher doses of VAR (1.0 mg/kg BW and 2.0 mg/kg BW) reduced alcohol intake during the 5 days of treatment in all 3 alcohol reaccess cycles. The decrease in alcohol intake disappeared with termination of VAR treatment in all alcohol reaccess cycles. The results demonstrate that VAR decreases alcohol intake during multiple cycles of alcohol reaccess following alcohol deprivation in rats and suggests that it may prevent a return to heavy alcohol drinking during a lapse from alcohol abstinence in humans with alcohol use disorder. Copyright © 2017 by the Research Society on Alcoholism.

  12. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo

    Science.gov (United States)

    Ye, Deju; Shuhendler, Adam J.; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W.; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo.

  13. trans-2-Tritylcyclohexanol as a chiral auxiliary in permanganate-mediated oxidative cyclization of 2-methylenehept-5-enoates: application to the synthesis of trans-(+)-linalool oxide.

    Science.gov (United States)

    Al Hazmi, Ali M; Sheikh, Nadeem S; Bataille, Carole J R; Al-Hadedi, Azzam A M; Watkin, Sam V; Luker, Tim J; Camp, Nicholas P; Brown, Richard C D

    2014-10-03

    The permanganate-mediated oxidative cyclization of a series of 2-methylenehept-5-eneoates bearing different chiral auxiliaries was investigated, leading to the discovery of trans-2-tritylcyclohexanol (TTC) as a highly effective chiral controller for the formation of the 2,5-substituted THF diol product with high diastereoselectivity (dr ∼97:3). Chiral resolution of (±)-TTC, prepared in one step from cyclohexene oxide, afforded (-)-(1S,2R)-TTC (er >99:1), which was applied to the synthesis of (+)-trans-(2S,5S)-linalool oxide.

  14. Effects of consuming alcohol mixed with energy drinks versus consuming alcohol only on overall alcohol consumption and negative alcohol-related consequences

    Directory of Open Access Journals (Sweden)

    de Haan L

    2012-11-01

    Full Text Available Lydia de Haan,1 Hein A de Haan,2,3 Job van der Palen,4,5 Berend Olivier,1 Joris C Verster11Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Division of Pharmacology, Utrecht, 2Tactus Addiction Treatment, Deventer, 3Nijmegen Institute for Scientist-Practitioners in Addiction, Nijmegen, 4Medical School Twente, Medisch Spectrum Twente, Enschede, 5Department of Research Methodology, Measurement, and Data Analysis, University of Twente, Enschede, The NetherlandsBackground: The aim of this study was to examine differences in alcohol consumption and its consequences when consumed alone and when mixed with energy drinks.Methods: A survey was conducted among Dutch students at Utrecht University and the College of Utrecht. We collected data on alcohol consumption and alcohol-related consequences of alcohol consumed alone and/or alcohol mixed with energy drinks (AMED. The data were analyzed using a retrospective within-subject design, comparing occasions when subjects consumed AMED with those when they consumed alcohol only in the past 30 days.Results: A representative sample of 6002 students completed the survey, including 1239 who consumed AMED. Compared with consuming alcohol only, when consuming AMED, students consumed significantly fewer alcoholic drinks on an average drinking day (6.0 versus 5.4, respectively, and reported significantly fewer drinking days in the previous month (9.2 versus 1.4, significantly fewer days being drunk (1.9 versus 0.5, and significantly fewer occasions of consuming more than four (female/five (male alcoholic drinks (4.7 versus 0.9. The maximum number of mixed alcoholic drinks (4.5 in the previous month was significantly lower when compared with occasions when they consumed alcohol only (10.7. Accordingly, the mean duration of a drinking session was significantly shorter when mixing alcoholic drinks (4.0 versus 6.0 hours. Finally, when consuming AMED, significantly fewer alcohol-related consequences were

  15. Perspectives on the neuroscience of alcohol from the National Institute on Alcohol Abuse and Alcoholism.

    Science.gov (United States)

    Reilly, Matthew T; Noronha, Antonio; Warren, Kenneth

    2014-01-01

    Mounting evidence over the last 40 years clearly indicates that alcoholism (alcohol dependence) is a disorder of the brain. The National Institute on Alcohol Abuse and Alcoholism (NIAAA) has taken significant steps to advance research into the neuroscience of alcohol. The Division of Neuroscience and Behavior (DNB) was formed within NIAAA in 2002 to oversee, fund, and direct all research areas that examine the effects of alcohol on the brain, the genetic underpinnings of alcohol dependence, the neuroadaptations resulting from excessive alcohol consumption, advanced behavioral models of the various stages of the addiction cycle, and preclinical medications development. This research portfolio has produced important discoveries in the etiology, treatment, and prevention of alcohol abuse and dependence. Several of these salient discoveries are highlighted and future areas of neuroscience research on alcohol are presented. © 2014 Elsevier B.V. All rights reserved.

