WorldWideScience

Sample records for alloy-vm-1

  1. Investigation into electrochemical behavior of molybdenum VM-1 alloy at high current density

    Energy Technology Data Exchange (ETDEWEB)

    Tatarinova, O M; Amirkhanova, N A; Akhmadiev, A G

    1975-01-01

    The effect of the composition and concentration of electrolyte on the workability of the molybdenum VM-1 alloy has been studied and a number of anions has been determined relative to their activation capacity. The best workability of the alloy is achieved in a 15% NaOH solution and a composite electrolyte 15% NaNO/sub 3/+5%NaOH. It is shown that in polarization of the VM-1 alloy both in alkali- and salt solutions a film of oxides of different valence molybdenum is formed: Mo/sub 2/O/sub 3/, Mo/sub 4/O/sub 11/, Mo/sub 9/O/sub 26/, MoO/sub 3/, but molybdenum gets dissolved only in a hexavalent form, its content in a solution being in conformity with the polarizing current densities. Using a temperature-kinetic technique it has been found that the concentrational polarization is the limiting stage in the reaction of molybdenum and VM-1 alloy anodic dissolution in 15% NaNO/sub 3/ solution and in the composite electrolyte 15%NaNO/sub 3/+5%NaOH.

  2. Studying VM-1 molybdenum alloy workability at high current density. II

    Energy Technology Data Exchange (ETDEWEB)

    Tatarinova, O M; Amirkhanova, N A; Zaripov, R A

    1976-01-01

    Under galvanostatic conditions, voltampere characteristics have been taken off for VM-1 alloy; determined are also the selective effect of electrolytes and the influence of hydrodynamical conditions on the rate of anodic dissolution in the electrolytes containing 15% NaNO/sub 3/; 15% NaNO/sub 3/ + 5% NaOH, and 15 % NaOH. In a composite electrolyte, the quality of the surface is improved, and higher current densities have been attained as compared with those for pure 15% NaNO/sub 3/. The process of dissolution in the above electrolytes is effected with diffuse limitations. For the electrochemical treatment of the VM-1 alloy under production conditions, a composite electrolyte containing 15% NaNO/sub 3/ and 5% NaOH has been suggested and tested.

  3. Diffusion bonding of IN 718 to VM 350 grade maraging steel

    Science.gov (United States)

    Crosby, S. R.; Biederman, R. R.; Reynolds, C. C.

    1972-01-01

    Diffusion bonding studies have been conducted on IN 718, VM 350 and the dissimilar alloy couple, IN 718 to maraging steel. The experimental processing parameters critical to obtaining consistently good diffusion bonds between IN 718 and VM 350 were determined. Interrelationships between temperature, pressure and surface preparation were explored for short bending intervals under vacuum conditions. Successful joining was achieved for a range of bonding cycle temperatures, pressures and surface preparations. The strength of the weaker parent material was used as a criterion for a successful tensile test of the heat treated bond. Studies of VM-350/VM-350 couples in the as-bonded condition showed a greater yielding and failure outside the bond region.

  4. Properties and Microstructure of Laser Welded VM12-SHC Steel Pipes Joints

    Directory of Open Access Journals (Sweden)

    Skrzypczyk A.

    2016-06-01

    Full Text Available Paper presents results of microstructure and tests of welded joints of new generation VM12-SHC martensitic steel using high power CO2 laser (LBW method with bifocal welding head. VM12-SHC is dedicated to energetic installation material, designed to replace currently used. High content of chromium and others alloying elements improve its resistance and strength characteristic. Use of VM12-SHC steel for production of the superheaters, heating chambers and walls in steam boilers resulted in various weldability researches. In article are presented results of destructive and non-destructive tests. For destructive: static bending and Vickers hardness tests, and for non-destructive: VT, RT, UT, micro and macroscopic tests were performed.

  5. CernVM Online and Cloud Gateway: a uniform interface for CernVM contextualization and deployment

    International Nuclear Information System (INIS)

    Lestaris, G; Charalampidis, I; Berzano, D; Blomer, J; Buncic, P; Ganis, G; Meusel, R

    2014-01-01

    In a virtualized environment, contextualization is the process of configuring a VM instance for the needs of various deployment use cases. Contextualization in CernVM can be done by passing a handwritten context to the user data field of cloud APIs, when running CernVM on the cloud, or by using CernVM web interface when running the VM locally. CernVM Online is a publicly accessible web interface that unifies these two procedures. A user is able to define, store and share CernVM contexts using CernVM Online and then apply them either in a cloud by using CernVM Cloud Gateway or on a local VM with the single-step pairing mechanism. CernVM Cloud Gateway is a distributed system that provides a single interface to use multiple and different clouds (by location or type, private or public). Cloud gateway has been so far integrated with OpenNebula, CloudStack and EC2 tools interfaces. A user, with access to a number of clouds, can run CernVM cloud agents that will communicate with these clouds using their interfaces, and then use one single interface to deploy and scale CernVM clusters. CernVM clusters are defined in CernVM Online and consist of a set of CernVM instances that are contextualized and can communicate with each other.

  6. Biological effects of 60Co γ-irradiation on Laiwu ginger VM1 growth

    International Nuclear Information System (INIS)

    Zhou Ming; Huang Jinli; Wei Yuxia; Guan Qiuzhu; Zhang Zhenxian

    2008-01-01

    Rhizome of Laiwu ginger were treated with γ-irradiation at the doses of 0, 20, 40 and 60 Gy. The results showed that 60 Co γ-irradiation inhibited the rhizome burgeoning, and decreased the survival rate of the seedlings, rate of leaf- expansion and the growth of plants (VM 1 ). The inhibition effects became stronger with the increase of the irradiation dose. Different bands were found through the analysis of POD, EST isozymes and RAPD of VM 1 plants, which showed that variation on molecular level occurred in VM 1 plants. LD 30-40 was appropriate for the irradiation of rhizomes of Laiwu ginger and the optimal irradiation dose was about 20- 30 Gy. (authors)

  7. Exploiting VM/XA

    International Nuclear Information System (INIS)

    Boeheim, C.

    1990-03-01

    The Stanford Linear Accelerator Center has recently completed a conversion to IBM's VM/XA SP Release 2 operating system. The primary physics application had been constrained by the previous 16 megabyte memory limit. Work is underway to enable this application to exploit the new features of VM/XA. This paper presents a brief tutorial on how to convert an application to exploit VM/XA and discusses some of the SLAC experiences in doing so. 13 figs

  8. Radiation-induced conduction under high electric field (1 x 106 to 1 x 108 V/m) in polyethylene-terephthalate

    International Nuclear Information System (INIS)

    Maeda, H.; Kurashige, M.; Ito, D.; Nakakita, T.

    1978-01-01

    Radiation-induced conduction in polyethylene-terephthalate (PET) has been measured under high electric field (1.0 x 10 6 to 1.6 x 10 8 V/m). In a 6-μm-thick PET film, saturation of the radiation-induced current occurs at field strengths above 1.2 x 10 8 V/m. This has been demonstrated by the thickness and dose rate dependence of the induced current. Radiation-induced conductivity increases monotonically with field strength, then shows a saturation tendency. This may be explained by geminate recombination. Above 1 x 10 8 V/m, slowly increasing radiation-induced current appears. This may be caused by electron injection from the cathode, enhanced by the accumulation of the hetero space charges near it

  9. Developing the Value Management Maturity Model (VM

    Directory of Open Access Journals (Sweden)

    Saipol Bari Abd Karim

    2013-06-01

    Full Text Available Value management (VM practices have been expanded and became a well-received technique globally. Organisations are now progressing towards a better implementation of VM and should be assessing their strengths and weaknesses in order to move forward competitively. There is a need to benchmark the existing VM practices to reflect their maturing levels which is currently not available. This paper outlines the concept of Value Management Maturity Model (VM3' as a structured plan of maturity and performance growth for businesses. It proposes five levels of maturity and each level has its own criteria or attributes to be achieved before progressing to a higher level. The framework for VM3' has been developed based on the review of literatures related to VM and maturity models (MM. Data is collected through questionnaire surveys to organisations that have implemented VM methodology. Additionally, semi-structured interviews were conducted to select individuals involved in implementing VM. The questions were developed to achieve the research objectives; investigating the current implementation of VM and, exploring the organisation's MM knowledge and practices. However, this research was limited to VM implementation in the Malaysian government's projects and programmes. VM3' introduces a new paradigm in VM as it provides a rating method for capabilities or performance. It is advocated that this VM3' framework is still being refined in the advance stage in order to provide a comprehensive and well accepted method to provide ratings for organisations' maturity.

  10. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys?

    Science.gov (United States)

    Bauer, José Roberto de Oliveira; Grande, Rosa Helena Miranda; Rodrigues-Filho, Leonardo Eloy; Pinto, Marcelo Mendes; Loguercio, Alessandro Dourado

    2012-01-01

    The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property.

  11. Porting of $\\mu$CernVM to AArch64

    CERN Document Server

    Scheffler, Felix

    2016-01-01

    $\\mu$CernVM is a virtual appliance that contains a stripped-down Linux OS connecting to a CernVM-Filesystem (CVMFS) repository that resides on a dedicated web server. In contrast to “usual” VMs, anything that is needed from this repository is only downloaded on demand, aggressively cached and eventually released again. Currently, $\\mu$CernVM is only distributed for x86-64. Recently, ARM (market leader in mobile computing) has started to enter the server market, which is still dominated by x86-64 infrastructure. However, in terms of performance/watt, AArch64 (latest ARM 64bit architecture) is a promising alternative. Facing millions of jobs to compute every day, it is thus desirable to have an HEP virtualisation solution for AArch64. In this project, $\\mu$CernVM was successfully ported to AArch64. Native and virtualised runtime performance was evaluated using ROOT6 and CMS benchmarks. It was found that VM performance is inferior to host performance across all tests. Respective numbers greatly vary between...

  12. cernatschool.org's use of CVMFS and the CernVM

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    cernatschool.org is a very small Virtual Organisation made up of secondary school and university students, and participating organisations in the Institute for Research in Schools. We use CVMFS to delpoy dependencies and Python 3 itself for custom software used for analysing radiation data from Medipix detectors. This software is designed for running on GridPP worker nodes, part of the UK based distributed computing grid. The cernatschool.org VO also uses the CernVM, for job submission and interacting with the grid. The current use for both CVMFS and the CernVM is for facilitating analysis of 3 years worth of data from the LUCID payload on TechDemoSat-1. The CernVM looks like it could be particularly useful in the future for a standard system for students to use to program and analyse data themselves with, allowing easy access to any software they might need (not necessarily using GridPP compute resources at all).

  13. PEMILIHAN DAN MIGRASI VM MENGGUNAKAN MCDM UNTUK PENINGKATAN KINERJA LAYANAN PADA CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    Abdullah Fadil

    2016-08-01

    Full Text Available Komputasi awan atau cloud computing merupakan lingkungan yang heterogen dan terdistribusi, tersusun atas gugusan jaringan server dengan berbagai kapasitas sumber daya komputasi yang berbeda-beda guna menopang model layanan yang ada di atasnya. Virtual machine (VM dijadikan sebagai representasi dari ketersediaan sumber daya komputasi dinamis yang dapat dialokasikan dan direalokasikan sesuai dengan permintaan. Mekanisme live migration VM di antara server fisik yang terdapat di dalam data center cloud digunakan untuk mencapai konsolidasi dan memaksimalkan utilisasi VM. Pada prosedur konsoidasi vm, pemilihan dan penempatan VM sering kali menggunakan kriteria tunggal dan statis. Dalam penelitian ini diusulkan pemilihan dan penempatan VM menggunakan multi-criteria decision making (MCDM pada prosedur konsolidasi VM dinamis di lingkungan cloud data center guna meningkatkan layanan cloud computing. Pendekatan praktis digunakan dalam mengembangkan lingkungan cloud computing berbasis OpenStack Cloud dengan mengintegrasikan VM selection dan VM Placement pada prosedur konsolidasi VM menggunakan OpenStack-Neat. Hasil penelitian menunjukkan bahwa metode pemilihan dan penempatan VM melalui live migration mampu menggantikan kerugian yang disebabkan oleh down-times sebesar 11,994 detik dari waktu responnya. Peningkatan response times terjadi sebesar 6 ms ketika terjadi proses live migration VM dari host asal ke host tujuan. Response times rata-rata setiap vm yang tersebar pada compute node setelah terjadi proses live migration sebesar 67 ms yang menunjukkan keseimbangan beban pada sistem cloud computing.

  14. Status and Roadmap of CernVM

    Science.gov (United States)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.

  15. Micro-CernVM: slashing the cost of building and deploying virtual machines

    International Nuclear Information System (INIS)

    Blomer, J; Berzano, D; Buncic, P; Charalampidis, I; Ganis, G; Lestaris, G; Meusel, R; Nicolaou, V

    2014-01-01

    The traditional virtual machine (VM) building and and deployment process is centered around the virtual machine hard disk image. The packages comprising the VM operating system are carefully selected, hard disk images are built for a variety of different hypervisors, and images have to be distributed and decompressed in order to instantiate a virtual machine. Within the HEP community, the CernVM File System (CernVM-FS) has been established in order to decouple the distribution from the experiment software from the building and distribution of the VM hard disk images. We show how to get rid of such pre-built hard disk images altogether. Due to the high requirements on POSIX compliance imposed by HEP application software, CernVM-FS can also be used to host and boot a Linux operating system. This allows the use of a tiny bootable CD image that comprises only a Linux kernel while the rest of the operating system is provided on demand by CernVM-FS. This approach speeds up the initial instantiation time and reduces virtual machine image sizes by an order of magnitude. Furthermore, security updates can be distributed instantaneously through CernVM-FS. By leveraging the fact that CernVM-FS is a versioning file system, a historic analysis environment can be easily re-spawned by selecting the corresponding CernVM-FS file system snapshot.

  16. CernVM - a virtual software appliance for LHC applications

    International Nuclear Information System (INIS)

    Buncic, P; Sanchez, C Aguado; Blomer, J; Franco, L; Mato, P; Harutyunian, A; Yao, Y

    2010-01-01

    CernVM is a Virtual Software Appliance capable of running physics applications from the LHC experiments at CERN. It aims to provide a complete and portable environment for developing and running LHC data analysis on any end-user computer (laptop, desktop) as well as on the Grid, independently of Operating System platforms (Linux, Windows, MacOS). The experiment application software and its specific dependencies are built independently from CernVM and delivered to the appliance just in time by means of a CernVM File System (CVMFS) specifically designed for efficient software distribution. The procedures for building, installing and validating software releases remains under the control and responsibility of each user community. We provide a mechanism to publish pre-built and configured experiment software releases to a central distribution point from where it finds its way to the running CernVM instances via the hierarchy of proxy servers or content delivery networks. In this paper, we present current state of CernVM project and compare performance of CVMFS to performance of traditional network file system like AFS and discuss possible scenarios that could further improve its performance and scalability.

  17. Enabling μCernVM for the Interactive Use Case

    CERN Document Server

    Nicolaou, Vasilis

    2013-01-01

    The $\\mu$CernVM will be the successor of the CernVM as a new appliance to help with accessing LHC for data analysis and development. CernVM has a web appliance agent that facilitates user interaction with the virtual machine and reduces the need for executing shell commands or installing graphical applications for displaying basic information such as memory usage or performing simple tasks such as updating the operating system. The updates are done differently in the $\\mu$CernVM than mainstream Linux distributions. Its filesystem is a composition of a read-only layer that exists in the network and a read/write layer that is initilised on first boot and keeps the user changes afterwards. Thus, means are provided to avoid loss of user data and system instabilities when the operating system is updated by fetching a new read-only layer.

  18. Optimization of CernVM early boot process

    CERN Document Server

    Mazdin, Petra

    2015-01-01

    CernVM virtual machine is a Linux based virtual appliance optimized for High Energy Physics experiments. It is used for cloud computing, volunteer computing, and software development by the four large LHC experiments. The goal of this project is proling and optimizing the boot process of the CernVM. A key part was the development of a performance profiler for shell scripts as an extension to the popular BusyBox open source UNIX tool suite. Based on the measurements, costly shell code was replaced by more efficient, custom C programs. The results are compared to the original ones and successful optimization is proven.

  19. Toxicity and medical countermeasure studies on the organophosphorus nerve agents VM and VX.

    Science.gov (United States)

    Rice, Helen; Dalton, Christopher H; Price, Matthew E; Graham, Stuart J; Green, A Christopher; Jenner, John; Groombridge, Helen J; Timperley, Christopher M

    2015-04-08

    To support the effort to eliminate the Syrian Arab Republic chemical weapons stockpile safely, there was a requirement to provide scientific advice based on experimentally derived information on both toxicity and medical countermeasures (MedCM) in the event of exposure to VM, VX or VM-VX mixtures. Complementary in vitro and in vivo studies were undertaken to inform that advice. The penetration rate of neat VM was not significantly different from that of neat VX, through either guinea pig or pig skin in vitro . The presence of VX did not affect the penetration rate of VM in mixtures of various proportions. A lethal dose of VM was approximately twice that of VX in guinea pigs poisoned via the percutaneous route. There was no interaction in mixed agent solutions which altered the in vivo toxicity of the agents. Percutaneous poisoning by VM responded to treatment with standard MedCM, although complete protection was not achieved.

  20. Long range ordered alloys modified by addition of niobium and cerium

    International Nuclear Information System (INIS)

    Liu, C.T.

    1987-01-01

    A long range ordered alloy composition is described consisting essentially of iron, nickel, cobalt, vanadium and a ductility enhancing metal, having the nominal composition (Fe, Ni,Co)/sub 3/(V,M) where M is the ductility enhancing metal selected from the group Ti, Zr, Hf and mixtures thereof. Effective amounts of creep property enhance elements selected from the group cerium, niobium and mixtures thereof sufficient to enhance creep properties in the resulting alloy without adversely affecting the fabrication of the alloy

  1. Investigating the role of the ventromedial prefrontal cortex (vmPFC in the assessment of brands

    Directory of Open Access Journals (Sweden)

    Jose Paulo eSantos

    2011-06-01

    Full Text Available The ventromedial prefrontal cortex (vmPFC is believed to be important in everyday preference judgments, processing emotions during decision-making. However, there is still controversy in the literature regarding the participation of the vmPFC. To further elucidate the contribution of the vmPFC in brand preference, we designed a functional magnetic resonance imaging (fMRI study where 18 subjects assessed positive, indifferent and fictitious brands. Also, both the period during and after the decision process were analyzed, hoping to unravel temporally the role of the vmPFC, using modeled and model-free fMRI analysis. Considering together the period before and after decision-making, there was activation of the vmPFC when comparing positive with indifferent or fictitious brands. However, when the decision-making period was separated from the moment after the response, and especially for positive brands, the vmPFC was more active after the choice than during the decision process itself, challenging some of the existing literature. The results of the present study support the notion that the vmPFC may be unimportant in the decision stage of brand preference, questioning theories that postulate that the vmPFC is in the origin of such a choice. Further studies are needed to investigate in detail why the vmPFC seems to be involved in brand preference only after the decision process.

  2. Autosomal dominant inheritance of brain cardiolipin fatty acid abnormality in VM/DK mice: association with hypoxic-induced cognitive insensitivity.

    Science.gov (United States)

    Ta, Nathan L; Jia, Xibei; Kiebish, Michael; Seyfried, Thomas N

    2014-01-01

    Cardiolipin is a complex polyglycerol phospholipid found almost exclusively in the inner mitochondrial membrane and regulates numerous enzyme activities especially those related to oxidative phosphorylation and coupled respiration. Abnormalities in cardiolipin can impair mitochondrial function and bioenergetics. We recently demonstrated that the ratio of shorter chain saturated and monounsaturated fatty acids (C16:0; C18:0; C18:1) to longer chain polyunsaturated fatty acids (C18:2; C20:4; C22:6) was significantly greater in the brains of adult VM/DK (VM) inbred mice than in the brains of C57BL/6 J (B6) mice. The cardiolipin fatty acid abnormalities in VM mice are also associated with alterations in the activity of mitochondrial respiratory complexes. In this study we found that the abnormal brain fatty acid ratio in the VM strain was inherited as an autosomal dominant trait in reciprocal B6 × VM F1 hybrids. To evaluate the potential influence of brain cardiolipin fatty acid composition on cognitive sensitivity, we placed the parental B6 and VM mice and their reciprocal male and female B6VMF1 hybrid mice (3-month-old) in a hypoxic chamber (5 % O2). Cognitive awareness (conscientiousness) under hypoxia was significantly lower in the VM parental mice and F1 hybrid mice (11.4 ± 0.4  and 11.0 ± 0.4 min, respectively) than in the parental B6 mice (15.3 ± 1.4 min), indicating an autosomal dominant inheritance like that of the brain cardiolipin abnormalities. These findings suggest that impaired cognitive awareness under hypoxia is associated with abnormalities in neural lipid composition.

  3. A VM-shared desktop virtualization system based on OpenStack

    Science.gov (United States)

    Liu, Xi; Zhu, Mingfa; Xiao, Limin; Jiang, Yuanjie

    2018-04-01

    With the increasing popularity of cloud computing, desktop virtualization is rising in recent years as a branch of virtualization technology. However, existing desktop virtualization systems are mostly designed as a one-to-one mode, which one VM can only be accessed by one user. Meanwhile, previous desktop virtualization systems perform weakly in terms of response time and cost saving. This paper proposes a novel VM-Shared desktop virtualization system based on OpenStack platform. The paper modified the connecting process and the display data transmission process of the remote display protocol SPICE to support VM-Shared function. On the other hand, we propose a server-push display mode to improve user interactive experience. The experimental results show that our system performs well in response time and achieves a low CPU consumption.

  4. Security model for VM in cloud

    Science.gov (United States)

    Kanaparti, Venkataramana; Naveen K., R.; Rajani, S.; Padmvathamma, M.; Anitha, C.

    2013-03-01

    Cloud computing is a new approach emerged to meet ever-increasing demand for computing resources and to reduce operational costs and Capital Expenditure for IT services. As this new way of computation allows data and applications to be stored away from own corporate server, it brings more issues in security such as virtualization security, distributed computing, application security, identity management, access control and authentication. Even though Virtualization forms the basis for cloud computing it poses many threats in securing cloud. As most of Security threats lies at Virtualization layer in cloud we proposed this new Security Model for Virtual Machine in Cloud (SMVC) in which every process is authenticated by Trusted-Agent (TA) in Hypervisor as well as in VM. Our proposed model is designed to with-stand attacks by unauthorized process that pose threat to applications related to Data Mining, OLAP systems, Image processing which requires huge resources in cloud deployed on one or more VM's.

  5. 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine

    NARCIS (Netherlands)

    McGuire, R.; Verhoeven, S.; Vass, M.; Vriend, G.; Esch, I.J. de; Lusher, S.J.; Leurs, R.; Ridder, L.; Kooistra, A.J.; Ritschel, T.; Graaf, C. de

    2017-01-01

    3D-e-Chem-VM is an open source, freely available Virtual Machine ( http://3d-e-chem.github.io/3D-e-Chem-VM/ ) that integrates cheminformatics and bioinformatics tools for the analysis of protein-ligand interaction data. 3D-e-Chem-VM consists of software libraries, and database and workflow tools

  6. 3D-e-Chem-VM : Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine

    NARCIS (Netherlands)

    McGuire, Ross; Verhoeven, Stefan; Vass, Márton; Vriend, Gerrit; De Esch, Iwan J P; Lusher, Scott J.; Leurs, Rob; Ridder, Lars; Kooistra, Albert J.; Ritschel, Tina; de Graaf, C.

    2017-01-01

    3D-e-Chem-VM is an open source, freely available Virtual Machine ( http://3d-e-chem.github.io/3D-e-Chem-VM/ ) that integrates cheminformatics and bioinformatics tools for the analysis of protein-ligand interaction data. 3D-e-Chem-VM consists of software libraries, and database and workflow tools

  7. State-dependent compound inhibition of Nav1.2 sodium channels using the FLIPR Vm dye: on-target and off-target effects of diverse pharmacological agents.

    Science.gov (United States)

    Benjamin, Elfrida R; Pruthi, Farhana; Olanrewaju, Shakira; Ilyin, Victor I; Crumley, Gregg; Kutlina, Elena; Valenzano, Kenneth J; Woodward, Richard M

    2006-02-01

    Voltage-gated sodium channels (NaChs) are relevant targets for pain, epilepsy, and a variety of neurological and cardiac disorders. Traditionally, it has been difficult to develop structure-activity relationships for NaCh inhibitors due to rapid channel kinetics and state-dependent compound interactions. Membrane potential (Vm) dyes in conjunction with a high-throughput fluorescence imaging plate reader (FLIPR) offer a satisfactory 1st-tier solution. Thus, the authors have developed a FLIPR Vm assay of rat Nav1.2 NaCh. Channels were opened by addition of veratridine, and Vm dye responses were measured. The IC50 values from various structural classes of compounds were compared to the resting state binding constant (Kr)and inactivated state binding constant (Ki)obtained using patch-clamp electrophysiology (EP). The FLIPR values correlated with Ki but not Kr. FLIPRIC50 values fell within 0.1-to 1.5-fold of EP Ki values, indicating that the assay generally reports use-dependent inhibition rather than resting state block. The Library of Pharmacologically Active Compounds (LOPAC, Sigma) was screened. Confirmed hits arose from diverse classes such as dopamine receptor antagonists, serotonin transport inhibitors, and kinase inhibitors. These data suggest that NaCh inhibition is inherent in a diverse set of biologically active molecules and may warrant counterscreening NaChs to avoid unwanted secondary pharmacology.

