WorldWideScience

Sample records for alloy-vt1-0

  1. Welding of the VNZh7-3 alloy with the VT1-0 titanium by laser beam

    International Nuclear Information System (INIS)

    Baranov, M.S.; Voshchinskij, M.L.; Fedorov, P.M.; Shilov, I.F.; Zytner, G.D.

    1980-01-01

    Found is the principle possibility of the laser welding of dissimilar metals and the optimum welding mode as well with the testing of quality and strength indices of welded joints and with mode test on structural elements. The possibility of laser welding of the sintered VNZh 7-3 alloy with the VT1-0 titanium in argon is shown. Studied is the technique of forming of welded edge joint of the above dissimilar metals. Established is the optimum method of laser beam setting at an angle of 20 deg to the butt surface and with the shift by 1/3 of diameter of welded point in the titanium direction. Shear tests of elementary and natural samples have shown that real strength of welded joint exceeds the VT1-0 titanium strength. Macro- and microstructure of welded joints has layer-vortex alloy structure on the base of the VT1-0 titanium inclusion of tungsten grains that indicates the intensive mixing of metals during the welding

  2. Investigation of fretting corrosion of vacuum-chrome-plated vt3-1 titanium alloy in pair with unprotected vt3-1 alloy and 40khnma steel

    International Nuclear Information System (INIS)

    Rojkh, I.L.; Koltunova, L.N.; Vejtsman, M.G.; Birman, Ya.N.; Skosarev, A.V.; Kogan, I.S.

    1978-01-01

    The character of destruction of contacting surfaces in the process of fretting corrosion of titanium alloy VT3-1 chromized in vacuum in pair with unprotected alloy VT3-1 and steel 40KhNMA has been studied by scanning electron microscopy, electronography, and recording the surface profile. The specific load was 200 kg/cm 2 , vibration amplitude 50 mkm and frequency 500 Hz. It has been established that pairs unprotected with coating are subjected to intensive fretting corrosion especially when they are made of titanium alloy. For the pair chromized alloy VT3-1 - unprotected alloy VT3-1 no destruction of a chromized surface is observed. Vacuum chromium coating in the pair with steel 40KhNMA reveals similar properties as in pair with a titanium alloy. The surface of a steel sample is destroyed because of fretting corrosion, though the intensity of corrosion is lower than in the case of unprotected pairs. Vacuum chromium coating is recommended for protection of titanium alloy VT3-1 from fretting corrosion in pair with steel 40KhNMA or an alloy VT3-1 especially in those cases when various organic coatings are unsuitable

  3. Effect of hydrostatic pressure application at cryogenic temperatures on the properties of VT1-0 alloy

    International Nuclear Information System (INIS)

    Khajmovich, P.A; Shulgin, N.A.; Chernyaeva, E.V.

    2015-01-01

    Attempt was made to determine the influence of hydrostatic pressure on the properties of the alloy VT1-0 at cryogenic temperatures both under straining of the alloy and without it. Hardening of the material is observed only in that part of the specimen, which experienced a deformation, while the very exposure of the alloy under hydrostatic pressure does not lead to strengthening of the material. At the same time, measurements of acoustic emission (AE) show that in the near-surface layers the forces of hydrostatic compression alone, i.e. without a deformation, cause some changes in the structure, which stipulate an increase of the energy and (to a lesser extent) of the median frequency of AE signals. An explanation of this phenomenon is suggested

  4. Phase transformations at continuous cooling in VT6ch and VT23 alloys

    International Nuclear Information System (INIS)

    Lyasotskaya, V.S.; Lyasotskij, I.V.; Meshcheryakov, V.N.; Ravdonikas, N.Yu.; Nadtochij, S.I.; Faustov, N.N.

    1986-01-01

    Phase transformations at continuous cooling at β-region temperatures in VT6ch and VT23 alloys are studied. Nonequilibrium phases: α', α'', (ω), βsub(e), αsub(e), are shown to be formed in these alloys depending on cooling composition and rate. It is established that at cooling at temperatures below Ar 3 in alloys studied high-temperature α-phase is formed, and at temperatures below 650 deg C - more dispersed low-temperature α-phase precipitating from β-solution volumes mostly enriched by alloying elements according to the intermediate mechanism. Diagrams of anisothermal β-phase decomposition for VT6ch and VT23 alloys are plotted in coincidence with the results of thermal, thermodifferential, metallographic and X-ray diffraction analyses; lines of martensite transformation, lines of high- and low-temperature α-phase formation are pointed on the diagrams. Besides, for VT23 alloy a line for (ω)-phase formation is pointed

  5. High temperature soldering of the VT14 titanium alloy

    International Nuclear Information System (INIS)

    Besednyj, V.A.

    1978-01-01

    Two methods of brazing the VT14 alloys have been investigated, as well as the effect of annealing and heating during brazing and on mechanical properties of this alloy. Contact reaction brazing using a palladium layer has been shown to be applicable for simple-shape products, while capillary brazing using Cu-Ti, Ni-Ti and Fe-Ti brazing alloy systems, for complex-shape products. Brazed joints strength is similar to the strength of the VT14 alloy. Heating during brazing (960 deg - 1160 deg C) and the following annealing (900 deg C) have but a slight effect on the properties of the base metal, reducing strength by 2-5% and increasing ductility by 10-20%

  6. Improvement of high-temperature thermomechanical treatment of the rolled section made of VT3-1 alloy

    International Nuclear Information System (INIS)

    Gavze, A.L.; Korostelev, Yu.P.

    2002-01-01

    Changes in mechanical properties and structure are investigated in alloy VT3-1 rods produced with the use of high temperature thermomechanical treatment (HTMT) on their heating and deformation during straightening as well as during preliminary hot deformation of the billets on a helical rolling mill (HRM). It is stated that the straightening at 550-700 deg C with elongation of ∼ 2% results in some decrease of ultimate strength and in essential enhancement of plasticity and impact strength. In a similar manner, preliminary rolling on HRM affects the properties of rods after final heat treatment. It is shown that rod production according to the experimental processing procedure increases the quality of the rods and can be realized when manufacturing rolled products of alloy VT3-1 with the use of HTMT [ru

  7. Corrosion cracking resistance of the VT3-1 titanium alloy with initial defects in the metal

    International Nuclear Information System (INIS)

    Konradi, G.G.; Mozhaev, A.V.; Zmievskij, V.I.; Sokolov, V.S.

    1978-01-01

    Investigated is the corrosion cracking resistance of thick sheet half-finished product of the VT3-1 alloy in 3% NaCl solution during 800 hrs. It is shown that crack development occurs during the first 24 hours with stress intensities above the threshold coefficient of stress intensities. Ratios of crack sizes permissible for using the alloy in the air and NaCl solution media are obtained

  8. Effect of filler metals and heat treatment on mechanical properties of welded joints of the VT20L and VT6L titanium cast alloys

    International Nuclear Information System (INIS)

    Abramova, V.N.; Polyakov, D.A.; Vas'kin, Yu.V.; Kulikov, F.R.; Prostov, I.A.; Yasinskij, K.K.

    1979-01-01

    Developed is a technology of welding and heat treatment of the VT20L and VT6L alloys, providing the mechanical properties of welds on the base metal level. It is found, that for residual stress relieving it is quite enough to anneal the alloys at 650 deg C. Welding of the investigated alloys up to 20 mm thick using SPT-2 additional wire provides the welded joint strength on a level of 0.8 σsub(u) of base metal. Usage of additional wire of base metal provides equal strength of welds and base metal

  9. Improvement in properties of welded joints of titanium alloy VT22 by thermocyclic treatment

    International Nuclear Information System (INIS)

    Lyasotskaya, V.S.; Kulikov, F.R.; Kirillov, Yu.G.; Ravdonikas, N.Yu.

    1983-01-01

    The results of investigations of the thermocyclic treatment (TCT) effect on the structure and properties of butt welded joints of tubes (with external diameter 180 mm and wall thickness 20-25 mm) of the VT22 alloy are presented. Welded joints have been obtained by means of multipassing automatic argon-arc (ARAW) and electron-beam (ELB) welding. It is shown that TCT of welded joints of the VT22 alloy results in formation in all zones of substructure with disperse precipitations of α-phase which is analogous to the structure of near welded seam zone metal immediately after welding. As a result of TCT and subsequent TT of welded joints poligonization and recrystallization processes of α- and #betta#-phases, changes in parameters of structural components and thin phase structure take place. TCT with strengthening TT or annealing leads to strength increase, while TCT with annealing besides that improves placticity and impact strength of the VT22 alloy welded joints

  10. Electron microscopy study of hardened layers structure at electrospark alloying the VT-18 titanium alloy with aluminium

    International Nuclear Information System (INIS)

    Pilyankevich, A.N.; Martynenko, A.N.; Verkhoturov, A.D.; Paderno, V.N.

    1979-01-01

    Presented are the results of metallographic, electron-microscopic, and X-ray structure analysis, of microhardness measurements and of the study of the electrode weight changes at electrospark alloying the VT-18 titanium alloy with aluminium. It is shown, that pulsating thermal and mechanical loadings in the process of electrospark alloying result in the electrode surface electroerosion, a discrete relief is being formed, which changes constantly in the process depending on the alloying time. Though with the process time the cathode weight gain increases, microareas of fracture in the hardened layer appear already at the initial stages of electrospark alloying

  11. Hardening by ion implantation of VT1-0 alloy having different grain size

    Energy Technology Data Exchange (ETDEWEB)

    Nikonenko, Alisa, E-mail: aliska-nik@mail.ru; Kurzina, Irina, E-mail: kurzina99@mail.ru [National Research Tomsk State University, 36, Lenin Str., 634050, Tomsk (Russian Federation); Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk Russia (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Kalashnikov, Mark, E-mail: kmp1980@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk Russia (Russian Federation)

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the structural and phase state of commercially pure titanium implanted by aluminum ions. TEM study has been carried out for two types of grains, namely coarse (0.4 µm) and small (0.5 µm). This paper presents details of the yield stress calculations and the analysis of strength components for the both grain types in two areas of the modified layer: at a distance of 0-150 nm (surface area I) and ∼300 nm (central area II) from the irradiated surface. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress in areas I and II. Thus, near the ion-alloyed layer, the yield stress decreases with the increase of the grain size, whilst area II demonstrates its increase. Moreover, the contribution to the general hardening of the alloy made by certain hardening mechanisms differs from contributions made by each of these mechanisms in each certain case.

  12. Structure and microhardness of alloy VT22 granules additionally doped with carbon and boron

    International Nuclear Information System (INIS)

    Sysoeva, N.V.; Polyakova, I.G.; Karpova, I.G.

    1996-01-01

    Aimed to improve heat resistance and strength of titanium base alloys due to carbon and boron additions (up to 0.3%) a study was made into regularities of phase decomposition in VT22 alloy during its rapid quenching from a liquid state on manufacturing granules 100-400 μm in size. Cooling rates on quenching were found to be sufficiently high to prevent precipitating carbides and borides. Subsequent annealing of granules promotes homogeneous precipitation of strengthening phases in the form of titanium carbides and borides, a reasonable amount of carbon and boron remaining in solid solution. An increase in microhardness of annealed granules reaches 20-25% compared to the standard alloy. 6 refs.; 2 figs.; 2 tabs

  13. Fatigue-induced dislocation structure of titanium alloy VT5-1ct at temperatures of 293-11 K

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, N.M. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Aleksenko, E.N. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Moskalenko, V.A. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Smirnov, A.R.N. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Yakovenko, L.F. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Mozhaev, A.V. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Arinushkin, I.A. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine))

    1993-07-05

    The dislocation structure formed during the final stage of fatigue at high- and low-amplitude stresses at T=293 K in air and T=293, 93 and 11 K in high vacuum is studied on the Ti alloy VT5-1ct which has been prepared by two processing methods. The [sigma]-N curves are plotted for corresponding experimental conditions. It is shown that slip alone is responsible for the plastic deformation. The characteristic features of the dislocation structure formed are reported. The morphology of the a phase does not influence the character of the dislocation structure. At lower temperatures, the substructure remains practically unaltered, although the likelihood of uniformly distributed dislocations is lower. The lifetime is essentially dependent on the environment, temperature and the alloy microstructure, the latter being especially important at low temperatures in the high-amplitude region. (orig.)

  14. Surface hardening alloy VT6 of electric explosion and by electron beam

    International Nuclear Information System (INIS)

    Ivanov, Yu. F.; Kobzareva, T. Yu.; Gromov, V. E.; Soskova, N. A.; Budovskikh, E. A.; Raikov, S. V.

    2014-01-01

    The aim is to study the phase composition, structure and properties of the surface layer of the VT6 titanium alloy, subjected to combined treatment, consisting of alloying by the plasma of an electric explosion of a graphite fiber with a charge of the SiC powder and subsequent exposure by a high-intense electron beam. As a result of such treatment, a multiphase surface layer with a submicron and nanosize structure forms with the microhardness manifold exceeding its value in the sample volume are presented

  15. Connection of crystallographic texture with anisotropy of yield strength of titanium alloy sheets

    International Nuclear Information System (INIS)

    Serebryannyj, V.N.; Koknaev, R.G.

    1983-01-01

    Using the programs developed in FORTRAN-4 algorithmic language for the ES-1022 computer the contribution of crystallographic texture to the anisotropy of yield strength in the sheet plane for warm-rolled sheets of α-titanium alloys VT1 and VT5-1, is evaluated. It is established, that experimental and calculation data for the sheet of VT1-0 agree satisfactorily in the angle range phi 40 deg the value anti M (phi) exceeds the experimental values σsub(0.2)(phi./σsub(0.2)(0). The results obtained for the sheet of the VT5-1 alloy show, that calculation and experimental data agree well for narrow angles (phi <= 60 deg) and at wider angles the values anti M(phi) exceed the values σsub(0.2)(phi)/σsub(0.2)(0). Calculation and experimental curves for the VT5-1 alloy on the whole agree better than for the VT1-0 one

  16. High temperature salt corrosion cracking of intermediate products of titanium alloys

    International Nuclear Information System (INIS)

    Sinyavskij, V.S.; Usova, V.V.; Lunina, S.I.; Kushakevich, S.A.; Makhmutova, E.A.; Khanina, Z.K.

    1982-01-01

    The high temperature salt corrosion cracking (HTSCC) of intermediate products from titanium base alloys in the form of hot rolled plates and rods has been studied. The investigated materials are as follows: VT20 pseudo-α-alloy, VT6 and VT14 α+β alloys; the comparison has been carried out with commercial titanium and low-alloyed OT4-1 α-alloy. The experiments have been held at 400 and 500 deg C, defining different stress levels: 0.4; 0.5; 0.75 and 0.9 tausub(0.2). The test basis - not less than 100 h. Standard tensile samples of circular cross section with NaCl (approximately 0.2-0.3 mg/cm 2 ) salt coatings, cut off from hot-rolled rods along the direction of rolling and hot-rolled plates along and across the direction of rolling have been tested. It has been extablished before hand that the notch doesn't affect the resistance of titanium alloys to HTSCC. The sensitivity of titanium alloy subproducts to HTSCC is estimated as to the time until the failure of the sample with salt coatings and without them. It is shown that salt coating practically doesn't affect the behaviour of titanium, that allows to consider it to be resistant to HTSCC. Titanium alloys alloying with β-isomorphous stabilizing additions increases it's HTSCC resistance. Vanadium alloying of the alloy (VT6 alloy of Ti-Al-V system) produces a favourable effect; intermediate products of VT14 (α+β) alloy (Ti-Al-V-Mo system), containing two β-stabilizing additions-vanadium and molybdenum, have satisfactory HTSCC resistance. It is shown that by changes is mechanical properties of alloys during HTSCC one can indirectly judge about their HTSCC sensitivity

  17. Study of the penetration of a plate made of titanium alloy VT6 with a steel ball

    Science.gov (United States)

    Buzyurkin, A. E.

    2018-03-01

    The purpose of this work is the development and verification of mathematical relationships, adapted to the package of finite element analysis LS-DYNA and describing the deformation and destruction of a titanium plate in a high-speed collision. Using data from experiments on the interaction of a steel ball with a titanium plate made of VT6 alloy, verification of the available constants necessary for describing the behavior of the material using the Johnson-Cook relationships was performed, as well as verification of the parameters of the fracture model used in the numerical modeling of the collision process. An analysis of experimental data on the interaction of a spherical impactor with a plate showed that the data accepted for VT6 alloy in the first approximation for deformation hardening in the Johnson-Cook model give too high results on the residual velocities of the impactor when piercing the plate.

  18. Influence of deformation conditions on texture formation and ductility in titanium alloys under hydrostatic pressure

    International Nuclear Information System (INIS)

    Dekun, A.M.; Kushakevich, S.A.; Adamesku, R.A.; Khmelinin, Yu.F.; Beresnev, B.I.; Shishmintsev, V.F.

    1982-01-01

    The influence of hot pressing parameters on microstructure, texture and mechanical properties of bars from titanium alloys VT1-0, VT5-1, (α-alloys) and VT3-1 (α+ν-alloy) has been investigated. Mechanical testing of samples has been performed under hydrostatic pressure from 200 to 800 MPa. It is shown that the temperature, deformation degree and type of the structure obtained exert a slight effect on mechanical properties of bars. The texture heterogeneity is more pronounced in α-alloys. It has been found that hydrostatic pressure during sample tensile testing improves their ductility characteristics

  19. VT Data - Lidar DSM (0.7m) 2015, Windham County

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Windham County 2015 0.7m; Eastern VT 2014 0.7m; Rutland/GI Counties 2013 0.7m; and...

  20. Hydrogen effect on tendency to delayed brittle fracture in titanium alloys

    International Nuclear Information System (INIS)

    Nazimov, O.P.; Bunin, L.A.; Il'in, A.A.; Ponomareva, N.A.

    1979-01-01

    The results of investigating hydrogen effetc on the tendency to delayed fracture of the titanium alloys of VT1-0, VT5, VT5-1, OT4, VT6S and VT14 are given. The delayed fracture test data have been compared with the results of fractographic investigations. The notion of structural instability in the initial condition during the tests was suggested as a criterion for evaluating the tendency of metal to delayed fracture

  1. Microstructure, Texture Evolution and Mechanical Properties of VT3-1 Titanium Alloy Processed by Multi-Pass Drawing and Subsequent Isothermal Annealing

    Directory of Open Access Journals (Sweden)

    Xiaofei Lei

    2017-04-01

    Full Text Available Microstructure, texture evolution, and mechanical properties of Ti–6Al–1.5Cr–2.5Mo–0.5Fe–0.3Si (VT3-1 titanium alloy processed by multi-pass drawing and subsequent isothermal annealing were systematically investigated. A fiber-like microstructure is formed after warm drawing at 760 °C with 60% area reduction. After isothermal annealing, the samples deformed to different amounts of area reduction show a similar volume fraction (80% of α phase, while the sample deformed to 60% exhibits a homogeneous microstructure with a larger grain size (5.8 μm. The major texture component of α phase developed during warm drawing is centered at a position of {φ1 = 10°, φ = 65°, φ2 = 0°}. The textures for annealed samples are almost along the orientation of original deformation textures and show significant increases in orientation density and volume fraction compared with their deformed states. In addition, for the drawn samples, the ultimate tensile strength increases but the ductility decreases with increasing drawing deformation. A negative slope of yield strength of annealed samples versus grain size (d−1/2 is found due to the difference between texture softening for as-rolled + annealed state and texture hardening for drawn + annealed state. The mechanical properties of annealed samples are found to be strongly dependent on grain size and texture, resulting in the balance of the strength and ductility.

  2. The investigation of topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys under hydrostatic pressure

    Science.gov (United States)

    Saeidi, Parviz; Nourbakhsh, Zahra

    2018-04-01

    Topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys have been studied utilizing density function theory by WIEN2k code. The generalized gradient approximation (GGA), generalized gradient approximation plus Hubbard parameter (GGA + U), Modified Becke and Johnson (MBJ) and GGA Engel-vosko in the presence of spin orbit coupling have been used to investigate the topological band structure of Gd1-xYxAuPb alloys at zero pressure. The topological phase and band order of these alloys within GGA and GGA + U approaches under hydrostatic pressure are also investigated. We find that under hydrostatic pressure in some percentages of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches, the trivial topological phase is converted into nontrivial topological phase. In addition, the band inversion strength versus lattice constant of these alloys is studied. Moreover, the schematic plan is represented in order to show the trivial and nontrivial topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches.

  3. Elasticity moduli, thermal expansion coefficients and Debye temperature of titanium alloys

    International Nuclear Information System (INIS)

    Beletskij, V.M.; Glej, V.A.; Maksimyuk, P.A.; Tabachnik, V.I.; Opanasenko, V.F.

    1979-01-01

    Studied are the characteristics of titanium alloys which reflect best the bonding forces for atoms in a crystal lattice: elastic modules, their temperature dependences, thermal expansion coefficient and Debye temperatures. For the increase of the accuracy of measuring modules and especially their changes with temperature an ultrasonic echo-impulse method of superposition has been used. The temperature dependences of Young modulus of the VT1-0, VT16 and VT22 titanium alloys are plotted. The Young module and its change with temperature depend on the content of alloying elements. The Young module decrease with temperature may be explained within the framework of the inharmonic effect theory. The analysis of the results obtained permits to suppose that alloying of titanium alloys with aluminium results in an interatomic interaction increase that may be one of the reasons of their strength increase

  4. Texture and structure of VT-19 alloy thin sheets and their welded joints

    International Nuclear Information System (INIS)

    Ehgiz, I.V.; Babarehko, A.A.; Khorev, M.A.

    1986-01-01

    The phase content and texture of VT-19 alloys in all zones of welded joints (weld, a heat affected zone a base metal) after different heat treatments and the effect of the latter on mechanical properties of the welded joint are studied. It is characteristic of a 2.5 mm sheet of the VT-19 alloy rolled in the β → α phase transformation temperature range the development of β-phase plane deformation textures with (001), (112), (111) orientations in the rolling plane that compose 56% of the β-phase material volume. In this case a texture of univariant phase transformation of the above β-phase components { 1120 } - { 1122 } - { 1124 }, as well as that of α-phase plane deformation } 1014 } - { 1015 } are formed in the α-phase. Hardening with subsequent ageing of the rolled sheet leads to increasing the fraction of textured material in the β-phase up to 95% with expanding the volume with the (111) orientation, but as a whole the β-phase texture type remains the same. The α-phase texture type corresponds to the univariant β → α phase transformation, the material having the α-phase texture accounts for 70%. In the weld zone the and axes with orientation spreading to 20 deg are the β-phase crystallization axes in the trans verse direction. The textured material accounts for ∼ 70%. The same texture is observed along the normal to the sheet plane. The α-phase texture after hardening and ageing corresponds to the univariant phase transformation of the above-mentionedβ-phase orientations, the material volume with the α-phase texture is ∼80%

  5. Studying the compactibility of the VT22 high-strength alloy powder obtained by the PREP method

    Science.gov (United States)

    Kryuchkov, D. I.; Berezin, I. M.; Nesterenko, A. V.; Zalazinsky, A. G.; Vichuzhanin, D. I.

    2017-12-01

    Compression curves are plotted for VT22 high-strength alloy powder under conditions of uniaxial compression at room temperature. The density of the compacted briquette at the loading and unloading stages is determined. It is demonstrated that strong interparticle bonds are formed in the area of the action of shear deformation. The results are supposed to be used to identify the flow model of the material studied and to perform the subsequent numerical modeling of the compaction process.

  6. Ultrasonic Surface Treatment of Titanium Alloys. The Submicrocrystalline State

    Science.gov (United States)

    Klimenov, V. A.; Vlasov, V. A.; Borozna, V. Y.; Klopotov, A. A.

    2015-09-01

    The paper presents the results of the research on improvement of physical-and- mechanical properties of titanium alloys VT1-0 and VT6 by modification of surfaces using ultrasonic treatment, and a comprehensive study of the microstructure and mechanical properties of modified surface layers. It has been established that exposure to ultrasonic treatment leads to formation in the surface layer of a structure with an average size of elements 50 - 100 nm, depending on the brand of titanium alloy.

  7. Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys.

    Science.gov (United States)

    Knipling, Keith E; Dunand, David C; Seidman, David N

    2007-12-01

    Atom probe tomography was utilized to measure directly the chemical compositions of Al(3)(Zr(1)-(x)Ti(x)) precipitates with a metastable L1(2) structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375 degrees C or 425 degrees C. The alloys exhibit an inhomogeneous distribution of Al(3)(Zr(1)-(x)Ti(x)) precipitates, as a result of a nonuniform dendritic distribution of solute atoms after casting. At these aging temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that Ti remains mainly in solid solution rather than partitioning to the Al(3)(Zr(1)-(x)Ti(x)) precipitates. This is interpreted as being due to the very small diffusivity of Ti in alpha-Al, consistent with prior studies on Al-Sc-Ti and Al-Sc-Zr alloys, where the slower diffusing Zr and Ti atoms make up a small fraction of the Al(3)(Zr(1)-(x)Ti(x)) precipitates. Unlike those alloys, however, the present Al-Zr-Ti alloys exhibit no interfacial segregation of Ti at the matrix/precipitate heterophase interface, a result that may be affected by a significant disparity in the evaporation fields of the alpha-Al matrix and Al(3)(Zr(1)-(x)Ti(x)) precipitates and/or a lack of local thermodynamic equilibrium at the interface.

  8. Thermodynamic modelling of phase equilibrium in system Ti-B-Si-C, synthesis and phases composition of borides and carbides layers on titanic alloyVT-1 at electron beam treatment in vacuum

    Science.gov (United States)

    Smirnyagina, N. N.; Khaltanova, V. M.; Lapina, A. E.; Dasheev, D. E.

    2017-01-01

    Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VT-1 are generated at diffused saturation in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.

  9. VT Data - Lidar Aspect (0.7m) 2014, Chittenden Co., Lamoille Co., Orleans Co., Washington Co.

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and related ASPECT datasets. This metadata complies with the VT...

  10. Magnetic properties of ball-milled Fe0.6Mn0.1Al0.3 alloys

    International Nuclear Information System (INIS)

    Rebolledo, A.F.; Romero, J.J.; Cuadrado, R.; Gonzalez, J.M.; Pigazo, F.; Palomares, F.J.; Medina, M.H.; Perez Alcazar, G.A.

    2007-01-01

    The FeMnAl-disordered alloy system exhibits, depending on the composition and the temperature, a rich variety of magnetic phases including the occurrence of ferromagnetism, antiferromagnetism, paramagnetism and spin-glass and reentrant spin glass behaviors. These latter phases result from the presence of atomic disorder and magnetic dilution and from the competing exchange interactions taking place between an Fe atom and its Mn and Fe first neighbors. The use of mechanical alloying in order to prepare these alloys is specially interesting since it allows to introduce in a progressive way large amounts of disorder. In this work, we describe the evolution with the milling time of the temperature dependence of the magnetic properties of mechanically alloyed Fe 0.6 Mn 0.1 Al 0.3 samples. The materials were prepared in a planetary ball mill using a balls-to-powder mass ratio of 15:1 and pure (99.95 at%) Fe, Mn and Al powders for times up to 19 h. The X-rays diffraction (XRD) spectra show the coexistence of three phases at short milling times. For milling times over 6 h, only the FeMnAl ternary alloy BCC phase is observed. Moesbauer spectroscopy reveals the complete formation of the FeMnAl alloy after 9 h milling time. The magnetic characterization showed that all the samples were ferromagnetic at room temperature with coercivities decreasing from 105 Oe (3 h milled sample) down to 5 Oe in the case of the sample milled for 19 h

  11. XPS study on Mg0.9-xTi0.1PdxNi (x = 0.04, 0.06, 0.08, 0.1) hydrogen storage electrode alloys after charge-discharge cycles

    International Nuclear Information System (INIS)

    Tian Qifeng; Zhang Yao; Wu Yuanxin

    2009-01-01

    The passive film composition of Mg 0.9-x Ti 0.1 Pd x Ni (x = 0.04, 0.06, 0.08, 0.1) hydrogen storage alloys after 40 charge-discharge cycles has been investigated by means of X-ray photoelectron spectroscopy (XPS) in combination with Ar + sputtering technology. With the XPSPEAK software, high resolution spectra of alloy elements and oxygen were deconvolved into individual peaks. Composites formed by metal elements and their relative contents were also deduced. It was found that the composites originated from Mg and Ni were mainly in the form of their oxides and hydroxides, which existed at the top surface of alloys. With the increase of sputtering depth, the hydroxides of Mg and Ni gradually disappeared while corresponding oxides dominated their passive products. According to the analysis results of oxygen spectra, the elemental segregation of Mg and Ni was influenced by the substitution of Pd because the addition of Pd slightly enhanced the surface energy of the alloys and suppressed the formation of Mg hydroxide and oxide. Ti and Pd presented multiple-oxides from the surface to the inner alloys and metallic Pd appeared in the sub-layers of the alloys' surface. The possible mechanisms of the formation of passive products were suggested on the basis of the discussion in the paper.

  12. Role of Ag-alloy in the thermal stability of Ag-based ohmic contact to GaN(0 0 0 1) surface

    International Nuclear Information System (INIS)

    Xiong, Zhihua; Qin, Zhenzhen; Zhao, Qian; Chen, Lanli

    2015-01-01

    First-principles calculations are performed to study Ag and Ag-alloy adsorption stability on GaN(0 0 0 1) surface. We find Ag only contact to GaN surface is unstable under high temperature. While Ag-alloy adsorption exhibits better adsorption stability and electronic properties than that of the Ag only contact,due to the enhanced interaction between Ag-alloy and GaN(0 0 0 1) surface. The Ag-alloy, particularly AgNi, is proposed to be used as very promising ohmic contact to GaN for practical applications

  13. Thermoelectric properties of p-type pseudo-binary (Ag0.365Sb0.558Te) x -(Bi0.5Sb1.5Te3)1-x (x=0-1.0) alloys prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Cui, J.L.; Xue, H.F.; Xiu, W.J.; Jiang, L.; Ying, P.Z.

    2006-01-01

    In this paper, pseudo-binary (Ag 0.365 Sb 0.558 Te) x -(Bi 0.5 Sb 1.5 Te 3 ) 1- x (x=0-1.0) alloys were prepared using spark plasma sintering technique, and the composition-dependent thermoelectric properties were evaluated. Electrical conductivities range from 7.9x10 4 to 15.6x10 4 Ω -1 m -1 at temperatures of 507 and 318 K, respectively, being about 3.0 and 8.5 times those of Bi 0.5 Sb 1.5 Te 3 alloy at the corresponding temperatures. The optimal dimensionless figure of merit (ZT) of the sample with molar fraction x=0.025 reaches 1.1 at 478 K, whereas that of the ternary Bi 0.5 Sb 1.5 Te 3 alloy is 0.58 near room temperature. The results also reveal that a direct introduction of Ag 0.365 Sb 0.558 Te in the Bi-Sb-Te system is much more effective to the property improvement than naturally precipitated Ag 0.365 Sb 0.558 Te in the Ag-doped Ag-Bi-Sb-Te system. - Graphical abstract: The temperature dependence of the dimensionless thermoelectric figure of merit ZT for different (Ag 0.365 Sb 0.558 Te) x -(Bi 0.5 Sb 1.5 Te 3 ) 1- x (x=0-1.0) alloys prepared by spark plasma sintering

  14. Solubility of tritium in Pd1-YAgY alloys (Y = 0.00, 0.10, 0.20, 0.30)

    International Nuclear Information System (INIS)

    Lasser, R.; Powell, G.L.

    1988-01-01

    Solubility measurements of tritium (T) in Pd 1-Y Ag Y alloys (Y = 0.00, 0.10, 0.20, 0.30) are reported in the temperature range of 250 K to 733 K, the pressure range below 3 bar, and the concentration range of 0.001 to 0.64 hydrogen to metal atom ratio. To study isotopic effects, the pressure-concentration-temperature relationships of the hydrogen isotopes protium (H) and deuterium (D) have been measured using the same samples and experimental setup and to temperatures as high as 1500 K using a different set up and samples. The experimental data are compared with values for H and D determined by other groups. In the case of T, most of the data presented have not been determined before. From these data the Sieverts' constants were calculated which show a strong temperature and isotope dependence. Analytical expressions, based on models that assume various degrees to which the hydrogen can perceive the alloy composition of individual sites in an alloy, are given for the Sieverts' constants that allow the calculation of the standard Gibbs free energies, enthalpies and entropies of H, D and T in these alloys

  15. Geometric Effects of La1+xMg2-xNi9 (x=0.01.0) Ternary Alloys on Their Hydrogen Storage Capacities

    Institute of Scientific and Technical Information of China (English)

    Zhiqing YUAN; Guanglie LU; Bin LIAO; Yongquan LEI

    2005-01-01

    Structural analysis was made using X-ray diffraction (XRD) Rietveld refinement on a series of La1+xMg2-xNi9(x=0.01.0) ternary alloys. Results showed that each of La1+xMg2-xNi9 alloys was a PuNi3-type structure stacked by LaNi5 and (La, Mg) Ni2 blocks. Electrochemical tests revealed that discharge abilities of these La-Mg-Ni ternary alloys mainly depended on their atomic distances between (La, Mg) and Ni, which could be modified by varying the atomic ratios of La/Mg.

  16. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China) and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Wang, M.P. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Zhang, L.; Gong, S. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Xiao, Z. [Department of Engineering, University of Liverpool, Liverpool, L693 GH (United Kingdom); Pan, Z.Y. [Hunan Nonferrous Metals Holding Group Co., Ltd., Changsha, 410015 (China)

    2011-02-24

    Research highlights: > High solute concentrations Cu-Ni-Si alloy with super high strength and high conductivity has a good prospect for replacing Cu-Be alloys. At least four different kinds of precipitation products (DO{sub 22} ordered structure, {beta}-Ni{sub 3}Si precipitate, {delta}-Ni{sub 2}Si precipitate and {gamma}-Ni{sub 5}Si{sub 2} precipitate) have been observed in previous investigation. Therefore, the overall phase transformation behavior of Cu-Ni-Si alloy appears to be very complex. And most previous studies on the phase transformation usually investigated the precipitation process at only one temperature or at most a few temperatures, which is far away to establish a time-temperature-transformation (TTT) diagram for Cu-Ni-Si alloy. > The phase transformation behavior of Cu-8.0Ni-1.8Si alloy has been studied systematically at wide temperature range in this paper. The results we have gained are that: after solution treatment, followed by different conditions of isothermal treatment, DO{sub 22} ordering, discontinuous precipitation and continuous precipitation were observed in the alloy; discontinuous precipitates of {beta}-Ni{sub 3}Si phase appeared when the alloy isothermal treated at 550 deg. C for short time, which had not been reported by the previous Cu-Ni-Si system alloy's researchers in their papers; two kinds of precipitates of {beta}-Ni{sub 3}Si and {delta}-Ni{sub 2}Si were determined by the TEM characterization; the orientation relationship between the two kinds of precipitates and Cu-matrix is that: (1 1 0){sub Cu}//(1 1 0){sub {beta}}//(211-bar){sub {delta}}, [112-bar]{sub Cu}//[11-bar 2]{sub {beta}}//[3 2 4]{sub {delta}}; during overaging treatment, Cu-matrix, {beta}-Ni{sub 3}Si, {delta}-Ni{sub 2}Si and {delta}'-Ni{sub 2}Si were distinguished in the samples and the orientation relationship between the precipitates and Cu-matrix can be expressed as that: (0 2 2){sub Cu}//(0 2 2){sub {beta}}//(1 0 0){sub {delta}}, (02-bar 2){sub Cu

  17. VT Data - Lidar DSM (0.7m) 2016, Essex, Caledonia, Orange, and Windsor Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Middle CT River subbasin 2016 0.7m; Eastern VT 2014 0.7m; Rutland/GI Counties 2013...

  18. Electronic structure studies of a clock-reconstructed Al/Pd(1 0 0) surface alloy

    Science.gov (United States)

    Kirsch, Janet E.; Tainter, Craig J.

    We have employed solid-state Fenske-Hall band structure calculations to examine the electronic structure of Al/Pd(1 0 0), a surface alloy that undergoes a reconstruction, or rearrangement, of the atoms in the top few surface layers. Surface alloys are materials that consist primarily of a single elemental metal, but which have a bimetallic surface composition that is only a few atomic layers in thickness. The results of this study indicate that reconstruction into a clock configuration simultaneously optimizes the intralayer bonding within the surface plane and the bonding between the first and second atomic layers. These results also allow us to examine the fundamental relationship between the electronic and physical structures of this reconstructed surface alloy.

  19. Hydrogen effect on the martensite habit planes of titanium alloy quenching

    International Nuclear Information System (INIS)

    Kolachev, B.A.; Fedorova, N.V.; Mamonova, F.S.

    1981-01-01

    The structure of hexagonal α'-martensite in the alloys Ti-2.4% Mo, Ti-4%V and VT6, the structure of rhombic α'' martensite in the alloy Ti-7.5% Mo and hydrogen effect on the martensite structure in the alloys Ti-7.5% Mo and VT6 are studied. It is shown that in the alloy Ti-2.4% Mo martensitic crystals has habit planes (334)sub(β) and (344)sub(β), at that, the (334)sub(β) habit dominates. The increase of molybdenum content up to 7.5% results in the growth of the crystal part with the (344)sub(β) habit. The introduction of 0.05% H into the alloy Ti-7.5% Mo increases the crystal part with the (334)sub(β) habit plane. The habit plane of martensitic crystals in the alloy Ti-4% V is (334)sub(β). The introduction of 6% Al into the alloy results in the appearance in the structure of the alloy Ti-6Al-4 V of the crystals with the (344)sub(β) habit. Hydrogen in the amount of 0.05% does not change the ratio between crystals with the (344)sub(β) habit and (334)sub(β) one in the VT6 alloy [ru

  20. VT Lidar Hydro-flattened DEM (0.7 meter) - 2014 - Chittenden, Lamoille, Orleans, & Washington Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and Digital Elevation Model (DEM) dataset of the following...

  1. VHTR-fuel irradiation capsules for VT-1 hole of JRR-2

    International Nuclear Information System (INIS)

    Kikuchi, Teruo; Kikuchi, Akira; Tobita, Tsutomu; Kashimura, Satoru; Miyasaka, Yasuhiko

    1977-02-01

    Irradiations of VHTR fuels were made in the VT-1 irradiation hole of JRR-2. Three capsules, VP-1, VP-2 and VP-4, which contained fuel compacts, were irradiated for 300 hr at temperatures of 950 0 , 1370 0 and 1500 0 C up to the estimated burn-ups of 0.74, 0.87 and 0.80%FIMA, respectively. And, to study the amoeba effect of fuel particles, two capsules, VP-3 and VP-5, were irradiated for 300 hr at temperatures of 1650 0 and 1670 0 C up to the estimated burn-ups of 0.38 and 0.33%FIMA, respectively. (auth.)

  2. Laser and electron beam welding study on niobium based Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Kushwaha, R.P.; Tewari, R.; Dey, G.K.

    2016-01-01

    The refractory metal based alloys are most suitable for the structural applications in high temperature reactors envisaged to operate at temperature higher than 1000°C. The Nb-1Zr-0.1C (wt. %) is being considered for structural applications in the proposed Compact High Temperature Reactors (CHTR). The welding of this alloy is a difficult task due to its reactive nature and higher thermal conductivity. Laser and Electron Beam (EB) welds were produced on sheet of Nb-1Zr-0.1C alloy at various processing parameters and their effects on weld quality was studied by characterizing their optical and SEM micrographs and microhardness profile. The joining efficiency of both welding processes were also studied. The laser welds done in air with argon shielding showed higher hardness values compared to EB welds indicating need for adequate shielding. This study will help to find the optimized welding parameters to produce defect free welds of Nb-1Zr-0.1C alloy. (author)

  3. TEM study on a new Zr-(Fe, Cu) phase in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cu alloy

    Science.gov (United States)

    Liu, Yushun; Qiu, Risheng; Luan, Baifeng; Hao, Longlong; Tan, Xinu; Tao, Boran; Zhao, Yifan; Li, Feitao; Liu, Qing

    2018-06-01

    A new Zr-(Fe, Cu) phase was found in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe- 0.1Cu alloy and alloys aged at 580 °C for 10min, 2 h and 10 h. Electron diffraction experiment shows the crystal structure of this phase to be body-centered tetragonal with unit cell dimensions determined to be a = b = 6.49 Å, c = 5.37 Å. Its possible space groups have been discussed and the reason accounting for its formation is believed to be the addition of Cu according to the atom-level images. In addition, no crystal structural or chemical composition changes were observed throughout the aging process.

  4. Structural, electronic, mechanical, thermal and optical properties of B(P,As)1-xNx; (x = 0, 0.25, 0.5, 0.75, 1) alloys and hardness of B(P,As) under compression using DFT calculations

    Science.gov (United States)

    Viswanathan, E.; Sundareswari, M.; Jayalakshmi, D. S.; Manjula, M.; Krishnaveni, S.

    2017-09-01

    First principles calculations are carried out in order to analyze the structural, electronic, mechanical, thermal and optical properties of BP and BAs compounds by ternary alloying with nitrogen namely B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys at ambient condition. Thereby we report the mechanical and thermal properties of B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys namely bulk modulus, shear modulus, Young's modulus, hardness, ductile-brittle nature, elastic wave velocity, Debye temperature, melting point, etc.; optical properties of B(P)1-xNx (x = 0.25, 0.5, 0.75) and B(As)1-xNx (x = 0.25, 0.75) alloys namely the dielectric function of real and imaginary part, refractive index, extinction coefficient and reflectivity and the hardness profile of the parent compounds BP and BAs under compression. The charge density plot, density of states histograms and band structures are plotted and discussed for all the ternary alloys of the present study. The calculated results agree very well with the available literature. Analysis of the present study reveals that the ternary alloy combinations namely BP.25N.75 and BAs.25N.75 could be superhard materials; hardness of BP and BAs increases with compression.

  5. Investigation of broken symmetry of Sb/Cu(111) surface alloys by VT-STM

    CSIR Research Space (South Africa)

    Ndlovu, GF

    2011-07-01

    Full Text Available This work present an in situ Variable Temperature Scanning Tunneling Microscopy (VT-STM) study of the Sb/Cu(111) system studied at various temperatures. The experimental data support a structural model in which Sb atoms displace up to 1...

  6. Martensitic transformation and mechanical properties of Ni{sub 49+x}Mn{sub 36–x}In{sub 15} (x=0, 0.5, 1.0, 1.5 and 2.0) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Le; Mehta, Abhishek [Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL, 32816 (United States); Giri, Anit [TKC Global, 13873 Park Center Road, Herndon, VA 20171 (United States); Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Cho, Kyu [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Sohn, Yongho, E-mail: Yongho.Sohn@ucf.edu [Department of Materials Science and Engineering and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL, 32816 (United States)

    2015-10-14

    Five polycrystalline Ni{sub 49+x}Mn{sub 36–x}In{sub 15} (x=0, 0.5, 1.0, 1.5 and 2) alloys were prepared by triple arc-melting and examined to understand their martensitic transformation and mechanical properties. Martensitic transformation temperatures were determined by differential scanning calorimetry (DSC) and observed to increase with increasing Ni content. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that Ni{sub 49}Mn{sub 36}In{sub 15} is austenitic at room temperature while modulated 7M martensitic structure was observed in other alloys. Different twinning relationships between martensitic variants were revealed by TEM. Reduced elastic modulus and hardness were measured by nanoindentation. For the martensites, the reduced elastic modulus increased as the e/a increases, while hardness did not vary. The austenitic phase exhibited a lower reduced elastic modulus and hardness. A larger scatter in the reduced elastic modulus and hardness was observed for the martensitic phase in conjunction with variants of different orientation. The martensitic transformation behavior and nanoindentation results were also compared with Ni{sub 53+x}Mn{sub 22–x}Ga{sub 25} (x=0.5, 1.0, 1.8 and 2.5) alloys. For both Ni–Mn–In and Ni–Mn–Ga alloys, the martensitic transformation temperature and reduced elastic modulus increased as the e/a ratio increased.

  7. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, N.Yu. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Stepanov, N.D., E-mail: stepanov@bsu.edu.ru [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Shaysultanov, D.G. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Tikhonovsky, M.A. [National Science Center “Kharkov Institute of Physics and Technology”, NAS of Ukraine, Kharkov, 61108 (Ukraine); Salishchev, G.A. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation)

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The density of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.

  8. Effect of hydrogen oxygen and nitrogen, on the tendency of welded joints of titanium alloys to moderate failure

    International Nuclear Information System (INIS)

    Gorshkov, A.I.; Matyushin, B.A.

    1976-01-01

    The admissible limits have been defined of gaseous impurities content in the metal of welded joints of titanium alloys, with due accout for the phase composition and alloying system. The proposed procedure of testing disk specimens most adequately simulates the behavior of welded joints in full-scale strures. The tests lasting 2.5 to 3 years permit to consider the effect of temporal processes (hydrogen diffusion, relaxation of stresses, phase transformations, etc.) on the durability of a weld. The hydrogen content in the metal of welded joints of OT4 alloy should not exceed 0.008%, that of VT14 alloy should not exceed 0.008%, and that of VT20 alloy should not exceed 0.015% (at an oxygen content of no more than 0.15% and a nitrogen content of no more than 0.03%), the oxygen content being 0.25%, 0.2% and 0.2%, respectxvely (at a hydrogen content of no more than 0.008% and a nitrogen of no more than 0.03%), ;nd the nitrogen content being 0.1%, 0.06% and 0.08%, respectively (at hydrogen content of no more than 0.008% and an oxygen content of no more than 0.15%

  9. DEC VT220

    CERN Multimedia

    1983-01-01

    The DEC (Digital Equipment Corporation) VT220 is a text terminal which uses an redesigned keyboard(LK201). The VT220 improved on the earlier VT100 series of terminals with much smaller physical packaging and and a much faster microprocessor.

  10. VT Data - Lidar Hillshade (0.7m) 2014, Chittenden Co., Lamoille Co., Orleans Co., Washington Co.

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and related "HILLSHADE" raster data. HILLSHADE data is for...

  11. VT Data - Lidar Slope (0.7m) 2014, Chittenden Co., Lamoille Co., Orleans Co., Washington Co.

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE" command...

  12. Ion scattering studies of ordered alloy surfaces: CuAu(1 0 0) and NiAl

    International Nuclear Information System (INIS)

    Beikler, R.; Taglauer, E.

    2000-01-01

    The composition and structure of alloy surfaces can differ from the corresponding bulk properties due to segregation and relaxation effects. We studied the (1 0 0) surface of the ordered alloy CuAu and amorphous Ni and Al by low-energy Ne + and Na + ion scattering. The interpretation of the experimental results is supported by numerical simulations using the MARLOWE code. In the CuAu system a certain geometry was found to be very sensitive to Au presence in the 2nd layer. Comparison with MARLOWE results also allows to study variations in the ion yields arising from neutralization effects. By trajectory analysis ion survival probabilities are estimated for Ni and Al

  13. Effect of heat treatment on the precipitation in Al-1 at.% Mg-x at.% Si (x = 0.6, 1.0 and 1.6) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Afify, N. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: afify@aun.edu.eg; Mostafa, M.S.; Abbady, Gh. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2009-05-27

    The fine-scale precipitates, that occurs during aging, the supersaturated Al-1.0 at.% Mg-x at.% Si (x = 0.6, 1.0 and 1.6) alloys have been investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The strength of the alloys increases as a high density of very fine {beta}'' coherent and {beta}' semicoherent precipitates nucleate. The precipitates compositions have been determined by analyzing the X-ray diffraction (XRD) charts, by using Scherrer equation. The obtained results showed that the {beta}'' and {beta}' precipitates size lies in the nanometer range (from {approx}5 nm to {approx}32 nm). In addition, increasing Si concentration has exhibited an increase in the density of the precipitates, which fortifies the physical properties.

  14. VT Data - Lidar nDSM (0.7m) 2014, Chittenden Co., Lamoille Co., Orleans Co., Washington Co.

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and related 'normalized' Digital Surface Model (nDSM). Created...

  15. L1{sub 0} phase formation in ternary FePdNi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Arango, A.M. [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Bordeaux, N.C. [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); Liu, J.; Barmak, K. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Lewis, L.H., E-mail: lhlewis@neu.edu [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States)

    2015-11-05

    Metallurgical routes to highly metastable phases are required to access new materials with new functionalities. To this end, the stability of the tetragonal chemically ordered L1{sub 0} phase in the ternary Fe–Pd–Ni system is quantified to provide enabling information concerning synthesis of L1{sub 0}-type FeNi, a highly attractive yet highly elusive advanced permanent magnet candidate. Fe{sub 50}Pd{sub 50−x}Ni{sub x} (x = 0–7 at%) samples were arc-melted and annealed at 773 K (500 °C) for 100 h to induce formation of the chemically ordered L1{sub 0} phase. Coupled calorimetry, structural and magnetic investigations allow determination of an isothermal section of the ternary Fe–Pd–Ni phase diagram featuring a single phase L1{sub 0} region near the FePd boundary for x < 6 at%. It is demonstrated that increased Ni content in Fe{sub 50}Pd{sub 50−x}Ni{sub x} alloys systematically decreases the order-disorder transition temperature, resulting in a lower thermodynamic driving force for the ordering phase transformation. The Fe{sub 50}Pd{sub 50−x}Ni{sub x} L1{sub 0} → fcc disordering transformation is determined to occur via a two-step process, with compositionally-dependent enthalpies and transition temperatures. These results highlight the need to investigate ternary alloys with higher Ni content to determine the stability range of the L1{sub 0} phase near the FeNi boundary, thereby facilitating kinetic access to the important L1{sub 0} FeNi ferromagnetic phase. - Highlights: • Chemical ordering in FePdNi enhances intrinsic and extrinsic magnetic properties. • 773 K annealed FePdNi alloys studied show a stable L1{sub 0} phase for Ni ≤ 5.2 at%. • Chemical disordering in FePdNi occurs by a previously unreported two-step process. • Ni additions to FePd dramatically decrease the chemical order-disorder temperature. • The chemical-ordering transformation kinetics are greatly affected by Ni content.

  16. The Auger-spectroscopic study of the elemental composition of the fracture surface of titanic alloy vt-22 with different structure

    International Nuclear Information System (INIS)

    Tkachenko, E.A.; Chokin, K.Sh.; Masyagin, V.E.; Chasnikov, A.I.

    2002-01-01

    High titanium alloys belong to a group of materials with high thermal stability and strength-to-weight ratio, which, for example, are widely used in aviation. The structure and properties of this materials strongly depends on variations of their elemental composition. In the dependence on the content of alloying elements the structure after the hardening from β-phase changes that, in its turn, leads to the alteration of the mechanical properties. So, the study of the redistribution of the impurity and alloying elements at straining the alloys with different structures that associated with premature destruction of construction components made of the titanic alloys is of great interest. The present work performs the results of the Auger spectroscopic investigation of the elemental composition of the alloy VT-22 fraction surface. This investigation was fulfilled for the alloy samples with different structure: laminated (L), globular (G), and laminated-globular ones with the plasticity level 1280-1350 MPa. The alterations of the elemental concentrations on the fracture surface have been estimated with the special Auger-spectrometer (OSIPR-1). The analysis of the fracture surface for samples with L- and G-structures right after the destruction at different velocities have shown the enrichment of the surface with aluminium, oxygen, and carbon in bound state as titan carbide (TiC). At this, the content of these elements decreases with the growth of the test velocity. The impurities in the samples with different structures behave as follows. In the sample with L-structure sulphur, phosphorus, and calcium on the fracture surface have been detected. At this, with the growth of the test velocity their concentration increases, but not significantly. In the samples with G-structure sulphur presents on the surface only at great straining velocities, and phosphorus is absent. At the analysis of the obtained results, one should note that the fracture surface is being enriched

  17. Technological capabilities of increasing surface quality of workpieces made of titanium alloy VT22 and stability of surface grinding

    Science.gov (United States)

    Soler, Ya I.; Salov, V. M.; Mai, D. S.

    2018-03-01

    Surface grinding of flat workpieces made of alloy VT22 was conducted by the periphery of a highly porous wheel (HPW) from cubic boron nitride CBN30 B107 100 OV K27 КF40 with three processing techniques (ij). They are 10 - cross-feed per stroke, HPW cutting into a workpiece changes alternately from up to down; 12 – cross-feed per double stroke during the up HPW cutting-in at the working stroke; 22 – cross-feed per double stroke during the down HPW cutting-in at the working stroke. With the involvement of artificial neural network models, it was revealed that to improve the quality of surfaces and stability of its formation, grinding should be conducted if ij = 12.

  18. Moessbauer and X-ray Study of Fe1-xAlx, 0.2≤x≤0.5, Samples Produced by Mechanical Alloying

    International Nuclear Information System (INIS)

    Oyola Lozano, D.; MartInez, Y. Rojas; Bustos, H.; Perez Alcazar, G. A.

    2004-01-01

    In this work we report the magnetic and structural properties obtained by Moessbauer spectroscopy and X-ray diffraction, of the Fe 1-x Al x , 0.2≤x≤0.5, alloys produced by mechanical alloying. Alloys with x=0.2, 0.3, 0.4 and 0.5, were for milled 12, 24, 36, and 48 hours. All the obtained alloys are in the bcc phase. The obtained Moessbauer spectra are characteristic of disordered ferromagnetic system. The lattice parameter remains nearly constant (∼2.91 A) for all the milling times and compositions. The mean grain sizes in the (110) and (211) direction are nearly constants with the milling time but vary from 15.5 to 11 nm and from 10.5 to 8.5 nm when Al content grow between x=0.2 to x=0.4, respectively. The difference between the mean grain sizes in these two directions shows that the grains are of prolate spheroid form.

  19. Thermomechanical processing of Nb-1Zr-0.1C alloy for use in compact high temperature reactors: a first report

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Kapoor, R.; Suri, A.K.

    2011-08-01

    Nb-1Zr-0.1C is a potential material for use in high temperature nuclear reactors. Use of this alloy in components requires appropriate thermomechanical processing to break the cast microstructure and to obtain uniformly distributed fine stable precipitates so as to produce the desired mechanical properties at the high operating temperatures. This report reviews the thermomechanical processing of Nb-1Zr-0.1C alloy carried out over the years by other researchers and the high temperature creep behavior of the alloy. The hot deformation of Nb-1Zr-0.1C alloy carried out at Mechanical Metallurgy Division is also presented here. From this review it is evident that most primary hot working studies were carried out between 1500 to 1700 degC. The subsequent annealing treatments, which require holding at lower temperatures of about 1100 to 1300 degC for very long times help further transform the precipitates from coarse orthorhombic to very fine cubic. Our studies on Nb-1Zr-0.1C alloy also confirm that optimum hot working lies at temperatures beyond 1500 degC where dynamic recrystallization initiates, and optimally around 1700 degC where dynamic recrystallization transforms the microstructure. Working at temperatures lower than 1000 degC may lead to the undesirable effect of both micro as well as macro strain localization, and should be avoided. (author)

  20. Effect of magnetic field on the microstructure and electrochemical performance of rapidly quenched La{sub 0.1}Nd{sub 0.075}Mg{sub 0.04}Ni{sub 0.65}Co{sub 0.12} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangrong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Wang, Haiyan, E-mail: wanghy419@126.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Hunan Dahua New Energy Co., Ltd., Changsha 410600 (China); Zhu, Shuping; Li, Fangfang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Tang, Yougen, E-mail: ygtang@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu, Zuming [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2014-12-25

    Highlights: • La{sub 0.1}Nd{sub 0.075}Mg{sub 0.04}Ni{sub 0.65}Co{sub 0.12} alloy is rapidly quenched in a 0.18 T static magnetic field. • The multiphase structures of as-treated alloys remain unchanged. • Grain refinement is achieved with the aid of magnetic field. • Magnetic field favors the formation of La{sub 2}Ni{sub 7} phase. • The as-prepared alloy exhibits improved electrochemical performance. - Abstract: Rare earth–Mg–Ni-based (RE–Mg–Ni-based) La{sub 0.1}Nd{sub 0.075}Mg{sub 0.04}Ni{sub 0.65}Co{sub 0.12} hydrogen storage alloys were rapidly quenched with and without exerting a 0.18 T static magnetic field and investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) studies and various electrochemical measurements. The results show that all samples hold a two-phase structure consisting of La{sub 2}Ni{sub 7} phase and LaNi{sub 5} phase, suggesting that the structure remains unchanged after treatment. Grain refinement, homogeneous composition and increase in La{sub 2}Ni{sub 7} phase abundance are achieved when magnetic field is applied. In comparison to quenched alloys, higher discharge capacities are obtained for the alloys prepared with the aid of magnetic field mainly due to the larger La{sub 2}Ni{sub 7} phase abundance. Cycling stability is improved with increasing quenching rate probably owing to better anti-pulverization ability resulted from refined grain size. Ameliorated electrochemical kinetics of the magnetic field assisted rapidly quenched alloys has been confirmed by potential-step measurements and electrochemical impedance spectroscopy (EIS) tests in accordance with the enhanced electrochemical properties.

  1. An investigation on hydrogen storage kinetics of nanocrystalline and amorphous Mg2Ni1-xCox (x = 0-0.4) alloy prepared by melt spinning

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Li Baowei; Ren Huipin; Ding Xiaoxia; Liu Xiaogang; Chen Lele

    2011-01-01

    Research highlights: → The investigation of the structures of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys indicates that a nanocrystalline and amorphous structure can be obtained in the experiment alloys by melt spinning technology. The substitution of Co for Ni facilitates the glass formation in the Mg 2 Ni-type alloy. And the amorphization degree of the alloys visibly increases with increasing Co content. → Both the melt spinning and Co substitution significantly improve the hydrogen storage kinetics of the alloys. The hydrogen absorption saturation ratio (R t a ) and hydrogen desorption ratio (R t d ) as well as the high rate discharge ability (HRD) increase with rising spinning rate and Co content. The hydrogen diffusion coefficient (D), the Tafel polarization curves and the electrochemical impedance spectra (EIS) measurements show that the electrochemical kinetics notably increases with rising spinning rate and Co content. → Furthermore, all the as-spun alloys, when the spinning rate reaches to 30 m/s, have nearly same hydrogen absorption kinetics, indicating that the hydrogen absorption kinetics of the as-spun alloy is predominately controlled by diffusion ability of hydrogen atoms. - Abstract: In order to improve the hydrogen storage kinetics of the Mg 2 Ni-type alloys, Ni in the alloy was partially substituted by element Co, and melt-spinning technology was used for the preparation of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys. The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system. The hydrogen diffusion coefficients in the alloys are calculated by virtue of potential-step method. The electrochemical impedance spectrums (EIS) and the Tafel

  2. Precipitation kinetics of Al-1.12 Mg{sub 2}Si-0.35 Si and Al-1.07 Mg{sub 2}Si-0.33 Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Gaffar, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)]. E-mail: mgaafar@aucegypt.edu; Mostafa, M.S. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Zeid, E.F. Abo [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2007-02-21

    The kinetics of hardening precipitates of Al-1.12 wt.% Mg{sub 2}Si-0.35 wt.% Si (excess Si) and Al-1.07 wt.% Mg{sub 2}Si-0.33 wt.% Cu (balanced + Cu) alloys have been investigated by means of differential scanning calorimetry and hardness measurements. The excess Si enhances the precipitation kinetics and improves the strength of the material. On the other hand, however addition of Cu assist formation of the Q' phase which positively changed the alloy strength. The high binding energy between vacancies and solute atoms (Si and Mg) enhances the combination of Si, Mg and vacancies to form Si-Mg-vacancy clusters. These clusters act as nucleation sites for GP-zones. The coexistence of the {beta}'- and Q'-precipitates in the balanced + Cu alloy results in a higher peak age hardening compared to the alloy with Si in excess.

  3. VT Data - Lidar Hydro-enforced DEM (0.7m) 2014, Chittenden Co., Lamoille Co., Orleans Co., Washington Co.

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and Hydro Enforced Digital Elevation Model (DEMHE) dataset. This...

  4. Characters of alloy Zr-0.4%Mo-0.5%Fe-0.5%Cr post heat treatment and cold rolling

    International Nuclear Information System (INIS)

    Sungkono; Siti Aidah

    2014-01-01

    Research and development of Zr-Mo-Fe-Cr alloys aimed to obtain PWR fuel element structure material with high burn up. In this study of the Zr-0.4%Mo-0.5%Fe-0.5%Cr alloys was prepared from zirconium sponge, molybdenum, iron and chromium powder. The alloy were heat treated at varying temperatures of 650 and 750 °C and retention time of 1, 1.5 and 2 hours. The objectives of this research was to obtain effect of thickness reduction on the character of Zr-0.4%Mo-0.5%Fe-0.5%Cr alloy. The results of this experiment showed that the microstructures of Zr-0.4%Mo-0.5%Fe-0.5%Cr alloy after heat treatment and cold rolling exhibits that the higher of the thickness reduction has applied on the alloy caused the microstructure to evolve from deformed equiaxial grains into flat bar grains and then into deformed flat bar grains. However, the higher of the temperature and the retention time then the larger grain structures so that the cold rolling causes the shape of the grains structure into a flat bar with a relatively larger size which affects the lower hardness. The Zr-0.4%Mo-0.5%Fe-0.5%Cr alloy after heat treatment (650-750°C; 1.5-2 hours) can undergo cold deformation without cracking at a thickness reduction between 5 to 15%. (author)

  5. VT Lidar-based Aspect, Symbolized, Not Cached, VT State Plane Meters

    Data.gov (United States)

    Vermont Center for Geographic Information — ASPECT service (compass direction that a slope faces) derived from various VT Lidar datasets. A pre-defined SYMbology has been applied to the service. VT State Plane...

  6. Viscous behavior of (Sn61.9Pb38.1)100-xREx (x=0, 0.1, 0.3, 1 wt%) solder alloys

    International Nuclear Information System (INIS)

    Wu Yuqin; Bian Xiufang; Zhao Yan; Li Xuelian; Zhang Yanning; Tian Yongsheng; Lv Xiaoqian

    2008-01-01

    The viscous behavior of (Sn 61.9 Pb 38.1 ) 100-x RE x (x=0, 0.1, 0.3, 1 wt%) solder alloys has been investigated by a torsional oscillation viscometer. The structural transition temperature T ' increases with increasing addition of RE elements. Above T ' , the viscosities of melts increase with increasing addition of RE, and are fitted well with the Arrhenius equation. The time dependence of viscosity at the measured temperature below T ' follows the exponential relaxation function and reflects the process of the structural transition in the melt, which can be considered as the thermodynamic equilibrium process. The thermodynamic equilibrium relaxation time τ eq increases with both the equilibrium viscosity η eq and the discrepancy in viscosity (Δη), between the initial state and the equilibrium state. However, it decreases with the measured temperature T. The size of clusters in the melts increases with increasing of viscosity and is restricted by the thermodynamic equilibrium conditions

  7. Hydrogen absorption in Mg1.95Ti0.05Ni0.95Cu0.05 alloy prepared with mechanical alloying and thermal treatment; Absorcion de hidrogeno en la aleacion Mg1.95Ti0.05Ni0.95Cu0.05 preparada por aleado mecanico y tratamiento termico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Juan Bonifacio; Urena Nunez, Fernando [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: juan.bonifacio@inin.gob.mx

    2009-09-15

    This work presents hydrogen absorption in quaternary alloy Mg1.95Ti0.05Ni0.95Cu0.05 obtained by the mechanical alloying method, followed by thermal treatment in ultra-high pure argon atmosphere. The composition of the phases, microstructure and morphology of ground powders and with thermal treatment were characterized by DRX, SEM/EDS and TEM. After 20 hours of mechanical grinding and recooked at 300 degrees Celsius/1h in argon atmosphere, the quaternary alloy has a Mg{sub 2}Ni crystalline hexagonal structure with a crystallite size under 10 nm. The absorption measurements were performed under a pressure of 0.2 to 1.2 MPa at a temperature of 200 degrees Celsius in a micro-reactor. The quantification of absorption-desorption of hydrogen in the intermetallic was conducted in a TGA-DSC simultaneous calorimeter. Metallic hydride-dehydride powder was characterized with SEM and XRD. [Spanish] En este trabajo se presenta la absorcion de hidrogeno en la aleacion cuaternaria Mg1.95Ti0.05Ni0.95Cu0.05 obtenida por el metodo de aleado mecanico, seguida de tratamiento termico en atmosfera de argon de ultra alta pureza. La composicion de las fases, microestructura y morfologia de los polvos molidos y con tratamiento termico fue caracterizada por DRX, SEM/EDS y TEM. Despues de 20 h de molienda mecanica con recocido a 300 grados Celsios/1h en atmosfera de argon, la aleacion cuaternaria tiene una estructura cristalina hexagonal Mg{sub 2}Ni con tamano de cristalito menor a 10 nm. Las mediciones de absorcion fueron realizadas bajo una presion de 0.2 a 1.2 MPa a una temperatura de 200 grados Celsios en un micro-reactor. La cuantificacion de absorcion-desorcion de hidrogeno en el intermetalico se realizo en un calorimetro simultaneo TGA-DSC. Se determino que la cantidad maxima absorbida de hidrogeno en la aleacion cuaternaria fue de 3.24% en peso cuando la presion fue de 0.8 MPa a dicha temperatura. Polvos metalicos hidrurados-deshidrurados se caracterizaron por SEM y XRD.