  16. Alcohol-specific parenting, adolescent alcohol use and the mediating effect of adolescent alcohol-related cognitions

    NARCIS (Netherlands)

    Mares, S.H.W.; Lichtwarck-Aschoff, A.; Engels, R.C.M.E.

    2013-01-01

    Objectives : Previous research indicated that alcohol-specific parenting is an important precursor of adolescent alcohol use, but failed to define the underlying mechanism. Based on social cognitive theory, alcohol-related cognitions such as alcohol refusal self-efficacy and alcohol-related

  17. Metal-free one-pot synthesis of 2-substituted and 2,3-disubstituted morpholines from aziridines

    Directory of Open Access Journals (Sweden)

    Hongnan Sun

    2015-04-01

    Full Text Available The metal-free synthesis of 2-substituted and 2,3-disubstituted morpholines through a one-pot strategy is described. A simple and inexpensive ammonium persulfate salt enables the reaction of aziridines with halogenated alcohols to proceed via an SN2-type ring opening followed by cyclization of the resulting haloalkoxy amine.

  18. A Novel Synthesis of 1-Acetyl-4-Isopropenyl-1-Cyclopentene by Chemoselective Cyclization of 4-Methyl-3-(Oxobutyl-4-Pentenal: An Important Intermediate for Natural Product Synthesis

    Directory of Open Access Journals (Sweden)

    Castro Fernando de Lima

    1999-01-01

    Full Text Available This article presents the direct oxidation of limonene-oxide 1 with KIO4 in water, which is the best way to obtain the keto-aldehyde 3, an important intermediate in natural product synthesis. The cyclization of keto-aldehyde 3 with acidic Al2O3 proceeds chemoselectively to give ketone 4. These two reactions together increase the overall yield of ketone 4 to about 70% compared to 8% previously reported in the literature¹.

  19. Diastereosseletividade na redução de enonas bicíclicas com hidretos volumosos

    OpenAIRE

    Camozzato, Andreza C.; Tenius, Beatriz S. M.; Oliveira, Eduardo R. de; Viegas Junior, Cláudio; Victor, Maurício Moraes; Silveira, Leandro G. da

    2008-01-01

    p. 793-797. Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride®) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring.

  20. Diastereosseletividade na redução de enonas bicíclicas com hidretos volumosos Diastereoselectivity in the reduction of bicyclic enones with hindered hydrides

    Directory of Open Access Journals (Sweden)

    Andreza C. Camozzato

    2008-01-01

    Full Text Available Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride® in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring.

  1. Diastereoselectivity in the reduction of bicyclic enones with hindered hydrides; Diastereosseletividade na reducao de enonas biciclicas com hidretos volumosos

    Energy Technology Data Exchange (ETDEWEB)

    Camozzato, Andreza C.; Tenius, Beatriz S. M.; Oliveira, Eduardo R. de [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica. Dept. de Quimica Organica]. E-mail: eroliv@iq.ufrgs.br; Viegas Junior, Claudio [Universidade Federal de Alfenas (UFAL), MG (Brazil). Dept. de Farmacia; Victor, Mauricio M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica. Dept. de Quimica Organica; Silveira, Leandro G. da [Universidade Regional Integrada do Alto Uruguai e das Missoes, Frederico Westphalen, RS (Brazil). Curso de Quimica. Dept. de Ciencias Exatas e da Terra

    2008-07-01

    Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride{sup R}) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring. (author)

  2. Alcohol-attributable and alcohol-preventable mortality in Denmark

    DEFF Research Database (Denmark)

    Eliasen, Marie; Becker, Ulrik; Grønbæk, Morten

    2014-01-01

    The aim of the study was to quantify alcohol-attributable and -preventable mortality, totally and stratified on alcohol consumption in Denmark 2010, and to estimate alcohol-related mortality assuming different scenarios of changes in alcohol distribution in the population. We estimated alcohol......-attributable and -preventable fractions based on relative risks of conditions causally associated with alcohol from meta-analyses and information on alcohol consumption in Denmark obtained from 14,458 participants in the Danish National Health Survey 2010 and corrected for adult per capita consumption. Cause-specific mortality...... data were obtained from the Danish Register of Causes of Death. In total, 1,373 deaths among women (5.0 % of all deaths) and 2,522 deaths among men (9.5 % of all deaths) were attributable to alcohol, while an estimated number of 765 (2.8 %) and 583 (2.2 %) deaths were prevented by alcohol...