  8. Cocaine craving during protracted withdrawal requires PKCε priming within vmPFC.

    Science.gov (United States)

    Miller, Bailey W; Wroten, Melissa G; Sacramento, Arianne D; Silva, Hannah E; Shin, Christina B; Vieira, Philip A; Ben-Shahar, Osnat; Kippin, Tod E; Szumlinski, Karen K

    2017-05-01

    In individuals with a history of drug taking, the capacity of drug-associated cues to elicit indices of drug craving intensifies or incubates with the passage of time during drug abstinence. This incubation of cocaine craving, as well as difficulties with learning to suppress drug-seeking behavior during protracted withdrawal, are associated with a time-dependent deregulation of ventromedial prefrontal cortex (vmPFC) function. As the molecular bases for cocaine-related vmPFC deregulation remain elusive, the present study assayed the consequences of extended access to intravenous cocaine (6 hours/day; 0.25 mg/infusion for 10 day) on the activational state of protein kinase C epsilon (PKCε), an enzyme highly implicated in drug-induced neuroplasticity. The opportunity to engage in cocaine seeking during cocaine abstinence time-dependently altered PKCε phosphorylation within vmPFC, with reduced and increased p-PKCε expression observed in early (3 days) and protracted (30 days) withdrawal, respectively. This effect was more robust within the ventromedial versus dorsomedial PFC, was not observed in comparable cocaine-experienced rats not tested for drug-seeking behavior and was distinct from the rise in phosphorylated extracellular signal-regulated kinase observed in cocaine-seeking rats. Further, the impact of inhibiting PKCε translocation within the vmPFC using TAT infusion proteins upon cue-elicited responding was determined and inhibition coinciding with the period of testing attenuated cocaine-seeking behavior, with an effect also apparent the next day. In contrast, inhibitor pretreatment prior to testing during early withdrawal was without effect. Thus, a history of excessive cocaine taking influences the cue reactivity of important intracellular signaling molecules within the vmPFC, with PKCε playing a critical role in the manifestation of cue-elicited cocaine seeking during protracted drug withdrawal. © 2016 Society for the Study of Addiction.

  9. SIMPLE HEURISTIC ALGORITHM FOR DYNAMIC VM REALLOCATION IN IAAS CLOUDS

    Directory of Open Access Journals (Sweden)

    Nikita A. Balashov

    2018-03-01

    Full Text Available The rapid development of cloud technologies and its high prevalence in both commercial and academic areas have stimulated active research in the domain of optimal cloud resource management. One of the most active research directions is dynamic virtual machine (VM placement optimization in clouds build on Infrastructure-as-a-Service model. This kind of research may pursue different goals with energy-aware optimization being the most common goal as it aims at a urgent problem of green cloud computing - reducing energy consumption by data centers. In this paper we present a new heuristic algorithm of dynamic reallocation of VMs based on an approach presented in one of our previous works. In the algorithm we apply a 2-rank strategy to classify VMs and servers corresponding to the highly and lowly active VMs and solve four tasks: VM classification, host classification, forming a VM migration map and VMs migration. Dividing all of the VMs and servers into two classes we attempt to implement the possibility of risk reduction in case of hardware overloads under overcommitment conditions and to reduce the influence of the occurring overloads on the performance of the cloud VMs. Presented algorithm was developed based on the workload profile of the JINR cloud (a scientific private cloud with the goal of maximizing its usage, but it can also be applied in both public and private commercial clouds to organize the simultaneous use of different SLA and QoS levels in the same cloud environment by giving each VM rank its own level of overcommitment.

  10. Effect of alloying Mo on mechanical strength and corrosion resistance of Zr-1% Sn-1% Nb-1% Fe alloy

    International Nuclear Information System (INIS)

    Sugondo

    2011-01-01

    It had been done research on Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy. The ingot was prepared by means of electrical electrode technique. The chemical analysis was identified by XRF, the metallography examination was perform by an optical microscope, the hardness test was done by Vickers microhardness, and the corrosion test was done in autoclave. The objective of this research were making Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy with Mo concentration; comparing effect of Mo concentration to metal characteristics of Zr-1%Sn-1%Nb-1%Fe which covered microstructure; composition homogeneity, mechanical strength; and corrosion resistance in steam, and determining the optimal Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)% Mo alloy for nuclear fuel cladding which had corrosion resistance and high hardness. The results were as follow: The alloying Mo refined grains at concentration in between 0,1%-0,3% and the concentration more than that could coarsened grains. The hardness of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled either by the flaw or the dislocation, the intersection of the harder alloying element, the solid solution of the alloying element and the second phase formation of ZrMo 2 . The corrosion rate of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled by the second phase of ZrMo 2 . The 0.3% Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was the best for second phase formation. The Mo concentration in between 0,3-0,5% in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was good for the second phase formation and the solid solution. (author)

  11. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation.

    Science.gov (United States)

    Ribis, John W; Ravichandran, Priyanka; Putnam, Emily E; Pishdadian, Keyan; Shen, Aimee

    2017-01-01

    The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis , only two of these morphogenetic proteins have homologs in the Clostridia : SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis . Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis , C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia , but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and

  12. Overhead-Aware-Best-Fit (OABF) Resource Allocation Algorithm for Minimizing VM Launching Overhead

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [IIT; Garzoglio, Gabriele [Fermilab; Ren, Shangping [IIT, Chicago; Timm, Steven [Fermilab; Noh, Seo Young [KISTI, Daejeon

    2014-11-11

    FermiCloud is a private cloud developed in Fermi National Accelerator Laboratory to provide elastic and on-demand resources for different scientific research experiments. The design goal of the FermiCloud is to automatically allocate resources for different scientific applications so that the QoS required by these applications is met and the operational cost of the FermiCloud is minimized. Our earlier research shows that VM launching overhead has large variations. If such variations are not taken into consideration when making resource allocation decisions, it may lead to poor performance and resource waste. In this paper, we show how we may use an VM launching overhead reference model to minimize VM launching overhead. In particular, we first present a training algorithm that automatically tunes a given refer- ence model to accurately reflect FermiCloud environment. Based on the tuned reference model for virtual machine launching overhead, we develop an overhead-aware-best-fit resource allocation algorithm that decides where and when to allocate resources so that the average virtual machine launching overhead is minimized. The experimental results indicate that the developed overhead-aware-best-fit resource allocation algorithm can significantly improved the VM launching time when large number of VMs are simultaneously launched.

  13. On Use of the Variable Zagreb vM2 Index in QSPR: Boiling Points of Benzenoid Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Albin Jurić

    2004-12-01

    Full Text Available The variable Zagreb vM2 index is introduced and applied to the structure-boiling point modeling of benzenoid hydrocarbons. The linear model obtained (thestandard error of estimate for the fit model Sfit=6.8 oC is much better than thecorresponding model based on the original Zagreb M2 index (Sfit=16.4 oC. Surprisingly,the model based on the variable vertex-connectivity index (Sfit=6.8 oC is comparable tothe model based on vM2 index. A comparative study with models based on the vertex-connectivity index, edge-connectivity index and several distance indices favours modelsbased on the variable Zagreb vM2 index and variable vertex-connectivity index.However, the multivariate regression with two-, three- and four-descriptors givesimproved models, the best being the model with four-descriptors (but vM2 index is notamong them with Sfit=5 oC, though the four-descriptor model contaning vM2 index isonly slightly inferior (Sfit=5.3 oC.

  14. HotpathVM: An Effective JIT for Resource-constrained Devices

    DEFF Research Database (Denmark)

    Gal, Andreas; Franz, Michael; Probst, Christian

    2006-01-01

    We present a just-in-time compiler for a Java VM that is small enough to fit on resource-constrained devices, yet surprisingly effective. Our system dynamically identifies traces of frequently executed bytecode instructions (which may span several basic blocks across several methods) and compiles...

  15. The effect of future time perspective on delay discounting is mediated by the gray matter volume of vmPFC.

    Science.gov (United States)

    Guo, Yiqun; Chen, Zhiyi; Feng, Tingyong

    2017-07-28

    Although several previous studies have shown that individuals' attitude towards time could affect their intertemporal preference, little is known about the neural basis of the relation between time perspective (TP) and delay discounting. In the present study, we quantified the gray matter (GM) cortical volume using voxel-based morphometry (VBM) methods to investigate the effect of TP on delay discounting (DD) across two independent samples. For group 1 (102 healthy college students; 46 male; 20.40 ± 1.87 years), behavioral results showed that only Future TP was a significant predictor of DD, and higher scores on Future TP were related to lower discounting rates. Whole-brain analysis revealed that steeper discounting correlated with greater GM volume in the ventromedial prefrontal cortex (vmPFC) and ventral part of posterior cingulate cortex (vPCC). Also, GM volume of a cluster in the vmPFC was correlated with Future TP. Interestingly, there was an overlapping region in vmPFC that was correlated with both DD and Future TP. Region-of-interest analysis further indicated that the overlapping region of vmPFC played a partially mediating role in the relation between Future TP and DD in the other independent dataset (Group 2, 36 healthy college students; 14 male; 20.18±1.80 years). Taken together, our results provide a new perspective from neural basis for explaining the relation between DD and future TP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine.

    Science.gov (United States)

    McGuire, Ross; Verhoeven, Stefan; Vass, Márton; Vriend, Gerrit; de Esch, Iwan J P; Lusher, Scott J; Leurs, Rob; Ridder, Lars; Kooistra, Albert J; Ritschel, Tina; de Graaf, Chris

    2017-02-27

    3D-e-Chem-VM is an open source, freely available Virtual Machine ( http://3d-e-chem.github.io/3D-e-Chem-VM/ ) that integrates cheminformatics and bioinformatics tools for the analysis of protein-ligand interaction data. 3D-e-Chem-VM consists of software libraries, and database and workflow tools that can analyze and combine small molecule and protein structural information in a graphical programming environment. New chemical and biological data analytics tools and workflows have been developed for the efficient exploitation of structural and pharmacological protein-ligand interaction data from proteomewide databases (e.g., ChEMBLdb and PDB), as well as customized information systems focused on, e.g., G protein-coupled receptors (GPCRdb) and protein kinases (KLIFS). The integrated structural cheminformatics research infrastructure compiled in the 3D-e-Chem-VM enables the design of new approaches in virtual ligand screening (Chemdb4VS), ligand-based metabolism prediction (SyGMa), and structure-based protein binding site comparison and bioisosteric replacement for ligand design (KRIPOdb).

  17. Universal Voltage Conveyor and its Novel Dual-Output Fully-Cascadable VM APF Application

    Directory of Open Access Journals (Sweden)

    Norbert Herencsar

    2017-03-01

    Full Text Available This letter presents a novel realization of a voltage-mode (VM first-order all-pass filter (APF with attractive features. The proposed circuit employs a single readily available six-terminal active device called as universal voltage conveyor (UVC and only grounded passive components, which predict its easy monolithic integration with desired circuit simplicity. The auxiliary voltage input (W and output (ZP, ZN terminals of the device fully ensure easy cascadability of VM APF, since the input and output terminal impedances are theoretically infinitely high and zero, respectively. Moreover, thanks to mutually inverse outputs of the UVC, the proposed filter simultaneously provides both inverting and non-inverting outputs from the same configuration. All of these features make the UVC a unique active device currently available in the literature. The behavior of the filter was experimentally measured using the readily available UVC-N1C 0520 chip, which was produced in cooperation with ON Semiconductor Czech Republic, Ltd.

  18. Fast-Solving Quasi-Optimal LS-S3VM Based on an Extended Candidate Set.

    Science.gov (United States)

    Ma, Yuefeng; Liang, Xun; Kwok, James T; Li, Jianping; Zhou, Xiaoping; Zhang, Haiyan

    2018-04-01

    The semisupervised least squares support vector machine (LS-S 3 VM) is an important enhancement of least squares support vector machines in semisupervised learning. Given that most data collected from the real world are without labels, semisupervised approaches are more applicable than standard supervised approaches. Although a few training methods for LS-S 3 VM exist, the problem of deriving the optimal decision hyperplane efficiently and effectually has not been solved. In this paper, a fully weighted model of LS-S 3 VM is proposed, and a simple integer programming (IP) model is introduced through an equivalent transformation to solve the model. Based on the distances between the unlabeled data and the decision hyperplane, a new indicator is designed to represent the possibility that the label of an unlabeled datum should be reversed in each iteration during training. Using the indicator, we construct an extended candidate set consisting of the indices of unlabeled data with high possibilities, which integrates more information from unlabeled data. Our algorithm is degenerated into a special scenario of the previous algorithm when the extended candidate set is reduced into a set with only one element. Two strategies are utilized to determine the descent directions based on the extended candidate set. Furthermore, we developed a novel method for locating a good starting point based on the properties of the equivalent IP model. Combined with the extended candidate set and the carefully computed starting point, a fast algorithm to solve LS-S 3 VM quasi-optimally is proposed. The choice of quasi-optimal solutions results in low computational cost and avoidance of overfitting. Experiments show that our algorithm equipped with the two designed strategies is more effective than other algorithms in at least one of the following three aspects: 1) computational complexity; 2) generalization ability; and 3) flexibility. However, our algorithm and other algorithms have

  19. Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives

    Science.gov (United States)

    Argus, Donald F.; Peltier, W. Richard

    2010-05-01

    Using global positioning system, very long baseline interferometry, satellite laser ranging and Doppler Orbitography and Radiopositioning Integrated by Satellite observations, including the Canadian Base Network and Fennoscandian BIFROST array, we constrain, in models of postglacial rebound, the thickness of the ice sheets as a function of position and time and the viscosity of the mantle as a function of depth. We test model ICE-5G VM2 T90 Rot, which well fits many hundred Holocene relative sea level histories in North America, Europe and worldwide. ICE-5G is the deglaciation history having more ice in western Canada than ICE-4G; VM2 is the mantle viscosity profile having a mean upper mantle viscosity of 0.5 × 1021Pas and a mean uppermost-lower mantle viscosity of 1.6 × 1021Pas T90 is an elastic lithosphere thickness of 90 km; and Rot designates that the model includes (rotational feedback) Earth's response to the wander of the North Pole of Earth's spin axis towards Canada at a speed of ~1° Myr-1. The vertical observations in North America show that, relative to ICE-5G, the Laurentide ice sheet at last glacial maximum (LGM) at ~26 ka was (1) much thinner in southern Manitoba, (2) thinner near Yellowknife (Northwest Territories), (3) thicker in eastern and southern Quebec and (4) thicker along the northern British Columbia-Alberta border, or that ice was unloaded from these areas later (thicker) or earlier (thinner) than in ICE-5G. The data indicate that the western Laurentide ice sheet was intermediate in mass between ICE-5G and ICE-4G. The vertical observations and GRACE gravity data together suggest that the western Laurentide ice sheet was nearly as massive as that in ICE-5G but distributed more broadly across northwestern Canada. VM2 poorly fits the horizontal observations in North America, predicting places along the margins of the Laurentide ice sheet to be moving laterally away from the ice centre at 2 mm yr-1 in ICE-4G and 3 mm yr-1 in ICE-5G, in

  20. Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse.

    Science.gov (United States)

    Shelton, Laura M; Huysentruyt, Leanne C; Mukherjee, Purna; Seyfried, Thomas N

    2010-07-23

    GBM (glioblastoma multiforme) is the most aggressive and invasive form of primary human brain cancer. We recently developed a novel brain cancer model in the inbred VM mouse strain that shares several characteristics with human GBM. Using bioluminescence imaging, we tested the efficacy of CR (calorie restriction) for its ability to reduce tumour size and invasion. CR targets glycolysis and rapid tumour cell growth in part by lowering circulating glucose levels. The VM-M3 tumour cells were implanted intracerebrally in the syngeneic VM mouse host. Approx. 12-15 days post-implantation, brains were removed and both ipsilateral and contralateral hemispheres were imaged to measure bioluminescence of invading tumour cells. CR significantly reduced the invasion of tumour cells from the implanted ipsilateral hemisphere into the contralateral hemisphere. The total percentage of Ki-67-stained cells within the primary tumour and the total number of blood vessels was also significantly lower in the CR-treated mice than in the mice fed ad libitum, suggesting that CR is anti-proliferative and anti-angiogenic. Our findings indicate that the VM-M3 GBM model is a valuable tool for studying brain tumour cell invasion and for evaluating potential therapeutic approaches for managing invasive brain cancer. In addition, we show that CR can be effective in reducing malignant brain tumour growth and invasion.

  1. Calorie Restriction as an Anti-Invasive Therapy for Malignant Brain Cancer in the VM Mouse

    Directory of Open Access Journals (Sweden)

    Laura M Shelton

    2010-07-01

    Full Text Available GBM (glioblastoma multiforme is the most aggressive and invasive form of primary human brain cancer. We recently developed a novel brain cancer model in the inbred VM mouse strain that shares several characteristics with human GBM. Using bioluminescence imaging, we tested the efficacy of CR (calorie restriction for its ability to reduce tumour size and invasion. CR targets glycolysis and rapid tumour cell growth in part by lowering circulating glucose levels. The VM-M3 tumour cells were implanted intracerebrally in the syngeneic VM mouse host. Approx. 12-15 days post-implantation, brains were removed and both ipsilateral and contralateral hemispheres were imaged to measure bioluminescence of invading tumour cells. CR significantly reduced the invasion of tumour cells from the implanted ipsilateral hemisphere into the contralateral hemisphere. The total percentage of Ki-67-stained cells within the primary tumour and the total number of blood vessels was also significantly lower in the CR-treated mice than in the mice fed ad libitum, suggesting that CR is anti-proliferative and anti-angiogenic. Our findings indicate that the VM-M3 GBM model is a valuable tool for studying brain tumour cell invasion and for evaluating potential therapeutic approaches for managing invasive brain cancer. In addition, we show that CR can be effective in reducing malignant brain tumour growth and invasion.

  2. Grain refinement of an AZ63B magnesium alloy by an Al-1C master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yichuan Pan; Xiangfa Liu; Hua Yang [The Key Lab. of Liquid Structure and Heredity of Materials, Shandong Univ., Jinan (China)

    2005-12-01

    In order to develop a refiner of Mg-Al alloys, an Al-1C (in wt.%) master alloy was synthesized using a casting method. The microstructure and grain-refining performance of the Al-1C master alloy were investigated using X-ray diffraction (XRD), electron probe microanalysis (EPMA) and a grain-refining test. The microstructure of the Al-1C master alloy is composed of {alpha}-Al solid solution, Al{sub 4}C{sub 3} particles, and graphite phases. After grain refinement of AZ63B alloy by the Al-1C master alloy, the mean grain size reached a limit when 2 wt.% Al-C master alloy was added at 800 C and held for 20 min in the melt before casting. The minimum mean grain size is approximately 48 {mu}m at the one-half radius of the ingot and is about 17% of that of the unrefined alloy. The Al-1C master alloy results in better grain refinement than C{sub 2}Cl{sub 6} and MgCO{sub 3} carbon-containing refiners. (orig.)

  3. The Small GTPase Rac1 Contributes to Extinction of Aversive Memories of Drug Withdrawal by Facilitating GABAA Receptor Endocytosis in the vmPFC.

    Science.gov (United States)

    Wang, Weisheng; Ju, Yun-Yue; Zhou, Qi-Xin; Tang, Jian-Xin; Li, Meng; Zhang, Lei; Kang, Shuo; Chen, Zhong-Guo; Wang, Yu-Jun; Ji, Hui; Ding, Yu-Qiang; Xu, Lin; Liu, Jing-Gen

    2017-07-26

    Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABA A receptor (GABA A R) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABA A R endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABA A R endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABA A R endocytosis and CPA extinction. The crucial role of GABA A R endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABA A R endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABA A R endocytosis. SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories. Copyright © 2017 the authors 0270-6474/17/377096-15$15.00/0.

  4. Barbröstade grabbar, med färgat hår och litervis med öl : En analys av Aftonbladets skildring av herr- och damfotboll i Herr-VM 2006 och Dam-VM 2007

    OpenAIRE

    Mårtensson, Henning

    2012-01-01

    I den här uppsatsen har jag undersökt hur män och kvinnor framställs i bild och text i Aftonbladets rapportering från herrarnas fotbolls-VM i Tyskland 2006 och damernas fotbolls-VM i Kina 2007. Mitt syfte var att titta på hur konstrueringen av en nationell diskurs skiljer sig åt i texterna om dam- och herrfotboll, om det finns någon tydlig manlig och kvinnlig diskurs på bilderna, samt hur väl min undersökning stämmer in på beprövade genusteorier. För att kunna besvara mitt syfte använde jag m...

  5. Research and Implementation of Software Used for the Remote Control for VM700T Video Measuring Instrument

    Directory of Open Access Journals (Sweden)

    Song Wenjie

    2015-01-01

    Full Text Available In this paper, the measurement software which can be used to realize remote control of the VM700T video measuring instrument is introduced. The authors can operate VM700T by a virtual panel on the client computer, select the results that the measuring equipment displayed to transmit it, and then display the image on the VM700T virtual panel in real time. The system does have some practical values and play an important role in distance learning. The functions that the system realized mainly includes four aspects: the real-time transmission of message based on the socket technology, the serial connection between server PC and VM700T measuring equipment, the image acquisition based on VFW technology and JPEG compression and decompression, and the network transmission of image files. The actual network transmission test is shown that the data acquisition method of this thesis is flexible and convenient, and the system is of extraordinary stability. It can display the measurement results in real time and basically realize the requirements of remote control. In the content, this paper includes a summary of principle, the detailed introduction of the system realization process and some related technology.

  6. vlPFC-vmPFC-Amygdala Interactions Underlie Age-Related Differences in Cognitive Regulation of Emotion.

    Science.gov (United States)

    Silvers, Jennifer A; Insel, Catherine; Powers, Alisa; Franz, Peter; Helion, Chelsea; Martin, Rebecca E; Weber, Jochen; Mischel, Walter; Casey, B J; Ochsner, Kevin N

    2017-07-01

    Emotion regulation is a critical life skill that develops throughout childhood and adolescence. Despite this development in emotional processes, little is known about how the underlying brain systems develop with age. This study examined emotion regulation in 112 individuals (aged 6-23 years) as they viewed aversive and neutral images using a reappraisal task. On "reappraisal" trials, participants were instructed to view the images as distant, a strategy that has been previously shown to reduce negative affect. On "reactivity" trials, participants were instructed to view the images without regulating emotions to assess baseline emotional responding. During reappraisal, age predicted less negative affect, reduced amygdala responses and inverse coupling between the ventromedial prefrontal cortex (vmPFC) and amygdala. Moreover, left ventrolateral prefrontal (vlPFC) recruitment mediated the relationship between increasing age and diminishing amygdala responses. This negative vlPFC-amygdala association was stronger for individuals with inverse coupling between the amygdala and vmPFC. These data provide evidence that vmPFC-amygdala connectivity facilitates vlPFC-related amygdala modulation across development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. In vitro corrosion of Mg–1.21Li–1.12Ca–1Y alloy

    Directory of Open Access Journals (Sweden)

    Rongchang Zeng

    2014-10-01

    Full Text Available The influence of the microstructure on mechanical properties and corrosion behavior of the Mg–1.21Li–1.12Ca–1Y alloy was investigated using OM, SEM, XRD, EPMA, EDS, tensile tests and corrosion measurements. The results demonstrated that the microstructure of the Mg–1.21Li–1.12Ca–1Y alloy was characterized by α-Mg substrate and intermetallic compounds Mg2Ca and Mg24Y5. Most of the fine Mg2Ca particles for the as-cast alloy were distributed along the grain boundaries, while for the as-extruded along the extrusion direction. The Mg24Y5 particles with a larger size than the Mg2Ca particles were positioned inside the grains. The mechanical properties of Mg–1.21Li–1.12Ca–1Y alloy were improved by the grain refinement and dispersion strengthening. Corrosion pits initiated at the α-Mg matrix neighboring the Mg2Ca particles and subsequently the alloy exhibited general corrosion and filiform corrosion as the corrosion product layer of Mg(OH2 and MgCO3 became compact and thick.

  8. Managing the Virtual Machine Lifecycle of the CernVM Project

    International Nuclear Information System (INIS)

    Charalampidis, I; Blomer, J; Buncic, P; Harutyunyan, A; Larsen, D

    2012-01-01

    CernVM is a virtual software appliance designed to support the development cycle and provide a runtime environment for LHC applications. It consists of a minimal Linux distribution, a specially tuned file system designed to deliver application software on demand, and contextualization tools. The maintenance of these components involves a variety of different procedures and tools that cannot always connect with each other. Additionally, most of these procedures need to be performed frequently. Currently, in the CernVM project, every time we build a new virtual machine image, we have to perform the whole process manually, because of the heterogeneity of the tools involved. The overall process is error-prone and time-consuming. Therefore, to simplify and aid this continuous maintenance process, we are developing a framework that combines these virtually unrelated tools with a single, coherent interface. To do so, we identified all the involved procedures and their tools, tracked their dependencies and organized them into logical groups (e.g. build, test, instantiate). These groups define the procedures that are performed throughout the lifetime of a virtual machine. In this paper we describe the Virtual Machine Lifecycle and the framework we developed (iAgent) in order to simplify the maintenance process.

  9. Investigation of fretting corrosion of vacuum-chrome-plated vt3-1 titanium alloy in pair with unprotected vt3-1 alloy and 40khnma steel

    International Nuclear Information System (INIS)

    Rojkh, I.L.; Koltunova, L.N.; Vejtsman, M.G.; Birman, Ya.N.; Skosarev, A.V.; Kogan, I.S.

    1978-01-01

    The character of destruction of contacting surfaces in the process of fretting corrosion of titanium alloy VT3-1 chromized in vacuum in pair with unprotected alloy VT3-1 and steel 40KhNMA has been studied by scanning electron microscopy, electronography, and recording the surface profile. The specific load was 200 kg/cm 2 , vibration amplitude 50 mkm and frequency 500 Hz. It has been established that pairs unprotected with coating are subjected to intensive fretting corrosion especially when they are made of titanium alloy. For the pair chromized alloy VT3-1 - unprotected alloy VT3-1 no destruction of a chromized surface is observed. Vacuum chromium coating in the pair with steel 40KhNMA reveals similar properties as in pair with a titanium alloy. The surface of a steel sample is destroyed because of fretting corrosion, though the intensity of corrosion is lower than in the case of unprotected pairs. Vacuum chromium coating is recommended for protection of titanium alloy VT3-1 from fretting corrosion in pair with steel 40KhNMA or an alloy VT3-1 especially in those cases when various organic coatings are unsuitable

  10. CernVM Co-Pilot: an Extensible Framework for Building Scalable Cloud Computing Infrastructures

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    CernVM Co-Pilot is a framework for instantiating an ad-hoc computing infrastructure on top of distributed computing resources. Such resources include commercial computing clouds (e.g. Amazon EC2), scientific computing clouds (e.g. CERN lxcloud), as well as the machines of users participating in volunteer computing projects (e.g. BOINC). The framework consists of components that communicate using the Extensible Messaging and Presence protocol (XMPP), allowing for new components to be developed in virtually any programming language and interfaced to existing Grid and batch computing infrastructures exploited by the High Energy Physics community. Co-Pilot has been used to execute jobs for both the ALICE and ATLAS experiments at CERN. CernVM Co-Pilot is also one of the enabling technologies behind the LHC@home 2.0 volunteer computing project, which is the first such project that exploits virtual machine technology. The use of virtual machines eliminates the necessity of modifying existing applications and adapt...