  8. Microstructural control of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si alloy by heat treatment

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Nomura, Takuya; Haga, Hideki; Fukutomi, Hiroshi; Dlouhy, Ivo; Brno University of Technology

    2014-01-01

    The effects of holding temperature, time and cooling rate on the microstructure of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si (at.%) alloys are studied. Three kinds of segregations are found in the as-cast material. In back scattered electron images these segregations are observed as dark regions formed by the solidification process, bright regions with irregular shaped blocks and imaged regions of lighter contrast formed by the cooling process from β phase to α phase and from α phase to (β + γ) two phase or (α + β + γ) three phase, respectively. Addition of small amounts of Cr, Ni and Si to the Ti-45Al-7Nb alloy shifts the (β + γ) two phase state and (α + γ + β) three phase state to a lower Nb concentration range. While cooling from the α single phase state to the (β + γ) two phase or (α + β + γ) three phase states, sequential type phase transformation occurs. The amounts of Cr, Ni and Si are too small to induce the pearlitic mode of transformation. Therefore, the sequential mode of the ternary alloy containing Nb occurs. The microstructures change depending on the cooling rate from α? single phase region. Massive transformation occurs in the range of 300 K s -1 to 50 K s -1 . However, the α phase is partially retained at the cooling rate of 300 K s -1 . A fully lamellar structure appears at cooling rates lower than 10 K s -1 .

  9. Microstructural control of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Makoto; Nomura, Takuya; Haga, Hideki; Fukutomi, Hiroshi [Yokohama National University (Japan). Div. of Materials Science and Chemical Engineering; Dlouhy, Ivo [Institute of Physics of Materials, Brno (Czech Republic); Brno University of Technology (Czech Republic). Inst. of Materials Science and Engineering

    2014-11-15

    The effects of holding temperature, time and cooling rate on the microstructure of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si (at.%) alloys are studied. Three kinds of segregations are found in the as-cast material. In back scattered electron images these segregations are observed as dark regions formed by the solidification process, bright regions with irregular shaped blocks and imaged regions of lighter contrast formed by the cooling process from β phase to α phase and from α phase to (β + γ) two phase or (α + β + γ) three phase, respectively. Addition of small amounts of Cr, Ni and Si to the Ti-45Al-7Nb alloy shifts the (β + γ) two phase state and (α + γ + β) three phase state to a lower Nb concentration range. While cooling from the α single phase state to the (β + γ) two phase or (α + β + γ) three phase states, sequential type phase transformation occurs. The amounts of Cr, Ni and Si are too small to induce the pearlitic mode of transformation. Therefore, the sequential mode of the ternary alloy containing Nb occurs. The microstructures change depending on the cooling rate from α? single phase region. Massive transformation occurs in the range of 300 K s{sup -1} to 50 K s{sup -1}. However, the α phase is partially retained at the cooling rate of 300 K s{sup -1}. A fully lamellar structure appears at cooling rates lower than 10 K s{sup -1}.

  10. Microstructural evolution and structure property correlation in Zr-1Nb and Zr-1Nb-1Sn-0.1Fe alloys

    International Nuclear Information System (INIS)

    Neogy, S.; Srivastava, D.; Chakravartty, J.K.; Dey, G.K.

    2005-01-01

    This study summarizes the evolution of microstructure and precipitation behavior in binary Zr-1Nb and quaternary Zr-1Nb-1Sn-0.1Fe alloys after different thermo mechanical processing. The processed microstructure and morphology of constituent phases and precipitates have been studied in detail using transmission electron microscopy (TEM). Microstructural studies have revealed the shape, size, size distribution and the nature of precipitate phases. Martensite formation and its tempering behavior have been studied in detail in both the alloys. Recrystallization studies on these alloys have been carried out with a view to understand the recrystallization mechanism. In case of the binary alloy the second phase recipitates were of the β type having composition varying from β I (20 wt% Nb) to β II (85 wt% Nb) depending on the heat treatment temperature and time. The second phase precipitates in the quaternary alloy were intermetallic Zr-Nb-Fe type and also β type rich in Zr. The orientation relationship existing between the precipitating phases and the a matrix were established in case of both the alloys. High resolution electron microscopy (HREM) of the martensitic microstructure and the recrystallized microstructure has revealed the internal structure and the interface structure of the martensite and the precipitating phases respectively. Structure-property correlation studies have been carried out on the heat-treated samples to evaluate the effect of the thermo mechanical processing on the microstructures and hence mechanical properties. (author)

  11. Electrochemical machining of titanium alloys with the use of anodal activating pulses

    International Nuclear Information System (INIS)

    Davydov, A.D.; Klepikov, R.P.; Moroz, I.I.

    1980-01-01

    A comparative investigation of electrochemical machining of VT-6 titanium alloy by direct current and in different pulse mode is carried out taking into account the peculiarities of anodal behaviour of titanium alloys at high current desities. The mode of electrochemical machining of VT-6 alloy with activating pulses is chosen. It allows to conduct a process at lower voltages and small interelectrode gaps

  12. Hot rolling effect on the characters of Zr-0.6Nb-0.5Fe-0.5Cr alloy

    International Nuclear Information System (INIS)

    Sungkono; Siti Aidah

    2015-01-01

    Characters of Zr-0.6Nb-0.5Fe-0.5Cr alloy after hot rolling have been studied. The objective of this research was to obtain of hot rolling effect on the characteristics of microstructures, hardness and phases formed in Zr-0.6Nb-0.5Fe-0.5Cr alloy. The hot rolling process of alloy carried out at temperature of 800 °C with retention time of 1.5 and 2 hours and a thickness reduction between 5 to 25 %. The results of this experiment showed that the Zr-0.6Nb-0.5Fe-0.5Cr alloy has Widmanstaetten structure with microstructure evolving into deformed columnar grains and deformed elongated grains with increasing thickness reduction. Besides, the longer the retention time at temperature of 800 °C is the larger are the grain structures and formation of α-Zr and Zr_3Fe phase. The hardness of Zr-0.6Nb-0.5Fe-0.5Cr alloy has same trends i.e the larger thickness reduction gives higher hardness. The Zr-0.6Nb-0.5Fe-0.5Cr alloy can under go hot rolling deformation at a thickness reduction of 25 % and the formation of α-Zr and Zr_3Fe can increased of hardness and strength of Zr-0.6 Nb-0.5 Fe-0.5 Cr alloy. (author)

  13. Moessbauer and X-ray Study of Fe{sub 1-x}Al{sub x}, 0.2{<=}x{<=}0.5, Samples Produced by Mechanical Alloying

    Energy Technology Data Exchange (ETDEWEB)

    Oyola Lozano, D., E-mail: doyola@ut.edu.co; MartInez, Y. Rojas; Bustos, H.; Perez Alcazar, G. A. [Universidad del Tolima, Departamento de Fisica (Colombia)

    2004-12-15

    In this work we report the magnetic and structural properties obtained by Moessbauer spectroscopy and X-ray diffraction, of the Fe{sub 1-x}Al{sub x}, 0.2{<=}x{<=}0.5, alloys produced by mechanical alloying. Alloys with x=0.2, 0.3, 0.4 and 0.5, were for milled 12, 24, 36, and 48 hours. All the obtained alloys are in the bcc phase. The obtained Moessbauer spectra are characteristic of disordered ferromagnetic system. The lattice parameter remains nearly constant ({approx}2.91 A) for all the milling times and compositions. The mean grain sizes in the (110) and (211) direction are nearly constants with the milling time but vary from 15.5 to 11 nm and from 10.5 to 8.5 nm when Al content grow between x=0.2 to x=0.4, respectively. The difference between the mean grain sizes in these two directions shows that the grains are of prolate spheroid form.

  14. The effect of thermohydrogen treatment on the structure and properties of casts obtained from titanium alloys

    International Nuclear Information System (INIS)

    Il'in, A.A.; Skvortsova, S.V.; Mamonov, A.M.; Permyakova, G.V.; Kurnikov, D.A.

    2002-01-01

    The method based on the combination of high temperature gas-static and thermal hydrogen treatments is suggested to increase mechanical properties of cast pseudo-α and (α+β)-titanium alloys. The study is carried out using alloys VT20L, VT23L and alloy Ti-6%Al-2%Mo-4%Zr-2%Sn. It is shown that the method proposed provides the change in a cast structure, an increase in density of castings, an increase of strength properties by 10-20% and fatigue by a factor of 1.5-2 at satisfactory ductility and impact strength [ru

  15. Inhibitor effect on corrosion of titanium alloys in muriatic solutions of titanium-magnesium production

    International Nuclear Information System (INIS)

    Dobrunov, Yu.V.; Volynskij, V.V.; Kolobov, G.A.; Kuznetsov, S.I.

    1977-01-01

    Corrosion tests of titanium alloys VTI-0, OT4, VT5-1 and steel Kh18N1OT in 10% and 18% HCl with additions of carnallite at 40 deg C have been carried out. It has been established that titanium alloys in 10% and 18% HCl containing 5 and 10% carnallite are sufficiently corrosion resistant in the presence of 0.1-1% FeCl or HNO 3 and can be used for manufacturing the equipment of recirculation gas scrubbers. Steel Kh18N10T is unstable in all the media tested. It is subjected to intensive pitting. Specimens of steel Kh18N10T have also revealed edge cracking

  16. Effect of alloying Mo on mechanical strength and corrosion resistance of Zr-1% Sn-1% Nb-1% Fe alloy

    International Nuclear Information System (INIS)

    Sugondo

    2011-01-01

    It had been done research on Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy. The ingot was prepared by means of electrical electrode technique. The chemical analysis was identified by XRF, the metallography examination was perform by an optical microscope, the hardness test was done by Vickers microhardness, and the corrosion test was done in autoclave. The objective of this research were making Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy with Mo concentration; comparing effect of Mo concentration to metal characteristics of Zr-1%Sn-1%Nb-1%Fe which covered microstructure; composition homogeneity, mechanical strength; and corrosion resistance in steam, and determining the optimal Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)% Mo alloy for nuclear fuel cladding which had corrosion resistance and high hardness. The results were as follow: The alloying Mo refined grains at concentration in between 0,1%-0,3% and the concentration more than that could coarsened grains. The hardness of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled either by the flaw or the dislocation, the intersection of the harder alloying element, the solid solution of the alloying element and the second phase formation of ZrMo 2 . The corrosion rate of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled by the second phase of ZrMo 2 . The 0.3% Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was the best for second phase formation. The Mo concentration in between 0,3-0,5% in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was good for the second phase formation and the solid solution. (author)

  17. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Fang, Sicong; Zhang, Dayue; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: ► CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. -- Abstract: Inequi-atomic CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl 0.6 Ti 0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 H V , respectively. The fracture mechanism of CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode

  18. Application of Al-2La-1B Grain Refiner to Al-10Si-0.3Mg Casting Alloy

    Science.gov (United States)

    Jing, Lijun; Pan, Ye; Lu, Tao; Li, Chenlin; Pi, Jinhong; Sheng, Ningyue

    2018-05-01

    This paper reports the application and microstructure refining effect of an Al-2La-1B grain refiner in Al-10Si-0.3Mg casting alloy. Compared with the traditional Al-5Ti-1B refiner, Al-2La-1B refiner shows better performances on the grain refinement of Al-10Si-0.3Mg alloy. Transmission electron microscopy analysis suggests that the crystallite structure features of LaB6 are beneficial to the heterogeneous nucleation of α-Al grains. Regarding the mechanical performances, tensile properties of Al-10Si-0.3Mg casting alloy are prominently improved, due to the refined microstructures.

  19. Study on magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys

    Science.gov (United States)

    Tan, G. S.; Xu, H.; Yu, L. Y.; Tan, X. H.; Zhang, Q.; Gu, Y.; Hou, X. L.

    2017-09-01

    In the present work, (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) permanent alloys are prepared by melt-spinning method. The hard magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys annealed at optimum temperatures have been investigated systematically. Depending on the Nd, Ce concentration, the maximum energy product ((BH)max) and remanence (Br) increase gradually with x in the range of 0 ≤ x ≤ 0.4, whereas decrease gradually in the alloys with 0.4 plays a certain role in the magnetization reversal behavior and can improve the microstructure of (Nd0.8Ce0.2)1.6Fe12Co2B alloy.

  20. Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid

    International Nuclear Information System (INIS)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W.; Shih, H.C.

    2008-01-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al x CrFe 1.5 MnNi 0.5 (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 Ωcm 2 as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 Ωcm 2 ). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H 2 SO 4 solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al 0.3 CrFe 1.5 MnNi 0.5 alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe 1.5 MnNi 0.5 and Al 0.3 CrFe 1.5 MnNi 0.5 alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al x CrFe 1.5 MnNi 0.5 alloys optimized their surface structures and minimized their susceptibility to pitting corrosion

  1. Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy

    Directory of Open Access Journals (Sweden)

    Tao Li

    2014-06-01

    Full Text Available The microstructure, mechanical property, and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg–1.5Zn–0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy. The results show that the Mg–1.5Zn–0.6Zr alloy had a single-phase solid solution structure, with an average grain size of 34.7 ± 13.1 μm. The alloy exhibited ultimate tensile strength of 168 ± 2.0 MPa, yield strength of 83 ± 0.6 MPa, and elongation of 9.1 ± 0.6%. Immersion tests and electrochemical measurements reveal that the alloy displayed lower biocorrosion rate and more uniform corrosion mode than AZ91D in Hank's solution. The elimination of intensive galvanic corrosion reactions and the formation of a much more compact and uniform corrosion film mainly account for the better biocorrosion properties of the Mg–1.5Zn–0.6Zr alloy than AZ91D.

  2. Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy

    OpenAIRE

    Tao Li; Yong He; Hailong Zhang; Xitao Wang

    2014-01-01

    The microstructure, mechanical property, and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg–1.5Zn–0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy. The results show that the Mg–1.5Zn–0.6Zr alloy had a single-phase solid solution structure, with an average grain size of 34.7 ± 13.1 μm. The alloy exhibited ultimate tensile strength of 168 ± 2.0 MPa, yield strength of 83 ± 0.6 MPa, and elongation of 9.1 ± 0.6%. Immersion tests and electroc...

  3. Effect of trace yttrium addition on the microstructure and tensile properties of recycled Al–7Si–0.3Mg–1.0Fe casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Bingbing [Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong 510640 (China); School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China); Chen, Weiping, E-mail: mewpchen@scut.edu.cn [Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong 510640 (China); School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China); Liu, Lusheng; Cao, Xueyang; Zhou, Li [Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong 510640 (China); School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China); Fu, Zhiqiang, E-mail: kopyhit@163.com [Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2016-06-01

    In the present work, the effect of yttrium (Y) addition (0, 0.15, 0.3, 0.5 and 0.7 wt%) on the microstructure and tensile properties of recycled A356 cast alloys containing 1.0 wt% Fe has been studied systematically. With the addition of Y, despite no transformations of β-Fe (Al{sub 5}FeSi) phases into α-Fe phases, the acicular β-Fe phases were refined remarkably, and the volume fraction of β-Fe phases were decreased evidently. With addition of 0.3 wt% Y, the average length of β-Fe phase decreased from ~78 µm to ~20 µm and the finest β-Fe phases were obtained, in the meantime, the eutectic silicon particles were present in fully modified form, and the secondary dendrite arm spacing (SDAS) reached the lowest value. In addition, it was proposed that according to the microstructural analysis, the Al{sub 2}Si{sub 2}Y intermetallic phases might be responsible for the refinement of the β-Fe phases. With addition of 0.3 wt% Y, the maximum improvement of quality index was achieved, approximately 32% in both as-cast and T6 heat treated alloys, and the corresponding Y-modified alloys in T6 heat treated condition obtained the best tensile properties compared with other experimental alloys, with the corresponding ultimate tensile strength (UTS) and elongation (EL) values being 383.86 MPa and 4.85%, respectively. Furthermore, the tensile properties of 0.3 wt% Y modified recycled Al–7Si–0.3Mg–1.0Fe alloys (T6) exceed the minimum properties standard for ZL101A alloy (JB, T6), approximately 30.12% for UTS value and 61.67% for EL value, suggesting it can be a good candidate for the commercial applications.

  4. Investigation of the crystallization process of titanium alloy ingots produced by vacuum arc melting method

    International Nuclear Information System (INIS)

    Tetyukhin, V.V.; Kurapov, V.N.; Trubin, A.N.; Demchenko, M.V.; Lazarev, V.G.; Ponedilko, S.V.; Dubrovina, N.T.; Kurapova, L.A.

    1978-01-01

    The process of crystallization and hardening of the VT3-1 and VT9 titanium alloys ingots during the vacuum-arc remelting (VAR) has been studied. In order to investigate the kinetics of the hole shape changing and the peculiarities of the ingot formation during the VAR, the radiography method has been used. It is established that the VAR of the titanium alloy ingots is basically a continuous process. An intense heating of the liquid bath mirror and the availability of high temperature gradients in the hole are the typical features of the VAR process

  5. Hot Deformation Behavior and Processing Map of Mg-3Sn-2Ca-0.4Al-0.4Zn Alloy

    Directory of Open Access Journals (Sweden)

    Chalasani Dharmendra

    2018-03-01

    Full Text Available Among newly developed TX (Mg-Sn-Ca alloys, TX32 alloy strikes a good balance between ductility, corrosion, and creep properties. This study reports the influence of aluminum and zinc additions (0.4 wt % each to TX32 alloy on its strength and deformation behavior. Uniaxial compression tests were performed under various strain rates and temperature conditions in the ranges of 0.0003–10 s−1 and 300–500 °C, respectively. A processing map was developed for TXAZ3200 alloy, and it exhibits three domains that enable good hot workability in the ranges (1 300–340 °C/0.0003–0.001 s−1; (2 400–480 °C/0.01–1 s−1; and (3 350–500 °C/0.0003–0.01 s−1. The occurrence of dynamic recrystallization in these domains was confirmed from the microstructural observations. The estimated apparent activation energy in Domains 2 and 3 (219 and 245 kJ/mole is higher than the value of self-diffusion in magnesium. This is due to the formation of intermetallic phases in the matrix that generates back stress. The strength of TXAZ3200 alloy improved up to 150 °C as compared to TX32 alloy, suggesting solid solution strengthening due to Al and Zn. Also, the hot deformation behavior of TXAZ3200 alloy was compared in the form of processing maps with TX32, TX32-0.4Al, TX32-0.4Zn, and TX32-1Al-1Zn alloys.

  6. Thermodynamic analysis of salt corrosion of titanium alloys

    International Nuclear Information System (INIS)

    Travkin, V.V.; Pshirkov, V.F.; Kolachev, B.A.

    1979-01-01

    About 200 possible chemical reactions of metals, salts and oxides (in a solid state) with water (in a vapour state), and with gases (O 2 , Cl 2 , HCl) were studied by the thermodynamic analysis to elucidate a chemical nature of processes taking place at salt corrosion of titanium alloys (VT22, VT6 and VT16). Temperature dependences of isobaric-isothermic potential were considered to reveal a possibility of spontaneous course and direction of reactions as well as to obtain a comparative estimate of the probability of their pro-cedure. Thermodynamically possible schemes of the chemism of titanium alloy salt corrosion are proposed. Complex che-mical reactions take place in the presence of salt, moisture and oxygen of air on the surface of the alloys. The reactions proceed with the formation of titanium and alloying component chlorides, free chlorine and hydrogen. The free chlorine or HCl are released during pyrohydrolysis and oxidation of chlo-rides. The former ones interact with the alloy with the formation of salts, and hydrogen may be absorbed by the metal and cause embrittlement. Chlorides on the metal surface accelerate the chlorination process. NaCl acts as a cata-lyst. The determination of salt corrosion products has confirmed the process mechanism proposed

  7. Hydrogen storage and microstructure investigations of La0.7-xMg0.3PrxAl0.3Mn0.4Co0.5Ni3.8 alloys

    International Nuclear Information System (INIS)

    Galdino, G.S.; Casini, J.C.S.; Ferreira, E.A.; Faria, R.N.; Takiishi, H.

    2010-01-01

    The effects of substitution of Pr for La in the hydrogen storage capacity and microstructures of La 0.7-x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x=0, 0.1, 0.3, 0.5, 0.7) alloys electrodes have been studied. X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectrometry (EDS) and electrical tests were carried out in a the alloys and electrodes. Cycles of charge and discharge have also been carried out in the Ni/MH (Metal hydride) batteries based on the alloys negative electrodes. (author)

  8. The origin of high magnetic properties in (R,Zr)(Fe,Co)11.0–11.5Ti1.00.5Ny (y=1.01.4 for R=Nd, y=0 for R=Sm) compounds

    International Nuclear Information System (INIS)

    Kobayashi, K.; Suzuki, S.; Kuno, T.; Urushibata, K.; Sakuma, N.; Yano, M.; Shoji, T.; Kato, A.; Manabe, A.

    2017-01-01

    Ten alloys and nitrogenated compounds of (R,Zr)(Fe,Co) 11.0–11.5 Ti 1.00.5 N y (y=1.01.4 for R=Nd, y=0 for R=Sm) with a ThMn 12 -type structure were prepared. The average Fe–Fe interatomic distances, d(Fe–Fe), for Fe sites were calculated based on the reported atomic parameters. The hyperfine splittings (inner field (IF), in teslas) were measured by Mössbauer spectroscopy, and the IF increased with increasing d(Fe–Fe) for Fe sites, indicating a magneto-volume effect. The order of IF magnitude in Fe sites was Fe(8i)>Fe(8j)>Fe(8f) in all alloys. Co substitution for Fe sites, (Fe 0.75 Co 0.25 ), increased the IF by 25% for the R=Nd alloy and 15% for the R=Sm alloy. Decreasing Ti content from −Ti 1.0 to −Ti 0.5 , which increased the Fe and Co content, preserved the ThMn 12 structure with Zr substitution for R(2a) sites, and caused a slight increase in the IF of 2% for the R=Nd alloy and 7% for the R=Sm alloy. Nitrogenation, where N was introduced into the 2b sites, also increased IF in R=Nd alloys, by 23% for the Co- and Zr-free alloys, NdFe 11 Ti 1.0 N 1.5 , and by 7% for the Co-containing, (Nd 0.7 Zr 0.3 ) (Fe 0.75 Co 0.25 ) 11.5 Ti 0.5 N 1.3 alloy. The IF values of the R=Nd alloys were slightly larger than those of the R=Sm alloys. In conclusion, the magneto-volume effect was clearly observed at the Fe sites, and Co substitution into Fe sites and nitrogenation (R=Nd alloys) compensated for the increased IF. Increasing the Fe and Co fractions also increased IF slightly. - Highlights: • Average distances of Fe–Fe (d(Fe–Fe)) were calculated using lattice constants. • Hyperfine fields (IF) in Fe sites were measured using Mössbauer spectroscopy. • Relationship between d(Fe–Fe) and IF at each Fe site was obtained. • Co substitution and N introduction effects on IF was also measured. • Magneto-volume effect is main reason of IF augmentation in Fe sites.

  9. Neutron Diffraction Study On Gamma To Alpha Phase Transition In Ce0.9th0.1 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lashley, Jason C1 [Los Alamos National Laboratory; Heffner, Robert H [Los Alamos National Laboratory; Llobet, A [Los Alamos National Laboratory; Darling, T W [U OF NEVADA; Jeong, I K [PUSAN NATL UNIV

    2008-01-01

    Comprehensive neutron diffraction measurements were performed to study the isostructural {gamma} {leftrightarrow} {alpha} phase transition in Ce{sub 0.9}Th{sub 0.1} alloy. Using Rietveld refinements, we obtained lattice and thermal parameters as a function of temperature. From the temperature slope of the thermal parameters, we determined Debye temperatures {Theta}{sup {gamma}}{sub D} = 133(1) K and {Theta}{sup {alpha}}{sub D} = 140(1) K for the {gamma} phase and the {alpha} phase, respectively. This result implies that the vibrational entropy change is not significant at the {gamma} {leftrightarrow} {alpha} transition, contrary to that from elemental Cerium [Phys. Rev. Lett. 92, 105702, 2004].

  10. Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and -resistant Candida albicans in a murine model of vaginal candidiasis.

    Science.gov (United States)

    Garvey, E P; Hoekstra, W J; Schotzinger, R J; Sobel, J D; Lilly, E A; Fidel, P L

    2015-09-01

    Vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) remain major health problems for women. VT-1161, a novel fungal CYP51 inhibitor which has potent antifungal activity against fluconazole-sensitive Candida albicans, retained its in vitro potency (MIC50 of ≤0.015 and MIC90 of 0.12 μg/ml) against 10 clinical isolates from VVC or RVVC patients resistant to fluconazole (MIC50 of 8 and MIC90 of 64 μg/ml). VT-1161 pharmacokinetics in mice displayed a high volume of distribution (1.4 liters/kg), high oral absorption (73%), and a long half-life (>48 h) and showed rapid penetration into vaginal tissue. In a murine model of vaginal candidiasis using fluconazole-sensitive yeast, oral doses as low as 4 mg/kg VT-1161 significantly reduced the fungal burden 1 and 4 days posttreatment (P < 0.0001). Similar VT-1161 efficacy was measured when an isolate highly resistant to fluconazole (MIC of 64 μg/ml) but fully sensitive in vitro to VT-1161 was used. When an isolate partially sensitive to VT-1161 (MIC of 0.12 μg/ml) and moderately resistant to fluconazole (MIC of 8 μg/ml) was used, VT-1161 remained efficacious, whereas fluconazole was efficacious on day 1 but did not sustain efficacy 4 days posttreatment. Both agents were inactive in treating an infection with an isolate that demonstrated weaker potency (MICs of 2 and 64 μg/ml for VT-1161 and fluconazole, respectively). Finally, the plasma concentrations of free VT-1161 were predictive of efficacy when in excess of the in vitro MIC values. These data support the clinical development of VT-1161 as a potentially more efficacious treatment for VVC and RVVC. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. High-pressure high-temperature stability of hcp-IrxOs1-x (x = 0.50 and 0.55) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yusenko, Kirill V.; Bykova, Elena; Bykov, Maxim; Gromilov, Sergey A.; Kurnosov, Alexander V.; Prescher, Clemens; Prakapenka, Vitali B.; Crichton, Wilson A.; Hanfland, Michael; Margadonna, Serena; Dubrovinsky, Leonid S.

    2016-12-23

    Hcp-Ir0.55Os0.45 and hcp-Ir0.50Os0.50 alloys were synthesised by thermal decomposition of single-source precursors in hydrogen atmosphere. Both alloys correspond to a miscibility gap in the Ir–Os binary phase diagram and therefore are metastable at ambient conditions. An in situ powder X-ray diffraction has been used for a monitoring a formation of hcp-Ir0.55Os0.45 alloy from (NH4)2[Ir0.55Os0.45Cl6] precursor. A crystalline intermediate compound and nanodimentional metallic particles with a large concentration of defects has been found as key intermediates in the thermal decomposition process in hydrogen flow. High-temperature stability of titled hcp-structured alloys has been investigated upon compression up to 11 GPa using a multi-anvil press and up to 80 GPa using laser-heated diamond-anvil cells to obtain a phase separation into fcc + hcp mixture. Compressibility curves at room temperature as well as thermal expansion at ambient pressure and under compression up to 80 GPa were collected to obtain thermal expansion coefficients and bulk moduli. hcp-Ir0.55Os0.45 alloy shows bulk moduli B0 = 395 GPa. Thermal expansion coefficients were estimated as α = 1.6·10-5 K-1 at ambient pressure and α = 0.3·10-5 K-1 at 80 GPa. Obtained high-pressure high-temperature data allowed us to construct the first model for pressure-dependent Ir–Os phase diagram.

  12. Raman scattering from Ge{sub 1-x}Sn{sub x} (x ≤ 0.14) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Navarro C, H.; Rodriguez, A. G.; Vidal, M. A. [Universidad Autonoma de San Luis Potosi, Coordinacion para la Innovacion y la Aplicacion de la Ciencia y la Tecnologia, Alvaro Obregon No. 64, 78000 San Luis Potosi, S. L. P. (Mexico); Perez Ladron de G, H. [Universidad de Guadalajara, Centro Universitario de los Lagos, Av. Enrique Diaz de Leon No. 1144, Col. Paseos de la Montana, 47460 Lagos de Moreno, Jalisco (Mexico)

    2015-07-01

    Ge{sub 1-x}Sn{sub x} alloys with x concentration up to 0.14 were grown on Ge(001) and GaAs(001) substrates in a conventional R. F. Magnetron Sputtering system at low substrate temperatures. The structural characteristics of these alloys were studied for different Sn concentrations between 1 to 14% by high resolution X-ray diffraction, and Raman spectroscopy. Contrasting characteristics of the grown layers are observed if the Sn concentration is larger or smaller than 6% as revealed by X-ray diffraction and Raman spectroscopy. (Author)

  13. The microstructures and electrochemical performances of La0.6Gd0.2Mg0.2Ni3.0Co0.5-xAlx (x=0-0.5) hydrogen storage alloys as negative electrodes for nickel/metal hydride secondary batteries

    Science.gov (United States)

    Li, Rongfeng; Xu, Peizhen; Zhao, Yamin; Wan, Jing; Liu, Xiaofang; Yu, Ronghai

    2014-12-01

    La0.6Gd0.2Mg0.2Ni3.0Co0.5-xAlx (x = 0-0.5) hydrogen storage alloys were prepared by induction melting followed by annealing treatment at 1173 K for 8 h. The effects of substitution Al for Co on the microstructures and electrochemical performances were studied systematically. The structure analyses show that all alloys consist of multiphase structures such as (La, Mg)2Ni7 phase, (La, Mg) Ni3 phase and LaNi5 phase. The abundance of (La, Mg)2Ni7 phase decreases while the abundance of LaNi5 phase and (La, Mg)Ni3 phase increases directly as the Al content increasing. The electrochemical tests show that the maximum discharge capacity of alloy electrodes are almost unchanged when x ≤ 0.2 while the cyclic stability of the alloy electrode are improved significantly after proper amount of Al substitution for Co. The alloy electrode with x = 0.1 exhibits the better balance between discharge capacity and cycling life than any others. Moreover, at the discharge current density of 900 mA g-1, the high rate dischargeability (HRD) of the alloy electrodes decreases with increasing Al substitution and the relative analyses reveal that the charge transfer on alloy surface is more important than the hydrogen diffusion in alloy bulk for the kinetic properties of the alloy electrodes.

  14. Methods for improving weld strength of two-phase titanium alloys

    International Nuclear Information System (INIS)

    Zamkov, V.N.; Kushnirenko, N.A.; Topol'ski , V.F.; Khorev, A.I.

    1980-01-01

    The methods for improving the strength and impact toughness of welded joints of two-phase α+β martensitic titanium alloys (VT14, VT6, VT6S, VT23, VT22) are discussed. Thermal hardening of of welded joints under conditions recommended for the basic metal is shown to lead to the decrease of their ductibility. It has been established that the high quality of welded joints is obtained by the usage of the additional wire of Ti-Al-Mo-V-Nb-Zr-Re system in heat treatment under optimum conditions, in particular, after the low-temperature aging

  15. Electrochemical properties of LaNi{sub 4.2}Co{sub 0.4}Zn{sub 0.1}Al{sub 0.3} and LaNi{sub 4.3}Co{sub 0.4}Zn{sub 0.1}Al{sub 0.2} alloys as anode materials for Ni-MH batteries

    Energy Technology Data Exchange (ETDEWEB)

    Giza, Krystyna [Czestochowa Univ. of Technology (Poland). Faculty of Production Engineering and Materials Technology

    2017-07-01

    The galvanostatic charge and discharge technique was used for the evaluation of the changes in electrochemical parameters of the tested metal hydride electrodes during the repeated hydrogen absorption and desorption processes. Higher development of the effective surface area during hydrogenation has been obtained for LaNi{sub 4.3}Co{sub 0.4}Zn{sub 0.1}Al{sub 0.2} composite electrode. For the conditions of current ± 0.5 C, the discharge capacities of LaNi{sub 4.2}Co{sub 0.4}Zn{sub 0.1}Al{sub 0.3} and LaNi{sub 4.3}Co{sub 0.4}Zn{sub 0.1}Al{sub 0.2} alloys are 240 and 316 mAh x g{sup -1}, respectively. From the point of view of improving the kinetics of the process of charge transfer at the electrode/electrolyte interface as well as a resistance to self-discharging, a partial substitution of nickel with zinc in the LaNi{sub 4.3}Co{sub 0.4}Al{sub 0.3} alloy is not favorable.

  16. Microstructural evolution of direct chill cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy during solution treatment

    OpenAIRE

    He Kezhun; Yu Fuxiao; Zhao Dazhi

    2011-01-01

    Heat treatment has important influence on the microstructure and mechanical properties of Al-Si alloys. The most common used heat treatment method for these alloys is solution treatment followed by age-hardening. This paper investigates the microstructural evolution of a direct chill (DC) cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy after solution treated at 500, 510, 520 and 530℃, respectively for different times. The major phases observed in the as-cast alloy are α-aluminum dendrite, primary Si p...

  17. Heat treatment effect on the texture and mechanical properties of the VT14 alloy cylinders

    International Nuclear Information System (INIS)

    Betsofen, S.Ya.; Khorev, A.I.; Babarehko, A.A.; Krasnozhon, A.I.; Kadobnova, N.V.

    1978-01-01

    The mechanical properties and the texture of cylinders made of VT14 alloy in the conditions after quenching from the temperature of 880 deg C, followed by ageing for 16 hours at the temperature of about 480 deg C, or after 20 minutes annealing at the temperature of 750 deg C, were stu--died, while taking into account the influence of intermediate preheats up to 800-1000 deg C prior to carrying into effect those kinds of heat treatment. It is shown that the texture of cylinders after heat treatment without the intermediate preheats prior to quenching is characterized by an increased density of poles in the axial and tangential directions. It is the preheating up to 1000 deg C prior to quenching that shifts the texture maxima in the axial direction and causes the appearance of component (0001). Under the effect of the intermediate preheating up to 1000 deg C, the biaxial and monoaxial strength of the cylinders decreases, whereas their tendency to brittle failure increases. The mechanical strength of all the thermally hardened cylinders, independently of the intermediate treatment, is in the tangential direction higher than in the axial direction. The proportions of the structure and texture factors have been assessed in the variation of the structural strength of the cylinders during the course of their heat treatment

  18. Effect of Pulse Laser Welding Parameters and Filler Metal on Microstructure and Mechanical Properties of Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr Alloy

    Directory of Open Access Journals (Sweden)

    Irina Loginova

    2017-12-01

    Full Text Available The effect of pulse laser welding parameters and filler metal on microstructure and mechanical properties of the new heat-treatable, wieldable, cryogenic Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr alloy were investigated. The optimum parameters of pulsed laser welding were found. They were 330–340 V in voltage, 0.2–0.25 mm in pulse overlap with 12 ms duration, and 2 mm/s speed and ramp-down pulse shape. Pulsed laser welding without and with Al-5Mg filler metal led to the formation of duplex (columnar and fine grains as-cast structures with hot cracks and gas porosity as defects in the weld zone. Using Al-5Ti-1B filler metal for welding led to the formation of the fine grain structure with an average grain size of 4 ± 0.2 µm and without any weld defects. The average concentration of Mg is 2.8%; Mn, 0.2%; Zr, 0.1%; Sc, 0.15%; and Ti, 2.1% were formed in the weld. The ultimate tensile strength (UTS of the welded alloy with AlTiB was 260 MPa, which was equal to the base metal in the as-cast condition. The UTS was increased by 60 MPa after annealing at 370 °C for 6 h that was 85% of UTS of the base alloy.

  19. Effect of Al-5Ti-0.62C-0.2Ce Master Alloy on the Microstructure and Tensile Properties of Commercial Pure Al and Hypoeutectic Al-8Si Alloy

    Directory of Open Access Journals (Sweden)

    Wanwu Ding

    2017-06-01

    Full Text Available Al-5Ti-0.62C-0.2Ce master alloy was synthesized by a method of thermal explosion reaction in pure molten aluminum and used to modify commercial pure Al and hypoeutectic Al-8Si alloy. The microstructure and tensile properties of commercial pure Al and hypoeutectic Al-8Si alloy with different additions of Al-5Ti-0.62C-0.2Ce master alloy were investigated. The results show that the Al-5Ti-0.62C-0.2Ce alloy was composed of α-Al, granular TiC, lump-like TiAl3 and block-like Ti2Al20Ce. Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 5 min can significantly refine macro grains of commercial pure Al into tiny equiaxed grains. The Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 30 min still has a good refinement effect. The tensile strength and elongation of commercial pure Al modified by the Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 5 min increased by roughly 19.26% and 61.83%, respectively. Al-5Ti-0.62C-0.2Ce master alloy (1.5 wt %, 10 min can significantly refine both α-Al grains and eutectic Si of hypoeutectic Al-8Si alloy. The dendritic α-Al grains were significantly refined to tiny equiaxed grains. The morphology of the eutectic Si crystals was significantly refined from coarse needle-shape or lath-shape to short rod-like or grain-like eutectic Si. The tensile strength and elongation of hypoeutectic Al-8Si alloy modified by the Al-5Ti-0.62C-0.2Ce master alloy (1.5 wt %, 10 min increased by roughly 20.53% and 50%, respectively. The change in mechanical properties corresponds to evolution of the microstructure.

  20. Corrosion of titanium alloys in concentrated chloride solutions at temperature up to 160 deg C

    International Nuclear Information System (INIS)

    Ruskol, Yu.S.; Viter, L.I.; Balakin, A.I.; Fokin, M.N.

    1982-01-01

    Resistance of VT1-0 titanium and 4200, 4207 titanium alloys to pitting and total corrosion in chlorides of cadmium, potassium, nickel, ammonium, barium, calcium, lithium, magnesium in respect to pH value and temperature (120,140,160 deg C) is determined. The results obtained are presented as nomograms of stability. Possible reasons for corrosion behaviour of titanium in each of the chlorides are discussed

  1. Synthesis and hydrogen storage of La23Nd7.8Ti1.1Ni33.9Co32.9Al0.65 alloys

    Directory of Open Access Journals (Sweden)

    Priyanka Meena

    2018-04-01

    Full Text Available The present work investigates structural and hydrogen storage properties of first time synthesized La23Nd7.8Ti1.1Ni33.9Co32.9Al0.65 alloy by arc melting process and ball milled to get it in nano structure form. XRD analysis of as-prepared alloy showed single phased hexagonal LaNi5-type structure with 52 nm average particle size, which reduces to about 31 nm after hydrogenations. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructured alloy. EDX analysis confirmed elemental composition of the as-prepared alloy. Activation energy for hydrogen desorption was studied using TGA analysis and found to be −76.86 kJ/mol. Hydrogenation/dehydrogenation reactions and absorption kinetics were measured at temperature 100 °C. The equilibrium plateau pressure was determined to be 2 bar at 100 °C giving hydrogen storage capacity of about 2.1 wt%. Keywords: Hydrogen storage, La23Nd7.8Ti1.1Ni33.9Co32.9Al0.65 alloy, SEM, EDS, TGA, Hydrogenation/dehydrogenation

  2. Effects of minor Zr and Sr on as-cast microstructure and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc (wt.%) magnesium alloy

    International Nuclear Information System (INIS)

    Pan Fusheng; Yang Mingbo; Shen Jia; Wu Lu

    2011-01-01

    Research highlights: → Minor Zr and/or Sr additions can effectively refine the grains of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the tensile properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. - Abstract: The effects of minor Zr and Sr on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc (wt.%) alloy were investigated by using optical and electron microscopies, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The results indicate that adding minor Zr and/or Sr to the Mg-3Ce-1.2Mn-0.9Sc alloy does not cause an obvious change in the morphology and distribution of the Mg 12 Ce phase. However, the grains of the Zr and/or Sr-containing alloys are effectively refined. Among the Zr and/or Sr-containing alloys, the grains of the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr are the finest, followed by the alloys with the additions of 0.5 wt.%Zr and 0.1 wt.%Sr, respectively. In addition, small additions of Zr and/or Sr can improve the tensile and creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. Among the Zr and/or Sr-containing alloys, the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr obtains the optimum tensile and creep properties.

  3. Hydrogen absorption-desorption properties of UZr0.29 alloy

    International Nuclear Information System (INIS)

    Shuai Maobing; Su Yongjun; Wang Zhenhong; Zhang Yitao

    2001-01-01

    Hydrogen absorption-desorption properties of UZr 0.29 alloy are investigated in detail at hydrogen pressures up to 0.4 MPa and over the temperature range of 300 to 723 K. It absorbs hydrogen up to 2.3 H atoms per F.U. (formula unit) by only one-step reaction and hence each desorption isotherm has a single plateau over nearly the whole hydrogen composition range. The enthalpy and entropy changes of the dissociation reaction are of -78.9 kJ·mol -1 H 2 and 205.3 J·(K·mol H 2 ) -1 , respectively. The alloy shows high durability against powdering upon hydrogenation and may have good heat conductivity. It is predicted that UZr 0.29 alloy may be a suitable material for tritium treatment and storage

  4. Microstructure and Tensile Properties of Sn-1Ag-0.5Cu Solder Alloy Bearing Al for Electronics Applications

    Science.gov (United States)

    Shnawah, Dhafer Abdul-Ameer; Said, Suhana Binti Mohd; Sabri, Mohd Faizul Mohd; Badruddin, Irfan Anjum; Hoe, Teh Guan; Che, Fa Xing; Abood, Adnan Naama

    2012-08-01

    This work investigates the effects of 0.1 wt.% and 0.5 wt.% Al additions on bulk alloy microstructure and tensile properties as well as on the thermal behavior of Sn-1Ag-0.5Cu (SAC105) lead-free solder alloy. The addition of 0.1 wt.% Al reduces the amount of Ag3Sn intermetallic compound (IMC) particles and leads to the formation of larger ternary Sn-Ag-Al IMC particles. However, the addition of 0.5 wt.% Al suppresses the formation of Ag3Sn IMC particles and leads to a large amount of fine Al-Ag IMC particles. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions suppress the formation of Cu6Sn5 IMC particles and lead to the formation of larger Al-Cu IMC particles. The 0.1 wt.% Al-added solder shows a microstructure with coarse β-Sn dendrites. However, the addition of 0.5 wt.% Al has a great effect on suppressing the undercooling and refinement of the β-Sn dendrites. In addition to coarse β-Sn dendrites, the formation of large Sn-Ag-Al and Al-Cu IMC particles significantly reduces the elastic modulus and yield strength for the SAC105 alloy containing 0.1 wt.% Al. On the other hand, the fine β-Sn dendrite and the second-phase dispersion strengthening mechanism through the formation of fine Al-Ag IMC particles significantly increases the elastic modulus and yield strength of the SAC105 alloy containing 0.5 wt.% Al. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions worsen the elongation. However, the reduction in elongation is much stronger, and brittle fracture occurs instead of ductile fracture, with 0.5 wt.% Al addition. The two additions of Al increase both solidus and liquidus temperatures. With 0.5 wt.% Al addition the pasty range is significantly reduced and the differential scanning calorimetry (DSC) endotherm curve gradually shifts from a dual to a single endothermic peak.

  5. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy

    International Nuclear Information System (INIS)

    Chen, Weiping; Fu, Zhiqiang; Fang, Sicong; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: • FeNiCrCo 0.3 Al 0.7 high entropy alloy is prepared via MA and SPS. • Two BCC phases and one FCC phase were obtained after SPS. • The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure). • Bulk FeNiCrCo 0.3 Al 0.7 HEA exhibits excellent mechanical properties. - Abstract: The present paper reports the synthesis of FeNiCrCo 0.3 Al 0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01 Å and one FCC phase with the lattice parameter of 3.72 Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo 0.3 Al 0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo 0.3 Al 0.7 alloy are 2033 ± 41 MPa, 2635 ± 55 MPa, 8.12 ± 0.51% and 624 ± 26H v , respectively. The fracture mechanism of bulk FeNiCrCo 0.3 Al 0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture

  6. Microstructures and mechanical properties of squeeze cast Al–5.0Cu–0.6Mn alloys with different Fe content

    International Nuclear Information System (INIS)

    Zhang, WeiWen; Lin, Bo; Zhang, DaTong; Li, YuanYuan

    2013-01-01

    Highlights: • The effect of Fe-rich phases on squeeze cast Al–Cu alloys with high Fe content. • Four kinds of Fe-rich phases may present in Al–Cu alloys. • There is great tolerance to Fe impurities in squeeze cast Al–Cu alloys. - Abstract: The microstructures and mechanical properties of gravity die cast and squeeze cast Al–5.0 wt% Cu–0.6 wt% Mn alloys with different Fe content have been studied using tensile test, optical microscope, scanning electron microscope, electron probe micro-analyzer and image analysis. The results show that four kinds of Fe-rich intermetallics may present in the final microstructures of the alloys: Chinese script α-Fe (Al 15 (FeMn) 3 (CuSi) 2 ) and Al 6 (FeMn), needle-like β-Fe(Al 7 Cu 2 Fe) and Al 3 (FeMn) when the Fe content increases from 0.1 wt% to 1.5 wt%. In the gravity die cast alloy with 0.5 wt% Fe, the Chinese script α-Fe presents as the main Fe-rich intermetallics, and a few needle-like β-Fe also exist. When the Fe content increases to 1.0 wt%, the main Fe-rich intermetallics change to needle-like Al 3 (FeMn) and Chinese-script Al 6 (FeMn). The needle-like β-Fe disappears when the Fe content is 0.5 wt% in the squeeze cast alloy with an applied pressure of 75 MPa. Furthermore, the secondary dendritic arm spacing of α(Al), the percentage of porosity and the volume fraction of the second intermetallics decrease distinctly in the squeeze cast alloy compared to the gravity die cast alloy. There is a peak value of ultimate strength and yield strength for the alloy with 0.5 wt% Fe. The elongations of the alloys decrease gradually with increasing Fe content and the elongation of the squeeze cast alloys is two times more than that of the gravity die cast alloys

  7. Microstructure, mechanical properties, in vitro degradation and cytotoxicity evaluations of Mg-1.5Y-1.2Zn-0.44Zr alloys for biodegradable metallic implants.

    Science.gov (United States)

    Fan, Jun; Qiu, Xin; Niu, Xiaodong; Tian, Zheng; Sun, Wei; Liu, Xiaojuan; Li, Yangde; Li, Weirong; Meng, Jian

    2013-05-01

    Mg-1.5Y-1.2Zn-0.44Zr alloys were newly developed as degradable metallic biomaterials. A comprehensive investigation of the microstructure, mechanical properties, in vitro degradation assessments and in vitro cytotoxicity evaluations of the as-cast state, as-heat treated state and as-extruded state alloys was done. The microstructure observations show that the Mg-1.5Y-1.2Zn-0.44Zr alloys are mainly composed of the matrix α-Mg phases and the Mg12ZnY secondary phases (LPS structure). The hot extrusion method significantly refined the grains and eliminated the defects of both as-cast and heat treated alloys and thereby contributed to the better mechanical properties and biodegradation resistance. The values of tensile strength and tensile yield strength of the alloy in the as-extruded condition are about 236 and 178 MPa respectively, with an excellent elongation of 28%. Meanwhile, the value of compressive strength is about 471 MPa and the value of bending strength is about 501 MPa. The superior bending strength further demonstrates the excellent ductility of the hot extruded alloys. The results of immersion tests and electrochemical measurements in the SBF indicate that a protective film precipitated on the alloy's surface with the extension of degradation. The protective film contains Mg(OH)2 and hydroxyapatite (HA) which can reinforce osteoblast activity and promote good biocompatibility. No significant cytotoxicity towards L-929 cells was detected and the immersion extracts of alloy samples could enhance the cell proliferation with time in the cytotoxicity evaluations, implying that the Mg-1.5Y-1.2Zn-0.44Zr alloys have the potential to be used for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Microstructure and Mechanical Properties of Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca-x Y Alloys.

    Science.gov (United States)

    Kim, Yong-Ho; Yoo, Hyo-Sang; Son, Hyeon-Taek

    2018-09-01

    Magnesium and its alloys are potential candidates for many automotive and aerospace applications due to their low density and high specific strength. However, the use of magnesium as wrought products is limited because of its poor workability at ambient temperatures. Mg-Li alloys containing 5-11 wt.% Li exhibit a two-phase structure consisting of a α (hcp) Mg-rich phase and a β (bcc) Li-rich phase. Mg-Li alloys with Li content greater than 11 wt.% exhibit a single-phase structure consisting of only the β phase. In the present study, we studied the effects of Y addition on the microstructure and mechanical properties of Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca based alloys. The melt was maintained at 720 °C for 20 min and poured into a mold. Then, the as-cast Mg alloys were homogenized at 350 °C for 4 h and were hot-extruded onto a 4-mm-thick plate with a reduction ratio of 14:1. The as-cast Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca-xY (x 0, 1, 3, and 5 wt.%) alloys were composed of α-Mg, β-Li, γ-Mg2Zn3Li, I-Mg3YZn6, W-Mg3Y2Zn3, and X-Mg12YZn phases. By increasing the Y content from 0 to 5 wt.%, the composition of the W-Mg3Y2Zn3 phase increased. With increasing Y content, from 0 to 1, 3, and 5 wt.%, the average grain size and ultimate tensile of the as-extruded Mg alloys decreased slightly, from 8.4, to 3.62, 3.56, and 3.44 μm and from 228.92 to 215.57, 187.47, and 161.04 MPa, respectively, at room temperature.

  9. Preparation and electrochemical properties of La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 (x = 0, 0.30, 0.33, 0.36, 0.39) hydrogen storage alloys

    International Nuclear Information System (INIS)

    Tian, Xiao; Wei, Wei; Duan, Ruxia; Zheng, Xinyao; Zhang, Huaiwei; Tegus, O.; Li, Xingguo

    2016-01-01

    The as-cast alloy with the composition of La_0_._7_0Ni_2_._4_5Co_0_._7_5Al_0_._3_0 was prepared by vacuum arc melting. La–Mg–Ni-based La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 hydrogen storage alloy has been synthesized by high-energy vibratory milling blending of the La_0_._7_0Ni_2_._4_5Co_0_._7_5Al_0_._3_0 as-cast alloy and elemental Mg, followed by an isothermal annealing. The microstructures and electrochemical properties of the La_0_._7_0Ni_2_._4_5Co_0_._7_5Al_0_._3_0 and La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloys were investigated by XRD, SEM and electrochemical measurements. The XRD analysis and Rietveld refinement showed that the as-cast La_0_._7_0Ni_2_._4_5Co_0_._7_5Al_0_._3_0 alloy consists of single LaNi_5 phase, whereas the La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloys contain the LaNi_5 and (La, Mg)_2Ni_7. The electrochemical measurements indicated that the maximum discharge capacity and discharge potential characteristic of the La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloys increases first and then decreases with increasing x. The maximum discharge capacity and discharge potential characteristic of alloy reaches the optimum when x is 0.36. The cyclic stability of the La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloy with a smaller quantity of Mg is better than that of the alloy with a larger quantity of Mg. - Highlights: • La–Mg–Ni-based alloy was synthesized by melting, milling and subsequent annealing. • Mg atoms exist in the La_2Ni_7 phase prior to LaNi_5 phase. • The La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloys consist of the LaNi_5 and (La, Mg)_2Ni_7. • The more Mg element the alloys contain, the easier aggregation Mg atom is. • The C_m_a_x of La_0_._7_0Mg_xNi_2_._4_5Co_0_._7_5Al_0_._3_0 alloy first increases and then decreases with rising x.

  10. Enhancement of Mechanical Properties of Extruded Mg-9Al-1Zn-1MM-0.7CaO-0.3Mn Alloy Through Pre-aging Treatment

    Science.gov (United States)

    Jeong, Seok Hoan; Kim, Yong Joo; Kong, Kyung Ho; Cho, Tae Hee; Kim, Young Kyun; Lim, Hyun Kyu; Kim, Won Tae; Kim, Do Hyang

    2018-03-01

    The effect of pre-aging treatment before extrusion has been investigated in Mg-9.0Al-1.0Zn-1MM-0.7CaO-0.3Mn alloy. The as-cast microstructure consists of α-Mg dendrite with secondary solidification phase particles, (Mg, Al)2Ca, β-Mg17Al12 and Al11RE3 at the inter-dendritic region. After extrusion, β-Mg17Al12 precipitates are present, but higher density and more homogeneous distribution in pre-aged alloy. In addition, μm-scale banded bulk β-Mg17Al12 particles are generated during extrusion. Al11RE3 particles are broken into small particles, and are aligned along the extrusion direction. (Mg, Al)2Ca particles are only slightly elongated along the extrusion direction, providing stronger particle stimulated nucleation (PSN) effect by severe deformation during extrusion. The mechanical properties can be significantly enhanced by introducing pre-aging treatment, i.e. β-Mg17Al12 precipitates provide grain refining and strengthening effects and (Mg, Al)2Ca particles provide PSN effect.

  11. Effect of Ce-rich rare earth on microstructure and mechanical properties of Mg-10Zn-5Al-0.1Sb magnesium alloy

    Directory of Open Access Journals (Sweden)

    You Zhiyong

    2012-05-01

    Full Text Available To improve the comprehensive mechanical properties of Mg-10Zn-5Al-0.1Sb magnesium alloy, different amount of Ce-rich rare earth (RE was added to the alloy, and the effect of RE addition on the microstructure and mechanical properties of Mg-10Zn-5Al-0.1Sb alloy was investigated by means of Brinell hardness measurement, scanning electron microscopy (SEM, energy dispersive spectroscope (EDS and X-ray diffraction (XRD. The results show that an appropriate amount of Ce-rich rare earth addition can make the Al4Ce phase particles and CeSb phase disperse more evenly in the alloy. These phases refine the alloy抯 matrix and make the secondary phases [t-Mg32(Al,Zn49 phase and f-Al2Mg5Zn2 phase] finer and more dispersive, therefore significantly improve the mechanical properties of the Mg-10Zn-5Al-0.1Sb alloy. When the RE addition is 1.0 wt.%, the tensile strengths of the alloy both at room temperature and 150 篊 reach the maximum values while the impact toughness is slightly lower than that of the matrix alloy. The hardness increases with the increase of RE addition.

  12. Uranium-molybdenum alloys containing 0,5 to 3 per cent by weight of molybdenum

    International Nuclear Information System (INIS)

    Lehmann, J.

    1959-01-01

    The following properties have been determined in the new cast state of uranium alloys containing 0.5-1-1.8-2 and 3.5 per cent of molybdenum: micro-graphical aspect, crystalline structure, thermal expansion, the mechanical characteristics, behaviour when subjected to cyclic temperature variations, and heat treatment. The transformation curves have been established for continuous cooling at rates varying between 2.5 and 200 deg. C per minute, using a dilatation method for the alloys containing 1.0, 2.0 and 3.0 per cent Mo. T.T.T. curves have been traced for 0.5 and 1.0 per cent Mo alloys and the Ms points determined for alloys containing 2.0 and 3.0 par cent Mo. In this way it has been possible to show the different results of transformation, brought about either by nucleation and diffusion or by shear - the alloy containing 1 per cent Mo, give two martensites α' and α'' and the alloys containing 2 and 3 per cent Mo give one martensite with a band structure. (author) [fr

  13. Analysis of Microstructure and Sliding Wear Behavior of Co1.5CrFeNi1.5Ti0.5 High-Entropy Alloy

    Science.gov (United States)

    Lentzaris, K.; Poulia, A.; Georgatis, E.; Lekatou, A. G.; Karantzalis, A. E.

    2018-04-01

    Α Co1.5CrFeNi1.5Ti0.5 high-entropy alloy (HEA) of the well-known family of CoCrFeNiTi has been designed using empirical parameters. The aim of this design was the production of a HEA with fcc structure that gives ductile behavior and also high strength because of the solid solution effect. The VEC calculations (8.1) supported the fcc structure while the δ factor calculations (4.97) not being out of the limit values, advised a significant lattice distortion. From the other hand, the ΔΗ mix calculations (- 9.64 kJ/mol) gave strong indications that no intermetallic would be formed. In order to investigate its potential application, the Co1.5CrFeNi1.5Ti0.5 HEA was prepared by vacuum arc melting and a primary assessment of its surface degradation response was conducted by means of sliding wear testing using different counterbody systems for a total sliding distance of 1000 m. An effort to correlate the alloy's wear response with the microstructural characteristics was attempted. Finally, the wear behavior of the Co1.5CrFeNi1.5Ti0.5 HEA was compared with that of two commercially used wear-resistant alloys. The results obtained provided some first signs of the high-entropy alloys' better wear performance when tested under sliding conditions against a steel ball.

  14. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Yurev, Ivan, E-mail: yiywork@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Kalashnikov, Mark, E-mail: kmp1980@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Kurzina, Irina, E-mail: kurzina99@mail.ru [National Research Tomsk State University, 36, Lenin Str., 634050, Tomsk (Russian Federation)

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  15. Effects of Rh on the thermoelectric performance of the p-type Zr0.5Hf0.5Co1-xRhxSb0.99Sn0.01 half-Heusler alloys

    International Nuclear Information System (INIS)

    Maji, Pramathesh; Takas, Nathan J.; Misra, Dinesh K.; Gabrisch, Heike; Stokes, Kevin; Poudeu, Pierre F.P.

    2010-01-01

    We show that Rh substitution at the Co site in Zr 0.5 Hf 0.5 Co 1-x Rh x Sb 0.99 Sn 0.01 (0≤x≤1) half-Heusler alloys strongly reduces the thermal conductivity with a simultaneous, significant improvement of the power factor of the materials. Thermoelectric properties of hot-pressed pellets of several compositions with various Rh concentrations were investigated in the temperature range from 300 to 775 K. The Rh 'free' composition shows n-type conduction, while Rh substitution at the Co site drives the system to p-type semiconducting behavior. The lattice thermal conductivity of Zr 0.5 Hf 0.5 Co 1-x Rh x Sb 0.99 Sn 0.01 alloys rapidly decreased with increasing Rh concentration and lattice thermal conductivity as low as 3.7 W/m*K was obtained at 300 K for Zr 0.5 Hf 0.5 RhSb 0.99 Sn 0.01 . The drastic reduction of the lattice thermal conductivity is attributed to mass fluctuation induced by the Rh substitution at the Co site, as well as enhanced phonon scattering at grain boundaries due to the small grain size of the synthesized materials. - Graphical abstract: Significant reduction of the lattice thermal conductivity with increasing Rh concentration in the p-type Zr 0.5 Hf 0.5 Co 1-x Rh x Sb 0.99 Sn 0.01 half-Heusler materials prepared by solid state reaction at 1173 K.

  16. Magnetic and structural properties of mechanically alloyed Tb0.257-xNdxFe0.743 alloys, with x = 0 and 0.257

    International Nuclear Information System (INIS)

    Rojas Martinez, Y.; Bustos Rodriguez, H.; Oyola Lozano, D.; Perez Alcazar, G. A.; Paz, J. C.

    2007-01-01

    The alloys between a transition metal and a rare earth present magnetic and magneto optical properties of exceptional interest for the production of magnetic devices for information storage. In this work we report the magnetic and structural properties, obtained by Moessbauer spectrometry (MS) and X-ray diffraction (XRD), of Tb 0.257-x Nd x Fe 0.743 alloys with x = 0 and 0.257 prepared by mechanical alloying during 12, 24 and 48 h, to study the influence of the milling time in their magnetic and structural properties. The X-rays results show for all the samples that the α and an amorphous phase are always present. The first decreases and the second increases with the increase of the milling time. Moessbauer results show that the amorphous phase in samples with Nd is ferromagnetic and appears as a hyperfine field distribution and a broad doublet, and that as the milling time increases the paramagnetic contribution increases. For samples with Tb the amorphous phase is paramagnetic and appears as a broad doublet which increases with the milling time and for 48 h milling it appears an additional broad singlet.

  17. Microstructural and Mechanical Characterization of Al-0.80Mg-0.85Si-0.3Zr Alloy

    Directory of Open Access Journals (Sweden)

    Kahrıman F.

    2017-12-01

    Full Text Available In this study, Al-0.80Mg-0.85Si alloy was modified with the addition of 0.3 wt.-% zirconium and the variation of microstructural features and mechanical properties were investigated. In order to produce the billets, vertical direct chill casting method was used and billets were homogenized at 580 °C for 6 h. Homogenized billets were subjected to aging practice following three stages: (i solution annealing at 550 °C for 3 h, (ii quenching in water, (iii aging at 180 °C between 0 and 20 h. The hardness measurements were performed for the alloys following the aging process. It was observed that peak hardness value of Al-0.80Mg-0.85Si alloy increased with the addition of zirconium. This finding was very useful to obtain aging parameters for the extruded hollow profiles which are commonly used in automotive industry. Standard tensile tests were applied to aged profiles at room temperature and the results showed that modified alloy had higher mechanical properties compared to the non-modified alloy.

  18. Optical conductivity of Ni1 − xPtx alloys (00.25 from 0.76 to 6.6 eV

    Directory of Open Access Journals (Sweden)

    Lina S. Abdallah

    2014-01-01

    Full Text Available Using spectroscopic ellipsometry and Drude-Lorentz oscillator fitting, we determined the dielectric function and optical conductivity versus photon energy from 0.76 to 6.6 eV of 10 nm thick Ni1 − xPtx alloy (00.25 films deposited on thick thermal oxides. We find absorption peaks near 1.6 and 5.0 eV due to interband optical transitions. There is a significant broadening of the UV peak with increasing Pt content, since the bandwidth of the 3d electrons in Ni is smaller than that of the 5d bands in Pt. Our experimental observation is consistent with ab initio calculations of the density of states for Ni, Pt, and the Ni3Pt compound. Annealing the metals at 500°C for 30 s increases the optical conductivity.

  19. The origin of high magnetic properties in (R,Zr)(Fe,Co){sub 11.0–11.5}Ti{sub 1.00.5}N{sub y} (y=1.01.4 for R=Nd, y=0 for R=Sm) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, K., E-mail: koba@ms.sist.ac.jp [Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555 (Japan); Suzuki, S.; Kuno, T.; Urushibata, K. [Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555 (Japan); Sakuma, N.; Yano, M.; Shoji, T.; Kato, A. [Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Technology Reserch Association of Magnetic Materials fot High-efficiency Motors (Mag-HEM) Higashifuji-Branch, 1200 Mishuku, Susono, Shizuoka 410-1193, Japan. (Japan); Manabe, A. [Technology Reserch Association of Magnetic Materials fot High-efficiency Motors (Mag-HEM) Higashifuji-Branch, 1200 Mishuku, Susono, Shizuoka 410-1193, Japan. (Japan)

    2017-03-15

    Ten alloys and nitrogenated compounds of (R,Zr)(Fe,Co){sub 11.0–11.5}Ti{sub 1.00.5}N{sub y} (y=1.01.4 for R=Nd, y=0 for R=Sm) with a ThMn{sub 12}-type structure were prepared. The average Fe–Fe interatomic distances, d(Fe–Fe), for Fe sites were calculated based on the reported atomic parameters. The hyperfine splittings (inner field (IF), in teslas) were measured by Mössbauer spectroscopy, and the IF increased with increasing d(Fe–Fe) for Fe sites, indicating a magneto-volume effect. The order of IF magnitude in Fe sites was Fe(8i)>Fe(8j)>Fe(8f) in all alloys. Co substitution for Fe sites, (Fe{sub 0.75}Co{sub 0.25}), increased the IF by 25% for the R=Nd alloy and 15% for the R=Sm alloy. Decreasing Ti content from −Ti{sub 1.0} to −Ti{sub 0.5}, which increased the Fe and Co content, preserved the ThMn{sub 12} structure with Zr substitution for R(2a) sites, and caused a slight increase in the IF of 2% for the R=Nd alloy and 7% for the R=Sm alloy. Nitrogenation, where N was introduced into the 2b sites, also increased IF in R=Nd alloys, by 23% for the Co- and Zr-free alloys, NdFe{sub 11}Ti{sub 1.0}N{sub 1.5}, and by 7% for the Co-containing, (Nd{sub 0.7}Zr{sub 0.3}) (Fe{sub 0.75}Co{sub 0.25}) {sub 11.5}Ti{sub 0.5}N{sub 1.3} alloy. The IF values of the R=Nd alloys were slightly larger than those of the R=Sm alloys. In conclusion, the magneto-volume effect was clearly observed at the Fe sites, and Co substitution into Fe sites and nitrogenation (R=Nd alloys) compensated for the increased IF. Increasing the Fe and Co fractions also increased IF slightly. - Highlights: • Average distances of Fe–Fe (d(Fe–Fe)) were calculated using lattice constants. • Hyperfine fields (IF) in Fe sites were measured using Mössbauer spectroscopy. • Relationship between d(Fe–Fe) and IF at each Fe site was obtained. • Co substitution and N introduction effects on IF was also measured. • Magneto-volume effect is main reason of IF augmentation in Fe sites.