  3. [(PhCH2O2P(CH32CHNCH(CH32]2PdCl2/CuI as Cocatalyst for Coupling-Cyclization of 2-Iodophenol with Terminal Alkynes in Water

    Directory of Open Access Journals (Sweden)

    Panli Jiang

    2018-03-01

    Full Text Available A new and efficient [(PhCH2O2P(CH32CHNCH(CH32]2PdCl2/CuI-co-catalyzed coupling-cyclization reactions of 2-iodophenol with terminal alkynes is described. Different 2-substitued benzo[b]furan derivatives are obtained in good to excellent yields. This protocol employs a relatively low palladium(II catalyst loading in water under air conditions.

  4. Chemistry by nanocatalysis: First example of a solid-supported RAPTA complex for organic reactions in aqueous medium

    KAUST Repository

    García-Garrido, Sergio E.

    2010-11-18

    A ruthenium-arene-PTA (RAPTA) complex has been supported for the first time on an inorganic solid, that is, silica-coated ferrite nanoparticles. The resulting magnetic material proved to be a general, very efficient and easily reusable catalyst for three synthetically useful organic transformations; selective nitrile hydration, redox isomerization of allylic alcohols, and heteroannulation of (Z)-enynols. The use of low metal concentration, environmentally friendly water as a reaction medium, with no use at all of organic solvent during or after the reactions, and microwaves as an alternative energy source renders the synthetic processes reported herein "truly" green and sustainable. RAPTA\\'s delight: A nano-RAPTA complex supported on silica-coated ferrite nanoparticles proved to be a general, very efficient and easily reusable catalyst for three synthetically useful organic transformations; selective nitrile hydration, redox isomerization of allylic alcohols, and heteroannulation of (Z)-enynols. The use of low metal concentrations, water as a reaction medium, and microwaves as an energy source renders these processes green and sustainable. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. [Alcohol].

    Science.gov (United States)

    Zima, T

    1996-07-14

    Alcohol is one of the most widely used addictive substances. It can be assumed that everybody encounters alcohol--ethanol in various forms and concentrations in the course of their lives. A global and social problem of our civilization is alcohol consumption which has a rising trend. Since 1989 the consumption of alcoholic beverages is rising and the mean annual consumption of concentrated ethanol per head is cea 10 litres. In ethanol abuse the organism is damaged not only by ethanol alone but in particular by substances formed during its metabolism. Its detailed knowledge is essential for the knowledge and investigations of the metabolic and toxic effect of ethanol on the organism. Ingested alcohol is in 90-98% eliminated from the organism by three known metabolic pathways: 1-alcohol dehydrogenase, 2-the microsomal ethanol oxidizing system and 3-catalase. Alcohol is a frequent important risk factor of serious "diseases of civilization" such as IHD, hypertension, osteoporosis, neoplastic diseases. Cirrhosis of the liver and chronic pancreatitis are the well known diseases associated with alcohol ingestion and also their most frequent cause. It is impossible to list all organs and diseases which develop as a result of alcohol consumption. It is important to realize that regular and "relatively" small amounts in the long run damage the organism and may be even fatal.

  6. Comparative studies on mitochondrial electron transport chain complexes of Sitophilus zeamais treated with allyl isothiocyanate and calcium phosphide.

    Science.gov (United States)

    Zhang, Chao; Wu, Hua; Zhao, Yuan; Ma, Zhiqing; Zhang, Xing

    2016-01-01

    With Sitophilus zeamais as the target organism, the present study for the first time attempted to elucidate the comparative effects between allyl isothiocyanate (AITC) and calcium phosphide (Ca3P2), exposure on mitochondrial electron transport chain (ETC.) complex I & IV and their downstream effects on enzymes relevant to reactive oxygen species (ROS). In vivo, both AITC and Ca3P2 inhibited complex I and IV with similar downstream effects. In contrast with Ca3P2, the inhibition of complex I caused by AITC was dependent on time and dose. In vitro, AITC inhibited complex IV more significantly than complex I. These results indicate that mitochondrial complex IV is the primary target of AITC, and that complex I is another potential target. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Alcohol

    Science.gov (United States)

    ... because that's how many accidents occur. What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  8. Alcohol

    Science.gov (United States)

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  9. Alcohol, microbiome, life style influence alcohol and non-alcoholic organ damage.