  11. Moessbauer effect study on mechanically alloyed amorphous Fe1-xTix alloys

    International Nuclear Information System (INIS)

    Chen Hong; Xu Zuxiong; Ma Ruzhang; Zhao Zhongtao; Ping Jueyun

    1994-01-01

    Amorphous Fe 1-x Ti x (x = 0.50, 0.60) powders were produced by mechanical alloying from pure elemental powders in a vibratory ball-mill. X-ray diffraction (XRD) and Moessbauer effect (ME) were used to study the progress of amorphization and the property of hydrogen absorption in Fe-Ti alloys. The amorphization process and the properties of the amorphous phase are discussed. (orig.)

  12. Non-Toxic Metabolic Management of Metastatic Cancer in VM Mice: Novel Combination of Ketogenic Diet, Ketone Supplementation, and Hyperbaric Oxygen Therapy.

    Directory of Open Access Journals (Sweden)

    A M Poff

    Full Text Available The Warburg effect and tumor hypoxia underlie a unique cancer metabolic phenotype characterized by glucose dependency and aerobic fermentation. We previously showed that two non-toxic metabolic therapies - the ketogenic diet with concurrent hyperbaric oxygen (KD+HBOT and dietary ketone supplementation - could increase survival time in the VM-M3 mouse model of metastatic cancer. We hypothesized that combining these therapies could provide an even greater therapeutic benefit in this model. Mice receiving the combination therapy demonstrated a marked reduction in tumor growth rate and metastatic spread, and lived twice as long as control animals. To further understand the effects of these metabolic therapies, we characterized the effects of high glucose (control, low glucose (LG, ketone supplementation (βHB, hyperbaric oxygen (HBOT, or combination therapy (LG+βHB+HBOT on VM-M3 cells. Individually and combined, these metabolic therapies significantly decreased VM-M3 cell proliferation and viability. HBOT, alone or in combination with LG and βHB, increased ROS production in VM-M3 cells. This study strongly supports further investigation into this metabolic therapy as a potential non-toxic treatment for late-stage metastatic cancers.

  13. Oxidation kinetics of amorphous AlxZr1−x alloys

    International Nuclear Information System (INIS)

    Weller, K.; Wang, Z.M.; Jeurgens, L.P.H.; Mittemeijer, E.J.

    2016-01-01

    The oxidation kinetics of amorphous Al x Zr 1−x alloys (solid solution) has been studied as function of the alloy composition (0.26 ≤ x ≤ 0.68) and the oxidation temperature (350 °C ≤ T ≤ 400 °C; at constant pO 2  = 1 × 10 5  Pa) by a combinatorial approach using spectroscopic ellipsometry (SE), Auger electron spectroscopy (AES) depth profiling, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. Thermal oxidation of the am-Al x Zr 1−x alloys results in the formation of an amorphous oxide overgrowth with a thermodynamically preferred singular composition, corresponding to a constant Al ox /Zr ox ratio of 0.5. Both the solubility and the diffusivity of oxygen in the am-Al x Zr 1−x alloy substrate increase considerably with increasing Zr content, in particular for Zr contents above 49 at.% Zr. Strikingly, the oxidation kinetics exhibit a transition from parabolic oxide growth kinetics for Al-rich am-Al x Zr 1−x alloys (x ≥ 0.51) to linear oxide growth kinetics for Zr-rich am-Al x Zr 1−x alloys (x < 0.35). The underlying oxidation mechanism is discussed. It is concluded that the oxidation kinetics of the amorphous Al x Zr 1−x alloys for 0.26 ≤ x ≤ 0.68 and 350 °C ≤ T ≤ 400 °C are governed by: (i) the atomic mobilities of O and Al in the alloy substrate at the reacting oxide/alloy interface, (ii) the solubility of O in the substrate and (iii) the compositional constraint due to the thermodynamically preferred formation of an amorphous oxide phase of singular composition.

  14. NMDA antagonist, but not nNOS inhibitor, requires AMPA receptors in the ventromedial prefrontal cortex (vmPFC) to induce antidepressant-like effects

    DEFF Research Database (Denmark)

    Pereira, V. S.; Wegener, Gregers; Joca, S. R.

    2013-01-01

    of the glutamatergic and nitrergic systems of the vmPFC on the behavioral consequences induced by forced swimming (FS), an animal model of depression. Male Wistar rats (230-260g) with guide cannulas aimed at the prelimbic (PL) region of vmPFC were submitted to a 15min session of FS and, 24h later, they were submitted...

  15. Physical metallurgy: Scientific school of the Academician V.M. Schastlivtsev

    Science.gov (United States)

    Tabatchikova, T. I.

    2016-04-01

    This paper is to honor Academician Vadim Mikhailovich Schastlivtsev, a prominent scientist in the field of metal physics and materials science. The article comprises an analysis of the topical issues of the physical metallurgy of the early 21st century and of the contribution of V.M. Schastlivtsev and of his school to the science of phase and structural transformations in steels. In 2015, Vadim Mikhailovich celebrates his 80th birthday, and this paper is timed to this honorable date. The list of his main publications is given in it.

  16. vmPFC activation during a stressor predicts positive emotions during stress recovery

    Science.gov (United States)

    Yang, Xi; Garcia, Katelyn M; Jung, Youngkyoo; Whitlow, Christopher T; McRae, Kateri; Waugh, Christian E

    2018-01-01

    Abstract Despite accruing evidence showing that positive emotions facilitate stress recovery, the neural basis for this effect remains unclear. To identify the underlying mechanism, we compared stress recovery for people reflecting on a stressor while in a positive emotional context with that for people in a neutral context. While blood–oxygen-level dependent data were being collected, participants (N = 43) performed a stressful anagram task, which was followed by a recovery period during which they reflected on the stressor while watching a positive or neutral video. Participants also reported positive and negative emotions throughout the task as well as retrospective thoughts about the task. Although there was no effect of experimental context on emotional recovery, we found that ventromedial prefrontal cortex (vmPFC) activation during the stressor predicted more positive emotions during recovery, which in turn predicted less negative emotions during recovery. In addition, the relationship between vmPFC activation and positive emotions during recovery was mediated by decentering—the meta-cognitive detachment of oneself from one’s feelings. In sum, successful recovery from a stressor seems to be due to activation of positive emotion-related regions during the stressor itself as well as to their downstream effects on certain cognitive forms of emotion regulation. PMID:29462404

  17. Using XRootD to provide caches for CernVM-FS

    CERN Document Server

    Domenighini, Matteo

    2017-01-01

    CernVM-FS recently added the possibility of using plugin for cache management. In order to investigate the capabilities and limits of such possibility, an XRootD plugin was written and benchmarked; as a byproduct, a POSIX plugin was also generated. The tests revealed that the plugin interface introduces no signicant performance over- head; moreover, the XRootD plugin performance was discovered to be worse than the ones of the built-in cache manager and the POSIX plugin. Further test of the XRootD component revealed that its per- formance is dependent on the server disk speed.

  18. Muonium hyperfine parameters in Si1-x Ge x alloys

    International Nuclear Information System (INIS)

    King, Philip; Lichti, Roger; Cottrell, Stephen; Yonenaga, Ichiro

    2006-01-01

    We present studies of muonium behaviour in bulk, Czochralski-grown Si 1- x Ge x alloy material, focusing in particular on the hyperfine parameter of the tetrahedral muonium species. In contrast to the bond-centred species, the hyperfine parameter of the tetrahedral-site muonium centre (Mu T ) appears to vary non-linearly with alloy composition. The temperature dependence of the Mu T hyperfine parameter observed in low-Ge alloy material is compared with that seen in pure Si, and previous models of the Mu T behaviour in Si are discussed in the light of results from Si 1- x Ge x alloys

  19. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories

    Science.gov (United States)

    Argus, Donald F.; Peltier, W. R.; Drummond, R.; Moore, Angelyn W.

    2014-07-01

    A new model of the deglaciation history of Antarctica over the past 25 kyr has been developed, which we refer to herein as ICE-6G_C (VM5a). This revision of its predecessor ICE-5G (VM2) has been constrained to fit all available geological and geodetic observations, consisting of: (1) the present day uplift rates at 42 sites estimated from GPS measurements, (2) ice thickness change at 62 locations estimated from exposure-age dating, (3) Holocene relative sea level histories from 12 locations estimated on the basis of radiocarbon dating and (4) age of the onset of marine sedimentation at nine locations along the Antarctic shelf also estimated on the basis of 14C dating. Our new model fits the totality of these data well. An additional nine GPS-determined site velocities are also estimated for locations known to be influenced by modern ice loss from the Pine Island Bay and Northern Antarctic Peninsula regions. At the 42 locations not influenced by modern ice loss, the quality of the fit of postglacial rebound model ICE-6G_C (VM5A) is characterized by a weighted root mean square residual of 0.9 mm yr-1. The Southern Antarctic Peninsula is inferred to be rising at 2 mm yr-1, requiring there to be less Holocene ice loss there than in the prior model ICE-5G (VM2). The East Antarctica coast is rising at approximately 1 mm yr-1, requiring ice loss from this region to have been small since Last Glacial Maximum. The Ellsworth Mountains, at the base of the Antarctic Peninsula, are inferred to be rising at 5-8 mm yr-1, indicating large ice loss from this area during deglaciation that is poorly sampled by geological data. Horizontal deformation of the Antarctic Plate is minor with two exceptions. First, O'Higgins, at the tip of the Antarctic Peninsula, is moving southeast at a significant 2 mm yr-1 relative to the Antarctic Plate. Secondly, the margins of the Ronne and Ross Ice Shelves are moving horizontally away from the shelf centres at an approximate rate of 0.8 mm yr-1, in

  20. Corrosion of high-density sintered tungsten alloys. Part 1

    International Nuclear Information System (INIS)

    Batten, J.J.; McDonald, I.G.; Moore, B.T.; Silva, V.M.

    1988-10-01

    The corrosion behaviour of four tungsten alloys has been evaluated through weight loss measurements after total immersion in both distilled water insight into the mechanism of corrosion was afforded by an examination of the and 5% sodium chloride solutions. Some insight the mechanism of corrosion was afforded by using the Scanning Electron Microscopy and through an analysis of the corrosion products. Pure tungsten and all the alloys studied underwent corrosion during the tests, and in each case the rare of corrosion in sodium chloride solution was markedly less than that in distilled water. A 95% W, 3.5% Ni, 1.5% Fe alloy was found to be the most corrosion resistant of the alloys under the experimental conditions. Examination of the data shows that for each of the tests, copper as an alloying element accelerates corrosion of tungsten alloys. 9 refs., 7 tabs., 12 figs

  1. Features of ultrafine-grained structure forming in Zr-1Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Stepanova, Ekaterina N.; Prosolov, Konstantin A. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Grabovetskaya, Galina P.; Mishin, Ivan P. [Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk (Russian Federation)

    2013-07-01

    Ultrafine-grained structure forming by the method combined reversible hydrogenation and hot pressing in Zr-1Nb alloy was investigated. Preliminary hydrogenation to concentrations of (0.14–0.4) % at 873 K is found to lead to yield strength decreasing in Zr-1Nb alloy during hot pressing by 1,5–2 times. During uniaxial compression at (70–72) % under isothermal conditions at a temperature of 873 K in Zr-1Nb alloy, hydrogenated to concentration of 0.22 %, homogeneous ultrafine grained structure with an average grain size of 0,4 P m was formed. Key words: zirconium alloy, ultrafine-grained structure, hydrogen.

  2. Dynamic virtual AliEn Grid sites on Nimbus with CernVM

    International Nuclear Information System (INIS)

    Harutyunyan, A; Buncic, P; Freeman, T; Keahey, K

    2010-01-01

    We describe the work on enabling one click deployment of Grid sites of AliEn Grid framework on the Nimbus 'science cloud' at the University of Chicago. The integration of computing resources of the cloud with the resource pool of AliEn Grid is achieved by leveraging two mechanisms: the Nimbus Context Broker developed at Argonne National Laboratory and the University of Chicago, and CernVM - a baseline virtual software appliance for LHC experiments developed at CERN. Two approaches of dynamic virtual AliEn Grid site deployment are presented.

  3. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr

    Science.gov (United States)

    Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.

    2015-01-01

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878

  4. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.

    Science.gov (United States)

    Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L

    2015-05-29

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.

  5. Development of a Temperature Controller for a Vuilleumier (VM) Cycle Power Cylinder

    Science.gov (United States)

    1975-10-01

    the system in the event of a shorted sensor; both of these actions turn the power section of the controller "off," and it cannot be repowered until...400-Hz power to a low-level DC with the attendant necessity of using a 400-Hz power transformer . Thus use of DC will allow a less compli- cated...N AFFDL.TR-75-99 7? ^0 00 o o o CQ DEVELOPMENT OF A TEMPERATURE CONTROLLER FOR A VUILLEUMIER (VM) CYCLE POWER CYLINDER i ■ L RTHUR D

  6. Microstructural evolution and structure property correlation in Zr-1Nb and Zr-1Nb-1Sn-0.1Fe alloys

    International Nuclear Information System (INIS)

    Neogy, S.; Srivastava, D.; Chakravartty, J.K.; Dey, G.K.

    2005-01-01

    This study summarizes the evolution of microstructure and precipitation behavior in binary Zr-1Nb and quaternary Zr-1Nb-1Sn-0.1Fe alloys after different thermo mechanical processing. The processed microstructure and morphology of constituent phases and precipitates have been studied in detail using transmission electron microscopy (TEM). Microstructural studies have revealed the shape, size, size distribution and the nature of precipitate phases. Martensite formation and its tempering behavior have been studied in detail in both the alloys. Recrystallization studies on these alloys have been carried out with a view to understand the recrystallization mechanism. In case of the binary alloy the second phase recipitates were of the β type having composition varying from β I (20 wt% Nb) to β II (85 wt% Nb) depending on the heat treatment temperature and time. The second phase precipitates in the quaternary alloy were intermetallic Zr-Nb-Fe type and also β type rich in Zr. The orientation relationship existing between the precipitating phases and the a matrix were established in case of both the alloys. High resolution electron microscopy (HREM) of the martensitic microstructure and the recrystallized microstructure has revealed the internal structure and the interface structure of the martensite and the precipitating phases respectively. Structure-property correlation studies have been carried out on the heat-treated samples to evaluate the effect of the thermo mechanical processing on the microstructures and hence mechanical properties. (author)

  7. Corrosion properties of cladding materials from Zr1Nb alloy

    International Nuclear Information System (INIS)

    Kloc, K.; Kosler, S.

    1975-01-01

    The corrosion behaviour was observed of the Zr1Nb alloy in hot water and superheated steam and the effects of impurity content, of the purity of the corrosion environment and of the heat treatment of the alloy were studied on the alloy corrosion resistance. Also studied were the absorption of hydrogen by the alloy and its behaviour in reactor situations. It was ascertained that the alloy has a good corrosion resistance up to a temperature of 350 degC. The corrosion resistance is reduced by the presence of nitrogen above 50 to 70 ppm and of carbon above 50 to 90 ppm. A graphic representation is given of the dependence of corrosion resistance on the temperature of annealing, the nitrogen content of the alloy and the time of the action of hot water or steam, as well as the dependence of the hydrogen content in the alloy on the peripheral tension of the cladding in hot water both in non-active environment and at irradiation with a neutron flux of approximately 10 20 n/cm 2 . (J.B.)

  8. VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast.

    Directory of Open Access Journals (Sweden)

    Weidong Gu

    Full Text Available Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member's departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs, i.e., multicast VMs (MVMs and compensation VMs (CVMs. MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD, and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast. The results show that it can obviously enhance the stability of the data distribution.

  9. Effects of scandium and zirconium combination alloying on as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy

    Directory of Open Access Journals (Sweden)

    Xiang Qingchun

    2011-02-01

    Full Text Available The influences of minor scandium and zirconium combination alloying on the as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy have been experimentally investigated. The experimental results show that when the minor elements of scandium and zirconium are simultaneously added into the Al-4Cu-1.5Mg alloy, the as-cast microstructure of the alloy is effectively modified and the grains of the alloy are greatly refined. The coarse dendrites in the microstructure of the alloy without Sc and Zr additions are refined to the uniform and fine equiaxed grains. As the additions of Sc and Zr are 0.4% and 0.2%, respectively, the tensile strength, yield strength and elongation of the alloy are relatively better, which are 275.0 MPa, 176.0 MPa and 8.0% respectively. The tensile strength is increased by 55.3%, and the elongation is nearly raised three times, compared with those of the alloy without Sc and Zr additions.

  10. Hydrogen absorption in CexGd1−x alloys

    International Nuclear Information System (INIS)

    Bereznitsky, M.; Bloch, J.; Yonovich, M.; Schweke, D.; Mintz, M.H.; Jacob, I.

    2012-01-01

    Highlights: ► Ce x Gd 1−x alloys exhibit the most negative heats of hydride formation ever found. ► Thermodynamics of H absorption in Ce x Gd 1−x correlates with the alloys hardness. ► The entropies of H solution and hydride formation reflect the hydrogen vibrations. ► Terminal hydrogen solubilities change in a monotonic way between Ce and Gd. - Abstract: The effect of alloying on the thermodynamics of hydrogen absorption was studied for Ce x Gd 1−x alloys (0 ≤ x ≤ 1) at temperatures between 850 K and 1050 K in the 1–10 −4 Torr pressure range. The temperature-dependent hydrogen solubilities and plateau pressures for hydride formation were obtained from hydrogen absorption isotherms. The terminal hydrogen solubility (THS) at a given temperature changes in a monotonic way as a function of x. It is approximately three times higher in Gd, than in Ce, throughout the investigated temperature range. This monotonic behavior is opposed to that of many other substitutional alloys, for which the hydrogen terminal solubility increases with increasing solute concentrations. The enthalpies, ΔH f , and the entropies, ΔS f , of the dihydride formation exhibit a pronounced and broad negative minimum starting at x ≈ 0.15, yielding the most negative ΔH f values ever found for metal hydrides. On the other hand, the enthalpies and entropies of ideal solution display a positive trend at x = 0.15 and x = 0.3. Both behaviors are considered in view of a reported distinct variation of the Ce x Gd 1−x hardness as a function of x. The particular compositional variations of the entropies of solution and formation as a function of x reflect most likely the vibrational properties of the hydrogen atoms in the metal matrices.

  11. Microstructure and mechanical properties of an extruded Mg-8Bi-1Al-1Zn (wt%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Shuaiju [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Yu, Hui, E-mail: yuhuidavid@gmail.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Materials Commercialization Center, Korea Institute of Materials Science, Changwon 51508 (Korea, Republic of); Zhang, Huixing [Mechanical and Material School, Tianjin Sino-German University of Applied Sciences, Tianjin 300350 (China); Cui, Hongwei [School of Materials Science and Engineering, Shangdong University of Technology, Zibo 255049 (China); Park, Sung Hyuk [School of Materials Science and Engineering, Kyungpook National University, Daegu 702701 (Korea, Republic of); Zhao, Weiming [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); You, Bong Sun [Materials Commercialization Center, Korea Institute of Materials Science, Changwon 51508 (Korea, Republic of)

    2017-04-06

    In this study, the microstructural evolution and mechanical properties of a newly developed rare earth free Mg-8Bi-1Al-1Zn (BAZ811, in wt%) alloy were investigated and compared with those of a commercial AZ31 alloy. The as-extruded BAZ811 alloy with much finer grain size shows more homogeneous dynamical recrystallized (DRXed) microstructure and weaker basal texture than those of AZ31 alloy. In addition, compared with bimodal structure AZ31 alloy containing only relatively coarse and sparse Al{sub 8}Mn{sub 5} phases, the coexistence of strip-like fragmented Mg{sub 3}Bi{sub 2} precipitate and nano-size Mg{sub 3}Bi{sub 2} particles in the microstructure was observed in BAZ811 alloy. Moreover, the BAZ811 alloy exhibits a tensile yield stress of 291 MPa, an ultimate tensile strength of 331 MPa, an elongation to failure of 14.6% as well as a reduction in yield asymmetry, which is mainly attributed to the combined effects of grain refinement and micro-scale broken Mg{sub 3}Bi{sub 2} particles together with nano-scale spherical Mg{sub 3}Bi{sub 2} precipitates. The strain hardening behavior of both BAZ811 and AZ31 alloys were also discussed in terms of microstructure variation.

  12. The electronic band structures of InNxAs1-x, InNxSb1-x and InAsxSb1-x alloys

    International Nuclear Information System (INIS)

    Mohammad, Rezek; Katircioglu, Senay

    2009-01-01

    The band gap bowings of InN x As 1-x , InN x Sb 1-x , and InAs x Sb 1-x alloys defined by the optimized lattice constants are investigated using empirical tight binding (ETB) method. The present ETB energy parameters which take the nearest neighbor interactions into account with sp 3 d 2 basis are determined to be sufficient to provide a typical feature for the band gap bowings of the alloys. The band gap bowing parameter is found to be relatively large in both InN x As 1-x and InN x Sb 1-x compared to InAs x Sb 1-x alloys. Moreover, the variation of the fundamental band gaps of InN x Sb 1-x alloys is sharper than that of InN x As 1-x alloys for small concentrations of N. Besides, a small amount of nitrogen is determined to be more effective in InN x Sb 1-x than in InN x As 1-x alloys to decrease the corresponding effective masses of the electrons around Γ points

  13. Resistance of WE43 and ZRE1 Magnesium Alloys to Gas Corrosion

    Directory of Open Access Journals (Sweden)

    Przeliorz R.

    2017-06-01

    Full Text Available In spite of the fact that in most applications, magnesium alloys are intended for operation in environments with room temperature, these alloys are subject to elevated temperature and oxidizing atmosphere in various stages of preparation (casting, welding, thermal treatment. At present, the studies focus on development of alloys with magnesium matrix, intended for plastic forming. The paper presents results of studies on oxidation rate of WE43 and ZRE1 magnesium foundry alloys in dry and humidified atmosphere of N2+1%O2. Measurements of the oxidation rate were carried out using a Setaram thermobalance in the temperature range of 350-480°C. Corrosion products were analyzed by SEM-SEI, BSE and EDS. It was found that the oxide layer on the WE43 alloy has a very good resistance to oxidation. The high protective properties of the layer should be attributed to the presence of yttrium in this alloy. On the other hand, a porous, two-layer scale with a low adhesion to the substrate forms on the ZRE1 alloy. The increase in the sample mass in dry gas is lower than that in humidified gas.

  14. Inhibiting the corrosion of MNZh 5-1 alloy in neutral solutions of 5-chloro-1,2,3-benzotrialzol

    Science.gov (United States)

    Kuznetsov, Yu. I.; Agafonkina, M. O.; Andreeva, N. P.; Arkhipushkin, I. A.; Kazansky, L. P.

    2017-11-01

    The adsorption and protective properties of 5-chloro-1,2,3-benzotriazol (5-chloro-BTA) are studied in relation to MNZh 5-1 alloy in a chloride borate buffer solution with pH 7.4. It is shown that this inhibitor can stabilize the passive state of the alloy at a concentration of 0.12 mmol/g. The adsorption of 5-chloro-BTA on a surface of MNZh 5-1 alloy is polymolecular; the free energy of adsorption is about 80 kJ/mol. The advantages of adsorption and protective properties of 5-chloro-BTA compared to BTA on both MNZh 5-1 alloy and the metals contained in the alloy (Ni, Cu) are shown. XPS data indicate a 5-chloro-BTA monolayer formed on the surface of the alloy. This monolayer was composed of inhibitor molecules, which are normally oriented toward a surface and are not removed during ultrasonic washing of the electrode.

  15. Laser and electron beam welding study on niobium based Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Kushwaha, R.P.; Tewari, R.; Dey, G.K.

    2016-01-01

    The refractory metal based alloys are most suitable for the structural applications in high temperature reactors envisaged to operate at temperature higher than 1000°C. The Nb-1Zr-0.1C (wt. %) is being considered for structural applications in the proposed Compact High Temperature Reactors (CHTR). The welding of this alloy is a difficult task due to its reactive nature and higher thermal conductivity. Laser and Electron Beam (EB) welds were produced on sheet of Nb-1Zr-0.1C alloy at various processing parameters and their effects on weld quality was studied by characterizing their optical and SEM micrographs and microhardness profile. The joining efficiency of both welding processes were also studied. The laser welds done in air with argon shielding showed higher hardness values compared to EB welds indicating need for adequate shielding. This study will help to find the optimized welding parameters to produce defect free welds of Nb-1Zr-0.1C alloy. (author)

  16. Defect interactions in Sn1−xGex random alloys

    KAUST Repository

    Chroneos, Alexander; Bracht, H.; Grimes, R. W.; Jiang, C.; Schwingenschlö gl, Udo

    2009-01-01

    Sn1−xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1−xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard’s Law are consistent with experimental results.

  17. Defect interactions in Sn1−xGex random alloys

    KAUST Repository

    Chroneos, Alexander

    2009-06-23

    Sn1−xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1−xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard’s Law are consistent with experimental results.

  18. Microstructural characterization of Zr1Nb alloy after hot rolling

    Energy Technology Data Exchange (ETDEWEB)

    Souza, A.C. [Universidade Estadual do Mato Grosso do Sul (UEMS), MS (Brazil); Rossi, J.L.; Martinez, L.G.; Mucsi, C.S. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Tsakiropoulos, P. [University of Sheffield (United Kingdom); Ceoni, F.C.; Grandini, C.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2016-07-01

    Full text: The different research lines within the scope in engineering and materials science have developed new materials that can be used in different industrial sectors, such as, energy, health and transportation. For the nuclear industry, for example, the Zr alloys, are of great interest due to its good mechanical properties, excellent corrosion resistance and above all, the high permeability to thermal neutrons. In the health sector, the zirconium poses one of the lowest Young's modulus when compared to other metallic biomaterials, e.g., pure Zr is 68 GPa, bone mineral hydroxyapatite is 80 GPa, for Ti alloys is 90 GPa and above, for Nb is 105 GPa and stainless steels above 189 GPa. This is particularly important for implants in bones, whose elasticity modulus can reach 30 GPa and it is desirable an as close match as possible. However, the zirconium alloys, have great chemical affinity with oxygen and nitrogen. Moreover, oxides and nitrides may form during the melting process, heat treatment and hot rolling, changing the physic-chemical properties of the alloy. This experimental work shows the results of the evolution of the microstructure after hot rolling of the Zr1Nb alloy. It was possible to confirm the absence of formation of oxides and nitrides, thus confirming the of the experimental method of melting and hot rolling of the Zr1Nb alloy. (author)

  19. Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys.