  20. Constitutive Equation and Hot Compression Deformation Behavior of Homogenized Al–7.5Zn–1.5Mg–0.2Cu–0.2Zr Alloy

    Directory of Open Access Journals (Sweden)

    Jianliang He

    2017-10-01

    Full Text Available The deformation behavior of homogenized Al–7.5Zn–1.5Mg–0.2Cu–0.2Zr alloy has been studied by a set of isothermal hot compression tests, which were carried out over the temperature ranging from 350 °C to 450 °C and the strain rate ranging from 0.001 s−1 to 10 s−1 on Gleeble-3500 thermal simulation machine. The associated microstructure was studied using electron back scattered diffraction (EBSD and transmission electron microscopy (TEM. The results showed that the flow stress is sensitive to strain rate and deformation temperature. The shape of true stress-strain curves obtained at a low strain rate (≤0.1 s−1 conditions shows the characteristic of dynamic recrystallization (DRX. Two Arrhenius-typed constitutive equation without and with strain compensation were established based on the true stress-strain curves. Constitutive equation with strain compensation has more precise predictability. The main softening mechanism of the studied alloy is dynamic recovery (DRV accompanied with DRX, particularly at deformation conditions, with low Zener-Holloman parameters.

  1. Kinematic viscosity of liquid Al-Cu alloys

    International Nuclear Information System (INIS)

    Konstantinova, N Yu; Popel, P S

    2008-01-01

    Temperature dependences of kinematic viscosity n of liquid Al 100-x -Cu x alloys (x = 0.0, 10.0, 17.1, 25.0, 32.2, 40.0 and 50.0 at.%) were measured. A technique based on registration of the period and the decrement of damping of rotating oscillations of a cylindrical crucible with a melt was used. Viscosity was calculated in low viscous liquids approximation. Measurements were carried out in vacuum in crucibles of BeO with a temperature step of 30 deg. C and isothermal expositions of 10 to 15 minutes during both heating up to 1100-1250 deg. C and subsequent cooling. We have discovered branching of heating and cooling curves v(T) (hysteresis of viscosity) below temperatures depending on the copper content: 950 deg. C at 10 and 17.1 at.% Cu, 1050 deg. C at 25 and 40 at.% Cu, 850 deg. C at 32.2 at.% Cu. For samples with 10 and 17.1 at.% Cu the cooling curve 'returns' to the heating one near 700 deg. C. An abnormally high spreading of results at repeated decrement measurements was fixed at heating of the alloy containing 50 at.% Cu above 1000 deg. C. During subsequent cooling the effect disappeared. Isotherms of kinematic viscosity have been fitted for several temperatures

  2. Nanodispersed boriding of titanium alloy

    International Nuclear Information System (INIS)

    Kostyuk, K.O.; Kostyuk, V.O.

    2015-01-01

    The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemical-thermal treatment. The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. It is established that boriding of paste compounds allows obtaining the surface hardness within 30 - 29 GPa and with declining to 27- 26 GPa in layer to the transition zone (with total thickness up to 110 μm) owing to changes of the layer phase composition where T 2 B, TiB, TiB 2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30 - 110 μm) and transition zone (30 - 190 μm). Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2 - 3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening

  3. Ab-Initio Investigations of Magnetic Properties and Induced Half-Metallicity in Ga1-xMnxP (x = 0.03, 0.25, 0.5, and 0.75) Alloys.

    Science.gov (United States)

    Laref, Amel; AlMudlej, Abeer; Laref, Slimane; Yang, Jun Tao; Xiong, Yong-Chen; Luo, Shi Jun

    2017-07-07

    Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga 1- x Mn x P ( x = 0.03, 0.25, 0.5, and 0.75) ternary alloys. In order to perceive viable half-metallic (HM) states and unprecedented diluted magnetic semiconductors (DMSs) such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA). In order to tackle the correlation effects on 3d states of Mn atoms, we also employ the Hubbard U (GGA + U) technique to compute the magnetic properties of an Mn-doped GaP compound. We discuss the emerged global magnetic moments and the robustness of half-metallicity by varying the Mn composition in the GaP compound. Using GGA + U, the results of the density of states demonstrate that the incorporation of Mn develops a half-metallic state in the GaP compound with an engendered band gap at the Fermi level ( E F ) in the spin-down state. Accordingly, the half-metallic feature is produced through the hybridization of Mn-d and P-p orbitals. However, the half-metallic character is present at a low x composition with the GGA procedure. The produced magnetic state occurs in these materials, which is a consequence of the exchange interactions between the Mn-element and the host GaP system. For the considered alloys, we estimated the X-ray absorption spectra at the K edge of Mn. A thorough clarification of the pre-edge peaks is provided via the results of the theoretical absorption spectra. It is inferred that the valence state of Mn in Ga 1- x Mn x P alloys is +3. The predicted theoretical determinations surmise that the Mn-incorporated GaP semiconductor could inevitably be employed in spintronic devices.

  4. Enhancing pitting corrosion resistance of Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} high-entropy alloys by anodic treatment in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Shih, H.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan (China)], E-mail: hcshih@mx.nthu.edu.tw

    2008-12-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 {omega}cm{sup 2} as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 {omega}cm{sup 2}). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H{sub 2}SO{sub 4} solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe{sub 1.5}MnNi{sub 0.5} and Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} alloys optimized their surface structures and minimized their susceptibility to pitting corrosion.

  5. Forging of cast Mg-3Sn-2Ca-0.4Al-0.4Si magnesium alloy using processing map

    International Nuclear Information System (INIS)

    Rao, K. P.; Suresh, K.; Prasad, Y. V. R. K.; Hort, N.; Kainer, K. U.

    2016-01-01

    Mg-3Sn-2Ca (TX32) alloy has good creep resistance but limited workability. Minor amounts of Al and Si have been added to TX32 for improving its hot workability. The processing map for the TX32-0.4Al-0.4Si alloy exhibited two workability domains in the temperature and strain rate ranges: (1) 310-415.deg.C/0.0003-0.003 s-1 and (2) 430-500.deg.C/0.003-3 s-1. The alloy exhibited flow instability at temperatures < 350.deg.C at strain rates > 0.01 s-1. The alloy has been forged to produce a cup shape component to validate these findings of processing map. Finite-element (FE) simulation has been performed for obtaining the local variations of strain and strain rate within the forging. The microstructures of the forged components under the optimal domain conditions revealed dynamically recrystallized grains, and those forged in the flow instability regime have fractured and exhibited flow localization bands and cracks. The experimental load stroke curves correlated well with those obtained by FE simulation.

  6. Forging of cast Mg-3Sn-2Ca-0.4Al-0.4Si magnesium alloy using processing map

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. P.; Suresh, K.; Prasad, Y. V. R. K. [University of Hong Kong, Hong Kong (China); Hort, N.; Kainer, K. U. [Magnesium Innovation Centre, Geesthacht (Germany)

    2016-06-15

    Mg-3Sn-2Ca (TX32) alloy has good creep resistance but limited workability. Minor amounts of Al and Si have been added to TX32 for improving its hot workability. The processing map for the TX32-0.4Al-0.4Si alloy exhibited two workability domains in the temperature and strain rate ranges: (1) 310-415.deg.C/0.0003-0.003 s-1 and (2) 430-500.deg.C/0.003-3 s-1. The alloy exhibited flow instability at temperatures < 350.deg.C at strain rates > 0.01 s-1. The alloy has been forged to produce a cup shape component to validate these findings of processing map. Finite-element (FE) simulation has been performed for obtaining the local variations of strain and strain rate within the forging. The microstructures of the forged components under the optimal domain conditions revealed dynamically recrystallized grains, and those forged in the flow instability regime have fractured and exhibited flow localization bands and cracks. The experimental load stroke curves correlated well with those obtained by FE simulation.

  7. Viscous behavior of (Sn{sub 61.9}Pb{sub 38.1}){sub 100-x}RE{sub x} (x=0, 0.1, 0.3, 1 wt%) solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuqin [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (Southern Campus), 73 Jingshi Road, Jinan 250061 (China); Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (Southern Campus), 73 Jingshi Road, Jinan 250061 (China)], E-mail: xfbian@sdu.edu.cn; Zhao Yan; Li Xuelian; Zhang Yanning; Tian Yongsheng; Lv Xiaoqian [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (Southern Campus), 73 Jingshi Road, Jinan 250061 (China)

    2008-05-19

    The viscous behavior of (Sn{sub 61.9}Pb{sub 38.1}){sub 100-x}RE{sub x} (x=0, 0.1, 0.3, 1 wt%) solder alloys has been investigated by a torsional oscillation viscometer. The structural transition temperature T{sup '} increases with increasing addition of RE elements. Above T{sup '}, the viscosities of melts increase with increasing addition of RE, and are fitted well with the Arrhenius equation. The time dependence of viscosity at the measured temperature below T{sup '} follows the exponential relaxation function and reflects the process of the structural transition in the melt, which can be considered as the thermodynamic equilibrium process. The thermodynamic equilibrium relaxation time {tau}{sub eq} increases with both the equilibrium viscosity {eta}{sub eq} and the discrepancy in viscosity ({delta}{eta}), between the initial state and the equilibrium state. However, it decreases with the measured temperature T. The size of clusters in the melts increases with increasing of viscosity and is restricted by the thermodynamic equilibrium conditions.

  8. Bulk amorphous alloys: Preparation and properties of (Mg0.98Al0.02)x(Cu0.75Y0.25)100

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Pedersen, Allan Schrøder; Ohnuma, M.

    2000-01-01

    New bulk amorphous quaternary alloys of the composition (Mg1-xAlx)(60)Cu30Y10 (x = 0 - 0.17) were recently reported by the authors and preliminary results of the influence of Al content on the ability to form a bulk amorphous phase were presented. In the present note we extend this work to look...... for the influence of the Mg-Al content on the glass forming ability by studying a range of compositions, (Mg0.98Al0.02)(x)(Cu0.75Y0.25)(100-x) for x = 60 - 80 at.%. As previously, the alloys were prepared by a relatively simple technique, i.e. rapid cooling of the melt in a wedge-shaped copper mould. This method...... provides a range of cooling rates within a single ingot during the solidification that link the slowly and rapidly cooled microstructure for each alloy composition. Hence, the maximum thickness of the amorphous part of the cast material will be a measure of the glass forming ability (GFA) of the particular...

  9. Theoretical analysis of the electronic, optical and thermal properties of lead strontium telluride alloys Pb1-xSrxTe (x = 0.0-1.0)

    Science.gov (United States)

    Chouit, F.; Sifi, C.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.; Rai, D. P.; Bin Omran, S.

    2018-02-01

    We have simulated different physical properties of Pb1-xSrxTe semiconductors, using the Ab-initio full potential augmented plane wave (FP-LAPW) method. The two commonly used exchange potentials viz., PBE-GGA and WC-GGA are used along with the most recently developed modified Becke and Johnson (mBJ) potential to study the electronic and optical properties. In this study, we have observed an increase in band gap values as well as the lattice parameter with increasing the concentration of Sr atoms in Pb1-xSrxTe alloys while the bulk modulus and the refractive index have reverse effect. The microscopic origin of the band gap bowing is explained using the approach of Zunger and co-workers. At ambient conditions (p = 0, T = 0), the calculations indicate that Pb1-xSrxTe is a direct band gap semiconductor R-R with x = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75 and 0.875. The refractive indices are also calculated using the FP-LAPW method and the models of Moss, Ravindra and the Herve-Vandame. The obtained results are in consistent with the previous available data. To study the thermal effects, the temperature effect on the lattice parameters, thermal expansions, heat capacities the quasi-harmonic Debye model is applied. The Debye temperature is determined from the non-equilibrium Gibbs function.

  10. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments

    International Nuclear Information System (INIS)

    Chou, Y.L.; Yeh, J.W.; Shih, H.C.

    2010-01-01

    The purpose of this study is to investigate the electrochemical properties of the Co 1.5 CrFeNi 1.5 Ti 0.5 Mo x high-entropy alloys in three aqueous environments which simulate acidic, marine, and basic environments at ambient temperature (∼25 o C). The potentiodynamic polarisation curves of the Co 1.5 CrFeNi 1.5 Ti 0.5 Mo x alloys, obtained in aqueous solutions of H 2 SO 4 and NaOH, clearly revealed that the corrosion resistance of the Mo-free alloy was superior to that of the Mo-containing alloys. On the other hand, the lack of hysteresis in cyclic polarisation tests and SEM micrographs confirmed that the Mo-containing alloys are not susceptible to pitting corrosion in NaCl solution.

  11. Improving the corrosion resistance of Mg–4.0Zn–0.2Ca alloy by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y.H. [The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, B.P., E-mail: zhangbp@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, C.X. [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Geng, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-12-01

    In this paper, corrosion resistance of the Mg–4.0Zn–0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg–4.0Zn–0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF{sub 2} was formed on the surface of Mg–4.0Zn–0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. - Highlights: • Ceramic layer which is composited by MgO and MgF{sub 2} is prepared to improve the corrosion resistance of Mg–4.0Zn–0.2Ca alloy. • MAO treatment does not affect the mechanical properties of the Mg–4.0Zn–0.2Ca alloy. • After 30-day immersion in SBF, the mechanical properties of MAO coated samples are still enough for bone fixed.

  12. Improving the corrosion resistance of Mg–4.0Zn–0.2Ca alloy by micro-arc oxidation

    International Nuclear Information System (INIS)

    Xia, Y.H.; Zhang, B.P.; Lu, C.X.; Geng, L.

    2013-01-01

    In this paper, corrosion resistance of the Mg–4.0Zn–0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg–4.0Zn–0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF 2 was formed on the surface of Mg–4.0Zn–0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. - Highlights: • Ceramic layer which is composited by MgO and MgF 2 is prepared to improve the corrosion resistance of Mg–4.0Zn–0.2Ca alloy. • MAO treatment does not affect the mechanical properties of the Mg–4.0Zn–0.2Ca alloy. • After 30-day immersion in SBF, the mechanical properties of MAO coated samples are still enough for bone fixed

  13. Evidence for the role of horizontal transfer in generating pVT1, a large mosaic conjugative plasmid from the clam pathogen, Vibrio tapetis.

    Directory of Open Access Journals (Sweden)

    Gaël Erauso

    Full Text Available The marine bacterium Vibrio tapetis is the causative agent of the brown ring disease, which affects the clam Ruditapes philippinarum and causes heavy economic losses in North of Europe and in Eastern Asia. Further characterization of V. tapetis isolates showed that all the investigated strains harbored at least one large plasmid. We determined the sequence of the 82,266 bp plasmid pVT1 from the CECT4600(T reference strain and analyzed its genetic content. pVT1 is a mosaic plasmid closely related to several conjugative plasmids isolated from Vibrio vulnificus strains and was shown to be itself conjugative in Vibrios. In addition, it contains DNA regions that have similarity with several other plasmids from marine bacteria (Vibrio sp., Shewanella sp., Listonella anguillarum and Photobacterium profundum. pVT1 contains a number of mobile elements, including twelve Insertion Sequences or inactivated IS genes and an RS1 phage element related to the CTXphi phage of V. cholerae. The genetic organization of pVT1 underscores an important role of horizontal gene transfer through conjugative plasmid shuffling and transposition events in the acquisition of new genetic resources and in generating the pVT1 modular organization. In addition, pVT1 presents a copy number of 9, relatively high for a conjugative plasmid, and appears to belong to a new type of replicon, which may be specific to Vibrionaceae and Shewanelleacae.

  14. Effect of electrical discharge machining on uranium-0.75 titanium and tungsten-3.5 nickel-1.5 iron alloys

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-06-01

    It was found that U--0.75 Ti alloy cracked if the EDM parameters were out of control, and precipitation of carbides adjacent to the EDM surface took place during subsequent solution quenching. Cracks form in the ''recast'' layer when solution-quenched U--0.75 Ti alloy undergoes EDM, and the cracks propagated during subsequent nickel plating. If the recast layer was removed prior to nickel plating, only a slight loss in strength resulted, compared to conventional machining. W--3.5 Ni--1.5 Fe alloy also sustained some surface damage during EDM and also experienced a small loss in strength compared to conventionally machined material. 12 figures, 4 tables

  15. Effect of fluorination treatment on electrochemical properties of M1Ni{sub 3.5}Co{sub 0.6}Mn{sub 0.4}Al{sub 0.5} hydrogen storage alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hongxia, E-mail: hhxhunan@yahoo.com.cn [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin (China); Huang, Kelong [College of Chemistry and Chemical Engineering, Central South University (China)

    2012-05-15

    The influence of surface treatment by solutions of NH{sub 4}F, LiF and LiF containing KBH{sub 4} on the structure and electrochemical properties of the M1Ni{sub 3.5}Co{sub 0.6}Mn{sub 0.4}Al{sub 0.5} hydrogen storage alloy (in which M1 denotes mischmetal) is investigated. The fluorination treatment improves the electrochemical performances of the M1Ni{sub 3.5}Co{sub 0.6}Mn{sub 0.4}Al{sub 0.5} alloy. The maximum discharge capacity (C{sub max}) increases from 314.8 to 325.7 (NH{sub 4}F), 326.5 (LiF) and 316.4 mAh g{sup -1} (LiF+KBH{sub 4}). After 60 cycles, the capacity retention rate increases from 83.5 to 84.8% (NH{sub 4}F), 89.5% (LiF) and 93.9% (LiF+KBH{sub 4}). The results of the linear polarization and anodic polarization reveal that the exchange current density (I{sub 0}) and the limiting current density (I{sub L}) increase after fluorination treatment, indicating an improvement of the kinetics of the hydrogen absorption/desorption. (author)

  16. Ab-Initio Investigations of Magnetic Properties and Induced Half-Metallicity in Ga1−xMnxP (x = 0.03, 0.25, 0.5, and 0.75 Alloys

    Directory of Open Access Journals (Sweden)

    Amel Laref

    2017-07-01

    Full Text Available Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga1−xMnxP (x = 0.03, 0.25, 0.5, and 0.75 ternary alloys. In order to perceive viable half-metallic (HM states and unprecedented diluted magnetic semiconductors (DMSs such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA. In order to tackle the correlation effects on 3d states of Mn atoms, we also employ the Hubbard U (GGA + U technique to compute the magnetic properties of an Mn-doped GaP compound. We discuss the emerged global magnetic moments and the robustness of half-metallicity by varying the Mn composition in the GaP compound. Using GGA + U, the results of the density of states demonstrate that the incorporation of Mn develops a half-metallic state in the GaP compound with an engendered band gap at the Fermi level (EF in the spin–down state. Accordingly, the half-metallic feature is produced through the hybridization of Mn-d and P-p orbitals. However, the half-metallic character is present at a low x composition with the GGA procedure. The produced magnetic state occurs in these materials, which is a consequence of the exchange interactions between the Mn-element and the host GaP system. For the considered alloys, we estimated the X-ray absorption spectra at the K edge of Mn. A thorough clarification of the pre-edge peaks is provided via the results of the theoretical absorption spectra. It is inferred that the valence state of Mn in Ga1−xMnxP alloys is +3. The predicted theoretical determinations surmise that the Mn-incorporated GaP semiconductor could inevitably be employed in spintronic devices.

  17. Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bao-sheng; Kuang, Ya-fei; Fang, Da-qing; Chai, Yue-sheng [Taiyuan Univ. of Science and Technology (China). College of Materials Science and Engineering; Taiyuan Univ. of Science and Technology (China). Engineering Research Center for Magnesium Alloys of Shanxi Province; Zhang, Yue-zhong [Taiyuan Univ. of Science and Technology (China). Engineering Research Center for Magnesium Alloys of Shanxi Province; Taiyuan Univ. of Science and Technology (China). College of Chemical and Biological Engineering

    2017-04-15

    In petroleum drilling engineering, materials with high strength and rapid degradation are required for degradable fracturing ball applications. In this work, the microstructure, mechanical properties, and corrosion behavior of extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5 weight percent) alloys are investigated using optical microscopy, scanning electronic microscopy equipped with energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electronic microscopy, compression tests, electrochemical measurements, and hydrogen evolution tests, to explore their potential as excellent candidate alloys for degradable fracturing ball applications. It is found that the Mg-3Zn-Y alloy is mainly composed of α-Mg, Mg{sub 3}Zn{sub 3}Y{sub 2}, and Mg{sub 3}Zn{sub 6}Y phases. After Cu addition, a new MgZnCu phase is formed, while the Mg{sub 3}Zn{sub 3}Y{sub 2} phase disappears. The Mg-3Zn-Y-3Cu alloy shows the highest compressive strength (473 MPa) and yield strength (402 MPa), mainly attributed to the combined effect of the fine-grain and dispersed precipitation of Mg{sub 3}Zn{sub 6}Y and MgZnCu. The corrosion rate of Mg-3Zn-Y-3Cu reaches 0.41 mm day{sup -1} in 3.5 wt.% KCl solution. Consequently, Mg-3Zn-Y-3Cu alloy is a suitable degradable fracturing ball-seat material.

  18. DSC and HRTEM investigation of the precipitates in Al-1.0%Mg{sub 2} Si-0.5%Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A.; Ali, A.M.; Zou, Y. [Toyama University (Japan). Venture Business Laboratory; Matsuda, K.; Ikeno, S. [Toyama University (Japan). Faculty of Engineering

    2004-12-15

    The understanding and control of nanoscale precipitation in an Al-1.0 wt-%Mg{sub 2} Si-0.5 wt-% Ag alloy during artificial aging is critical for achieving optimum mechanical properties. To achieve this objective, both differential scanning calorimetry (DSC) and high resolution transmission electron microscopy (HRTEM) have been utilised. The non-isothermal DSC thermograms exhibited eight reaction peaks; six are exothermic (precipitation) and two are endothermic (dissolution) reactions. The activation energies associated with the individual precipitates are determined. With the aid of HRTEM, the evolved precipitates have been characterised. (author)

  19. MAGNETIC VT study: a prospective, multicenter, post-market randomized controlled trial comparing VT ablation outcomes using remote magnetic navigation-guided substrate mapping and ablation versus manual approach in a low LVEF population.

    Science.gov (United States)

    Di Biase, Luigi; Tung, Roderick; Szili-Torok, Tamás; Burkhardt, J David; Weiss, Peter; Tavernier, Rene; Berman, Adam E; Wissner, Erik; Spear, William; Chen, Xu; Neužil, Petr; Skoda, Jan; Lakkireddy, Dhanunjaya; Schwagten, Bruno; Lock, Ken; Natale, Andrea

    2017-04-01

    Patients with ischemic cardiomyopathy (ICM) are prone to scar-related ventricular tachycardia (VT). The success of VT ablation depends on accurate arrhythmogenic substrate localization, followed by optimal delivery of energy provided by constant electrode-tissue contact. Current manual and remote magnetic navigation (RMN)-guided ablation strategies aim to identify a reentry circuit and to target a critical isthmus through activation and entrainment mapping during ongoing tachycardia. The MAGNETIC VT trial will assess if VT ablation using the Niobe™ ES magnetic navigation system results in superior outcomes compared to a manual approach in subjects with ischemic scar VT and low ejection fraction. This is a randomized, single-blind, prospective, multicenter post-market study. A total of 386 subjects (193 per group) will be enrolled and randomized 1:1 between treatment with the Niobe ES system and treatment via a manual procedure at up to 20 sites. The study population will consist of patients with ischemic cardiomyopathy with left ventricular ejection fraction (LVEF) of ≤35% and implantable cardioverter defibrillator (ICD) who have sustained monomorphic VT. The primary study endpoint is freedom from any recurrence of VT through 12 months. The secondary endpoints are acute success; freedom from any VT at 1 year in a large-scar subpopulation; procedure-related major adverse events; and mortality rate through 12-month follow-up. Follow-up will consist of visits at 3, 6, 9, and 12 months, all of which will include ICD interrogation. The MAGNETIC VT trial will help determine whether substrate-based ablation of VT with RMN has clinical advantages over manual catheter manipulation. Clinicaltrials.gov identifier: NCT02637947.

  20. Effect of Zn on the microstructure and mechanical properties of as-cast Mg–7Gd–3Y–1Nd–0.5Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Zhang, K., E-mail: zhkui@grinm.com; Li, X.G.; Yuan, J.W.; Li, Y.J.; Ma, M.L.; Shi, G.L.; Li, T.; Liu, J.B.

    2015-06-25

    The microstructure and mechanical properties of as-cast Mg–7Gd–3Y–1Nd–xZn–0.5Zr (x=0, 0.5, 1 and 2 wt%) alloys have been investigated by optical microscopy (OM), scanning electron microscopy equipped with energy dispersive spectrum, transmission electron microscopy (TEM), X-ray diffraction and tensile tests at room temperature (RT). Experimental results reveal that the microstructure of the alloy without Zn contains α-Mg and Mg{sub 5}RE phase, the microstructure of the alloy with 0.5% Zn consists of α-Mg, (Mg, Zn){sub 3}RE phase, Mg{sub 5}(RE, Zn) phase and stacking fault. The addition of 1% and 2% Zn results in the disappearance of the Mg{sub 5}(RE, Zn) phase, but the stacking fault can be seen more clearly. Moreover, a new block-like long period stacking ordered (LPSO) phase is observed in grain boundaries with increasing Zn content up to 2%. TEM analyses indicate that the Mg{sub 5}RE, (Mg, Zn){sub 3}RE and Mg{sub 5}(RE, Zn) phases have a face-centered cubic (f.c.c.) structure with lattice constants of 2.22 nm, 0.73 nm and 2.23 nm, respectively. The new block-like LPSO phase belongs to 10H-type. The tensile tests at RT exhibit that the alloy containing 1% Zn shows the optimal mechanical properties and the ultimate tensile strength (UTS), yield strength (YS) and elongation are 187 MPa, 145 MPa and 3.1%, respectively. As indicated by fracture analyses, the fracture modes of the alloys with 0% and 0.5% Zn are typically intercrystalline fracture, whereas both intercrystalline and transcrystalline fractures are observed in the alloys with 1% and 2% Zn.

  1. Effect of 1.0% Ni on high-temperature impression creep and hardness of recycled aluminium alloy with high Fe content

    Science.gov (United States)

    Faisal, M.; Mazni, Noor; Prasada Rao, A. K.

    2018-03-01

    Reported work focusses on the effect of 1.0% Ni addition on the microstructure, high- temperature impression creep and thereby the hardness of recycled Al-alloy containing >2wt% Fe, obtained from automotive scrap. Present studies have shown that the addition of 1.0% Ni have supress the formation of α-phase (Al5FeSi) by supressing the peritectic transformation of β-phase (Al8Fe2Si). Such suppression is found to improve the hardness and high-temperature impression creep of the recycled aluminium alloy.

  2. Measurements of T0 temperatures of supersaturated Si-As alloys

    International Nuclear Information System (INIS)

    Lee, K.R.; West, J.A.; Smith, P.M.; Aziz, M.J.

    1992-01-01

    In this paper the congruent melting point, or T 0 curve, of crystalline Si-As alloys has been measured in the range of 1.6 to 18.1 at.% arsenic by line source electron beam annealing. Alloys were created by ion implantation of as into 0.1 mm Si-on-sapphire and crystallized by pulsed laser melting. T 0 temperatures decrease form 1673 ± 10K at 2.0 at.% As to 1516 ± 30K at 18.1 at.% As. The results of these measurements are significantly higher than the previous results of studies using pulsed laser melting techniques. Advantages of the e-beam technique over previous techniques are discussed. Chemical free energy functions of the solid and liquid phases were calculated from existing thermodynamic data. The calculated T 0 curve agrees with the measured values only in low concentration region (less than 8 at.%)

  3. 33 CFR 110.8 - Lake Champlain, N.Y. and Vt.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Champlain, N.Y. and Vt. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.8 Lake Champlain, N.Y. and Vt. (a) Ticonderoga, N.Y. An area shoreward of a line bearing 312° from Ticonderoga Light to the southeast corner of the...

  4. Modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [Manufacturing and Systems Engineering Program, Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand); Kajornchaiyakul, Julathep [National Metal and Material Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@kmutt.ac.th [Manufacturing and Systems Engineering Program, Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2013-10-25

    Highlights: •Morphologies and growth of Sc and Sr-modified eutectic silicon resemble those of dendrites. •Crystal orientation of eutectic aluminum depends on growth characteristics of eutectic silicon. •We report strong evidence of the occurrence of an impurity-induced twinning mechanism. -- Abstract: The modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium was studied. The crystallographic orientation relationships between primary dendrites and the eutectic phase of unmodified and modified Al–6Si–0.3 Mg alloys were determined using electron backscatter diffraction (EBSD). The orientation of aluminum modified with scandium in the eutectic phase was different from that of the neighboring primary dendrites. This result implies that eutectic aluminum grows epitaxially from the surrounding primary aluminum dendrites in the unmodified alloy and that eutectic aluminum grows competitively from the surrounding primary aluminum dendrites in the modified alloy. The pole figure maps of eutectic Si in the [1 0 0], [1 1 0] and [1 1 1] axes of the unmodified and Sc-modified alloys were different, suggesting that the eutectic Al and Si crystals in modified alloy growth are more isotropic and cover a larger set of directions. The lattice fringes of Si of the alloys with and without Sc modification were different in the TEM results. The lattice fringes of Si in modified alloy were found to be multiple twins. However, this was not observed in the unmodified alloy. The growth characteristic of eutectic Si crystal in modified alloy suggests the occurrence of multiple twinning reactions and the formation of a high density of twins. This modification mechanism by Sc is explained by the results of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analysis, which provide strong evidence of the occurrence of the impurity-induced twinning (IIT) mechanism.

  5. Hydrogen storage and microstructure investigations of La{sub 0.7-x}Mg{sub 0.3}Pr{sub x}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Galdino, G.S.; Casini, J.C.S.; Ferreira, E.A.; Faria, R.N.; Takiishi, H., E-mail: agsgaldino@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (DM/IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Dept. de Metalurgia

    2010-07-01

    The effects of substitution of Pr for La in the hydrogen storage capacity and microstructures of La{sub 0.7-x}Pr{sub x}Mg{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} (x=0, 0.1, 0.3, 0.5, 0.7) alloys electrodes have been studied. X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectrometry (EDS) and electrical tests were carried out in a the alloys and electrodes. Cycles of charge and discharge have also been carried out in the Ni/MH (Metal hydride) batteries based on the alloys negative electrodes. (author)

  6. VT E911 ESITE geocoder - address points

    Data.gov (United States)

    Vermont Center for Geographic Information — VT E911 ESITE geocoder - address points. VCGI, in collaboration with the VT E911 Board, has created a suite of geocoding services that can be used to batch geocode...

  7. Effect of process control agent on the structural and magnetic properties of nano/amorphous Fe0.7Nb0.1Zr0.1Ti0.1 powders prepared by high energy ball milling

    Science.gov (United States)

    Khazaei Feizabad, Mohammad Hossein; Sharafi, Shahriar; Khayati, Gholam Reza; Ranjbar, Mohammad

    2018-03-01

    In this study, amorphous Fe0.7Nb0.1Zr0.1Ti0.1 alloy without metalloids was produced by mechanical alloying of pure mixture elements. Miedema's semi-empirical model was employed to predict the possibility of amorphous phase formation in proposed alloying system. The effect of Hexane as process control agent (PCA) on the structural, magnetic, morphological and thermal properties of the products was investigated. The results showed that the presence of PCA was necessary for the formation of amorphous phase as well as improved its soft magnetic properties. The PCA addition causes an increase of the saturation magnetization (about 43%) and decrease of the coercivity (about 50%). Moreover, the sample milled without PCA, showed a wide particle size distribution as well as relatively spherical geometry. While, in the presence of PCA the powders were aspherical and Polygon. In addition, the crystallization and Curie temperatures were found to be around 800 °C and 650 °C, respectively which are relatively high values for these kinds of alloys.

  8. Phase structure and electrochemical properties of La0.67Mg0.33Ni3.0-xCox (x=0.0, 0.25, 0.5, 0.75) hydrogen storage alloys

    International Nuclear Information System (INIS)

    Wang Dahui; Luo Yongchun; Yan Ruxu; Zhang Faliang; Kang Long

    2006-01-01

    La 0.67 Mg 0.33 Ni 3.0-x Co x (x=0.0, 0.25, 0.50, 0.75) hydrogen storage alloys were prepared by induction melting. Influences of partial substitution of Co for Ni on phase structure and electrochemical properties of La 0.67 Mg 0.33 Ni 3.0 were investigated by means of X-ray diffraction (XRD), electron probe X-ray microanalysis (EPMA) and electrochemical measurements. XRD patterns and back scattered electron images show that the alloys were composed of the (La,Mg)Ni 3 phase with the PuNi 3 -type structure and the (La,Mg) 2 Ni 7 phase with the Ce 2 Ni 7 -type structure. The lattice parameters a, c and the unit-cell volumes v vary with the increase of Co content x. The electrochemical measurements show that partial Co substitution for Ni had no influence on the initial activation rate of the alloys. The maximum electrochemical discharge capacity increases firstly then decreases, the high-rate dischargeabilities (HRDs) of La 0.67 Mg 0.33 Ni 3.0-x Co x alloy electrodes increase with the increase of Co content. Moreover, the cycle stabilities of La 0.67 Mg 0.33 Ni 3.0-x Co x is not improved by small quantity replacement Ni by Co except for x=0.75

  9. MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 hydrogen storage alloys for high-power nickel/metal hydride batteries

    Science.gov (United States)

    Ye, Hui; Huang, Yuexiang; Chen, Jianxia; Zhang, Hong

    Non-stoichiometric La-rich MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 hydrogen storage alloys using B-Ni or B-Fe alloy as additive and Ce-rich MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 one using pure B as additive have been prepared and their microstructure, thermodynamic, and electrochemical characteristics have been examined. It is found that all investigated alloys show good activation performance and high-rate dischargeability though there is a certain decrease in electrochemical capacities compared with the commercial MmNi 3.55Co 0.75Mn 0.4Al 0.3 alloy. MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 alloys using B-Ni alloy as additive or adopting Ce-rich mischmetal show excellent rate capability and can discharge capacity over 190 mAh/g even under 3000 mA/g current density, which display their promising use in the high-power type Ni/MH battery. The electrochemical performances of these MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 alloys are well correlated with their microstructure, thermodynamic, and kinetic characteristics.

  10. Pressure dependence of resistivity and magnetic properties in a Mn1.9Cr0.1Sb alloy

    Directory of Open Access Journals (Sweden)

    D. V. Maheswar Repaka

    2017-12-01

    Full Text Available We report magnetic-field and hydrostatic pressure dependent electrical resistivity and magnetic properties of a Mn1.9Cr0.1Sb alloy. Upon cooling, the magnetization of Mn1.9Cr0.1Sb exhibits a first-order ferrimagnetic to antiferromagnetic transition at the exchange inversion temperature, TS = 261 K under a 0.1 T magnetic field. Our experimental results show that TS decreases with increasing magnetic field but increase with increasing hydrostatic pressure. The pressure induced transition is accompanied by a large positive baro-resistance of 30.5% for a hydrostatic pressure change of 0.69 GPa. These results show that the lattice parameters as well as the bond distance between Mn-Mn atoms play a crucial role in the magnetic and electronic transport properties of Mn1.9Cr0.1Sb. This sample also exhibits a large inverse magnetocaloric effect with a magnetic entropy change of ΔSm = +6.75 J/kg.K and negative magnetoresistance (44.5% for a field change of 5 T at TS in ambient pressure which may be useful for magnetic cooling and spintronics applications.

  11. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y2O3

    International Nuclear Information System (INIS)

    Eiselt, Ch.Ch.; Klimenkov, M.; Lindau, R.; Moeslang, A.; Odette, G.R.; Yamamoto, T.; Gragg, D.

    2011-01-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y 2 O 3 reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y 2 0 3 and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  12. Effect of boron addition on the microstructures and electrochemical properties of MmNi3.8Co0.4Mn0.6Al0.2 electrode alloys prepared by casting and rapid quenching

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Chen Meiyan; Wang Xinlin; Wang Guoqing; Lin Yufang; Qi Yan

    2004-01-01

    The rapid quenching technology was used in the preparation of the MmNi 3.8 Co 0.4 Mn 0.6 Al 0.2 B x (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys. The microstructures and electrochemical performances of the as-cast and quenched alloys were analysed and measured. The effects of boron additive on the microstructures and electrochemical properties of as-cast and quenched alloy MmNi 3.8 Co 0.4 Mn 0.6 Al 0.2 were investigated. The experimental results showed that the microstructure of as-cast MmNi 3.8 Co 0.4 Mn 0.6 Al 0.2 B x (x=0, 0.1, 0.2, 0.3, 0.4) alloy is composed of CaCu 5 -type main phase and a small amount of CeCo 4 B-type secondary phase. The abundance of the secondary phase increases with the increase of the boron content x. The secondary phase in the alloys disappears when quenching rate is larger than 22 m/s. The electrochemical measurement showed that the addition of boron slightly modifies the activation performance and dramatically enhances the cycle life of the alloys, whereas it reduces the capacities of the as-cast and quenched alloys. The influence of boron additive on the electrochemical characteristics of the as-quenched alloy is much stronger than that on the as-cast alloy. It is because boron strongly promotes the formation of the amorphous phase in the as-quenched alloy

  13. AdvanceVT Transformations: April 2009

    OpenAIRE

    AdvanceVT

    2009-01-01

    This issue of Transformations will deal exclusively with the results of the 2008 Faculty Work-Life survey employed by AdvanceVT in September of 2008. We will compare/ contrast these results with those of the 2005 survey. Future issues will address: • Respondent familiarity with the AdvanceVT initiative and the implications of this data; • Breakdowns of differences in response by gender and race; and • The qualitative data elicited by the survey and how it compares to the quantitative data and...

  14. Magnetic and structural properties of mechanically alloyed Tb{sub 0.257-x}Nd{sub x}Fe{sub 0.743} alloys, with x = 0 and 0.257

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Martinez, Y., E-mail: yarojas@ut.edu.co; Bustos Rodriguez, H.; Oyola Lozano, D. [University of Tolima, Department of Physics (Colombia); Perez Alcazar, G. A.; Paz, J. C. [University of Valle, Department of Physics (Colombia)

    2007-02-15

    The alloys between a transition metal and a rare earth present magnetic and magneto optical properties of exceptional interest for the production of magnetic devices for information storage. In this work we report the magnetic and structural properties, obtained by Moessbauer spectrometry (MS) and X-ray diffraction (XRD), of Tb{sub 0.257-x}Nd{sub x}Fe{sub 0.743} alloys with x = 0 and 0.257 prepared by mechanical alloying during 12, 24 and 48 h, to study the influence of the milling time in their magnetic and structural properties. The X-rays results show for all the samples that the {alpha} and an amorphous phase are always present. The first decreases and the second increases with the increase of the milling time. Moessbauer results show that the amorphous phase in samples with Nd is ferromagnetic and appears as a hyperfine field distribution and a broad doublet, and that as the milling time increases the paramagnetic contribution increases. For samples with Tb the amorphous phase is paramagnetic and appears as a broad doublet which increases with the milling time and for 48 h milling it appears an additional broad singlet.

  15. Molecular field analysis for melt-spun amorphous Fe sub 1 sub 0 sub 0 sub - sub x Gd sub x alloys (18<=60)

    CERN Document Server

    Yano, K

    2000-01-01

    The magnetic properties for the melt-spun amorphous Fe sub 1 sub 0 sub 0 sub - sub x Gd sub x alloys were analyzed using the molecular field theory (MFT). A concentration dependence of three exchange interaction constants was derived over a wide concentration range (18=T sub c sub o sub m sub p. Curvature of the Arrott plot in Gd-rich region was qualitatively simulated.

  16. Effect of superimposed low frequency oscillations on the static creep behaviour of Al-1 wt%Si and Al-1 wt%Si-0.1 wt%Zr-0.1 wt%Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Beshai, M.H.N. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Deaf, G.H. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Abd El Khalek, A.M. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Graiss, G. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Kenawy, M.A. [Physics Dept., University Coll. for Women, Ain Shams Univ., Cairo (Egypt)

    1997-05-16

    Torsional oscillations of increasing frequencies with constant torsional strain amplitude, {theta}, of 3.1 x 10{sup -4} were superimposed on wires of Al-1 wt% Si and Al-1 wt% Si-0.1 wt% Zr-0.1 wt% Ti alloys, while being crept under constant stress (52.3 MPa) and different testing temperatures. It was found that increasing the frequency of oscillations resulted in an increase of both transient and steady state creep. In the transient stage, while the exponent n is increasing with frequency v, the parameter {beta} decreases. Zirconium and titanium addition generally reduced the rate of creep. A value of 20 kJ/mol was found for the activation energy of the mechanism operating in the transient and steady state stages which was ascribed as being due to dislocation intersection. (orig.)

  17. Effect of strain on evolution of dynamic recrystallization in Nb-1 wt%Zr-0.1 wt%C alloy at 1500 and 1600 °C

    Energy Technology Data Exchange (ETDEWEB)

    Behera, A.N. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India); Kapoor, R., E-mail: rkapoor@barc.gov.in [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India); Paul, B. [Materials Processing & Corrosion Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-04-15

    Uniaxial compression tests were carried out on Nb-1 wt%Zr-0.1 wt%C alloy at temperature of 1500 and 1600 °C and strain rate of 0.1 s{sup −1} to study the evolution of dynamic recrystallization with strain. Electron back scatter diffraction was used to quantify the microstructural evolution. Nb-1Zr-0.1C alloy showed a necklace structure at a strain of 0.9 when deformed at 1500 °C and at strain of 0.6 when deformed at 1600 °C, both at strain rate of 0.1 s{sup −1}. This suggested the occurrence of dynamic recrystallization. At 1500 °C and strain of 0.9 the local average misorientation and the grain orientation spread was low confirming the presence of dynamic recrystallization at this deformation condition. At both 1500 and 1600 °C and all measured strains the recrystallized grains had a strong fiber component of <001>. - Highlights: • Necklace formation of dynamically recrystallized grains occurred at strain of 0.6 and 0.9 for 1500 and 1600 °C, respectively. • Equiaxed microstructures were seen with increase in strain for both 1500 and 1600 °C. • At large strains the predominant recrystallized texture evolved to <001> pole.

  18. Superplastic properties of an Al-2.4Mg-1.8Li-0.5Sc alloy

    International Nuclear Information System (INIS)

    Bradley, E.L. III; Morris, J.W. Jr.

    1991-01-01

    This paper reports that there is a need in the aerospace industry for structural, superplastic aluminum alloys that are formable at strain-rates greater than 10 -3 s -1 in order for the economic benefits of superplastic forming to be realized. The standard, structural, superplastic aluminum alloy in the aerospace industry is 7475, which has an optimum forming strain-rate near 10 -4 s -1 . Thus, research has been focused on modifying the microstructures of wrought Al-Li alloys such as 2090 and 8090 into superplastically formable (SPF) microstructures with improved properties, but the results have not been completely successful. Superplastic alloys with high strengths have been produced from the Al-Mg-Sc system. These alloys are strengthened by thermomechanical processing which precipitates small, coherent Al 3 Sc particles and increases the dislocation density of the material. The Mg is in solid solution and improves the work hardening capability of these alloys. Because superplastic forming is carried out at relatively high temperatures, recovery processes eliminate the dislocation strengthening resulting from the rolling and overage the precipitates. Lithium provides the most promising choice since it forms the ordered coherent precipitate δ (Al 3 Li), lowers the density, and increases the stiffness of aluminum alloys

  19. Hydrogen absorption-desorption properties of Ti0.32Cr0.43V0.25 alloy

    International Nuclear Information System (INIS)

    Cho, Sung-Wook; Shim, Gunchoo; Choi, Good-Sun; Park, Choong-Nyeon; Yoo, Jeong-Hyun; Choi, Jeon

    2007-01-01

    Ti 0.32 Cr 0.43 V 0.25 alloy specimens were heat treated, and its various hydrogen storage properties were measured at 303 K to examine its potential as a hydrogen storage material. The heat treatment improved not only the total and the effective hydrogen storage capacities, but also the plateau flatness. The heat of hydride formation was approximately -36 kJ/mol H 2 . The effective hydrogen storage capacity remained at approximately 2 wt% after 1000 cycles of pressure swing cyclic tests. The hydrogen storage capacity could be recovered almost to the initial state by reactivating the alloy. The hydrogen absorption rate increased with the repetition of cycling for the first several cycles and remained almost constant afterward. At the 504th cycle, more than 98% of the hydrogen was absorbed within the first 2 min. X-ray diffraction (XRD) patterns showed that the crystal structure of the alloy became more amorphous as the number of cycles increased

  20. VT Public Locations of Broadband Data - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  1. VT Public Locations of Broadband Data - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  2. VT Public Locations of Broadband Data - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  3. VT Public Locations of Broadband Data - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  4. VT Public Locations of Broadband Data - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  5. VT Public Locations of Broadband Data - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  6. Exploration of Sub-VT and Near-VT 2T Gain-Cell Memories for Ultra-Low Power Applications under Technology Scaling

    Directory of Open Access Journals (Sweden)

    Alexander Fish

    2013-04-01

    Full Text Available Ultra-low power applications often require several kb of embedded memory and are typically operated at the lowest possible operating voltage (VDD to minimize both dynamic and static power consumption. Embedded memories can easily dominate the overall silicon area of these systems, and their leakage currents often dominate the total power consumption. Gain-cell based embedded DRAM arrays provide a high-density, low-leakage alternative to SRAM for such systems; however, they are typically designed for operation at nominal or only slightly scaled supply voltages. This paper presents a gain-cell array which, for the first time, targets aggressively scaled supply voltages, down into the subthreshold (sub-VT domain. Minimum VDD design of gain-cell arrays is evaluated in light of technology scaling, considering both a mature 0.18 μm CMOS node, as well as a scaled 40 nm node. We first analyze the trade-offs that characterize the bitcell design in both nodes, arriving at a best-practice design methodology for both mature and scaled technologies. Following this analysis, we propose full gain-cell arrays for each of the nodes, operated at a minimum VDD. We find that an 0.18 μm gain-cell array can be robustly operated at a sub-VT supply voltage of 400mV, providing read/write availability over 99% of the time, despite refresh cycles. This is demonstrated on a 2 kb array, operated at 1 MHz, exhibiting full functionality under parametric variations. As opposed to sub-VT operation at the mature node, we find that the scaled 40 nm node requires a near-threshold 600mV supply to achieve at least 97% read/write availability due to higher leakage currents that limit the bitcell’s retention time. Monte Carlo simulations show that a 600mV 2 kb 40 nm gain-cell array is fully functional at frequencies higher than 50 MHz.

  7. Crack path in aeronautical titanium alloy under ultrasonic torsion loading

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2016-01-01

    Full Text Available This paper discusses features of fatigue crack initiation and growth in aeronautical VT3-1 titanium alloy under pure torsion loading in gigacycle regime. Two materials: extruded and forged VT3-1 titanium alloys were studied. Torsion fatigue tests were performed up to fatigue life of 109 cycles. The results of the torsion tests were compared with previously obtained results under fully reversed axial loading on the same alloys. It has been shown that independently on production process as surface as well subsurface crack initiation may appear under ultrasonic torsion loading despite the maximum stress amplitude located at the specimen surface. In the case of surface crack initiation, a scenario of crack initiation and growth is similar to HCF regime except an additional possibility for internal crack branching. In the case of subsurface crack, the initiation site is located below the specimen surface (about 200 μm and is not clearly related to any material flaw. Internal crack initiation is produced by shear stress in maximum shear plane and early crack growth is in Mode II. Crack branching is limited in the case of internal crack initiation compared to surface one. A typical ‘fish-eye’ crack can be observed at the torsion fracture surface, but mechanism of crack initiation seems not to be the same than under axial fatigue loading.

  8. Automated Method for Fractographic Analysis of Shape and Size of Dimples on Fracture Surface of High-Strength Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Ihor Konovalenko

    2018-03-01

    Full Text Available An automated method for analyzing the shape and size of dimples of ductile tearing formed during static and impact fracture of titanium alloys VT23 and VT23M is proposed. The method is based on the analysis of the image topology. The method contains the operations of smoothing the initial fractographic image; its convolution with a filter to identify the topological ridges; thresholding with subsequent skeletonization to identify boundaries between dimples; clustering to isolate the connected areas that represent the sought objects—dimples. For each dimple, the following quantitative characteristics were calculated: area, coefficient of roundness and visual depth in units of image intensity. The surface of ductile tearing was studied by analyzing the peculiarities of parameter distribution of the found dimples. The proposed method is applied to fractograms of fracture surfaces of titanium alloys VT23 and VT23M.

  9. Deformation Mechanisms and Formability Window for As-Cast Mg-6Al-2Ca-1Sn-0.3Sr Alloy (MRI 230D)

    Science.gov (United States)

    Suresh, Kalidass; Pitcheswara Rao, Kamineni; Chalasani, Dharmendra; Yellapregada Venkata Rama Krishna, Prasad; Hort, Norbert; Dieringa, Hajo

    2018-03-01

    The hot deformation characteristics of MRI 230D alloy have been evaluated in the temperature range 260-500 °C and strain rate range 0.0003-10 s-1, on the basis of processing map. The processing map exhibited two domains in the ranges: (1) 300-370 °C and 0.0003-0.001 s-1 and (2) 370-480 °C and 0.0003-0.1 s-1. Dynamic recrystallization occurs in the both domains with basal slip dominating in the first domain along with climb as recovery process and second-order pyramidal slip dominating in the second with the recovery by cross-slip. In Domains (1) and (2), the apparent activation energy values estimated using the kinetic rate equation are 143 and 206 kJ/mole, respectively, the first one being close to that for lattice self-diffusion confirming climb. It is recommended that the alloy is best processed at 450 °C and strain rates less than 0.1 s-1, where non-basal slip and cross-slip occur extensively to impart excellent workability. The alloy exhibits flow instability in the form of adiabatic shear band formation and flow localization at lower temperatures and higher strain rates. Forging of a cup-shaped component was performed under various conditions, and the results validated the predictions of the processing map on the workability domains as well as the instability regimes.

  10. Oxidation kinetics of amorphous AlxZr1−x alloys

    International Nuclear Information System (INIS)

    Weller, K.; Wang, Z.M.; Jeurgens, L.P.H.; Mittemeijer, E.J.

    2016-01-01

    The oxidation kinetics of amorphous Al x Zr 1−x alloys (solid solution) has been studied as function of the alloy composition (0.26 ≤ x ≤ 0.68) and the oxidation temperature (350 °C ≤ T ≤ 400 °C; at constant pO 2  = 1 × 10 5  Pa) by a combinatorial approach using spectroscopic ellipsometry (SE), Auger electron spectroscopy (AES) depth profiling, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. Thermal oxidation of the am-Al x Zr 1−x alloys results in the formation of an amorphous oxide overgrowth with a thermodynamically preferred singular composition, corresponding to a constant Al ox /Zr ox ratio of 0.5. Both the solubility and the diffusivity of oxygen in the am-Al x Zr 1−x alloy substrate increase considerably with increasing Zr content, in particular for Zr contents above 49 at.% Zr. Strikingly, the oxidation kinetics exhibit a transition from parabolic oxide growth kinetics for Al-rich am-Al x Zr 1−x alloys (x ≥ 0.51) to linear oxide growth kinetics for Zr-rich am-Al x Zr 1−x alloys (x < 0.35). The underlying oxidation mechanism is discussed. It is concluded that the oxidation kinetics of the amorphous Al x Zr 1−x alloys for 0.26 ≤ x ≤ 0.68 and 350 °C ≤ T ≤ 400 °C are governed by: (i) the atomic mobilities of O and Al in the alloy substrate at the reacting oxide/alloy interface, (ii) the solubility of O in the substrate and (iii) the compositional constraint due to the thermodynamically preferred formation of an amorphous oxide phase of singular composition.

  11. Investigating the optical modes of InxGa1xN alloy and In0.5Ga0.5N/GaN MQW in far-infrared reflectivity spectra

    International Nuclear Information System (INIS)

    Mirjalili, G.; Amraei, R.

    2006-01-01

    Optical properties of In x Ga 1 x N alloy and In 0 .5Ga 0 .5N/GaN multi quantum wells have been investigated in the region of far infrared. Far-IR reflectivity spectra of In 0 .5Ga 0 .5N/GaN multi quantum wells on GaAs substrate have been obtained by oblique incidence p- and s- polarization light using effective medium approximation. The spectra and the dielectric functions response give a good information about the phonon and plasmon contribution in doped MQW as well as the mole fraction of compounds in the alloys. The changes in position of optical modes are good tools for measurement of the amount of free carrier and the amount of mole fraction in the samples. During study of In x Ga 1 x N reflectivity spectra, two distinct reststrahl bands with frequency near those of pure InN and GaN were observed over entire composition range. Each band shifts to lower frequencies and decreases in amplitude as the concentration of corresponding compound in alloy decreased. Analysis of dielectric function gives the TO-like and LO-like mode frequencies. The changes in LO mode frequencies, due to coupling of phonon-plasmon, have been observed

  12. Corrosion of Dental Au-Ag-Cu-Pd Alloys in 0.9 % Sodium Chloride Solution

    International Nuclear Information System (INIS)

    Chiba, Atsushi; Kusayanagi, Yukiharu

    2005-01-01

    Two Au-Ag-Cu-Pd dental casting alloys (Au:12% and 20%) used. The test solutions used 0.9 % NaCl solution (isotonic sodium chloride solution), 0.9 % NaCl solution containing 1 % lactic acid, and 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The surface of two samples in three sample solutions was not natural discoloration during one year. The alloy containing 12 % gold was easily alloyed and the composition was uniform comparing with the alloy containing 20 % gold. The rest potentials have not a little effect after three months. The kinds of metals could not definitely from the oxidation and reduction waves of metal on the cyclic voltammograms. The dissolutions of gold and palladium were 12 % Au sample in the 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The pH of solution had an affect on dissolution of copper, and sulfur ion had an affect on dissolution of silver. The copper dissolved amount from 20 % gold sample was about 26 times comparing with that of 12 % gold sample in the 0.9 % solution containing 1 % lactic acid. Corrosion products were silver chloride and copper chloride in NaCl solution, and silver sulfide and copper sulfide in NaCl solution containing Na 2 S

  13. Study on magnetic properties of (Nd{sub 0.8}Ce{sub 0.2}){sub 2−x}Fe{sub 12}Co{sub 2}B (x = 00.6) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tan, G.S.; Xu, H., E-mail: huixu8888@shu.edu.cn; Yu, L.Y.; Tan, X.H.; Zhang, Q.; Gu, Y.; Hou, X.L.

    2017-09-01

    Highlights: • (Nd{sub 0.8}Ce{sub 0.2}){sub 2−x}Fe{sub 12}Co{sub 2}B alloys are prepared by melt-spinning method with simultaneously decreasing of Nd, Ce concentration. • The magnetic properties B{sub r}, (BH){sub max} and squareness are all improved with an appropriate reduction of Nd, Ce concentration. • Magnetic field heat treatment offers a significant improvement in B{sub r}, (BH){sub max} and squareness. - Abstract: In the present work, (Nd{sub 0.8}Ce{sub 0.2}){sub 2−x}Fe{sub 12}Co{sub 2}B (x = 00.6) permanent alloys are prepared by melt-spinning method. The hard magnetic properties of (Nd{sub 0.8}Ce{sub 0.2}){sub 2−x}Fe{sub 12}Co{sub 2}B (x = 00.6) alloys annealed at optimum temperatures have been investigated systematically. Depending on the Nd, Ce concentration, the maximum energy product ((BH){sub max}) and remanence (B{sub r}) increase gradually with x in the range of 0 ≤ x ≤ 0.4, whereas decrease gradually in the alloys with 0.4 < x ≤ 0.6. It is found that the optimum magnetic properties are obtained at x = 0.4: H{sub ci} = 4.9 kOe, B{sub r} = 10.1 kG, (BH){sub max} = 13.7 MGOe. Specifically, magnetic field heat treatment below the Curie temperature is applied for (Nd{sub 0.8}Ce{sub 0.2}){sub 1.6}Fe{sub 12}Co{sub 2}B (x = 0.4) annealed ribbons. The magnetic properties B{sub r}, (BH){sub max} and squareness are all enhanced after the magnetic field heat treatment. The (BH){sub max} shows a substantial increase from 13.7 MGOe to 16.0 MGOe after the heat treatment at 623 K with a magnetic field of 1 T, which gets 17% improvement compared with that of the sample without a magnetic field heat treatment. We demonstrate that the magnetic field heat treatment plays a certain role in the magnetization reversal behavior and can improve the microstructure of (Nd{sub 0.8}Ce{sub 0.2}){sub 1.6}Fe{sub 12}Co{sub 2}B alloy.

  14. Hardness and microstructure of Al-10.0 wt% Zn-4.0 wt% Mg alloy

    International Nuclear Information System (INIS)

    Iqbal, M.; Shaikh, M.A.; Ahmad, W.; Ali, K.L.

    1996-01-01

    Al-Zn-Mg alloys are widely used in industries as these have excellent physical and mechanical properties. However some aspects of the effect of heat treatment on these alloys are not yet clear. In order to understand the precipitation phenomena in these alloys, microstructure of a locally prepared alloy Al-10.0 wt% Zn-4.0 wt% Mg heat treated under different conditions has been examined in scanning electron microscope/electron probe micro analyser. Precipitates MgZn/sub 2/, MgZn/sub 4/ and Mg/sub 2/Zn/sub 11/ have been observed and these are caused by heat treatment. Correlation between these precipitates and Vickers's hardness has also been studied. In the present paper results of this investigation have been presented and discussed. (author)

  15. Moessbauer effect study on mechanically alloyed amorphous Fe1-xTix alloys

    International Nuclear Information System (INIS)

    Chen Hong; Xu Zuxiong; Ma Ruzhang; Zhao Zhongtao; Ping Jueyun

    1994-01-01

    Amorphous Fe 1-x Ti x (x = 0.50, 0.60) powders were produced by mechanical alloying from pure elemental powders in a vibratory ball-mill. X-ray diffraction (XRD) and Moessbauer effect (ME) were used to study the progress of amorphization and the property of hydrogen absorption in Fe-Ti alloys. The amorphization process and the properties of the amorphous phase are discussed. (orig.)

  16. Synthesis and thermoelectric performance of a p-type Bi0.4Sb1.6Te3 material developed via mechanical alloying

    International Nuclear Information System (INIS)

    Jimenez, Sandra; Perez, Jose G.; Tritt, Terry M.; Zhu, Song; Sosa-Sanchez, Jose L.; Martinez-Juarez, Javier; López, Osvaldo

    2014-01-01

    Highlights: • This paper shows a Bi 1.6 Sb 0.4 Te 3 alloy prepared by MA-SPS process. • A ZT value of about 1.2–1.3 around 360 K was achieved for this compound. • The lower sintering process was carried out in a short time. • The resulting material has a very fine microstructure and high density. - Abstract: A p-type Bi 0.4 Sb 1.6 Te 3 thermoelectric compound was fabricated via mechanical alloying of bismuth, antimony and tellurium elemental powders as starting materials. The mechanically alloyed compositions were sintered through a spark-plasma sintering (SPS) process. The effect of the milling time was investigated. In order to characterize the powders obtained via mechanical alloying, X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis were used. The morphological evolution was studied by scanning electron microscopy (SEM). Results showed that the p-type Bi 0.4 Sb 1.6 Te 3 compound was formed after 2 h of milling. Further, the variation of milling time showed that the synthesized phase was stable. All the powders exhibit the same morphology albeit with slight differences. Measurements of the electrical resistivity, Seebeck coefficient and thermal conductivity were performed in the temperature range 300–520 K for the SPS samples. The resulting thermoelectric figure of merit ZT reaches a maximum of 1.2 at 360 K for the p-type bulk material with a 5 h milling time. This study demonstrates the possibility of preparing thermoelectric materials of high performance and short processing time

  17. The (CuGaSe{sub 2}){sub 1-x}(MgSe){sub x} alloy system (0{<=}x{<=}0.5): X-ray diffraction, energy dispersive spectrometry and differential thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grima Gallardo, P.; Munoz, M.; Ruiz, J. [Centro de Estudios en Semiconductores (C.E.S.), Dpto. Fisica, Fac. Ciencias, La Hechicera, Merida (Venezuela); Delgado, G.E. [Laboratorio de Cristalografia, Dpto. Quimica, Fac. Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Briceno, J.M. [Laboratorio de Analisis Quimico y Estructural (LAQUEM), Dpto. Fisica, Fac. Ciencias, La Hechicera, Merida (Venezuela)

    2004-07-01

    The (CuGaSe{sub 2}){sub 1-x}(MgSe){sub x} alloy system (00.5) was investigated using X-ray powder diffraction, energy dispersion spectrometry and differential thermal analysis. The solubility of MgSe in CuGaSe{sub 2} was found to be nearly complete for all the compositions studied, although traces of MgSe appear as a secondary phase at x{>=}0.15. All the alloys showed the chalcopyrite structure and the lattice parameters of the unit cell do not follow a linear behavior but showed a soft local maximum at x {proportional_to} 0.15. In the single-phase field, the increasing behavior of the lattice parameters can be reproduced using an extension for quaternary alloys of Jaffe and Zunger's model for chalcopyrites. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Microstructural characterization of laser and electron beam (EB) welds of Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Tewari, R.; Dey, G.K.; Samajdar, I.

    2015-01-01

    Nb-1wt%Zr-0.1wt%C alloy is being considered for the structural applications in proposed Compact High Temperature Reactor (CHTR) on account of its excellent combination of high temperature properties. The applications of this alloy calls for welding, which is a difficult task due to its reactive nature, higher thermal conductivity and melting point. The high energy density techniques like laser and electron beam were employed to produce the welds on sheets of Nb-alloy at various processing parameters in bead-on-plate and square butt joint configurations. The weld joints produced were characterized by studying their optical, Scanning Electron Microscopy (SEM) and Electron Back Scattering Diffraction (EBSD) micro-graphs. The SEM micrograph of EB fusion zone along with the heat affected zone (HAZ) and the base region were studied and abrupt changes in the grain morphology were found in each zone. The fusion zone shows larger grains indicating the rapid grain growth after solidification, whereas the HAZ shows relatively smaller size of the grains but still much larger than the base zone. The SEM micrograph of central part of the same butt weld shows clear grain boundaries with a large variation in the grain size (45-82 micrometer) in the weld region. The heat affected zone (HAZ) and base metal showed fine carbide precipitates along the grain boundaries, whereas carbides were found dissolved in the weld zone. The EBSD micrograph of electron beam fusion zone describing the grain orientation in the weld region are described. The micro-hardness profile across the width of welds was also studied. The detailed results of all these studies are described in this paper. (author)

  19. The optical, vibrational, structural and elasto-optic properties of Zn_0_._2_5Cd_0_._7_5S_ySe_1_-_y quaternary alloys

    International Nuclear Information System (INIS)

    Paliwal, U.; Swarkar, C. B.; Sharma, M. D.; Joshi, K. B.

    2016-01-01

    The optical, vibrational, structural and elasto-optic properties of quaternary II-VI alloys Zn_0_._2_5Cd_0_._7_5S_0_._2_5Se_0_._7_5, Zn_0_._2_5Cd_0_._7_5S_0_._5_0Se_0_._5_0 and Zn_0_._2_5Cd_0_._7_5S_0_._7_5Se_0_._2_5 are presented. Within the empirical pseudopotential method (EPM) the disorder effects are modeled via modified virtual crystal approximation (MVCA). The computed bandgaps and the refined form factors are utilized to evaluate optical, vibrational, structural and elasto-optic properties. The refractive index (n), static (ε_0) and high frequency dielectric (ε_∞) constants are calculated to reveal optical behavior of alloys. The longitudinal ω_L_O(0) and transverse ω_T_O(0) optical frequencies are obtained to see vibrational characteristics. Moreover, the elastic constants (c_i_j) and bulk moduli (B) are computed by combining the EPM with Harrison bond orbital model. The elasto-optic nature of alloys is examined by computing the photo-elastic constants. These values are significant with regard to the opto-electronic applications especially when no experimental data are available on this system.