    Science.gov (United States)

    Neuman, Manuela G; French, Samuel W; Zakhari, Samir; Malnick, Stephen; Seitz, Helmut K; Cohen, Lawrence B; Salaspuro, Mikko; Voinea-Griffin, Andreea; Barasch, Andrei; Kirpich, Irina A; Thomes, Paul G; Schrum, Laura W; Donohue, Terrence M; Kharbanda, Kusum K; Cruz, Marcus; Opris, Mihai

    2017-02-01

    This paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-alcohol-induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism that may be responsible for the development of liver disease as well as the factors that determine the amount, frequency and which type of alcohol misuse leads to liver and gastrointestinal diseases. We aimed to (1) describe the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH) and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastrointestinal cancer and (7) focus on factors that aggravate the severity of organ-damage. The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD with simple fatty infiltrations and chronic alcoholic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human deficiency virus were discussed

  10. Titanocene(III) chloride mediated radical induced addition ...

    Indian Academy of Sciences (India)

    Reduction of the aldehyde 10 with sodium boro- hydride in the presence of CeCl3.7H2O furnished the alcohol 11 which was finally brominated using PBr3 to yield the dibromo compound 12.13. Thus, a series of bromoepoxides were prepared and subjected to radical cyclization using titanocene(III) chloride and the results ...

  11. Cogeneration of electricity and organic chemicals using a polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Yuan, X.; Ma, Z.; Bueb, H.; Drillet, J.-F.; Hagen, J.; Schmidt, V.M.

    2005-01-01

    Several unsaturated organic alcohols (allyl alcohol, propargyl alcohol, 2-butin-1,4-diol, 2- buten-1,4-diol) and acids (maleic acid, acrylic acid, crotonic acid, acetylendicarboxylic acid) were used as oxidants together with hydrogen as fuel in a polymer electrolyte fuel cell (PEFC). The standard free enthalpies (Δ R G θ ) of the overall fuel cell reactions H 2 /oxidant were calculated to be negative and the equilibrium voltages of such systems are in the range of U 00 = 0.4-0.6 V. In this way, the cogeneration of electric energy and desired hydrogenated products in a fuel cell reactor is apparent. Nafion[reg] 117, as polymer electrolyte, and commercial gas diffusion electrodes (ETEK) with carbon supported Pt were used in a PEFC reactor. The aqueous solutions of unsaturated alcohols and organic acids (c = 1-2 mol dm -3 ) were pumped under ambient pressure through the cathode compartment of the cell whereas hydrogen was fed into the cell at p 0.15 MPa. The open circuit voltages were measured to be in the range of 0.1-0.25 V. Current densities up to 50 mA cm -2 and maximum power densities of around 1 mW cm -2 has been achieved in the case of allyl alcohol, 2-butene-1,4-diol and acrylic acid. HPLC analysis indicates that the double or triple bond in unsaturated alcohols and organic acids is selectively hydrogenated. In addition, the electrochemical behaviour of the alcohols and acids was studied by means of cyclic voltammetry at a smooth polycrystalline Pt electrode in H 2 SO 4 . Reduction reactions were observed at potentials of E < 200 mV versus RHE. It was found that the onset potential for electrochemical hydrogenation of the double and triple bond in the cyclic voltamogram correlates well with the fuel cell performances using these compounds as oxidants

  12. General and Facile Route to Isomerically Pure Tricyclic Peptides Based on Templated Tandem CLIPS/CuAAC Cyclizations.

    Science.gov (United States)

    Richelle, Gaston J J; Ori, Sumeet; Hiemstra, Henk; van Maarseveen, Jan H; Timmerman, Peter

    2018-01-08

    We report a one-pot ligation/cyclization technology for the rapid and clean conversion of linear peptides into tricyclic peptides that is based on using tetravalent scaffolds containing two benzyl bromide and two alkyne moieties. These react via CLIPS/CuAAC reactions with cysteines and azides in the peptide. Flexibility in the scaffolds is key to the formation of isomerically pure products as the flexible scaffolds T4 1 and T4 2 mostly promote the formation of single isomeric tricycles while the rigid scaffolds T4 3 and T4 4 do not yield clean products. There seems to be no limitation to the number and types of amino acids present as 18 canonical amino acids were successfully implemented. We also observed that azides at the peptide termini and cysteine residues in the center gave better results than compounds with the functional groups placed the other way round. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Receptivity to alcohol marketing predicts initiation of alcohol use.