    Science.gov (United States)

    Knipling, Keith E; Dunand, David C; Seidman, David N

    2007-12-01

    Atom probe tomography was utilized to measure directly the chemical compositions of Al(3)(Zr(1)-(x)Ti(x)) precipitates with a metastable L1(2) structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375 degrees C or 425 degrees C. The alloys exhibit an inhomogeneous distribution of Al(3)(Zr(1)-(x)Ti(x)) precipitates, as a result of a nonuniform dendritic distribution of solute atoms after casting. At these aging temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that Ti remains mainly in solid solution rather than partitioning to the Al(3)(Zr(1)-(x)Ti(x)) precipitates. This is interpreted as being due to the very small diffusivity of Ti in alpha-Al, consistent with prior studies on Al-Sc-Ti and Al-Sc-Zr alloys, where the slower diffusing Zr and Ti atoms make up a small fraction of the Al(3)(Zr(1)-(x)Ti(x)) precipitates. Unlike those alloys, however, the present Al-Zr-Ti alloys exhibit no interfacial segregation of Ti at the matrix/precipitate heterophase interface, a result that may be affected by a significant disparity in the evaporation fields of the alpha-Al matrix and Al(3)(Zr(1)-(x)Ti(x)) precipitates and/or a lack of local thermodynamic equilibrium at the interface.

  20. A Novel Zr-1Nb Alloy and a New Look at Hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Mariani; James I. Cole; Assel Aitkaliyeva

    2013-09-01

    A novel Zr-1Nb has begun development based on a working model that takes into account the hydrogen permeabilities for zirconium and niobium metals. The beta-Nb secondary phase particles (SPPs) in Zr-1Nb are believed to promote more rapid hydrogen dynamics in the alloy in comparison to other zirconium alloys. Furthermore, some hydrogen release is expected at the lower temperatures corresponding to outages when the partial pressure of H2 in the coolant is less. These characteristics lessen the negative synergism between corrosion and hydriding that is otherwise observed in cladding alloys without niobium. In accord with the working model, development of nanoscale precursors was initiated to enhance the performance of existing Zr-1Nb alloys. Their characteristics and properties can be compared to oxide-dispersion strengthened alloys, and material additions have been proposed to zirconium-based LWR cladding to guard further against hydriding and to fix the size of the SPPs for microstructure stability enhancements. A preparative route is being investigated that does not require mechanical alloying, and 10 nanometer molybdenum particles have been prepared which are part of the nanoscale precursors. If successful, the approach has implications for long term dry storage of used fuel and for new routes to nanoferritic and ODS alloys.

  1. Shape memory and superelastic behavior of Ti-7.5Nb-4Mo-1Sn alloy

    International Nuclear Information System (INIS)

    Zhang, D.C.; Lin, J.G.; Jiang, W.J.; Ma, M.; Peng, Z.G.

    2011-01-01

    Research highlights: → A Ti-based shape memory alloy, Ti-7.5Nb-4Mo-1Sn, was designed. → The martensitic transformation start temperature of the alloy, M s , is 261 K. → The alloy exhibits good shape memory and superelastic behaviors. → The alloy also shows a good superelastic stability at room temperature. → The Ti-5Mo-7.5Nb-1Sn alloy has a potential application as a biomedical material. -- Abstract: In the present work, a Ti-based shape memory alloy with the composition of Ti-7.5Nb-4Mo-1Sn was designed based on the d-electron orbit theory. The shape memory and superelastic behavior of the alloy were investigated. It is found that the martensitic transformation temperature of the alloy is near 261 K. The tensile and the thermal cycling testing results show that the alloy exhibits the stable shape memory effect and superelasticity at room temperature. The maximum recovered strain of the alloy is 4.83%.

  2. Postirradiation notch ductility tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1984-01-01

    During this period, irradiation exposures at 300 0 C and 150 0 C to approx. 8 x 10 19 n/cm 2 , E > 0.1 MeV, were completed for the Alloy HT-9 plate and the modified Alloy 9Cr-1Mo plates, respectively. Postirradiation tests of Charpy-V (C/sub v/) specimens were completed for both alloys; other specimen types included in the reactor assemblies were fatigue precracked Charpy-V (PCC/sub v/), half-size Charpy-V, and in the case of the modified 9Cr-1Mo, 2.54 mm thick compact tension specimens

  3. Creep-rupture behavior of 2-1/4 Cr-1 Mo steel, Alloy 800H and Hastelloy Alloy X in a simulated HTGR helium environment

    International Nuclear Information System (INIS)

    Lai, G.Y.; Wolwowicz, R.J.

    1979-12-01

    Creep-rupture testing was conducted on 1 1/4 Cr-1 Mo steel, Alloy 800H and Hastelloy Alloy X in flowing helium containing nominal concentration of following gases: 1500 μatm H 2 , 450 μatm CO, 50 μatm CH 4 , 50 μatm H 2 O and 5 μatm CO 2 . This environment is believed to represent maximum permissible levels of impurities in the primary coolant for the steam-cycle system of a high-temperature gas-cooled reactor (HTGR) when it is operating continuously with a water and/or steam leak at technical specification limits. Two or three heats of material for each alloy were investigated. Tests were conducted at 482 0 C and 760 0 C (1200 0 F and 1400 0 F) for Alloy 800H, and at 760 0 C and 871 0 C (1400 0 F and 1600 0 F) for Hastelloy Alloy X for times up to 10,000 h. Selected tests were performed on same heat of material in both air and helium environments to make a direct comparison of creep-rupture behaviors between two environments. Metallurgical evaluation was performed on selected post test specimens with respect to gas-metal interactions which included oxidation, carburization and/or decarburization. Correlation between gaseous corrosion and creep-rupture behavior was attempted. Limited tests were also performed to investigate the specimen size effects on creep-rupture behavior in the helium environment

  4. Topological Weyl semimetals in Bi1 -xSbx alloys

    Science.gov (United States)

    Su, Yu-Hsin; Shi, Wujun; Felser, Claudia; Sun, Yan

    2018-04-01

    We investigated Weyl semimetal (WSM) phases in bismuth antimony (Bi1 -xSbx ) alloys by combination of atomic composition and arrangement. Via first-principles calculations, we found two WSM states with Sb concentrations of x =0.5 and 0.83 with specific inversion-symmetry-broken elemental arrangement. The Weyl points are close to the Fermi level in both of these two WSM states. Therefore, it is likely to obtain Weyl points in Bi-Sb alloy. The WSM phase provides a reasonable explanation for the current transport study of Bi-Sb alloy with the violation of Ohm's law [D. Shin, Y. Lee, M. Sasaki, Y. H. Jeong, F. Weickert, J. B. Betts, H.-J. Kim, K.-S. Kim, and J. Kim, Nat. Mater. 16, 1096 (2017), 10.1038/nmat4965]. This paper shows that the topological phases in Bi-Sb alloys depend on both elemental composition and their specific arrangement.

  5. Experience on QA in the CernVM File System

    CERN Multimedia

    CERN. Geneva; MEUSEL, Rene

    2015-01-01

    The CernVM-File System (CVMFS) delivers experiment software installations to thousands of globally distributed nodes in the WLCG and beyond. In recent years it became a mission-critical component for offline data processing of the LHC experiments and many other collaborations. From a software engineering perspective, CVMFS is a medium-sized C++ system-level project. Following the growth of the project, we introduced a number of measures to improve the code quality, testability, and maintainability. In particular, we found very useful code reviews through github pull requests and automated unit- and integration testing. We are also transitioning to a test-driven development for new features and bug fixes. These processes are supported by a number of tools, such as Google Test, Jenkins, Docker, and others. We would like to share our experience on problems we encountered and on which processes and tools worked well for us.

  6. Superelasticity, corrosion resistance and biocompatibility of the Ti–19Zr–10Nb–1Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Pengfei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Li, Kangming [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Zhang, Deyuan [Life Tech Scientific Corporation, Shenzhen 518057 (China); Zhou, Chungen [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-05-01

    Microstructure, mechanical properties, superelasticity and biocompatibility of a Ti–19Zr–10Nb–1Fe alloy are investigated. X-ray diffraction spectroscopy and transmission electron microscopy observations show that the as-cast Ti–19Zr–10Nb–1Fe alloy is composed of α′ and β phases, but only the β phase exists in the as-rolled and as-quenched alloys. The tensile stress–strain tests indicate that the as-quenched alloy exhibits a good combination of mechanical properties with a large elongation of 25%, a low Young's modulus of 59 GPa and a high ultimate tensile stress of 723 MPa. Superelastic recovery behavior is found in the as-quenched alloy during tensile tests, and the corresponding maximum of superelastic strain is 4.7% at the pre-strain of 6%. A superelastic recovery of 4% with high stability is achieved after 10 cyclic loading–unloading training processes. Potentiodynamic polarization and ion release measurements indicate that the as-quenched alloy shows a lower corrosion rate in Hank's solution and a much less ion release rate in 0.9% NaCl solution than those of the NiTi alloys. Cell culture results indicate that the osteoblasts' adhesion and proliferation are similar on both the Ti–19Zr–10Nb–1Fe and NiTi alloys. A better hemocompatibility is confirmed for the as-quenched Ti–19Zr–10Nb–1Fe alloy, attributed to more stable platelet adhesion and small activation degree, and a much lower hemolysis rate compared with the NiTi alloy. - Highlights: • A stable superelastic strain of 4.0% is achieved for the Ti–19Zr–10Nb–1Fe alloy. • The ion release rates of Ti–19Zr–10Nb–1Fe are much lower than that of Ni in NiTi. • Ti–19Zr–10Nb–1Fe has a similar cytocompatibility compared with the NiTi alloy. • Ti–19Zr–10Nb–1Fe exhibits a better hemocompatibility than the NiTi alloy.

  7. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    Science.gov (United States)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  8. Microstructure of a commercial W–1% La{sub 2}O{sub 3} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn; Xu, Zhiqiang; Cui, Kai; Yu, Jie

    2014-12-15

    W–1% La{sub 2}O{sub 3} alloy is considered as the most promising material for plasma-facing components of fusion reactors. The microstructure of a commercial W–1% La{sub 2}O{sub 3} alloy was investigated using optical and transmission electron microscopes. The microstructure of pure tungsten can be improved significantly by fabrication of W–1% La{sub 2}O{sub 3} alloys. W–1% La{sub 2}O{sub 3} alloys can be produced with no porosities and cracks, and with various oxide phases dispersed in alloy matrix. La{sub 2}O{sub 3} with different crystal structures, La{sub 6}W{sub 2}O{sub 15}, WO{sub 2}, WO{sub 3} and W{sub 3}O{sub 8} phases were identified in as-forged W–1% La{sub 2}O{sub 3} alloy. Long strip-like La{sub 2}O{sub 3} has a very large size, whereas spherical La{sub 6}W{sub 2}O{sub 15}, navicular WO{sub 3}, hexagonal W{sub 3}O{sub 8} and short rod-like La{sub 2}O{sub 3} are smaller particles. Most identified phases have a heterogeneous distribution. Forging leads to a more dispersive distribution of large-sized La{sub 2}O{sub 3} particles but not of fine WO{sub 3} particles compared with rolling. The mechanical properties of the alloys are also discussed.

  9. First-principles study for the enhanced sulfur tolerance of Ni(1 1 1) surface alloyed with Pb

    Science.gov (United States)

    Zhang, Yanxing; Yang, Zongxian

    2018-04-01

    The adsorption of H2S, HS, S, H and the dissociation of H2S on the Ni2Pb/Ni (1 1 1) are systematically studied using the first-principles method based on density functional theory. It is found that H2S dissociation barriers are greatly increased by alloying with Pb atoms in the Ni(1 1 1) surface, while the barrier for H2S formation is greatly reduced. In addition, the adsorption of sulfur atom is weakened a lot. The results indicate that alloying with Pb may be a good way to increase the sulfur tolerance of Ni based anode catalysts of solid oxide fuel cells.

  10. Feedforward motor information enhances somatosensory responses and sharpens angular tuning of rat S1 barrel cortex neurons.

    Science.gov (United States)

    Khateb, Mohamed; Schiller, Jackie; Schiller, Yitzhak

    2017-01-06

    The primary vibrissae motor cortex (vM1) is responsible for generating whisking movements. In parallel, vM1 also sends information directly to the sensory barrel cortex (vS1). In this study, we investigated the effects of vM1 activation on processing of vibrissae sensory information in vS1 of the rat. To dissociate the vibrissae sensory-motor loop, we optogenetically activated vM1 and independently passively stimulated principal vibrissae. Optogenetic activation of vM1 supra-linearly amplified the response of vS1 neurons to passive vibrissa stimulation in all cortical layers measured. Maximal amplification occurred when onset of vM1 optogenetic activation preceded vibrissa stimulation by 20 ms. In addition to amplification, vM1 activation also sharpened angular tuning of vS1 neurons in all cortical layers measured. Our findings indicated that in addition to output motor signals, vM1 also sends preparatory signals to vS1 that serve to amplify and sharpen the response of neurons in the barrel cortex to incoming sensory input signals.

  11. Alloy formation during the electrochemical growth of a Ag-Cd ultrathin film on Au(1 1 1)

    International Nuclear Information System (INIS)

    Barrio, M.C. del; Garcia, S.G.; Salinas, D.R.

    2009-01-01

    The electrodeposition of a Ag/Cd ultrathin film on a Au(1 1 1) surface and the formation of a surface alloy during this process have been studied using classical electrochemical techniques and in situ Scanning Tunneling Microscopy (STM). The films were obtained from separate electrolytes containing Ag + or Cd 2+ ions and from a multicomponent solution containing both ions. First, the polarization conditions were adjusted in order to form a Ag film by overpotential deposition. Afterwards, a Cd monolayer was formed onto this Au(1 1 1)/Ag modified surface by underpotential deposition. The voltammetric behavior of the Cd UPD and the in situ STM images indicated that the ultrathin Ag films were uniformly deposited and epitaxially oriented with respect to the Au(1 1 1) surface. Long time polarization experiments showed that a significant Ag-Cd surface alloying accompanied the formation of the Cd monolayer on the Au(1 1 1)/Ag modified surface, independent of the Ag film thickness. In the case of an extremely thin Ag layer (1 Ag ML) the STM images and long time polarization experiments revealed a solid state diffusion process of Cd, Ag, and Au atoms which can be responsible for the formation of different Ag-Cd or Au-Ag-Cd alloy phases.

  12. Dislocation Climb Sources Activated by 1 MeV Electron Irradiation of Copper-Nickel Alloys

    DEFF Research Database (Denmark)

    Barlow, P.; Leffers, Torben

    1977-01-01

    Climb sources emitting dislocation loops are observed in Cu-Ni alloys during irradiation with 1 MeV electrons in a high voltage electron microscope. High source densities are found in alloys containing 5, 10 and 20% Ni, but sources are also observed in alloys containing 1 and 2% Ni. The range of ...

  13. Hot temperature corrosion of a zircon-1%niobium alloy

    International Nuclear Information System (INIS)

    Muller, Sebastian; Lanzani, Liliana

    2010-01-01

    The reaction of the Zr-1%Niobium alloy to corrosion is studied in this work, which is used as fuel elements sheath material in Russian VVER reactors. For comparative purposes, the conventional alloys Zircaloy-4 y Zr-2.5%Nb have been tested as well. Autoclave tests were carried out in water and in solutions of LiOH with concentrations of 0-1 to 1M at 343 o C and in water vapor at 400 o C (following ASTM G2/G2M-06). The gain in weight/unit of area of the autoclaved samples was determined in order to evaluate the corrosion, and metallographics were performed to characterize the oxides and hydrides that formed. The results show that for tests of 16 hours, a minimum concentration of 0.65M LiOH is needed to accelerate corrosion in Zr-1%Nb and Zr-2.5%Nb, while acceleration occurs in Zircaloy-4 at a concentration of 0.45M. In solutions of LiOH 1M the hydrogen 'uptake' in Zr-1Nb and Zr-2,5Nb is considerably lower in Zircaloy-4. The lesser amount of β-Zr phase present in the Zr-1Nb alloy produces thinner and more compact oxides, with better visual characteristics than for those formed in Zr-2.5Nb

  14. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China) and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Wang, M.P. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Zhang, L.; Gong, S. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Xiao, Z. [Department of Engineering, University of Liverpool, Liverpool, L693 GH (United Kingdom); Pan, Z.Y. [Hunan Nonferrous Metals Holding Group Co., Ltd., Changsha, 410015 (China)

    2011-02-24

    Research highlights: > High solute concentrations Cu-Ni-Si alloy with super high strength and high conductivity has a good prospect for replacing Cu-Be alloys. At least four different kinds of precipitation products (DO{sub 22} ordered structure, {beta}-Ni{sub 3}Si precipitate, {delta}-Ni{sub 2}Si precipitate and {gamma}-Ni{sub 5}Si{sub 2} precipitate) have been observed in previous investigation. Therefore, the overall phase transformation behavior of Cu-Ni-Si alloy appears to be very complex. And most previous studies on the phase transformation usually investigated the precipitation process at only one temperature or at most a few temperatures, which is far away to establish a time-temperature-transformation (TTT) diagram for Cu-Ni-Si alloy. > The phase transformation behavior of Cu-8.0Ni-1.8Si alloy has been studied systematically at wide temperature range in this paper. The results we have gained are that: after solution treatment, followed by different conditions of isothermal treatment, DO{sub 22} ordering, discontinuous precipitation and continuous precipitation were observed in the alloy; discontinuous precipitates of {beta}-Ni{sub 3}Si phase appeared when the alloy isothermal treated at 550 deg. C for short time, which had not been reported by the previous Cu-Ni-Si system alloy's researchers in their papers; two kinds of precipitates of {beta}-Ni{sub 3}Si and {delta}-Ni{sub 2}Si were determined by the TEM characterization; the orientation relationship between the two kinds of precipitates and Cu-matrix is that: (1 1 0){sub Cu}//(1 1 0){sub {beta}}//(211-bar){sub {delta}}, [112-bar]{sub Cu}//[11-bar 2]{sub {beta}}//[3 2 4]{sub {delta}}; during overaging treatment, Cu-matrix, {beta}-Ni{sub 3}Si, {delta}-Ni{sub 2}Si and {delta}'-Ni{sub 2}Si were distinguished in the samples and the orientation relationship between the precipitates and Cu-matrix can be expressed as that: (0 2 2){sub Cu}//(0 2 2){sub {beta}}//(1 0 0){sub {delta}}, (02-bar 2){sub Cu

  15. Effect of strontium on the texture and mechanical properties of extruded Mg–1%Mn alloys

    International Nuclear Information System (INIS)

    Borkar, Hemant; Hoseini, Majid; Pekguleryuz, Mihriban

    2012-01-01

    Highlights: ► Mg–1%Mn and Mg–1%Mn–(0.3–2)Sr alloys were extruded at elevated temperature. ► Strontium additions refine extruded microstructure of M1 alloys. ► Sr additions weaken the basal texture of extruded M1, improve the ductility and reduce the yield asymmetry. ► Texture weakening with increasing strontium additions is the result of particle stimulated nucleation (PSN). - Abstract: Magnesium–manganese, M1, alloy is preferred for extrusion applications due to its extrudability. It is mainly used as a sacrificial anode or as a creep resistant alloy at elevated temperatures in the nuclear industry. Since Mn does not provide a significant strengthening effect, the alloy is not considered for structural applications. The basal texture which forms after extrusion orients the basal planes parallel to the extrusion direction causing anisotropy in mechanical properties. This basal texture, as well as the low strength of the alloy are the main challenges in its widespread applications. In this study, the effect of Sr addition on the texture and mechanical properties of M1 alloy was studied. M1–Sr alloys showed weakened texture by developing random texture components during extrusion. The texture randomisation is attributed to particle stimulated nucleation (PSN) around Mg–Sr intermetallics during recrystallisation. M1–Sr compositions are found to show improved strength and ductility as well as reduced yield asymmetry.

  16. Microstructure and grain refining performance of melt-spun Al-5Ti-1B master alloy

    International Nuclear Information System (INIS)

    Zhang Zhonghua; Bian Xiufang; Wang Yan; Liu Xiangfa

    2003-01-01

    In the present work, the microstructure and grain refining performance of the melt-spun Al-5Ti-1B (wt%) master alloy have been investigated, using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and grain refining tests. It has been found that the microstructure of the melt-spun Al-5Ti-1B master alloy is mainly composed of two phases: metastable, supersaturated α-Al solid solution and uniformly dispersed TiB 2 particles, quite different from that of the rod-like alloy consisting of three phases: α-Al, blocky TiAl 3 , and clusters of TiB 2 particles. Quenching temperatures and wheel speeds (cooling rates), however, have no obvious effect on the microstructure of the melt-spun Al-5Ti-1B alloy. Grain refining tests show that rapid solidification has a significant effect on the grain refining performance of Al-5Ti-1B alloy and leads to the great increase of nucleation rate of the alloy. Nevertheless, the melt-spun Al-5Ti-1B master alloy prepared at different wheel speeds and quenching temperatures possesses the similar grain refining performance. The reasons for the microstructure formation and the improvement of the grain refining performance of the melt-spun Al-5Ti-1B master alloy have been also discussed

  17. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part II: NASA 1.1, Glidcop, and sputtered copper alloys. Contractor report, Mar.--Sep. 1974

    International Nuclear Information System (INIS)

    Conway, J.B.; Stentz, R.H.; Berling, J.T.

    1974-11-01

    Short-term tensile and low-cycle fatigue data are reported for five advance Cu-base alloys: Sputtered Zr--Cu as received, sputtered Zr--Cu heat-treated, Glidcop AL-10, and alloys 1-1A and 1-1B. Tensile tests were performed in argon at 538 0 C using an axial strain rate of 0.002/s. Yield strength and ultimate tensile strength data are reported along with reduction in area values. Axial strain controlled low-cycle fatigue tests were performed in argon at 538 0 C using an axial strain rate of 0.002/s to define the fatigue life over the range from 100 to 3000 cycles for the five materials studied. Fatigue characteristics of the NASA 1-1A and NASA 1-1B compositions are identical and represent fatigue life values which are much greater than those for the other materials tested. The effect of temperature on NASA 1-1B alloy at a strain rate of 0.002/s and effect of strain rates of 0.0004 and 0.01/s at 538 0 C were evaluated. Hold-time data are reported for the NASA 1-1B alloy at 538 0 C using 5 minute hold periods in tension only and compression only at two different strain range values. (U.S.)

  18. XHM-1 alloy as a promising structural material for water-cooled fusion reactor components

    International Nuclear Information System (INIS)

    Solonin, M.I.; Alekseev, A.B.; Kazennov, Yu.I.; Khramtsov, V.F.; Kondrat'ev, V.P.; Krasina, T.A.; Rechitsky, V.N.; Stepankov, V.N.; Votinov, S.N.

    1996-01-01

    Experience gained in utilizing austenitic stainless steel components in water-cooled power reactors indicates that the main cause of their failure is the steel's propensity for corrosion cracking. In search of a material immune to this type of corrosion, different types of austenitic steels and chromium-nickel alloys were investigated and tested at VNIINM. This paper presents the results of studying physical and mechanical properties, irradiation and corrosion resistance in a water coolant at <350 C of the alloy XHM-1 as compared with austenitic stainless steels 00Cr16Ni15Mo3Nb, 00Cr20Ni25Nb and alloy 00Cr20Ni40Mo5Nb. Analysis of the results shows that, as distinct from the stainless steels studied, the XHM-1 alloy is completely immune to corrosion cracking (CC). Not a single induced damage was encountered within 50 to 350 C in water containing different amounts of chlorides and oxygen under tensile stresses up to the yield strength of the material. One more distinctive feature of the alloy compared to steels is that no change in the strength or total elongation is encountered in the alloy specimens irradiated to 32 dpa at 350 C. The XHM-1 alloy has adequate fabricability and high weldability characteristics. As far as its properties are concerned, the XHM-1 alloy is very promising as a material for water-cooled fusion reactor components. (orig.)

  19. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  20. An alternative model to distribute VO software to WLCG sites based on CernVM-FS: a prototype at PIC Tier1

    International Nuclear Information System (INIS)

    Lanciotti, E; Merino, G; Blomer, J; Bria, A

    2011-01-01

    In a distributed computing model as WLCG the software of experiment specific application software has to be efficiently distributed to any site of the Grid. Application software is currently installed in a shared area of the site visible for all Worker Nodes (WNs) of the site through some protocol (NFS, AFS or other). The software is installed at the site by jobs which run on a privileged node of the computing farm where the shared area is mounted in write mode. This model presents several drawbacks which cause a non-negligible rate of job failure. An alternative model for software distribution based on the CERN Virtual Machine File System (CernVM-FS) has been tried at PIC, the Spanish Tierl site of WLCG. The test bed used and the results are presented in this paper.

  1. Understanding hydride formation in Zr-1Nb alloy through microstructural characterization

    International Nuclear Information System (INIS)

    Neogy, S.; Srivastava, D.; Tewari, R.; Singh, R.N.; Dey, G.K.; De, P.K.; Banerjee, S.

    2003-07-01

    In this study the experimental results of hydride formation and their microstructure evolution in Zr-1Nb alloy is presented. This Zr-1Nb binary alloy and other Zr-1 Nb based ternary and quaternary alloys are being used as fuel tube materials and have the potential for meeting the requirement of high burn up fuel. Hydriding of Zr-1Nb alloy having a microstructure comprising equiaxed α grains and a uniform distribution of spherical particles of the β phase has been carried out in this study. The specimens have been hydrided by gaseous charging method to different hydrogen levels. The microstructures of hydrided samples were examined as a function of hydrogen content. The formation of δ hydride in slow cooled specimens and formation of γ hydride in rapidly cooled specimens has been studied with their morphology, habit plane and orientation relationship with the α matrix in view. The habit planes of either type of hydride phase has been determined and compared with those observed in other Zr-Nb alloys. The orientation relationship between the α matrix and the δ hydride was found to be the following: (0001) α // (111) δ and [1120] α // [110] δ . The orientation relationship between the α matrix and the γ hydride was of the following type: (0001) α // (111) γ and [1120] α // [110] γ . The internal structure of both types of hydride has been examined. The effect of the presence of the spherical β phase particles in the a matrix on the growth of the hydride plates has been investigated. (author)

  2. Influence of Rare Earth Elements on Microstructure and Mechanical Properties of Mg{sub 97}Zn{sub 1}Y{sub 1}RE{sub 1} Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun, E-mail: joindoc@kumamoto-u.ac.jp [Department of Material Science, Magnesium Research Center (MRC), Kumamoto University, Kumamoto, 860-8555 (Japan); Kawamura, Y. [Department of Material Science, Magnesium Research Center (MRC), Kumamoto University, Kumamoto, 860-8555 (Japan)

    2013-06-20

    Mg{sub 97}Zn{sub 1}Y{sub 1}RE{sub 1} (RE=La, Ce, Nd and Sm, at. %) alloys were prepared by high-frequency induction melting in an Ar atmosphere. Rods were extruded at 623 K and a ram speed of 2.5 mm·s{sup −1} using a circular die with an extrusion ratio of 10. The microstructure and mechanical properties of the extruded alloys were investigated. The Mg{sub 97}Zn{sub 1}Y{sub 1}Nd{sub 1} and Mg{sub 97}Zn{sub 1}Y{sub 1}Sm{sub 1} alloys consisted of only two phases: α-Mg and a Mg-RE intermetallic compound. The Mg{sub 97}Zn{sub 1}Y{sub 1}La{sub 1} and Mg{sub 97}Zn{sub 1}Y{sub 1}Ce{sub 1} alloys consisted of three phases: α-Mg, a Mg-RE intermetallic compound, and a Mg{sub 12}ZnY phase with a long-period stacking ordered (LPSO) phase. Additionally, after extrusion, the three-phase Mg{sub 97}Zn{sub 1}Y{sub 1}RE{sub 1} alloys, i.e., those with an LPSO phase, had a stratified microstructure and exhibited better mechanical properties than those without an LPSO. At room temperature, the yield strength and ultimate tensile strength of the three-phase Mg{sub 97}Zn{sub 1}Y{sub 1}La{sub 1} and Mg{sub 97}Zn{sub 1}Y{sub 1}Ce{sub 1} alloys were 381–384 MPa and 427–429 MPa, respectively, and yield strengths greater than 280 MPa were observed at the elevated temperature of 523 K.