  20. Effect of boron addition on the microstructure and electrochemical performance of La2Mg(Ni0.85Co0.15)9 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Dong Xiaoping; Wang Guoqing; Guo Shihai; Ren Jiangyuan; Wang Xinlin

    2006-01-01

    In order to improve the electrochemical performances of La-Mg-Ni system (PuNi 3 -type) hydrogen storage alloy, a trace of boron was added in La 2 Mg(Ni 0.85 Co 0.15 ) 9 and rapid quenching techniques were used. La 2 Mg(Ni 0.85 Co 0.15 ) 9 B x (x = 0, 0.05, 0.1, 0.15, 0.2) hydrogen storage alloys were prepared by casting and rapid quenching. The microstructures and electrochemical performances of the as-cast and quenched alloys were determined and measured. The effects of the boron content and the quenching rate on the microstructures and electrochemical performances of the alloys were investigated in detail. The obtained results show that the as-cast and quenched alloys are composed of the (La, Mg)Ni 3 phase (PuNi 3 structure), the LaNi 5 phase and the LaNi 2 phase. A trace of the Ni 2 B phase exists in the as-cast alloys containing boron. The Ni 2 B phase in the alloys containing boron nearly disappears after rapid quenching and the relative amount of each phase in the alloys changes with the variety of the quenching rate. The addition of boron obviously enhances the cycle stability of the as-cast and quenched alloys. The effects of boron content on the capacities of the as-cast and quenched alloys are different. The capacities of the as-cast alloys monotonously decrease with the increase of boron content, whereas the capacities of the as-quenched alloys have a maximum value with the change of boron content. The as-cast and quenched alloys have an excellent activation performance

  1. Grain refining effect of magnetic field on Mg2Ni0.8Mn0.2 hydrogen storage alloys during rapid quenching

    International Nuclear Information System (INIS)

    Jiang, Chenxi; Wang, Haiyan; Chen, Xiangrong; Tang, Yougen; Lu, Zhouguang; Wang, Yazhi; Liu, Zuming

    2013-01-01

    The effect of static magnetic field treatment for synthesis of Mg 2 Ni 0.8 Mn 0.2 alloys during rapid quenching was investigated in this paper. X-ray diffraction (XRD) and scanning electron microscope (SEM) results show that the transversal static magnetic field can effectively refine the grain size, producing nanocrystalline inside. This distinct phenomenon is probably attributed to the Lorentz force suppressing the crystallization of the hydrogen storage alloys and the thermoelectric effect. Mainly due to the grain refinement, the discharge capacity of Mg 2 Ni 0.8 Mn 0.2 alloy is raised from 79 to about 200 mA h g −1 . It is confirmed that Mg 2 Ni 0.8 Mn 0.2 alloy by magnetic field assisted approach possesses enhanced electrochemical kinetics and relatively high corrosion resistance against the alkaline solution, thus resulting in higher electrochemical properties

  2. Structure and electronic properties of gold adsorbed on Ti(0 0 0 1)

    International Nuclear Information System (INIS)

    Tsud, N.; Sutara, F.; Matolinova, I.; Veltruska, K.; Dudr, V.; Chab, V.; Prince, K.C.; Matolin, V.

    2006-01-01

    The Au/Ti(0 0 0 1) adsorption system was studied by low energy electron diffraction (LEED) and photoemission spectroscopy with synchrotron radiation after step-wise Au evaporation onto the Ti(0 0 0 1) surface. For adsorption of Au at 300 K, no additional superstructures were observed and the (1 x 1) pattern of the clean surface simply became diffuse. Annealing of gold layers more than 1 ML thick resulted in the formation of an ordered Au-Ti surface alloy. Depending on the temperature and annealing time, three surface reconstructions were observed by LEED: (√3 x √3) R30 deg., (2 x 2) and a one-dimensional incommensurate (√3 x √3) rectangular pattern. The Au 4f core level and valence band photoemission spectra provided evidence of a strong chemical interaction between gold and titanium. The data indicated formation of an intermetallic interface and associated valence orbital hybridization, together with diffusion of gold into the bulk. Au core-level shifts were found to be dependent on the surface alloy stoichiometry

  3. Drawing of metals inclined to sticking to tools surfaces

    International Nuclear Information System (INIS)

    Vatrushin, L.S.; Osintsev, V.G.

    1975-01-01

    A technological process is described of coating metals and alloys which have a tendency to stick to tools during rolling and drawing of wires and pipes. For electrodeposition it is the best to use chlorides of tin, bismuth, zinc, copper and indium bromide or a combination of metal salts with nonmetallic salts. Such coatings are applied to such stock materials as stainless steel, Kh18N10T and titanium alloys, VT1-0, OT4, VT16, VT20. The speeds employed during wire drawing reach 8-15 m/min and during rolling- 1-3.6 m/min. When applying a mixture of zinc chloride and nonmetallic salt the surface of titanium and zirconium alloys is first coated with a metallic sublayer. In drawing and rolling pipes of T10 alloys, the degree of elongation between the intermediate annealings reach 6.34%, and for alloys 100, VT1-0 and VT22- 23, 10 and 2.3% respectively. The coating has a strong adhesion to base metal and good plasticity characteristics. Industrial-scale tests show that a preliminary zinc coating on zirconium semi-finished stock makes it possible to shorten the technological process 1.5 times and achieve a twofold decrease in labor intensiveness and the cost of the treatment, to obtain a 7% increase in the output of non-detective product and to exclude sandblasting and hand scouring. Preliminary estimates indicate that about 4.4 thousand rubles per ton of wire can be saved by using the coating procedure

  4. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  5. Study of the aging of LaNi3.55Mn0.4Al0.3(Co1-xFex)0.75 (0≤x≤1) compounds in Ni-MH batteries by SEM and magnetic measurements

    International Nuclear Information System (INIS)

    Ayari, M.; Paul-Boncour, V.; Lamloumi, J.; Percheron-Guegan, A.; Guillot, M.

    2005-01-01

    The study of LaNi 3.55 Mn 0.4 Al 0.3 (Co 1-x Fe x ) 0.75 (0≤x≤1) alloys as material for negative electrodes in Ni-MH batteries has shown that the electrochemical cycle life is strongly dependent on the amount of substituted iron. The samples have been characterized before and after 2 to 50 electrochemical cycles by scanning electron microscopy (SEM) and magnetization measurements in order to follow the decrepitation and the decomposition of the alloys. The bulk magnetic properties of the alloy show an evolution from a spin glass behaviour dominated by antiferromagnetic interactions towards a ferromagnetic behaviour as the Fe content increases. After electrochemical cycling, the alloys are partially decomposed into La hydroxide and small metallic and oxidized transition metal particles. A correlation has been established between the loss of electrochemical capacity and the alloy decomposition which reaches 45% after 50 cycles for x=1, whereas it remains limited to 10-15% for x=0 and 0.47. A model combining both SEM and magnetic results has been used to estimate the average thickness of the corrosion layer

  6. Enhancement of ductility in cubic Rh{sub 3}A{sub x}Ti{sub 1−x}(A = V,Nb,Ta)(x = 0, 0.125, 0.25, 0.75, 0.875, 1) aerospace materials–First principles DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Manjula, M.; Sundareswari, M., E-mail: sundare65@gmail.com; Viswanathan, E.

    2016-09-15

    Structural, electronic, elastic and mechanical properties of cubic Rh{sub 3}A{sub x}Ti{sub 1−x} (where A = V, Nb, Ta and x = 0, 0.125, 0.25, 0.75, 0.875, 1) alloys are investigated by FP-LAPW method using the Density Functional Theory (DFT) within the generalized gradient approximation (GGA). The ground state properties of these compounds have been obtained by the optimization procedure as implemented in the wien2k code. The electronic and bonding patterns of the same are analysed. Using the calculated elastic constants, the Shear modulus, Young’s modulus, Poisson’s ratio, Pugh criteria, Cauchy’s pressure and Hardness values are derived. The ductility of these refractory alloys are analysed in terms of Cauchy’s pressure, Pugh criteria and Poisson’s ratio. The results are further assessed by using the charge density plots. From this study, we conclude that, among Rh{sub 3}A{sub x}Ti{sub 1−x} (A = V, Nb, Ta; x = 0, 0.125, 0.25, 0.75, 0.875, 1) alloy combinations, the Rh{sub 3}Nb{sub 0.75}Ti{sub 0.25} alloy is found to be more ductile and yet another combination namely Rh{sub 3}Nb{sub 0.875}Ti{sub 0.125} could serve as a preferred ductile material with a reasonable hardness. - Highlights: • The elastic and mechanical properties of Rh{sub 3}(V,Nb,Ta){sub x}Ti{sub 1−x} alloys are investigated. • Ductility of these materials are analysed using (C{sub 12}–C{sub 44}), G/B ratio and ν values. • The results are assessed by charge density plot. • Rh{sub 3}Nb{sub 0.75}Ti{sub 0.25} and Rh{sub 3}Nb{sub 0.875}Ti{sub 0.125} alloys are found to be more ductile.

  7. Influence of microstructure in corrosion behavior of an Inconel 600 commercial alloy in 0.1 M sodium thiosulfate solution

    International Nuclear Information System (INIS)

    Granados, J.; Rodriguez, F.J.; Arganis, C.

    1999-01-01

    The Inconel 600 is used in diverse components of BWR and PWR type reactors, where diverse cases of intergranular stress corrosion have been presented. It has been reported susceptibility to the corrosion of this alloy, in presence of thiosulfates, which come from the degradation of the ion exchange resins of water treatments that use the reactors. The objective of this work is to study the influence of metallurgical condition in the corrosion velocity of Inconel 600 commercial alloy, in a 0.1 M thiosulfates solution. (Author)

  8. Magnetic and magnetocaloric properties of the alloys Mn2-xFexP0.5As0.5 (0⩽x⩽0.5)

    Science.gov (United States)

    Gribanov, I. F.; Golovchan, A. V.; Varyukhin, D. V.; Val'kov, V. I.; Kamenev, V. I.; Sivachenko, A. P.; Sidorov, S. L.; Mityuk, V. I.

    2009-10-01

    The results of investigations of the magnetic and magnetocaloric properties of alloys from the system Mn2-xFexP0.5As0.5 (0⩽x⩽0.5) are presented. The magnetization measurements are performed in the temperature interval 4.2-700K in magnetic fields up to 8T. The entropy changes ΔS with the magnetic field changing from 0 to 2, 4, 5, and 8T are determined from the magnetization isotherms obtained near temperatures of the spontaneous appearance of the ferromagnetic state (TC,TAF -FM1), and the curves ΔS(T0) are constructed. It is found that TC and TAF-FM1 decrease monotonically with increasing manganese concentration and that the ferromagnetic phase is completely suppressed in Mn1.5Fe0.5P0.5As0.5. It is found that the concentration dependences of the maximum entropy jump (and the corresponding cold-storage capacity) and the magnitudes of the ferromagnetic moment of the unit cell with maxima for x =0.9 and 0.8 show extremal behavior. The data obtained are compared with the ferromagnetic moments calculated from first principles by the Korringa-Kohn-Rostoker method using the coherent-potential approximation (KKR-CPA)—the discrepancy for 0.5⩽x⩽0.7 is attributed to the appearance of an antiferromagnetic component of the magnetic structure. It is concluded that the alloys Mn2-xFexP0.5As0.5 have promise for use in magnetic refrigerators operating at room temperature.

  9. High-Throughput Screening Across Quaternary Alloy Composition Space: Oxidation of (AlxFeyNi1-x-y)∼0.8Cr∼0.2.

    Science.gov (United States)

    Payne, Matthew A; Miller, James B; Gellman, Andrew J

    2016-09-12

    Composition spread alloy films (CSAFs) are commonly used as libraries for high-throughput screening of composition-property relationships in multicomponent materials science. Because lateral gradients afford two degrees of freedom, an n-component CSAF can, in principle, contain any composition range falling on a continuous two-dimensional surface through an (n - 1)-dimensional composition space. However, depending on the complexity of the CSAF gradients, characterizing and graphically representing this composition range may not be straightforward when n ≥ 4. The standard approach for combinatorial studies performed using quaternary or higher-order CSAFs has been to use fixed stoichiometric ratios of one or more components to force the composition range to fall on some well-defined plane in the composition space. In this work, we explore the synthesis of quaternary Al-Fe-Ni-Cr CSAFs with a rotatable shadow mask CSAF deposition tool, in which none of the component ratios are fixed. On the basis of the unique gradient geometry produced by the tool, we show that the continuous quaternary composition range of the CSAF can be rigorously represented using a set of two-dimensional "pseudoternary" composition diagrams. We then perform a case study of (AlxFeyNi1-x-y)∼0.8Cr∼0.2 oxidation in dry air at 427 °C to demonstrate how such CSAFs can be used to screen an alloy property across a continuous two-dimensional subspace of a quaternary composition space. We identify a continuous boundary through the (AlxFeyNi1-x-y)∼0.8Cr∼0.2 subspace at which the oxygen uptake into the CSAF between 1 and 16 h oxidation time increases abruptly with decreasing Al content. The results are compared to a previous study of the oxidation of AlxFeyNi1-x-y CSAFs in dry air at 427 °C.

  10. Precipitation sequence and kinetics in a Mg-4Sm-1Zn-0.4Zr (wt%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiangyu, E-mail: xxia5@wisc.edu [Materials Science Program, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States); Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave, Madison, WI 53706 (United States); Luo, Alan A. [Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave, Madison, WI 53706 (United States); Department of Materials Science and Engineering, The Ohio State University, 116 W. 19th Ave, Columbus, OH 43210 (United States); Stone, Donald S. [Materials Science Program, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States); Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave, Madison, WI 53706 (United States)

    2015-11-15

    The present research presents a series of investigations into phase identification and precipitation sequence in Mg-4Sm-1Zn-0.4Zr alloy, using differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The precipitation sequence is: super saturated solid solution (S.S.S.S) → solute atom clusters → γ″ → γ′ (→stacking faults) → γ. Structure of γ″ has been determined as an ordered hexagonal GP zone, a = 0.556 nm, c = 0.414 nm γ′ is composed of several γ″ layers. Kinetic studies show that quenched-in vacancies play an important role in the formation of solute clusters, while the growth of both precipitates are diffusion controlled. Analysis of microstructure evolution suggests that nucleation of γ′ happens near existing γ″ precipitates. - Highlights: • Precipitation sequence in a high-zinc magnesium-samarium-zinc-zirconium alloy has been identified. • Structures of metastable precipitates are modified directly with HAADF-STEM. • Kinetic calculations were performed to understand nucleation/growth mechanisms of these precipitates.

  11. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    International Nuclear Information System (INIS)

    Wang, Hong-bin; Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao; Lu, Xiong-gang; Li, Chong-he

    2016-01-01

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr 2 Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  12. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-bin [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China); Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xiong-gang; Li, Chong-he [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China)

    2016-08-30

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr{sub 2}Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  13. Features of ultrafine-grained structure forming in Zr-1Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Stepanova, Ekaterina N.; Prosolov, Konstantin A. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Grabovetskaya, Galina P.; Mishin, Ivan P. [Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk (Russian Federation)

    2013-07-01

    Ultrafine-grained structure forming by the method combined reversible hydrogenation and hot pressing in Zr-1Nb alloy was investigated. Preliminary hydrogenation to concentrations of (0.14–0.4) % at 873 K is found to lead to yield strength decreasing in Zr-1Nb alloy during hot pressing by 1,5–2 times. During uniaxial compression at (70–72) % under isothermal conditions at a temperature of 873 K in Zr-1Nb alloy, hydrogenated to concentration of 0.22 %, homogeneous ultrafine grained structure with an average grain size of 0,4 P m was formed. Key words: zirconium alloy, ultrafine-grained structure, hydrogen.

  14. Microstructure and magnetocaloric effect in cast LaFe11.5Si1.5Bx (x=0.5, 1.0)

    International Nuclear Information System (INIS)

    Zhang, H.; Long, Y.; Cao, Q.; Mudryk, Ya.; Zou, M.; Gschneidner, K.A.; Pecharsky, V.K.

    2010-01-01

    Phase formation, structure, and the magnetocaloric effect (MCE) in as-cast LaFe 11.5 Si 1.5 B x (x=0.5, 1.0) compounds have been studied. The Curie temperatures, T C , are ∼211 and 230 K for x=0.5 and 1.0, respectively, which are higher than that of annealed LaFe 11.5 Si 1.5 (T C =183 K), while the maximum magnetic entropy changes at the respective T C under a magnetic field change of 0-5 T are 7.8 and 5.8 J/(kg K). Wavelength dispersive spectrometry (WDS) analysis shows that only a small fraction of boron atoms is dissolved in the NaZn 13 -type structure phase, and that the compositions of the as-cast LaFe 11.5 Si 1.5 B x (x=0.5, 1.0) alloys are much different from the intended nominal compositions. These as-cast alloys exhibit second-order magnetic phase transitions and low MCEs. However, based on the relative cooling power, the as-cast LaFe 11.5 Si 1.5 B x alloys are promising candidates for magnetic refrigerants over a wide temperature range.

  15. The endophyte Verticillium Vt305 protects cauliflower against Verticillium wilt.

    Science.gov (United States)

    Tyvaert, L; França, S C; Debode, J; Höfte, M

    2014-06-01

    To investigate the interaction between cauliflower and the isolate VerticilliumVt305, obtained from a field suppressive to Verticillium wilt of cauliflower, and to evaluate the ability of VerticilliumVt305 to control Verticillium wilt of cauliflower caused by V. longisporum. Single and combined inoculations of VerticilliumVt305 and V. longisporum were performed on cauliflower seedlings. Symptom development was evaluated, and fungal colonization was measured in the roots, hypocotyl and stem with real-time PCR. No symptoms were observed after single inoculation of VerticilliumVt305, although it colonized the plant tissues. Pre-inoculation of VerticilliumVt305 reduced symptom development and colonization of plant tissues by V. longisporum. VerticilliumVt305 is an endophyte on cauliflower plants and showed effective biological control of V. longisporum in controlled conditions. This work can contribute to the development of a sustainable control measure of V. longisporum in Brassicaceae hosts, which is currently not available. Additionally, this study provides evidence for the different roles of Verticillium species present in the agro-ecosystem. © 2014 The Society for Applied Microbiology.

  16. VT DSL Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  17. VT Wireless Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  18. VT Wireline Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  19. VT Cable Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  20. VT Total Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  1. VT Cable Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  2. VT Detailed Broadband Availability by Census Block -12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  3. VT Detailed Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  4. VT Detailed Broadband Availability by Census Block -12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  5. VT Detailed Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  6. VT Wireline Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  7. VT Wireless Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  8. VT Total Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  9. VT Wireline Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  10. VT Wireless Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  11. VT Total Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  12. VT Cable Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  13. VT Wireless Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  14. VT Detailed Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  15. VT Total Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  16. VT DSL Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  17. VT Wireline Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  18. VT Wireless Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  19. VT DSL Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  20. VT Cable Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  1. VT Wireline Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  2. VT Cable Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  3. VT Wireless Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  4. VT DSL Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  5. VT Wireline Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  6. VT Cable Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  7. VT Total Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  8. VT Detailed Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  9. VT DSL Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  10. VT DSL Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  11. VT Total Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  12. Band gap characterization of ternary BBi1−xNx (0≤x≤1) alloys using modified Becke–Johnson (mBJ) potential

    International Nuclear Information System (INIS)

    Yalcin, Battal G.

    2015-01-01

    The semi-local Becke–Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi 1−x N x (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi 1−x N x structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew–Burke–Ernzerhof (PBE). For electronic properties the modified Becke–Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi 1−x N x almost perfectly matches with Vegard's law. The spin–orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations

  13. Measurement of the single top quark production cross section and |Vt b| in 1.96 TeV p p ¯ collisions with missing transverse energy and jets and final CDF combination

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2016-02-01

    An updated measurement of the single top quark production cross section is presented using the full data set collected by the Collider Detector at Fermilab (CDF), corresponding to 9.5 fb-1 of integrated luminosity from proton-antiproton collisions at 1.96 TeV center-of-mass energy. The events selected contain an imbalance in the total transverse momentum, jets identified as containing b quarks, and no identified leptons. The sum of the s - and t -channel single top quark cross sections is measured to be 3.5 3-1.16+1.25 pb and a lower limit on the magnitude of the top-to-bottom quark coupling, |Vt b| of 0.63, is obtained at the 95% credibility level. These measurements are combined with previously reported CDF results obtained from events with an imbalance in total transverse momentum, jets identified as originating from b quarks, and one identified lepton. The combined cross section is measured to be 3.0 2-0.48+0.49 pb and a lower limit on |Vt b| of 0.84 is obtained at the 95% credibility level.

  14. Subminiature eddy-current transducers designed to study welded joints of titanium alloys

    Science.gov (United States)

    Malikov, V. N.; Dmitriev, S. F.; Katasonov, A. O.; Sagalakov, A. M.; Ishkov, A. V.

    2017-12-01

    Eddy current transducers (ECT) are used to construct a sensor for investigating titanium sheets connected by a welded joint. The paper provides key technical information about the eddy current transducer used and describes the procedure of measurements that makes it possible to control defects in welded joints of titanium alloys. It is capable of automatically changing the filtering cutoff frequency and operating frequency of the device. Experiments were conducted on welded VT1-0 titanium plates. The paper contains the results of these measurements. The dependence data facilitates the assessment of the quality of the welded joints and helps make an educated conclusion about welding quality.

  15. Comparative study on microstructures and mechanical properties of the heat-treated Al–5.0Cu–0.6Mn–xFe alloys prepared by gravity die casting and squeeze casting

    International Nuclear Information System (INIS)

    Lin, Bo; Zhang, WeiWen; Lou, ZhaoHui; Zhang, DaTong; Li, YuanYuan

    2014-01-01

    Highlights: • Only two kind Fe-rich intermetallics are found in the heat-treated Al–5.0Cu–0.6Mn–xFe alloys. • Squeeze cast Al–5.0Cu–0.6Mn alloys containing 1.5% Fe have desirable mechanical properties. • The difference between gravity die cast and squeeze cast Al–5.0Cu–0.6Mn–xFe alloys. - Abstract: The Al–5.0 wt% Cu–0.6 wt% Mn alloys with different Fe contents were prepared by gravity die casting and squeeze casting. The difference in microstructures and mechanical properties of the T5 heat-treated alloys was examined by tensile test, optical microscopy, deep etching technique, scanning electron microscope and electron probe micro-analyzer. The results show that both β-Fe and α (CuFe) are observed in T5 heat-treated gravity die cast alloy and only α (CuFe) appears in the squeeze cast alloy when the Fe content is 0.5 wt%. When the Fe content is more than 1.0 wt%, the main Fe-rich intermetallics is α (CuFe) in both squeeze cast and gravity die cast alloys. The mechanical properties of both the gravity die cast and squeeze cast alloys decrease gradually with the increase of Fe content due to the decreased volume fraction of precipitation particles, the increased volume fraction of Fe-rich intermetallics and the increased size of α (Al) dendrites. The squeeze cast alloys with different Fe contents have superior mechanical properties compared to the gravity die cast alloys, which is mainly attributed to the reduction of porosity and refinement of Fe-rich intermetallics and α (Al) dendrite. In particularly, the elongation of the squeeze cast alloys is less sensitive to the Fe content than that of the gravity die cast alloys. An elongation level of 13.7% is obtained in squeeze cast alloy even when the Fe content is as high as 1.5%, while that of the gravity die cast alloy is only 5.3%

  16. Hot deformation of particulate reinforced Al-4Li-1Mg-0.5Ge-0.2Zr

    International Nuclear Information System (INIS)

    Chanda, T.; Lavernia, E.J.; Wolfenstine, J.

    1991-01-01

    Lithium additions to aluminum give the greatest reduction in density and increase in elastic modulus per wt.% of any known alloying element. The potential for aluminum alloy density reduction through lithium additions is evident by comparing its atomic weight (6.94) to that of aluminum (26.98). Over the past decade, considerable research efforts have been directed towards developing aluminum-lithium alloys, with lithium contents of up to 2.5 wt.%, for aircraft applications, where their low density and increased stiffness can lead to significant improvements in payload capacity. A recent notable example has been the development of a quarternary aluminum-lithium alloy containing silver, (A1-(4.5-6.3) Cu-1.3Li-0.4Ag-0.4Mg-0.14Zr, in wt.%). In an effort to further decrease the density and increase the modulus of aluminum-lithium alloys, research efforts have progressively shifted towards alloys containing higher concentrations of lithium (>3.0 wt.%). Furthermore, aluminum-lithium alloys are being studied as potential candidate matrix materials in metal matrix composites (MMCs), as a result of the observation that lithium effectively enhances the ability of the aluminum matrix to wet the ceramic reinforcement. The extreme reactivity associated with high additions of lithium, and the difficulties associated with processing MMCs, have prompted the development of alternate synthesis approaches. One such approach, spray atomization and co-deposition, is actively being studied as a result of its ability to rapidly quench, reinforce, and consolidate in a single step, thus avoiding the difficulties associated with the handling of fine reactive particulates. The object of the paper is to provide insight into the elevated temperature deformation behavior of high lithium (4 wt.%) aluminum alloys reinforced with SiC particles prepared by spray atomization and co-deposition. The selection of the A1-4Li-1Mg-0.5Ge-0.2Zr wt

  17. Steady state creep during metastable phase transition in Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Youssef, S.B.; Mahmoud, M.A. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics

    1998-08-16

    The early stages of decomposition of Guinier-Preston zones (G.P. zones) in Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys were investigated through creep measurements and electron microscopy observations. It was found that the strengthening and softening of the alloys has been achieved during the formation of metastable phases (G.P. zones and {gamma}`-phase) in the ageing temperature range (428 to 498 K). TEM investigations confirmed that the addition of zirconium to the Al-Ag alloy accelerates the formation and coarsening of the metastable phases. The mean values of activation energy of both alloys were found to be equal to that quoted for precipitate-dislocation interactions. (orig.) 23 refs.

  18. Yttrium 3-(4-nitrophenyl)-2-propenoate used as inhibitor against copper alloy corrosion in 0.1 M NaCl solution

    International Nuclear Information System (INIS)

    Nam, Nguyen Dang; Thang, Vo Quoc; Hoai, Nguyen To; Hien, Pham Van

    2016-01-01

    Highlights: • Yttrium 3-(4-nitrophenyl)-2-propenoate has been studied as an effective corrosion inhibitor for copper. • A high inhibition performance is attributed to the forming protective inhibiting deposits. • Yttrium 3-(4-nitrophenyl)-2-propenoate mitigates corrosion by promoting random distribution of minor anodes. - Abstract: Yttrium 3-(4-nitrophenyl)-2-propenoate has been studied as an effective corrosion inhibitor for copper alloy in 0.1 M chloride solution. The results show that the surface of copper alloy coupons exposed to solutions containing 0.45 mM yttrium 3-(4-nitrophenyl)-2-propenoate had no signs of corrosion attack due to protective film formation, whereas the surface of copper alloy coupons exposed to non-inhibitor and lower concentrations of yttrium 3-(4-nitrophenyl)-2-propenoate containing solutions were severely corroded. A high inhibition performance is attributed to the forming protective inhibiting deposits that slow down the electrochemical corrosion reactions and mitigate corrosion by promoting random distribution of minor anodes.

  19. The structure, magnetism, and electrical-transport properties of the Heusler alloys Co2Cr1-xFexAl (x=0.2-0.6)

    International Nuclear Information System (INIS)

    Zhang Ming; Wolf, Anne L.; Zhang, L.; Tegus, O.; Brueck, Ekkes; Wu Guangheng; Boer, Frank R. de

    2005-01-01

    We synthesize the polycrystalline Heusler compounds Co 2 Cr 1-x Fe x Al (x=0.2-0.6). The x-ray diffraction patterns show A2 structure rather than L2 1 structure. The magnetic moment and the Curie temperature increase with increasing x. The electrical resistivity characterizes the Co 2 Cr 1-x Fe x Al compounds to be not typical metals and the temperature dependence of the resistivity changes from metallic to semiconductinglike behavior with increasing Cr concentrations. We attribute the fact, which we observe for most of the compounds smaller magnetic moments than the theoretical values and the low magnetoresistance in these alloys, to the considerably high level of Co-(Cr, Fe)-type disorder

  20. Microstructures and tensile properties of Mg–4Al–4La–0.4Mn–xB (x = 0, 0.01, 0.02, 0.03) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Zheng, Tian; Zhang, Deping; Liu, Xiaojuan [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Fan, Jun [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Qiu, Xin; Niu, Xiaodong [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng, Jian, E-mail: jmeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2013-09-25

    Highlights: •The trace boron can refine the dendrite arm spacing of HPDC Mg–Al–La-based alloy. •The dispersion of Al11La3 particles becomes irregular after adding trace boron. •The eutectic volume fraction is reduced by adding 0.01–0.02 wt.% boron. •Mechanical properties could be further improved by 0.03 wt.% boron addition. -- Abstract: The influences of trace boron on microstructures and tensile properties of Mg–4Al–4La-based alloys prepared by cold-chamber high-pressure die-casting method were thoroughly investigated. The results indicated that adding trace boron to Mg–4Al–4La-based alloy can refine the dendrite arm spacing of primary α-Mg phases, which are mainly due to the little inoculating AlB{sub 2} particles. In addition, we found that adding 0.01–0.02 wt.% boron can drastically changes the eutectic morphology, with secondary particle dispersion becoming irregular and eutectic volume fraction being reduced. These phenomena can be attributed to the competitive nucleation between α-Mg and AlB{sub 2} particles for Al{sub 11}La{sub 3} phases, and to the fact that more Al and La atoms saturate into the α-Mg matrix. Considering the tensile properties, although adding 0.01–0.02 wt.% boron decreased the strength of Mg–4Al–4La-based alloy, adding 0.03 wt.% boron significantly improved the tensile properties due to dispersion strengthening and, to a certain extent, solid-solution strengthening.

  1. Determination of Impurities in Aluminum Alloy by INAA Single Comparator Method (K0-Standardization Method)

    International Nuclear Information System (INIS)

    Sarheel, A.; Khamis, I.; Somel, N.

    2007-01-01

    Multielement determination by the k0 based INAA using k0-IAEA program has been performed at Syrian Atomic Energy Commission using alloys. Concentrations of Cu, Zn, Fe, Ni, Sn and Ti in addition to aluminum element were determined in an aluminum alloy and Ni, Cr, Mo were determined in dental alloys using INAA k0-standardization method. Al-0.1%Au, Ni and Zn certified reference materials were analyzed to assess the suitability and accuracy of the method. Elements were determined in reference materials and samples after short and long irradiations, according to element half-lives.

  2. Low cycle fatigue behaviour of Ti-6Al-5Zr-0.5Mo-0.25Si alloy at room temperature

    International Nuclear Information System (INIS)

    Nag, Anil Kumar; Praveen, K.V.U.; Singh, Vakil

    2006-01-01

    Low cycle fatigue (LCF) behaviour of the near α titanium alloy, Ti-6Al-5Zr-0.5Mo-0.25Si (LT26A), was investigated in the (α+ β) as well as β treated conditions at room temperature. LCF tests were carried out under total strain controlled mode in the range of Δε t /2: from ± 0.60% to ± 1.40%. The alloy shows cyclic softening in both the conditions. Also it exhibits dual slope Coffin-Manson (C-M) relationship in both the treated conditions. (author)

  3. Effects of scandium and zirconium combination alloying on as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy

    Directory of Open Access Journals (Sweden)

    Xiang Qingchun

    2011-02-01

    Full Text Available The influences of minor scandium and zirconium combination alloying on the as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy have been experimentally investigated. The experimental results show that when the minor elements of scandium and zirconium are simultaneously added into the Al-4Cu-1.5Mg alloy, the as-cast microstructure of the alloy is effectively modified and the grains of the alloy are greatly refined. The coarse dendrites in the microstructure of the alloy without Sc and Zr additions are refined to the uniform and fine equiaxed grains. As the additions of Sc and Zr are 0.4% and 0.2%, respectively, the tensile strength, yield strength and elongation of the alloy are relatively better, which are 275.0 MPa, 176.0 MPa and 8.0% respectively. The tensile strength is increased by 55.3%, and the elongation is nearly raised three times, compared with those of the alloy without Sc and Zr additions.

  4. Ab-initio study of the structural, magnetic and electric properties of NixCr1-x x={0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875}

    Directory of Open Access Journals (Sweden)

    R. Golsorkhtabar

    2007-03-01

    Full Text Available  We investigated the structural, magnetic and electronic properties of NixCr1-x alloy in the range 0.125≤ x ≤0.875 by using FP-LAPW method to solve Kohn-Sham equations. In structural study, we calculated the formation energy, lattice parameter and bulk modulus for bcc and fcc structures within ferromagnetic, ferromagnetic and paramagnetic phases. Our results indicate that the system preference for alloy formation is higher in the range of x=0.625 – 0.75 compared to other studied concentrations. Moreover, by investigation of the values obtained for the lattice parameter and bulk modulus we found out that Cr-Ni bond is weaker than Ni-Ni and Cr-Cr bonds. Additionally, our magnetic results indicate that the magnetic interactions among atoms in bcc structures have probably RKKY behavior. Finally, our results show that the Ni0.75Cr0.25 alloy with fcc structure ans spin polarization of 90% has the highest magnetic and structural stability.

  5. Effect of Pre-Aging Conditions on Bake-Hardening Response of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn Alloy Sheets

    International Nuclear Information System (INIS)

    Lee, Kwang-jin; Woo, Kee-do

    2011-01-01

    Pre-aging heat treatment after solution heat treatment (SHT) of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn alloy sheets for auto-bodies was carried out to investigate the effect of pre-aging and its conditions on the bake-hardening response. Mechanical properties were evaluated by a tensile and Vickers hardness test. Microstructural observation was also performed using a transmission electron microscope (TEM). It was revealed that pre-aging treatments play a great role in the bake-hardening response. In addition, it was found that the sphere-shaped nanosized clusters that can directly transit to the needle-shaped β” phase during the paint-bake process, not being dissolved into the matrix, are formed at 343 K. The result, reveals that the dominant factor of the bake-hardening response is the pre-aging temperature rather than the pre-aging time.

  6. High-strength uranium-0.8 weight percent titanium alloy penetrators

    International Nuclear Information System (INIS)

    Northcutt, W.G.

    1978-09-01

    Long-rod kinetic-energy penetrators, produced from a uranium-0.8 titanium (U-0.8 Ti) alloy, are normally water quenched from the gamma phase (approximately 800 0 C) and aged to the desired hardness and strength levels. High cooling rates from 800 0 C in U-0.8 Ti alloy cylindrical bodies larger than about 13 mm in diameter cause internal voids, while slower rates of cooling can produce material that is unresponsive to aging. For the present study, elimination of quenching voids was of paramount importance; therefore, a process including the quenching of plate was explored. Vacuum-induction-cast ingots were forged and rolled into plate and cut into blanks from which the penetrators were obtained. Quenched U-0.8 Ti alloy blanks were aged at 350 to 500 0 C to determine the treatment that would provide maximum tensile and impact strengths. Both tensile and impact strengths were maximized by aging in vacuum for six hours at 450 0 C

  7. VT Fiber Optic Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  8. VT Fiber Optic Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  9. VT Fiber Optic Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  10. VT Fiber Optic Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  11. VT Fiber Optic Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  12. VT Fiber Optic Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  13. Structural and magnetic properties of Fe76P5(Si0.3B0.5C0.2)19 amorphous alloy

    International Nuclear Information System (INIS)

    Lavorato, G.C.; Fiore, G.; Tiberto, P.; Baricco, M.; Sirkin, H.; Moya, J.A.

    2012-01-01

    Highlights: ► Fe 76 P 5 (Si 0.3 B 0.5 C 0.2 ) 19 amorphous alloy in ribbons and 1 mm and 2 mm rod samples. ► Good glass forming ability with ΔT = 50 K and γ = 0.37 and off-eutectic composition. ► Good soft magnetic properties with magnetization saturation of 1.44 T. ► Geometrical factors are the primary causes of magnetic losses in frequencies above 10 Hz. - Abstract: Recently, bulk amorphous alloys were produced in the Fe–B–Si–P–C system with high glass forming ability, excellent magnetic properties and the advantage of containing no expensive glass-forming elements, such as Ga, Y, Cr or Nb, having, therefore, a good perspective of commercial applications. In the present work, the Fe 76 P 5 (Si 0.3 B 0.5 C 0.2 ) 19 amorphous alloy prepared by two quenching techniques has been studied. Amorphous ribbons of about 40 μm thick were obtained by planar-flow casting together with cylinders having 1 and 2 mm diameter produced by copper mold injection casting. All the samples appear fully amorphous after X-ray diffraction analysis. A comprehensive set of thermal data (glass, crystallization, melting and liquidus temperatures) were obtained as well as a description of the melting and solidification processes. Mechanical microhardness tests showed that the samples have a hardness of 9.7 ± 0.3 GPa. Good soft-magnetic properties were obtained, including a high magnetization of 1.44 T and a low coercivity (4.5 A/m for ribbons and 7.5 A/m in the case of 1 mm rod samples, both in as-cast state). Thermomagnetic studies showed a Curie temperature around 665 K and the precipitation of new magnetic phases upon temperatures of 1000 K. Furthermore, the frequency dependence of magnetic losses at a fixed peak induction was studied. The results suggest the occurrence of a fine magnetic domain structure in bulk samples. The good soft magnetic properties of the bulk metallic glass obtained by copper mold casting for this particular Fe-based composition suggests possible

  14. In vitro bio-functional performances of the novel superelastic beta-type Ti–23Nb–0.7Ta–2Zr–0.5N alloy

    International Nuclear Information System (INIS)

    Ion, Raluca; Gordin, Doina-Margareta; Mitran, Valentina; Osiceanu, Petre; Dinescu, Sorina; Gloriant, Thierry; Cimpean, Anisoara

    2014-01-01

    The materials used for internal fracture fixations and joint replacements are mainly made of metals which still face problems ranging from higher rigidity than that of natural bone to leaching cytotoxic metallic ions. Beta (β)-type titanium alloys with low elastic modulus made from non-toxic and non-allergenic elements are desirable to reduce stress shielding effect and enhance bone remodeling. In this work, a new β-type Ti–23Nb–0.7Ta–2Zr–0.5N alloy with a Young's modulus of approximately 50 GPa was designed and characterized. The behavior of MC3T3-E1 pre-osteoblasts on the new alloy, including adhesion, proliferation and differentiation, was evaluated by examining the cytoskeleton, focal adhesion formation, metabolic activity and extracellular matrix mineralization. Results indicated that the pre-osteoblast cells exhibited a similar degree of attachment and growth on Ti–23Nb–0.7Ta–2Zr–0.5N and Ti–6Al–4V. However, the novel alloy proved to be significantly more efficient in sustaining mineralized matrix deposition upon osteogenic induction of the cells than Ti–6Al–4V control. Further, the analysis of RAW 264.7 macrophages cytokine gene and protein expression indicated no significant inflammatory response. Collectively, these findings suggest that the Ti–23Nb–0.7Ta–2Zr–0.5N alloy, which has an increased mechanical biocompatibility with bone, allows a better osteogenic differentiation of osteoblast precursor cells than Ti–6Al–4V and holds great potential for future clinical prosthetic applications. - Highlights: • A new low modulus (∼ 50 GPa) β-type Ti–23Nb–0.7Ta–2Zr–0.5N alloy was synthesized. • In vitro response of MC3T3-E1 pre-osteoblasts and RAW 264.7 macrophages was studied. • Cellular response to Ti–23Nb–0.7Ta–2Zr–0.5N and Ti6Al4V was almost identical. • Ti–23Nb–0.7Ta–2Zr–0.5N alloy is more efficient in sustaining matrix mineralization. • No significant inflammatory response was

  15. In vitro bio-functional performances of the novel superelastic beta-type Ti–23Nb–0.7Ta–2Zr–0.5N alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095, Bucharest (Romania); Gordin, Doina-Margareta [INSA Rennes, UMR CNRS 6226 SCR/Chimie-Métallurgie, 20 avenue des Buttes de Coësmes, F-35043 Rennes Cedex (France); Mitran, Valentina [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095, Bucharest (Romania); Osiceanu, Petre [Institute of Physical Chemistry “Ilie Murgulescu”, 202 Spl. Independentei, 060021 Bucharest (Romania); Dinescu, Sorina [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095, Bucharest (Romania); Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 SCR/Chimie-Métallurgie, 20 avenue des Buttes de Coësmes, F-35043 Rennes Cedex (France); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095, Bucharest (Romania)

    2014-02-01

    The materials used for internal fracture fixations and joint replacements are mainly made of metals which still face problems ranging from higher rigidity than that of natural bone to leaching cytotoxic metallic ions. Beta (β)-type titanium alloys with low elastic modulus made from non-toxic and non-allergenic elements are desirable to reduce stress shielding effect and enhance bone remodeling. In this work, a new β-type Ti–23Nb–0.7Ta–2Zr–0.5N alloy with a Young's modulus of approximately 50 GPa was designed and characterized. The behavior of MC3T3-E1 pre-osteoblasts on the new alloy, including adhesion, proliferation and differentiation, was evaluated by examining the cytoskeleton, focal adhesion formation, metabolic activity and extracellular matrix mineralization. Results indicated that the pre-osteoblast cells exhibited a similar degree of attachment and growth on Ti–23Nb–0.7Ta–2Zr–0.5N and Ti–6Al–4V. However, the novel alloy proved to be significantly more efficient in sustaining mineralized matrix deposition upon osteogenic induction of the cells than Ti–6Al–4V control. Further, the analysis of RAW 264.7 macrophages cytokine gene and protein expression indicated no significant inflammatory response. Collectively, these findings suggest that the Ti–23Nb–0.7Ta–2Zr–0.5N alloy, which has an increased mechanical biocompatibility with bone, allows a better osteogenic differentiation of osteoblast precursor cells than Ti–6Al–4V and holds great potential for future clinical prosthetic applications. - Highlights: • A new low modulus (∼ 50 GPa) β-type Ti–23Nb–0.7Ta–2Zr–0.5N alloy was synthesized. • In vitro response of MC3T3-E1 pre-osteoblasts and RAW 264.7 macrophages was studied. • Cellular response to Ti–23Nb–0.7Ta–2Zr–0.5N and Ti6Al4V was almost identical. • Ti–23Nb–0.7Ta–2Zr–0.5N alloy is more efficient in sustaining matrix mineralization. • No significant inflammatory response was

  16. Announcing the Venus Transit 2004 (VT-2004) Programme

    Science.gov (United States)

    2004-02-01

    Rare Celestial Event to be Observed by Millions Summary On June 8, 2004, Venus - the Earth's sister planet - will pass in front of the Sun. This event, a 'transit', is extremely rare - the last one occurred in 1882, 122 years ago. Easily observable in Europe, Asia, Africa and Australia, it is likely to attract the attention of millions of people on these continents and, indeed, all over the world. On this important occasion, the European Southern Observatory (ESO) has joined forces with the European Association for Astronomy Education (EAAE), the Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE) and the Observatoire de Paris in France, as well as the Astronomical Institute of the Academy of Sciences of the Czech Republic to establish the Venus Transit 2004 (VT-2004) public education programme. It is supported by the European Commission in the framework of the European Science and Technology Week and takes advantage of this extraordinary celestial event to expose the public - in a well-considered, interactive and exciting way - to a number of fundamental issues at the crucial interface between society and basic science. VT-2004 has several components, including an instructive and comprehensive website (www.vt-2004.org). It is directed towards the wide public in general and the media, school students and their teachers, as well as amateur astronomers in particular. It invites all interested persons to participate actively in the intercontinental VT-2004 Observing Campaign (that reenacts historical Venus Transit observations) and the VT-2004 Video Contest. During the VT-2004 Final Event in November, the winners of the Video Contest will be chosen by an international jury. This meeting will also serve to discuss the project and its impact. The outcome of this rare celestial event and the overall experience from this unique public education project will clearly be of very wide interest, not just in the field of astronomy.

  17. Interaction between Nd-rich phase particles and liquid-solid interface in as-cast Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd titanium alloy

    International Nuclear Information System (INIS)

    Li, G.P.; Li, D.; Liu, Y.Y.; Hu, Z.Q.

    1995-01-01

    The composition (wt%) of ingot fir this investigation is 86.75%Ti, 5%Al, 4%Sn, 2%Zr, 1%Mo, 0.25%Si, 1%Nd. The alloy was prepared by vacuum arc melting in the form of buttons of mass 500 kg, which was remelted three times repeatedly to obtain homogeneous composition. The Nd-rich phase particles in the as-cast Ti-55 alloy are about 1.2∼11.07 microm and uniformly distribute in the matrix. The shapes of the particles are mainly ellipsoids together with short needle-like and blocky morphologies. The calculated diameter of the Nd-rich phase particles is ∼ 10 microm, which is within the 1.2∼11.07 microm range of the particle diameter experimentally measured in the as-cast Ti-55 alloy. The practical interface velocity is three orders of magnitude greater than V c, and the Nd-rich phase particles in the as-cast Ti-55 alloy are trapped by the liquid-solid interface

  18. Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior

    Science.gov (United States)

    Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping

    2016-02-01

    0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.

  19. Creep-rupture behavior of 2-1/4 Cr-1 Mo steel, Alloy 800H and Hastelloy Alloy X in a simulated HTGR helium environment

    International Nuclear Information System (INIS)

    Lai, G.Y.; Wolwowicz, R.J.

    1979-12-01

    Creep-rupture testing was conducted on 1 1/4 Cr-1 Mo steel, Alloy 800H and Hastelloy Alloy X in flowing helium containing nominal concentration of following gases: 1500 μatm H 2 , 450 μatm CO, 50 μatm CH 4 , 50 μatm H 2 O and 5 μatm CO 2 . This environment is believed to represent maximum permissible levels of impurities in the primary coolant for the steam-cycle system of a high-temperature gas-cooled reactor (HTGR) when it is operating continuously with a water and/or steam leak at technical specification limits. Two or three heats of material for each alloy were investigated. Tests were conducted at 482 0 C and 760 0 C (1200 0 F and 1400 0 F) for Alloy 800H, and at 760 0 C and 871 0 C (1400 0 F and 1600 0 F) for Hastelloy Alloy X for times up to 10,000 h. Selected tests were performed on same heat of material in both air and helium environments to make a direct comparison of creep-rupture behaviors between two environments. Metallurgical evaluation was performed on selected post test specimens with respect to gas-metal interactions which included oxidation, carburization and/or decarburization. Correlation between gaseous corrosion and creep-rupture behavior was attempted. Limited tests were also performed to investigate the specimen size effects on creep-rupture behavior in the helium environment

  20. VT E911 Composite geocoder - uses ESITE, RDSNAME, and RDSRANGE

    Data.gov (United States)

    Vermont Center for Geographic Information — VT E911 Composite geocoder - uses ESITE, RDSNAME, and RDSRANGE. VCGI, in collaboration with the VT E911 Board, has created a suite of geocoding services that can be...

  1. Density-functional theory computer simulations of CZTS0.25Se0.75 alloy phase diagrams

    International Nuclear Information System (INIS)

    Chagarov, E.; Sardashti, K.; Kummel, A. C.; Haight, R.; Mitzi, D. B.

    2016-01-01

    Density-functional theory simulations of CZTS, CZTSe, and CZTS 0.25 Se 0.75 photovoltaic compounds have been performed to investigate the stability of the CZTS 0.25 Se 0.75 alloy vs. decomposition into CZTS, CZTSe, and other secondary compounds. The Gibbs energy for vibrational contributions was estimated by calculating phonon spectra and thermodynamic properties at finite temperatures. It was demonstrated that the CZTS 0.25 Se 0.75 alloy is stabilized not by enthalpy of formation but primarily by the mixing contributions to the Gibbs energy. The Gibbs energy gains/losses for several decomposition reactions were calculated as a function of temperature with/without intermixing and vibration contributions to the Gibbs energy. A set of phase diagrams was built in the multidimensional space of chemical potentials at 300 K and 900 K temperatures to demonstrate alloy stability and boundary compounds at various chemical conditions. It demonstrated for CZTS 0.25 Se 0.75 that the chemical potentials for stability differ between typical processing temperature (∼900 K) and operating temperature (300 K). This implies that as cooling progresses, the flux/concentration of S should be increased in MBE growth to maintain the CZTS 0.25 Se 0.75 in a thermodynamically stable state to minimize phase decomposition.

  2. Density-functional theory computer simulations of CZTS0.25Se0.75 alloy phase diagrams

    Science.gov (United States)

    Chagarov, E.; Sardashti, K.; Haight, R.; Mitzi, D. B.; Kummel, A. C.

    2016-08-01

    Density-functional theory simulations of CZTS, CZTSe, and CZTS0.25Se0.75 photovoltaic compounds have been performed to investigate the stability of the CZTS0.25Se0.75 alloy vs. decomposition into CZTS, CZTSe, and other secondary compounds. The Gibbs energy for vibrational contributions was estimated by calculating phonon spectra and thermodynamic properties at finite temperatures. It was demonstrated that the CZTS0.25Se0.75 alloy is stabilized not by enthalpy of formation but primarily by the mixing contributions to the Gibbs energy. The Gibbs energy gains/losses for several decomposition reactions were calculated as a function of temperature with/without intermixing and vibration contributions to the Gibbs energy. A set of phase diagrams was built in the multidimensional space of chemical potentials at 300 K and 900 K temperatures to demonstrate alloy stability and boundary compounds at various chemical conditions. It demonstrated for CZTS0.25Se0.75 that the chemical potentials for stability differ between typical processing temperature (˜900 K) and operating temperature (300 K). This implies that as cooling progresses, the flux/concentration of S should be increased in MBE growth to maintain the CZTS0.25Se0.75 in a thermodynamically stable state to minimize phase decomposition.

  3. Interface Resistance between FeCr Interconnects and La0.85Sr0.15Mn1.1O3

    DEFF Research Database (Denmark)

    Mikkelsen, Lars; Neufeld, Kai; Hendriksen, Peter Vang

    2009-01-01

    The long term oxidation behaviour and the electrical interface resistance between FeCr interconnects and La0,85Sr0,15Mn1,1O3 plates was studied by a DC four-point method in air at 750{degree sign}C for 10000 h. The tested FeCr alloys were: Crofer 22 APU, Sanergy HT, Plansee IT10, Plansee IT11, an....... Low degradation rates of less than 1 mcm2/1000 h were measured on all interfaces. The microstructure analysis showed that a duplex Cr2O3-(Mn,Co,Cr)3O4 oxide scale with a thickness of 3-5 µm had evolved on the alloys....

  4. Simultaneous detection of decidual Th1/Th2 and NK1/NK2 immunophenotyping in unknown recurrent miscarriage using 8-color flow cytometry with FSC/Vt extended strategy.

    Science.gov (United States)

    Dong, Peng; Wen, Xi; Liu, Jia; Yan, Cui-Yan; Yuan, Jing; Luo, Lan-Rong; Hu, Qiao-Fei; Li, Jian

    2017-06-30

    Th1/Th2 imbalance is considered as a mechanism for recurrent miscarriage. The NK1/NK2 paradigm is hypothesised to play an important role in pregnancy. However, few results showed simultaneous changes of these subsets in vivo in decidual tissues. The present study aimed to detect the decidual mononuclear cells (dMo), and the Th1/Th2, and NK1/NK2 paradigm simultaneously using multiparametric flow cytometry (MFC) in unexplained recurrent miscarriages (URM). Mononuclear cells were isolated from the decidual tissues of URM cases and early pregnant women. The mononuclear cell percent was demonstrated by detecting the expression of CD3, CD4, CD8, CD56, and CD16 extracellular markers, interferon (IFN)-γ, and interleukin (IL)-4 intracellular markers in live cells using 8-color flow cytometry with forward scatter (FSC)/side scatter (SSC) and FSC/viability (Vt) initial gating strategies, and the ratios of Th1/Th2 and decidual NK1 (dNK1)/decidual NK2 (dNK2) cells were compared between the subject groups. Two initial gating strategies of the FSC/SSC or FSC/Vt, with central or extended gating scales, were adapted, and there was no main effect or interaction for the cell proportions, except for the type 1 and type 2 subsets in the FSC/Vt extended gating strategy. There was no significant difference of the proportions of the decidual T, dNK, NKT-like, Th, and Tc cells between the two groups. However, the Th1/Th2 and dNK1/dNK2 ratios in the URM patients were higher compared with the normal group when using the FSC/Vt extended gating strategy. The present study provides means to detect Th1/Th2 and dNK1/dNK2 simultaneously in URM patients for large sample investigations in the future. © 2017 The Author(s).

  5. Influence of phase composition on microstructure and properties of Mg-5Al-0.4Mn-xRE (x = 0, 3 and 5 wt.%) alloys

    International Nuclear Information System (INIS)

    Braszczyńska-Malik, K.N.; Grzybowska, A.

    2016-01-01

    The microstructure and mechanical properties investigations of two AME503 and AME505 experimental alloys in as-cast conditions were presented. The investigated materials were fabricated on the basis of the AM50 commercial magnesium alloy with 3 and 5 wt.% cerium rich mischmetal. In the as-cast condition, both experimental alloys were mainly composed of α-Mg, Al_1_1RE_3 and Al_1_0RE_2Mn_7 intermetallic phases. Additionally, due to non-equilibrium solidification conditions, a small amount of α + γ divorced eutectic and Al_2RE intermetallic phase were revealed. The obtained results also show a significant influence of rare earth elements on Brinell hardness, tensile and compression properties at ambient temperature and especially on creep properties at 473 K. Improved alloy properties with a rise in rare earth elements mass fraction results from an increase in Al_1_1RE_3 phase volume fraction and suppression of α + γ eutectic volume fraction in the alloy microstructure. Additionally, the influence of rare earth elements on the dendrite arm space value was discussed. The presented results also proved the thermal stability of the intermetallic phases during creep testing. - Highlights: • Two different Mg-5Al-0.4Mn alloys containing 3 and 5 wt.% of rare earth elements were fabricated. • Addition of rare earth elements leads to a reduction of dendrite arm spaces. • Mechanical properties depend on the phase composition of the alloys. • The increase of the rare earth elements content causes rise of the creep resistance.

  6. Influence of Aging Products on Tensile Deformation Behavior of Al-0.62 mass%Mg-0.32 mass%Si Alloy

    DEFF Research Database (Denmark)

    Akiyoshi, Ryutaro; Ikeda, Ken-ichi; Hata, Satoshi

    2015-01-01

    mechanism, by estimating the Orowan stress and considering crystal structure of beta '' precipitates. In contrast, the aged alloys with Mg-Si clusters showed excellent performance of uniform elongation due to large work hardening compared to those of the alloy with beta '' precipitates. Dislocations......Tensile tests and microstructural observations were carried out to investigate the influence of aging products on tensile deformation behavior of Al-0.62 mass. Mg-0.32 mass-Si alloy. Solution-treated alloys were aged to form needle-like beta ''. precipitates or Mg-Si clusters. The aged alloy...... with beta '' precipitates showed higher yield stress than that with Mg-Si clusters. Transmission electron microscopy observations revealed that the beta '' precipitates pinned dislocations. It was suggested that the strengthening types of the alloy with beta '' precipitates were both Orowan and cutting...

  7. Effect of annealing treatment on structure and electrochemical performance of quenched MmNi4.2Co0.3Mn0.4Al0.3Mg0.03 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhou Zenglin; Song Yueqing; Cui Shun; Huang Changgeng; Qian Wenlian; Lin Chenguang; Zhang Yongjian; Lin Yulin

    2010-01-01

    MmNi 4.2 Co 0.3 Mn 0.4 Al 0.3 Mg 0.03 hydrogen storage alloy was prepared by single-roll rapid quenching followed by different annealing treatments for 8 h at 1133 K, 1173 K, 1213 K, and 1253 K, respectively. Alloy structure, phase composition, pressure-composition-temperature (PCT) properties, and electrochemical performance of different annealed alloys have been investigated by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), energy dispersion spectrometer (EDS), automatic Sieverts-type apparatus, and electrochemical experiments. Electrochemical experiments indicate that the annealing treatment at 1213 K extends cycle life from 193 cycles to 358 cycles, increases the maximum discharge capacity, and slightly decreases the activation behavior. Alloy structure analyses show that the improvement in cycle life is attributed to the formation of a single CaCu 5 -type structure or the relief of an Mg-containing AlMnNi 2 -type second phase. Pressure composition isotherms results illustrate that both the hydrogen absorption capability and the dehydriding equilibrium pressure go up with increased annealing temperature. For its good performance/cost ratio, the Mg-added low-Co alloy annealed at 1213 K would be a promising substitution for MmNi 4.05 Co 0.45 Mn 0.4 Al 0.3 alloy product.

  8. Postirradiation notch ductility tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1984-01-01

    During this period, irradiation exposures at 300 0 C and 150 0 C to approx. 8 x 10 19 n/cm 2 , E > 0.1 MeV, were completed for the Alloy HT-9 plate and the modified Alloy 9Cr-1Mo plates, respectively. Postirradiation tests of Charpy-V (C/sub v/) specimens were completed for both alloys; other specimen types included in the reactor assemblies were fatigue precracked Charpy-V (PCC/sub v/), half-size Charpy-V, and in the case of the modified 9Cr-1Mo, 2.54 mm thick compact tension specimens

  9. The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp.

    Science.gov (United States)

    Kostrubiec, Viviane; Dumas, Guillaume; Zanone, Pier-Giorgio; Kelso, J A Scott

    2015-01-01

    The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities.

  10. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part II: NASA 1.1, Glidcop, and sputtered copper alloys. Contractor report, Mar.--Sep. 1974

    International Nuclear Information System (INIS)

    Conway, J.B.; Stentz, R.H.; Berling, J.T.

    1974-11-01

    Short-term tensile and low-cycle fatigue data are reported for five advance Cu-base alloys: Sputtered Zr--Cu as received, sputtered Zr--Cu heat-treated, Glidcop AL-10, and alloys 1-1A and 1-1B. Tensile tests were performed in argon at 538 0 C using an axial strain rate of 0.002/s. Yield strength and ultimate tensile strength data are reported along with reduction in area values. Axial strain controlled low-cycle fatigue tests were performed in argon at 538 0 C using an axial strain rate of 0.002/s to define the fatigue life over the range from 100 to 3000 cycles for the five materials studied. Fatigue characteristics of the NASA 1-1A and NASA 1-1B compositions are identical and represent fatigue life values which are much greater than those for the other materials tested. The effect of temperature on NASA 1-1B alloy at a strain rate of 0.002/s and effect of strain rates of 0.0004 and 0.01/s at 538 0 C were evaluated. Hold-time data are reported for the NASA 1-1B alloy at 538 0 C using 5 minute hold periods in tension only and compression only at two different strain range values. (U.S.)

  11. Electrochemical corrosion characteristics of aluminium alloy 6061 T6 in demineralized water containing 0.1 % chloride ion

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Siti Radiah Mohd Kamarudin; Mohd Saari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2012-01-01

    Direct current electrochemical method is one of the techniques has been used to study the corrosion behaviour of metal/alloy in its environment. This paper attempts to investigate the corrosion behaviour of Al 6061 T6 immersed in Reactor TRIGA Mark II pool water containing about 0.1% NaCl content. The result shown that the corrosion rate value of the aluminium 6061 T6 increased with the presence of 0.1 % Ion Chloride content in the demineralized water reactor pool as compared to normal demineralized water. This is due to aggressiveness of chloride ion attack to metal surface. Beside corrosion rate analysis, the further tests such as corrosion behaviour diagram, cyclic polarization have been carried and the results have been reported. (author)

  12. VT Wireless Internet Service Providers 2006

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VT Wireless Internet Service Provider (ISP) dataset (WISP2006) includes polygons depicting the extent of Vermont's WISP broadband system as of...

  13. VT Wireless Internet Service Providers 2007

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VT Wireless Internet Service Provider (ISP) dataset (WISP2007) includes polygons depicting the extent of Vermont's WISP broadband system as of...

  14. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-09-01

    Full Text Available Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively. The BCC2 phase was enriched with Ti and Zr and the Laves phase was heavily enriched with Cr. After hot isostatic pressing at 1450 °C for 3 h, the BCC1 dendrites coagulated into round-shaped particles and their volume fraction increased to 67%. The volume fractions of the BCC2 and Laves phases decreased to 16% and 17%, respectively. After subsequent annealing at 1000 °C for 100 h, submicron-sized Laves particles precipitated inside the BCC1 phase, and the alloy consisted of 52% BCC1, 16% BCC2 and 32% Laves phases. Solidification and phase equilibrium simulations were conducted for the CrMo0.5NbTa0.5TiZr alloy using a thermodynamic database developed by CompuTherm LLC. Some discrepancies were found between the calculated and experimental results and the reasons for these discrepancies were discussed.

  15. Modeling the Constitutive Relationship of Al–0.62Mg–0.73Si Alloy Based on Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Ying Han

    2017-03-01

    Full Text Available In this work, the hot deformation behavior of 6A02 aluminum alloy was investigated by isothermal compression tests conducted in the temperature range of 683–783 K and strain-rate range of 0.001–1 s−1. According to the obtained true stress–true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and back-propagation (BP neural network model. It is found that the flow characteristic of 6A02 aluminum alloy is closely related to deformation temperature and strain rate, and the true stress decreases with increasing temperatures and decreasing strain rates. The hot deformation activation energy is calculated to be 168.916 kJ mol−1. The BP neural network model with one hidden layer and 20 neurons in the hidden layer is developed. The accuracy in prediction of the Arrhenius-type constitutive model and BP neural network model is eveluated by using statistics analysis method. It is demonstrated that the BP neural network model has better performance in predicting the flow stress.

  16. Microstructural evolution of direct chill cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy during solution treatment

    Directory of Open Access Journals (Sweden)

    He Kezhun

    2011-08-01

    Full Text Available Heat treatment has important influence on the microstructure and mechanical properties of Al-Si alloys. The most common used heat treatment method for these alloys is solution treatment followed by age-hardening. This paper investigates the microstructural evolution of a direct chill (DC cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy after solution treated at 500, 510, 520 and 530℃, respectively for different times. The major phases observed in the as-cast alloy are α-aluminum dendrite, primary Si particle, eutectic Si, Al7Cu4Ni, Al5Cu2Mg8Si6, Al15(Cr, Fe, Ni, Cu4Si2 and Al2Cu. The Al2Cu phase dissolves completely after being solution treated for 2 h at 500℃, while the eutectic Si, Al5Cu2Mg8Si6 and Al15(Cr, Fe, Ni, Cu4Si2 phases are insoluble. In addition, the Al7Cu4Ni phase is substituted by the Al3CuNi phase. The α-aluminum dendrite network disappears when the solution temperature is increased to 530℃. Incipient melting of the Al2Cu-rich eutectic mixture occurrs at 520℃, and melting of the Al5Cu2Mg8Si6 and Al3CuNi phases is observed at a solution temperature of 530℃. The void formation of the structure and deterioration of the mechanical properties are found in samples solution treated at 530℃.

  17. Characteristics and corrosion studies of vanadate conversion coating formed on Mg–14 wt%Li–1 wt%Al–0.1 wt%Ce alloy

    International Nuclear Information System (INIS)

    Ma Yibin; Li Ning; Li Deyu; Zhang Milin; Huang Xiaomei

    2012-01-01

    Highlights: ► Vanadate film forms on the surface of Mg–Li–Al–Ce alloy. ► Vanadate coating improves the corrosion resistance. ► Vanadate coating is composed of Mg(OH) 2 , Li 2 O and V 2 O 5 . - Abstract: Mg–14Li–1Al–0.1Ce alloy is immersed in NH 4 VO 3 + K 3 (Fe(CN) 6 ) solutions with different NH 4 VO 3 and/or K 3 (Fe(CN) 6 ) concentrations, and different immersion time. The surface morphology and composition of the vanadate coating are then characterized by scanning electron microscopy with energy dispersion spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), and the corrosion behavior of the conversion coating is studied by polarization technique and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the vanadate film with better corrosion resistance forms on Mg–Li–Al–Ce surface after the sample is immersed in 30 g L −1 NH 4 VO 3 + 3.75 g L −1 K 3 (Fe(CN) 6 ) solution at 80 °C for 10 min. The coating consists of V 2 O 5 , Li 2 O and Mg(OH) 2 .

  18. Narrow-gap physical vapour deposition synthesis of ultrathin SnS1-xSex (0 ≤ x ≤ 1) two-dimensional alloys with unique polarized Raman spectra and high (opto)electronic properties.