    Science.gov (United States)

    Henriksen, Lisa; Feighery, Ellen C; Schleicher, Nina C; Fortmann, Stephen P

    2008-01-01

    This longitudinal study examined the influence of alcohol advertising and promotions on the initiation of alcohol use. A measure of receptivity to alcohol marketing was developed from research about tobacco marketing. Recall and recognition of alcohol brand names were also examined. Data were obtained from in-class surveys of sixth, seventh, and eighth graders at baseline and 12-month follow-up. Participants who were classified as never drinkers at baseline (n = 1,080) comprised the analysis sample. Logistic regression models examined the association of advertising receptivity at baseline with any alcohol use and current drinking at follow-up, adjusting for multiple risk factors, including peer alcohol use, school performance, risk taking, and demographics. At baseline, 29% of never drinkers either owned or wanted to use an alcohol branded promotional item (high receptivity), 12% students named the brand of their favorite alcohol ad (moderate receptivity), and 59% were not receptive to alcohol marketing. Approximately 29% of adolescents reported any alcohol use at follow-up; 13% reported drinking at least 1 or 2 days in the past month. Never drinkers who reported high receptivity to alcohol marketing at baseline were 77% more likely to initiate drinking by follow-up than those were not receptive. Smaller increases in the odds of alcohol use at follow-up were associated with better recall and recognition of alcohol brand names at baseline. Alcohol advertising and promotions are associated with the uptake of drinking. Prevention programs may reduce adolescents' receptivity to alcohol marketing by limiting their exposure to alcohol ads and promotions and by increasing their skepticism about the sponsors' marketing tactics.

  14. Organometallic Methods for Forming and Cleaving Carbon-Carbon Bonds

    DEFF Research Database (Denmark)

    Christensen, Stig Holden

    with concomitant C-C bond formation was studied with a number of Grignard reagents. The transformation was performed in a sealed vial by heating to about 160 °C in an aluminum block or at 180 °C in a microwave oven. Good yields of the product alcohols were obtained with allyl- and benzylmagnesium halides when...

  15. The economic impact of alcohol abuse and alcoholism.

    Science.gov (United States)

    Burke, T R

    1988-01-01

    The economic effects of alcohol abuse are as damaging to the nation as the health effects, affecting the family, the community, and persons of all ages. Underaged drinking is interfering with children's development, affecting the nation's ability to respond to economic challenge in the future. The college aged may be the most difficult to educate about alcohol abuse because of drinking patterns established at an early age and susceptibility to advertising inducements. Health care costs for families with an alcoholic member are twice those for families without one, and up to half of all emergency room admissions are alcohol related. Fetal alcohol syndrome is one of the top three known causes of birth defects, and is totally preventable. Alcohol abuse and alcoholism are estimated to have cost the nation $117 billion in 1983, while nonalcoholic drug abuse that year cost $60 billion. Costs of alcohol abuse are expected to be $136 billion a year by 1990, mostly from lost productivity and employment. Between 6 and 7 million workers are alcoholic, with an undetermined loss of productivity, profits, and competitiveness of American business. Alcohol abuse contributes to the high health care costs of the elderly beneficiaries of Federal health financing programs. Heavily affected minorities include blacks, Hispanics, and Native Americans. Society tends to treat the medical and social consequences of alcohol abuse, rather than its causes. Although our experience with the consequences of alcohol abuse is greater than that for any other drug, public concern for its prevention and treatment is less than for other major illnesses or abuse of other drugs. Alcohol abuse is a problem being given high priority within the Department in an effort to create a national agenda on the issue and to try to impart a greater sense of urgency about the problems. Ways are being explored to integrate alcoholism activities into more Departmental programs. Employee assistance programs for alcohol

  16. Prenylcoumarins in One or Two Steps by a Microwave-Promoted Tandem Claisen Rearrangement/Wittig Olefination/Cyclization Sequence.