  3. Ventral medial prefrontal cortex (vmPFC) as a target of the dorsolateral prefrontal modulation by transcranial direct current stimulation (tDCS) in drug addiction.

    Science.gov (United States)

    Nakamura-Palacios, Ester Miyuki; Lopes, Isabela Bittencourt Coutinho; Souza, Rodolpho Albuquerque; Klauss, Jaisa; Batista, Edson Kruger; Conti, Catarine Lima; Moscon, Janine Andrade; de Souza, Rodrigo Stênio Moll

    2016-10-01

    Here, we report some electrophysiologic and imaging effects of the transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (dlPFC) in drug addiction, notably in alcohol and crack-cocaine dependence. The low resolution electromagnetic tomography (LORETA) analysis obtained through event-related potentials (ERPs) under drug-related cues, more specifically in its P3 segment (300-500 ms) in both, alcoholics and crack-cocaine users, showed that the ventral medial prefrontal cortex (vmPFC) was the brain area with the largest change towards increasing activation under drug-related cues in those subjects that kept abstinence during and after the treatment with bilateral tDCS (2 mA, 35 cm(2), cathodal left and anodal right) over dlPFC, applied repetitively (five daily sessions). In an additional study in crack-cocaine, which showed craving decreases after repetitive bilateral tDCS, we examined data originating from diffusion tensor imaging (DTI), and we found increased DTI parameters in the left connection between vmPFC and nucleus accumbens (NAcc), such as the number of voxels, fractional anisotropy (FA) and apparent diffusion coefficient (ADC), in tDCS-treated crack-cocaine users when compared to the sham-tDCS group. This increasing of DTI parameters was significantly correlated with craving decreasing after the repetitive tDCS. The vmPFC relates to the control of drug seeking, possibly by extinguishing this behavior. In our studies, the bilateral dlPFC tDCS reduced relapses and craving to the drug use, and increased the vmPFC activation under drug cues, which may be of a great importance in the control of drug use in drug addiction.

  4. Textural states of a hot-worked MA2-1 magnesium alloy

    Science.gov (United States)

    Serebryany, V. N.; Kochubei, A. Ya.; Kurtasov, S. F.; Mel'Nikov, K. E.

    2007-02-01

    Quantitative texture analysis is used to study texture formation in an MA2-1 magnesium alloy subjected to axisymmetric upsetting at temperatures of 250-450°C and strain rates of 10-4-100 -1. The deformed structure is examined by optical microscopy, and the results obtained are used to plot the structural-state diagram of the alloy after 50% upsetting. The experimental textures are compared with the textures calculated in terms of a thermoactivation model.

  5. Electronic properties and charge density of BexZn1− xTe alloys

    Indian Academy of Sciences (India)

    Electronic band structure calculations are performed for the BeZn1−Te (0 ≤ ≤ 1 in steps of 0.2) alloys following the empirical pseudopotential method. The alloying effects are modelled through the modified virtual crystal approximation. Throughout the composition, valence band maximum resides at the point.

  6. MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements

    Directory of Open Access Journals (Sweden)

    M. García-Comas

    2014-11-01

    Full Text Available We present vM21 MIPAS temperatures from the lower stratosphere to the lower thermosphere, which cover all optimized resolution measurements performed by MIPAS in the middle-atmosphere, upper-atmosphere and noctilucent-cloud modes during its lifetime, i.e., from January 2005 to April 2012. The main upgrades with respect to the previous version of MIPAS temperatures (vM11 are the update of the spectroscopic database, the use of a different climatology of atomic oxygen and carbon dioxide, and the improvement in important technical aspects of the retrieval setup (temperature gradient along the line of sight and offset regularizations, apodization accuracy. Additionally, an updated version of ESA-calibrated L1b spectra (5.02/5.06 is used. The vM21 temperatures correct the main systematic errors of the previous version because they provide on average a 1–2 K warmer stratopause and middle mesosphere, and a 6–10 K colder mesopause (except in high-latitude summers and lower thermosphere. These lead to a remarkable improvement in MIPAS comparisons with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and the two Rayleigh lidars at Mauna Loa and Table Mountain, which, with a few specific exceptions, typically exhibit differences smaller than 1 K below 50 km and than 2 K at 50–80 km in spring, autumn and winter at all latitudes, and summer at low to midlatitudes. Differences in the high-latitude summers are typically smaller than 1 K below 50 km, smaller than 2 K at 50–65 km and 5 K at 65–80 km. Differences between MIPAS and the other instruments in the mid-mesosphere are generally negative. MIPAS mesopause is within 4 K of the other instruments measurements, except in the high-latitude summers, when it is within 5–10 K, being warmer there than SABER, MLS and OSIRIS and colder than ACE-FTS and SOFIE. The agreement in the lower thermosphere is typically better than 5 K, except for high latitudes during spring and summer, when MIPAS usually exhibits larger

  7. Research for magnetocaloric effect of Gd{sub 1-x}Dy{sub x} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xueling; Shitao, Li; An, Zhang; Hui, Xu; Ni, Jiansen; Zhou, Bangxin [Institute of Materials, Shanghai University, Shanghai 20007 (China)

    2007-12-15

    The magnetocaloric effect (MEC) in Gd{sub 1-x}Dy{sub x} (x=0.13,0.20,0.27,0.34,0.40) alloys is investigated using commercial elements with purity of up to 99.80% for Gd and Dy. These alloys are prepared by arc melting in stoichiometric proportions on a water-cooled copper crucible under high pure argon atmosphere. As a result, when x was changed from 0 to 40at%, the adiabatic temperature change ({delta}T) increases from 1.6 K to 3.1 K, the Curie temperature decreased from 288 K to 245.5 K. Gd{sub 73}Dy{sub 27} exhibits the largest {delta}T{sub max} value of 3.1 K at the T{sub C} value of 260 K among the alloys investigated up to 1.2 T (tesla) applied field, it is almost same as the {delta}T of high pure unitary Gd (99.99%) and is clearly superior to commercial unitary Gd (99.80%). The T{sub C} of Gd{sub 73}Dy{sub 27} alloy is minor to high pure unitary Gd (99.99%) and commercially unitary Gd (99.80%). But this alloy prepared by commercial elements with low cost has better MEC to be a promising candidate for magnetic working substances for room temperature magnetic refrigeration. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Fabrication by powder metallurgy of the niobium based alloy Nb-1-Zr

    International Nuclear Information System (INIS)

    Marty, M.; Delaunay, C.; Walder, A.

    1989-01-01

    The Nb-1Zr alloy has been produced by the powder metallurgy technique. Production of powders was performed by centrifugal atomization with the rotating electrode process (REP) under an inert atmosphere of argon-helium. Alloy powders were characterized by granulometric spectra, oxygen content and the various types of structures which were found. After consolidation by extrusion, materials were evaluated by tensile test under vacuum at ambient temperature, 750 and 900 0 C and compared with the same alloy elaborated by ingot metallurgy. 8 refs., 9 figs. (Author)

  9. Hydrogen absorption in Ce{sub x}Gd{sub 1-x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bereznitsky, M. [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Bloch, J. [Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 84190 (Israel); Yonovich, M. [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Schweke, D. [Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 84190 (Israel); Mintz, M.H. [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 84190 (Israel); Jacob, I., E-mail: izi@bgu.ac.il [Department of Nuclear Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ce{sub x}Gd{sub 1-x} alloys exhibit the most negative heats of hydride formation ever found. Black-Right-Pointing-Pointer Thermodynamics of H absorption in Ce{sub x}Gd{sub 1-x} correlates with the alloys hardness. Black-Right-Pointing-Pointer The entropies of H solution and hydride formation reflect the hydrogen vibrations. Black-Right-Pointing-Pointer Terminal hydrogen solubilities change in a monotonic way between Ce and Gd. - Abstract: The effect of alloying on the thermodynamics of hydrogen absorption was studied for Ce{sub x}Gd{sub 1-x} alloys (0 {<=} x {<=} 1) at temperatures between 850 K and 1050 K in the 1-10{sup -4} Torr pressure range. The temperature-dependent hydrogen solubilities and plateau pressures for hydride formation were obtained from hydrogen absorption isotherms. The terminal hydrogen solubility (THS) at a given temperature changes in a monotonic way as a function of x. It is approximately three times higher in Gd, than in Ce, throughout the investigated temperature range. This monotonic behavior is opposed to that of many other substitutional alloys, for which the hydrogen terminal solubility increases with increasing solute concentrations. The enthalpies, {Delta}H{sub f}, and the entropies, {Delta}S{sub f}, of the dihydride formation exhibit a pronounced and broad negative minimum starting at x Almost-Equal-To 0.15, yielding the most negative {Delta}H{sub f} values ever found for metal hydrides. On the other hand, the enthalpies and entropies of ideal solution display a positive trend at x = 0.15 and x = 0.3. Both behaviors are considered in view of a reported distinct variation of the Ce{sub x}Gd{sub 1-x} hardness as a function of x. The particular compositional variations of the entropies of solution and formation as a function of x reflect most likely the vibrational properties of the hydrogen atoms in the metal matrices.

  10. Study of transformation behavior in a Ti-4.4 Ta-1.9 Nb alloy

    International Nuclear Information System (INIS)

    Mythili, R.; Paul, V. Thomas; Saroja, S.; Vijayalakshmi, M.; Raghunathan, V.S.

    2005-01-01

    An alloy of composition Ti-4.4 wt.% Ta-1.9 wt.% Nb is being developed as a structural material for corrosion applications, as titanium and its alloys possess excellent corrosion resistance in many oxidizing media. The primary physical metallurgy database for the Ti-4.4 wt.% Ta-1.9 wt.% Nb alloy is being presented for the first time. Determination of the β transus, M s temperature and classification of the alloy have been carried out, employing a variety of microscopy techniques, X-ray diffraction (XRD), micro-hardness and differential scanning calorimetry (DSC). The β transition temperature or β transus determined using different experimental techniques was found to agree very well with evaluations based on empirical calculations. Based on chemistry and observed room temperature microstructure, the alloy has been classified as an α + β titanium alloy. The high temperature β transforms to either α' or α + β by a martensitic or Widmanstatten transformation. The mechanisms of transformation of β under different conditions and characteristics of different types of α have been studied and discussed in this paper

  11. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys

    Science.gov (United States)

    Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng

    2018-02-01

    The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

  12. Postirradiation fracture toughness tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Reed, J.R.; Sprague, J.A.

    1984-01-01

    Alloy HT-9 and Modified 9Cr-1Mo are being evaluated for potential applications as first wall materials in magnetic fusion reactors. Objectives of the current research task were to test fatigue-precracked Charpy-V (PCC/sub v/) specimens from representative plates irradiated in the UBR reactor at 149 0 C or 300 0 C, and, to compare the results against postirradiation notch ductility data developed previously for the materials. Both plates represent electroslag refined (ESR) melt processing. PCC/sub v/ specimens of Alloy HT-9 and Modified 9Cr-1Mo alloy were irradiated at 300 0 C and 149 0 C, respectively, to approx.0.8 X 10 20 n/cm 2 , E > 0.1 MeV. During this period, postirradiation tests for fracture toughness were completed and results compared to notch ductility determinations from standard Charpy-V (C/sub v/) specimens irradiated in the same reactor experiments. Fracture surface examinations by SEM are also reported

  13. Neuroanatomy of the vmPFC and dlPFC predicts individual differences in cognitive regulation during dietary self-control across regulation strategies.

    Science.gov (United States)

    Schmidt, Liane; Tusche, Anita; Manoharan, Nicolas; Hutcherson, Cendri; Hare, Todd; Plassmann, Hilke

    2018-06-04

    Making healthy food choices is challenging for many people. Individuals differ greatly in their ability to follow health goals in the face of temptation, but it is unclear what underlies such differences. Using voxel-based morphometry (VBM), we investigated in healthy humans (i.e., men and women) links between structural variation in gray matter volume and individuals' level of success in shifting toward healthier food choices. We combined MRI and choice data into a joint dataset by pooling across three independent studies that employed a task prompting participants to explicitly focus on the healthiness of food items before making their food choices. Within this dataset, we found that individual differences in gray matter volume in the ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) predicted regulatory success. We extended and confirmed these initial findings by predicting regulatory success out of sample and across tasks in a second dataset requiring participants to apply a different regulation strategy that entailed distancing from cravings for unhealthy, appetitive foods. Our findings suggest that neuroanatomical markers in the vmPFC and dlPFC generalized to different forms of dietary regulation strategies across participant groups. They provide novel evidence that structural differences in neuroanatomy of two key regions for valuation and its control, the vmPFC and dlPFC, predict an individual's ability to exert control in dietary choices. SIGNIFICANCE STATEMENT Dieting involves regulating food choices in order to eat healthier foods and fewer unhealthy foods. People differ dramatically in their ability to achieve or maintain this regulation, but it is unclear why. Here, we show that individuals with more gray matter volume in the dorsolateral and ventromedial prefrontal cortex are better at exercising dietary self-control. This relationship was observed across four different studies examining two different forms of dietary

  14. High Temperature Strength and Hot Working Technology for As-Cast Mg–1Zn–1Ca (ZX11 Alloy

    Directory of Open Access Journals (Sweden)

    Kamineni Pitcheswara Rao

    2017-10-01

    Full Text Available Cast Mg–1Zn–1Ca alloy (ZX11 has been tested to evaluate its compressive strength between 25 °C and 250 °C, and workability in the range of 260–500 °C. The ultimate compressive strength of this alloy is about 30% higher than that of creep-resistant alloy Mg–3Sn–2Ca (TX32 between 25 °C and 200 °C, and exhibits a plateau between 100 °C and 175 °C, similar to TX32. This is attributed to Mg2Ca particles present at grain boundaries that reduce their sliding. The processing map, developed between 260 and 420 °C in the strain rate limits of 0.0003 s−1 to 1 s−1, exhibited two domains in the ranges: (1 280–330 °C and 0.0003–0.01 s−1 and (2 330–400 °C and 0.0003–0.1 s−1. In these domains, dynamic recrystallization occurs, with basal slip dominating in the first domain and prismatic slip in the second, while the recovery mechanism being climb of edge dislocations in both. The activation energy estimated using standard kinetic rate equation is 191 kJ/mol, which is higher than the value for lattice self-diffusion in magnesium indicating that a large back stress is created by the presence of Ca2Mg6Zn3 intermetallic particles in the matrix. It is recommended that the alloy be best processed at 380 °C and 0.1 s−1 at which prismatic slip is favored due to Zn addition. At higher strain rates, the alloy exhibits flow instability and adiabatic shear band formation at <340 °C while flow localization and cracking at grain boundaries occurs at temperatures >400 °C.

  15. Moving to a total VM environment

    International Nuclear Information System (INIS)

    Johnston, T.Y.

    1981-01-01

    The Stanford Linear Accelerator Center is a single purpose laboratory operated by Stanford University for the Department of Energy. Its mission is to do research in High Energy (particle) physics. This research involves the use of large and complex electronic detectors. Each of these detectors is a multi-million dollar device. A part of each detector is a computer for process control and data logging. Most detectors at SLAC now use VAX 11/780s for this purpose. Most detectors record digital data via this process control computer. Consequently, physics today is not bounded by the cost of analog to digital conversion as it was in the past, and the physicist is able to run larger experiments than were feasible a decade ago. Today a medium sized experiment will produce several hundred full reels of 6250 BPI tape whereas a large experiment is a couple of thousand reels. The raw data must first be transformed into physics events using data transformation programs. The physicists then use subsets of the data to understand what went on. The subset may be anywhere from a few megabytes to 5 or 6 gigabytes of data (30 or 40 full reels of tape). This searching would be best solved interactively (if computers and I/0 devices were fast enough). Instead what we find are very dynamic batch programs that are generally changed every run. The result is that on any day there are probably around 50 to 100 physicists interacting with a half dozen different experiments who are causing us to mount around 750 to 1000 tapes a day. This has been the style of computing for the last decade. Our going to VM is part of our effort to change this style of computing and to make physics computing more effective

  16. Structure of Sn1−xGex random alloys as obtained from the coherent potential approximation

    KAUST Repository

    Pulikkotil, J. J.

    2011-08-09

    The structure of the Sn1−xGex random alloys is studied using density functional theory and the coherent potential approximation. We report on the deviation of the Sn1−xGex alloys from Vegard’s law, addressing their full compositional range. The findings are compared to the related Si1−xGex alloys and to experimental results. Interestingly, the deviation from Vegard’s law is quantitatively and qualitatively different between the Sn1−xGex and Si1−xGex alloys. An almost linear dependence of the bulk modulus as a function of composition is found for Si1−xGex, whereas for Sn1−xGex the dependence is strongly nonlinear.

  17. Effect of Ni Addition on the Wear and Corrosion Resistance of Fe-20Cr-1.7C-1Si Hardfacing Alloy

    International Nuclear Information System (INIS)

    Lee, Sung Hoon; Kim, Ki Nam; Kim, Seon Jin

    2011-01-01

    In order to improve the corrosion resistance of Fe-20Cr-1.7C-1Si hardfacing alloy without a loss of wear resistance, the effect of Ni addition was investigated. As expected, the corrosion resistance of the alloy increased with increasing Ni concentration. The wear resistance of the alloy did not decrease, even though the hardness decreased, up to Ni concentration of 5 wt.%. This was attributed to the fact that the decrease in hardness was counterbalanced by the strain-induced martensitic transformation. The wear resistance of the alloy, however, decreased abruptly with increases of the Ni concentration over 5 wt.%.

  18. Thermomechanical processing of Nb-1Zr-0.1C alloy for use in compact high temperature reactors: a first report

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Kapoor, R.; Suri, A.K.

    2011-08-01

    Nb-1Zr-0.1C is a potential material for use in high temperature nuclear reactors. Use of this alloy in components requires appropriate thermomechanical processing to break the cast microstructure and to obtain uniformly distributed fine stable precipitates so as to produce the desired mechanical properties at the high operating temperatures. This report reviews the thermomechanical processing of Nb-1Zr-0.1C alloy carried out over the years by other researchers and the high temperature creep behavior of the alloy. The hot deformation of Nb-1Zr-0.1C alloy carried out at Mechanical Metallurgy Division is also presented here. From this review it is evident that most primary hot working studies were carried out between 1500 to 1700 degC. The subsequent annealing treatments, which require holding at lower temperatures of about 1100 to 1300 degC for very long times help further transform the precipitates from coarse orthorhombic to very fine cubic. Our studies on Nb-1Zr-0.1C alloy also confirm that optimum hot working lies at temperatures beyond 1500 degC where dynamic recrystallization initiates, and optimally around 1700 degC where dynamic recrystallization transforms the microstructure. Working at temperatures lower than 1000 degC may lead to the undesirable effect of both micro as well as macro strain localization, and should be avoided. (author)

  19. Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications

    Science.gov (United States)

    Badawi, Ali

    2016-02-01

    Tuning the energy band gap of ternary alloyed Cd1-xPbxS (x: 0, 0.33, 0.5, 0.67 and 1) quantum dots (QDs) for photovoltaic applications is studied. Alloyed Cd1-xPbxS QDs were adsorbed onto TiO2 nanoparticles (NPs) using ssuccessive ionic layer adsorption and reaction (SILAR) methode. EDX measurements ensure the success adsorption of alloyed Cd1-xPbxS QDs onto the TiO2 electrode. At 100 mW/cm2 (AM 1.5) sun illumination, the photovoltaic performance of alloyed Cd1-xPbxS QDs sensitized solar cells (QDSSCs) was measured. The maximum values of Jsc (1.92 mA/cm2) and η (0.36%) for the alloyed Cd1-xPbxS QDSSCs were obtained when the molar ratio of Cd/Pb is 0.33/0.67. the open circuit voltage (Voc) is equal 0.61 ± 0.01 V for all alloyed Cd1-xPbxS QDSSCs. The electron back recombination rates decrease considerably for alloyed Cd1-xPbxS QDSSCs as x value increases, peaking at 0.67. The electron lifetime (τ) for Cd0.33Pb0.67S QDSSCs is one order of magnitude larger than that of the other alloyed Cd1-xPbxS QDSSCs with different x value. Under ON-OFF cycles to solar illumination, the open circuit voltage decay measurements show the high sensitivity and reproducibility of alloyed Cd1-xPbxS QDSSCs.

  20. Intermetallic precipitation in rare earth-treated A413.1 alloy. A metallographic study

    International Nuclear Information System (INIS)

    Samuel, Agnes M.; Samuel, Fawzy H.

    2018-01-01

    The present study was performed mainly on A413.1 alloy. Measured amounts of La, Ce or La+Ce, Ti and Sr were added to the molten alloy in the form of master alloys. Samples sectioned from castings obtained from thermal analysis experiments were used for preparing samples for metallographic examination. The results show that addition of rare earth (RE) metals to Al-Si alloys increased the α-Al nucleation temperature and depressed the Al-Si eutectic formation temperature, thereby increasing the solidification range. Depending upon the alloying elements/additives, a large number of RE-based intermetallics could be formed: Al 4 (Ce,La), Al 13 (Ce,La) 2 Cu 3 , Al 7 (Cu,Fe) 6 (Ce,La) 6 Si 2 , Al 4 La, Al 2 La 5 Si 2 , Al 2 Ce 5 Si 2 , Al 2 (Ce,La) 5 Si 2 . Under an electron microscope, these phases appear in backscatter imaging mode in the form of thin grayish-white platelets on the dark gray Al matrix. The average thickness of these platelets is about 1.5 μm. When the alloy is grain refined with Ti-based master alloys, precipitation of a gray phase in the form of sludge is observed: Al 12 La 3 Ti 2 , or Al 12 (Ce,La) 3 Ti 2 . Regardless the alloy composition, the RE/Al ratios remain constant in each type of intermetallic. Rare earth metals have a strong affinity to react with Sr (resulting in partial modification of the eutectic Si particles) as well as some transition elements, in particular Ti and Cu. Iron has a very low affinity for interaction with RE metals. It is only confined to Fe-based intermetallics.

  1. Intermetallic precipitation in rare earth-treated A413.1 alloy. A metallographic study

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Agnes M.; Samuel, Fawzy H. [Univ. du Quebec a Chicoutimi (Canada). Dept. des Sciences Appliquees; Doty, Herbert W. [General Motors, Pontiac, MI (United States). Materials Engineering; Valtierra, Salvador [Nemak, S.A., Garza Garcia (Mexico)

    2018-02-15

    The present study was performed mainly on A413.1 alloy. Measured amounts of La, Ce or La+Ce, Ti and Sr were added to the molten alloy in the form of master alloys. Samples sectioned from castings obtained from thermal analysis experiments were used for preparing samples for metallographic examination. The results show that addition of rare earth (RE) metals to Al-Si alloys increased the α-Al nucleation temperature and depressed the Al-Si eutectic formation temperature, thereby increasing the solidification range. Depending upon the alloying elements/additives, a large number of RE-based intermetallics could be formed: Al{sub 4}(Ce,La), Al{sub 13}(Ce,La){sub 2}Cu{sub 3}, Al{sub 7}(Cu,Fe){sub 6}(Ce,La){sub 6}Si{sub 2}, Al{sub 4}La, Al{sub 2}La{sub 5}Si{sub 2}, Al{sub 2}Ce{sub 5}Si{sub 2}, Al{sub 2}(Ce,La){sub 5}Si{sub 2}. Under an electron microscope, these phases appear in backscatter imaging mode in the form of thin grayish-white platelets on the dark gray Al matrix. The average thickness of these platelets is about 1.5 μm. When the alloy is grain refined with Ti-based master alloys, precipitation of a gray phase in the form of sludge is observed: Al{sub 12}La{sub 3}Ti{sub 2}, or Al{sub 12}(Ce,La){sub 3}Ti{sub 2}. Regardless the alloy composition, the RE/Al ratios remain constant in each type of intermetallic. Rare earth metals have a strong affinity to react with Sr (resulting in partial modification of the eutectic Si particles) as well as some transition elements, in particular Ti and Cu. Iron has a very low affinity for interaction with RE metals. It is only confined to Fe-based intermetallics.