    Science.gov (United States)

    Gao, Wei; Li, Yongtao; Guo, Jianhua; Ni, Muxun; Liao, Ming; Mo, Haojie; Li, Jingbo

    2018-05-10

    Here we report ultrathin SnS1-xSex alloyed nanosheets synthesized via a narrow-gap physical vapour deposition approach. The SnS1-xSex alloy presents a uniform quadrangle shape with a lateral size of 5-80 μm and a thickness of several nanometers. Clear orthorhombic symmetries and unique in-plane anisotropic properties of the 2D alloyed nanosheets were found with the help of X-ray diffraction, high resolution transmission electron microscopy and polarized Raman spectroscopy. Moreover, 2D alloyed field-effect transistors were fabricated, exhibiting a unipolar p-type semiconductor behavior. This study also provided a lesson that the thickness of the alloyed channels played the major role in the current on/off ratio, and the high ratio of 2.10 × 102 measured from a large ultrathin SnS1-xSex device was two orders of magnitude larger than that of previously reported SnS, SnSe nanosheet based transistors because of the capacitance shielding effect. Obviously enhanced Raman peaks were also found in the thinner nanosheets. Furthermore, the ultrathin SnS0.5Se0.5 based photodetector showed a highest responsivity of 1.69 A W-1 and a short response time of 40 ms under illumination of a 532 nm laser from 405 to 808 nm. Simultaneously, the corresponding highest external quantum efficiency of 392% and detectivity of 3.96 × 104 Jones were also achieved. Hopefully, the narrow-gap synthesis technique provides us with an improved strategy to obtain large ultrathin 2D nanosheets which may tend to grow into thicker ones for stronger interlayer van der Waals forces, and the enhanced physical and (opto)electrical performances in the obtained ultrathin SnS1-xSex alloyed nanosheets prove their great potential in the future applications for versatile devices.

  19. Elevated-Temperature Corrosion of CoCrCuFeNiAl0.5Bx High-Entropy Alloys in Simulated Syngas Containing H2S

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N; Nielsen, Benjamin C; Hawk, Jeffrey A

    2013-08-01

    High-entropy alloys are formed by synthesizing five or more principal elements in equimolar or near equimolar concentrations. Microstructure of the CoCrCuFeNiAl{sub 0.5}B{sub x} (x = 0, 0.2, 0.6, 1) high-entropy alloys under investigation is composed of a mixture of disordered bcc and fcc phases and borides. These alloys were tested gravimetrically for their corrosion resistance in simulated syngas containing 0, 0.01, 0.1, and 1 % H{sub 2}S at 500 °C. The exposed coupons were characterized using XRD and SEM. No significant corrosion was detected at 500 °C in syngas containing 0 and 0.01 % H{sub 2}S while significant corrosion was observed in syngas containing 0.1 and 1 % H{sub 2}S. Cu{sub 1.96}S was the primary sulfide in the external corrosion scale on the low-boron high-entropy alloys, whereas FeCo{sub 4}Ni{sub 4}S{sub 8} on the high-boron high-entropy alloys. Multi-phase Cu-rich regions in the low-B high-entropy alloys were vulnerable to corrosive attack.

  20. Influence of structural disorder on the optical and transport properties of Co sub 0 sub . sub 5 sub 0 Ti sub 0 sub . sub 5 sub 0 alloy films

    CERN Document Server

    Kim, K W; Rhee, J Y; Kudryavtsev, Y V; Ri, H C

    2000-01-01

    Co sub 0 sub . sub 5 sub 0 Ti sub 0 sub . sub 5 sub 0 alloy films with a total thickness of about 100 nm were prepared by flash evaporation of the crushed alloy powders onto heated (730 K for the ordered state) and LN sub 2 -cooled (150 K for the disordered state) substrates. Structural analysis of the films was performed by suing transmission electron microscopy. The optical conductivity (OC) of the samples was measured at room temperature in a spectral range of 265 -2500 nm (4.7 - 0.5 eV). The resistivity measurements were carried out by using the four-probe technique in a temperature range of 4.2 - 300 K. The experimental OC spectra for the Co sub 0 sub . sub 5 sub 0 Ti sub 0 sub . sub 5 sub 0 alloys show the most significant change in the infrared region upon the order-disorder transformation. The structural disorder in the Co sub 0 sub . sub 5 sub 0 Ti sub 0 sub . sub 5 sub 0 alloy film leads to a change in the sign of the temperature coefficient of the resistivity from positive to negative. The observed...

  1. Hot working mechanisms and texture development in Mg-3Sn-2Ca-0.4Al alloy

    International Nuclear Information System (INIS)

    Dharmendra, C.; Rao, K.P.; Prasad, Y.V.R.K.; Hort, N.; Kainer, K.U.

    2012-01-01

    Hot deformation mechanisms in Mg-3Sn-2Ca (TX32) alloy containing 0.4% Al are evaluated in the temperature and strain rate ranges of 300–500 °C and 0.0003–10 s −1 using processing map and kinetic analysis. The evolution of microstructure and texture during high temperature compression of the alloy has been studied using an electron back scatter diffraction (EBSD) technique. The processing map for hot working revealed two domains of dynamic recrystallization (DRX) occurring in the temperature and strain rate ranges of: (1) 300–360 °C and 0.0003–0.001 s −1 and (2) 400–500 °C and 0.005–0.7 s −1 , which are the two safe hot workability windows for this alloy. A regime of flow instability occurs at higher strain rates and lower temperatures where adiabatic shear banding and flow localization are the microstructural manifestations. The onset of DRX during compression at lower temperatures and strain rates (Domain 1) resulted in a fine, partially recrystallized and necklaced grain microstructure along with a texture where the basal poles are spread along 30° from the compression direction. Specimens deformed at temperatures higher than 450 °C (Domain 2) resulted in a fully recrystallized microstructure and an almost random crystallographic texture, which was attributed to the significant occurrence of pyramidal slip and associated cross-slip. -- Highlights: ► Processing map revealed two DRX domains for hot working of Mg-3Sn-2Ca-0.4Al alloy. ► The alloy exhibited flow instability at lower temperatures and higher strain rates. ► Activation energy values for deformation are high due to the back stress. ► Basal poles spread around 30° to the compression axis for Domain 1 peak condition. ► Texture got randomized at high temperature and strain rate conditions in Domain 2.

  2. Hot working mechanisms and texture development in Mg-3Sn-2Ca-0.4Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dharmendra, C. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR (China); Rao, K.P., E-mail: mekprao@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR (China); Prasad, Y.V.R.K. [Processingmaps.com (formerly at City University of Hong Kong) (Hong Kong); Hort, N.; Kainer, K.U. [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Magnesium Innovation Centre, Max-Planck-Strasse 1, Geesthact 21502 (Germany)

    2012-10-15

    Hot deformation mechanisms in Mg-3Sn-2Ca (TX32) alloy containing 0.4% Al are evaluated in the temperature and strain rate ranges of 300-500 Degree-Sign C and 0.0003-10 s{sup -1} using processing map and kinetic analysis. The evolution of microstructure and texture during high temperature compression of the alloy has been studied using an electron back scatter diffraction (EBSD) technique. The processing map for hot working revealed two domains of dynamic recrystallization (DRX) occurring in the temperature and strain rate ranges of: (1) 300-360 Degree-Sign C and 0.0003-0.001 s{sup -1} and (2) 400-500 Degree-Sign C and 0.005-0.7 s{sup -1}, which are the two safe hot workability windows for this alloy. A regime of flow instability occurs at higher strain rates and lower temperatures where adiabatic shear banding and flow localization are the microstructural manifestations. The onset of DRX during compression at lower temperatures and strain rates (Domain 1) resulted in a fine, partially recrystallized and necklaced grain microstructure along with a texture where the basal poles are spread along 30 Degree-Sign from the compression direction. Specimens deformed at temperatures higher than 450 Degree-Sign C (Domain 2) resulted in a fully recrystallized microstructure and an almost random crystallographic texture, which was attributed to the significant occurrence of pyramidal slip and associated cross-slip. -- Highlights: Black-Right-Pointing-Pointer Processing map revealed two DRX domains for hot working of Mg-3Sn-2Ca-0.4Al alloy. Black-Right-Pointing-Pointer The alloy exhibited flow instability at lower temperatures and higher strain rates. Black-Right-Pointing-Pointer Activation energy values for deformation are high due to the back stress. Black-Right-Pointing-Pointer Basal poles spread around 30 Degree-Sign to the compression axis for Domain 1 peak condition. Black-Right-Pointing-Pointer Texture got randomized at high temperature and strain rate conditions in

  3. Dipole controlled metal gate with hybrid low resistivity cladding for gate-last CMOS with low Vt

    KAUST Repository

    Hinkle, Christopher L.; Galatage, Rohit V.; Chapman, Richard A.; Vogel, Eric M.; Alshareef, Husam N.; Freeman, Clive M.; Wimmer, Erich; Niimi, Hiroaki; Li-Fatou, Andrei V.; Shaw, Judy B.; Chambers, James J.

    2010-01-01

    In this contribution, NMOS and PMOS band edge effective work function (EWF) and correspondingly low Vt are demonstrated using standard fab materials and processes in a gate-last scheme. For NMOS, the use of an Al cladding layer results in Vt = 0.08 V consistent with NMOS EWF = 4.15 eV. Migration of the Al cladding into the TiN and a relatively low oxygen concentration near the TiN/HfO2 interface are responsible for the low EWF. For PMOS, employing a W cladding layer along with a post-TiN anneal in an oxidizing ambient results in elevated oxygen concentration near the TiN/HfO2 interface and Vt = -0.20 V consistent with a PMOS EWF = 5.05 eV. First-principles calculations indicate N atoms displaced from the TiN during the oxidizing anneal form dipoles at the TiN/HfO2 interface that play a critical role in determining the PMOS EWF. © 2010 IEEE.

  4. Dipole controlled metal gate with hybrid low resistivity cladding for gate-last CMOS with low Vt

    KAUST Repository

    Hinkle, Christopher L.

    2010-06-01

    In this contribution, NMOS and PMOS band edge effective work function (EWF) and correspondingly low Vt are demonstrated using standard fab materials and processes in a gate-last scheme. For NMOS, the use of an Al cladding layer results in Vt = 0.08 V consistent with NMOS EWF = 4.15 eV. Migration of the Al cladding into the TiN and a relatively low oxygen concentration near the TiN/HfO2 interface are responsible for the low EWF. For PMOS, employing a W cladding layer along with a post-TiN anneal in an oxidizing ambient results in elevated oxygen concentration near the TiN/HfO2 interface and Vt = -0.20 V consistent with a PMOS EWF = 5.05 eV. First-principles calculations indicate N atoms displaced from the TiN during the oxidizing anneal form dipoles at the TiN/HfO2 interface that play a critical role in determining the PMOS EWF. © 2010 IEEE.

  5. Processing and microstructure of Nb-1 percent Zr-0.1 percent C alloy sheet

    Science.gov (United States)

    Uz, Mehmet; Titran, Robert H.

    1992-01-01

    A systematic study was carried out to evaluate the effects of processing on the microstructure of Nb-1 wt. pct. Zr-0.1 wt. pct. C alloy sheet. The samples were fabricated by cold rolling different sheet bars that were single-, double- or triple-extruded at 1900 K. Heat treatment consisted on one- or two-step annealing of different samples at temperatures ranging from 1350 to 1850 K. The assessment of the effects of processing on microstructure involved characterization of the precipitates including the type, crystal structure, chemistry and distribution within the material as well as an examination of the grain structure. A combination of various analytical and metallographic techniques were used on both the sheet samples and the residue extracted from them. The results show that the relatively coarse orthorhombic Nb2C carbides in the as-rolled samples transformed to rather fine cubic monocarbides of Nb and Zr with varying Zr/Nb ratios upon subsequent heat treatment. The relative amount of the cubic carbides and the Zr/Nb ratio increased with increasing number of extrusions prior to cold rolling. Furthermore, the size and the aspect ratio of the grains appear to be strong functions of the processing history of the material. These and other results obtained will be presented with the emphasis on a possible relationship between processing and microstructure.

  6. Effect of Grain Size Reduction by Sodium Molybdate on Mechanical Properties of Al-0.7Fe Alloy

    Directory of Open Access Journals (Sweden)

    M. Alizadeh

    2015-12-01

    Full Text Available Sodium molybdate (Na2MoO4 as a grain refiner was used to refine the microstructure of Al-0.7Fe alloy. Al-Fe samples with the addition of 0.1, 0.2, 0.3, 0.4 and 0.5 wt.% sodium molybdate were fabricated by casting in sand molds at 750 ͦC. The microstructures of the as-cast samples were investigated by scanning electron microscopy (SEM and the present phases were revealed by X-ray diffraction (XRD. The effect of sodium molybdate on the microstructure was examined by measuring the average grain sizes of the alloys, determining the widths of intermetallic compounds and carrying out hardness and tensile tests. The results showed that the addition of sodium molybdate modified the microstructure of Al-Fe alloy by reducing the average grain sizes. Also, it was found that the optimum amount of sodium molybdate to add to Al-0.7Fe alloy melt was 0.3 wt.% in this study.

  7. Hydrogen absorption in CexGd1−x alloys

    International Nuclear Information System (INIS)

    Bereznitsky, M.; Bloch, J.; Yonovich, M.; Schweke, D.; Mintz, M.H.; Jacob, I.

    2012-01-01

    Highlights: ► Ce x Gd 1−x alloys exhibit the most negative heats of hydride formation ever found. ► Thermodynamics of H absorption in Ce x Gd 1−x correlates with the alloys hardness. ► The entropies of H solution and hydride formation reflect the hydrogen vibrations. ► Terminal hydrogen solubilities change in a monotonic way between Ce and Gd. - Abstract: The effect of alloying on the thermodynamics of hydrogen absorption was studied for Ce x Gd 1−x alloys (0 ≤ x ≤ 1) at temperatures between 850 K and 1050 K in the 1–10 −4 Torr pressure range. The temperature-dependent hydrogen solubilities and plateau pressures for hydride formation were obtained from hydrogen absorption isotherms. The terminal hydrogen solubility (THS) at a given temperature changes in a monotonic way as a function of x. It is approximately three times higher in Gd, than in Ce, throughout the investigated temperature range. This monotonic behavior is opposed to that of many other substitutional alloys, for which the hydrogen terminal solubility increases with increasing solute concentrations. The enthalpies, ΔH f , and the entropies, ΔS f , of the dihydride formation exhibit a pronounced and broad negative minimum starting at x ≈ 0.15, yielding the most negative ΔH f values ever found for metal hydrides. On the other hand, the enthalpies and entropies of ideal solution display a positive trend at x = 0.15 and x = 0.3. Both behaviors are considered in view of a reported distinct variation of the Ce x Gd 1−x hardness as a function of x. The particular compositional variations of the entropies of solution and formation as a function of x reflect most likely the vibrational properties of the hydrogen atoms in the metal matrices.

  8. Neutron-diffraction localization of deuterium in Ti6OD0,45 alloy

    International Nuclear Information System (INIS)

    Sumin, V.V.; Fadeev, N.V.; Morozov, S.I.

    1987-01-01

    Attemp to localize hydrogen in TiO alloy octahedral internodes was made by independent method. To do this, deuterium and hydrogen interstitial solid solutions in titanium were studied by neutron-diffraction method. Deuterium localization in crystal lattice is considerably more reliable, than hydrogen localization due to low noncoherent cross-section of neutron scattering by deuterium. Phase analysis of TiO samples with different deuterium content has shown, that alloys remain singlephase, at least, up to D/O≤1/2 composition. Second phase presence in a sample was determined with accuracy of up to ∼1%, that was proved by phase mixing-in method. Deuterium distribution analysis was conducted for Ti 6 O alloy. It is shown, that presence of oxigen atoms within titanium matrix provides conditions for hydrogen and deuturium localization in octacell layers, which are partially filled with oxygen atoms. Here, hydrogen (Deuterium) forms with oxygen O-H pairs (D), placed in plane parallel to basis HCP of titanium lattice. The most possible characteristic distance between oxygen and hydrogen atoms constitutes a 0 =2,96A (a o -HCP parameter of Ti lattice in Ti 6 O alloy)

  9. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    Science.gov (United States)

    Zhong, Hong-Xia; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-He; Huang, Pu; Ding, Yi-Min

    2014-10-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm-3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  10. The Effects of Antimony Addition on the Microstructural, Mechanical, and Thermal Properties of Sn-3.0Ag-0.5Cu Solder Alloy

    Science.gov (United States)

    Sungkhaphaitoon, Phairote; Plookphol, Thawatchai

    2018-02-01

    In this study, we investigated the effects produced by the addition of antimony (Sb) to Sn-3.0Ag-0.5Cu-based solder alloys. Our focus was the alloys' microstructural, mechanical, and thermal properties. We evaluated the effects by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential scanning calorimetry (DSC), and a universal testing machine (UTM). The results showed that a part of the Sb was dissolved in the Sn matrix phase, and the remaining one participated in the formation of intermetallic compounds (IMCs) of Ag3(Sn,Sb) and Cu6(Sn,Sb)5. In the alloy containing the highest wt pct Sb, the added component resulted in the formation of SnSb compound and small particle pinning of Ag3(Sn,Sb) along the grain boundary of the IMCs. Our tests of the Sn-3.0Ag-0.5Cu solder alloys' mechanical properties showed that the effects produced by the addition of Sb varied as a function of the wt pct Sb content. The ultimate tensile strength (UTS) increased from 29.21 to a maximum value of 40.44 MPa, but the pct elongation (pct EL) decreased from 48.0 to a minimum 25.43 pct. Principally, the alloys containing Sb had higher UTS and lower pct EL than Sb-free solder alloys due to the strengthening effects of solid solution and second-phase dispersion. Thermal analysis showed that the alloys containing Sb had a slightly higher melting point and that the addition amount ranging from 0.5 to 3.0 wt pct Sb did not significantly change the solidus and liquidus temperatures compared with the Sb-free solder alloys. Thus, the optimal concentration of Sb in the alloys was 3.0 wt pct because the microstructure and the ultimate tensile strength of the SAC305 solder alloys were improved.

  11. Structure factors and phonon dispersion in liquid Li0.61Na0.39 alloy

    International Nuclear Information System (INIS)

    Pratap, Arun; Lad, Kirit N.; Raval, K.G.

    2004-01-01

    The phonon spectra for liquid Li and Na have been computed through the phenomenological model of Bhatia and Singh for disordered systems like liquids and glasses and the obtained results have been compared with the available data obtained by inelastic neutron scattering (INS) and inelastic X-ray scattering (IXS) experiments. The effective pair potentials and their space derivatives are important ingredients in the computation of the dispersion curves. The pair potentials are obtained using the pseudo-potential theory. The empty core model proposed by Ashcroft is widely used for pseudo-potential calculations for alkali metals. But, it is thought to be unsuitable for Li because of its simple 1s electronic structure. However, it can be used with an additional term known as Born-Mayer (BM) core term. The influence of the BM core term on the phonon dispersion is discussed. The same pseudo-potential formalism has been employed to obtain the dispersion relation in liquid Li 0.61 Na 0.39 alloy. Apart from the phonon spectra, the Ashcroft-Langreth structure factors in the alloy are derived in the Percus-Yevick approximation. (author)

  12. The microstructure of Mg–4Zn–2Al–0.5Ca aged alloy

    International Nuclear Information System (INIS)

    Lin Xiaoping; Dong Yun; Ye Jie; Song Boyang

    2012-01-01

    Highlights: ► The microstructure of Mg–4Zn–2Al–0.5Ca aged alloy was investigated by TEM. ► Edge dislocations, ordered zones and moiré fringes are found in alloy. ► Ca can improve the thermal stability of precipitates. - Abstract: In this study, we investigated the microstructure of a new Mg–4Zn–2Al–0.5Ca aged alloy with TEM and HRTEM. The age hardening process of Mg–4Zn–2Al–0.5Ca alloy aged at 120 °C or 160 °C follows a similar pattern: a period of fluctuation of hardness present before the alloy reaches its maximum hardness. The atomic arrangement is different in different areas of the microstructure possibly due to the difference of the segregated degree of the solute atoms in the alloy. The microstructure of alloy aged at 120 °C for 230 h consists of cellular textures, ordered zone, elongated precipitates and disc-like precipitates, while the microstructure of the alloy aged at 160 °C for 32 h consists of edge dislocations, ordered zones and moiré fringe. No MgZn precipitates are found in the peak aged microstructures of alloys aged at 120 °C and 160 °C. It is reasonable to believe that Ca is a particularly effective trace addition in improving the thermal stability of precipitation in Mg–4Zn–2Al alloy aged at 120 °C and 160 °C.

  13. Structural, magnetic and transport studies of Mn0.8Cr0.2CoGe alloy

    Science.gov (United States)

    Das, S. C.; Dutta, P.; Pramanick, S.; Chatterjee, S.

    2018-04-01

    Different physical and functional properties of Mn0.8Cr0.2CoGe alloy has been investigated through structural, magnetic and electrical transport measurements. Substitution of Cr for Mn results significant decrease in both structural and magnetic transition temperature and brings them well below the room temperature. A reasonable amount of conventional magnetocaloric effect (ΔS˜ - 2.22 J/kg-K for magnetic field (H) changing from 0 to 50 kOe) with large relative cooling power (251.7 J/kg for H changing from 0 to 50 kOe) has also been observed around the region of transition. On thermal cycling through the structural transition, noticeable training effect is found to be associated with the resistivity of the alloy.

  14. Structure and phase stability of a Pu-0.32 wt% Ga alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.W., E-mail: David.Wheeler@awe.co.uk; Ennaceur, S.M.; Matthews, M.B.; Roussel, P.; Bayer, P.D.

    2016-08-01

    In plutonium-gallium (Pu-Ga) alloys that have a Ga content of 0.3–0.4 wt%, their readiness to transform to α′ renders them of particular interest in efforts to understand the tenuous nature of δ phase stability. The present study is a comprehensive examination of the structure and phase stability of a cast Pu-0.32 wt% Ga alloy, the Ga content being close to the minimum amount needed to retain the δ phase to ambient temperature. The alloy was characterised in both the as-cast condition as well as following a homogenising heat treatment. The 250-h heat treatment at 450 °C was shown to achieve an apparently stable δ-Pu phase. However, the stability of the δ-Pu phase was shown to be marginal: partial transformation to α′-Pu was observed when the alloy was subjected to hydrostatic compression. Similar transformation was also apparent during metallographic preparation as well as during hardness indentation. The results provide new understanding of the nature of δ phase stability. - Highlights: • New insights into the delta phase stability of a Pu-0.32 wt% Ga alloy. • Density and DSC of as-cast alloy both show α-Pu contents of approximately 30%. • The heat-treated alloy has a largely δ-Pu structure at ambient temperature. • Heat-treated alloy susceptible to δ → α transformation during hardness indentation.

  15. Microstructure and magnetic properties of nanostructured (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} alloy produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Boukherroub, N. [UR-MPE, M' hamed Bougara University, Boumerdes 35000 (Algeria); Guittoum, A., E-mail: aguittoum@gmail.com [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Laggoun, A. [UR-MPE, M' hamed Bougara University, Boumerdes 35000 (Algeria); Hemmous, M. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Martínez-Blanco, D. [SCTs, University of Oviedo, EPM, 33600 Mieres (Spain); Blanco, J.A. [Department of Physics, University of Oviedo, Calvo Sotelo St., 33007 Oviedo (Spain); Souami, N. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Gorria, P. [Department of Physics and IUTA, EPI, University of Oviedo, 33203 Gijón (Spain); Bourzami, A. [Laboratoire d' Etudes des Surfaces et Interfaces des Matériaux Solides (LESIMS), Université Sétif1, 19000 Sétif (Algeria); Lenoble, O. [Institut Jean Lamour, CNRS-Université de Lorraine, Boulevard des aiguillettes, BP 70239, F-54506 Vandoeuvre lès Nancy (France)

    2015-07-01

    We report on how the microstructure and the silicon content of nanocrystalline ternary (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} powders (x=0, 5, 10, 15 and 20 at%) elaborated by high energy ball milling affect the magnetic properties of these alloys. The formation of a single-phase alloy with body centred cubic (bcc) crystal structure is completed after 72 h of milling time for all the compositions. This bcc phase is in fact a disordered Fe(Al,Si) solid solution with a lattice parameter that reduces its value almost linearly as the Si content is increased, from about 2.9 Å in the binary Fe{sub 80}Al{sub 20} alloy to 2.85 Å in the powder with x=20. The average nanocrystalline grain size also decreases linearly down to 10 nm for x=20, being roughly half of the value for the binary alloy, while the microstrain is somewhat enlarged. Mössbauer spectra show a sextet thus suggesting that the disordered Fe(Al,Si) solid solution is ferromagnetic at room temperature. However, the average hyperfine field diminishes from 27 T (x=0) to 16 T (x=20), and a paramagnetic doublet is observed for the powders with higher Si content. These results together with the evolution of both the saturation magnetization and the coercive field are discussed in terms of intrinsic and extrinsic properties. - Highlights: • Single-phase nanocrystalline (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} (x=0, 5, 10, 15 and 20 at%) powders were successfully fabricated by mechanical alloying for a milling time of 72 h. • The insertion of Si atoms leads to a unit-cell contraction and a decrease in the average crystallite size. • The hyperfine and magnetic properties of (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} were influenced by the Si content.

  16. Effect of Ti/Sc atom ratio on heterogeneous nuclei, microstructure and mechanical properties of A357-0.033Sr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiaocen [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072 (China); Li, Jiajun [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China); He, Chunnian, E-mail: cnhe08@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072 (China); Shi, Chunsheng [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China); Liu, Enzuo [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); He, Fang; Ma, Liying; Li, Qunying [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2016-08-01

    A systematic study on heterogeneous nucleation, microstructure and mechanical properties of A357-0.033Sr alloys with different Ti/Sc atom ratio was carried out. According to the obtained results, a Ti/Sc atom ratio up to 1:1 did not show much change in the heterogeneous nuclei but at a higher atom ratio level, heterogeneous nuclei have a great change in chemical composition and morphology (from strip Ti-rich phase to the particle-like Ti-rich phase). In addition, compared to the other four alloys studied, the A357-0.033Sr-0.30Sc-0.35Ti alloy with 1:1 atom ratio has the smallest grain size (88 µm), optimum microstructure (morphology, size and distribution of eutectic Si), densest core-shell Al{sub 3}(Sc, Ti), all of which result in the best mechanical properties. Its tensile strength and elongation reach 287 MPa and 3.62% respectively, showing about 11% and 84% increases compared with A357-0.033Sr alloy.

  17. Influence of Tensile Stresses on α+β – Titanium Alloy VT22 Corrosion Resistance in Marine Environment

    Directory of Open Access Journals (Sweden)

    Yu. A. Puchkov

    2015-01-01

    Full Text Available Tensile stresses and hydrogen render strong influence on the titanic alloys propensity for delayed fracture. The protective film serves аs a barrier for penetration in hydrogen alloy. Therefore to study the stress effect on its structure and protective properties is of significant interest.The aim of this work is to research the tensile stress influence on the passivation, indexes of corrosion, protective film structure and reveal reasons for promoting hydrogenation and emerging propensity for delayed fracture of titanium alloy VТ22 in the marine air atmosphere.The fulfillеd research has shown that:- there is а tendency to reduce the passivation abilities of the alloy VТ22 in synthetic marine water (3 % solution of NaCl with increasing tensile stresses up to 1170 МPа, namely to reduce the potential of free corrosion and the rate of its сhange, thus the alloy remains absolutely (rather resistant;- the protective film consists of a titanium hydroxide layer under which there is the titanium oxide layer adjoining to the alloy, basically providing the corrosion protection.- the factors providing hydrogenation of titanium alloys and formation in their surface zone fragile hydrides, causing the appearing propensity for delayed fracture, alongside with tensile stresses are:- substances promoting chemisorbtion of hydrogen available in the alloy and on its surface;- the cathodic polarization caused by the coupling;- the presence of the structural defects promoting the formation of pitting and local аcidifying of the environment surrounding the alloy.

  18. Function of VtPGIP in pathogenic fungus resistance of Vitis thunbergii

    African Journals Online (AJOL)

    edoja

    2014-02-19

    Feb 19, 2014 ... with pathogenic fungi and water were harvested, immediately frozen in liquid nitrogen, and stored at ... structure of the VtPGIP protein and molecular modeling were analyzed using Swiss-Pdb Viewer 3.7. Cloning of the VtPGIP ...

  19. Formation process of micro arc oxidation coatings obtained in a sodium phytate containing solution with and without CaCO{sub 3} on binary Mg-1.0Ca alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.F. [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Zhang, Y.Q. [Zhejiang DunAn Light Alloy Technology CO,.LTD, Zhuji 311835 (China); Hunan University of Science and Technology, Xiangtan 411201 (China); Zhang, S.F.; Qu, B. [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Guo, S.B. [Hunan University of Science and Technology, Xiangtan 411201 (China); Xiang, J.H., E-mail: xiangjunhuai@163.com [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China)

    2015-01-15

    Highlights: • Compared to the Mg phase, the area of Mg{sub 2}Ca phase is much smaller. • The coatings are preferentially developed on the area adjacent to Mg{sub 2}Ca phase. • During MAO process, some sodium phytate molecules are hydrolyzed. • Anodic coatings are developed from uneven to uniform. - Abstract: Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO{sub 3} electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO{sub 3}. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg{sub 2}Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg{sub 2}Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg{sub 2}Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO{sub 3} has minor influence on the calcium content of the obtained MAO coatings.

  20. Ostwald Ripening Process of Coherent β′ Precipitates during Aging in Fe0.75Ni0.10Al0.15 and Fe0.74Ni0.10Al0.15Cr0.01 Alloys

    Directory of Open Access Journals (Sweden)

    N. Cayetano-Castro

    2015-01-01

    Full Text Available The Ostwald ripening process was studied in Fe0.75Ni0.10Al0.15 and Fe0.74Ni0.10Al0.15Cr0.01 alloys after aging at 750, 850, and 950°C for different times. The microstructural evolution shows a rounded cube morphology (Fe, NiAl β′ precipitates aligned in the ferrite matrix, which changes to elongated plates after prolonged aging. The variation of the equivalent radii of precipitates with time follows the modified Lifshitz-Slyozov-Wagner theory for diffusion-controlled coarsening. Thermo-Calc analysis shows that the chromium content is richer in the matrix than in the precipitates which causes higher hardness and coarsening resistance in the aged Fe0.74Ni0.10Al0.15Cr0.01 alloy.

  1. Enhancement of magnetocaloric effect by external hydrostatic pressure in MnNi0.75Fe0.25Ge alloy

    Science.gov (United States)

    Mandal, K.; Dutta, P.; Dasgupta, P.; Pramanick, S.; Chatterjee, S.

    2018-06-01

    A systematic investigation on the structural and magnetic properties of an Fe-doped MnNiGe alloy with nominal composition MnNi0.75Fe0.25Ge has been performed. Temperature dependent x-ray diffraction studies indicate a clear structural phase transition (martensitic type) from the high temperature hexagonal austenite phase (space group P63/mmc) to the low temperature orthorhombic martensite phase (space group Pnma). Interestingly, about 1.4% of the high temperature hexagonal phase has been observed at 15 K, which is well below the martensitic phase transition (MPT) temperature. The studied alloy is found to be ferromagnetic in nature at the lowest temperature of measurement and the saturation moment increases in the presence of external hydrostatic pressure (P). In addition, it shows a significantly large conventional (negative) magnetocaloric effect with an adiabatic entropy change () of about ‑16.2 J kg‑1 K‑1 around the MPT for a magnetic field changing from 0  →  5 T. The most interesting observation is the  ∼40.1% increase in the peak value of on application of 6 kbar of external P. A considerable increment in the refrigeration capacity has also been noted with the applied P.

  2. Near total magnetic moment compensation with high Curie temperature in Mn2V0.5Co0.5Z (Z  =  Ga,Al) Heusler alloys

    Science.gov (United States)

    Midhunlal, P. V.; Arout Chelvane, J.; Arjun Krishnan, U. M.; Prabhu, D.; Gopalan, R.; Kumar, N. Harish

    2018-02-01

    Mn2V1-x Co x Z (Z  =  Ga,Al and x  =  0, 0.25, 0.5, 0.75, 1) Heusler alloys have been synthesized to investigate the effect of Co substitution at the V site on the magnetic moment and Curie temperature of half-metallic ferrimagnets Mn2VGa and Mn2VAl. Near total magnetic moment compensation was achieved with high Curie temperature for x  =  0.5 composition. The Co substituted alloys show a non linear decrease in lattice parameter without altering the crystal structure of the parent alloys. The end members Mn2VGa and Mn2CoGa have the saturation magnetization of 1.80 µ B/f.u. and 2.05 µ B/f.u. respectively whereas for the Mn2V0.5Co0.5Ga alloy, a near total magnetic moment compensation (0.10 µ B/f.u.) was observed due to the ferrimagnetic coupling of Mn with parallelly aligned V and Co. The Co substituted Mn2VAl has also shown a similar trend with compensated magnetic moment value of 0.06 µ B/f.u. for x  =  0.5. The Curie temperatures of the alloys including the x  =  0.5 composition are well above the room temperature (more than 650 K) which is in sharp contrast to the earlier reported values of 171 K for the (MnCo)VGa and 105 K for the (MnCo)VAl (substitution at the Mn site). The observed T C values are highest among the Mn2V based fully compensated ferrimagnets. The magnetic moment compensation without significant reduction in T C indicates that the V site substitution of Co does not weaken the magnetic interaction in Mn2VZ (Z  =  Ga,Al) alloys which is contrary to the earlier experimental reports on Mn site substitution.

  3. Microstructures and mechanical properties of heat-treated Al–5.0Cu–0.5Fe squeeze cast alloys with different Mn/Fe ratio

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn; Lin, Bo; Fan, Jianlei; Zhang, Datong; Li, Yuanyuan

    2013-12-20

    The Al–5.0 wt% Cu–0.5 wt% Fe alloys with different Mn/Fe ratio were prepared by squeeze casting. Various test techniques, including tensile test, image analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM) were used to examine the microstructures and mechanical properties of the alloys in T5 heat-treated condition. The results show that the β-Fe (Al{sub 7}Cu{sub 2}Fe) is stable and its needle-like morphology is maintained after T5 heat treatment. However, the Chinese script Al{sub m}Fe, α-Fe or Al{sub 6}(FeMn) partially transform to a new Chinese script Cu-rich α(CuFe) (Al{sub 7}Cu{sub 2}Fe or Al{sub 7}Cu{sub 2}(FeMn)), which is harmful to the mechanical properties of the alloys due to the decrease of the Cu content in α(Al) matrix. The optimal Mn/Fe ratio is determined by the morphology of Fe-rich intermetallics, volume fraction of θ′ and T (Al{sub 20}Cu{sub 2}Mn{sub 3}), size of α(Al) dendrite and porosity. Excessive Mn/Fe ratio will deteriorate the mechanical properties of the alloys due to the increase of the total amount of porosity and the Fe-rich intermetallics. When the Mn/Fe ratio is 1.6 and 1.2 for the applied pressure of 0 MPa and 75 MPa, respectively, the needle-like β-Fe phase is completely converted to the Chinese script Fe-rich intermetallics. The ultimate tensile strength, yield strength and elongation of the T5 heat-treated alloy with the Mn/Fe ratio of 1.2 and applied pressure of 75 MPa reach 395 MPa, 335 MPa and 14%, respectively.

  4. Microstructures and mechanical properties of heat-treated Al–5.0Cu–0.5Fe squeeze cast alloys with different Mn/Fe ratio

    International Nuclear Information System (INIS)

    Zhang, Weiwen; Lin, Bo; Fan, Jianlei; Zhang, Datong; Li, Yuanyuan

    2013-01-01

    The Al–5.0 wt% Cu–0.5 wt% Fe alloys with different Mn/Fe ratio were prepared by squeeze casting. Various test techniques, including tensile test, image analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM) were used to examine the microstructures and mechanical properties of the alloys in T5 heat-treated condition. The results show that the β-Fe (Al 7 Cu 2 Fe) is stable and its needle-like morphology is maintained after T5 heat treatment. However, the Chinese script Al m Fe, α-Fe or Al 6 (FeMn) partially transform to a new Chinese script Cu-rich α(CuFe) (Al 7 Cu 2 Fe or Al 7 Cu 2 (FeMn)), which is harmful to the mechanical properties of the alloys due to the decrease of the Cu content in α(Al) matrix. The optimal Mn/Fe ratio is determined by the morphology of Fe-rich intermetallics, volume fraction of θ′ and T (Al 20 Cu 2 Mn 3 ), size of α(Al) dendrite and porosity. Excessive Mn/Fe ratio will deteriorate the mechanical properties of the alloys due to the increase of the total amount of porosity and the Fe-rich intermetallics. When the Mn/Fe ratio is 1.6 and 1.2 for the applied pressure of 0 MPa and 75 MPa, respectively, the needle-like β-Fe phase is completely converted to the Chinese script Fe-rich intermetallics. The ultimate tensile strength, yield strength and elongation of the T5 heat-treated alloy with the Mn/Fe ratio of 1.2 and applied pressure of 75 MPa reach 395 MPa, 335 MPa and 14%, respectively

  5. Investigations on the electronic transport and piezoresistivity properties of Ni{sub 2−X}Mn{sub 1+X}Ga (X = 0 and 0.15) Heusler alloys under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Devarajan, U.; Kalai Selvan, G.; Sivaprakash, P.; Arumugam, S., E-mail: sarumugam1963@yahoo.com [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli-620 024 (India); Singh, Sanjay [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore-452001, Madhya Pradesh (India); Experimentalphysik, Universiat Duisburg-Essen, D-47048 Duisburg (Germany); Esakki Muthu, S. [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli-620 024 (India); SPSMS, CEA-INAC, 38054 Grenoble (France); Roy Barman, S. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore-452001, Madhya Pradesh (India)

    2014-12-22

    The resisitivity of Ni{sub 2−X}Mn{sub 1+X}Ga (X = 0 and 0.15) magnetic shape memory alloys has been investigated as a function of temperature (4–300 K) and hydrostatic pressure up to 30 kilobars. The resistivity is suppressed (X = 0) and enhanced (X = 0.15) with increasing pressure. A change in piezoresistivity with respect to pressure and temperature is observed. The negative and positive piezoresistivity increases with pressure for both the alloys. The residual resistivity and electron-electron scattering factor as a function of pressure reveal that for Ni{sub 2}MnGa the electron-electron scattering is predominant, while the X = 0.15 specimen is dominated by the electron-magnon scattering. The value of electron-electron scattering factor is positive for both the samples, and it is decreasing (negative trend) for Ni{sub 2}MnGa and increasing (positive trend) for X = 0.15 with pressure. The martensite transition temperature is found to be increased with the application of external pressure for both samples.

  6. Effects of air melting on Fe/0.3/3Cr/0.5Mo/2Mn and Fe/0.3C/3Cr/0.5Mo/2Ni structural alloy steels

    International Nuclear Information System (INIS)

    Steinberg, B.

    1979-06-01

    Changing production methods of a steel from vacuum melting to air melting can cause an increase in secondary particles, such as oxides and nitrides, which may have detrimental effects on the mechanical properties and microstructure of the alloy. In the present study a base alloy of Fe/0.3C/3Cr/0.5Mo with either 2Mn or 2Ni added was produced by air melting and its mechanical properties and microstructure were compared to an identical vacuum melted steel. Significant differences in mechanical behavior, morphology, and volume fraction of undissolved inclusions have been observed as a function of composition following air melting. For the alloy containing manganese, all properties remained very close to vacuum melted values but the 2Ni alloy displayed a marked loss in Charpy impact toughness and plane strain fracture toughness. This loss is attributed to an increase in volume fraction of secondary particles in the nickel alloy, as opposed to both the Mn alloy and vacuum melted alloys, as well as to substaintially increased incidence of linear coalescence of voids. Microstructural features are discussed

  7. Function of VtPGIP in pathogenic fungus resistance of Vitis thunbergii

    African Journals Online (AJOL)

    In plants, polygalacturonase inhibitor proteins (PGIPs) are very important to inactivate polygalacturonases secreted by pathogens. Vitis thunbergii Sieb. et Zucc. polygalacturonase inhibitor proteins (VtPGIP) was first isolated from the wild grape Vitis thunbergii Sieb. et Zucc., which exhibits high resistance to disease. VtPGIP ...

  8. Functional Properties of Porous Ti-48.0 at.% Ni Shape Memory Alloy Produced by Self-Propagating High-Temperature Synthesis

    Science.gov (United States)

    Resnina, Natalia; Belyaev, Sergey; Voronkov, Andrew

    2018-03-01

    The functional behavior of the porous shape memory alloy produced by self-propagating high-temperature synthesis from the Ti-48.0 at.% Ni powder mixture was studied. It was found that a large unelastic strain recovered on unloading and it was not attributed to the pseudoelasticity effect. A decrease in deformation temperatures did not influence the value of strain that recovered on unloading, while the effective modulus decreased from 1.9 to 1.44 GPa. It was found that the porous Ti-48.0 at.% Ni alloy revealed the one-way shape memory effect, where the maximum recoverable strain was 5%. The porous Ti-48.0 at.% Ni alloy demonstrated the transformation plasticity and the shape memory effects on cooling and heating under a stress. An increase in stress did not influence the shape memory effect value, which was equal to 1%. It was shown that the functional properties of the porous alloy were determined by the TiNi phase consisted of the two volumes Ti49.3Ni50.7 and Ti50Ni50 where the martensitic transformation occurred at different temperatures. The results of the study showed that the existence of the Ti49.3Ni50.7 volumes in the porous Ti-48.0 at.% Ni alloy improved the functional properties of the alloy.

  9. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys

    Science.gov (United States)

    Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng

    2018-02-01

    The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

  10. Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications

    Science.gov (United States)

    Badawi, Ali

    2016-02-01

    Tuning the energy band gap of ternary alloyed Cd1-xPbxS (x: 0, 0.33, 0.5, 0.67 and 1) quantum dots (QDs) for photovoltaic applications is studied. Alloyed Cd1-xPbxS QDs were adsorbed onto TiO2 nanoparticles (NPs) using ssuccessive ionic layer adsorption and reaction (SILAR) methode. EDX measurements ensure the success adsorption of alloyed Cd1-xPbxS QDs onto the TiO2 electrode. At 100 mW/cm2 (AM 1.5) sun illumination, the photovoltaic performance of alloyed Cd1-xPbxS QDs sensitized solar cells (QDSSCs) was measured. The maximum values of Jsc (1.92 mA/cm2) and η (0.36%) for the alloyed Cd1-xPbxS QDSSCs were obtained when the molar ratio of Cd/Pb is 0.33/0.67. the open circuit voltage (Voc) is equal 0.61 ± 0.01 V for all alloyed Cd1-xPbxS QDSSCs. The electron back recombination rates decrease considerably for alloyed Cd1-xPbxS QDSSCs as x value increases, peaking at 0.67. The electron lifetime (τ) for Cd0.33Pb0.67S QDSSCs is one order of magnitude larger than that of the other alloyed Cd1-xPbxS QDSSCs with different x value. Under ON-OFF cycles to solar illumination, the open circuit voltage decay measurements show the high sensitivity and reproducibility of alloyed Cd1-xPbxS QDSSCs.

  11. Synthesis by mechanical alloying and characterization of 95.5Sn/4.0Ag/0.5Cu, (wt%) nanopowder

    International Nuclear Information System (INIS)

    Barreto, Karen Lyn Lima; Manzato, Lizandro; Rivera, Jose Anglada; Oliveira, Marceli Falcao de

    2010-01-01

    This work aims at sintering and characterizing the 95.5Sn/4.0Ag/0.5Cu (wt%) nanopowder, produced by high energy milling. The nano-sized particles reduce the melting point of this solder, which is usually higher for such alloys, for example, when compared with the usual 63Sn/37Pb (wt%) solder. The alloy was processed in a Spex mill with the following parameters: (I) different times of milling, 12, 24 and 48 hours. (II) the ratio of ball/mass powder of 40:1 and (II) hydrogen milling atmosphere. The microstructural evolution during milling was studied by X-ray diffraction and differential calorimetry. Combining these three variables, after grinding, a reduction of the particle size and the melting point of the solder were observed. This material is promising for applications in microelectronics packaging as a lead free solder. (author)

  12. Fatigue and creep deformed microstructures of aged alloys based on Al-4% Cu-0.3% Mg

    International Nuclear Information System (INIS)

    Reddy, A. Somi

    2008-01-01

    The addition of 0.4 wt.% of silver or cadmium to the alloy Al-4% Cu-0.3% Mg which has a high Cu:Mg ratio, changes the nature, morphology and dispersion of the precipitates that forms on age hardening at medium temperatures such as 150-200 o C. Fatigue and creep tests were carried out on alloys aged to peak strength at 170 o C. The tensile properties of the alloys aged at 170 o C increased in the order Al-4% Cu, Al-4% Cu-0.3% Mg, Al-4% Cu-0.3% Mg-0.4% Cd, and Al-4% Cu-0.3% Mg-0.4% Ag. Despite differences in their microstructures and tensile properties, the fatigue performance of the alloys was relatively unaffected. Fatigue behaviour was similar in each case and the alloys showed identical fatigue limits. Major differences were observed in the creep performance of the alloys creep tested at 150 o C in the peak strength condition age hardened at 170 o C. Creep performance of the alloys increased in the order of their tensile properties. The purpose of the present work was to discuss the fatigue and creep deformed microstructure of these alloys

  13. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1969-10-01

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 360 0 C and flow tests (approx. 20 ft/sec) in reactor process water at 130 0 C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 360 0 C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 360 0 C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 150 0 C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 50 0 C

  14. Influence of structural disorder on the optical and transport properties of Co0.50 Ti0.50 alloy films

    International Nuclear Information System (INIS)

    Kim, Ki Won; Lee, Y. P.; Rhee, Joo Yull; Kudryavtsev, Yuriy V.; Ri, H. C.

    2000-01-01

    Co 0.50 Ti 0.50 alloy films with a total thickness of about 100 nm were prepared by flash evaporation of the crushed alloy powders onto heated (730 K for the ordered state) and LN 2 -cooled (150 K for the disordered state) substrates. Structural analysis of the films was performed by suing transmission electron microscopy. The optical conductivity (OC) of the samples was measured at room temperature in a spectral range of 265 -2500 nm (4.7 - 0.5 eV). The resistivity measurements were carried out by using the four-probe technique in a temperature range of 4.2 - 300 K. The experimental OC spectra for the Co 0.50 Ti 0.50 alloys show the most significant change in the infrared region upon the order-disorder transformation. The structural disorder in the Co 0.50 Ti 0.50 alloy film leads to a change in the sign of the temperature coefficient of the resistivity from positive to negative. The observed changes in the optical properties and the temperature dependences of resistivity caused by the order-disorder structural transition are analyzed in the framework of the lattice symmetry and the electronic structure of the ordered CoTi compound

  15. Postirradiation fracture toughness tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Reed, J.R.; Sprague, J.A.

    1984-01-01

    Alloy HT-9 and Modified 9Cr-1Mo are being evaluated for potential applications as first wall materials in magnetic fusion reactors. Objectives of the current research task were to test fatigue-precracked Charpy-V (PCC/sub v/) specimens from representative plates irradiated in the UBR reactor at 149 0 C or 300 0 C, and, to compare the results against postirradiation notch ductility data developed previously for the materials. Both plates represent electroslag refined (ESR) melt processing. PCC/sub v/ specimens of Alloy HT-9 and Modified 9Cr-1Mo alloy were irradiated at 300 0 C and 149 0 C, respectively, to approx.0.8 X 10 20 n/cm 2 , E > 0.1 MeV. During this period, postirradiation tests for fracture toughness were completed and results compared to notch ductility determinations from standard Charpy-V (C/sub v/) specimens irradiated in the same reactor experiments. Fracture surface examinations by SEM are also reported

  16. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    OpenAIRE

    Fan Zhang; Oleg N. Senkov; Jonathan D. Miller

    2013-01-01

    Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively....

  17. Topological Weyl semimetals in Bi1 -xSbx alloys

    Science.gov (United States)

    Su, Yu-Hsin; Shi, Wujun; Felser, Claudia; Sun, Yan

    2018-04-01

    We investigated Weyl semimetal (WSM) phases in bismuth antimony (Bi1 -xSbx ) alloys by combination of atomic composition and arrangement. Via first-principles calculations, we found two WSM states with Sb concentrations of x =0.5 and 0.83 with specific inversion-symmetry-broken elemental arrangement. The Weyl points are close to the Fermi level in both of these two WSM states. Therefore, it is likely to obtain Weyl points in Bi-Sb alloy. The WSM phase provides a reasonable explanation for the current transport study of Bi-Sb alloy with the violation of Ohm's law [D. Shin, Y. Lee, M. Sasaki, Y. H. Jeong, F. Weickert, J. B. Betts, H.-J. Kim, K.-S. Kim, and J. Kim, Nat. Mater. 16, 1096 (2017), 10.1038/nmat4965]. This paper shows that the topological phases in Bi-Sb alloys depend on both elemental composition and their specific arrangement.

  18. Research for magnetocaloric effect of Gd{sub 1-x}Dy{sub x} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xueling; Shitao, Li; An, Zhang; Hui, Xu; Ni, Jiansen; Zhou, Bangxin [Institute of Materials, Shanghai University, Shanghai 20007 (China)

    2007-12-15

    The magnetocaloric effect (MEC) in Gd{sub 1-x}Dy{sub x} (x=0.13,0.20,0.27,0.34,0.40) alloys is investigated using commercial elements with purity of up to 99.80% for Gd and Dy. These alloys are prepared by arc melting in stoichiometric proportions on a water-cooled copper crucible under high pure argon atmosphere. As a result, when x was changed from 0 to 40at%, the adiabatic temperature change ({delta}T) increases from 1.6 K to 3.1 K, the Curie temperature decreased from 288 K to 245.5 K. Gd{sub 73}Dy{sub 27} exhibits the largest {delta}T{sub max} value of 3.1 K at the T{sub C} value of 260 K among the alloys investigated up to 1.2 T (tesla) applied field, it is almost same as the {delta}T of high pure unitary Gd (99.99%) and is clearly superior to commercial unitary Gd (99.80%). The T{sub C} of Gd{sub 73}Dy{sub 27} alloy is minor to high pure unitary Gd (99.99%) and commercially unitary Gd (99.80%). But this alloy prepared by commercial elements with low cost has better MEC to be a promising candidate for magnetic working substances for room temperature magnetic refrigeration. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. AdvanceVT Newsletter: February 2004

    OpenAIRE

    AdvanceVT

    2004-01-01

    Inside this issue: Today's Leadership Seminar; Women's Month Reception; Child Care Survey National Science Foundation The AdvanceVT Team Elizabeth Creamer, Assessment Director Associate Professor of Educational Leadership and Policy Studies Catherine Eckel, ADVANCE Professor Professor of Economics Patricia Hyer, Principle Investigator Associate Provost for Academic Administration Barbara Johnson, Administrative Assistant Peggy Layne, Project Coordinator Nancy Love, Co-PI and ADVANCE Pro...

  20. In vitro bio-functional performances of the novel superelastic beta-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy.

    Science.gov (United States)

    Ion, Raluca; Gordin, Doina-Margareta; Mitran, Valentina; Osiceanu, Petre; Dinescu, Sorina; Gloriant, Thierry; Cimpean, Anisoara

    2014-02-01

    The materials used for internal fracture fixations and joint replacements are mainly made of metals which still face problems ranging from higher rigidity than that of natural bone to leaching cytotoxic metallic ions. Beta (β)-type titanium alloys with low elastic modulus made from non-toxic and non-allergenic elements are desirable to reduce stress shielding effect and enhance bone remodeling. In this work, a new β-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy with a Young's modulus of approximately 50 GPa was designed and characterized. The behavior of MC3T3-E1 pre-osteoblasts on the new alloy, including adhesion, proliferation and differentiation, was evaluated by examining the cytoskeleton, focal adhesion formation, metabolic activity and extracellular matrix mineralization. Results indicated that the pre-osteoblast cells exhibited a similar degree of attachment and growth on Ti-23Nb-0.7Ta-2Zr-0.5N and Ti-6Al-4V. However, the novel alloy proved to be significantly more efficient in sustaining mineralized matrix deposition upon osteogenic induction of the cells than Ti-6Al-4V control. Further, the analysis of RAW 264.7 macrophages cytokine gene and protein expression indicated no significant inflammatory response. Collectively, these findings suggest that the Ti-23Nb-0.7Ta-2Zr-0.5N alloy, which has an increased mechanical biocompatibility with bone, allows a better osteogenic differentiation of osteoblast precursor cells than Ti-6Al-4V and holds great potential for future clinical prosthetic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Structure and magnetic properties of Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al, (0 ≤ x ≤ 1) Heusler alloys prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Yogesh, E-mail: 123209001_yogesh@manit.ac.in [Department of Materials Science & Metallurgical Engineering, Ceramic & Powder Metallurgy Laboratory, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India); Vajpai, Sanjay Kumar, E-mail: vajpaisk@gmail.com [Department of Materials Science & Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India); Srivastava, Sanjay, E-mail: s.srivastava.msme@gmail.com [Department of Materials Science & Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India)

    2017-07-01

    Highlights: • A series of nanocrystalline Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy by powder metallurgy. • Effect of substitution of Fe for Cr on the microstructure and magnetic properties. • Increasing amounts of B2 type disordered structure with increasing Fe content. • Enhanced Ms, Mr, Hc, and Tc with increasing Fe content. • Relative magnetic anisotropy decreased with increasing Fe content. - Abstract: In the present study, a series of nanocrystalline Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy powders were successfully prepared by high energy ball milling and the effect of substitution of Fe for Cr on the microstructure and magnetic properties was investigated in detail. The Co{sub 2}CrAl alloy powder consisted of only A2 type disordered structure whereas the substitution of Cr by Fe led to the appearance of increasing amounts of B2 type disordered structure along with A2 type structure. All the Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy powders demonstrated high spontaneous magnetization together with a very small hysteresis losses. The saturation magnetization, remanence, coercivity, and Curie temperature increased with increasing Fe content. The increasing magnetization with increasing Fe content was attributed to the replacement of antiferromagnetic Cr by strongly ferromagnetic Fe and an increasing amounts of relatively more ordered, atomically as well as ferromagnetically, B2 structure as compared to that of A2 phase. The increment in remanence and coercivity with increasing Fe content were associated with the variation in microstructural characteristics, such as grain size, lattice defects, and the presence of small amounts of magnetic/nonmagnetic secondary phases. The increment in Curie temperature with increasing Fe content was attributed to the enhancement of d-d exchange interaction due to the possible occupancy of vacant sites by Fe atoms. All the Heusler alloys indicated extremely low magnetic anisotropy and the

  2. Density-functional theory computer simulations of CZTS{sub 0.25}Se{sub 0.75} alloy phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Chagarov, E.; Sardashti, K.; Kummel, A. C. [Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States); Haight, R. [IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (United States); Mitzi, D. B. [Departments of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States)

    2016-08-14

    Density-functional theory simulations of CZTS, CZTSe, and CZTS{sub 0.25}Se{sub 0.75} photovoltaic compounds have been performed to investigate the stability of the CZTS{sub 0.25}Se{sub 0.75} alloy vs. decomposition into CZTS, CZTSe, and other secondary compounds. The Gibbs energy for vibrational contributions was estimated by calculating phonon spectra and thermodynamic properties at finite temperatures. It was demonstrated that the CZTS{sub 0.25}Se{sub 0.75} alloy is stabilized not by enthalpy of formation but primarily by the mixing contributions to the Gibbs energy. The Gibbs energy gains/losses for several decomposition reactions were calculated as a function of temperature with/without intermixing and vibration contributions to the Gibbs energy. A set of phase diagrams was built in the multidimensional space of chemical potentials at 300 K and 900 K temperatures to demonstrate alloy stability and boundary compounds at various chemical conditions. It demonstrated for CZTS{sub 0.25}Se{sub 0.75} that the chemical potentials for stability differ between typical processing temperature (∼900 K) and operating temperature (300 K). This implies that as cooling progresses, the flux/concentration of S should be increased in MBE growth to maintain the CZTS{sub 0.25}Se{sub 0.75} in a thermodynamically stable state to minimize phase decomposition.

  3. Influence of Al addition on phase transformation and thermal stability of nickel silicides on Si(0 0 1)

    International Nuclear Information System (INIS)

    Huang, Shih-Hsien; Twan, Sheng-Chen; Cheng, Shao-Liang; Lee, Tu; Hu, Jung-Chih; Chen, Lien-Tai; Lee, Sheng-Wei

    2014-01-01

    Highlights: ► The presence of Al slows down the Ni 2 Si–NiSi phase transformation but significantly promotes the NiSi 2−x Al x formation. ► The behavior of phase transformation strongly depends on the Al concentration of the initial Ni 1−x Al x alloys. ► The Ni 0.91 Al 0.09 /Si system exhibits remarkably improved thermal stability, even after high temperature annealing for 1000 s. ► The relationship between microstructures, electrical property, and thermal stability of Ni(Al) silicides is discussed. -- Abstract: The influence of Al addition on the phase transformation and thermal stability of Ni silicides on (0 0 1)Si has been systematically investigated. The presence of Al atoms is found to slow down the Ni 2 Si–NiSi phase transformation but significantly promote the NiSi 2−x Al x formation during annealing. The behavior of phase transformation strongly depends on the Al concentration of the initial Ni 1−x Al x alloys. Compared to the Ni 0.95 Pt 0.05 /Si and Ni 0.95 Al 0.05 /Si system, the Ni 0.91 Al 0.09 /Si sample exhibits remarkably enhanced thermal stability, even after high temperature annealing for 1000 s. The relationship between microstructures, electrical property, and thermal stability of Ni silicides is discussed to elucidate the role of Al during the Ni 1−x Al x alloy silicidation. This work demonstrated that thermally stable Ni 1−x Al x alloy silicides would be a promising candidate as source/drain (S/D) contacts in advanced complementary metal–oxide-semiconductor (CMOS) devices

  4. The effects of microalloying with Cd on precipitation processes in Al-1.7 Cu-0.3 mg (At. %) alloys

    International Nuclear Information System (INIS)

    Sofyan, Bondan T.

    2002-01-01

    The present work investigates the effects of microalloying with Cd on precipitation processes in Al-1.7 Cu-0.3 mg (At. %) alloys. Analytical STEM (Scanning Transmission Electron Microscope) revealed the presence of clusters rich in Cd and Mg at early stages of ageing, which is believed to be responsible in promoting the nucleation of θ (Al,Cu) in the alloy on its (001) planes. The Cd-Mg clusters then grow as Cd-Mg-rich particles when ageing is continued beyond the peak hardness. The presence of Cd-Mg-rich clusters is thought to play an important role on the nucleation of θ phase by accommodating the misfit strain on the non-coherent rim of the phase. The accommodation of misfit strain is made available by the presence of large amount of vacancies, which is trapped by Cd and Mg atoms during quenching, around θ platelet nuclei

  5. Electronic properties and charge density of BexZn1− xTe alloys

    Indian Academy of Sciences (India)

    Electronic band structure calculations are performed for the BeZn1−Te (0 ≤ ≤ 1 in steps of 0.2) alloys following the empirical pseudopotential method. The alloying effects are modelled through the modified virtual crystal approximation. Throughout the composition, valence band maximum resides at the point.

  6. Characteristics and corrosion studies of vanadate conversion coating formed on Mg-14 wt%Li-1 wt%Al-0.1 wt%Ce alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yibin [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Li Ning, E-mail: lininghit@263.net [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Li Deyu [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Zhang Milin; Huang Xiaomei [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Vanadate film forms on the surface of Mg-Li-Al-Ce alloy. Black-Right-Pointing-Pointer Vanadate coating improves the corrosion resistance. Black-Right-Pointing-Pointer Vanadate coating is composed of Mg(OH){sub 2}, Li{sub 2}O and V{sub 2}O{sub 5}. - Abstract: Mg-14Li-1Al-0.1Ce alloy is immersed in NH{sub 4}VO{sub 3} + K{sub 3}(Fe(CN){sub 6}) solutions with different NH{sub 4}VO{sub 3} and/or K{sub 3}(Fe(CN){sub 6}) concentrations, and different immersion time. The surface morphology and composition of the vanadate coating are then characterized by scanning electron microscopy with energy dispersion spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), and the corrosion behavior of the conversion coating is studied by polarization technique and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the vanadate film with better corrosion resistance forms on Mg-Li-Al-Ce surface after the sample is immersed in 30 g L{sup -1} NH{sub 4}VO{sub 3} + 3.75 g L{sup -1} K{sub 3}(Fe(CN){sub 6}) solution at 80 Degree-Sign C for 10 min. The coating consists of V{sub 2}O{sub 5}, Li{sub 2}O and Mg(OH){sub 2}.

  7. Nano ZrO{sub 2} particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.Z.; Li, L.L.; Saber, M.; Koch, C.C.; Zhu, Y.T., E-mail: ytzhu@ncsu.edu; Scattergood, R.O.

    2014-09-15

    Here we report on the formation of nano ZrO{sub 2} particles in Fe–14Cr–1.5Zr alloy powders synthesized by mechanical alloying. The nano ZrO{sub 2} particles were found uniformly dispersed in the ferritic matrix powders with an average size of about 3.7 nm, which rendered the alloy powders so stable that it retained nanocrystalline structure after annealing at 900 °C for 1 h. The ZrO{sub 2} nanoparticles have a tetragonal crystal structure and the following orientation relationship with the matrix: (0 0 2){sub ZrO2}//(0 0 2){sub Matrix} and [0 1 0]{sub ZrO2}//[1 2 0]{sub Matrix}. The size and dispersion of the ZrO{sub 2} particles are comparable to those of Y–Ti–O enriched oxides reported in irradiation-resistant ODS alloys. This suggests a potential application of the new alloy powders for nuclear energy applications.

  8. Structure and mechanical properties of nanostructured Al-0.3%Cu alloy

    DEFF Research Database (Denmark)

    Wakeel, Aneela; Huang, Tianlin; Wu, Guilin

    2014-01-01

    An Al-0.3%Cu alloy has been produced using extremely high purity (99.9996%) Al and OFHC Cu.The alloy was cold rolled to 98% thickness reduction, forming a stable lamellar structure that has a lamellar boundary spacing of about 200nm and a tensile strength of 225MPa. During recovery annealing at t...

  9. Comparative study of local atomic structures in Zr{sub 2}Cu{sub x}Ni{sub 1−x} (x = 0, 0.5, 1) metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuxiang [Department of Physics, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Huang, Li, E-mail: huangl@sustc.edu.cn [Department of Physics, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Wang, C. Z.; Ho, K. M. [Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Department of Physics, Iowa State University, Ames, Iowa 50011 (United States); Kramer, M. J. [Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-11-21

    Extensive analysis has been performed to understand the key structural motifs accounting for the difference in glass forming ability in the Zr-Cu and Zr-Ni binary alloy systems. Here, the reliable atomic structure models of Zr{sub 2}Cu{sub x}Ni{sub 1−x} (x = 0, 0.5, 1) are constructed using the combination of X-ray diffraction experiments, ab initio molecular dynamics simulations and a constrained reverse Monte Carlo method. We observe a systematic variation of the interatomic distance of different atomic pairs with respect to the alloy composition. The ideal icosahedral content in all samples is limited, despite the high content of five-fold symmetry motifs. We also demonstrate that the population of Z-clusters in Zr{sub 2}Cu glass is much higher than that in the Zr{sub 2}Ni and Zr{sub 2}Cu{sub 0.5}Ni{sub 0.5} samples. And Z12 〈0, 0, 12, 0〉 Voronoi polyhedra clusters prefer to form around Cu atoms, while Ni-centered clusters are more like Z11 〈0, 2, 8, 1〉 clusters, which is less energetically stable compared to Z12 clusters. These two different structural properties may account for the higher glass forming ability of Zr{sub 2}Cu alloy than that of Zr{sub 2}Ni alloy.

  10. Distribution of the Vasotocin Subtype Four Receptor (VT4R) in the Anterior Pituitary Gland of the Chicken, Gallus gallus, and its Possible Role in the Avian Stress Response.