    Science.gov (United States)

    Schultze, Christiane; Schmidt, Bernd

    2018-05-04

    The one-pot synthesis of 8-prenylcoumarins from 1,1-dimethylallylated salicylaldehydes and the stabilized ylide [(ethoxycarbonyl)methylene]triphenylphosphorane under microwave conditions was found to have a limited scope. The sequence suffers from a difficult and sometimes low-yielding synthesis of the precursors and from a competing deprenylation upon microwave irradiation. This side reaction occurs in particular with electron rich arenes with two or more alkoxy groups at adjacent positions, a prominent substitution pattern in naturally occurring 8-prenylcoumarins. Both limitations of this one-step sequence were overcome by a two-step synthesis consisting of a microwave-promoted tandem allyl ether Claisen rearrangement/Wittig olefination and a subsequent olefin cross metathesis with 2-methyl-2-butene. The cross metathesis step proceeds with a high selectivity and yields exclusively the desired prenyl, rather than the alternative crotyl substituent. Several naturally occurring 8-prenylcoumarins that were previously inaccessible have been synthesized in good overall yields along this route.

  17. Alcohol

    International Nuclear Information System (INIS)

    Navarro Junior, L.

    1988-01-01

    The alcohol production as a secondary energy source, the participation of the alcohol in Brazilian national economic and social aspects are presented. Statistical data of alcohol demand compared with petroleum by-products and electricity are also included. (author)

  18. Alcohol Use and Alcohol-Related Seizures in Patients With Epilepsy

    Directory of Open Access Journals (Sweden)

    Michael Hamerle

    2018-06-01

    Full Text Available Purpose: This study aimed to assess alcohol consumption and the occurrence of alcohol-related seizures in patients with epilepsy within the last 12 months.Methods: In an epilepsy outpatient clinic, a standardized questionnaire was used to collect data retrospectively from consecutive adult epilepsy patients who had been suffering from the disease for at least 1 year. Logistic regression analyses were performed to identify independent predictors.Results: A total of 310 patients with epilepsy were included. Of these, 204 subjects (65.8% consumed alcohol within the last 12 months. Independent predictors for alcohol use were antiepileptic drug monotherapy (OR 1.901 and physicians' advice that a light alcohol intake is harmless (OR 4.102. Seizure worsening related to alcohol consumption was reported by 37 of the 204 patients (18.1% who had used alcohol. All 37 subjects had consumed large quantities of alcohol prior to the occurrence of alcohol-related seizures regardless of their usual alcohol-drinking behavior. The amount of alcohol intake prior to alcohol-related seizures was at least 7 standard drinks, which is equivalent to 1.4 L of beer or 0.7 L of wine. In 95% of cases, alcohol-related seizures occurred within 12 h after cessation of alcohol intake. Independent predictors for alcohol-related seizures were generalized genetic epilepsy (OR 5.792 and chronic heavier alcohol use (OR 8.955.Conclusions: Two-thirds of interviewed subjects had consumed alcohol within the last 12 months. This finding may be an underestimate due to patients' self-reporting and recall error. In all cases, the occurrence of alcohol related-seizures was associated with timely consumption of considerably large amounts of alcohol. Thus, a responsible alcohol intake seems to be safe for most patients with epilepsy. However, subjects with epilepsy and especially those with generalized genetic epilepsy should be made aware of an increased risk for seizures related to heavy

  19. Alcohol drinking pattern and risk of alcoholic liver cirrhosis

    DEFF Research Database (Denmark)

    Askgaard, Gro; Grønbæk, Morten; Kjær, Mette S

    2015-01-01

    BACKGROUND & AIMS: Alcohol is the main contributing factor of alcoholic cirrhosis, but less is known about the significance of drinking pattern. METHODS: We investigated the risk of alcoholic cirrhosis among 55,917 participants (aged 50-64years) in the Danish Cancer, Diet, and Health study (1993......-2011). Baseline information on alcohol intake, drinking pattern, and confounders was obtained from a questionnaire. Follow-up information came from national registers. We calculated hazard ratios (HRs) for alcoholic cirrhosis in relation to drinking frequency, lifetime alcohol amount, and beverage type. RESULTS......: We observed 257 and 85 incident cases of alcoholic cirrhosis among men and women, respectively, none among lifetime abstainers. In men, HR for alcoholic cirrhosis among daily drinkers was 3.65 (95% CI: 2.39; 5.55) compared to drinking 2-4days/week. Alcohol amount in recent age periods (40-49 and 50...

  20. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...... degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25...