  2. Predicting the Oxidation/Corrosion Performance of Structural Alloys in Supercritical CO2

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Ian [Wright HT Inc., Denver, CO (United States); Kung, Steven [Electric Power Research Inst. (EPRI), Charlotte, NC (United States); Shingledecker, John [Electric Power Research Inst. (EPRI), Charlotte, NC (United States)

    2017-12-22

    This project was the first research to address oxidation of alloys under supercritical CO2 conditions relevant to a semi-open Allam Cycle system. The levels of impurities expected in the CO2 for typical operation were determined by thermodynamic and mass balance calculations, and a test rig was assembled and used to run corrosion tests at temperatures from 650 to 750°C in CO2 at 200 bar for up to 5,000h, with and without impurities. Oxidation rates were measured for seven alloys representing high-strength ferritic steels, standard austenitic steels, and Ni-based alloys with higher-temperature capabilities. The very thin, protective scales formed on the high-temperature alloys provided significant challenges in characterization and thickness measurement. The rates of mass gain and scale thickening were possibly slower when oxidizing impurities were present in the sCO2, and the scale morphologies formed on the ferritic and austenitic steels were consistent with expectations, and similar to those formed in high-pressure steam, with some potential influences of C. Some surface hardening (possibly due to carbon uptake) was identified in ferritic steels Grade 91 and VM12, and appeared more severe in commercially-pure CO2. Hardening was also observed in austenitic steel TP304H, but that in HR3C appeared anomalous, probably the result of work-hardening from specimen preparation. No hardening was found in Ni-base alloys IN617 and IN740H. An existing EPRI Oxide Exfoliation Model was modified for this application and used to evaluate the potential impact of the scales grown in sCO2 on service lifetimes in compact heat exchanger designs. Results suggested that reduction in flow area by simple oxide growth as well as by accumulation of exfoliated scale may have a major effect on the design of small-channel heat exchangers. In addition, the specific oxidation behavior of each alloy strongly influences the

  3. Security in the CernVM File System and the Frontier Distributed Database Caching System

    International Nuclear Information System (INIS)

    Dykstra, D; Blomer, J

    2014-01-01

    Both the CernVM File System (CVMFS) and the Frontier Distributed Database Caching System (Frontier) distribute centrally updated data worldwide for LHC experiments using http proxy caches. Neither system provides privacy or access control on reading the data, but both control access to updates of the data and can guarantee the authenticity and integrity of the data transferred to clients over the internet. CVMFS has since its early days required digital signatures and secure hashes on all distributed data, and recently Frontier has added X.509-based authenticity and integrity checking. In this paper we detail and compare the security models of CVMFS and Frontier.

  4. Security in the CernVM File System and the Frontier Distributed Database Caching System

    Science.gov (United States)

    Dykstra, D.; Blomer, J.

    2014-06-01

    Both the CernVM File System (CVMFS) and the Frontier Distributed Database Caching System (Frontier) distribute centrally updated data worldwide for LHC experiments using http proxy caches. Neither system provides privacy or access control on reading the data, but both control access to updates of the data and can guarantee the authenticity and integrity of the data transferred to clients over the internet. CVMFS has since its early days required digital signatures and secure hashes on all distributed data, and recently Frontier has added X.509-based authenticity and integrity checking. In this paper we detail and compare the security models of CVMFS and Frontier.

  5. Structural evolution of Cu{sub (1−X)}Y{sub X} alloys prepared by mechanical alloying: Their thermal stability and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Suhrit, E-mail: smulafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Setman, Daria [Physics of Nanostructured Materials, University of Vienna, Boltzmanngasse 5, A-1090 Wien (Austria); Youssef, Khaled [Department of Materials Science and Technology, Qatar University, P.O. Box 2713, Doha (Qatar); Scattergood, R.O.; Koch, Carl C [Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695 (United States)

    2015-04-05

    Highlights: • Metastable solid solutions were prepared from Cu–Y nonequilibrium compositions by mechanical alloying. • Gibbs free energy change as per Miedema’s model confirms the formation of metastable alloys. • High Y content alloys showed high thermal stability during extensive annealing at high temperatures. • Stabilized alloys showed very high hardness and improved yield strength. • Mechanisms of high thermal stability and improved mechanical properties were discussed. - Abstract: In the present study, an attempt has been made to synthesize copper based disordered solid solutions by mechanical alloying (MA) of non-equilibrium compositions. The blended compositions of Cu–1% Y, Cu–3% Y, Cu–5% Y and Cu–7.5% Y (at.%) (all the compositions will be addressed as % only hereafter until unless it is mentioned) were ball-milled for 8 h, and then annealed at different temperatures (200–800 °C) for different length of duration (1–5 h) under high purity argon + 2 vol.% H{sub 2} atmosphere. X-ray diffraction (XRD) analysis and Gibbs free energy change calculation confirm the formation of disordered solid solution (up to 7.5%) of Y in Cu after milling at a room temperature for 8 h. The XRD grain size was calculated to be as low as 7 nm for 7.5% Y and 22 nm for 1% Y alloy. The grain size was retained within 35 nm even after annealing for 1 h at 800 °C. Transmission electron microscopy (TEM) analysis substantiates the formation of ultra-fine grained nanostructures after milling. Microhardness value of the as-milled samples was quite high (3.0–4.75 GPa) compared to that of pure Cu. The hardness value increased with increasing annealing temperatures up to 400 °C for the alloys containing 3–7.5% Y, and thereafter it showed a decreasing trend. The increase in the hardness after annealing is attributed to the formation of uniformly distributed ultrafine intermetallic phases in the nanocrystalline grains. The stabilization effect is achieved due to

  6. Fe(Co)SiBPCCu nanocrystalline alloys with high Bs above 1.83 T

    Science.gov (United States)

    Liu, Tao; Kong, Fengyu; Xie, Lei; Wang, Anding; Chang, Chuntao; Wang, Xinmin; Liu, Chain-Tsuan

    2017-11-01

    Fe84.75-xCoxSi2B9P3C0.5Cu0.75 (x = 0, 2.5 and 10) nanocrystalline alloys with excellent magnetic properties were successfully developed. The fully amorphous alloy ribbons exhibit wide temperature interval of 145-156 °C between the two crystallization events. It is found that the excessive substitution of Co for Fe greatly deteriorates the magnetic properties due to the non-uniform microstructure with coarse grains. The alloys with x = 0 and 2.5 exhibit high saturation magnetization (above 1.83 T), low core loss and relatively low coercivity (below 5.4 A/m) after annealing. In addition, the Fe84.75Si2B9P3C0.5Cu0.75 nanocrystalline alloy also exhibits good frequency properties and temperature stability. The excellent magnetic properties were explained by the uniform microstructure with small grain size and the wide magnetic domains of the alloy. Low raw material cost, good manufacturability and excellent magnetic properties will make these nanocrystalline alloys prospective candidates for transformer and motor cores.

  7. The structural phases and vibrational properties of Mo1-xWxTe2 alloys

    Science.gov (United States)

    Oliver, Sean M.; Beams, Ryan; Krylyuk, Sergiy; Kalish, Irina; Singh, Arunima K.; Bruma, Alina; Tavazza, Francesca; Joshi, Jaydeep; Stone, Iris R.; Stranick, Stephan J.; Davydov, Albert V.; Vora, Patrick M.

    2017-12-01

    The structural polymorphism in transition metal dichalcogenides (TMDs) provides exciting opportunities for developing advanced electronics. For example, MoTe2 crystallizes in the 2H semiconducting phase at ambient temperature and pressure, but transitions into the 1T‧ semimetallic phase at high temperatures. Alloying MoTe2 with WTe2 reduces the energy barrier between these two phases, while also allowing access to the T d Weyl semimetal phase. The \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloy system is therefore promising for developing phase change memory technology. However, achieving this goal necessitates a detailed understanding of the phase composition in the MoTe2-WTe2 system. We combine polarization-resolved Raman spectroscopy with x-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) to study bulk \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys over the full compositional range x from 0 to 1. We identify Raman and XRD signatures characteristic of the 2H, 1T‧, and T d structural phases that agree with density-functional theory (DFT) calculations, and use them to identify phase fields in the MoTe2-WTe2 system, including single-phase 2H, 1T‧, and T d regions, as well as a two-phase 1T‧  +  T d region. Disorder arising from compositional fluctuations in \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys breaks inversion and translational symmetry, leading to the activation of an infrared 1T‧-MoTe2 mode and the enhancement of a double-resonance Raman process in \\text{2H-M}{{\\text{o}}1-\\text{x}} WxTe2 alloys. Compositional fluctuations limit the phonon correlation length, which we estimate by fitting the observed asymmetric Raman lineshapes with a phonon confinement model. These observations reveal the important role of disorder in \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys, clarify the structural phase boundaries, and provide a foundation for future explorations of phase transitions and electronic phenomena in this

  8. Nano ZrO{sub 2} particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.Z.; Li, L.L.; Saber, M.; Koch, C.C.; Zhu, Y.T., E-mail: ytzhu@ncsu.edu; Scattergood, R.O.

    2014-09-15

    Here we report on the formation of nano ZrO{sub 2} particles in Fe–14Cr–1.5Zr alloy powders synthesized by mechanical alloying. The nano ZrO{sub 2} particles were found uniformly dispersed in the ferritic matrix powders with an average size of about 3.7 nm, which rendered the alloy powders so stable that it retained nanocrystalline structure after annealing at 900 °C for 1 h. The ZrO{sub 2} nanoparticles have a tetragonal crystal structure and the following orientation relationship with the matrix: (0 0 2){sub ZrO2}//(0 0 2){sub Matrix} and [0 1 0]{sub ZrO2}//[1 2 0]{sub Matrix}. The size and dispersion of the ZrO{sub 2} particles are comparable to those of Y–Ti–O enriched oxides reported in irradiation-resistant ODS alloys. This suggests a potential application of the new alloy powders for nuclear energy applications.

  9. Studies of alloy structures and properties. Annual summary report, December 1, 1976--December 1, 1977

    International Nuclear Information System (INIS)

    Duwez, P.

    1977-01-01

    Brief summaries of research activities in the following areas are given: superconductivity to ferromagnetism in amorphous Gd--La--Au alloys; magnetic regimes in amorphous Ni--Fe--P--B alloys; electronic and magnetic properties of amorphous Fe--P--B alloys; critical phenomena and magnetic properties of amorphous gadolinium based ferromagnets; Kondo effect, spin correlations, and superconductivity in amorphous alloys doped with magnetic impurities; flux pinning by crystalline phase precipitates embedded in an amorphous superconducting matrix; kinetics of crystallization of amorphous alloys; properties of the flux lattice in amorphous superconductors; low temperature calorimeter; low temperature heat capacity of metastable superconductors; thermal relaxation effects and crystallization of amorphous alloys; fundamental studies of amorphous superconductors using superconductive tunneling; low temperature calorimetry of bulk amorphous metals; and mictomagnetism in amorphous alloys

  10. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1969-10-01

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 360 0 C and flow tests (approx. 20 ft/sec) in reactor process water at 130 0 C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 360 0 C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 360 0 C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 150 0 C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 50 0 C

  11. Variation of equation of state parameters in the Mg2(Si 1-xSnx) alloys

    KAUST Repository

    Pulikkotil, Jiji Thomas Joseph; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2010-01-01

    Thermoelectric performance peaks up for intermediate Mg2(Si 1-x:Snx) alloys, but not for isomorphic and isoelectronic Mg2(Si1-xGex) alloys. A comparative study of the equation of state parameters is performed using density functional theory, Green

  12. Grindability of dental magnetic alloys.

    Science.gov (United States)

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  13. Optimizing VM allocation and data placement for data-intensive applications in cloud using ACO metaheuristic algorithm

    Directory of Open Access Journals (Sweden)

    T.P. Shabeera

    2017-04-01

    Full Text Available Nowadays data-intensive applications for processing big data are being hosted in the cloud. Since the cloud environment provides virtualized resources for computation, and data-intensive applications require communication between the computing nodes, the placement of Virtual Machines (VMs and location of data affect the overall computation time. Majority of the research work reported in the current literature consider the selection of physical nodes for placing data and VMs as independent problems. This paper proposes an approach which considers VM placement and data placement hand in hand. The primary objective is to reduce cross network traffic and bandwidth usage, by placing required number of VMs and data in Physical Machines (PMs which are physically closer. The VM and data placement problem (referred as MinDistVMDataPlacement problem is defined in this paper and has been proved to be NP- Hard. This paper presents and evaluates a metaheuristic algorithm based on Ant Colony Optimization (ACO, which selects a set of adjacent PMs for placing data and VMs. Data is distributed in the physical storage devices of the selected PMs. According to the processing capacity of each PM, a set of VMs are placed on these PMs to process data stored in them. We use simulation to evaluate our algorithm. The results show that the proposed algorithm selects PMs in close proximity and the jobs executed in the VMs allocated by the proposed scheme outperforms other allocation schemes.

  14. Superplastic properties of an Al-2.4Mg-1.8Li-0.5Sc alloy

    International Nuclear Information System (INIS)

    Bradley, E.L. III; Morris, J.W. Jr.

    1991-01-01

    This paper reports that there is a need in the aerospace industry for structural, superplastic aluminum alloys that are formable at strain-rates greater than 10 -3 s -1 in order for the economic benefits of superplastic forming to be realized. The standard, structural, superplastic aluminum alloy in the aerospace industry is 7475, which has an optimum forming strain-rate near 10 -4 s -1 . Thus, research has been focused on modifying the microstructures of wrought Al-Li alloys such as 2090 and 8090 into superplastically formable (SPF) microstructures with improved properties, but the results have not been completely successful. Superplastic alloys with high strengths have been produced from the Al-Mg-Sc system. These alloys are strengthened by thermomechanical processing which precipitates small, coherent Al 3 Sc particles and increases the dislocation density of the material. The Mg is in solid solution and improves the work hardening capability of these alloys. Because superplastic forming is carried out at relatively high temperatures, recovery processes eliminate the dislocation strengthening resulting from the rolling and overage the precipitates. Lithium provides the most promising choice since it forms the ordered coherent precipitate δ (Al 3 Li), lowers the density, and increases the stiffness of aluminum alloys

  15. An in-situ X-ray diffraction study on the electrochemical formation of PtZn alloys on Pt(1 1 1) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Drnec, J., E-mail: drnec@esrf.fr [ESRF, Grenoble (France); Bizzotto, D. [Department of Chemistry, AMPEL, University of British Columbia, Vancouver, BC (Canada); Carlà, F. [ESRF, Grenoble (France); Fiala, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Sode, A. [Ruhr-Universität Bochum, Bochum (Germany); Balmes, O.; Detlefs, B.; Dufrane, T. [ESRF, Grenoble (France); Felici, R., E-mail: felici@esrf.fr [ESRF, Grenoble (France)

    2015-11-01

    Highlights: • PtZn electrochemical alloying is observed on single crystal Pt electrodes. • In-situ X-ray characterization during alloy formation and dissolution is provided. • Structural model of the surface during alloying and dissolution is discussed. • X-ray based techniques can be used in in-operando studies of bimetallic fuel cell catalysts. - Abstract: The electrochemical formation and dissolution of the oxygen reduction reaction (ORR) PtZn catalyst on Pt(1 1 1) surface is followed by in-situ X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements. When the crystalline Pt surface is polarized to sufficiently negative potential values, with respect to an Ag/AgCl|KCl reference electrode, the electrodeposited zinc atoms diffuse into the bulk and characteristic features are observed in the X-ray patterns. The surface structure and composition during deposition and dissolution is determined from analysis of XRR curves and measurements of crystal truncation rods. Thin Zn-rich surface layer is present during the alloy formation while a Zn-depleted layer forms during dissolution.

  16. Microstructural evolution of direct chill cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy during solution treatment

    OpenAIRE

    He Kezhun; Yu Fuxiao; Zhao Dazhi

    2011-01-01

    Heat treatment has important influence on the microstructure and mechanical properties of Al-Si alloys. The most common used heat treatment method for these alloys is solution treatment followed by age-hardening. This paper investigates the microstructural evolution of a direct chill (DC) cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy after solution treated at 500, 510, 520 and 530℃, respectively for different times. The major phases observed in the as-cast alloy are α-aluminum dendrite, primary Si p...

  17. Hydrogen calibration of GD-spectrometer using Zr-1Nb alloy

    Science.gov (United States)

    Mikhaylov, Andrey A.; Priamushko, Tatiana S.; Babikhina, Maria N.; Kudiiarov, Victor N.; Heller, Rene; Laptev, Roman S.; Lider, Andrey M.

    2018-02-01

    To study the hydrogen distribution in Zr-1Nb alloy (Э110 alloy) GD-OES was applied in this work. Qualitative analysis needs the standard samples with hydrogen. However, the standard samples with high concentrations of hydrogen in the zirconium alloy which would meet the requirements of the shape, size are absent. In this work method of Zr + H calibration samples production was performed at the first time. Automated Complex Gas Reaction Controller was used for samples hydrogenation. To calculate the parameters of post-hydrogenation incubation of the samples in an inert gas atmosphere the diffusion equations were used. Absolute hydrogen concentrations in the samples were determined by melting in the inert gas atmosphere using RHEN602 analyzer (LECO Company). Hydrogen distribution was studied using nuclear reaction analysis (HZDR, Dresden, Germany). RF GD-OES was used for calibration. The depth of the craters was measured with the help of a Hommel-Etamic profilometer by Jenoptik, Germany.

  18. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  19. Tungsten wire--nickel base alloy composite development. Contractor report, 1 Jun 1974--29 Feb 1976

    International Nuclear Information System (INIS)

    Brentnall, W.D.; Moracz, D.J.

    1976-03-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed, and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W--Hf--C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/m 2 (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics

  20. Peculiarity of electron optical orientation in Hg1-xMnxTe and Hg1-xCdxTe alloys

    International Nuclear Information System (INIS)

    Georgitseh, E.I.; Ivanov-Omskij, V.I.; Pogorletskij, V.M.

    1991-01-01

    To clarify the effect of exchange interaction of electrons with manganese ions on electron spin relaxation, a study was made on optical orientation in Hg 1-x Mn x Te alloy and Hg 1-x Cd x Te alloys with similar parameters of energy spectrum at 4.2 K. It is shown that exchange interaction in semimagnetic Hg 1-x Mn x Te solutions, caused by the presence of manganese ions, reduced the time of spin relaxation. However, this reduction is not sufficient make optical orientation of electrons not observable

  1. Wear behavior of 2-1/4 Cr-1Mo tubing against alloy 718 tube-support material in sodium-cooled steam generators

    International Nuclear Information System (INIS)

    Wilson, W.L.

    1983-05-01

    A series of prototypic steam generator 2-1/4 Cr-1 Mo tube/alloy 718 tube support plate wear tests were conducted in direct support of the Westinghouse Nuclear Components Division -- Breeder Reactor Components Project Large Scale steam Generator design. The initial objective was to verify the acceptable wear behavior of softer, ''over-aged'' alloy 718 support plate material. For all interfaces under all test conditions, resultant wear damage was adhesive in nature with varying amounts of 2-1/4 Cr-1 Mo tube material being adhesively transferred to the alloy 718 tube supports. Maximum tube wear depths exceeded the initially established design allowable limit of 127 μm (.005 in.) at 17 of the 18 interfaces tested. A decrease in contact stresses produced acceptable tube wear depths below a readjusted maximum design allowable value of 381 μm (.015 in.). Additional conservatisms associated with the simulation of a 40-year lifetime of rubbing in a one-week laboratory test provided further confidence that the 381 μm maximum tube wear allowance would not be exceeded in service. Softer, ''over-aged'' alloy 718 material was found to produce slightly less wear damage on 2-1/4 Cr-1 Mo tubing than fully age hardened material. Also, air formed oxide films on the alloy 718 reduced initial tube wear and delayed the onset of adhesive surface damage. However, at high surface stress levels, these films were not sufficiently stable to provide adequate long term protection from adhesive wear. The results of the present work and those of previous test programs suggest that the successful in-sodium tribological performance of 2-1/4 Cr-1 Mo/alloy 718 rubbing couples is dependent upon the presence of lubricative surface films, such as oxides and/or surface reaction or deposition products. 11 refs., 13 figs., 4 tabs

  2. Unusual morphology of the omega phase in a Zr-1.75 At. pct Ni alloy

    International Nuclear Information System (INIS)

    Srivastava, D.; Mukhopadhyay, P.; Ramadasan, E.; Banerjee, S.

    1993-01-01

    The observations reported in the present communication were made in the course of a microstructural investigation on dilute Zr-Ni alloys. The alloys were prepared from nuclear-grade sponge zirconium and high-purity nickel by nonconsumable arc melting. Repeated melting was carried out to enhance homogeneity. A master alloy was used in the preparation of very dilute alloys. The observations reported here clearly indicate that the formation of the ω phase on β quenching, can occur in the binary Zr-Ni system at very low solute concentrations, suggesting that nickel is a strong ω stabilizer. Such a situation is known to obtain in the binary Zr-Mo system also. However, the unusual ω morphology observed in the present work has not been reported in the context of dilute Zr-Mo alloys. The appearance of sharp ω reflections and the absence of streaking and diffuse distributions in the selected area electron diffraction (SAD) patterns suggest that the Zr-1.75 at. pct Ni composition lies toward the solute lean end of the composition range associated with the formation of the athermal ω phase in the binary Zr-Ni system. In a more dilute Zr-Ni alloy (Zr-1.30 at. pct Ni), no athermal ω could be observed in β quenched specimens. The absence of streaking is also consistent with the fact that the ω phase in the β quenched Zr-1.75 at. pct Ni alloy did not occur in the form of very fine precipitates. The unusual ω morphology encountered in this work merits further investigation

  3. Growth and characterization of NixCu1-x alloy films, NixCu1-x/NiyCu1-y multilayers, and nanowires

    International Nuclear Information System (INIS)

    Kazeminezhad, I.

    2001-12-01

    It was found that it is possible to grow Ni x Cu 1-x alloy systems of arbitrary composition by electrodepositing well-defined sub-monolayer quantities of Ni and Cu in alternation using a new method based on that used previously to prepare potentiostatically deposited magnetic multilayers from a single sulphamate-based electrolyte. Following growth, the chemical composition of Ni x Cu 1-x alloy films was obtained by ZAF-corrected energy dispersive X-Ray (EDX) analysis and less than a 4% difference between the nominal and actual composition was observed. The structure of the films was investigated by high-angle X-ray diffractometry (HAXRD) and transmission electron microscopy (TEM). The films grown on polycrystalline Cu substrates had (100) texture, while those grown on Au-coated glass had (111) texture. Some evidence of Ni clustering was obtained by vibrating sample magnetometry (VSM). Self-organisation of the deposited metal was suggested for Ni potentials more positive than ∼-1.4V. The transition from a Ni/Cu multilayer to a Ni x Cu 1-x alloy was also studied and an interesting aspect, namely a plateau region in a plot of magnetisation as a function of Ni layer thickness was observed, suggesting a preferred Ni cluster size in these alloy films. Anisotropic magnetoresistance (AMR) of the films decreased with increasing Cu content at 300K and 77K. SQUID measurements for Ni 0.52 Cu 0.48 and Ni 0.62 CU 0.38 films showed that they become much more strongly ferromagnetic at low temperatures. Evidence for blocked -superparamagnetic behaviour above a blocking temperature (T B ) of the films was obtained from zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility measurements. Ni x Cu 1-x /Ni y Cu 1-y alloy/alloy multilayer films with short repeat distance were successfully fabricated using this method. Up to third order satellite peaks observed in HAXRD showed that the interface is sharp. Room temperature longitudinal magnetoresistance measurements showed

  4. High pressure stability analysis and chemical bonding of Ti1-xZrxN alloy: A first principle study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti 1-x Zr x N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti 1-x Zr x N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  5. The investigation of topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys under hydrostatic pressure

    Science.gov (United States)

    Saeidi, Parviz; Nourbakhsh, Zahra

    2018-04-01

    Topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys have been studied utilizing density function theory by WIEN2k code. The generalized gradient approximation (GGA), generalized gradient approximation plus Hubbard parameter (GGA + U), Modified Becke and Johnson (MBJ) and GGA Engel-vosko in the presence of spin orbit coupling have been used to investigate the topological band structure of Gd1-xYxAuPb alloys at zero pressure. The topological phase and band order of these alloys within GGA and GGA + U approaches under hydrostatic pressure are also investigated. We find that under hydrostatic pressure in some percentages of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches, the trivial topological phase is converted into nontrivial topological phase. In addition, the band inversion strength versus lattice constant of these alloys is studied. Moreover, the schematic plan is represented in order to show the trivial and nontrivial topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches.

  6. Comparison of electrochemical performance of as-cast Pb-1 wt.% Sn and Pb-1 wt.% Sb alloys for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2010-03-15

    A comparative experimental study of the electrochemical features of as-cast Pb-1 wt.% Sn and Pb-1 wt.% Sb alloys is carried out with a view to applications in the manufacture of lead-acid battery components. The as-cast samples are obtained using a water-cooled unidirectional solidification system. Pb-Sn and Pb-Sb alloy samples having similar coarse cell arrays are subjected to corrosion tests in order to assess the effect of Sn or Sb segregation in the cell boundary on the electrochemical performance. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis are used to evaluate the electrochemical parameters in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Both the experimental and simulated EIS parameters evidence different kinetics of corrosion. The Pb-1 wt.% Sn alloy is found to have a current density which is of about three times lower than that of the Pb-1 wt.% Sb alloy which indicates that dilute Pb-Sn alloys have higher potential for application as positive grid material in maintenance-free Pb-acid batteries. (author)

  7. Grain Refinement of an Al-2 wt%Cu Alloy by Al3Ti1B Master Alloy and Ultrasonic Treatment

    International Nuclear Information System (INIS)

    Wang, E Q; Wang, G; Dargusch, M S; StJohn, D H; Qian, M; Eskin, D G

    2016-01-01

    Both inoculation by AlTiB master alloys and Ultrasonic Treatment (UT) are effective methods of refining the grain size of aluminium alloys. The present study investigates the influence of UT on the grain refinement of an Al-2 wt% Cu alloy with a range of Al3TilB master alloy additions. When the alloy contains the smallest amount of added master alloy, UT caused significant additional grain refinement compared with that provided by the master alloy only. However, the influence of UT on grain size reduces with increasing addition of the master alloy. Plotting the grain size data versus the inverse of the growth restriction factor (Q) reveals that the application of UT causes both an increase in the number of potentially active nuclei and a decrease in the size of the nucleation free zone due to a reduction in the temperature gradient throughout the melt. Both these factors promote the formation of a fine equiaxed grain structure. (paper)

  8. Structural and electronic properties of Si1−xGex alloy nanowires

    International Nuclear Information System (INIS)

    Iori, Federico; Ossicini, Stefano; Rurali, Riccardo

    2014-01-01

    We present first-principles density-functional calculations of Si 1−x Ge x alloy nanowires. We show that given the composition of the alloy, the structural properties of the nanowires can be predicted with great accuracy by means of Vegard's law, linearly interpolating the values of a pure Si and a pure Ge nanowire of the same diameter. The same holds, to some extent, also for electronic properties such as the band-gap. We also assess to what extend the band-gap varies as a function of disorder, i.e., how it changes for different random realization of a given concentration. These results make possible to tailor the desired properties of SiGe alloy nanowires starting directly from the data relative to the pristine wires.