    Science.gov (United States)

    Selvam, R; Jurkevich, A; Kang, S W; Mikhailova, M V; Cornett, L E; Kuenzel, W J

    2013-01-01

    The neurohormone arginine vasotocin (AVT) in non mammalian vertebrates is homologous to arginine vasopressin (AVP) in mammals. Its actions are mediated via G protein-coupled receptors that belong to the vasotocin/mesotocin family. Because of the known regulatory effects of nonapeptide hormones on anterior pituitary functions, receptor subtypes in that family have been proposed to be located in anterior pituitary cells. Recently, an avian vasotocin receptor subtype designated VT4R has been cloned, which shares 69% sequence homology with a human vasopressin receptor, the V1aR. In the present study, a polyclonal antibody to the VT4R was developed and validated to confirm its specificity to the VT4R. The antibody was used to test the hypothesis that the VT4R is present in the avian anterior pituitary and is specifically associated with certain cell types, where its expression is modulated by acute stress. Western blotting of membrane protein extracts from pituitary tissue, the use of HeLa cells transfected with the VT4R and peptide competition assays all confirmed the specificity of the antibody to the VT4R. Dual-labelling immunofluorescence microscopy was utilised to identify pituitary cell types that contained immunoreactive VT4R. The receptor was found to be widely distributed throughout the cephalic lobe but not in the caudal lobe of the anterior pituitary. Immunoreactive VT4R was associated with corticotrophs. Approximately 89% of immunolabelled corticotrophs were shown to contain the VT4R. The immunoreactive VT4R was not found in gonadotrophs, somatotrophs or lactotrophs. To determine a possible functional role of the VT4R and previously characterised VT2R, gene expression levels in the anterior pituitary were determined after acute immobilisation stress by quantitative reverse transcriptase-polymerase chain reaction. The results showed a significant increase in plasma corticosterone levels (three- to four-fold), a significant reduction of VT4R mRNA and an

  11. Microstructure and mechanical properties of spray-deposited Mg-12.55Al-3.33Zn-0.58Ca-1Nd alloy

    International Nuclear Information System (INIS)

    Bai Pucun; Dong Taishang; Hou Xiaohu; Zhao Chunwang; Xing Yongming

    2010-01-01

    A Mg-Al-Zn-Ca-Nd magnesium alloy was prepared by spray forming technology, and the spray-deposited alloy was subsequently hot-extruded with a reduction rate of 16:1 at 623 K. The mechanical properties of the extruded alloy were investigated, and the result shows that the spray-formed Mg alloy offers superior tensile strength with poor ductility. The morphologies, fracture characteristic and chemical compositions of the extruded alloy were then explored by scanning electron microscopy with energy dispersive spectrometer. Furthermore, microstructure of the extruded alloy was examined by X-ray diffractometry and transmission electron microscopy. The results indicate that the microstructure of the spray-deposited magnesium alloy consists of α-Mg and Al 2 Ca phases, and the Al 2 Ca compound is distributed along the grain boundaries of the primary α-Mg. Moreover, twin substructure is found to exist in microstructure of the Al 2 Ca phase, rare earth Nd in the Al 2 Ca phase in the form of solid solution.

  12. Microstructure, mechanical properties and stretch formability of Mg-3Al-0.5Ca-0.2Gd alloy processed at various finish rolling temperatures

    Science.gov (United States)

    Kang, Qiang; Jiang, Haitao; Zhang, Yun

    2018-04-01

    Effects of various finish rolling temperatures on the microstructure, texture, mechanical properties and stretch formability of rolled and annealed Mg-3Al-0.5Ca-0.2Gd (wt%) alloy were investigated in this paper, and it was found that compared with grain size and second phase particles, the basal textures, tensile properties and stretch formability Mg-3Al-0.5Ca-0.2Gd alloy are more sensitive to the increasing finishing rolling temperature. For the rolled and annealed Mg-3Al-0.5Ca-0.2Gd alloy, their grains barely grow up and second phase particles are slightly coarsened, while their basal poles are obviously weakened and tilted with increasing finish rolling temperature. Consequently, the weakened and RD-tilted basal textures are beneficial to the gradually improved elongation and stretch formability of Mg-3Al-0.5Ca-0.2Gd alloy. It is investigated that the gradually activated non-basal slips, e. g. 〈c 〉, 〈c + a〉 dislocations due to the increasing finish rolling temperature could contribute to the weakened RD-tilted textures in rolled and annealed Mg-3Al-0.5Ca-0.2Gd alloy.

  13. Magnetic and magnetocaloric properties of martensitic Ni2Mn1.4Sn0.6 Heusler alloy

    International Nuclear Information System (INIS)

    Chernenko, Volodymyr A.; Barandiarán, Jose M.; Rodriguez Fernández, Jesus; Rojas, Daniel P.; Gutiérrez, Jon; Lázpita, Patricia; Orue, Iñaki

    2012-01-01

    The evolutions of magnetic properties at low temperatures and the influence of magnetic field on the temperature dependence of specific heat in martensitic Ni 2 Mn 1.4 Sn 0.6 Heusler alloy are studied. The frequency-dependent blocking temperature and considerable exchange bias below it are measured in the martensitic phase. From the analysis of the specific heat curves under magnetic field, a large inverse magnetocaloric effect manifested as the magnetic field induced rise of isothermal magnetic entropy and/or magnetic field induced adiabatic temperature decrease in the vicinity of the reverse magnetostructural transformation and a significant value of the conventional magnetocaloric effect at the Curie temperature are obtained. The Debye temperature and electronic coefficient equal to Θ D =310±2 K and γ= 16.6±0.3 mJ/K 2 mol, respectively, do not depend on the magnetic field.

  14. Study of the developed precipitates in Al-0.63Mg-0.37Si-0.5Cu (wt.%) alloy by using DSC and TEM techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University (Egypt)]. E-mail: gaberaf@acc.aun.edu.eg; Ali, A. Mossad [Physics Department, Faculty of Science, Assiut University (Egypt); Matsuda, K. [Faculty of Engineering, University of Toyama (Japan); Kawabata, T. [Faculty of Engineering, University of Toyama (Japan); Yamazaki, T. [Faculty of Engineering, University of Toyama (Japan); Ikeno, S. [Faculty of Engineering, University of Toyama (Japan)

    2007-04-25

    Heat treatable Al-Mg-Si containing Cu alloys can be strengthened by the precipitation of the nano-scale metastable precipitates. In order to follow the precipitation sequence in balanced Al-1 mass%Mg{sub 2}Si containing 0.5 mass%Cu during continuous heating, differential scanning calorimetry (DSC) was performed. Analysis of non-isothermal DSC scans at various heating rates were carried out to evaluate the overall activation energies associated with the precipitation processes and, therefore, the mechanism of the developed precipitates has been characterized. The most important developed precipitates that assist the strength of the alloy are random, Q' and {beta}' precipitates. According to the obtained activation energies, the kinetics of the evolved Q'-precipitates could be controlled by the diffusion of Mg, Si and Cu in the crystal lattice of the alloy. Both conventional and high resolution transmission electron microscopy (HRTEM) were utilized to confirm the obtained results.

  15. Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaowu, E-mail: xwhmaterials@aliyun.com [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Li, Yulong [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Liu, Yi [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Min, Zhixian [China Electronics Technology Group Corporation No. 38 Research Institute, Hefei 230088 (China)

    2015-03-15

    Highlights: • The Sn0.7Cu–xBi solder alloys were directionally solidified. • Both spacing and diameter of fibers decreased with increasing solidification rate. • The UTS and YS first increased with increased solidification rate, then decreased. • The UTS and YS of Sn0.7Cu–xBi first increased with increased Bi content. - Abstract: Bi-containing Sn0.7Cu (SC) eutectic solder alloys were prepared and subjected to directional solidification, through which new types of fiber reinforced eutectic composites were generated. The influences of Bi addition on the microstructures and tensile properties of directionally solidified (DS) Bi-containing eutectic SC lead-free solder alloys have been investigated by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and a tensile testing machine. The experimental results showed that addition of Bi could effectively reduce both the melting temperature and undercooling of SC solder alloy. The microstructures of DS SC–xBi solder alloys were composed of Sn-rich phase (β) and Cu{sub 6}Sn{sub 5} fiber. No other intermetallic compounds (IMCs) with Bi content were observed in the solder matrix for SC solder alloys with various Bi contents. Both fiber spacing and diameter all decreased gradually with increasing growth rate and/or Bi content. Besides, the regularity of Cu{sub 6}Sn{sub 5} fibers alignment also decreased with increasing growth rate, too. The tensile strengths of the SC–xBi eutectic solder alloys varied parabolically with growth rate (R). When R was 60 μm/s, maximum tensile strengths of 43.8, 55.2 and 56.37 MPa were reached for SC, SC0.7Bi and SC1.3Bi solder alloys. A comparison of tensile strength of SC, SC0.7Bi and SC1.3Bi with the same R indicated that the tensile strength increased with increasing Bi content, which was attributed to the presence of Bi and its role in refining microstructure and solid solution strengthening.

  16. Fe(Co)SiBPCCu nanocrystalline alloys with high Bs above 1.83 T

    Science.gov (United States)

    Liu, Tao; Kong, Fengyu; Xie, Lei; Wang, Anding; Chang, Chuntao; Wang, Xinmin; Liu, Chain-Tsuan

    2017-11-01

    Fe84.75-xCoxSi2B9P3C0.5Cu0.75 (x = 0, 2.5 and 10) nanocrystalline alloys with excellent magnetic properties were successfully developed. The fully amorphous alloy ribbons exhibit wide temperature interval of 145-156 °C between the two crystallization events. It is found that the excessive substitution of Co for Fe greatly deteriorates the magnetic properties due to the non-uniform microstructure with coarse grains. The alloys with x = 0 and 2.5 exhibit high saturation magnetization (above 1.83 T), low core loss and relatively low coercivity (below 5.4 A/m) after annealing. In addition, the Fe84.75Si2B9P3C0.5Cu0.75 nanocrystalline alloy also exhibits good frequency properties and temperature stability. The excellent magnetic properties were explained by the uniform microstructure with small grain size and the wide magnetic domains of the alloy. Low raw material cost, good manufacturability and excellent magnetic properties will make these nanocrystalline alloys prospective candidates for transformer and motor cores.

  17. Hot temperature corrosion of a zircon-1%niobium alloy

    International Nuclear Information System (INIS)

    Muller, Sebastian; Lanzani, Liliana

    2010-01-01

    The reaction of the Zr-1%Niobium alloy to corrosion is studied in this work, which is used as fuel elements sheath material in Russian VVER reactors. For comparative purposes, the conventional alloys Zircaloy-4 y Zr-2.5%Nb have been tested as well. Autoclave tests were carried out in water and in solutions of LiOH with concentrations of 0-1 to 1M at 343 o C and in water vapor at 400 o C (following ASTM G2/G2M-06). The gain in weight/unit of area of the autoclaved samples was determined in order to evaluate the corrosion, and metallographics were performed to characterize the oxides and hydrides that formed. The results show that for tests of 16 hours, a minimum concentration of 0.65M LiOH is needed to accelerate corrosion in Zr-1%Nb and Zr-2.5%Nb, while acceleration occurs in Zircaloy-4 at a concentration of 0.45M. In solutions of LiOH 1M the hydrogen 'uptake' in Zr-1Nb and Zr-2,5Nb is considerably lower in Zircaloy-4. The lesser amount of β-Zr phase present in the Zr-1Nb alloy produces thinner and more compact oxides, with better visual characteristics than for those formed in Zr-2.5Nb

  18. THE EFFECT OF RARE EARTH ELEMENTS ON Cr PRECIPITATIONS IN A Cu-0.8WT%Cr ALLOY

    Directory of Open Access Journals (Sweden)

    Gewang Shuai

    2011-05-01

    Full Text Available The microstructural evolution of Cu-based alloys during aging was studied using a quantitative metallographic method. Samples were cut from ingots of Cu-0.8wt%Cr and Cu-0.8wt%Cr-RE alloys. These were solution treated at 1000 ºC for 1.5h and subsequently quenched in water, then separately aged at 480 ºC for different durations. The microstructures were observed by optical microscope, and the characteristic geometric parameters of precipitated Cr phase, including volume fraction VV, face density NA, mean diameter and roundness, were measured. These data provided more details about the process of aging. The results showed that precipitation of Cr phase occurred in the form of particles during aging. Rare earth elements promoted the precipitation of Cr phase and dispersed Cr particles. The phenomenon of overaging came earlier in Cu-Cr-RE than in Cu-Cr. In the present work, the optimal aging time at 480 ºC was 2 hrs for the Cu-0.8wt%Cr-RE alloy and 3 hours for the Cu-0.8wt%Cr alloy.

  19. Enhanced magnetocaloric properties and critical behavior of (Fe0.72Cr0.28)3Al alloys for near room temperature cooling

    International Nuclear Information System (INIS)

    Sharma, V; Maheshwar Repaka, D V; Chaudhary, V; Ramanujan, R V

    2017-01-01

    Magnetic cooling is an environmentally friendly, energy efficient, thermal management technology relying on high performance magnetocaloric materials (MCM). Current research has focused on low cost, corrosion resistant, rare earth (RE) free MCMs. We report the structural and magnetocaloric properties of novel, low cost, RE free, iron based (Fe 0.72 Cr 0.28 ) 3 Al alloys. The arc melted buttons and melt spun ribbons possessed the L2 1 crystal structure and B2 crystal structure, respectively. A notable enhancement of 33% in isothermal entropy change (−Δ S m ) and 25% increase in relative cooling power (RCP) for the ribbons compared to the buttons can be attributed to higher structural disorder in the Fe–Cr and Fe–Al sub-lattices of the B2 structure. The critical behavior was investigated using modified Arrott plots, the Kouvel–Fisher plot and the critical isotherm technique; the critical exponents were found to correspond to the short-range order 3D Heisenberg model. The field and temperature dependent magnetization curves of (Fe 0.72 Cr 0.28 ) 3 Al alloys revealed their soft magnetic nature with negligible hysteresis. Thus, these alloys possess promising performance attributes for near room temperature magnetic cooling applications. (paper)

  20. Effect of Si, Mn, Sn on Tensile and Corrosion Properties of Mg-4Zn-0.5Ca Alloys for Biodegradable Implant Materials

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Hyun; Nam, Ji Hoon; Lee, Byeong Woo; Park, Ji Yong; Shin, Hyun Jung; Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2015-03-15

    Effect of elements Si, Mn, Sn on tensile and corrosion properties of Mg-4Zn-0.5Ca alloys were investigated. The results of tensile properties show that the yield strength, ultimate tensile strength and elongation of Mg-4Zn-0.5Ca alloy increased significantly with the addition of 0.6 wt% Mn. This is considered the grain refinement effect due to addition of Mn. However addition of 0.6 wt% Si decreased yield strength, ultimate tensile strength and elongation. The bio-corrosion behavior of Mg-4Zn-0.5Ca-X alloys were investigated using immersion tests and potentiodynamic polarization test in Hank's solution. Immersion test showed that corrosion rate of Mg-4Zn-0.5Ca-0.6Mn alloy was the lowest rate and addition of 1.0 wt% Sn accelerated corrosion rate due to micro-galvanic effect in α-Mg/CaMgSn phases interface. And corrosion potential (E{sub c}orr) of Mg-4Zn-0.5Ca-0.6Mn alloy was the most noble among Mg-4Zn-0.5Ca-X alloys.

  1. Thermal stability and thermal property characterisation of Fe–14.4Cr–15.4Ni–2.4Mo–2.36Mn–0.25Ti–1.02Si–0.042C–0.04P–0.005B (mass%) austenitic stainless steel (Alloy D9I)

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Haraprasanna [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Raju, S., E-mail: sraju@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rai, Arun Kumar [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Panneerselvam, G. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2013-02-15

    Highlights: ► High temperature enthalpy, specific heat, lattice thermal expansion of Alloy D9I determined. ► Melting and solidification studied by thermal analysis. ► Integrated modelling by Debye–Grüneisen quasiharmonic formalism. ► Comprehensive thermal property assessment for austenitic stainless steel. -- Abstract: High temperature measurements of enthalpy increment (ΔH{sub T}°) and lattice parameter have been carried out on Alloy D9I by means of drop calorimetry and high temperature X-ray diffraction techniques, respectively. In addition, the thermal stability during heating and cooling from the melting range has been investigated by differential scanning calorimetry. It is found that under near equilibrium cooling conditions (3 K min{sup −1}), Alloy D9I exhibits L → γ austenite → L + γ + δ ferrite → γ + δ → γ solidification mode. However, the phase fraction of δ ferrite and the temperature region of γ + δ two phase domain are found to be small. The on-cooling liquidus and solidus temperatures are found to be 1684 and 1631 ± 5 K, respectively. The latent heat of solidification is found to be in the range, 190–220 J g{sup −1}. The thermal analysis study has revealed that solution treated Alloy D9I exhibits an endothermic dissolution of Ti(C,N) particles at about 1323 ± 2 K, with an associated heat effect of 16–20 J g{sup −1}. The specific heat C{sub p} and coefficient of linear thermal expansion α{sub l} at 298.15 K are estimated to be 486 J kg{sup −1} K{sup −1} and 1.15 × 10{sup −5} K{sup −1}, respectively. The measured temperature dependencies of C{sub p} and α{sub l} for Alloy D9I are in good agreement with the general trend exhibited by many austenitic steels. Further, an empirical linear correlation has been found between the measured temperature dependent molar volume and molar enthalpy values. The measured thermal property data have been modelled through Debye–Grüneisen formalism to obtain an

  2. Magnetocaloric effect and the influence of pressure on magnetic properties of La-excess pseudo-binary alloys La{sub 1+δ}(Fe{sub 0.85}Si{sub 0.15}){sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Vuong, Van Hiep; Do Thi, Kim Anh [Faculty of Physics, VNU-University of Science, 334 Nguyen Trai, Ha Noi (Viet Nam); Thuan Nguyen, Khac; Nhat Hoang, Nam, E-mail: namnhat@gmail.com, E-mail: nhathn@vnu.edu.vn [Faculty of Engineering Physics and Nanotechnology, VNU-University of Engineering and Technology, 144 Xuan Thuy, Ha Noi (Viet Nam); Le, Van Hong [Duy Tan University, 25 Quang Trung str., Da Nang (Viet Nam)

    2016-10-14

    The La-excess alloys La{sub 1+δ}(Fe{sub 0.85}Si{sub 0.15}){sub 13} (δ = 0.06 and 0.09) exhibit large magnetocaloric effect which has been attributed to the occurrence of itinerant-electron metamagnetic transition near the Curie temperature T{sub C}. The maximum entropy change −ΔS{sub m} was shown to be from 4.5 to 11.5 J/kg K for the applied field variation ΔH from 20 to 70 kOe, respectively. The estimated relative cooling power for ΔH = 70 kOe was 418 J/kg. The alloys show a typical NaZn{sub 13}-type cubic structure, featuring a doping-induced magnetovolume effect with the increase in T{sub C}. Under the applied pressure up to 2 GPa, the T{sub C} as deduced from resistance measurements decreased linearly, ΔT{sub C} = 113 (for δ = 0.06) and 111 K (for δ = 0.09), together with a corresponding decrease of resistivity, Δρ = 6.1 μΩ m at room temperature for both samples. At a low pressure, the effect of spontaneous magnetostriction on T{sub C} caused by applying the pressure appeared to have a similar magnitude to that of the negative magnetovolume effect caused by La-excess doping. In comparison with other stoichiometric La(Fe{sub 1−x}Si{sub x}){sub 13} compounds, the pressure in our case was shown to have a smaller influence on T{sub C}.

  3. High Temperature Strength and Hot Working Technology for As-Cast Mg–1Zn–1Ca (ZX11 Alloy

    Directory of Open Access Journals (Sweden)

    Kamineni Pitcheswara Rao

    2017-10-01

    Full Text Available Cast Mg–1Zn–1Ca alloy (ZX11 has been tested to evaluate its compressive strength between 25 °C and 250 °C, and workability in the range of 260–500 °C. The ultimate compressive strength of this alloy is about 30% higher than that of creep-resistant alloy Mg–3Sn–2Ca (TX32 between 25 °C and 200 °C, and exhibits a plateau between 100 °C and 175 °C, similar to TX32. This is attributed to Mg2Ca particles present at grain boundaries that reduce their sliding. The processing map, developed between 260 and 420 °C in the strain rate limits of 0.0003 s−1 to 1 s−1, exhibited two domains in the ranges: (1 280–330 °C and 0.0003–0.01 s−1 and (2 330–400 °C and 0.0003–0.1 s−1. In these domains, dynamic recrystallization occurs, with basal slip dominating in the first domain and prismatic slip in the second, while the recovery mechanism being climb of edge dislocations in both. The activation energy estimated using standard kinetic rate equation is 191 kJ/mol, which is higher than the value for lattice self-diffusion in magnesium indicating that a large back stress is created by the presence of Ca2Mg6Zn3 intermetallic particles in the matrix. It is recommended that the alloy be best processed at 380 °C and 0.1 s−1 at which prismatic slip is favored due to Zn addition. At higher strain rates, the alloy exhibits flow instability and adiabatic shear band formation at <340 °C while flow localization and cracking at grain boundaries occurs at temperatures >400 °C.

  4. Investigation of magnetic mesostructure of (Pd{sub 0.984}Fe{sub 0.016}){sub 0.95}Mn{sub 0.05} alloy by polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, G. [Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, St. Petersburg (Russian Federation)]. E-mail: ggordev@pnpi.spb.ru; Zabenkin, V. [Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, St. Petersburg (Russian Federation); Axelrod, L. [Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, St. Petersburg (Russian Federation); Lazebnik, I. [Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, St. Petersburg (Russian Federation); Wagner, V. [Physikalish-Technishe Bundesanstalt D-38116, Braunschweig (Germany); Eckerlebe, H. [Forschung Zentrum GKSS, Geesthacht (Germany)

    2007-07-15

    Neutron depolarization measurements and a simple model for depolarization were used to determine the geometrical sizes of magnetic inhomogeneities in the (Pd{sub 0.984}Fe{sub 0.016}){sub 0.95}Mn{sub 0.05} alloy. Polarized small angle scattering shows an asymmetric part, which should be attributed to a chiral ordering of the spins.

  5. Neutron diffraction study on the crystal and magnetic structures of arc-melted PrFe10.5Mo1.1C0.4 alloy

    International Nuclear Information System (INIS)

    Du Honglin; Xue Yanjie; Zhang Baisheng; Mao Weihua; Yang Jinbo; Cheng Benpei; Yang Yingchang

    1999-01-01

    The crystal and magnetic structures, especially the site occupation of C atoms in the crystal cell of arc-melted PrFe 10.5 Mo 1.1 C 0.4 permanent magnetic alloy have been determined by means of powder neutron diffraction study. Rietveld analysis of the neutron diffraction data indicates that Mo atoms prefers the 8i site, about 76 percent of the C atoms occupy the 8i substitution site, and the other part of C atoms enter the 2b interstitial site. The exact molecular formula should be Pr(Fe 10.575 Mo 1.250 C 0.1.75 C 0.055 . It seems that the site occupation of C atoms in the ThMn 12 -type carbides depends not only on the kind of substitutional transition metals, but also on the components of the substitutional transition metals in the compounds. There are still amount of work to make systematic studies on the relation between them. The effect of C atoms on the magnetic properties is also discussed. (author)

  6. Influence of Zr substitution on the stabilization of ThMn12-type (Nd1−αZrα(Fe0.75Co0.2511.25Ti0.75N1.2−1.4 (α = 00.3 compounds

    Directory of Open Access Journals (Sweden)

    N. Sakuma

    2016-05-01

    Full Text Available The influence of Zr substitution in ThMn12 compounds was investigated using strip casting alloys. It was found that Zr substitution stabilized (Nd1−αZrα(Fe0.75Co0.2511.25Ti0.75N1.2−1.4 (α = 00.3 compounds. Specifically, a reduction in the lattice constant along the a-axis was observed. Energy-dispersive X-ray spectroscopy mapping combined with Cs-corrected scanning transmission electron microscopy indicated that Zr atoms preferentially occupied Nd 2a sites. Both the magnetic anisotropy field and saturation polarization were maximum at Zr substitution ratio α = 0.1. The (Nd1−αZrα(Fe0.75Co0.2511.25Ti0.75N1.2−1.4 (α = 00.3 compounds displayed higher saturation polarization than Nd2Fe14B at high temperatures.

  7. Influence of silver addition on the microstructure and mechanical properties of squeeze cast Mg-6Al-1Sn-0.3Mn-0.3Ti

    International Nuclear Information System (INIS)

    Acikgoez, Sehzat; Sevik, Hueseyin; Kurnaz, S.Can

    2011-01-01

    Graphical abstract: Highlights: → X-ray diffractometry reveals that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the base alloy. → With addition of silver, Al 81 Mn 19 phase was found. → The mechanical properties of the base alloy are improved with addition of silver. → The fracture surface of base alloy shows relatively deeper and more amount of dimples than that of alloys containing silver. - Abstract: In this study, the effect of silver (0, 0.2, 0.5, and 1 wt.%) on the microstructure and mechanical properties of a magnesium-based alloy (Mg-Al 6 wt.%-Sn 1 wt.%-Mn 0.3 wt.%-Ti 0.3 wt.%) were investigated. The alloys were produced under a controlled atmosphere by a squeeze-casting process. X-ray diffractometry revealed that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the all of alloys. In addition to, Al 81 Mn 19 phase was found with Ag additive. Besides, the amount of β-Mg 17 Al 12 phase was decreased with increasing the amount of Ag. The strength of the base alloy was increased by solid solution mechanism and decreasing the amount of β-Mg 17 Al 12 phase with addition of Ag. Furthermore, existence of Al 81 Mn 19 phase can be acted an important role in the increase on the mechanical properties of the alloys.

  8. Highlighting micrographic structures of uranium alloys containing 0.5 to 10 per cent wt molybdenum

    International Nuclear Information System (INIS)

    Laniesse, J.; Bouleau, M.

    1959-02-01

    The authors report a study which aimed at determining for different uranium molybdenum alloys and with respect to their molybdenum content a polishing method which allows a relatively simple grain examination in the as-cast condition, an as perfect as possible resolution of eutectic decompositions, and the appropriate conditions to highlight structures (beta-alpha and gamma-alpha martensite transformations, beta phase retention and decomposition, transient structures, eutectoid decomposition, and so on). Alloys differ by their molybdenum content: from 0.5 to 1 per cent wt, 1.5 to 3 per cent wt, 5 to 10 per cent wt

  9. Study on microstructure and properties of extruded Mg-2Nd-0.2Zn alloy as potential biodegradable implant material.

    Science.gov (United States)

    Li, Junlei; Tan, Lili; Wan, Peng; Yu, Xiaoming; Yang, Ke

    2015-04-01

    Mg-2Nd-0.2Zn (NZ20) alloy was prepared for the application as biodegradable implant material in this study. The effects of the extrusion process on microstructure, mechanical and corrosion properties of the alloy were investigated. The as-cast alloy was composed of α-Mg matrix and Mg12Nd eutectic compound. The solution treatment could lead to the Mg12Nd phase dissolution and the grain coarsening. The alloy (E1) preheated at 380°C for 1h and extruded at 390°C presents fine grains with amounts of tiny Mg12Nd particles uniformly dispersed throughout the boundaries and the interior of the grains. The alloy (E2) preheated at 480°C for 1h and extruded at 500°C exhibits relatively larger grains with few nano-scale Mg12Nd phase particles dispersed. The alloy of E1, compared with E2, showed relatively lower corrosion rate, higher yield strength and slightly lower elongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. VT Current and Future Status of Broadband Availability by Sub-Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  11. Magnetic properties of (Mn1-xRux)3Ga alloys

    International Nuclear Information System (INIS)

    Hori, T.; Akimitsu, M.; Miki, H.; Ohoyoama, K.; Yamaguchi, Y.

    2002-01-01

    We found that the pseudo binary alloys Mn 1-x Ru x 3 Ga, with 0.33≤x≤0.67, have an ordered b.c.c. structure. The lattice constant a is almost constant with respect to x: a=6.000 A for x=0.33 and a=5.992 A for x=0.67. For the alloy with x=0.33, i.e. Mn 2 RuGa, the magnetization is almost saturated in a field of 20 kOe. The saturation magnetization at 4.2 K is 23 emu/g, and the Curie temperature, T C , is 460 K. The T C of (Mn 1-x Ru x ) 3 Ga decreases almost linearly with increasing x, and it vanishes around x=0.67 (MnRu 2 Ga). We also determined atomic and magnetic structures from neutron diffraction experiments. The alloy Mn 2 RuGa (x=0.33) has an ordered structure of CuHg 2 Ti type; the magnetic Mn atoms mainly occupy the 4a (0,0,0) and 4d (3/4,3/4,3/4) sites. We also observed that the magnetic moments of Mn atoms on the 4a and 4d sites are antiparallel to each other; values of the magnetic moment are μ a =4.6 and μ d =3.3 μ B per Mn atom. (orig.)

  12. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys.

    Science.gov (United States)

    Ramarolahy, A; Castany, P; Prima, F; Laheurte, P; Péron, I; Gloriant, T

    2012-05-01

    In this study, the microstructure and the mechanical properties of two new biocompatible superelastic alloys, Ti-24Nb-0.5O and Ti-24Nb-0.5N (at.%), were investigated. Special attention was focused on the role of O and N addition on α(″) formation, supereleastic recovery and mechanical strength by comparison with the Ti-24Nb and Ti-26Nb (at.%) alloy compositions taken as references. Microstructures were characterized by optical microscopy, X-ray diffraction and transmission electron microscopy before and after deformation. The mechanical properties and the superelastic behavior were evaluated by conventional and cyclic tensile tests. High tensile strength, low Young's modulus, rather high superelastic recovery and excellent ductility were observed for both superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N alloys. Deformation twinning was shown to accommodate the plastic deformation in these alloys and only the {332} twinning system was observed to be activated by electron backscattered diffraction analyses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Electrochemical investigations and characterization of a metal hydride alloy (MmNi3.6Al0.4Co0.7Mn0.3) for nickel metal hydride batteries

    International Nuclear Information System (INIS)

    Begum, S. Nathira; Muralidharan, V.S.; Basha, C. Ahmed

    2009-01-01

    The use of new hydrogen absorbing alloys as negative electrodes in rechargeable batteries has allowed the consideration of nickel/metal hydride (Ni/MH) batteries to replace the conventional nickel cadmium alkaline or lead acid batteries. In this study the performance of trisubstituted hydrogen storage alloy (MmNi 3.6 Al 0.4 Co 0.7 Mn 0.3 ) electrodes used as anodes in Ni/MH secondary batteries were evaluated. MH electrodes were prepared and the electrochemical utilization of the active material was investigated. Cyclic voltammetric technique was used to analyze the beneficial effect of the alloy by various substitutions. The electrochemical impedance spectroscopic measurements of the Ni/MH battery were made at various states of depth of discharge. The effect of temperature on specific capacity is studied and specific capacity as a function of discharge current density was also studied and the results were analyzed. The alloy metal hydride electrode was subjected to charge/discharge cycle for more than 200 cycles. The discharge capacities of the alloy remains at 250 mAh/g with a nominal fading in capacity (to the extent of ∼20 mAh/g) on prolonged cycling

  14. Determination of the enthalpy of fusion and thermal diffusivity for ternary Cu_6_0_−_xSn_xSb_4_0 alloys

    International Nuclear Information System (INIS)

    Zhai, W.; Zhou, K.; Hu, L.; Wei, B.

    2016-01-01

    Highlights: • The increasing Sn content reduces the liquidus temperature. • High Sn content results in lower enthalpy of fusion by polynomial functions. • The thermal diffusivity drops from the solid toward the semi-solid state. • Undercoolability of alloys with primary Cu_2Sb phase is stronger than others. - Abstract: The liquidus and solidus temperatures, enthalpy of fusion, and the temperature dependence of thermal diffusivity for ternary Cu_6_0_−_xSn_xSb_4_0 alloys were systematically measured by DSC and laser flash methods. It is found that both the liquidus temperature and the enthalpy of fusion decrease with the rise of Sn content, and their relationships with alloy composition were established by polynomial functions. The thermal diffusivity usually drops from the solid toward the semi-solid state. The undercoolability of those liquid Cu_6_0_−_xSn_xSb_4_0 alloys with primary Cu_2Sb solid phase is stronger than the others with primary β(SnSb) intermetallic compound, and the increase of cooling rate facilitates further undercooling. Microstructural observation indicates that both of the primary Cu_2Sb and β(SnSb) intermetallic compounds in ternary Cu_6_0_−_xSn_xSb_4_0 alloys grow in faceted mode, and develop into coarse flakes and polygonal blocks.

  15. Pressure-induced instability of magnetic order in Kondo-lattice system. Neutron diffraction study of the pseudo-binary alloy system Ce(Ru sub 0 sub . sub 9 sub 0 Rh sub 0 sub . sub 1 sub 0) sub 2 (Si sub 1 sub - sub y Ge sub y) sub 2

    CERN Document Server

    Watanabe, K; Kanadani, C; Taniguchi, T; Kawarazaki, S; Uwatoko, Y; Kadowaki, H

    2003-01-01

    Neutron diffraction experiments have been carried out to study the nature of the magnetic order of the pseudo-binary alloy system Ce(Ru sub 0 sub . sub 9 sub 0 Rh sub 0 sub . sub 1 sub 0) sub 2 (Si sub 1 sub - sub y Ge sub y) sub 2. Response of the ordered atomic magnetic moment, mu, the transition temperature, T sub N , and the magnitude of the magnetic modulation vector, q, to the chemical pressure and also to the applied hydrostatic pressure, P, were examined at low temperatures. When y changes, all of mu, T sub N and q show a sudden alteration of the manner of the y-dependence at around y - 0.08. The P-dependence of q shows quite different features for different y's of 0.0, 0.2 and 0.25. On the basis of these observations the possibility of a pressure-induced alternation of the magnetic regime of the order is discussed. (author)

  16. Low cycle fatigue behavior of electron beam and friction welded joints of an α-β titanium alloy

    International Nuclear Information System (INIS)

    Mohandas, T.; Varma, V.K.; Banerjee, D.; Kutumbarao, V.V.

    1996-01-01

    Fusion welds in titanium alloys, with intermediate β stabilizing additions, show poor mechanical properties due to large fusion zone grain size coupled with a brittle plate martensitic microstructure and hydrogen induced microporosity. These problems, associated with fusion welding, have been reported to be overcome by friction welding. The alloy used in this study is a Soviet composition (VT9) of the α-β class with the nominal chemical composition Ti-6.5Al-3.3Mo-1.6Zr-0.3 Si (in weight percent), intended to be used as discs and blades in compressor stages of gas turbine engine where low cycle fatigue (LCF) loading is experienced. Electron beam welding of the alloy was largely unsuccessful for the reasons described above. Fatigue properties of such welds had large scatter due to the presence of microporosity. A continuous drive friction welding technique was investigated to overcome this problem These welds showed encouraging results in that microporosity, a problem in the electron beam welding, was not observed and the mechanical properties were at par or better than those of the base metal. This paper deals with the study of stress controlled LCF behavior of friction welds and electron beam welds of the α-β titanium alloy at ambient temperature and the results are compared with those of base metal

  17. VT Data - Zoning Ridgeline Protection Overlay 20070716, Reading

    Data.gov (United States)

    Vermont Center for Geographic Information — Denotes the Ridgeline Protection areas referenced in the town of Reading VT town plan as adopted July 16, 2007. Based on; RidgelineProtectionOverlway_RPC_pre2009.shp

  18. Inhibiting the corrosion of MNZh 5-1 alloy in neutral solutions of 5-chloro-1,2,3-benzotrialzol

    Science.gov (United States)

    Kuznetsov, Yu. I.; Agafonkina, M. O.; Andreeva, N. P.; Arkhipushkin, I. A.; Kazansky, L. P.

    2017-11-01

    The adsorption and protective properties of 5-chloro-1,2,3-benzotriazol (5-chloro-BTA) are studied in relation to MNZh 5-1 alloy in a chloride borate buffer solution with pH 7.4. It is shown that this inhibitor can stabilize the passive state of the alloy at a concentration of 0.12 mmol/g. The adsorption of 5-chloro-BTA on a surface of MNZh 5-1 alloy is polymolecular; the free energy of adsorption is about 80 kJ/mol. The advantages of adsorption and protective properties of 5-chloro-BTA compared to BTA on both MNZh 5-1 alloy and the metals contained in the alloy (Ni, Cu) are shown. XPS data indicate a 5-chloro-BTA monolayer formed on the surface of the alloy. This monolayer was composed of inhibitor molecules, which are normally oriented toward a surface and are not removed during ultrasonic washing of the electrode.

  19. Irradiation-induced displacement of Ag atoms from lattice sites in an Al-0.2% Mg-0.1% Ag crystal

    International Nuclear Information System (INIS)

    Swanson, M.L.; Howe, L.M.; Quenneville, A.F.

    1976-01-01

    In irradiated alloys of Al containing approximately 0.1 at% Ag, the backscattering - channelling method shows that Al-Ag dumbells are created by the trapping of Al interstitial atoms at Ag solute atoms. The present results demonstrate that the addition of 0.2 at% Mg to such irradiated alloys retards not only the formation of Al-Ag dumbells during annealing from 30 to 100 K but also their annihilation during annealing from 180 to 240 K. Al interstitials are released from Mg traps at 100 to 160 K, causing further trapping at Ag atoms. Approximately 70% of the Ag atoms return to lattice sites at approximately 200 K (stage III) (compared with 100% in the Al-0.1% Ag alloys) and the remainder return to lattice sites at approximately 260 K. These results favour migration of Al-Ag dumbells rather than vacancies during stage III annealing. (author)

  20. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  1. Thermally stimulated current analysis of Zn{sub 1-x}Cd{sub x}O alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A. Senol, E-mail: saybek@anadolu.edu.tr [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey); Baysal, Nihal [Kilicoglu Anadolu High School, Eskisehir 26050 (Turkey); Zor, Muhsin; Turan, Evren; Kul, Metin [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey)

    2011-02-03

    Research highlights: > We have studied the structural and electrical properties of Zn{sub 1-x}Cd{sub x}O alloy films deposited by ultrasonic spray pyrolysis technique. > The trap energy, the capture cross-section, the attempt-to-escape frequency and the concentration of the traps in Zn{sub 1-x}Cd{sub x}O films are reported. > The effect of the Cd incorporation into ZnO material on trapping levels was investigated by the TSC measurements. Two overlapped peaks were registered at levels of 0.033 and 0.197 eV in ZnO sample by the curve fitting technique. The observed trap energy levels for ZnO film is thought to originate from zinc interstitials and oxygen vacancies. However, the incorporation of Cd into Zn{sub 1-x}Cd{sub x}O alloy films with x = 0.59 have resulted in two trapping centers with activation energies of 0.118 and 0.215 eV. The observed trap levels in Zn{sub 0.41}Cd{sub 0.59}O alloy film are related to oxygen adsorption in the sample. - Abstract: We have studied the structural and electrical properties of Zn{sub 1-x}Cd{sub x}O alloy films deposited by ultrasonic spray pyrolysis technique. XRD measurement indicated that pure ZnO and CdO samples had single phases with hexagonal wurtzite and cubic structures, respectively. However, Zn{sub 1-x}Cd{sub x}O alloy films with x = 0.59 and 0.78 exhibited mixtures of a hexagonal wurtzite ZnO phase and a cubic CdO phase. Analysis of thermally stimulated current spectra of Zn{sub 1-x}Cd{sub x}O alloy films revealed the existence of a number of overlapped peaks each characterized by different trap energy levels located in the range of 0.033-0.215 eV below the conduction band. We have used curve fitting method for the evaluation of the trap parameters of the alloy films. The values of attempt-to-escape frequency {nu}, capture cross-section S and concentration of the traps N{sub t} have been determined.

  2. Hydrogen absorption in Ce{sub x}Gd{sub 1-x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bereznitsky, M. [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Bloch, J. [Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 84190 (Israel); Yonovich, M. [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Schweke, D. [Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 84190 (Israel); Mintz, M.H. [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 84190 (Israel); Jacob, I., E-mail: izi@bgu.ac.il [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ce{sub x}Gd{sub 1-x} alloys exhibit the most negative heats of hydride formation ever found. Black-Right-Pointing-Pointer Thermodynamics of H absorption in Ce{sub x}Gd{sub 1-x} correlates with the alloys hardness. Black-Right-Pointing-Pointer The entropies of H solution and hydride formation reflect the hydrogen vibrations. Black-Right-Pointing-Pointer Terminal hydrogen solubilities change in a monotonic way between Ce and Gd. - Abstract: The effect of alloying on the thermodynamics of hydrogen absorption was studied for Ce{sub x}Gd{sub 1-x} alloys (0 {<=} x {<=} 1) at temperatures between 850 K and 1050 K in the 1-10{sup -4} Torr pressure range. The temperature-dependent hydrogen solubilities and plateau pressures for hydride formation were obtained from hydrogen absorption isotherms. The terminal hydrogen solubility (THS) at a given temperature changes in a monotonic way as a function of x. It is approximately three times higher in Gd, than in Ce, throughout the investigated temperature range. This monotonic behavior is opposed to that of many other substitutional alloys, for which the hydrogen terminal solubility increases with increasing solute concentrations. The enthalpies, {Delta}H{sub f}, and the entropies, {Delta}S{sub f}, of the dihydride formation exhibit a pronounced and broad negative minimum starting at x Almost-Equal-To 0.15, yielding the most negative {Delta}H{sub f} values ever found for metal hydrides. On the other hand, the enthalpies and entropies of ideal solution display a positive trend at x = 0.15 and x = 0.3. Both behaviors are considered in view of a reported distinct variation of the Ce{sub x}Gd{sub 1-x} hardness as a function of x. The particular compositional variations of the entropies of solution and formation as a function of x reflect most likely the vibrational properties of the hydrogen atoms in the metal matrices.

  3. Large roomtemperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn1-xVxCoGe alloys

    International Nuclear Information System (INIS)

    Ma, S.C.; Zheng, Y.X.; Xuan, H.C.; Shen, L.J.; Cao, Q.Q.; Wang, D.H.; Zhong, Z.C.; Du, Y.W.

    2012-01-01

    The magnetic and magnetocaloric properties have been investigated in a series of Mn 1-x V x CoGe (x=0.01, 0.02, 0.03, and 0.05) alloys. The substitution of V for Mn reduces the structural transformation temperature of MnCoGe alloy effectively and results in a second-order magnetic transition in Mn 0.95 V 0.05 CoGe alloys. Large room temperature magnetocaloric effect and almost zero magnetic hysteresis losses are simultaneously achieved in the alloys with x=0.01, 0.02, and 0.03. The reasons for the negligible magnetic hysteresis losses and the potential application for the roomtemperature magnetic refrigeration are discussed. - Highlights: → V-substitution for Mn reduces the structural transformation temperature of MnCoGe. → FM-PM transition presents the second-order nature in Mn0.95V0.05CoGe. → The first-order FM-PM transitions are observed for alloys with x=0.01, 0.02, and 0.03. → Large room temperature MCEs are achieved in these alloys. → Negligible magnetic HL is achieved for these alloys simultaneously.

  4. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution

    International Nuclear Information System (INIS)

    Chen, Jian; Wang, Jianqiu; Han, Enhou; Dong, Junhua; Ke, Wei

    2007-01-01

    The corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution at the corrosion potential (E corr ) was investigated using electrochemical impedance spectroscopy (EIS), environmental scanning electron microscopy (ESEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The results showed that when the immersion time was less than 18th, general corrosion occurred on the surface and the main corrosion products were hydroxides and sulfates. The film coverage effect was the main mechanism for the corrosion process of AZ91 alloy. At this stage, the matrix had a better corrosion resistance. With the increasing immersion time, pitting occurred on the surface. At this stage, the corrosion process was controlled by three surface state variables: the area fraction θ 1 of the region controlled by the formation of Mg(OH) 2 , the area fraction θ 2 of the region controlled by the precipitation of MgAl 2 (SO 4 ) 4 .2H 2 O, and the metastable Mg + concentration C m

  5. Processing and characterization of AlCoFeNiXTi0,5 (X = Mn, V) high entropy alloys

    International Nuclear Information System (INIS)

    Triveno Rios, C.; Kiminami, C.S.

    2014-01-01

    The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi 0,5 and AlCoFeNiVTi 0,5 alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi 0,5 alloy showed better mechanical properties than the AlCoFeNiMnTi 0,5 alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)

  6. Growth and electrical characterization of Al{sub 0.24}Ga{sub 0.76}As/Al{sub x}Ga{sub 1-x}As/Al{sub 0.24}Ga{sub 0.76}As modulation-doped quantum wells with extremely low x

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Geoffrey C. [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Watson, John D.; Mondal, Sumit [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Deng, Nianpei; Csathy, Gabor A. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Manfra, Michael J. [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2013-06-24

    We report on the growth and electrical characterization of modulation-doped Al{sub 0.24}Ga{sub 0.76}As/Al{sub x}Ga{sub 1-x}As/Al{sub 0.24}Ga{sub 0.76}As quantum wells with mole fractions as low as x = 0.00057. Such structures will permit detailed studies of the impact of alloy disorder in the fractional quantum Hall regime. At zero magnetic field, we extract an alloy scattering rate of 24 ns{sup -1} per%Al. Additionally, we find that for x as low as 0.00057 in the quantum well, alloy scattering becomes the dominant mobility-limiting scattering mechanism in ultra-high purity two-dimensional electron gases typically used to study the fragile {nu} = 5/2 and {nu} = 12/5 fractional quantum Hall states.

  7. Structural and magnetic properties of Fe{sub 76}P{sub 5}(Si{sub 0.3}B{sub 0.5}C{sub 0.2}){sub 19} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lavorato, G.C. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Fiore, G. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Tiberto, P. [INRIM, Electromagnetism Division, Torino (Italy); Baricco, M. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Sirkin, H. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Moya, J.A., E-mail: jmoya.fi.uba@gmail.com [GIM - IESIING, Universidad Catolica de Salta, INTECIN (UBA-CONICET) (Argentina)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 76}P{sub 5}(Si{sub 0.3}B{sub 0.5}C{sub 0.2}){sub 19} amorphous alloy in ribbons and 1 mm and 2 mm rod samples. Black-Right-Pointing-Pointer Good glass forming ability with {Delta}T = 50 K and {gamma} = 0.37 and off-eutectic composition. Black-Right-Pointing-Pointer Good soft magnetic properties with magnetization saturation of 1.44 T. Black-Right-Pointing-Pointer Geometrical factors are the primary causes of magnetic losses in frequencies above 10 Hz. - Abstract: Recently, bulk amorphous alloys were produced in the Fe-B-Si-P-C system with high glass forming ability, excellent magnetic properties and the advantage of containing no expensive glass-forming elements, such as Ga, Y, Cr or Nb, having, therefore, a good perspective of commercial applications. In the present work, the Fe{sub 76}P{sub 5}(Si{sub 0.3}B{sub 0.5}C{sub 0.2}){sub 19} amorphous alloy prepared by two quenching techniques has been studied. Amorphous ribbons of about 40 {mu}m thick were obtained by planar-flow casting together with cylinders having 1 and 2 mm diameter produced by copper mold injection casting. All the samples appear fully amorphous after X-ray diffraction analysis. A comprehensive set of thermal data (glass, crystallization, melting and liquidus temperatures) were obtained as well as a description of the melting and solidification processes. Mechanical microhardness tests showed that the samples have a hardness of 9.7 {+-} 0.3 GPa. Good soft-magnetic properties were obtained, including a high magnetization of 1.44 T and a low coercivity (4.5 A/m for ribbons and 7.5 A/m in the case of 1 mm rod samples, both in as-cast state). Thermomagnetic studies showed a Curie temperature around 665 K and the precipitation of new magnetic phases upon temperatures of 1000 K. Furthermore, the frequency dependence of magnetic losses at a fixed peak induction was studied. The results suggest the occurrence of a fine magnetic domain structure in bulk

  8. Superelasticity, corrosion resistance and biocompatibility of the Ti–19Zr–10Nb–1Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Pengfei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Li, Kangming [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Zhang, Deyuan [Life Tech Scientific Corporation, Shenzhen 518057 (China); Zhou, Chungen [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-05-01

    Microstructure, mechanical properties, superelasticity and biocompatibility of a Ti–19Zr–10Nb–1Fe alloy are investigated. X-ray diffraction spectroscopy and transmission electron microscopy observations show that the as-cast Ti–19Zr–10Nb–1Fe alloy is composed of α′ and β phases, but only the β phase exists in the as-rolled and as-quenched alloys. The tensile stress–strain tests indicate that the as-quenched alloy exhibits a good combination of mechanical properties with a large elongation of 25%, a low Young's modulus of 59 GPa and a high ultimate tensile stress of 723 MPa. Superelastic recovery behavior is found in the as-quenched alloy during tensile tests, and the corresponding maximum of superelastic strain is 4.7% at the pre-strain of 6%. A superelastic recovery of 4% with high stability is achieved after 10 cyclic loading–unloading training processes. Potentiodynamic polarization and ion release measurements indicate that the as-quenched alloy shows a lower corrosion rate in Hank's solution and a much less ion release rate in 0.9% NaCl solution than those of the NiTi alloys. Cell culture results indicate that the osteoblasts' adhesion and proliferation are similar on both the Ti–19Zr–10Nb–1Fe and NiTi alloys. A better hemocompatibility is confirmed for the as-quenched Ti–19Zr–10Nb–1Fe alloy, attributed to more stable platelet adhesion and small activation degree, and a much lower hemolysis rate compared with the NiTi alloy. - Highlights: • A stable superelastic strain of 4.0% is achieved for the Ti–19Zr–10Nb–1Fe alloy. • The ion release rates of Ti–19Zr–10Nb–1Fe are much lower than that of Ni in NiTi. • Ti–19Zr–10Nb–1Fe has a similar cytocompatibility compared with the NiTi alloy. • Ti–19Zr–10Nb–1Fe exhibits a better hemocompatibility than the NiTi alloy.

  9. Microstructure, mechanical properties and electrical conductivity of Cu–0.3Mg–0.05Ce alloy processed by equal channel angular pressing and subsequent annealing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guang [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zhou, E-mail: lizhou6931@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Changsha 410083 (China); Yuan, Yuan [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Lei, Qian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha 410083 (China)

    2015-08-15

    Highlights: • Minor Ce addition can deprive harmful elements and purify the Cu–Mg alloy. • Decrease of Mg content can effectively enhance the conductivity of Cu–Mg alloy. • Ultrafine-grained Cu–Mg–Ce alloy was successfully gained by 8 passes of ECAP. • The strength of Cu–Mg–Ce alloy can be significantly improved by ECAP. • Better comprehensive properties than the commercial Cu–Mg alloy are gained. - Abstract: A Cu–0.3 wt.%Mg–0.05 wt.%Ce alloy was designed and prepared by melting and casting. After hot rolled, the ingot was cut into rod-shape samples for equal channel angular pressing (ECAP) with different passes at room temperature. The microstructure evolutions were investigated using transmission electron microscope (TEM) observation and electron backscatter diffraction (EBSD) analysis. The severe plastic deformation (SPD) caused by ECAP made the grains elongated significantly. With the increase of ECAP passes, the fraction of high-angle boundaries (HABs) (θ ⩾ 15°) increased and the microstructure was refined. Tension testing results indicated that the tensile strength was remarkably improved from 273.4 MPa before ECAP to 587.5 MPa after 8 passes of ECAP, maintaining an appropriate elongation of 11.4% and good electrical conductivity of 73.1%IACS. After annealing treatment at 300 °C for 2 h, the ECAP samples still maintained excellent comprehensive properties: tensile strength was 558.2 MPa, electrical conductivity was 74.7%IACS, and elongation was 13.2%, which showed bright prospect in high-speed railway as a contact wire material.

  10. Hydriding and structural characteristics of thermally cycled and cold-worked V-0.5 at.%C alloy

    International Nuclear Information System (INIS)

    Chandra, Dhanesh; Sharma, Archana; Chellappa, Raja; Cathey, William N.; Lynch, Franklin E.; Bowman, Robert C.; Wermer, Joseph R.; Paglieri, Stephen N.

    2008-01-01

    High pressure hydrides of V 0.995 C 0.005 were thermally cycled between β 2 - and γ-phases hydrides for potential use in cryocoolers/heat pumps for space applications. The effect of addition of carbon to vanadium, on the plateau enthalpies of the high pressure β 2 + γ region is minimal. This is in contrast to the calculated plateau enthalpies for low pressure (α + β 1 ) mixed phases which showed a noticeable lowering of the values. Thermal cycling between β 2 -and γ-phase hydrides increased the absorption pressures but desorption pressure did not change significantly and the free energy loss due to hysteresis also increased. Hydriding of the alloy with prior cold-work increased the pressure hysteresis significantly and lowered the hydrogen capacity. In contrast to the alloy without any prior straining (as-cast), desorption pressure of the alloy with prior cold-work also decreased significantly. Microstrains, 2 > 1/2 , in the β 2 -phase lattice of the thermally cycled hydrides decreased after 778 cycles and the domain sizes increased. However, in the γ-phase, both the microstrains and the domain sizes decreased after thermal cycling indicating no particle size effect. The dehydrogenated α-phase after 778 thermal cycles also showed residual microstrains in the lattice, similar to those observed in intermetallic hydrides. The effect of thermal cycling (up to 4000 cycles between β 2 - and γ-phases) and cold working on absorption/desorption pressures, hydrogen storage capacity, microstrains, long-range strains, and domain sizes of β 2 - and γ-phase hydrides of V 0.995 C 0.005 alloys are presented

  11. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Nickel based alloy, the characteristic of which is that it mainly includes in percentages by weight: 57-63 Ni, 7-18 Cr, 10-20 Fe, 4-6 Mo, 1-2 Nb, 0.2-0.8 Si, 0.01-0.05 Zr, 1.0-2.5 Ti, 1.0-2.5 Al, 0.02-0.06 C and 0.002-0.015 B. The aim is to create new nickel-chromium alloys, hardened in a solid solution and by precipitation, that are stable, exhibit reduced swelling and resistant to plastic deformation inside the reactor. These alloys of the gamma prime type have improved mechanical strengthm swelling resistance, structural stability and welding properties compared with Inconel 625 [fr

  12. Grain refinement of an AZ63B magnesium alloy by an Al-1C master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yichuan Pan; Xiangfa Liu; Hua Yang [The Key Lab. of Liquid Structure and Heredity of Materials, Shandong Univ., Jinan (China)

    2005-12-01

    In order to develop a refiner of Mg-Al alloys, an Al-1C (in wt.%) master alloy was synthesized using a casting method. The microstructure and grain-refining performance of the Al-1C master alloy were investigated using X-ray diffraction (XRD), electron probe microanalysis (EPMA) and a grain-refining test. The microstructure of the Al-1C master alloy is composed of {alpha}-Al solid solution, Al{sub 4}C{sub 3} particles, and graphite phases. After grain refinement of AZ63B alloy by the Al-1C master alloy, the mean grain size reached a limit when 2 wt.% Al-C master alloy was added at 800 C and held for 20 min in the melt before casting. The minimum mean grain size is approximately 48 {mu}m at the one-half radius of the ingot and is about 17% of that of the unrefined alloy. The Al-1C master alloy results in better grain refinement than C{sub 2}Cl{sub 6} and MgCO{sub 3} carbon-containing refiners. (orig.)

  13. Effects of silicon and thermo-mechanical process on microstructure and properties of Cu–10Ni–3Al–0.8Si alloy

    International Nuclear Information System (INIS)

    Shen, Leinuo; Li, Zhou; Zhang, Zheming; Dong, Qiyi; Xiao, Zhu; Lei, Qian; Qiu, Wenting

    2014-01-01

    Highlights: • Cu–10Ni–3Al–0.8Si alloy with ultra-high strength was designed. • The addition of silicon hindered the precipitation of large NiAl phase. • Tensile strength and electrical conductivity were 1180 MPa and 18.1% IACS. • Nano-scale Ni 2 Si and Ni 3 Al improved the strength and electrical conductivity. - Abstract: Cu–10Ni–3Al–0.8Si alloy with ultra-high strength was designed and its microstructure was studied using optical microscopy, scanning electron microscopy, transmission electron microscopy. The alloy went through a set of thermo-mechanical process: solution treated at 950 °C for 4 h, then cold-rolled by 50% and aged at 450 °C for 8 h, followed by 60% cold-rolling and aging at 450 °C for 8 h. After these treatment, the tensile strength was 1180 MPa, yield strength was 1133 MPa and electrical conductivity was 18.1% IACS, respectively. The comprehensive properties, especially the electrical conductivity of the designed alloy, were much higher than those of traditional Cu–Ni–Al alloys. The addition of silicon in the designed alloy hindered the precipitation of large-scale NiAl phase and improved the strength of the alloy. The orientation relationships between δ-Ni 2 Si, Ni 3 Al precipitates and copper matrix were: [001] Cu ‖[001] Ni 3 Al ‖[001] δ ,(110) Cu ‖(110) Ni 3 Al ‖(010) δ ,(11 ¯ 0) Cu ‖ (11 ¯ 0) Ni 3 Al ||(100) δ , respectively

  14. First-principles study of electronic properties of Si doped FeSe{sub 0.9} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-05-23

    We have performed first-principles study of electronic and superconducting properties of FeSe{sub 0.9-x}Si{sub x} (x = 0.0, 0.05) alloys using Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). In our calculations, we used the local density approximation (LDA) for the exchange correlation potential. Our calculations show that these alloys are nonmagnetic in nature. We found that the substitution of Si at Se site into FeSe{sub 0.9} made subtle affects in the electronic structure with respect to the parent FeSe. The results have been analyzed in terms of changes in the density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe{sub 0.9} and FeSe{sub 0.85}Si{sub 0.05} alloys.

  15. Self-organized carbon-rich stripe formation from competitive carbon and aluminium segregation at Fe0.85Al0.15(1 1 0) surfaces

    Science.gov (United States)

    Dai, Zongbei; Borghetti, Patrizia; Mouchaal, Younes; Chenot, Stéphane; David, Pascal; Jupille, Jacques; Cabailh, Gregory; Lazzari, Rémi

    2018-06-01

    By combining Scanning Tunnelling Microscopy, Low Energy Electron Diffraction and X-ray Photoelectron Spectroscopy, it was found that the surface of A2 random alloy Fe0.85Al0.15(1 1 0) is significantly influenced by the segregation of aluminium but also of carbon bulk impurities. Below ∼ 900 K, carbon segregates in the form of self-organized protruding stripes separated by ∼ 5 nm that run along the [ 0 0 1 ] B bulk direction and cover up to 34% of the surface. Their C 1s spectroscopic signature that is dominated by graphitic carbon peaks around 900 K. Above this temperature, the surface carbon concentration decays by redissolution in the bulk, whereas an intense aluminium segregation is observed giving rise to a hexagonal superstructure. The present findings is interpreted by a competitive segregation between the two elements.

  16. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  17. Band structure of Mgsub(x)Znsub(1-x)Te alloys

    International Nuclear Information System (INIS)

    Laugier, A.; Montegu, B.; Barbier, D.; Chevallier, J.; Guillaume, J.C.; Somogyi, K.

    1980-01-01

    The band structure of Mgsub(x)Znsub(1-x)Te alloys is studied using a double beam wavelength modulated system in first derivative mode. Modulated reflectivity measurements are made from 82 to 300 K within spectral range 2500 to 5400 A. Structures corresponding to the E 0 , E 0 + Δ 0 , E 1 , E 1 + Δ 1 , e 1 and e 1 + Δ 1 critical points are indexed on the basis of existing band calculations for ZnTe. (author)

  18. Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr

    Science.gov (United States)

    Jensen, Jacob

    High entropy alloys (HEAs) are a relatively new class of materials that have garnered significant interest over the last decade due to their intriguing balance of properties including high strength, toughness, and corrosion resistance. In contrast to conventional alloy systems, HEAs are based on four or more principal elements with near equimolar concentrations and tend to have simple microstructures due to the preferential formation of solid solution phases. HEAs appear to offer new pathways to lightweighting in structural applications, new alloys for elevated temperature components, and new magnetic materials, but more thorough characterization studies are needed to assess the viability of the recently developed multicomponent materials. One such HEA, AlMo0.5NbTa0.5TiZr, was selected to be the basis for this characterization study in part due to its strength at elevated temperatures (sigma0.2 = 1600 MPa at T = 800 °C) and low density compared with commercially available Ni-based superalloys. The refractory element containing HEA composition was developed in order to balance the high temperature strength of the refractory elements with the desirable properties achieved by the high entropy alloying design approach for potential use in aerospace thermal protection and structural applications. Ingots of AlMo0.5NbTa0.5TiZr were cast by vacuum arc melting followed by hot isostatic pressing (HIP) and homogenization at 1400 °C for 24 hrs with a furnace cool of 10 °C/min. The resulting microstructure was characterized at multiple length scales using x-ray diffraction (XRD), scanning transmission electron microscopy (SEM), conventional and scanning transmission electron microscopy (TEM and STEM), and x-ray energy dispersive spectroscopy (XEDS). The microstructure was found to consist of a periodic, coherent two phase mixture, where a disordered bcc phase is aligned orthogonally in an ordered B2 phase. Through microstructural evolution heat treatment studies, the

  19. Strong composition-dependent disorder in InAs1-xNx alloys

    International Nuclear Information System (INIS)

    Benaissa, H.; Zaoui, A.; Ferhat, M.

    2009-01-01

    We investigate the main causes of disorder in the InAs 1-x N x alloys (x = 0, 0.03125, 0.0625, 0.09375, 0.125, 0.25, 0.5, 0.75, 0.875, 0.90625, 0.9375, 0.96875 and 1). The calculation is based on the density-functional theory in the local-density approximation. We use a plane wave-expansion non-norm conserving ab initio Vanderbilt pseudopotentials. To avoid the difficulty of considering the huge number of atomic configurations, we use an appropriate strategy in which we consider four configurations for a given composition where the N atoms are not randomly distributed. We mainly show that the band gap decreases (increases) rapidly with increasing (decreasing) compositions of N. As a consequence the optical band gap bowing is found to be strong and composition dependent. The obtained compounds, from these alloys, may change from semi-conducting to metal (passing to a negative bowing) and could be useful for device applications, especially at certain composition.

  20. Quantitative analysis of magnetic resonance imaging susceptibility artifacts caused by neurosurgical biomaterials. Comparison of 0.5, 1.5, and 3.0 tesla magnetic fields

    International Nuclear Information System (INIS)

    Matsuura, Hideki; Inoue, Takashi; Ogasawara, Kuniaki; Sasaki, Makoto; Konno, Hiromu; Kuzu, Yasutaka; Nishimoto, Hideaki; Ogawa, Akira

    2005-01-01

    Magnetic resonance (MR) imaging is an important diagnostic tool for neurosurgical diseases but susceptibility artifacts caused by biomaterial instrumentation frequently causes difficulty in visualizing postoperative changes. The susceptibility artifacts caused by neurosurgical biomaterials were compared quantitatively by 0.5, 1.5, and 3.0 Tesla MR imaging. MR imaging of uniform size and shape of pieces ceramic (zirconia), pure titanium, titanium alloy, and cobalt-based alloy was performed at 0.5, 1.5, and 3.0 Tesla. A linear region of interest was defined across the center of the biomaterial in the transverse direction, and the susceptibility artifact diameter was calculated. Susceptibility artifacts developed around all biomaterials at all magnetic field strengths. The artifact diameters caused by pure titanium, titanium alloy, and cobalt-based alloy increased in the order of 0.5, 1.5, to 3.0 Tesla magnetic fields. The artifact diameter of ceramic was not influenced by magnetic field strength, and was the smallest of all biomaterials at all magnetic field strengths. The artifacts caused by biomaterials except ceramic increase with the magnetic field strength. Ceramic instrumentation will minimize artifacts in all magnetic fields. (author)

  1. Microstructure and properties of the novel Cu–0.30Mg–0.05Ce alloy processed by equal channel angular pressing

    International Nuclear Information System (INIS)

    Duan, Y.L.; Xu, G.F.; Tang, L.; Li, Z.; Yang, G.

    2015-01-01

    A novel Cu–0.30Mg–0.05Ce (wt%) alloy was designed and prepared by melting and casting. The hot-rolled Cu–Mg–Ce alloy with an average grain size of 24.3 μm was processed by equal channel angular pressing (ECAP) via route B_C with different passes at room temperature. Moreover, microstructure evolution, mechanical properties and electrical conductivity of the alloy subjected to ECAP with different passes have been analyzed. The transmission electron microscope observation and electron backscatter diffraction analysis results show that the grains were refined significantly and the low angle boundaries generated at the initial stage of deformation were gradually transformed to the high angle boundaries with increasing the number of ECAP passes. After 8 ECAP passes, the average grain size decreased to 1.2 μm, and the fraction of high angle boundaries was 87.7%. Besides, the typical FCC shear textures ({111} , {111} and {001} ) were generated during ECAP deformation. Furthermore, tension testing results indicated that the tensile strength was remarkably improved from ∼274 MPa before ECAP to ∼588 MPa after 8 ECAP passes, maintaining an appropriate elongation of ∼11% and good electrical conductivity of 73.5% International Annealed Copper Standard (IACS), which showed bright prospect in high-speed railway as a contact wire material.

  2. Microstructure and properties of the novel Cu–0.30Mg–0.05Ce alloy processed by equal channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y.L. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xu, G.F., E-mail: csuxgf660302@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083 (China); Tang, L. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Z. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083 (China); Yang, G. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2015-11-11

    A novel Cu–0.30Mg–0.05Ce (wt%) alloy was designed and prepared by melting and casting. The hot-rolled Cu–Mg–Ce alloy with an average grain size of 24.3 μm was processed by equal channel angular pressing (ECAP) via route B{sub C} with different passes at room temperature. Moreover, microstructure evolution, mechanical properties and electrical conductivity of the alloy subjected to ECAP with different passes have been analyzed. The transmission electron microscope observation and electron backscatter diffraction analysis results show that the grains were refined significantly and the low angle boundaries generated at the initial stage of deformation were gradually transformed to the high angle boundaries with increasing the number of ECAP passes. After 8 ECAP passes, the average grain size decreased to 1.2 μm, and the fraction of high angle boundaries was 87.7%. Besides, the typical FCC shear textures ({111}<112>, {111}<110> and {001}<110>) were generated during ECAP deformation. Furthermore, tension testing results indicated that the tensile strength was remarkably improved from ∼274 MPa before ECAP to ∼588 MPa after 8 ECAP passes, maintaining an appropriate elongation of ∼11% and good electrical conductivity of 73.5% International Annealed Copper Standard (IACS), which showed bright prospect in high-speed railway as a contact wire material.