  9. Anodic behavior of alloy 22 in bicarbonate containing media: Effect of alloying

    International Nuclear Information System (INIS)

    Zadorozne, N S; Giordano, C M; Rebak, R B; Ares, A E; Carranza, R M

    2012-01-01

    Alloy 22 is one of the candidates for the manufacture of high level nuclear waste containers. These containers provide services in natural environments characterized by multi-ionic solutions.It is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is necessary to produce cracking, . It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media at potentials below transpassivity. The aim of this work is to study the effect of alloying elements on the anodic behavior of Alloy 22 in media containing bicarbonate and chloride ions at different concentrations and temperatures. Polarization curves were made on alloy 22 (Ni-22% Cr-13% Mo), Ni-Mo (Ni-28, 5% Mo) and Ni-Cr (Ni-20% Cr) in the following solutions: 1 mol/L NaCl at 90 o C, and 1.148 mol/L NaHCO 3 ; 1.148 mol/L NaHCO 3 + 1 mol/L NaCl; 1.148 mol/L NaHCO 3 + 0.1 mol/L NaCl, at 90 o C, 75 o C, 60 o C and 25 o C. It was found that alloy 22 has a anodic current density peak at potentials below transpassivity, only in the presence of bicarbonate ions. Curves performed in 1 mol/L NaCl did not show any anodic peak, in any of the tested alloys. The curves made on alloys Ni-Mo and Ni-Cr in the presence of bicarbonate ions, allowed to determine that Cr, is responsible for the appearance of the anodic peak in alloy 22. The curves of alloy Ni-Mo showed no anodic peak in the studied conditions. The potential at which the anodic peak appears in alloy 22 and Ni-Cr alloy, increases with decreasing temperature. The anodic peak was also affected by solution composition. When chloride ion is added to bicarbonate solutions, the anodic peak is shifted to higher potential and current densities, depending on the concentration of added chloride ions (author)

  10. Microstructure, mechanical properties, in vitro degradation and cytotoxicity evaluations of Mg-1.5Y-1.2Zn-0.44Zr alloys for biodegradable metallic implants.

    Science.gov (United States)

    Fan, Jun; Qiu, Xin; Niu, Xiaodong; Tian, Zheng; Sun, Wei; Liu, Xiaojuan; Li, Yangde; Li, Weirong; Meng, Jian

    2013-05-01

    Mg-1.5Y-1.2Zn-0.44Zr alloys were newly developed as degradable metallic biomaterials. A comprehensive investigation of the microstructure, mechanical properties, in vitro degradation assessments and in vitro cytotoxicity evaluations of the as-cast state, as-heat treated state and as-extruded state alloys was done. The microstructure observations show that the Mg-1.5Y-1.2Zn-0.44Zr alloys are mainly composed of the matrix α-Mg phases and the Mg12ZnY secondary phases (LPS structure). The hot extrusion method significantly refined the grains and eliminated the defects of both as-cast and heat treated alloys and thereby contributed to the better mechanical properties and biodegradation resistance. The values of tensile strength and tensile yield strength of the alloy in the as-extruded condition are about 236 and 178 MPa respectively, with an excellent elongation of 28%. Meanwhile, the value of compressive strength is about 471 MPa and the value of bending strength is about 501 MPa. The superior bending strength further demonstrates the excellent ductility of the hot extruded alloys. The results of immersion tests and electrochemical measurements in the SBF indicate that a protective film precipitated on the alloy's surface with the extension of degradation. The protective film contains Mg(OH)2 and hydroxyapatite (HA) which can reinforce osteoblast activity and promote good biocompatibility. No significant cytotoxicity towards L-929 cells was detected and the immersion extracts of alloy samples could enhance the cell proliferation with time in the cytotoxicity evaluations, implying that the Mg-1.5Y-1.2Zn-0.44Zr alloys have the potential to be used for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Weldability of molybdenum and its alloy sheet, 1

    International Nuclear Information System (INIS)

    Matsuda, Fukuhisa; Ushio, Masao; Nakata, Kazuhiro; Edo, Yoshiaki

    1979-01-01

    Basic weldability of electron-beam melted pure molybdenum has been examined in electron-beam welding in high vacuum and GTA welding in pure and air mixed argon atmospheres by paying attention to weld defects such as hot cracking and porosity in weld metal and also mechanical properties of welded joint in comparison with conventional TZM alloys. The main conclusions obtained were as follows; (1) The weld metals of electron-beam melted pure molybdenum with electron-beam and GTA weldings in pure and air mixed argon atmosphere up to about 1% were almost porosity free. However, large amount of oxygen content of 200 ppm in powder-metallurgy TZM alloy made very porous weld bead in electron-beam welding in high vacuum. Therefore, oxygen content in base metal should be lowered to the minimum, that is, less than 10 ppm, especially in electron-beam welding in high vacuum. (2) Hot cracking occurred in the weld metal of GTA welding when air content in argon atmosphere exceeded about 0.6% for electron-beam melted pure molybdenum and powder metallurgy TZM alloy. In less than 0.26% air, no hot cracking were observed in this experiment. Moreover, in electron-beam welding, no hot cracking was observed in weld metals for both materials. In order to prevent the formation of hot cracking, the purity of welding atmosphere should be kept as high as possible. (3) Joint efficiency of the welded joint of electron-beam melted pure molybdenum with electron-beam welding was 50 to 60% to base metal at room temperature and 500 0 C and almost 100% at 1000 0 C. Those of GTA welds in pure and 0.13% air mixed argon atmospheres were fairly lower than those in electron-beam welding for each testing temperature. (author)

  12. Oxygen reduction of several gold alloys in 1-molar potassium hydroxide

    Science.gov (United States)

    Miller, R. O.

    1975-01-01

    With rotated disk-and-ring equipment, polarograms and other electrochemical measurements were made of oxygen reduction in 1-molar potassium hydroxide on an equiatomic gold-copper (Au-Cu) alloy and a Au-Cu alloy doped with either indium (In) or cobalt (Co) and on Au doped with either nickel (Ni) or platinum (Pt). The results were compared with those for pure Au and pure Pt. The two-electron reaction dominated on all Au alloys as it did on Au. The polarographic results at lower polarization potentials were compared, assuming exclusively a two-step reduction. A qualified ranking of cathodic electrocatalytic activity on the freshly polished reduced disks was indicated: anodized Au Au-Cu-In Au-Cu Au-Cu-Co is equivalent or equal to Au-Pt Au-Ni. Aging in distilled water improved the electrocatalytic efficiency of Au-Cu-Co, Au-Cu, and (to a lesser extent) Au-Cu-In.

  13. Synthesis and hydrogen storage of La23Nd7.8Ti1.1Ni33.9Co32.9Al0.65 alloys

    Directory of Open Access Journals (Sweden)

    Priyanka Meena

    2018-04-01

    Full Text Available The present work investigates structural and hydrogen storage properties of first time synthesized La23Nd7.8Ti1.1Ni33.9Co32.9Al0.65 alloy by arc melting process and ball milled to get it in nano structure form. XRD analysis of as-prepared alloy showed single phased hexagonal LaNi5-type structure with 52 nm average particle size, which reduces to about 31 nm after hydrogenations. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructured alloy. EDX analysis confirmed elemental composition of the as-prepared alloy. Activation energy for hydrogen desorption was studied using TGA analysis and found to be −76.86 kJ/mol. Hydrogenation/dehydrogenation reactions and absorption kinetics were measured at temperature 100 °C. The equilibrium plateau pressure was determined to be 2 bar at 100 °C giving hydrogen storage capacity of about 2.1 wt%. Keywords: Hydrogen storage, La23Nd7.8Ti1.1Ni33.9Co32.9Al0.65 alloy, SEM, EDS, TGA, Hydrogenation/dehydrogenation

  14. Solution Treatment Effect on Tensile, Impact and Fracture Behaviour of Trace Zr Added Al-12Si-1Mg-1Cu Piston Alloy

    Science.gov (United States)

    Kaiser, Md. Salim

    2018-04-01

    The effects of T6 solution treatment on tensile, impact and fracture properties of cast Al-12Si-1Mg-1Cu piston alloys with trace of zirconium were investigated. Cast alloys were given precipitation strengthening treatment having a sequence of homogenizing, solutionizing, quenching and ageing. Both cast and solutionized samples are isochronally aged for 90 min at different temperatures up to 300 °C. Tensile and impact properties of the differently processed alloys have been studied to understand the precipitation strengthening of the alloys. Fractograpy of the alloys were observed to understand the mode of fracture. It is observed that the improvement in tensile properties in the aged alloys through heat treatment is mainly attributed to the formation of the Al2Cu and Mg2Si precipitates within the Al matrix. Solution treatment improves the tensile strength for the reason that during solution treatment some alloying elements are re-dissolved to produce a solute-rich solid solution. Impact energy decreases with ageing temperature due to formation of GP zones, β' and β precipitates. The fractography shows large and small dimple structure and broken or cracked primary Si, particles. Microstructure study of alloys revealed that the solution treatment improved distribution of silicon grains. The addition of Zr produces an improvement in the tensile properties as a result of its grain refining action and grain coarsening resistance in the matrix at a higher temperature.

  15. Structure of Sn1−xGex random alloys as obtained from the coherent potential approximation

    KAUST Repository

    Pulikkotil, J. J.; Chroneos, A.; Schwingenschlö gl, Udo

    2011-01-01

    The structure of the Sn1−xGex random alloys is studied using density functional theory and the coherent potential approximation. We report on the deviation of the Sn1−xGex alloys from Vegard’s law, addressing their full compositional range

  16. Magnetic properties of Zn(P/sub x/As/sub 1-x/)2 alloys

    International Nuclear Information System (INIS)

    Vitkina, T.Z.; Smolyarenko, E.M.; Trukhan, V.M.

    1987-01-01

    The authors study the magnetic properties of Zn(P/sub x/As/sub 1-x/) 2 alloys. The concentration-dependent magnetic susceptibility of these alloys is shown, as is the temperature dependence of the magnetic susceptibility in solid solutions of the alloys. The diamagnetic susceptibility associated with the valence electrons displays a marked change for a transition to the bound state inasmuch as the valence electrons constitute the chemical bonding in the crystal. The diamagnetic component of the susceptibility of the valence electrons is calculated according to the MO LCAO approximation on the assumption that there is sp 3 -hybridization of the atomic wave function

  17. Kinetics of the U-1% Mo alloy transformation during continual cooling; Kinetika transformacije legura U-1% Mo pri kontinuiranom hladjenju

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlovic, A; Djuric, B; Tepavac, P [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    Study of continuous cooling of the U-1% Mo alloy is significant if it could be used as fuel in the nuclear reactor. Previous studies were dealing with relatively low cooling rate up to 3 deg C/s{sup 1}, which produced alpha + gamma structure. This task was devoted to testing the U-1% Mo alloy properties at higher cooling rates in order to discover whether bainite reaction and favourable alpha grain could be achieved under certain conditions.

  18. Structure and magnetic properties of Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al, (0 ≤ x ≤ 1) Heusler alloys prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Yogesh, E-mail: 123209001_yogesh@manit.ac.in [Department of Materials Science & Metallurgical Engineering, Ceramic & Powder Metallurgy Laboratory, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India); Vajpai, Sanjay Kumar, E-mail: vajpaisk@gmail.com [Department of Materials Science & Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India); Srivastava, Sanjay, E-mail: s.srivastava.msme@gmail.com [Department of Materials Science & Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 (India)

    2017-07-01

    Highlights: • A series of nanocrystalline Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy by powder metallurgy. • Effect of substitution of Fe for Cr on the microstructure and magnetic properties. • Increasing amounts of B2 type disordered structure with increasing Fe content. • Enhanced Ms, Mr, Hc, and Tc with increasing Fe content. • Relative magnetic anisotropy decreased with increasing Fe content. - Abstract: In the present study, a series of nanocrystalline Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy powders were successfully prepared by high energy ball milling and the effect of substitution of Fe for Cr on the microstructure and magnetic properties was investigated in detail. The Co{sub 2}CrAl alloy powder consisted of only A2 type disordered structure whereas the substitution of Cr by Fe led to the appearance of increasing amounts of B2 type disordered structure along with A2 type structure. All the Co{sub 2}(Cr{sub 1−x}Fe{sub x})Al Heusler alloy powders demonstrated high spontaneous magnetization together with a very small hysteresis losses. The saturation magnetization, remanence, coercivity, and Curie temperature increased with increasing Fe content. The increasing magnetization with increasing Fe content was attributed to the replacement of antiferromagnetic Cr by strongly ferromagnetic Fe and an increasing amounts of relatively more ordered, atomically as well as ferromagnetically, B2 structure as compared to that of A2 phase. The increment in remanence and coercivity with increasing Fe content were associated with the variation in microstructural characteristics, such as grain size, lattice defects, and the presence of small amounts of magnetic/nonmagnetic secondary phases. The increment in Curie temperature with increasing Fe content was attributed to the enhancement of d-d exchange interaction due to the possible occupancy of vacant sites by Fe atoms. All the Heusler alloys indicated extremely low magnetic anisotropy and the

  19. Artifacts in MRI of the temporomandibular joint caused by dental alloys: a phantom study at 1.5 T

    International Nuclear Information System (INIS)

    Fellner, C.; Erlangen-Nuernberg Univ., Erlangen; Behr, M.; Fellner, F.; Held, P.; Handel, G.; Feuerbach, S.

    1997-01-01

    Purpose: The influence of dental alloys on MRI of the temporomandibular joint was studied using a phantom model for this joint. Methods: At 1,5 T, 15 dental alloys and 14 of their most important components were investigated acquiring sagittal (FOV: 150 mm) and transverse (FOV: 250 mm) T 1 -weighted SE additionally. The artifacts were assessed qualitatively as well as quantitatively, and the samples were subdivided into four artifact categories. Results: Ag, Cu, Ga, In, Ti, Sn, Zn, amalgan, the precious alloys, the Au-Pd and Ag-Pd alloys showed no artifacts (category I). Minimal artifacts below 10 mm on transverse images (category II) were found for Cr, Pd, Pt and for the Ni-Cr alloy. Mn and the remaining non-precious alloys induced artifacts up to 30 mm (category III). Significant artifacts - more than 30 mm - (category IV) were to be more susceptible for artifacts than T 1 -weighted SE and FLASH techniques. Conclusions: In contrast to dental alloys for fixed prosthodontics, Ni-Cr- or 18/8 wires used for orthodontic bands can influence not only the image quality, but also the diagnostic reliability of MRI of the temporomandibular joint. (orig.) [de

  20. Magnetic properties of (Mn1-xRux)3Ga alloys

    International Nuclear Information System (INIS)

    Hori, T.; Akimitsu, M.; Miki, H.; Ohoyoama, K.; Yamaguchi, Y.

    2002-01-01

    We found that the pseudo binary alloys Mn 1-x Ru x 3 Ga, with 0.33≤x≤0.67, have an ordered b.c.c. structure. The lattice constant a is almost constant with respect to x: a=6.000 A for x=0.33 and a=5.992 A for x=0.67. For the alloy with x=0.33, i.e. Mn 2 RuGa, the magnetization is almost saturated in a field of 20 kOe. The saturation magnetization at 4.2 K is 23 emu/g, and the Curie temperature, T C , is 460 K. The T C of (Mn 1-x Ru x ) 3 Ga decreases almost linearly with increasing x, and it vanishes around x=0.67 (MnRu 2 Ga). We also determined atomic and magnetic structures from neutron diffraction experiments. The alloy Mn 2 RuGa (x=0.33) has an ordered structure of CuHg 2 Ti type; the magnetic Mn atoms mainly occupy the 4a (0,0,0) and 4d (3/4,3/4,3/4) sites. We also observed that the magnetic moments of Mn atoms on the 4a and 4d sites are antiparallel to each other; values of the magnetic moment are μ a =4.6 and μ d =3.3 μ B per Mn atom. (orig.)

  1. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  2. Lattice vibrations study of Ga1-xInxAsySb1-y quaternary alloys with low (In, As) content grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Olvera-Herandez, J; Olvera-Cervantes, J; Rojas-Lopez, M; Navarro-Contreras, H; Vidal, M A; Anda, F de

    2006-01-01

    Raman scattering spectroscopy was used to measure and analyze the lattice vibrations in some quaternary Ga 1-x In x As y Sb 1-y alloys with low (In, As) contents (0.03 0 C. High Resolution X-Ray Diffraction results showed profiles associated with a quaternary layer lattice matched to the GaSb substrate as obtained from the (004) reflection. The experimental diffractograms were simulated to estimate alloy composition, thickness and lattice mismatch of the layer. Raman scattering results show phonon frequencies associated to the TO and LO GaAs-like modes as well as GaSb + InAs-like mode, which are characteristic of this quaternary alloy. The As content dependence of the phonon frequency measured in this alloy for low (In, As) contents agree well with the modified Random-Element Isodisplacement (REI) model and also with other available experimental reports. This method can also be used to estimate alloy compositions for this kind of quaternary alloys

  3. Study of a portion of Al-Be-B system and boron effect on ABM-1 alloy properties

    International Nuclear Information System (INIS)

    Novoselova, A.V.; Molchanova, L.V.; Yatsenko, K.P.; Fridlyander, I.N.

    1989-01-01

    The phase composition of Al-Be-B system alloys, phase transformations and boron effect on magnesium-containing ABM-1 alloy properties are investigated. Depending on the composition and crystallization conditions, the following phases in the investigated alloys are determined: a beryllium-base phase, an aluminium-base phase and a phase on the base of borides. It is found that boron content growth up to 1% increases ultimate strength, which sharply decreases with the boron content rise up to 2% as a result of crystallization of coarse needle-like inclusions of beryllium boride. With the aluminium content decrease the boron amount in the alloy can be increased

  4. Thermally stimulated current analysis of Zn{sub 1-x}Cd{sub x}O alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A. Senol, E-mail: saybek@anadolu.edu.tr [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey); Baysal, Nihal [Kilicoglu Anadolu High School, Eskisehir 26050 (Turkey); Zor, Muhsin; Turan, Evren; Kul, Metin [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey)

    2011-02-03

    Research highlights: > We have studied the structural and electrical properties of Zn{sub 1-x}Cd{sub x}O alloy films deposited by ultrasonic spray pyrolysis technique. > The trap energy, the capture cross-section, the attempt-to-escape frequency and the concentration of the traps in Zn{sub 1-x}Cd{sub x}O films are reported. > The effect of the Cd incorporation into ZnO material on trapping levels was investigated by the TSC measurements. Two overlapped peaks were registered at levels of 0.033 and 0.197 eV in ZnO sample by the curve fitting technique. The observed trap energy levels for ZnO film is thought to originate from zinc interstitials and oxygen vacancies. However, the incorporation of Cd into Zn{sub 1-x}Cd{sub x}O alloy films with x = 0.59 have resulted in two trapping centers with activation energies of 0.118 and 0.215 eV. The observed trap levels in Zn{sub 0.41}Cd{sub 0.59}O alloy film are related to oxygen adsorption in the sample. - Abstract: We have studied the structural and electrical properties of Zn{sub 1-x}Cd{sub x}O alloy films deposited by ultrasonic spray pyrolysis technique. XRD measurement indicated that pure ZnO and CdO samples had single phases with hexagonal wurtzite and cubic structures, respectively. However, Zn{sub 1-x}Cd{sub x}O alloy films with x = 0.59 and 0.78 exhibited mixtures of a hexagonal wurtzite ZnO phase and a cubic CdO phase. Analysis of thermally stimulated current spectra of Zn{sub 1-x}Cd{sub x}O alloy films revealed the existence of a number of overlapped peaks each characterized by different trap energy levels located in the range of 0.033-0.215 eV below the conduction band. We have used curve fitting method for the evaluation of the trap parameters of the alloy films. The values of attempt-to-escape frequency {nu}, capture cross-section S and concentration of the traps N{sub t} have been determined.

  5. Postglacial Rebound and Current Ice Loss Estimates from Space Geodesy: The New ICE-6G (VM5a) Global Model

    Science.gov (United States)

    Peltier, W. R.; Argus, D.; Drummond, R.; Moore, A. W.

    2012-12-01

    We compare, on a global basis, estimates of site velocity against predictions of the newly constructed postglacial rebound model ICE-6G (VM5a). This model is fit to observations of North American postglacial rebound thereby demonstrating that the ice sheet at last glacial maximum must have been, relative to ICE-5G,thinner in southern Manitoba, thinner near Yellowknife (northwest Territories), thicker in eastern and southern Quebec, and thicker along the British Columbia-Alberta border. The GPS based estimates of site velocity that we employ are more accurate than were previously available because they are based on GPS estimates of position as a function of time determined by incorporating satellite phase center variations [Desai et al. 2011]. These GPS estimates are constraining postglacial rebound in North America and Europe more tightly than ever before. In particular, given the high density of GPS sites in North America, and the fact that the velocity of the mass center (CM) of Earth is also more tightly constrained, the new model much more strongly constrains both the lateral extent of the proglacial forebulge and the rate at which this peripheral bulge (that was emplaced peripheral to the late Pleistocence Laurentia ice sheet) is presently collapsing. This fact proves to be important to the more accurate inference of the current rate of ice loss from both Greenland and Alaska based upon the time dependent gravity observations being provided by the GRACE satellite system. In West Antarctica we have also been able to significantly revise the previously prevalent ICE-5G deglaciation history so as to enable its predictions to be optimally consistent with GPS site velocities determined by connecting campaign WAGN measurements to those provided by observations from the permanent ANET sites. Ellsworth Land (south of the Antarctic peninsula), is observed to be rising at 6 ±3 mm/yr according to our latest analyses; the Ellsworth mountains themselves are observed to be

  6. Microemulsion synthesis and magnetic properties of FexNi(1-x) alloy nanoparticles

    Science.gov (United States)

    Beygi, H.; Babakhani, A.

    2017-01-01

    This paper investigates synthesis of FexNi(1-x) bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. FexNi(1-x) nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl2·6H2O to FeCl2·4H2O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of FexNi(1-x) alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like FexNi(1-x) alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties.

  7. Effect of solidification rate on the microstructure and microhardness of a melt-spun Al-8Si-1Sb alloy

    International Nuclear Information System (INIS)

    Karakoese, E.; Keskin, M.

    2009-01-01

    The properties of rapidly solidified hypoeutectic Al-8Si-1Sb alloy, produced by melt-spinning technique at a different solidification rates, were investigated using the X-ray diffraction (XRD), the optical microscopy (OM), the scanning electron microscopy (SEM) together with the energy dispersive spectroscopy (EDS), the differential scanning calorimetry (DSC) and the microhardness technique. The properties of rapidly solidified ribbons were then compared with those of the chill-casting alloy. The results show that rapid solidification has influence on the phase constitution of the hypoeutectic Al-8Si-1Sb alloy. The phases present in the hypoeutectic Al-8Si-1Sb ingot alloy were determined to be α-Al, fcc Si and intermetallic AlSb phases whereas only α-Al and fcc Si phases were identified in the melt-spinning alloy. The rapid solidification has a significant effect on the microstructure of the hypoeutectic Al-8Si-1Sb alloy. Particle size in the microstructure of the ribbons is too small to compare with particle size in the microstructure of the ingot alloy. Moreover, the significant change in hardness occurs that is attributed to changes in the microstructure.

  8. Effect of solidification rate on the microstructure and microhardness of a melt-spun Al-8Si-1Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karakoese, E. [Erciyes University, Institute of Science, 38039 Kayseri (Turkey); Keskin, M. [Erciyes University, Institute of Science, 38039 Kayseri (Turkey); Erciyes University, Physics Department, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2009-06-24

    The properties of rapidly solidified hypoeutectic Al-8Si-1Sb alloy, produced by melt-spinning technique at a different solidification rates, were investigated using the X-ray diffraction (XRD), the optical microscopy (OM), the scanning electron microscopy (SEM) together with the energy dispersive spectroscopy (EDS), the differential scanning calorimetry (DSC) and the microhardness technique. The properties of rapidly solidified ribbons were then compared with those of the chill-casting alloy. The results show that rapid solidification has influence on the phase constitution of the hypoeutectic Al-8Si-1Sb alloy. The phases present in the hypoeutectic Al-8Si-1Sb ingot alloy were determined to be {alpha}-Al, fcc Si and intermetallic AlSb phases whereas only {alpha}-Al and fcc Si phases were identified in the melt-spinning alloy. The rapid solidification has a significant effect on the microstructure of the hypoeutectic Al-8Si-1Sb alloy. Particle size in the microstructure of the ribbons is too small to compare with particle size in the microstructure of the ingot alloy. Moreover, the significant change in hardness occurs that is attributed to changes in the microstructure.

  9. Effect of compound field on horizontal continuous casting of Al-1wt.%Si alloy

    Directory of Open Access Journals (Sweden)

    Zhong-tao Zhang

    2015-03-01

    Full Text Available A travelling magnetic field, a power ultrasonic field, and a compound field were used separately during the horizontal continuous casting process of Al-1wt.%Si alloy. The samples obtained were characterized using an optical microscope, a scanning electron microscope, a tensile testing machine, and an electron probe microscopic analyzer to test the microstructures, properties, and element distribution of the samples. The results show that the application of a single field can enhance the mechanical properties and reduce the segregation of Si element in Al-1wt.%Si alloy to some extent. The application of a compound field can obtain the best refinement and homogeneity of the Si element in the alloy, leading to the highest increase of tensile strength and elongation among the three applied fields. The mechanism of the action of external fields on the refinement of microstructures and homogeneity of the Si element is discussed and the compound field is considered to be an effective method to achieve high quality Al alloys.

  10. Band structure of Mgsub(x)Znsub(1-x)Te alloys

    International Nuclear Information System (INIS)

    Laugier, A.; Montegu, B.; Barbier, D.; Chevallier, J.; Guillaume, J.C.; Somogyi, K.

    1980-01-01

    The band structure of Mgsub(x)Znsub(1-x)Te alloys is studied using a double beam wavelength modulated system in first derivative mode. Modulated reflectivity measurements are made from 82 to 300 K within spectral range 2500 to 5400 A. Structures corresponding to the E 0 , E 0 + Δ 0 , E 1 , E 1 + Δ 1 , e 1 and e 1 + Δ 1 critical points are indexed on the basis of existing band calculations for ZnTe. (author)

  11. Electronic band structure calculations for GaxIn1−xASyP1−y alloys lattice matched to InP

    International Nuclear Information System (INIS)

    Bechiri, A; Benmakhlouf, F; Allouache, H; Bacha, S; Bouarissa, N

    2012-01-01

    A pseudopotential formalism coupled with the virtual crystal approximation are applied to study the effect of compositional disorder upon electronic band structure of cubic Ga x In 1−x As y P 1−y quarternary alloys lattice matched to InP. The effects of compositional variations are properly included in the calculations. Very good agreement is obtained between the calculated values and the available experimental data for the lattice–matched alloy to InP. The absorption at the fundamental optical gaps is found to be direct within a whole range of the y composition whatever the lattice-matching to the substrate of interest. The alloy system Ga x In 1−x As y P 1−y lattice matched to InP is suggested to be suitable for an efficient light emitting device (ELED) material.