  3. An investigation on the hydrogen storage characteristics of the melt-spun nanocrystalline and amorphous Mg20-xLaxNi10 (x = 0, 2) hydrogen storage alloys

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Li Baowei; Ren Huiping; Guo Shihai; Wu Zhongwang; Wang Xinlin

    2009-01-01

    Mg 2 Ni-type hydrogen storage alloys Mg 20-x La x Ni 10 (x = 0, 2) were prepared by casting and rapid quenching. The structures and morphologies of the as-cast and quenched alloys were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM). Thermal stability of the as-quenched alloys was researched by differential scanning calorimetry (DSC). The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus, and their electrochemical properties were measured by a tri-electrode open cell. The results showed that the no amorphous phase formed in the as-quenched La-free alloy, but the as-quenched alloys containing La held a major amorphous phase. The quenching rate induced a light influence on the crystallization temperature of the amorphous phase, and it significantly improved the initial hydrogenation rate and the hydrogen absorption capacity of the alloys. The discharge capacity and the cycle stability of the alloys grew with the increase of the quenching rate. When the quenching rate increased from 0 (as-cast was defined at a quenching rate of 0 m s -1 ) to 30 m s -1 , the hydrogen absorption capacity of the alloys for x = 0 and 2 at 200 deg. C and 1.5 MPa in 10 min changed from 1.21 to 3.10 wt.% and from 1.26 to 2.60 wt.%, the maximum discharge capacity from 30.26 to 135.51 mAh g -1 and from 197.23 to 406.51 mAh g -1 at a current density of 20 mA g -1 , and the capacity retaining rate at 20th cycle from 36.71 to 27.06% and from 37.26 to 78.33%, respectively

  4. Pressure dependence of Raman modes in the chalcopyrite quaternary alloy AgxCu1-xGaS2

    International Nuclear Information System (INIS)

    Choi, In-Hwan; Yu, Peter Y.

    2000-01-01

    Raman scattering in the chalcopyrite quaternary alloy Ag x Cu 1-x GaS 2 has been studied under high pressure (up to 7 GPa) and at low temperature (50 K) using a diamond anvil high pressure cell for alloy concentrations x=1, 0.75, 0.5, 0.25 and 0. This has allowed us to determine the dependence of their zone-center phonon modes on both pressure and alloy concentration. The resultant phonon pressure coefficients are helpful in understanding the nature of the phonon modes in these chalcopyrites

  5. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  6. Extrusion of the uranium-0.75 weight percent titanium alloy

    International Nuclear Information System (INIS)

    Jackson, R.J.; Lundberg, M.R.; Boland, J.F.

    1975-01-01

    Procedures are described for extruding the U--0.75 wt percent Ti alloy in the high alpha region (600 to 640 0 C) , and in the upper gamma region (900 to 1000 0 C). The casting of sound extrusion billets has importance in the production of sound extrusions, and procedures are given for casting sound billets up to 1,100 kilograms . Also important in producing sound extrusions is the use of glass lubricants. Reduction ratios of greater than 50 to 1 were achieved on reasonably sized billets. Extrusion constants of 48,000 pounds per square inch (psi) [296 megapascals (MPa)] for alpha phase (630 0 C) and 8,000 psi (56 MPa) for gamma phase (950 0 C) were achieved. Gamma-phase extrusion has preference over alpha-phase extrusion in that larger billets can be used and temperature control is not as critical. However alpha-phase extrusion offers better surface finish, less die wear, and fewer oxidation problems. Billets up to 14 inches in diameter have been successfully gamma-extruded and plans exist for extruding billets up to 20 inches (508 millimetres) in diameter. (U.S.)

  7. VT Built Up Lands in Grand Isle County - 1986

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) NRCS mapped historical and current-day built-up lands for Grand Isle County, VT using several vintages of aerial photography: 1941, 1962, 1974,...

  8. VT Built Up Lands in Grand Isle County - 1941

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) NRCS mapped historical and current-day built-up lands for Grand Isle County, VT using several vintages of aerial photography: 1941, 1962, 1974,...

  9. E centers in ternary Si1−x−yGexSny random alloys

    KAUST Repository

    Chroneos, Alexander; Bracht, H.; Grimes, R. W.; Jiang, C.; Schwingenschlö gl, Udo

    2009-01-01

    Density functional theory calculations are used to study the association of arsenic (As) atoms to lattice vacancies and the formation of As-vacancy pairs, known as E centers, in the random Si0.375Ge0.5Sn0.125 alloy. The local environments are described by 32-atom special quasirandom structures that represent random Si1−x−yGexSny alloys. It is predicted that the nearest-neighbor environment will exert a strong influence on the stability of E centers in ternary Si0.375Ge0.5Sn0.125.

  10. E centers in ternary Si1−x−yGexSny random alloys

    KAUST Repository

    Chroneos, Alexander

    2009-09-14

    Density functional theory calculations are used to study the association of arsenic (As) atoms to lattice vacancies and the formation of As-vacancy pairs, known as E centers, in the random Si0.375Ge0.5Sn0.125 alloy. The local environments are described by 32-atom special quasirandom structures that represent random Si1−x−yGexSny alloys. It is predicted that the nearest-neighbor environment will exert a strong influence on the stability of E centers in ternary Si0.375Ge0.5Sn0.125.

  11. Weldability of molybdenum and its alloy sheet, 1

    International Nuclear Information System (INIS)

    Matsuda, Fukuhisa; Ushio, Masao; Nakata, Kazuhiro; Edo, Yoshiaki

    1979-01-01

    Basic weldability of electron-beam melted pure molybdenum has been examined in electron-beam welding in high vacuum and GTA welding in pure and air mixed argon atmospheres by paying attention to weld defects such as hot cracking and porosity in weld metal and also mechanical properties of welded joint in comparison with conventional TZM alloys. The main conclusions obtained were as follows; (1) The weld metals of electron-beam melted pure molybdenum with electron-beam and GTA weldings in pure and air mixed argon atmosphere up to about 1% were almost porosity free. However, large amount of oxygen content of 200 ppm in powder-metallurgy TZM alloy made very porous weld bead in electron-beam welding in high vacuum. Therefore, oxygen content in base metal should be lowered to the minimum, that is, less than 10 ppm, especially in electron-beam welding in high vacuum. (2) Hot cracking occurred in the weld metal of GTA welding when air content in argon atmosphere exceeded about 0.6% for electron-beam melted pure molybdenum and powder metallurgy TZM alloy. In less than 0.26% air, no hot cracking were observed in this experiment. Moreover, in electron-beam welding, no hot cracking was observed in weld metals for both materials. In order to prevent the formation of hot cracking, the purity of welding atmosphere should be kept as high as possible. (3) Joint efficiency of the welded joint of electron-beam melted pure molybdenum with electron-beam welding was 50 to 60% to base metal at room temperature and 500 0 C and almost 100% at 1000 0 C. Those of GTA welds in pure and 0.13% air mixed argon atmospheres were fairly lower than those in electron-beam welding for each testing temperature. (author)

  12. A density functional theory study on the conversion of ethylene to carbon monomer on PdAu(1 0 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minhua; Yang, Bing [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2015-11-30

    Graphical abstract: - Highlights: • The successive decomposition of ethylene on PdAu(1 0 0) was studied with DFT method. • The C−H, C−C bond scission and a hydrogen-shift process were investigated. • The alloying of Au with Pd affects the studied reactions on PdAu(1 0 0) greatly. - Abstract: Calculations based on the first-principles density functional theory (DFT) were performed to study the possible transformation pathways of ethylene on PdAu(1 0 0) surface to investigate the effect of Au atom alloying with Pd on the formation of CHx (x = 0–2), which may eventually form carbon monomer and lead to the deactivation of catalysts. The energetic properties of reactions including the scission of the C−H, C−C bond and a hydrogen-shift process were determined. The C−H bond scission is confirmed to be prone to happen on the studied surface, while it is difficult for the C−C bond scission to occur due to relatively high barriers, the values of which are as high as 2.72–4.62 eV. The activation barriers for all related reactions except for the dehydrogenation of vinyl, vinylidene and acetenyl demonstrate that it is harder for the conversion of ethylene to occur on PdAu(1 0 0) surface than on Pd(1 0 0) surface, especially for the C−C bond scission. All the results indicate that the alloying of Au atom with pure Pd catalyst can prevent the formation of carbon monomer, which may notably affect properties of catalysts.

  13. Influence of heat treatment on the mechanical and electrical characteristics of Ni0.5Ti0.5 alloy prepared by electron-beam melting

    International Nuclear Information System (INIS)

    Ammar, A.H.; Al-Buhairi, M.; Farag, A.A.M.; Al-Wajeeh, N.M.M.

    2013-01-01

    Nickel titanium alloys (Ni 0.5 Ti 0.5 ) were successfully produced from elemental Ni/Ti powders by electron-beam melting method and then subjected to annealing and aging treatment. Microstructure of the alloys was examined by XRD and SEM. The mechanical properties of the alloyed surface were examined. The microhardness was studied as a function of annealing temperature and time. It was found that the microhardness decreases with increasing annealing temperature until 660 °C after which the microhardness increases. Electrical resistance measurements were carried out in order to study the transformation behavior. The electrical measurements point out the importance of temperature dependence of Ni 0.5 Ti 0.5 electrical resistance for the identification of particular transformation. The influence of aging on the development of electrical resistivity was also investigated

  14. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    Science.gov (United States)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  15. Fabrication by powder metallurgy of the niobium based alloy Nb-1-Zr

    International Nuclear Information System (INIS)

    Marty, M.; Delaunay, C.; Walder, A.

    1989-01-01

    The Nb-1Zr alloy has been produced by the powder metallurgy technique. Production of powders was performed by centrifugal atomization with the rotating electrode process (REP) under an inert atmosphere of argon-helium. Alloy powders were characterized by granulometric spectra, oxygen content and the various types of structures which were found. After consolidation by extrusion, materials were evaluated by tensile test under vacuum at ambient temperature, 750 and 900 0 C and compared with the same alloy elaborated by ingot metallurgy. 8 refs., 9 figs. (Author)

  16. Durability and static strength of microcrystalline titanium VT1-0 obtained by equal-channel angular pressing

    Czech Academy of Sciences Publication Activity Database

    Betekhtin, V. I.; Dvořák, Jiří; Kadomtsev, A. G.; Kardashev, B. K.; Narykova, M. V.; Raab, G. K.; Sklenička, Václav; Faizova, S. N.

    2015-01-01

    Roč. 41, č. 1 (2015), s. 80-82 ISSN 1063-7850 Institutional support: RVO:68081723 Keywords : titanium * creep * ECAP * mechanical stability Subject RIV: JJ - Other Materials Impact factor: 0.702, year: 2015

  17. Low-temperature specific heat of the 'nearly ferromagnetic' amorphous alloy Ysub(0.22)Nisub(0.78)

    International Nuclear Information System (INIS)

    Garoche, P.; Veyssie, J.J.; Lienard, A.; Rebouillat, J.P.

    1979-01-01

    Results of specific heat measurements, between 0.3K and 10 K in magnetic fields up to 75 kOe, on the 'nearly ferromagnetic' amorphous alloy Ysub(0.22)Nisub(0.78) are reported. The results, especially the magnetic field dependence, exclude any appreciable contribution from uniform paramagnons. In contrast a quantitative analysis is obtained in terms of superparamagnetic clusters, demonstrating that the onset of ferromagnetism, as a function of concentration, is inhomogeneous in this amorphous metallic system. (author)

  18. Texture and mechanical properties of Al-0.5Mg-1.0Si-0.5Cu alloy sheets manufactured via a cross rolling method

    Science.gov (United States)

    Jeon, Jae-Yeol; Son, Hyeon-Taek; Woo, Kee-Do; Lee, Kwang-Jin

    2012-04-01

    The relationship between the texture and mechanical properties of 6xxx aluminum alloy sheets processed via cross rolling was investigated. The microstructures of the conventional rolled and cross rolled sheets after annealing were analyzed using optical micrographs (OM). The texture distribution across the thickness in the Al-Mg-Si-Cu alloy, conventional rolled sheets, and cross rolled sheets both before and after annealing was investigated via X-ray texture measurements. The texture was analyzed in three layers from the surface to the center of the sheet. The β-fiber texture of the conventional rolled sheet was typical of the texture obtained using aluminumoll ring. After annealing, the typical β-fiber orientations were changed to recrystallization textures: cube{001} and normal direction (ND)-rotated cubes. However, the texture of the cross rolled sheet was composed of an asymmetrical, rolling direction (RD)-rotated cubes. After annealing, the asymmetrical orientations in the cross rolled sheet were changed to a randomized texture. The average R-value of the annealed cross rolled sheets was higher than that of the conventional rolled sheets. The limit dome height (LDH) test results demonstrated that cross rolling is effective in improving the formability of the Al-Mg-Si-Cu alloy sheets.

  19. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    Science.gov (United States)

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.

  20. Electrochemical Properties of Hydrogen-Storage Alloys ZrMn{sub 2}Ni{sub x} and ZrMnNi{sub 1+x} for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Ryoung [Faculty of Applied Chemistry, Chonnam National University, Kwangju (Korea); Kwon, Ik Hyun [Automobile High-Technology Research Institute, Division of Advanced Materials Engineering, Chonbuk National University, Chonju (Korea)

    2001-04-01

    In order to improve the performance of AB{sub 2}-type hydrogen-storage alloys for Ni-MH secondary battery, AB{sub 2}-type alloys, ZrMn{sub 2}Ni{sub x}(x=0.0, 0.3, 0.6, 0.9 and 1.2) and ZrMnNi{sub 1+x}(x=0.0, 0.1, 0.2, 0.3 and 0.4) were prepared as the Zr-Mn-Ni three component alloys. The hydrogen-storage and the electrochemical properties were investigated. The C14 Laves phase formed in all alloys of ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2). The equilibrium plateau pressure of the alloy, ZrMn{sub 2}Ni{sub 0.6}-H{sub 2} system, was about 0.5 atm at 30 degree C. Among these alloys, ZrMn{sub 2}Ni{sub 0.6} was the easiest to activate, and it had the largest discharge capacity as well as the best cycling performance. The C14 Laves phase also formed in all alloys of ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4). The equilibrium plateau pressure of the alloy, ZrMnNi{sub 1.0}-H{sub 2} system, was about 0.45 atm at 30 degree C. Among these alloys, ZrMnNi{sub 1.0} was the easiest to activate, taking only 3 charge-discharge cycles, and it had the largest discharge capacity of 42 mAh/g. Among these alloys, ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2) and ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4), ZrMnNi{sub 1.0} had the largest discharge capacity (maximum value of 42 mAh/g), and it showed the fastest activation and good cycling performance. 23 refs., 4 figs., 2 tabs.

  1. Optimization of production and properties of the nanoscaled ferritic ODS-alloy 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2} and characterization of structure and property correlations; Eigenschaftsoptimierung der nanoskaligen ferritischen ODS-Legierung 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2}, metallkundliche Charakterisierung und Bestimmung von Struktur-Eigenschaftskorrelationen

    Energy Technology Data Exchange (ETDEWEB)

    Eiselt, Charles Christopher

    2010-01-15

    Fusion power reactors next to renewable energy sources shall form an important basis for a future energy scenario avoiding damaging emissions due to the lack of fossil primary energy carriers. An efficient operation of such reactors necessitate temperatures >700 C, which require new kinds of structural materials. Today only reduced activated oxide dispersion-strengthened (ODS-) materials based on iron, which have high strengths at elevated temperatures, offer the possibility to meet those criterias, which are developed in internationally coordinated programs. Therefore a nearly industrial production process based on the powdermetallurgical route is iteratively and systematically optimized to produce the ferritic ODS-alloy 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2}. Through TEM elemental analyses of mechanically alloyed steel powder it is confirmed, that the additives Y{sub 2}O{sub 3} and TiH{sub 2} dissolve completely in the powder and form the ODS-particles during the HIP-cycle. Detailed studies of powder contamination during mechanical alloying reveal correlations between the contamination behaviour of certain elements and the milling parameters. A specially designed procedure of powder encapsulation and sealing leads to a successful powder compaction to the ODS-material 13Cr-1W-0,3Y{sub 2}O{sub 3}-0,3TiH{sub 2}. Detailed TEM studies show a bimodal grain size distribution within the material at first. The alloy's recrystallization behaviour is the main reason for this phenomenon and is therefore discussed in detail. A high dispersion of ODS-particles as the decisive material's component with particle sizes von 3-5nm within grains and 12-36nm at the grain boundaries is successfully reached and verified by numerous TEM-Elemental Mappings. By applying hot rolling as an additional step during production a more even grain structure by equally maintaining the fine nanoskaled particle dispersion is set up. The microstructure is highly stable, since no grain- or

  2. Effects of carbon nanotubes on the microstructure and mechanical properties of the wrought Mg–2.0Zn alloy

    International Nuclear Information System (INIS)

    Zeng, Xiao-shu; Liu, Yong; Huang, Qiu-yu; Zeng, Gang; Zhou, Guo-hua

    2013-01-01

    The effects of carbon nanotubes (CNTs) on the microstructure and mechanical properties of wrought Mg alloys with of 2.0 wt% of Zn content (Mg–2.0Zn) are investigated by the optical microscope (OM), transmission electron microscope (TEM), scanning electron microscope (SEM) and uniaxial tensile test. Different contents of CNTs are added separately in the as-cast ingots and as-extruded samples. The results showed that CNTs could greatly refine the microstructure of both as-cast alloy and as-extruded alloy. The tensile strength, yield strength, elongation and elasticity modulus of the alloy with CNTs were improved to different extents. Remarkably, the increase of elongation reached approximately 80%. The fracture surface of the alloy with CNTs mainly consisted of dimples with toughness rupture modes. Therefore, it suggests that CNTs could enhance the plasticity of wrought Mg–2.0Zn alloy without the reduction of strength

  3. Microstructure and bio-corrosion behaviour of Mg-5Zn-0.5Ca -xSr alloys as potential biodegradable implant materials

    Science.gov (United States)

    Yan, Li; Zhou, Jiaxing; Sun, Zhenzhou; Yang, Meng; Ma, Liqun

    2018-04-01

    Magnesium alloys are widely studied as biomedical implants owing to their biodegradability. In this work, novel Mg-5Zn-0.5Ca-xSr (x = 0, 0.14, 0.36, 0.50, 0.70 wt%) alloys were prepared as biomedical materials. The influence of strontium (Sr) addition on the microstructure, corrosion properties and corrosion morphology of the as-cast Mg-5Zn-0.5Ca-xSr alloys is investigated by a variety of techniques such as scanning electron microscopy, x-ray diffraction, and electrochemical measurements. The Sr-free alloy is composed of three phases, namely, α-Mg, CaMg2 and Ca2Mg6Zn3, while the alloys with the Sr addition consist of α-Mg, CaMg2 and Ca2Mg6Zn3 and Mg17Sr2. Corrosion experiments in Hank’s solution show that the addition of a small amount of Sr can improve the corrosion resistance of the Mg-5Zn-0.5Ca alloy. The corrosion products include Mg(OH)2, Zn(OH)2, Ca(OH)2, and HA (Ca5(PO4)3(OH)). Mg-5Zn-0.5Ca-0.36Sr alloy has the minimum weight loss rate (0.68 mm/a), minimal hydrogen evolution (0.08 ml/cm2/d) and minimum corrosion current density (7.4 μA/cm2), indicating that this alloy shows the best corrosion resistance.

  4. Polaronic transport and thermoelectricity in Fe1 -xCoxSb2S4 (x =0 , 0.1, and 0.2)

    Science.gov (United States)

    Liu, Yu; Kang, Chang-Jong; Stavitski, Eli; Du, Qianheng; Attenkofer, Klaus; Kotliar, G.; Petrovic, C.

    2018-04-01

    We report a study of Co-doped berthierite Fe1 -xCoxSb2S4 (x =0 , 0.1, and 0.2). The alloy series of Fe1 -xCoxSb2S4 crystallize in an orthorhombic structure with the Pnma space group, similar to FeSb2, and show semiconducting behavior. The large discrepancy between activation energy for conductivity, Eρ (146 ˜270 meV ), and thermopower, ES (47 ˜108 meV ), indicates the polaronic transport mechanism. Bulk magnetization and heat-capacity measurements of pure FeSb2S4 (x =0 ) exhibit a broad antiferromagnetic transition (TN=46 K ) followed by an additional weak transition (T*=50 K ). Transition temperatures (TN and T*) slightly decrease with increasing Co content x . This is also reflected in the thermal conductivity measurement, indicating strong spin-lattice coupling. Fe1 -xCoxSb2S4 shows relatively high value of thermopower (up to ˜624 μ V K-1 at 300 K) and thermal conductivity much lower when compared to FeSb2, a feature desired for potential applications based on FeSb2 materials.

  5. Effect of precipitates on microstructures and properties of forged Mg-10Gd-2Y-0.5Zn-0.3Zr alloy during ageing process

    International Nuclear Information System (INIS)

    Han, X.Z.; Xu, W.C.; Shan, D.B.

    2011-01-01

    Highlights: · The effect of forging process on microstructure evolution and mechanical properties of Magnesium alloy with rare earth was investigated. · The optimal mechanical properties of the alloy with high strength and enough elongation were obtained after forging and ageing process. · The strength improvement of the alloy after forging and ageing process mainly results from the precipitation of 14H-type LPSO phase. · Strengthening mechanism of the alloy is controlled by the precipitation of β' and 14H-type LPSO phases which can inhibit sliding of dislocations and growth of grain boundaries. - Abstract: The precipitate behavior during forging and ageing process of Mg-10Gd-2Y-0.5Zn-0.3Zr alloy has been investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The mechanical properties of the alloy after forging and ageing process have been evaluated using Vickers hardness and room-temperature tensile tests. The results show that precipitation of 14H-type long period stacking order (LPSO) phase is the main strengthening phase in the as-forged alloy. The LPSO phase and refinement of grains contribute to the strength improvement of the alloy after forging process. The optimal mechanical properties of the alloy are obtained when it is aged at 200 deg. C for 60 h, which mainly owes to the precipitation of large amounts of β' and 14H-type LPSO phases on the α-Mg matrix. The growth of secondary phases, widening of soft precipitate free zones and coarsening of grains during subsequent ageing process at higher temperature lead to the decrease of mechanical properties of the alloy.

  6. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    International Nuclear Information System (INIS)

    Mashovets, N.S.; Pastukh, I.M.; Voloshko, S.M.

    2017-01-01

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm 2 . The above material shows the promise of the technology of low

  7. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    Energy Technology Data Exchange (ETDEWEB)

    Mashovets, N.S., E-mail: mashovets@rambler.ru [Khmelnickiy National University (Ukraine); Pastukh, I.M., E-mail: pastim@mail.ru [Khmelnickiy National University (Ukraine); Voloshko, S.M. [Khmelnickiy National University (Ukraine); National Technical University of Ukraine “Kyiv Polytechnic Institute” (Ukraine)

    2017-01-15

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm{sup 2}. The above material shows the promise of the technology of low

  8. Austenitic alloys Fe-Ni-Cr dominating

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Austenitic alloy essentially comprising 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminium, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06% zirconium, the balance being iron. The characteristic of this alloy is a conventional elasticity limit to within 2% of at least 450 MPa, with a maximum tensile strength of at least 500 MPa at a test temperature of 650 0 C after immersion annealing at 1038 0 C and 30% hardening. To this effect the invention concerns Ni-Cr-Fe high temperature alloys possessing excellent mechanical strength characteristics, that can be obtained with lower levels of nickel and chromium than those used in alloys of this kind in the present state of the technique, a higher amount of niobium than in the previous alloys and with the addition of 0.5 to 1.5% vanadium [fr

  9. In vitro corrosion of Mg–1.21Li–1.12Ca–1Y alloy

    Directory of Open Access Journals (Sweden)

    Rongchang Zeng

    2014-10-01

    Full Text Available The influence of the microstructure on mechanical properties and corrosion behavior of the Mg–1.21Li–1.12Ca–1Y alloy was investigated using OM, SEM, XRD, EPMA, EDS, tensile tests and corrosion measurements. The results demonstrated that the microstructure of the Mg–1.21Li–1.12Ca–1Y alloy was characterized by α-Mg substrate and intermetallic compounds Mg2Ca and Mg24Y5. Most of the fine Mg2Ca particles for the as-cast alloy were distributed along the grain boundaries, while for the as-extruded along the extrusion direction. The Mg24Y5 particles with a larger size than the Mg2Ca particles were positioned inside the grains. The mechanical properties of Mg–1.21Li–1.12Ca–1Y alloy were improved by the grain refinement and dispersion strengthening. Corrosion pits initiated at the α-Mg matrix neighboring the Mg2Ca particles and subsequently the alloy exhibited general corrosion and filiform corrosion as the corrosion product layer of Mg(OH2 and MgCO3 became compact and thick.

  10. Influence of tritium aging on kinetics feature of LaNi4.9Al0.1

    International Nuclear Information System (INIS)

    Xiong Yifu; Luo Deli; Li Rong

    2001-01-01

    Kinetics parameters were measured at different aging time on LaNi 4.9 Al 0.1 alloy. The influence of tritium aging on kinetics feature of LaNi 4.9 Al 0.1 alloy was assessed. The results show that tritium aging does not change deuterating-dedeuterating reaction order. Reaction rate decrease with aging time. Activation energy (E) increases with aging time

  11. First-principles study of Sb adsorption on Ag(1 1 0)(2 x 2)

    International Nuclear Information System (INIS)

    Nie, J.L.; Xiao, H.Y.; Zu, X.T.; Gao Fei

    2006-01-01

    The adsorption of antimony atom on the Ag(1 1 0) surface has been studied within the density functional theory framework. It was turned out that Sb-Ag surface alloy was formed in which Sb atoms substitute Ag atom in the outermost layer and subsurface site absorption was not preferred, suggesting that Sb is well segregated to the surface. Geometric analysis showed that rumpling between substitutional Sb and Ag in the alloy surface is negligible. These results are found to agree well with the experimental finding of Nascimento et al. [Surf. Sci. 572 (2004) 337]. In addition, investigation of the diffusion of Ag atom on bare and Sb-covered Ag(1 1 0) surface showed that Ag adatoms will jump along the so call in-channel direction and Sb substitution has little effect on the diffusion of Ag adatoms on Ag(1 1 0) surface. Such diffusion behavior was found to be different from that of Ag adatoms on Ag(1 1 1) surface, where the diffusion energy barrier was reported to be significantly increased upon Sb substitution [Phys. Rev. Lett. 73 (1993) 2437

  12. In-situ thermal analysis and macroscopical characterization of Mg–xCa and Mg–0.5Ca–xZn alloy systems

    International Nuclear Information System (INIS)

    Farahany, Saeed; Bakhsheshi-Rad, Hamid Reza; Idris, Mohd Hasbullah; Abdul Kadir, Mohammed Rafiq; Lotfabadi, Amir Fereidouni; Ourdjini, Ali

    2012-01-01

    Highlights: ► The effect of Ca and Zn addition on Mg–Ca and Mg–Ca–Zn were investigated. ► Ca and Zn addition decreased solid fraction at coherency point. ► T N –T DCP increased by adding Ca and Zn in Mg–Ca and Mg–Ca–Zn, respectively. ► Three reactions were detected when Zn/Ca atomic ratio less than 1.25 in Mg–Ca–Zn. ► A new peak Mg 51 Zn 20 was identified in Mg–0.5Ca–9Zn in addition of other peaks. - Abstract: This research described the identification phases by thermal analysis and microscopy inspection of Mg–xCa and Mg–0.5%Ca–xZn alloys that were solidified at slow cooling rate. Analysis of cooling curve after Ca addition shows the evolution of the Mg 2 Ca intermetallic phase at around 520 °C in addition to α-Mg phase. First derivative curves of alloys after the addition of Zn to Mg–0.5Ca alloy reveals three peaks related to α-Mg, Mg 2 Ca and Ca 2 Mg 6 Zn 3 for alloys that have Zn/Ca atomic ratio less than 1.23. The peak of Mg 2 Ca reaction on the first derivative curves disappeared for alloys containing Zn/Ca ratio more than 1.23. A new peak was also observed at 330 °C for Mg–0.5Ca–9Zn which was identified as Mg 51 Zn 20 . Solid fraction at coherency point decreased with increasing Ca and Zn elements. However, coherency time and difference between the nucleation and coherency temperatures (T N –T DCP ) increased by adding Ca and Zn in Mg–Ca and Mg–Ca–Zn systems.

  13. Characterisation of precipitates in a Mg–7Gd–5Y–1Nd–0.5Zr alloy aged to peak-ageing plateau

    International Nuclear Information System (INIS)

    Li, Ting; Du, Zhiwei; Zhang, Kui; Li, Xinggang; Yuan, Jiawei; Li, Yongjun; Ma, Minglong; Shi, Guoliang; Fu, Xin; Han, Xiaolei

    2013-01-01

    Highlights: •A Mg 7 RE-type structure model was suggested for the β′ phase using HAADF-STEM. •A new type of phase was found in peak-aged samples. •The new type of plate-shape phase was precipitated on the (0 0 0 1) α plane. •The new type of phase is completely coherent with matrix. -- Abstract: The precipitates in a Mg–7Gd–5Y–1Nd–0.5Zr alloy aged to peak-ageing plateau (aged at 210 °C from 18 h to 180 h) were studied using transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and high-angle annular detector dark-field scanning transmission electron microscopy (HAADF-STEM). Precipitation at the peak-ageing plateau involves the formation of the β ′ phase and a new type of plate-shaped phase precipitated along the (0001) α habit plane. The ellipsoid morphology of β ′ was illustrated according to [0001] α and [101 ¯ 0] α zone axes observations. The orientation relationship between the β ′ precipitates and matrix satisfies [001] β ′ //[0001] α and (100) β ′ //(112 ¯ 0) α , respectively. The TEM and HRTEM results indicate that the β ′ precipitates have a base-centred orthorhombic structure with lattice parameters a = 0.64 nm, b = 2.22 nm and c = 0.52 nm. Further, atomic-scaled HAADF-STEM observations suggest a Mg 7 RE-type and not a Mg 15 RE-type structure for the β ′ phase. The positive thermal stability of the alloy at 210 °C ageing is attributed to the coherent relationship with the matrix and the formation of an interlaced network of the β ′ precipitates. Aside from the β ′ phase, a large amount of precipitate particles were observed to form on the (0001) α habit plane in the peak-aged samples. The new type of precipitates have a plate shape, of approximately 5 nm wide along the [101 ¯ 0] α direction of the matrix and approximately 5 nm long along the [2 ¯ 110] α direction. A completely coherent relationship with the matrix can also be observed

  14. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    Energy Technology Data Exchange (ETDEWEB)

    Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Mali, V. I., E-mail: vmali@mail.ru; Anisimov, A. G., E-mail: anis@hydro.nsc.ru [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  15. Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High-Entropy Alloy Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Yizhu He

    2017-01-01

    Full Text Available High-entropy alloys (HEAs are novel solid solution strengthening metallic materials, some of which show attractive mechanical properties. This paper aims to reveal the effect of adding small atomic boron on the interstitial solid solution strengthening ability in the laser cladded CoCrFeNiAlxCu0.7Si0.1By (x = 0.3, x = 2.3, and 0.3 ≤ y ≤ 0.6 HEA coatings. The results show that laser rapid solidification effectively prevents brittle boride precipitation in the designed coatings. The main phase is a simple face-centered cubic (FCC matrix when the Al content is equal to 0.3. On the other hand, the matrix transforms to single bcc solid solution when x increases to 2.3. Increasing boron content improves the microhardness of the coatings, but leads to a high degree of segregation of Cr and Fe in the interdendritic microstructure. Furthermore, it is worth noting that CoCrFeNiAl0.3Cu0.7Si0.1B0.6 coatings with an FCC matrix and a modulated structure on the nanometer scale exhibit an ultrahigh hardness of 502 HV0.5.

  16. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Chen, Zhen; Wen, Haiming; Lavernia, Enrique J.

    2014-01-01

    The influence of Ti addition and sintering method on the microstructure and mechanical behavior of a medium-entropy alloy, Al 0.6 CoNiFe alloy, was studied in detail. Alloying behavior, microstructure, phase evolution and mechanical properties of Al 0.6 CoNiFe and Ti 0.4 Al 0.6 CoNiFe alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as by mechanical testing. During the mechanical alloying (MA) process, a supersaturated solid solution consisting of both BCC and FCC phases was formed in the Al 0.6 CoNiFe alloy. With Ti addition, the Ti 0.4 Al 0.6 CoNiFe alloy exhibited a supersaturated solid solution with a single FCC phase. Following hot pressing (HP), the HP sintered (HP’ed) Al 0.6 CoNiFe bulk alloy was composed of a major BCC phase and a minor FCC phase. The HP’ed Ti 0.4 Al 0.6 CoNiFe alloy exhibited a FCC phase, two BCC phases and a trace unidentified phase. Nanoscale twins were present in the HP’ed Ti 0.4 Al 0.6 CoNiFe alloy, where deformation twins were observed in the FCC phase. Our results suggest that the addition of Ti facilitated the formation of nanoscale twins. The compressive strength and Vickers hardness of HP’ed Ti 0.4 Al 0.6 CoNiFe alloy were slightly lower than the corresponding values of the HP’ed Al 0.6 CoNiFe alloy. In contrast with HP’ed Al 0.6 CoNiFe alloy, spark plasma sintered (SPS’ed) Al 0.6 CoNiFe alloy exhibited a major FCC phase and a minor BCC phase. Moreover, the SPS’ed Al 0.6 CoNiFe alloy exhibited a lower compressive strength and Vickers hardness, but singificantly higher plasticity, as compared to those of the HP’ed counterpart material

  17. L-J phase in a Cu2.2Mn0.8Al alloy

    Science.gov (United States)

    Jeng, S. C.; Liu, T. F.

    1995-06-01

    A new type of precipitate (designated L-J phase) with two variants was observed within the (DO3 + L21) matrix in a Cu2.2Mn0.8Al alloy. Transmission electron microscopy examinations indicated that the L-J phase has an orthorhombic structure with lattice parameters a = 0.413 nm, b = 0.254 nm and c = 0.728 nm. The orientation relationship between the L-J phase and the matrix is (100)L-J//(011) m , (010)L-J//(111) m and (001)L-J//(211) m . The rotation axis and rotation angle between two variants of the L-J phase are [021] and 90 deg. The L-J phase has never been observed in various Cu-Al, Cu-Mn, and Cu-Al-Mn alloy systems before.

  18. Magnetic behavior of the alloys (Ce{sub 1-x}Y{sub x}){sub 2}PdSi{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, R [Tata Inst. of Fundamental Res., Colaba, Mumbai (India); Sampathkumaran, E V [Tata Inst. of Fundamental Res., Colaba, Mumbai (India)

    1996-11-01

    The results of X-ray diffraction (Cu K{sub {alpha}}), electrical resistivity ({rho}), heat capacity (C) and magnetic susceptibility ({chi}) measurements are reported for a new pseudoternary solid solution, (Ce{sub 1-x}Y{sub x}){sub 2}PdSi{sub 3} (x=0.0, 0.2, 0.5, 0.8, 1.0). The X-ray diffraction patterns indicate that single phase alloys can be formed in a derived version of the AlB{sub 2}-type hexagonal structure for x{>=}0.2, while for x=0.0, apparently there is an additional weak phase. In the case of the alloy Ce{sub 2}PdSi{sub 3}, the majority of Ce ions do not exhibit magnetic ordering down to 1.4 K, though magnetic ordering at 7 K from one of the two crystallographically inequivalent sites cannot be ruled out. For other compositions, no magnetic ordering is observed above 1.4 K. The Kondo effect is operative in all these alloys, with the strength of the Kondo effect increasing with the compression of the lattice by the gradual replacement of Ce by Y. The C/T exhibits a low temperature enhancement in all Ce containing alloys. (orig.).

  19. Hydrogen diffusion in La1.5Nd0.5MgNi9 alloy electrodes of the Ni/MH battery

    International Nuclear Information System (INIS)

    Volodin, A.A.; Denys, R.V.; Tsirlina, G.A.; Tarasov, B.P.; Fichtner, M.; Yartys, V.A.

    2015-01-01

    Highlights: • Hydrogen diffusion in the La 1.5 Nd 0.5 MgNi 9 alloy electrode was studied. • Various techniques of low amplitude potentiostatic data treatment were used. • D H demonstrates a maximum (2 × 10 −11 cm 2 /s) at 85% of discharge of the electrode. • Maximum is associated with a conversion of β-hydride into a solid α-solution. • Optimization of material and electrode will allow high discharge rates. - Abstract: Hydrogen diffusion in the La 1.5 Nd 0.5 MgNi 9 battery electrode material has been studied using low amplitude potentiostatic experiments. Complex diffusion behavior is examined in frames of electroanalytical models proposed for the lithium intercalation materials. Hydrogen diffusion coefficient D H changes with hydrogen content in the metal hydride anode electrode and has a maximum of ca. 2 × 10 −11 cm 2 /s at ca. 85% of discharge. Such a behavior differs from the trends known for the transport in lithium battery materials, but qualitatively agrees with the data for the highly concentrated β-PdH x

  20. Effect of boron additions and processing on microstructure and mechanical properties of a titanium alloy Ti–6.5Al–3.3Mo–0.3Si

    Energy Technology Data Exchange (ETDEWEB)

    Imayev, V.M., E-mail: vimayev@mail.ru; Gaisin, R.A.; Imayev, R.M.

    2015-08-12

    The effects of boron additions in an amount of 0.1–2 wt%, thermomechanical processing and heat treatment on microstructure and mechanical properties of a two-phase titanium alloy Ti–6.5Al–3.3Mo–0.3Si alloy have been investigated. Depending on the boron amount, the materials under study were divided into two groups: (1) boron modified alloys containing ~0.1 wt% of boron and (2) discontinuously reinforced metal matrix Ti–TiB based composites containing 1.5–2 wt% of boron. Boron additions led to formation of TiB whiskers, which were predominantly located along boundaries of prior β-grains and α-colonies resulting in refined as-cast microstructure. Multiple 3D forging at T=650–700 °C applied for the boron modified alloys resulted in formation of ultrafine-grained microstructure and intensive breaking of TiB whiskers. Tensile properties of the Ti–6.5Al–3.3Mo–0.3Si–0.2 wt% B alloy after multiple 3D forging followed by β-heat treatment were found to be appreciably higher than those of the alloy free of boron after the same processing route that was ascribed to better controlling the β-grain size during β heat treatment. The composite materials were subjected to multiple isothermal 2D forging at T=950 °C that provided effective alignment of TiB whiskers while retaining their high aspect ratio. The hot forged composites demonstrated appreciably higher strength, creep resistance in comparison with those of the base alloy without drastic reduction in ductility. The effect of TiB whiskers orientation and morphology on the tensile properties of the composite materials is discussed.

  1. Magnetic properties and EXAFS study of nanocrystalline Fe2Mn0.5Cu0.5Al synthesized using mechanical alloying technique

    International Nuclear Information System (INIS)

    Nanto, Dwi; Yang, Dong-Seok; Yu, Seong-Cho

    2014-01-01

    Nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al has been synthesized by the mechanical alloying technique and studied as a function of milling time. Alloy nature of Fe 2 Mn 0.5 Cu 0.5 Al was observed in a sample milled for 96 h. The magnetic saturation is 4.0 μ B /f.u., which coincidently follows Slater–Pauling rule at 5 K. Nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al has enhanced saturate magnetization compared to any other fabrication of Fe 2 MnAl reported. Cu element plays an important role in site competes with other elements and may result in the enhancement of saturate magnetization. In accordance to the magnetic results and EXAFS pattern, it was revealed that the dynamics of magnetic properties were confirmed as structural changes of nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al

  2. Enhanced magnetocaloric properties and critical behavior of (Fe0.72Cr0.28)3Al alloys for near room temperature cooling

    Science.gov (United States)

    Sharma, V.; Maheshwar Repaka, D. V.; Chaudhary, V.; Ramanujan, R. V.

    2017-04-01

    Magnetic cooling is an environmentally friendly, energy efficient, thermal management technology relying on high performance magnetocaloric materials (MCM). Current research has focused on low cost, corrosion resistant, rare earth (RE) free MCMs. We report the structural and magnetocaloric properties of novel, low cost, RE free, iron based (Fe0.72Cr0.28)3Al alloys. The arc melted buttons and melt spun ribbons possessed the L21 crystal structure and B2 crystal structure, respectively. A notable enhancement of 33% in isothermal entropy change (-ΔS m) and 25% increase in relative cooling power (RCP) for the ribbons compared to the buttons can be attributed to higher structural disorder in the Fe-Cr and Fe-Al sub-lattices of the B2 structure. The critical behavior was investigated using modified Arrott plots, the Kouvel-Fisher plot and the critical isotherm technique; the critical exponents were found to correspond to the short-range order 3D Heisenberg model. The field and temperature dependent magnetization curves of (Fe0.72Cr0.28)3Al alloys revealed their soft magnetic nature with negligible hysteresis. Thus, these alloys possess promising performance attributes for near room temperature magnetic cooling applications.

  3. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    Science.gov (United States)

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak

    2016-12-01

    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  4. Indium doped Cd{sub 1-x}Zn{sub x}O alloys as wide window transparent conductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, The Center for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yu, Kin Man, E-mail: kinmanyu@cityu.edu.hk [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Walukiewicz, W. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-12-31

    We have synthesized Indium doped Cd{sub 1-x}Zn{sub x}O alloys across the full composition range using magnetron sputtering method. The crystallographic structure of these alloys changes from rocksalt (RS) to wurtzite (WZ) when the Zn content is higher than 30%. The rocksalt phase alloys in the composition range 0 < x < 0.3 can be efficiently n-type doped, shifting the absorption edge to 3.25 eV and reducing resistivity to about 2.0 × 10{sup −4} Ω-cm. We found that In doped CdO (ICO) transmits more solar photons than commercial fluorine doped tin oxide (FTO) with comparable sheet conductivity. The infrared transmittance is further extended to longer than 1500 nm wavelengths by depositing the In doped Cd{sub 1-x}Zn{sub x}O in ~ 1% of O{sub 2}. This material has a potential for applications as a transparent conductor for silicon and multi-junction solar cells. - Highlights: • Indium doped Cd1-xZnxO alloys across the full composition range were synthesized. • Alloys change from rocksalt (RS) to wurtzite (WZ) when x is higher than 30%. • RS-Cd1-xZnxO phase can be doped with In as efficiently as CdO, achieving a low resistivity ~ 2.0 × 10{sup −4} Ω-cm. • Wide transparency window from 380 to 1200 nm • In doped CdO transmits more solar photons than commercial fluorine doped tin oxide.

  5. Magnetic domain structure, crystal orientation, and magnetostriction of Tb{sub 0.27}Dy{sub 0.73}Fe{sub 1.95} solidified in various high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pengfei [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Liu, Tie, E-mail: liutie@epm.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Dong, Meng [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Yuan, Yi [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Wang, Qiang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2016-03-01

    In this paper, we studied how applying a high magnetic field during solidification of Tb{sub 0.27}Dy{sub 0.73}Fe{sub 1.95} alloys affected their magnetic domain structure, crystal orientation, and magnetostriction. We observed the morphology of the magnetic domain during solidification, finding it change with the applied field: from fiber like (0 T) to dot like and closure mixed (4.4 T) to fiber like (8.8 T) to fishbone like (11.5 T). The alloy solidified at 4.4 T showed the best contrast of light and dark in its domain image, widest magnetic domain, fastest magnetization, and highest magnetostriction; this alloy is followed in descending order by the alloys solidified at 11.5 T, 8.8 T, and 0 T. The orientation of the (Tb, Dy)Fe{sub 2} phase changed with magnetic field from random (0 T) to 〈111〉 (4.4 T) to 〈113〉 (8.8 T) to 〈110〉 (11.5 T). The improvement in magnetostriction was likely caused by modification of both the magnetization process and the alloy microstructure. - Highlights: • We present how magnetic field affects magnetic domain structure of Tb{sub 0.27}Dy{sub 0.73}Fe{sub 1.95}. • Morphology and width of magnetic domain change with increasing magnetic field. • Magnetization and magnetostriction of alloy change with increasing magnetic field. • A transformation of random–〈111〉–〈113〉–〈110〉 for (Tb, Dy)Fe{sub 2} orientation forms.

  6. Pit nucleation on as-cast aluminiuim alloy AW-5083 in 0.01M NaCl

    Directory of Open Access Journals (Sweden)

    Dolić N.

    2011-01-01

    Full Text Available The use of aluminium alloys in a wide range of technical applications is related mostly to the two facts: they facilitate weight saving of final products (if compared to the steel and they are prone to spontaneous passivity due to the coherent surface oxide layer which impedes further reaction of aluminium with the environment. Among the commercial Al alloys, EN AW-5083 alloy is a representative non-heat treatable Al-Mg based alloy which possesses many interesting characteristics as a structural material, such as low price, moderately high strength, high formability in conjunction with superplasticity and good corrosion resistance in marine atmospheres. Aiming to enhance the knowledge of possible interactions of studied alloy EN AW-5083 in as-cast condition with chloride media, electrochemical measurements were used to follow the pitting behaviour in 0.01 M NaCl. The results of tests have shown that susceptibility of alloy to pitting corrosion is strongly influenced by the microstructural constituents of the alloy in as-cast condition.

  7. Influence of Zr substitution on the stabilization of ThMn{sub 12}-type (Nd{sub 1−α}Zr{sub α})(Fe{sub 0.75}Co{sub 0.25}){sub 11.25}Ti{sub 0.75}N{sub 1.2−1.4} (α = 00.3) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, N.; Yano, M.; Kato, A. [Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Technology Research Association of Magnetic Materials for High-Efficiency Motors (MagHEM) Higashifuji-Branch, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Suzuki, S.; Kuno, T.; Urushibata, K.; Kobayashi, K. [Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555 (Japan); Manabe, A. [Technology Research Association of Magnetic Materials for High-Efficiency Motors (MagHEM) Higashifuji-Branch, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2016-05-15

    The influence of Zr substitution in ThMn{sub 12} compounds was investigated using strip casting alloys. It was found that Zr substitution stabilized (Nd{sub 1−α}Zr{sub α})(Fe{sub 0.75}Co{sub 0.25}){sub 11.25}Ti{sub 0.75}N{sub 1.2−1.4} (α = 00.3) compounds. Specifically, a reduction in the lattice constant along the a-axis was observed. Energy-dispersive X-ray spectroscopy mapping combined with Cs-corrected scanning transmission electron microscopy indicated that Zr atoms preferentially occupied Nd 2a sites. Both the magnetic anisotropy field and saturation polarization were maximum at Zr substitution ratio α = 0.1. The (Nd{sub 1−α}Zr{sub α})(Fe{sub 0.75}Co{sub 0.25}){sub 11.25}Ti{sub 0.75}N{sub 1.2−1.4} (α = 00.3) compounds displayed higher saturation polarization than Nd{sub 2}Fe{sub 14}B at high temperatures.

  8. Role of nano-precipitation on the microstructure and shape memory characteristics of a new Ni_5_0_._3Ti_3_4_._7Zr_1_5 shape memory alloy

    International Nuclear Information System (INIS)

    Evirgen, A.; Karaman, I.; Pons, J.; Santamarta, R.; Noebe, R.D.

    2016-01-01

    The microstructure and shape memory characteristics of the Ni_5_0_._3Ti_3_4_._7Zr_1_5 shape memory alloy were investigated as a function of aging heat treatments that result in nanometer to submicron size precipitates. Microstructure–property relationships were developed by characterizing samples using transmission electron microscopy, differential scanning calorimetry, and load-biased thermal cycling experiments. The precipitate size was found to strongly influence the martensitic transformation–precipitate interactions and ultimately the shape memory characteristics of the alloy. Aging treatments resulting in relatively fine precipitates, which are not an obstacle to twin boundaries and easily bypassed by martensite variants, exhibited higher transformation strain, lower transformation thermal hysteresis, and better thermal and dimensional stability compared to samples with relatively large precipitates. When precipitate dimensions approached several hundred nanometers in size they acted as obstacles to martensite growth, limiting martensite variant and twin size resulting in reduced functional and structural properties. Aging heat treatments were also shown to result in a wide range of transformation temperatures, increasing them above 100 °C in some cases, and affected the stress dependence of the transformation hysteresis and the stress versus transformation temperature relationships for the Ni_5_0_._3Ti_3_4_._7Zr_1_5 alloy.

  9. Fabrication and Characterization of Targets for Shock Propagation and Radiation Burnthrough Measurements on Be-0.9 AT. % Cu Alloy

    International Nuclear Information System (INIS)

    Nobile, A.; Dropinski, S.C.; Edwards, J.M.; Rivera, G.; Margevicius, R.W.; Sebring, R.J.; Olson, R. E.; Tanner, D.L.

    2004-01-01

    Beryllium-copper alloy (Be0.9%Cu) ICF capsules are being developed for the pursuit of thermonuclear ignition at the National Ignition Facility (NIF). Success of this capsule material requires that its shock propagation and radiation burnthrough characteristics be accurately understood. To this end, experiments are being conducted to measure the shock propagation and radiation burnthrough properties of Be0.9%Cu alloy. These experiments involve measurements on small Be0.9%Cu wedge, step and flat samples. Samples are mounted on 1.6-mm-diameter x 1.2-mm-length hohlraums that are illuminated by the OMEGA laser at the University of Rochester. X-rays produced by the hohlraum drive the sample. A streaked optical pyrometer detects breakout of the shock produced by the X-ray pulse. In this paper we describe synthesis of the alloy material, fabrication and characterization of samples, and assembly of the targets. Samples were produced from Be0.9%Cu alloy that was synthesized by hot isostatic pressing of Be powder and copper flake. Samples were 850 μm diameter disks with varying thickness in the case of wedge and step samples, and uniform thickness in the case of flat samples. Sample thickness varied in the range 10-90 μm. Samples were prepared by precision lathe machining and electric discharge machining. The samples were characterized by a Veeco white light interferometer and an optical thickness measurement device that simultaneously measured the upper and lower surface contours of samples using two confocal laser probes. Several campaigns with these samples have been conducted over the past two years

  10. New quaternary carbide Mg1.52Li0.24Al0.24C0.86 as a disorder derivative of the family of hexagonal close-packed (hcp) structures and the effect of structure modification on the electrochemical behaviour of the electrode.

    Science.gov (United States)

    Pavlyuk, Volodymyr; Kulawik, Damian; Ciesielski, Wojciech; Pavlyuk, Nazar; Dmytriv, Grygoriy

    2018-03-01

    Magnesium alloys are the basis for the creation of light and ultra-light alloys. They have attracted attention as potential materials for the accumulation and storage of hydrogen, as well as electrode materials in metal-hydride and magnesium-ion batteries. The search for new metal hydrides has involved magnesium alloys with rare-earth transition metals and doped by p- or s-elements. The synthesis and characterization of a new quaternary carbide, namely dimagnesium lithium aluminium carbide, Mg 1.52 Li 0.24 Al 0.24 C 0.86 , belonging to the family of hexagonal close-packed (hcp) structures, are reported. The title compound crystallizes with hexagonal symmetry (space group P-6m2), where two sites with -6m2 symmetry and one site with 3m. symmetry are occupied by an Mg/Li statistical mixture (in Wyckoff position 1a), an Mg/Al statistical mixture (in position 1d) and C atoms (2i). The cuboctahedral coordination is typical for Mg/Li and Mg/Al, and the C atom is enclosed in an octahedron. Electronic structure calculations were used for elucidation of the ability of lithium or aluminium to substitute magnesium, and evaluation of the nature of the bonding between atoms. The presence of carbon in the carbide phase improves the corrosion resistance of the Mg 1.52 Li 0.24 Al 0.24 C 0.86 alloy compared to the ternary Mg 1.52 Li 0.24 Al 0.24 alloy and Mg.

  11. High Temperature Creep of an Al-8,5Fe-1,3V-1,7Si Alloy

    Czech Academy of Sciences Publication Activity Database

    Kuchařová, Květa; Zhu, S. J.; Čadek, Josef

    2002-01-01

    Roč. 40, č. 2 (2002), s. 69-84 ISSN 0023-432X R&D Projects: GA AV ČR IBS2041001 Institutional research plan: CEZ:AV0Z2041904 Keywords : Al-8,5Fe 1,3V 1,7Si alloy * creep behavior , true threshold stress Subject RIV: JI - Composite Materials Impact factor: 0.493, year: 2002

  12. High pressure study of Pu{sub 0.92}Am{sub 0.08} binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Klosek, V; Faure, P; Genestier, C [CEA, Valduc, F-21120 Is-sur-Tille (France); Griveau, J C; Wastin, F [European Commission JRC, Institute for Transuranium Elements, Postfach 2340, D-76125 Karlsruhe (Germany); Baclet, N [CEA, DRT/DTMN, F-38054 Grenoble (France)], E-mail: vincent.klosek@cea.fr

    2008-07-09

    The phase transitions (by means of x-ray diffraction) and electrical resistivity of a Pu{sub 0.92}Am{sub 0.08} binary alloy were determined under pressure (up to 2 GPa). The evolution of atomic volume with pressure gives detailed information concerning the degree of localization of 5f electronic states and their delocalization process. A quasi-linear V = f(P) dependence reflects subtle modifications of the electronic structure when P increases. The electrical resistivity measurements reveal the very high stability of the {delta} phase for pressures less than 0.7 GPa, since no martensitic-like transformation occurs at low temperature. Remarkable electronic behaviours have also been observed. Finally, resistivity curves have shown the temperature dependence of the phase transformations together with unexpected kinetic effects.

  13. Amorphization and crystallization of Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) alloys during mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yan [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, 73 Jingshi Road, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Chen Xiuxiu [School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Geng Haoran [School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China)], E-mail: mse_wangy@ujn.edu.cn; Yang Zhongxi [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, 73 Jingshi Road, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China)

    2009-04-17

    In the present paper, the effect of Nb and different rotation speeds on the amorphization and crystallization of Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) alloys during mechanical alloying has been investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The results show that the minor addition of Nb can shorten the start time of the amorphization reaction, improve the glass forming ability of Zr-Cu alloys, but cannot promote the formation of a single amorphous phase at a lower rotation speed of 200 rpm. The glass forming ability of the Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) alloys increases with increasing Nb additions. At a higher rotation speed of 350 rpm, a single amorphous phase of Zr{sub 66.7-x}Cu{sub 33.3}Nb{sub x} (x = 0, 2, 4) can be successfully fabricated. Moreover, the Nb addition into Zr-Cu alloys can accelerate the amorphization process and improve the stability of the amorphous phase against the mechanically induced crystallization. Furthermore, the amorphous Zr{sub 66.7}Cu{sub 33.3} phase gradually transforms into a metastable fcc-Zr{sub 2}Cu phase with increasing milling time.

  14. Thermal, mechanics and electrical characterization of the Al-0,6%Mg-08%Si alloy refined and modified with different copper contents; Caracterizacao termica, mecanica e eletrica da liga Al-0,6% Mg-0,8% Si refinada e modificada com diferentes teores de cobre

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, E.S. [Universidade Federal do Para (UFPA), Belem, PA (Brazil)], Email: mmanufreitas@gmail.com; Marques, P.R.R.; Santos, W.L.R.; Kamizono, K.A.; Quaresma, J. Maria V.

    2009-07-01

    The aluminum, magnesium and silicon alloys form a very important group, utilized as casted form and worked alloys, especially in 6201 alloy series. These alloys show applicability on cables and wires fabrication to electrical energy transmission. The present work analyzes the copper content variation and its influence in electrical conductivity, tensile strength and in studied alloy ductility. The refined Al-0,6% Mg-0,8% Si studied alloy was modified with the following contents: [0,05; 0,10; 0,20 e 0,30]% Cu and unidirectional solidified. The test specimen were machined to 10 mm diameter and rolled to 3,98 mm, whose deformation rate was 60,2%. The obtained wires were mechanical, electrical and structural characterized and the mechanical and electrical characterization results were associated to fractures of evaluated micro cavities. The highest observation was the Cu content in alloy increases the TS, decreases electrical conductivity and increases liquidus isotherm's velocity, forming micro cavities. (author)

  15. Heat treatment effect on the properties of welded joint of niobium alloys of the Nb-1Zr-C system

    International Nuclear Information System (INIS)

    Aref'ev, Yu.V; Chernyshova, T.A.; Pokosov, V.S.

    1976-01-01

    Thermal treatment of weld joints of the alloys Nb-1 Zr-(0.01-0.12)C at 800-900 deg C leads to decomposition of the solid solution of the weld metal which is accompanied with a decrease in plasticity and impact strength. The decomposition of the solid solution takes place even in a relatively pure alloy containing only 0.025% of intrusion impurities. Thermal treatment is reasonable only when carbon content in the alloys is no less than 0.1%. The decomposition of the solid solution in the weld metal of the alloy containing 0.12% of C takes place during thermal treatment at the expense of liberating niobium carbides Nb 3 C 2 and Nb 2 C. When rearrangement takes place, i it is Nb 2 C that liberates mainly

  16. Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature

    International Nuclear Information System (INIS)

    Lin, C.-M.; Tsai, H.-L.

    2010-01-01

    The phase transformations of FeCoNiCrCu 0.5 alloy with the as-cast structure and heat-treated structures were studied. The as-cast alloy specimens were first heated at 1050 o C with a holding time of 1 h. Serial heat-treatment processes at 350 o C, 500 o C, 650 o C, 800 o C, 950 o C, 1100 o C, 1250 o C and 1350 o C with a holding time of 24 h were then carried out to understand the phase evolution and the relationship between the microstructure and the hardness of the specimens. The microstructures were investigated and chemical analyses performed by optical microscopy (OM), scanning elector microscopy (SEM), X-ray diffractometer (XRD) and transmission elector microscopy (TEM). The results show that FCC peaks were observed from the X-ray diffraction of the as-cast specimens and a precipitate phase was present in the specimens that had been heated to 950 o C. The hardness of the FeCoNiCrCu 0.5 alloy remained unchanged in the specimens that underwent various heat treatments that were applied in this study.

  17. Effect of strontium on the texture and mechanical properties of extruded Mg–1%Mn alloys

    International Nuclear Information System (INIS)

    Borkar, Hemant; Hoseini, Majid; Pekguleryuz, Mihriban

    2012-01-01

    Highlights: ► Mg–1%Mn and Mg–1%Mn–(0.3–2)Sr alloys were extruded at elevated temperature. ► Strontium additions refine extruded microstructure of M1 alloys. ► Sr additions weaken the basal texture of extruded M1, improve the ductility and reduce the yield asymmetry. ► Texture weakening with increasing strontium additions is the result of particle stimulated nucleation (PSN). - Abstract: Magnesium–manganese, M1, alloy is preferred for extrusion applications due to its extrudability. It is mainly used as a sacrificial anode or as a creep resistant alloy at elevated temperatures in the nuclear industry. Since Mn does not provide a significant strengthening effect, the alloy is not considered for structural applications. The basal texture which forms after extrusion orients the basal planes parallel to the extrusion direction causing anisotropy in mechanical properties. This basal texture, as well as the low strength of the alloy are the main challenges in its widespread applications. In this study, the effect of Sr addition on the texture and mechanical properties of M1 alloy was studied. M1–Sr alloys showed weakened texture by developing random texture components during extrusion. The texture randomisation is attributed to particle stimulated nucleation (PSN) around Mg–Sr intermetallics during recrystallisation. M1–Sr compositions are found to show improved strength and ductility as well as reduced yield asymmetry.

  18. Nickel aluminide alloy suitable for structural applications

    Science.gov (United States)

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  19. Inconel type resistive alloys based on ultrahigh purity nickel

    International Nuclear Information System (INIS)

    Matsarin, K.A.; Matsarin, S.K.

    2000-01-01

    The new nickel high-ohm alloys (ρ = 1.2-1.4 μOhm · m), containing the W, Al, Mo alloying elements in the quantity, not exceeding their solubility in a solid solution, are developed on the basis of the Inconel-type standard alloy. The optical composition of the alloy was determined by the results of the alloy was determined by the results of the electric resistance measurement and technological effectiveness indices (relative to the pressure and workable metal yield). The following optimal component concentrations were established: 14-17 %Cr; 10-12 %Fe; 0.5-1.0 %Cu; 1.0-1.5 %Mn; 0.1-0.2 %C; 0.4-0.6 %Si; 0.5-3.0 %W; 5-16 %Mo; 0.5-2.0 %Al; the remainder - Ni. The new alloys are recommended as materials for resistive elements of direct-glow cathode nodes of low capacity electron tubes [ru

  20. Lattice vibrations study of Ga1-xInxAsySb1-y quaternary alloys with low (In, As) content grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Olvera-Herandez, J; Olvera-Cervantes, J; Rojas-Lopez, M; Navarro-Contreras, H; Vidal, M A; Anda, F de

    2006-01-01

    Raman scattering spectroscopy was used to measure and analyze the lattice vibrations in some quaternary Ga 1-x In x As y Sb 1-y alloys with low (In, As) contents (0.03 0 C. High Resolution X-Ray Diffraction results showed profiles associated with a quaternary layer lattice matched to the GaSb substrate as obtained from the (004) reflection. The experimental diffractograms were simulated to estimate alloy composition, thickness and lattice mismatch of the layer. Raman scattering results show phonon frequencies associated to the TO and LO GaAs-like modes as well as GaSb + InAs-like mode, which are characteristic of this quaternary alloy. The As content dependence of the phonon frequency measured in this alloy for low (In, As) contents agree well with the modified Random-Element Isodisplacement (REI) model and also with other available experimental reports. This method can also be used to estimate alloy compositions for this kind of quaternary alloys

  1. Growth and characterization of NixCu1-x alloy films, NixCu1-x/NiyCu1-y multilayers, and nanowires

    International Nuclear Information System (INIS)

    Kazeminezhad, I.

    2001-12-01

    It was found that it is possible to grow Ni x Cu 1-x alloy systems of arbitrary composition by electrodepositing well-defined sub-monolayer quantities of Ni and Cu in alternation using a new method based on that used previously to prepare potentiostatically deposited magnetic multilayers from a single sulphamate-based electrolyte. Following growth, the chemical composition of Ni x Cu 1-x alloy films was obtained by ZAF-corrected energy dispersive X-Ray (EDX) analysis and less than a 4% difference between the nominal and actual composition was observed. The structure of the films was investigated by high-angle X-ray diffractometry (HAXRD) and transmission electron microscopy (TEM). The films grown on polycrystalline Cu substrates had (100) texture, while those grown on Au-coated glass had (111) texture. Some evidence of Ni clustering was obtained by vibrating sample magnetometry (VSM). Self-organisation of the deposited metal was suggested for Ni potentials more positive than ∼-1.4V. The transition from a Ni/Cu multilayer to a Ni x Cu 1-x alloy was also studied and an interesting aspect, namely a plateau region in a plot of magnetisation as a function of Ni layer thickness was observed, suggesting a preferred Ni cluster size in these alloy films. Anisotropic magnetoresistance (AMR) of the films decreased with increasing Cu content at 300K and 77K. SQUID measurements for Ni 0.52 Cu 0.48 and Ni 0.62 CU 0.38 films showed that they become much more strongly ferromagnetic at low temperatures. Evidence for blocked -superparamagnetic behaviour above a blocking temperature (T B ) of the films was obtained from zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility measurements. Ni x Cu 1-x /Ni y Cu 1-y alloy/alloy multilayer films with short repeat distance were successfully fabricated using this method. Up to third order satellite peaks observed in HAXRD showed that the interface is sharp. Room temperature longitudinal magnetoresistance measurements showed

  2. Cellular Mechanism Underlying Hypothermia-Induced VT/VF in the Setting of Early Repolarization and the Protective Effect of Quinidine, Cilostazol and Milrinone

    Science.gov (United States)

    Gurabi, Zsolt; Koncz, István; Patocskai, Bence; Nesterenko, Vladislav V.; Antzelevitch, Charles

    2014-01-01

    Background Hypothermia has been reported to induce ventricular tachycardia and fibrillation (VT/VF) in patients with early repolarization (ER) pattern. This study examines the cellular mechanisms underlying VT/VF associated with hypothermia in an experimental model of ER syndrome (ERS) and examines the effectiveness of quinidine, cilostazol and milrinone to prevent hypothermia-induced arrhythmias. Method and Results Transmembrane action potentials (AP) were simultaneously recorded from 2 epicardial and 1 endocardial site of coronary-perfused canine left-ventricular wedge preparations, together with a pseudo-ECG. A combination of NS5806 (3–10 µM) and verapamil (1µM) was used to pharmacologically model the genetic mutations responsible for ERS. Acetylcholine (3µM) was used to simulate increased parasympathetic tone, which is known to promote ER. In control, lowering the temperature of the coronary perfusate to induce mild hypothermia (32°C-34°C) resulted in increased J wave area on the ECG and accentuated epicardial AP notch but no arrhythmic activity. In the setting of ER, hypothermia caused further accentuation of the epicardial AP notch, leading to loss of the AP dome at some sites but not others, thus creating the substrate for development of phase-2-reentry and VT/VF. Addition of the Ito antagonist quinidine (5 µM) or the phosphodiesterase III inhibitors cilostazol (10 µM) or milrinone (5 µM), diminished the ER manifestations and prevented the hypothermia-induced phase 2 reentry and VT/VF. Conclusions Hypothermia leads to VT/VF in the setting of ER by exaggerating repolarization abnormalities, leading to development of phase-2-reentry. Quinidine, cilostazol and milrinone suppress the hypothermia-induced VT/VF by reversing the repolarization abnormalities. PMID:24429494

  3. CO impurities effect on LaNi4∙7Al0∙3 hydrogen storage alloy ...

    Indian Academy of Sciences (India)

    Administrator

    LaNi4∙7Al0∙3 alloy was prepared by vacuum induction melting in high purity helium atmosphere, .... The particle size of the ... tated Ni, and hydrogen molecules are dissociated into .... range of 30–150 °C, the sample weight loss is about 1∙3%.

  4. Effects of Al content and annealing on the phases formation, lattice parameters, and magnetization of A lxF e2B2 (x =1.0 ,1.1 ,1.2 ) alloys

    Science.gov (United States)

    Levin, E. M.; Jensen, B. A.; Barua, R.; Lejeune, B.; Howard, A.; McCallum, R. W.; Kramer, M. J.; Lewis, L. H.

    2018-03-01

    AlF e2B2 is a ferromagnet with the Curie temperature around 300 K and has the potential to be an outstanding rare-earth free candidate for magnetocaloric applications. However, samples prepared from the melt contain additional phases which affect the functional response of the AlF e2B2 phase. We report on the effects of Al content in samples with the initial (nominal) composition of A lxF e2B2 , where x =1.0 , 1.1, and 1.2 prepared by arc-melting followed by suction casting and annealing. The as-cast A lxF e2B2 alloys contain AlF e2B2 as well as additional phases, including the primary solidifying FeB and A l13F e4 compounds, which are ferromagnetic and paramagnetic, respectively, at 300 K. The presence of these phases makes it difficult to extract the intrinsic magnetic properties of AlF e2B2 phase. Annealing of A lxF e2B2 alloys at 1040 °C for 3 days allows for reaction of the FeB with A l13F e4 to form the AlF e2B2 phase, significantly reduces the amount of additional phases, and results in nearly pure AlF e2B2 phase as confirmed with XRD, magnetization, scanning electron microscopy, and electronic transport. The values of the magnetization, effective magnetic moment per Fe atom, specific heat capacity, electrical resistivity, and Seebeck coefficient for the AlF e2B2 compound have been established.

  5. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO 2 dissolves in Nb 2 O 5 to form 6HfO-Nb 2 O 5 . This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 2400 0 F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 2400 0 F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  6. Stabilization effect of Zr and Ti additions on the ageing characteristics of Al-1 wt% Si alloy through a creep study

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Beshai, M.H.N.; Abd El Khalek, A.M.; Graiss, G. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Kenawy, M.A. [Ain Shams Univ., Cairo (Egypt). Womens Coll.

    1997-12-31

    Al-1 wt% Si and Al-1 wt% Si-0.1 wt% Zr-0.1 wt% Ti alloys were used to trace the effect of Zr and Ti additions on the behaviour of the steady state creep. After solid solution treatment specimens of both alloys were aged at 623, 673, 723 and 773 K and creep tests were performed at room temperature by applying stresses of 60.0, 62.4, 64.7 and 67.1 MPa. The results showed a sound stabilization effect of Zr and Ti on the ageing characteristics of binary Al-1 wt% Si alloy. Values of the applied stress sensitivity parameter, m, obtained were in the range of (20-34) for Al-Si alloy and (14-19) for Al-Si-Zr-Ti alloy. Time to rupture was found to be strongly increased by Zr and Ti additions. The activation energies of the precipitation process involved were found to be 81.9 kJ/mole and 33.7 kJ/mole of the Al-Si and Al-Si-Zr-Ti alloys respectively. (orig.) 17 refs.

  7. Electrical resistivity at high temperatures of Heusler alloys of the Cu2MnAl sub(1-x) Sn sub (x)

    International Nuclear Information System (INIS)

    Grandi, T.A.

    1978-01-01

    The structural fase L2 1 of the Heusler alloys Cu 2 MnAl sub (1-x) Sn sub(x), with x varying between 0 and 1, was studied. X-ray diffraction, metallography and diferential termoanalysis techniques were employed. For the alloys with x = 0; 0,05; 0,10 and 0,15 the electrical resistivity measurements were performed in the temperature range 300 K [pt

  8. Theoretical calculations of the surface tension of Ag(1-x)-Cu(x) liquid alloys

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Highlights: → A thermodynamic model for calculating the surface tension, and its temperature and composition dependences, of liquid binary alloys is described. → The model does not require the prior knowledge of the surface concentration and Gibbs energy. → The surface tension of the liquid Ag-Cu binary alloys has been calculated as a function of temperature and concentration. → The calculated values agree well with existing experimental data. - Abstract: The surface tension of silver-copper binary liquid alloys is calculated, in the frame work of Eyring theory. The calculations were made for different compositions (mole fraction, x Cu = 0, 0.2, 0.4, 0.6, 0.8 and 1), in the temperature range 1100-1800 K. The surface tension decreases with temperature increase, at a fixed copper fraction x Cu , and increases with increasing copper content. The calculated results are appropriately compared with existing literature data.

  9. Quantification of susceptibility artifacts in 0.5, 1.5 and 3.0 tesla magnetic resonance imaging produced from various biomaterials

    International Nuclear Information System (INIS)

    Matsuura, Hideki

    2002-01-01

    Several studies have examined various biomaterials to minimize susceptibility artifacts using low magnetic fields such as 0.5 Tesla or 1.5 Tesla, but no work has been done with high magnetic field. The purpose of the present study was to quantify the susceptibility artifacts produced from various biomaterials for neurosurgical implants in 0.5, 1.5 and 3.0 Tesla MR scanner. We performed MR imaging of six kinds of ceramics, two kinds of Co-based alloys with different combination, pure titanium, titanium alloy and stainless steel. Images were transferred to computer and analyzed. On all biomaterials, susceptibility artifacts developed parallel to the direction of the main magnetic field at both ends. Ceramics had considerably smaller artifact diameter compared with other biomaterials. Among ceramics, the artifact diameter of zirconia was the smallest. There were few differences between the artifact diameter of pure titanium and that of titanium alloy. Ceramics are promising biomaterials for minimum artifacts in higher field MR system. Although it is necessary to carry out degradation tests or retention force evaluation of the ceramics, we considered the ceramics are the most suitable biomaterials for the artifacts in MR imaging. (author)

  10. KARAKTERISTIK MIKROSTRUKTUR DAN FASA PADUAN Zr- 0,3%Nb-0,5%Fe-0,5%Cr PASCA PERLAKUAN PANAS DAN PENGEROLAN DINGIN

    Directory of Open Access Journals (Sweden)

    Sungkono Sungkono

    2015-07-01

    Full Text Available KARAKTERISTIK MIKROSTRUKTUR DAN FASA PADUAN Zr-0,3%Nb-0,5%Fe-0,5%Cr PASCA PERLAKUAN PANAS DAN PENGEROLAN DINGIN. Logam paduan Zr-Nb-Fe-Cr dikembangkan sebagai material kelongsong elemen bakar dengan fraksi bakar tinggi untuk reaktor daya maju. Dalam penelitian ini telah dibuat paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr yang mendapat perlakuan panas pada temperatur 650 dan 750°C dengan waktu penahanan 1–2 jam. Tujuan penelitian adalah mendapatkan karakter paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr pasca perlakuan panas dan pengerolan dingin yaitu mikrostruktur, struktur kristal dan fasa-fasa yang ada dalam paduan. Hasil penelitian menunjukkan bahwa paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr pasca perlakuan panas (650ºC, 1-2 jam mempunyai struktur butir ekuiaksial dengan ukuran butir bertambah besar seiring dengan bertambahnya waktu penahanan. Sementara itu, pasca perlakuan panas (750ºC, 1-2 jam terjadi perubahan mikrostruktur paduan dari butir ekuiaksial dan kolumnar menjadi butir ekuiaksial lebih besar. Paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr pasca perlakuan panas (650°C, 1 jam dan (750°C, 1 jam tidak dapat dirol dingin dengan reduksi tebal 5 – 10%, sedangkan pasca perlakuan panas (650ºC, 2 jam dan (750°C, 1.5-2 jam mampu menerima deformasi dingin dengan reduksi ketebalan 5-10% tanpa mengalami keretakan. Senyawa Zr2Fe, ZrCr2 dan FeCr teridentifikai dari hasil uji kristalografi paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr.   MICROSTRUCTURE AND PHASE CHARACTERISTICSOF Zr-0.3%Nb-0.5%Fe-0.5%Cr ALLOY POST HEAT TREATMENT AND COLD ROLLING. Zr-Nb-Fe-Cr alloys was developed as fuel elements cladding with high burn up for advanced power reactors. In this research has been made of Zr-0.3% Nb-0.5% Fe-0.5% Cr alloy were heat treated with varying temperatures at650 and 750°C for 1 until 2 hours. The objectives of this research was to obtain the character of Zr-0.3% Nb-0.5% Fe-0.5% Cr alloy post heat treatment and cold rolling, microstructure nomenclature, crystal structure and phases that presents in the

  11. Influence of heat treatment on the mechanical and electrical characteristics of Ni{sub 0.5}Ti{sub 0.5} alloy prepared by electron-beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, A.H. [Thin Film Laboratory, Physics Department, Faculty of Education, Ain Shams University (Egypt); Physics Department, Faculty of Science and Arts, Al-Ola, Taibah University (Saudi Arabia); Al-Buhairi, M. [Physics Department, Faculty of Science, Taiz University (Yemen); Farag, A.A.M., E-mail: alaafaragg@yahoo.com [Thin Film Laboratory, Physics Department, Faculty of Education, Ain Shams University (Egypt); Al-Wajeeh, N.M.M. [Physics Department, Faculty of Science, Taiz University (Yemen)

    2013-06-15

    Nickel titanium alloys (Ni{sub 0.5}Ti{sub 0.5}) were successfully produced from elemental Ni/Ti powders by electron-beam melting method and then subjected to annealing and aging treatment. Microstructure of the alloys was examined by XRD and SEM. The mechanical properties of the alloyed surface were examined. The microhardness was studied as a function of annealing temperature and time. It was found that the microhardness decreases with increasing annealing temperature until 660 °C after which the microhardness increases. Electrical resistance measurements were carried out in order to study the transformation behavior. The electrical measurements point out the importance of temperature dependence of Ni{sub 0.5}Ti{sub 0.5} electrical resistance for the identification of particular transformation. The influence of aging on the development of electrical resistivity was also investigated.

  12. Moessbauer study of (Fe1-x Cu x )4N (0.05≤x≤0.15) films

    International Nuclear Information System (INIS)

    El Khiraoui, S.; Sajieddine, M.; Vergnat, M.; Bauer, Ph.; Mabrouki, M.

    2007-01-01

    In this work, we have prepared nitrogenated Fe 1- x Cu x alloys by reactive evaporation under a flow of nitrogen ions. After annealing, X-ray diffraction shows that we have synthesized the γ'-(Fe 1- x Cu x ) 4 N (0.05≤x≤0.15) compounds. The films were investigated by Moessbauer spectroscopy. The crystallographic structure and the respective positions of the Fe and Cu atoms in the compounds have been determined

  13. Microstructure characteristic for high temperature deformation of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy

    International Nuclear Information System (INIS)

    Zhang, Dan-yang; Li, Hui-zhong; Liang, Xiao-peng; Wei, Zhong-wei; Liu, Yong

    2014-01-01

    Highlights: • With temperature increasing and strain rate decreasing, the β phase decreases. • With temperature increasing and strain rate decreasing, DRX grains increase. • The high temperature deformation mechanism of TiAl alloy was clearly. - Abstract: Hot compression tests of a powder metallurgy (P/M) Ti–47Al–2Cr–0.2Mo (at. pct) alloy were carried out on a Gleeble-3500 simulator at the temperatures ranging from 1000 °C to 1150 °C with low strain rates ranging from 1 × 10 −3 s −1 to 1 s −1 . Electron back scattered diffraction (EBSD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to investigate the microstructure characteristic and nucleation mechanisms of dynamic recrystallization. The stress–strain curves show the typical characteristic of working hardening and flow softening. The working hardening is attributed to the dislocation movement. The flow softening is attributed to the dynamic recrystallization (DRX). The number of β phase decreases with increasing of deformation temperature and decreasing of strain rate. The ratio of dynamic recrystallization grain increases with the increasing of temperature and decreasing of strain rate. High temperature deformation mechanism of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy mainly refers to twinning, dislocations motion, bending and reorientation of lamellae

  14. In-situ thermal analysis and macroscopical characterization of Mg-xCa and Mg-0.5Ca-xZn alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, Saeed [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Bakhsheshi-Rad, Hamid Reza, E-mail: Rezabakhsheshi@gmail.com [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Idris, Mohd Hasbullah [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implants Technology Group, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Department of Biomechanics and Biomedical Materials, Faculty of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Lotfabadi, Amir Fereidouni [Department of Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Ourdjini, Ali [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2012-01-10

    Highlights: Black-Right-Pointing-Pointer The effect of Ca and Zn addition on Mg-Ca and Mg-Ca-Zn were investigated. Black-Right-Pointing-Pointer Ca and Zn addition decreased solid fraction at coherency point. Black-Right-Pointing-Pointer T{sub N}-T{sub DCP} increased by adding Ca and Zn in Mg-Ca and Mg-Ca-Zn, respectively. Black-Right-Pointing-Pointer Three reactions were detected when Zn/Ca atomic ratio less than 1.25 in Mg-Ca-Zn. Black-Right-Pointing-Pointer A new peak Mg{sub 51}Zn{sub 20} was identified in Mg-0.5Ca-9Zn in addition of other peaks. - Abstract: This research described the identification phases by thermal analysis and microscopy inspection of Mg-xCa and Mg-0.5%Ca-xZn alloys that were solidified at slow cooling rate. Analysis of cooling curve after Ca addition shows the evolution of the Mg{sub 2}Ca intermetallic phase at around 520 Degree-Sign C in addition to {alpha}-Mg phase. First derivative curves of alloys after the addition of Zn to Mg-0.5Ca alloy reveals three peaks related to {alpha}-Mg, Mg{sub 2}Ca and Ca{sub 2}Mg{sub 6}Zn{sub 3} for alloys that have Zn/Ca atomic ratio less than 1.23. The peak of Mg{sub 2}Ca reaction on the first derivative curves disappeared for alloys containing Zn/Ca ratio more than 1.23. A new peak was also observed at 330 Degree-Sign C for Mg-0.5Ca-9Zn which was identified as Mg{sub 51}Zn{sub 20}. Solid fraction at coherency point decreased with increasing Ca and Zn elements. However, coherency time and difference between the nucleation and coherency temperatures (T{sub N}-T{sub DCP}) increased by adding Ca and Zn in Mg-Ca and Mg-Ca-Zn systems.

  15. Cyclic tensile response of Mo-27 at% Re and Mo-0.3 at% Si solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yu, X.J.; Kumar, K.S., E-mail: Sharvan_Kumar@brown.edu

    2016-10-31

    Stress-controlled uniaxial cyclic tensile tests were conducted on binary Mo-27 at% Re and Mo-0.3 at% Si solid solutions as a function of temperature and compared against the previously reported cyclic response of pure Mo. The Mo-27 at% Re alloy with a recrystallized grain size of ~30 µm was evaluated in the temperature range 25 °C–800 °C at R=0.1 and stress range that was 80% of the ultimate tensile strength (UTS); a peak in fatigue life was observed between 300 °C and 500 °C. The decrease in fatigue life at the higher temperatures of 700 °C and 800 °C is attributed to dynamic strain aging. Transmission electron microscopy of the cyclically-deformed alloy revealed parallel bands of dislocation at room temperature that transitioned to a uniform cell structure at 500 °C and back to orthogonal planar arrays at 800 °C. The as-extruded Mo-0.3 at% Si alloy was evaluated from 25 °C to 1200 °C and showed superior fatigue life and ratcheting strain resistance as compared to pure Mo and the Mo-27 at% Re alloy (within the temperature range where data were available for comparison). The superior resistance is attributed to the high density of dislocations within the material in this mostly unrecrystallized state rather than Si in solid solution. Above 800 °C, the ratcheting strain increases and fatigue life decreases rapidly with increasing temperature and is associated with dynamic recovery.

  16. First-principles study of electronic properties of FeSe{sub 1-x}S{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P. [Department of Physics, Indian Institute of Technology-Bombay, Mumbai-400076 (India)

    2016-05-06

    We have studied the electronic and superconducting properties of FeSe{sub 1-x}S{sub x} (x = 0.0, 0.04) alloys by first-principles calculations using the Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). The electronic structure calculations show the ground states of S-doped FeSe to be nonmagnetic. We present the results of our unpolarized calculations for these alloys in terms of density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe and FeSe{sub 0.96}S{sub 0.04} alloys. We find that the substitution of S at Se site into FeSe exhibit the subtle changes in the electronic structure with respect to the parent FeSe. We have also estimated bare Sommerfeld constant (γ{sub b}), electron-phonon coupling constant (λ) and the superconducting transition temperature (T{sub c}) for these alloys, which were found to be in good agreement with experiments.

  17. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy

    Science.gov (United States)

    Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang

    2018-04-01

    Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.

  18. Research on low strain magnetic mechanical hysteresis damping performance of Fe-15Cr-3Mo-0.5Si alloy

    International Nuclear Information System (INIS)

    Wang, Hui; Huang, Huawei; Hong, Xiaofeng; Yin, Changgeng; Huang, Zhaohua; Chen, Le

    2015-01-01

    Highlights: • Heat treatment system has a great effect on the alloy damping performance. • Damping performance does not improve monotonously with temperature. • Furnace cooling is higher than that of alloy after air cooling. • There is an optimum annealing temperature and grain size to obtain high damping. - Abstract: This paper studies the preparation of Fe-15Cr-3Mo-0.5Si alloy by using vacuum induction melting furnace and vacuum annealing furnace, the damping performance of which in different heat treatment states is tested with dynamic mechanical thermal analyzer (DMA). Through microstructure observation with metallographic microscope (OM), grain boundary observation with scanning electron microscopy (SEM), phase structure analysis with X-ray diffraction (XRD) and internal stress of S-B model analysis, the effect law of annealing temperature, types of cooling, holding time and grain sizes on the damping performance of alloy and the related mechanism can be concluded as follows. The annealing temperature and grain sizes have a significant impact on the damping strain amplitude as well as the magnetic and mechanical damping performance of this ferromagnetic alloy. Proper annealing temperature and grain size is the necessary condition to get high damping performance of the alloy. It is not conducive to improvement of the damping performance if the annealing temperature is too high or too low and the grain size is too small or too large. For Fe-15Cr-3Mo-0.5Si alloy, within the range of the low strain amplitude, alloy damping performance does not improve monotonously with the increase of the annealing temperature and grain size. The maximum value appears at the annealing temperature of 1100 °C/1 h with the grain size of about 300 μm. At high annealing temperature of 1100 °C, the damping performance of alloy in the slow cooling furnace is higher than that with air cooling treatment. The extension or shortening of the holding time, to a certain extent

  19. Research on low strain magnetic mechanical hysteresis damping performance of Fe-15Cr-3Mo-0.5Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui, E-mail: qinghe5525@163.com; Huang, Huawei; Hong, Xiaofeng; Yin, Changgeng; Huang, Zhaohua; Chen, Le

    2015-02-15

    Highlights: • Heat treatment system has a great effect on the alloy damping performance. • Damping performance does not improve monotonously with temperature. • Furnace cooling is higher than that of alloy after air cooling. • There is an optimum annealing temperature and grain size to obtain high damping. - Abstract: This paper studies the preparation of Fe-15Cr-3Mo-0.5Si alloy by using vacuum induction melting furnace and vacuum annealing furnace, the damping performance of which in different heat treatment states is tested with dynamic mechanical thermal analyzer (DMA). Through microstructure observation with metallographic microscope (OM), grain boundary observation with scanning electron microscopy (SEM), phase structure analysis with X-ray diffraction (XRD) and internal stress of S-B model analysis, the effect law of annealing temperature, types of cooling, holding time and grain sizes on the damping performance of alloy and the related mechanism can be concluded as follows. The annealing temperature and grain sizes have a significant impact on the damping strain amplitude as well as the magnetic and mechanical damping performance of this ferromagnetic alloy. Proper annealing temperature and grain size is the necessary condition to get high damping performance of the alloy. It is not conducive to improvement of the damping performance if the annealing temperature is too high or too low and the grain size is too small or too large. For Fe-15Cr-3Mo-0.5Si alloy, within the range of the low strain amplitude, alloy damping performance does not improve monotonously with the increase of the annealing temperature and grain size. The maximum value appears at the annealing temperature of 1100 °C/1 h with the grain size of about 300 μm. At high annealing temperature of 1100 °C, the damping performance of alloy in the slow cooling furnace is higher than that with air cooling treatment. The extension or shortening of the holding time, to a certain extent

  20. Determination of the duration of heating and cooling of titanium alloy billets for swaging

    International Nuclear Information System (INIS)

    Kushakevich, S.A.; Konovalov, M.A.; Chistyakov, N.I.

    1978-01-01

    An attempt was made to establish a connection between the duration of heat and the decrease in metal temperature during deformation to determine the beginning and duration of heating titanium alloy billets for hot stamping. The investigations were made on the VT3-1 alloy billets with chromel-alumel thermocouples inside. The results of measurements of billet surface and center temperatures during the heating in a resistance surface up to 960-1050deg C and during the cooling in the air. It is shown that heating and cooling increase with the billet cross-section. The heating duration up to 1050deg C for all cross-sections is 4 or 5 min less than up to 960deg C. The cooling duration from 960 and 1050deg C to 200deg C depends weakly on the heating temperature and varies for various cross-sections within the limits of 1-2 min. It is proposed to determine roughly the metal temperature on complection of stamping through the time elapsed after the heated billet has left the furnace

  1. High Temperature Deformation Behavior and Microstructure Evolution of Ti-4Al-4Fe-0.25Si Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Woo; Lee, Yongmoon; Lee, Chong Soo [Pohang University of Science and Technology, Pohang (Korea, Republic of); Yeom, Jong-Taek [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lee, Gi Yeong [KPCM Incorporated, Gyeongsan (Korea, Republic of)

    2016-05-15

    Hot deformation behavior of Ti-4Al-4Fe-0.25Si alloy with martensite microstructure was investigated by compression tests at temperatures of 1023 – 1173 K (α+β phase region) and strain rates of 10{sup -3} – 1 s{sup -1}. By analyzing the deformation behavior, plastic deformation instability parameters including strain rate sensitivity, deformation temperature sensitivity, efficiency of power dissipation, and Ziegler’s instability were evaluated as a function of deformation temperature and strain rate, and they were further examined by drawing deformation processing maps. The microstructure evolution was also studied to determine the deformation conditions under which equiaxed α phase was formed in the microstructure without remnants or kinked α phase platelets and shear bands, these last two of which cause severe cracks during post-forming process. Based on the combined results of the processing maps and the microstructure analysis, the optimum α+β forging conditions for Ti-4Al-4Fe-0.25Si alloy were determined.

  2. Amorphous magnetism in Mnx Sn1-x alloys

    International Nuclear Information System (INIS)

    Drago, V.; Saitovitch, E.M.B.; Abd-Elmeguid, M.M.

    1988-01-01

    Systematic low temperature in situ 119 Sn Moessbauer effect (ME) studies in vapor quenched amorphous Mn x Sn 1-x (0.09≤ x ≤0,95) alloys between 150 and 4.2 K, are presented. Its is shown that the magnetic behavior of the system is correctly displayed by the transferred magnetic hyperfine (hf) interactions, at the 119 Sn site. A complete magnetic phase diagram is proposed, and the effect of an external magnetic field (up to about 3T) on the spin correlations in the spin-glass state is also discussed. (author) [pt

  3. Effects of surface treatments of MlNi 4.0Co 0.6Al 0.4 hydrogen storage alloy on the activation, charge/discharge cycle and degradation of Ni/MH batteries

    Science.gov (United States)

    Chen, Weixiang

    The effects of the surface treatment of the hydrogen storage alloy on the activation property and cycle life of nickel/metal-hydride (Ni/MH) batteries were investigated by means of the electrochemical impedance spectra. It was found that the oxide layer on the alloy surface affected its electrochemical properties and catalysis for the oxygen combination. Therefore, Ni/MH battery employed the untreated alloy as negative electrode material exhibited bad activation property, short cycle life and high internal pressure. Because of the improvement in the metal hydride electrode electrochemical characteristics and catalysis for oxygen recombination by the surface treatment of the alloy in 0.02 M KBH 4+6 M KOH or 6 M KOH solution, the battery used the treated alloy as negative exhibited good activation, long cycle life and low internal pressure. The composition and dissolution of the alloy surface were analyzed by an electron probe microanalysis (EPMA) and induced coupled plasma spectroscopy (ICP). It was found that the Ni-rich surface layer was an important factor to improve the activation and cycle life of battery.

  4. Corrosion behaviour of ion implanted aluminium alloy in 0.1 M NaCl electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J.W.; Evans, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Aluminum and its alloys are widely used in industry because of their light weight, high strength and good corrosion resistance which is due to the formation of a protective oxide layer. However, under saline conditions such as those encountered in marine environments, this group of metals are vulnerable to localised degradation in the form of pitting corrosion. This type of corrosion involves the adsorption of an anion, such as chlorine, at the oxide solution interface. Ion implantation of metal ions has been shown to improve the corrosion resistance of a variety of materials. This effect occurs : when the implanted species reduces anion adsorption thereby decreasing the corrosion rate. In this paper we report on the pitting behavior of Ti implanted 2011 Al alloy in dilute sodium chloride solution. The Ti implanted surfaces exhibited an increased pitting potential and a reduced oxygen uptake. 5 refs., 3 figs.

  5. Corrosion behaviour of ion implanted aluminium alloy in 0.1 M NaCl electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J W; Evans, P J [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Aluminum and its alloys are widely used in industry because of their light weight, high strength and good corrosion resistance which is due to the formation of a protective oxide layer. However, under saline conditions such as those encountered in marine environments, this group of metals are vulnerable to localised degradation in the form of pitting corrosion. This type of corrosion involves the adsorption of an anion, such as chlorine, at the oxide solution interface. Ion implantation of metal ions has been shown to improve the corrosion resistance of a variety of materials. This effect occurs : when the implanted species reduces anion adsorption thereby decreasing the corrosion rate. In this paper we report on the pitting behavior of Ti implanted 2011 Al alloy in dilute sodium chloride solution. The Ti implanted surfaces exhibited an increased pitting potential and a reduced oxygen uptake. 5 refs., 3 figs.

  6. Metallurgical processing of the uranium-0.75 titanium alloy

    International Nuclear Information System (INIS)

    Jessen, N.C.

    1976-01-01

    Although the addition of titanium is an effective means of strengthening uranium, careful control of casting, homogenization, and heat treatment are necessary to optimize mechanical properties. Quenching of the alloy provides increased strength and elongation; however, subsequent low temperature aging will increase the strength even higher at the sacrifice of ductility. The properties of the alloy are quench rate sensitive and quenching produces high residual stresses in the alloy. The residual stresses can be reduced by mechanical deformation with only slight degradation of the mechanical properties. 15 figures

  7. Influence of Annealing on Microstructure and Mechanical Properties of Refractory CoCrMoNbTi0.4 High-Entropy Alloy

    Science.gov (United States)

    Zhang, Mina; Zhou, Xianglin; Zhu, Wuzhi; Li, Jinghao

    2018-04-01

    A novel refractory CoCrMoNbTi0.4 high-entropy alloy (HEA) was prepared via vacuum arc melting. After annealing treatment at different temperatures, the microstructure evolution, phase stability, and mechanical properties of the alloy were investigated. The alloy was composed of two primary body-centered cubic structures (BCC1 and BCC2) and a small amount of (Co, Cr)2Nb-type Laves phase under different annealing conditions. The microhardness and compressive strength of the heat-treated alloy was significantly enhanced by the solid-solution strengthening of the BCC phase matrix and newborn Laves phase. Especially, the alloy annealed at 1473 K (1200 °C) achieved the maximum hardness and compressive strength values of 959 ± 2 HV0.5 and 1790 MPa, respectively, owing to the enhanced volume fraction of the dispersed Laves phase. In particular, the HEAs exhibited promising high-temperature mechanical performance, when heated to an elevated temperature of 1473 K (1200 °C), with a compressive fracture strength higher than 580 MPa without fracture at a strain of more than 20 pct. This study suggests that the present refractory HEAs have immense potential for engineering applications as a new class of high-temperature structural materials.

  8. Phase evolution and its effect on magnetic properties of Nd sub 6 sub 0 Al sub 1 sub 0 Fe sub 2 sub 0 Co sub 1 sub 0 bulk metallic glass

    CERN Document Server

    Lei Xia; Pan, M X; Zhao, D Q; Wang, W H; Dong, Y D

    2003-01-01

    The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic properties were studied for as-cast Nd sub 6 sub 0 Al sub 1 sub 0 Fe sub 2 sub 0 Co sub 1 sub 0 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hard magnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed.

  9. Magnetic properties of ZrNi{sub 5-x}In{sub x} (0{<=}x{<=}1) ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Drulis, H. E-mail: drulis@int.pan.wroc.pl; Iwasieczko, W.; Zaremba, V

    2003-01-01

    Magnetisation was measured for the series of ZrNi{sub 5-x}In{sub x} (x=0, 0.25. 0.50, 0.75 and 1.0) alloys over the temperature range 1.75-700 K in applied field up to 50 kOe. All materials studied crystallise in the AuGe{sub 5}-type crystal structure. Alloys with x=0, 0.25 and 0.5 were found to be ferromagnets with relatively high transition temperatures, T{sub c}, dependent on the indium concentration (from T{sub c}=368 K for x=0.5 up to 647 K for x=0). The measured saturation magnetic moments are fully connected with nickel atom; the Zr and In moments are negligible. An environment-dependent model for the formation of Ni moments is suggested. The critical concentration of Ni for the onset of long-range ferromagnetic order in ZrNi{sub 5-x}In{sub x} is estimated as 4.5 atoms/f.u. (75 at%), approximately. The long-range magnetic order is determined by the number of the nearest neighbours of Ni atoms occupying 16(e) positions. Alloys with x=0.75 and 1.0 exhibit Pauli paramagnetism.

  10. Prospects of the "VT-Pro" series beef protein using in the sausages products technology

    Directory of Open Access Journals (Sweden)

    O. P. Dvoryaninova

    2017-01-01

    Full Text Available Recently, the negative attitude of consumers towards soy protein has been formed. Therefore, to increase the mass fraction of protein in the finished product, it is advisable to use animal proteins, the main advantage of which is multipurpose designation, easy use and the ability to ensure an increase in the finished products yield and high production profitability due to their use . The application of beef proteins from collagen-containing raw materials makes it possible to enrich meat products with dietary fiber, to improve the rheological properties of food products significantly, especially their consistency. High functional properties of animal proteins are manifested in their water-retaining capacity. The company "TRUMP Food Technologies" introduced several new positions into its assortment - beef proteins of the "VT-Pro" trade mark (fibrillar fraction collagen, the manufacturer of which is JSC "Verkhnevolzhsky tannery" (Tver region. Proteins of the "VT-Pro" trademark are unique in their characteristics and are natural, environmentally friendly products. Beef protein "VT-Pro" is suitable for the production of cooked sausage and ham products, semi-smoked and boiled-smoked sausages, canned goods, chopped semi-finished products and other meat products. It is used as a full-fledged stabilizing additive for the preparation of meat products with a specified yield and certain organoleptic characteristics (hydration 1: 10-15. It is determined that it is possible to use this protein in dry form, as a protein-fat emulsion, in the form of gel and granules. According to the pilot-industrial approbation under the conditions of AIC "PROMAGRO" LLC, it is possible to underline a number of advantages of beef protein "VT-Pro" using: it possesses high water-retaining and emulsifying ability; allows to process low-grade and fired raw materials and to replace expensive meat raw materials; it reduces the risk of broth-fat swelling; it improves the structure of

  11. Microstructures and Surface Stabilities of {Ni-0.4C-6Ta- xCr, 0 ≤ x ≤ 50 Wt Pct} Cast Alloys at High Temperature

    Science.gov (United States)

    Berthod, Patrice

    2018-06-01

    Nickel-based cast alloys rich in chromium and reinforced by TaC carbides are potentially very interesting alloys for applications at elevated temperatures. Unfortunately, unlike cobalt-chromium and iron-chromium alloys, it is difficult to obtain exclusively TaC as primary carbides in Ni-Cr alloys. In alloys containing 30 wt pct Cr tantalum, carbides coexist with chromium carbides. The latter tend to weaken the alloy at elevated temperatures because they become rapidly spherical and then quickly lose their reinforcing effect. In this work, we attempted to stabilize TaC as a single carbide phase by testing different chromium contents in the [0, 50 wt pct] range. Six alloys containing 0.4C and 6Ta, weight contents corresponding to equivalent molar contents, were elaborated by foundry, and their as-cast microstructures were characterized. Samples of all alloys were exposed to 1127 °C and 1237 °C for 24 hours to characterize their stabilized microstructures. The surface fractions of chromium carbides and tantalum carbides were measured by image analysis, and their evolutions vs the chromium content were studied. For the chosen C and Ta contents, it appears that obtaining TaC only is possible by decreasing the chromium content to 10 wt pct. At the same time, TaC fractions are unfortunately too low because a large portion of tantalum integrates into the solid solution in the matrix. A second consequence is a critical decrease in oxidation resistance. Other possible methods to stabilize TaC as a single carbide are evocated, such as the simultaneous increase in Ta and decrease in chromium from 30 wt pct Cr.

  12. Solute nanostructures and their strengthening effects in Al–7Si–0.6Mg alloy F357

    CSIR Research Space (South Africa)

    Sha, G

    2012-01-01

    Full Text Available The solute nanostructures formed in the primary a-Al grains of a semi-solid metal cast Al–7Si–0.6Mg alloy (F357) during ageing at 180°C, and the age-hardening response of the alloy, have been systematically investigated by transmission electron...

  13. Effect of the milling time on thermal stability of mechanically alloyed Mg{sub 5}0 Ni{sub 5}0 amorphous alloy; Efecto del tiempo de molienda sobre la estabilidad termica del amorfo Mg{sub 5}0 Ni:50 producido mediante aleado mecanico

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D.; Ordonez, S.; Serafini, D.; Rojas, P.; Aguilar, C.; Santander, M.; Navea, L.

    2009-07-01

    In order to study the relationship between the milling time used in the production of Mg{sub 5}0Ni{sub 5}0 amorphous alloy and its thermal stability, seven amorphous alloys were produced by milling for 20, 25, 30, 35, 40, 50 and 60 h each sample. The obtained powders were morphological and structurally characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The thermal stability of amorphous alloys was study by differential scanning calorimetry (DSC). Based on the obtained results, it can be concluded that the increase in the added energy when milling for longer time causes the homogenization of the microstructure with an increase in amorphous phase, which dissolves a large amount of nickel in its structure. Therefore, the simultaneous crystallization of the Mg{sub 2}Ni and MgNi{sub 2} intermetallic compounds at 345 degree centigrade can be explained. (Author) 19 refs.

  14. Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Mayukh K., E-mail: mayukh.ray@saha.ac.in; Bagani, K.; Banerjee, S., E-mail: sangam.banerjee@saha.ac.in

    2014-07-05

    Highlights: • Excess Ni causes an increase in the martensite transition temperature. • The system Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} exhibit multifunctional properties. • The RCP and EB increases continuously with excess Ni concentration in the system. • Antiferromagnetic interaction increases with excess Ni concentration. - Abstract: The martensitic transition, exchange bias (EB) and inverse magnetocaloric effect (IMCE) of bulk Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} (x = 0, 0.06, 0.12, 0.18) Heusler alloy is investigated in this paper. Substitution of Mn by Ni causes an increase in the martensite transition temperature (T{sub M}), decrease in Curie temperature of austenite phase (T{sub C}{sup A}) and also a decrease in the saturation magnetic moment (M{sub sat}). While the decrease in T{sub C}{sup A} and M{sub sat} is explained by the dilution of the magnetic subsystems and on the other hand the increase in T{sub M} is due to the increase of valence electron concentration per atom (e/a). All the alloys shows EB effect below a certain temperature (T{sup ∗}) and EB field (H{sub EB}) value is almost thrice in magnitude for x = 0.18 sample compared to x = 0 sample at 5 K. In these alloys, Ni/Mn atoms at regular site couples antiferromagnetically (AFM) with the excess Ni atoms at Mn or Sn sites and this AFM coupling plays the key role in the observation of EB. For the IMCE, the change in magnetic entropy (ΔS{sub M}) initially increased with excess Ni concentration upto x = 0.12 but then a drastic fall in ΔS{sub M} value is observed for the sample x = 0.18 but the relative cooling power (RCP) value is increased continuously with the excess Ni concentration.

  15. Effect of Cu content on the microstructure evolution and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys

    Science.gov (United States)

    Rahman, Tanzilur; Sakib Rahman, Saadman; Zurais Ibne Ashraf, Md; Ibn Muneer, Khalid; Rashed, H. M. Mamun Al

    2017-10-01

    Lightweighting automobiles can dramatically reduce their consumption of fossil fuels and the atmospheric CO2 concentration. Heat-treatable Al-Mg-Si has attracted a great deal of research interest due to their high strength-to-weight ratio, good formability, and resistance to corrosion. In the past, it has been reported that the mechanical properties of Al-Mg-Si can be ameliorated by the addition of Cu. However, determining the right amount of Cu content still remains a challenge. To address this the microstructure evolution, phase transformation, mechanical properties, and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys were studied through optical and field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, hardness measurements, and tensile tests. The obtained results indicate that the addition of Cu of up to 4 wt.% improved the hardness (17.5% increase) of the alloy, but reduced its ductility. Moreover, an alloy with 4 wt.% Cu fractured in a brittle manner while Al-Mg-Si showed ductile fracture mechanism. In addition, differential scanning calorimetry analysis revealed five exothermic peaks in all Cu containing alloys. Our results also showed that θʹ and Qʹ-type intermetallic phases formed owing to the addition of Cu, which affected the strength and ductility. Thus, Al-Mg-Si-xCu alloy with the right amount of Cu content serves as an excellent candidate for replacing more costly alloys for cost-effective lightweighting and other applications.

  16. Processing and properties of Nb-Ti-based alloys

    International Nuclear Information System (INIS)

    Sikka, V.K.; Viswanathan, S.

    1992-01-01

    The processing characteristics, tensile properties, and oxidation response of two Nb-Ti-Al-Cr alloys were investigated. One creep test at 650 C and 172 MPa was conducted on the base alloy which contained 40Nb-40Ti-10Al-10Cr. A second alloy was modified with 0.11 at. % carbon and 0.07 at. % yttrium. Alloys were arc melted in a chamber backfilled with argon, drop cast into a water-cooled copper mold, and cold rolled to obtain a 0.8-mm sheet. The sheet was annealed at 1,100 C for 0.5 h. Longitudinal tensile specimens and oxidation specimens were obtained for both the base alloy and the modified alloy. Tensile properties were obtained for the base alloy at room temperature, 400, 600, 700, 800, 900, and 1,000 C, and for the modified alloy at room temperature, 400, 600, 700, and 800 C. Oxidation tests on the base alloy and modified alloy, as measured by weight change, were carried out at 600, 700, 800, and 900 C. Both the base alloy and the modified alloy were extremely ductile and were cold rolled to the final sheet thickness of 0.8 mm without an intermediate anneal. The modified alloy exhibited some edge cracking during cold during cold rolling. Both alloys recrystallized at the end of a 0.5-h annealing treatment. The alloys exhibited moderate strength and oxidation resistance below 600 C, similar to the results of alloys reported in the literature

  17. 2005 AdvanceVT Work/Life Survey Leadership Report

    OpenAIRE

    Glass, Valerie Q.

    2005-01-01

    The AdvanceVT Faculty Work-Life Survey, distributed to all teaching and research faculty in January 2005, addressed, among other things, leadership issues at Virginia Tech. This report presents findings from tenured and tenure- track faculty members (N=816) about items on the questionnaire related to leadership including: aspirations of Virginia Tech faculty members towards leadership positions, their views about the possibility of maintaining a balance between leadership and other responsibi...

  18. Comparative analysis of Nb and Ti addition in the Cu-11,8%wt.Al-0,5%wt.Be e Cu-11,8%wt.Al-3,0%wt.Ni shape memory alloy

    International Nuclear Information System (INIS)

    Silva Junior, M.Q. da; Oliveira, G.D. de

    2014-01-01

    The system of the Cu-Al alloys shape memory alloy have been the subject of many studies due to a wide range of possible applications and relatively low cost, and the chemical composition of the main factors that determine the properties of these properties. This work analyzed the influence of Nb and Ti elements in Cu-11,8Al-0,5Be and Cu-11,8Al-3,0Ni alloy. The alloys are obtained by melting and passed through homogenizing heat treatment followed by water quenching at 30°C. The samples were characterized by Microscopy Optical, X-ray Diffraction and Microhardness testing. The alloys showed fine precipitates of second phase homogeneously distributed in the matrix that provides improvement in the properties of these alloys. (author)

  19. On the stability of copper overlayers on Au(1 1 1) and Au(1 0 0) electrodes under low potential conditions and in the presence on CO and CO2

    DEFF Research Database (Denmark)

    Schlaup, Christian Georg; Horch, Sebastian; Chorkendorff, Ib

    2015-01-01

    We have studied the stability of Cu overlayers on Au(1 1 1) and Au(1 0 0) electrodes under low potential conditions and in the presence of CO and CO2 by means of electrochemical STM (EC-STM). For preparation we utilized the well known underpotential deposition (UPD) of copper, which, depending...... on the electrolyte (HClO4 and H2SO4), leads to Cu coverages in the submonolayer to monolayer range. For a Cu submonolayer on Au(1 1 1) we found that independent from the actual gas coadsorbate its closed film-like structure collapses at low potentials due to the desorption of coadsorbed anions. In contrast we found...... for a full Cu monolayer on Au(1 1 1) and Au(1 0 0) the formation of an alloy phase under low potential conditions, which also occurs independent from the presence of gas coadsorbates....

  20. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  1. Investigation of multifunctional properties of Mn{sub 50}Ni{sub 40−x}Co{sub x}Sn{sub 10} (x = 0–6) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jyoti; Suresh, K.G., E-mail: suresh@phy.iitb.ac.in

    2015-01-25

    Highlights: • Mn{sub 50}Ni{sub 40−x}Co{sub x}Sn{sub 10} Heusler alloys exhibit multifunctional properties. • Co doping results decrease in martensitic transition temperature and increase in T{sub C}{sup A}. • Ferromagnetic coupling increases with increase in Co concentration. • Large positive ΔS{sub M} of 10.5 J/kg K and large RCP of 125 J/kg was obtained for x = 1. • Large exchange bias field of 833 Oe was observed for Mn{sub 50}Ni{sub 39}Co{sub 1}Sn{sub 10} alloy. - Abstract: A series of Co doped Mn{sub 50}Ni{sub 40−x}Co{sub x}Sn{sub 10} (x = 0, 1, 2, 2.5, 3, 4 and 6) Heusler alloys has been investigated for their structural, magnetic, magnetocaloric and exchange bias properties. The martensitic transition temperatures are found to decrease with the increase in Co concentration due to the decrease in valence electron concentration (e/a ratio). The Curie temperature of austenite phase increases significantly with increasing Co concentration. A large positive magnetic entropy change (ΔS{sub M}) of 8.6 and 10.5 J/kg K, for a magnetic field change of 50 kOe is observed for x = 0 and 1 alloys, and ΔS{sub M} values decreases for higher Co concentrations. The relative cooling power shows a monotonic increase with the increase in Co concentration. Large exchange bias fields of 920 Oe and 833 Oe have been observed in the alloys with compositions x = 0 and 1, after field cooling in presence of 10 kOe. The unidirectional anisotropy arising at the interface between the frustrated and ferromagnetic phases is responsible for the large exchange bias observed in these alloys. With increase in Co, the magnetically frustrated phase diminishes in strength, giving rise to a decrease in the exchange bias effect for larger Co concentration. The exchange bias fields observed for compositions x = 0 and 1, in the present case are larger than that reported for Co doped Ni–Mn–Z (Z = Sn, Sb, and Ga) alloys. Temperature and cooling field dependence of the exchange bias

  2. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    2017-08-01

    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  3. Tritium aging effect of LaNi4.9Al0.1Dx on de-deuterating kinetics

    International Nuclear Information System (INIS)

    Xiong Yifu; Luo Deli; Li Rong

    2002-01-01

    Kinetics parameters are measured at different aging times of LaNi 4.9 Al 0.1 alloy. The influence of tritium aging on kinetic feature of LaNi 4.9 Al 0.1 alloy is assessed. The results show that reaction rate decreases with aging time, but tritium aging does not change de-deuterating reaction order. De-deuterating reaction orders a (with respect to deuterium pressure) and b (with respect to deuterium content) are 0.5 and 1, respectively. Activation energy (E) increases with aging time. After 1120 d, the reaction rate constant is decreased by two orders of magnitude, activation energy is increased by a factor of 0.3

  4. Composition Dependence of Surface Phonon Polariton Mode in Wurtzite InxGa1−xN (0 ≤ x ≤ 1) Ternary Alloy

    International Nuclear Information System (INIS)

    Ng, S. S.; Hassan, Z.; Hassan, H. Abu

    2008-01-01

    We present a theoretical study on the composition dependence of the surface phonon polariton (SPP) mode in wurtzite structure α-In x Ga 1-x N ternary alloy over the whole composition range. The SPP modes are obtained by the theoretical simulations by means of an anisotropy model. The results reveal that the SPP mode of α-In x Ga 1-x N semiconductors exhibits one-mode behaviour. From these data, composition dependence of the SPP mode with bowing parameter of −28.9 cm −1 is theoretically obtained

  5. Experimental determination of the constitution and the phase relationships in Zr (2.5-8.0)at.%Nb (0-6.7)at.%Al alloys with 750at.ppm0 and 250at.ppmN, between 730-900 deg C

    International Nuclear Information System (INIS)

    Peruzzi Bardella, A.; Bolcich, J.C.

    1990-01-01

    Zr alloys with 2.5 to 8.0 at%Nb and 0 to 6.7 at%Al, were subjected to dynamic and static treatments between 730-900 deg C and studied by qualitative and quantitative optical metallography, electrical resistance, X-ray diffractometry and electron microanalysis. The experimental data were analyzed by taking into account the effects of oxygen and nitrogen impurities. The main results for Zr-Nb-Al alloys with 750 at.ppm0 and 250 at.ppmN are the following: a) Equilibrium relationships are established between α (hcp), β (bcc) and Zr 3 Al (Cu 3 Au) phases along isothermal sections at 730, 771 and 800 deg C. b) β/α+β boundaries are determined along iso-aluminium vertical sections at 6.7, 3.3 and 0 at%Al. As for the first two iso-aluminium sections, the β/α+β equilibrium boundary corresponding to the binary Zr-Nb system is found to have a positive curvature, which is contrary to what has been reported in the literature. The increase in the Al content shifts the T β/α+β at a rate of 5.1 to 8.5 deg C/at.%Al, depending on Nb content. c) The addition of Al to Zr-Nb alloys increases the partial solubility of Nb in the α phase, its maximum value at 730 deg C being about 0.7-0.8 at% for 4 at%Al. d) Solubility values for Al in α-phase of Zr-Al were estimated by extrapolation from ternary alloys. These estimates help to solve an existing discrepancy on the Zr-Al system. (Author)

  6. Swelling in neutron-irradiated titanium alloys

    International Nuclear Information System (INIS)

    Peterson, D.T.

    1982-04-01

    Immersion density measurements have been performed on a series of titanium alloys irradiated in EBR-II to a fluence of 5 x 10 22 n/cm 2 (E > 0.1 MeV) at 450 and 550 0 C. The materials irradiated were the near-alpha alloys Ti-6242S and Ti-5621S, the alpha-beta alloy Ti-64, and the beta alloy Ti-38644. Swelling was observed in all alloys with the greater swelling being observed at 550 0 C. Microstructural examination revealed the presence of voids in all alloys. Ti-38644 was found to be the most radiation resistant. Ti-6242S and Ti-5621S also displayed good radiation resistance, whereas considerable swelling and precipitation were observed in Ti-64 at 550 0 C

  7. Hydrogen evolution characteristics of Ni-Mn microencapsulated MlNi{sub 3.03}Si{sub 0.85}Co{sub 0.60}Mn{sub 0.31}Al{sub 0.08} alloys in 6 M KOH

    Energy Technology Data Exchange (ETDEWEB)

    Ananth, MV. [Ni-MH Section, Electrochemical Energy Sources Division, Central Electrochemical Research Institute, Karaikudi 630 006 (India); Ananthi, P. [Department of Chemistry, Dhanalakshmi Srinivasan College of Arts and Science for Women, Perambalur 621 212 (India)

    2008-10-15

    Nickel-manganese alloys were coated from sulphate baths by electrodeposition with 'Packed Bed' technique on the surface of proprietary lanthanum rich non-stoichiometric MlNi{sub 3.03}Si{sub 0.85}Co{sub 0.60}Mn{sub 0.31}Al{sub 0.08} (Ml = lanthanum rich misch metal) hydrogen storage alloy particles. The structure and nature of the microencapsulated alloys were characterized using X-ray diffraction (XRD) and electron paramagnetic resonance (EPR). The hydrogen evolution reaction (HER) was investigated in 6 M KOH at 30 C by galvnostatic cathodic polarisation technique. The effects of Ni/Mn ratio in the bath and deposition current density were studied. Among the investigated depositions, Ni{sub 150}Mn{sub 100} (30) and Ni{sub 150}Mn{sub 10} (60) (concentration of Ni and Mn salts in electrodeposition bath given in grams per liter; electrodeposition current density (CD) given within brackets in milliamphere per square centimeter) coated samples exhibited the highest activity towards the HER. It can be concluded that disordered paramagnetic coatings with Ni concentrations above 80 at.% exhibit higher catalytic activity towards HER. The Tafel mechanism is the easiest pathway for HER on most of the studied coatings. However, some of the Ni-rich coatings prefer the Volmer-Tafel path and one sample [Ni{sub 150}Mn{sub 150} (80)] prefers the Heyrovsky-Volmer path. (author)

  8. Pressure effect on thermopower of Y1-xGdxCo2 alloy system

    International Nuclear Information System (INIS)

    Nakama, T.; Takaesu, Y.; Uchima, K.; Yagasaki, K.; Hedo, M.; Uwatoko, Y.; Burkov, A.T.

    2007-01-01

    Thermopower of Y 1-x Gd x Co 2 pseudobinary compounds has been measured at temperatures from 1.5 to 300K under hydrostatic pressure up to 2GPa and in magnetic field 0-15T. In the inhomogeneous and paramagnetic regions of the phase diagram the main contribution to the electronic transport is related to the strong static magnetic fluctuations, which arise due to interplay of structural disorder within Gd-sublattice and Co-3d itinerant electron metamagnetism. This complex magnetic disorder brings about novel transport phenomena, such as anomalous positive magnetoresistance found in ferrimagnetic state of the alloys. The low-temperature thermopower is almost independent of alloy composition in the ferrimagnetic range of the phase diagram (x>0.3) indicating that the alloying does not change electronic structure of the compounds in a close vicinity of Fermi energy. However, the thermopower shows substantial variation with the composition in the inhomogeneous and in the paramagnetic regions of the phase diagram reflecting evolution of the magnetic structure with the composition

  9. Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors

    Science.gov (United States)

    Olson, B. V.; Kim, J. K.; Kadlec, E. A.; Klem, J. F.; Hawkins, S. D.; Leonhardt, D.; Coon, W. T.; Fortune, T. R.; Cavaliere, M. A.; Tauke-Pedretti, A.; Shaner, E. A.

    2015-11-01

    Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F1F2|=0.292 . The measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. Excellent agreement is found between the two, highlighting the important relationship between lifetimes and diffusion currents in nBn photodetectors.

  10. PITTING CORROSION IN EROSIVE CONDITION OF AGED 550°C CU10NI-3AL-1,3FE ALLOY IN 0,01 M NA2 SO4

    Directory of Open Access Journals (Sweden)

    Rodrigo Nascimento Liberto

    2012-09-01

    Full Text Available This study evaluates the effect of aging at 550°C on pitting corrosion of Cu10Ni-3Al-1.3Fe alloy, after potentiodynamic polarization test in 0.01 M Na2 SO4 in erosive condition. Cold rolled sheet specimens were solution treated at 900°C for 1 hour, and aged at 550°C until 1,032 hours. The investigation was carried out by potentiodynamic polarization in electrolyte consisted of 0.01 M Na2 SO4 with 10 wt. (% of Al2 O3 abrasive particles. After the polarization tests, specimens were analyzed by optical microscopy and scanning electron microscopy techniques to examine the morphology of the corroded regions. Result show that all samples present a passivity break potential (Eq that characterizes the initiation of pitting corrosion. However, it is not observed any significant change in the value of passivity break potential as a function of aging time. The mechanism of pitting corrosion in the studied alloys can be the passivity breakdown by the action of sulfate ion, followed by growth of pit by galvanic action or dissolution of the copper in cupric and cuprous ions and membrane formation of cuprous oxide over the pit

  11. Deformation Behavior of a Coarse-Grained Mg-8Al-1.5Ca-0.2Sr Magnesium Alloy at Elevated Temperatures

    Science.gov (United States)

    Lou, Yan; Liu, Xiao

    2018-02-01

    The compression tests were carried out on a coarse-grained Mg-8Al-1.5Ca-0.2Sr magnesium alloy samples at temperatures from 300 to 450 °C and strain rates from 0.001 to 10 s-1. The flow stress curves were analyzed using the double-differentiation method, and double minima were detected on the flow curves. The first set of minima is shown to identify the critical strain for twinning, while the second set indicates the critical strain for the initiation of dynamic recrystallization (DRX). Twin variant selection was numerically identified by comprehensive analysis of the Schmid factors for different deformation modes and the accommodation strains imposed on neighboring grains. It was found that twinning is initiated before DRX. Dynamic recrystallization volume increases with strain rate at a given deformation temperature. At high strain rate, various twin variants are activated to accommodate deformation, leading to the formation of twin intersections and high DRX volume. Fully dynamic recrystallized structure can be obtained at both high and low strain rates due to the high mobility of the grain and twin boundaries at the temperature of 400 °C.

  12. Reducing Mg acceptor activation-energy in Al(0.83)Ga(0.17)N disorder alloy substituted by nanoscale (AlN)₅/(GaN)₁ superlattice using Mg(Ga) δ-doping: Mg local-structure effect.

    Science.gov (United States)

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-10-23

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  13. MO-HF-C alloy composition

    International Nuclear Information System (INIS)

    Whelan, E.P.; Kalns, E.

    1987-01-01

    This patent describes, as an article of manufacture, a cast ingot of a molybdenum-hafnium-carbon alloy consisting essentially by weight of about 0.6% to about 1% Hf, about 0.045% to about 0.08% C, and the balance essentially molybdenum. The amount of Hf and C present are substantially stoichiometric with respect to HfC and within about +-15% of stoichiometry. The ingot is characterized in that it has a substantially less tendency to crack compared to alloys containing Hf in excess of about 1% by weight and carbon in excess of 0.08% by weight, without substantial diminution in strength properties of the alloy

  14. Effect of Shortened Heat Treatment on the Hardness and Microstructure of 320.0 Aluminium Alloy

    Directory of Open Access Journals (Sweden)

    Pezda J.

    2014-06-01

    Full Text Available Improvement of Al-Si alloys properties in scope of classic method is connected with change of Si precipitations morphology through: using modification of the alloy, maintaining suitable temperature of overheating and pouring process, as well as perfection of heat treatment methods. Growing requirements of the market make it necessary to search after such procedures, which would quickly deliver positive results with simultaneous consideration of economic aspects. Presented in the paper shortened heat treatment with soaking of the alloy at temperature near temperature of solidus could be assumed as the method in the above mentioned understanding of the problem. Such treatment consists in soaking of the alloy to temperature of solutioning, keeping in such temperature, and next, quick quenching in water (20 °C followed by artificial ageing. Temperature ranges of solutioning and ageing treatments implemented in the adopted testing plan were based on analysis of recorded curves from the ATD method. Obtained results relate to dependencies and spatial diagrams describing effect of parameters of the solutioning and ageing treatments on HB hardness of the investigated alloy and change of its microstructure. Performed shortened heat treatment results in precipitation hardening of the investigated 320.0 alloy, what according to expectations produces increased hardness of the material.

  15. First-principles investigations on structural, elastic and mechanical properties of BNxAs1‑x ternary alloys

    Science.gov (United States)

    Zhang, Junqin; Ma, Huihui; Zhao, Bin; Wei, Qun; Yang, Yintang

    2018-05-01

    A systematic investigation of the structural optimization, elastic and mechanical properties of the BNxAs1‑x ternary alloys are reported in the present work using the density-functional theory with the generalized gradient approximation (GGA) of the exchange-correlation functional. Some of the constants which are used to analyze the properties including elastic constants and modulus, and some parameters describing the elastic anisotropy and Debye temperature are also calculated. Our calculations were performed to evaluate the equilibrium lattice constant and band structure compared with the available theoretical works. On the one hand, our results might be expected to provide a theoretical basis for future study of BNxAs1‑x alloys towards elastic or mechanical properties. On the other hand, we draw a conclusion that BNxAs1‑x alloys show direct bandgap when x equals 0.25, 0.5 or 0.75. We obtained the elastic modulus, Poisson’s ratio and universal anisotropic index which are used to demonstrate the elastic anisotropy of these alloys which is proved according to our calculations. Also, we calculated the Debye temperature to illustrate covalent interactions and obtained the lower limit of the thermal conductivity for further research.

  16. In-situ observations of nucleation in Al-0.1Mg

    DEFF Research Database (Denmark)

    Wu, G.L.; Ubhi, H.S.; Petrenec, M.

    2015-01-01

    A tensile sample of an Al-0.1Mg alloy was in-situ tested in a SEM followed by in-situ annealing to develop recrystallizing nuclei/grains. The evolution of microstructure and crystallographic orientations were characterized using the EBSD technique. Changes in the same area within the sample durin...

  17. Surface of Ti-Ni alloys after their preparation

    International Nuclear Information System (INIS)

    Saldan, I.; Frenzel, J.; Shekhah, O.; Chelmowski, R.; Birkner, A.; Woell, Ch.

    2009-01-01

    The Ti 3.87 Ni 1.73 Fe 0.7 O 0.3, Ti 3.87 Ni 1.73 Fe 0.4 N 0.3 and Ti 3.87 Ni 1.73 Fe 0.4 C 0.3 alloys were investigated regarding their surface characteristics. The scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used for phase characterization. The X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical composition of alloy surface. The atomic force microscopy (AFM) to observe alloy surface topography after cutting and electrochemical polishing separately has been done. The transmission electron microscopy (TEM) with X-ray diffraction was carried out to get a high contrast images and the diffraction pattern from alloy surface. The results clearly shown, that all alloys were multiphase, and their surface was totally oxidized with no pure metals

  18. Influence of electroless coatings of Cu, Ni-P and Co-P on MmNi3.25Al0.35Mn0.25Co0.66 alloy used as anodes in Ni-MH batteries

    International Nuclear Information System (INIS)

    Raju, M.; Ananth, M.V.; Vijayaraghavan, L.

    2009-01-01

    Electroless coatings of Ni-P, Co-P and Cu were applied on the surface of non-stoichiometric MmNi 3.25 Al 0.35 Mn 0.25 Co 0.66 (Mm: misch metal) metal hydride alloy. Elemental analysis was made with Energy Dispersive X-ray Analysis (EDAX). The structural analysis of bare and coated alloys was done by X-ray diffraction (XRD) whereas surface morphology was examined with scanning electron microscope (SEM) and transmission electron microscope (TEM). The electrode characteristics inclusive of electrochemical capacity and cycle life were studied at C/5 rate. Superior performance is obtained with copper coated alloy. Microstructure observations indicate that the observed excellent performance could be attributed to uniform and efficient surface coverage with copper. Also, lanthanum surface enrichment in samples during Cu coating leads to improvement in performance. It is inferred from electro analytical investigations that copper coatings act as microcurrent collectors with alterations in hydrogen transport mechanism and facilitate charge transfer reaction on the alloy surface without altering battery properties. Moreover, supportive first time TEM evidence of existence of such copper nano current collectors (about 8 nm in diameter and length about 20 nm) is reported.

  19. Study on phase formation mechanism and electrochemical properties of La{sub 0.75−x}Nd{sub x}Mg{sub 0.25}Ni{sub 3.3} (x = 0, 0.15) alloys prepared by powder sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinding [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Han, Shumin, E-mail: hanshm@ysu.edu.cn [State Key Laboratory of Metastable Materials, Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Li, Yuan; Liu, Jingjing [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Che, Linda [Desert Vista High School, Phoenix, AZ 85048 (United States); Zhang, Lu; Zhang, Junling [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-05

    Highlights: • Gd{sub 2}Co{sub 7} phase abundance increases with Nd substitution dramatically. • Nd substitution results in the depletion of the minor CaCu{sub 5}-type phase. • The equilibrium plateau is elevated and broadened with Nd substitution. -- Abstract: An investigation of the phase formation mechanism and electrochemical properties of the La{sub 0.75−x}Nd{sub x}Mg{sub 0.25}Ni{sub 3.3} (x = 0, 0.15) alloys has been conducted in this paper. As explored by Rietveld analysis of the XRD data, the La{sub 0.75}Mg{sub 0.25}Ni{sub 3.3} alloy is composed of Ce{sub 2}Ni{sub 7}-type and Gd{sub 2}Co{sub 7}-type phases accompanied by minor CaCu{sub 5}-type phase. The partial substitution Nd for La benefits the formation of Gd{sub 2}Co{sub 7}-type phase, indicating that the atoms with smaller radius favor the formation of the Gd{sub 2}Co{sub 7}-type phase. However, CaCu{sub 5}-type phase disappears with Nd substitution. Because part of the replaced La atoms transform into [A{sub 2}B{sub 4}] subunits with the Ni atoms, and the formed [A{sub 2}B{sub 4}] subunits crystallize with [AB{sub 5}] subunits to produce A{sub 2}B{sub 7}-type phase, resulting in the depletion of the minor CaCu{sub 5}-type phase. The electrochemical P–C isotherms present that the La{sub 0.60}Nd{sub 0.15}Mg{sub 0.25}Ni{sub 3.3} alloy only containing A{sub 2}B{sub 7}-type phase has one single plateau while the La{sub 0.75}Mg{sub 0.25}Ni{sub 3.3} alloy which contains minor LaNi{sub 5} phase has two plateaus. It is beneficial for the elevation of equilibrium plateau pressure ascribing to the contraction in cell volumes by Nd substitution. Electrochemical measurements show that the substitution of La by Nd improves the discharge capacity and the high rate dischargeability owing to the increase of A{sub 2}B{sub 7}-type phase abundance.

  20. Effect of heat treatment on the electrochemical behaviour and catalytic activity of metal-glass of an Fe76.1Cu1.0Nb3.0Si13.8B6.1

    International Nuclear Information System (INIS)

    Zhdanova, L.I.; Sharipova, E.Kh.; Lad'yanov, V.I.; Volkov, V.A.

    1999-01-01

    Effect of the different degree of the initial surface crystallization of Fe 76.1 Cu 1.0 Nb 3.0 Si 13.8 B 6.1 metal glasses on the electrochemical behaviour and catalytic activity of the alloy during thermal treatment of tapes was studied. Growth of amorphous-nanocrystalline structure during annealing is shown to improve protective properties of fast-hardened tapes. The highest corrosion resistance of the material is manifested when in nanocrystalline state subsequent to annealing under 550 deg C [ru