  12. sRNAtoolboxVM: Small RNA Analysis in a Virtual Machine.

    Science.gov (United States)

    Gómez-Martín, Cristina; Lebrón, Ricardo; Rueda, Antonio; Oliver, José L; Hackenberg, Michael

    2017-01-01

    High-throughput sequencing (HTS) data for small RNAs (noncoding RNA molecules that are 20-250 nucleotides in length) can now be routinely generated by minimally equipped wet laboratories; however, the bottleneck in HTS-based research has shifted now to the analysis of such huge amount of data. One of the reasons is that many analysis types require a Linux environment but computers, system administrators, and bioinformaticians suppose additional costs that often cannot be afforded by small to mid-sized groups or laboratories. Web servers are an alternative that can be used if the data is not subjected to privacy issues (what very often is an important issue with medical data). However, in any case they are less flexible than stand-alone programs limiting the number of workflows and analysis types that can be carried out.We show in this protocol how virtual machines can be used to overcome those problems and limitations. sRNAtoolboxVM is a virtual machine that can be executed on all common operating systems through virtualization programs like VirtualBox or VMware, providing the user with a high number of preinstalled programs like sRNAbench for small RNA analysis without the need to maintain additional servers and/or operating systems.

  13. Microstructure of MCMgAl12Zn1 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Dobrzański L. A.

    2007-01-01

    Full Text Available In this paper is presented the structure of the cast magnesium alloys as cast state and after heat treatment cooled with different cooling rate, depending on the cooling medium (furnace, water, air. For investigations samples in shape of 250x150x25 mm plates were used. The structure have been study in the light microscope, scanning electron microscope equipped with an electron back scattering facility. The effects of the addition of Al on the microstructure were also studied. In the analysed alloys a structure of α solid solution and fragile phase β(Mg17Al12 occurred mainly on grain borders as well as eutectic and phase with Mn, Fe and Si. Investigation are carried out for the reason of chemical composition influence and precipitation processes influence to the structure and mechanical properties of the magnesium cast alloys with different chemical composition in as cast alloys and after heat treatment.

  14. Nickel alloys and high-alloyed special stainless steels. Properties, manufacturing, applications. 4. compl. rev. ed.

    International Nuclear Information System (INIS)

    Heubner, Ulrich; Kloewer, Jutta; Alves, Helena; Behrens, Rainer; Schindler, Claudius; Wahl, Volker; Wolf, Martin

    2012-01-01

    This book contains the following eight topics: 1. Nickel alloys and high-alloy special stainless steels - Material overview and metallurgical principles (U. Heubner); 2. Corrosion resistance of nickel alloys and high-alloy special stainless steels (U. Heubner); 3. Welding of nickel alloys and high-alloy special stainless steels (T. Hoffmann, M. Wolf); 4. High-temperature materials for industrial plant construction (J. Kloewer); 5. Nickel alloys and high-alloy special stainless steels as hot roll clad composites-a cost-effective alternative (C. Schindler); 6. Selected examples of the use of nickel alloys and high-alloy special stainless steels in chemical plants (H. Alves); 7. The use of nickel alloys and stainless steels in environmental engineering (V. Wahl); 8: Nickel alloys and high-alloy special stainless steels for the oil and gas industry (R. Behrens).

  15. Structure and Properties Investigation of MCMgAl12Zn1 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Dobrzański L.A.

    2013-03-01

    Full Text Available This work presents an influence of cooling rate on crystallization process, structure and mechanical properties of MCMgAl12Zn1 cast magnesium alloy. The experiments were performed using the novel Universal Metallurgical Simulator and Analyzer Platform. The apparatus enabled recording the temperature during refrigerate magnesium alloy with three different cooling rates, i.e. 0.6, 1.2 and 2.4°C/s and calculate a first derivative. Based on first derivative results, nucleation temperature, beginning of nucleation of eutectic and solidus temperature were described. It was fund that the formation temperatures of various thermal parameters, mechanical properties (hardness and ultimate compressive strength and grain size are shifting with an increasing cooling rate.

  16. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  17. Development of niobium alloy/stainless steel joint by friction welding, (1)

    International Nuclear Information System (INIS)

    Kikuchi, Taiji; Kawamura, Hiroshi.

    1988-08-01

    The niobium alloy and stainless steel have been jointed by the nicrobrazing method generally. However the strength of the jointed part is weaker than that of the mother material. Therefore we developed the niobium alloy(Nb-1 % Zr)/stainless steel(SUS 304) transition joint by the friction welding method. As the tests for the development. We conducted the mechanical tests (tensile test at room temperature, 300 deg C, 500 deg C and 700 deg C, torsion fatigue test and burst test), metallographical observation and electron prove X-ray microanalysis observation. Those tests proved jointed part by the friction welding had enough properties for general uses. (author)

  18. Magnetocaloric effect of Gd4(BixSb1-x)3 alloy series

    International Nuclear Information System (INIS)

    Niu, Xuejun

    1999-01-01

    Alloys from the Gd 4 (Bi x Sb 1-x ) 3 series were prepared by melting a stoichiometric amounts of pure metals in an induction furnace. The crystal structure is of the anti-Th 3 P 4 type (space group Ibar 43d) for all the compounds tested. The linear increase of the lattice parameters with Bi concentration is attributed to the larger atomic radius of Bi than that of Sb. Magnetic measurements show that the alloys order ferromagnetically from 266K to 330K, with the ordering temperature increasing with decreasing Bi concentration. The alloys are soft ferromagnets below their Curie temperatures, and follow the Curie-Weiss law above their ordering temperatures. The paramagnetic effective magnetic moments are low compared to the theoretical value for a free Gd 3+ , while the ordered magnetic moments are close to the theoretical value for Gd. The alloys exhibit a moderate magnetocaloric effect (MCE) whose maxima are located between 270K and 338K and have relatively wide peaks. The peak MCE temperature decreases with decreasing Bi concentration while the peak height increases with decreasing Bi concentration. The Curie temperatures determined from inflection points of heat capacity are in good agreement with those obtained from the magnetocaloric effect. The MCE results obtained from the two different methods (magnetization and heat capacity) agree quite well with each other for all of the alloys in the series

  19. Powder metallurgy Al–6Cr–2Fe–1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    International Nuclear Information System (INIS)

    Dám, Karel; Vojtěch, Dalibor; Průša, Filip

    2013-01-01

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 °C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 °C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  20. Powder metallurgy Al-6Cr-2Fe-1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Karel, E-mail: Karel.Dam@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vojtech, Dalibor; Prusa, Filip [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-01-10

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 Degree-Sign C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 Degree-Sign C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  1. Nondestructive detection of an undesirable metallic phase, T.sub.1, during processing of aluminum-lithium alloys

    Science.gov (United States)

    Buck, Otto; Bracci, David J.; Jiles, David C.; Brasche, Lisa J. H.; Shield, Jeffrey E.; Chumbley, Leonard S.

    1990-08-07

    A method is disclosed for detecting the T.sub.1 phase in aluminum-lithium alloys through simultaneous measurement of conductivity and hardness. In employing eddy current to measure conductivity, when the eddy current decreases with aging of the alloy, while the hardness of the material continues to increase, the presence of the T.sub.1 phase may be detected.

  2. Severe plastic deformation of α+β Ti-5Ta-1.8Nb alloy by cryo-rolling

    International Nuclear Information System (INIS)

    Dasgupta, Arup; Parida, Pradyumna Kumar; Saroja, S.; Vijayalakshmi, M.

    2010-01-01

    The α-β (β ∼ 8%) Ti5Ta1.8Nb alloy is under development at IGCAR for reprocessing applications owing to its superior corrosion resistance and weldability. A possible method to strengthen the alloy is to engineer the grain size to finer dimensions through severe plastic deformation (SPD). A detailed analysis of the study of evolution of microstructure and micro-texture in the SPD Ti-Ta-Nb alloy is presented

  3. Delta-like 1 participates in the specification of ventral midbrain progenitor derived dopaminergic neurons

    DEFF Research Database (Denmark)

    Bauer, Matthias; Szulc, Jolanta; Meyer, Morten

    2008-01-01

    function of Dlk1 in VM neuron development, we investigated the effect of soluble Dlk1 protein as well as the intrinsic Dlk1 function in the course of VM progenitor expansion and dopaminergic (DA) neuron differentiation in vitro. Dlk1 treatment during expansion increased DA progenitor proliferation...

  4. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  5. Microstructure and mechanical properties of Al–1Mn and Al–10Si alloy circular clad ingot prepared by direct chill casting

    International Nuclear Information System (INIS)

    Fu, Ying; Jie, Jinchuan; Wu, Li; Park, Joonpyo; Sun, Jianbo; Kim, Jongho; Li, Tingju

    2013-01-01

    An innovative direct chill casting process to prepare Al–10 wt%Si and Al–1 wt%Mn alloy circular clad ingots has been developed in the present study. The experimental casting parameters were determined by theoretical analysis, numerical simulation and experimental processes. The interface of clad ingots was investigated by methods of metallographic examination, electron probe microanalysis (EPMA) and transmission electron microscopy (TEM). The results showed that excellent metallurgical bonding of two different aluminum alloys could be achieved by direct chill casting. The Al–1Mn alloy which was poured into the mold earlier served as the substrate for heterogeneous nucleation of Al–10Si alloy. Because of diffusion of Si and Mn elements, a diffusion layer with a thickness of about 40 μm on average between the Al–10Si and Al–1Mn alloys could be obtained. The tensile strength of the clad ingot was 106.8 MPa and the fractured position was located in the Al–1Mn alloy side, indicating the strength of the interfacial region is higher than that of Al–1Mn alloy.

  6. Antitumor activity of the two epipodophyllotoxin derivatives VP-16 and VM-26 in preclinical systems: a comparison of in vitro and in vivo drug evaluation

    DEFF Research Database (Denmark)

    Jensen, P B; Roed, H; Skovsgaard, T

    1990-01-01

    doses on an optimal schedule in vivo and it has not been clarified as to whether a therapeutic difference exists between them. A prolonged schedule is optimal for both drugs; accordingly we determined the toxicity in mice using a 5-day schedule. The dose killing 10% of the mice (LD10) was 9.4 mg...... the increase in life span and the number of cures. The drugs were also compared in nude mice inoculated with human small-cell lung cancer lines OC-TOL and CPH-SCCL-123; however, they were more toxic to the nude mice and only a limited therapeutic effect was observed. In conclusion, the complete cross......-resistance between the two drugs suggests that they have an identical antineoplastic spectrum. VM-26 was more potent than VP-16 in vitro; however, this was not correlated to a therapeutic advantage for VM-26 over VP-16 in vivo....

  7. Indium doped Cd{sub 1-x}Zn{sub x}O alloys as wide window transparent conductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, The Center for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yu, Kin Man, E-mail: kinmanyu@cityu.edu.hk [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Walukiewicz, W. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-12-31

    We have synthesized Indium doped Cd{sub 1-x}Zn{sub x}O alloys across the full composition range using magnetron sputtering method. The crystallographic structure of these alloys changes from rocksalt (RS) to wurtzite (WZ) when the Zn content is higher than 30%. The rocksalt phase alloys in the composition range 0 < x < 0.3 can be efficiently n-type doped, shifting the absorption edge to 3.25 eV and reducing resistivity to about 2.0 × 10{sup −4} Ω-cm. We found that In doped CdO (ICO) transmits more solar photons than commercial fluorine doped tin oxide (FTO) with comparable sheet conductivity. The infrared transmittance is further extended to longer than 1500 nm wavelengths by depositing the In doped Cd{sub 1-x}Zn{sub x}O in ~ 1% of O{sub 2}. This material has a potential for applications as a transparent conductor for silicon and multi-junction solar cells. - Highlights: • Indium doped Cd1-xZnxO alloys across the full composition range were synthesized. • Alloys change from rocksalt (RS) to wurtzite (WZ) when x is higher than 30%. • RS-Cd1-xZnxO phase can be doped with In as efficiently as CdO, achieving a low resistivity ~ 2.0 × 10{sup −4} Ω-cm. • Wide transparency window from 380 to 1200 nm • In doped CdO transmits more solar photons than commercial fluorine doped tin oxide.

  8. High-temperature air oxidation of E110 and Zr-1%Nb alloys claddings with coatings

    International Nuclear Information System (INIS)

    Kuprin, A.S.; Belous, V.A.; Voyevodin, V.N.; Bryk, V.V.; Vasilenko, R.L.; Ovcharenko, V.D.; Tolmachova, G.N.; V'yugov, P.N.

    2014-01-01

    Results of experimental study of the influence of protective vacuum-arc claddings on the base of compounds zirconium-chromium and of its nitrides on air oxidation resistance at temperatures 660, 770, 900, 1020, 1100 deg C during 3600 s. of tubes produced of zirconium alloys E110 and Zr-1%Nb (calcium-thermal alloy of Ukrainian production) are presented. Change of hardness, the width of oxide layer and depth of oxygen penetration into alloys from the side of coating and without coating are investigated by the methods of nanoindentation and by scanning electron microscopy. It is shown that the thickness of oxide layer in zirconium alloys at temperatures 1020 and 1100 deg C from the side of the coating doesn't exceed 5 μm, and from the unprotected side reaches the value of ≥ 120 μm with porous and rough structure. Tubes with coatings save their shape completely independently of the type of alloy; tubes without coatings deform with the production of through cracks

  9. Geometric Effects of La1+xMg2-xNi9 (x=0.0~1.0) Ternary Alloys on Their Hydrogen Storage Capacities

    Institute of Scientific and Technical Information of China (English)

    Zhiqing YUAN; Guanglie LU; Bin LIAO; Yongquan LEI

    2005-01-01

    Structural analysis was made using X-ray diffraction (XRD) Rietveld refinement on a series of La1+xMg2-xNi9(x=0.0~1.0) ternary alloys. Results showed that each of La1+xMg2-xNi9 alloys was a PuNi3-type structure stacked by LaNi5 and (La, Mg) Ni2 blocks. Electrochemical tests revealed that discharge abilities of these La-Mg-Ni ternary alloys mainly depended on their atomic distances between (La, Mg) and Ni, which could be modified by varying the atomic ratios of La/Mg.

  10. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si1-xCx

    International Nuclear Information System (INIS)

    Yoo, Jung-Ho; Chang, Hyun-Jin; Min, Byoung-Gi; Ko, Dae-Hong; Cho, Mann-Ho; Sohn, Hyunchul; Lee, Tae-Wan

    2008-01-01

    We investigated the silicide formation in Ni/epi-Si 1-x C x systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si 1-x C x /Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si 1-x C x systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si 1-x C x system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films

  11. Pressure dependence of Raman modes in the chalcopyrite quaternary alloy AgxCu1-xGaS2

    International Nuclear Information System (INIS)

    Choi, In-Hwan; Yu, Peter Y.

    2000-01-01

    Raman scattering in the chalcopyrite quaternary alloy Ag x Cu 1-x GaS 2 has been studied under high pressure (up to 7 GPa) and at low temperature (50 K) using a diamond anvil high pressure cell for alloy concentrations x=1, 0.75, 0.5, 0.25 and 0. This has allowed us to determine the dependence of their zone-center phonon modes on both pressure and alloy concentration. The resultant phonon pressure coefficients are helpful in understanding the nature of the phonon modes in these chalcopyrites

  12. Magnetoimpedance effect in Nanoperm alloys

    International Nuclear Information System (INIS)

    Hernando, B.; Alvarez, P.; Santos, J.D.; Gorria, P.; Sanchez, M.L.; Olivera, J.; Perez, M.J.; Prida, V.M.

    2006-01-01

    The influence of isothermal annealing (1 h at 600 deg. C in Ar atmosphere) on the soft magnetic properties and magnetoimpedance (MI) effect has been studied in ribbons of the following Nanoperm alloys: Fe 91 Zr 7 B 2 , Fe 88 Zr 8 B 4 , Fe 87 Zr 6 B 6 Cu 1 and Fe 8 Zr 1 B 1 . A maximum MI ratio of about 27% was measured for the nanocrystalline alloy Fe 87 Zr 6 B 6 Cu 1 at a driving frequency of 0.2 MHz. The thermal annealing led to magnetic softening for this alloy, while a hardening is observed for the Fe 8 Zr 1 B 1 alloy

  13. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments

    International Nuclear Information System (INIS)

    Chou, Y.L.; Yeh, J.W.; Shih, H.C.

    2010-01-01

    The purpose of this study is to investigate the electrochemical properties of the Co 1.5 CrFeNi 1.5 Ti 0.5 Mo x high-entropy alloys in three aqueous environments which simulate acidic, marine, and basic environments at ambient temperature (∼25 o C). The potentiodynamic polarisation curves of the Co 1.5 CrFeNi 1.5 Ti 0.5 Mo x alloys, obtained in aqueous solutions of H 2 SO 4 and NaOH, clearly revealed that the corrosion resistance of the Mo-free alloy was superior to that of the Mo-containing alloys. On the other hand, the lack of hysteresis in cyclic polarisation tests and SEM micrographs confirmed that the Mo-containing alloys are not susceptible to pitting corrosion in NaCl solution.

  14. The electronic structure of Cu(In1-xGax)Se2 alloyed with silver

    International Nuclear Information System (INIS)

    Erslev, Peter T.; Lee, JinWoo; Hanket, Gregory M.; Shafarman, William N.; Cohen, J. David

    2011-01-01

    We have examined the electronic properties of (Ag 1-x Cu x )(In 1-y Ga y )Se 2 (ACIGS) alloys over a wide range of compositions to assess whether such alloys might allow one to achieve larger values of V OC at larger band gaps compared to the Cu(In 1-y Ga y )Se 2 (CIGS) alloys. Our studies employed junction capacitance techniques such as drive level capacitance profiling (DLCP) and transient photocapacitance (TPC) spectroscopy, as well as temperature dependent J-V measurements. The TPC spectra revealed not only that the band gap did indeed increase as the Ag-fraction was increased, but also that the bandtailing (or Urbach energies) in all ACIGS samples were substantially smaller than for CIGS samples of corresponding band gaps. This indicates that the Ag alloying somehow reduces the degree of disorder present. The DLCP measurements indicated very low free carrier densities, on the order of 10 14 cm -3 , as well as evidence of defects located at the CdS/ACIGS junction. Temperature-dependent I-V measurements revealed a distinct 'kink' in the V OC vs T characteristics, suggesting a transition from an interface-trap limited regime to a bulk-limited regime. At temperatures below 250 K, the V OC increased by up to 0.1 V as the sample was light soaked. This suggests that the interface traps limiting the V OC can be passivated by exposure to light.

  15. Application of mechanical alloying to synthesis of intermetallic phases based alloys

    International Nuclear Information System (INIS)

    Dymek, S.

    2001-01-01

    Mechanical alloying is the process of synthesis of powder materials during milling in high energetic mills, usually ball mills. The central event in mechanical alloying is the ball-powder-ball collision. Powder particles are trapped between the colliding balls during milling and undergo deformation and/or fracture. Fractured parts are cold welded. The continued fracture and cold welding results in a uniform size and chemical composition of powder particles. The main applications of mechanical alloying are: processing of ODS alloys, syntheses of intermetallic phases, synthesis of nonequilibrium structures (amorphous alloys, extended solid solutions, nanocrystalline, quasi crystals) and magnetic materials. The present paper deals with application of mechanical alloying to synthesis Ni A l base intermetallic phases as well as phases from the Nb-Al binary system. The alloy were processed from elemental powders. The course of milling was monitored by scanning electron microscopy and X-ray diffraction. After milling, the collected powders were sieved by 45 μm grid and hot pressed (Nb alloys and NiAl) or hot extruded (NiAl). The resulting material was fully dense and exhibited fine grain (< 1 μm) and uniform distribution of oxide dispersoid. The consolidated material was compression and creep tested. The mechanical properties of mechanically alloys were superior to properties of their cast counterparts both in the room and elevated temperatures. Higher strength of mechanically alloyed materials results from their fine grains and from the presence of dispersoid. At elevated temperatures, the Nb-Al alloys have higher compression strength than NiAl-based alloys processed at the same conditions. The minimum creep rates of mechanically alloyed Nb alloys are an order of magnitude lower than analogously processed NiAl-base alloys. (author)

  16. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys

    International Nuclear Information System (INIS)

    Buenconsejo, Pio John S.; Kim, Hee Young; Miyazaki, Shuichi

    2009-01-01

    The effect of ternary alloying elements (X = V, Cr, Fe, Zr, Hf, Mo, Sn, Al) on the shape memory behavior of Ti-30Ta-X alloys was investigated. All the alloying elements decreased the martensitic transformation temperatures. The decrease in the martensitic transformation start (M s ) temperature due to alloying was affected by the atomic size and number of valence electrons of the alloying element. A larger number of valence electrons and a smaller atomic radius of an alloying element decreased the M s more strongly. The effect of the alloying elements on suppressing the aging effect on the shape memory behavior was also investigated. It was found that the additions of Sn and Al to Ti-Ta were effective in suppressing the effect of aging on the shape memory behavior, since they strongly suppress the formation of ω phase during aging treatment. For this reason the Ti-30Ta-1Al and Ti-30Ta-1Sn alloys exhibited a stable high-temperature shape memory effect during thermal cycling.

  17. The Suitability of Zn–1.3%Fe Alloy as a Biodegradable Implant Material

    Directory of Open Access Journals (Sweden)

    Alon Kafri

    2018-02-01

    Full Text Available Efforts to develop metallic zinc for biodegradable implants have significantly advanced following an earlier focus on magnesium (Mg and iron (Fe. Mg and Fe base alloys experience an accelerated corrosion rate and harmful corrosion products, respectively. The corrosion rate of pure Zn, however, may need to be modified from its reported ~20 µm/year penetration rate, depending upon the intended application. The present study aimed at evaluating the possibility of using Fe as a relatively cathodic biocompatible alloying element in zinc that can tune the implant degradation rate via microgalvanic effects. The selected Zn–1.3wt %Fe alloy composition produced by gravity casting was examined in vitro and in vivo. The in vitro examination included immersion tests, potentiodynamic polarization and impedance spectroscopy, all in a simulated physiological environment (phosphate-buffered saline, PBS at 37 °C. For the in vivo study, two cylindrical disks (seven millimeters diameter and two millimeters height were implanted into the back midline of male Wister rats. The rats were examined post implantation in terms of weight gain and hematological characteristics, including red blood cell (RBC, hemoglobin (HGB and white blood cell (WBC levels. Following retrieval, specimens were examined for corrosion rate measurements and histological analysis of subcutaneous tissue in the implant vicinity. In vivo analysis demonstrated that the Zn–1.3%Fe implant avoided harmful systemic effects. The in vivo and in vitro results indicate that the Zn–1.3%Fe alloy corrosion rate is significantly increased compared to pure zinc. The relatively increased degradation of Zn–1.3%Fe was mainly related to microgalvanic effects produced by a secondary Zn11Fe phase.

  18. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5 compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10. This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy, can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.

  19. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    Science.gov (United States)

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  20. Magnetic properties of ball-milled Fe0.6Mn0.1Al0.3 alloys

    International Nuclear Information System (INIS)

    Rebolledo, A.F.; Romero, J.J.; Cuadrado, R.; Gonzalez, J.M.; Pigazo, F.; Palomares, F.J.; Medina, M.H.; Perez Alcazar, G.A.

    2007-01-01

    The FeMnAl-disordered alloy system exhibits, depending on the composition and the temperature, a rich variety of magnetic phases including the occurrence of ferromagnetism, antiferromagnetism, paramagnetism and spin-glass and reentrant spin glass behaviors. These latter phases result from the presence of atomic disorder and magnetic dilution and from the competing exchange interactions taking place between an Fe atom and its Mn and Fe first neighbors. The use of mechanical alloying in order to prepare these alloys is specially interesting since it allows to introduce in a progressive way large amounts of disorder. In this work, we describe the evolution with the milling time of the temperature dependence of the magnetic properties of mechanically alloyed Fe 0.6 Mn 0.1 Al 0.3 samples. The materials were prepared in a planetary ball mill using a balls-to-powder mass ratio of 15:1 and pure (99.95 at%) Fe, Mn and Al powders for times up to 19 h. The X-rays diffraction (XRD) spectra show the coexistence of three phases at short milling times. For milling times over 6 h, only the FeMnAl ternary alloy BCC phase is observed. Moesbauer spectroscopy reveals the complete formation of the FeMnAl alloy after 9 h milling time. The magnetic characterization showed that all the samples were ferromagnetic at room temperature with coercivities decreasing from 105 Oe (3 h milled sample) down to 5 Oe in the case of the sample milled for 19 h

  1. Electronic structure studies of a clock-reconstructed Al/Pd(1 0 0) surface alloy

    Science.gov (United States)

    Kirsch, Janet E.; Tainter, Craig J.

    We have employed solid-state Fenske-Hall band structure calculations to examine the electronic structure of Al/Pd(1 0 0), a surface alloy that undergoes a reconstruction, or rearrangement, of the atoms in the top few surface layers. Surface alloys are materials that consist primarily of a single elemental metal, but which have a bimetallic surface composition that is only a few atomic layers in thickness. The results of this study indicate that reconstruction into a clock configuration simultaneously optimizes the intralayer bonding within the surface plane and the bonding between the first and second atomic layers. These results also allow us to examine the fundamental relationship between the electronic and physical structures of this reconstructed surface alloy.

  2. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    Science.gov (United States)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  3. Stabilization effect of Zr and Ti additions on the ageing characteristics of Al-1 wt% Si alloy through a creep study

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Beshai, M.H.N.; Abd El Khalek, A.M.; Graiss, G. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Kenawy, M.A. [Ain Shams Univ., Cairo (Egypt). Womens Coll.

    1997-12-31

    Al-1 wt% Si and Al-1 wt% Si-0.1 wt% Zr-0.1 wt% Ti alloys were used to trace the effect of Zr and Ti additions on the behaviour of the steady state creep. After solid solution treatment specimens of both alloys were aged at 623, 673, 723 and 773 K and creep tests were performed at room temperature by applying stresses of 60.0, 62.4, 64.7 and 67.1 MPa. The results showed a sound stabilization effect of Zr and Ti on the ageing characteristics of binary Al-1 wt% Si alloy. Values of the applied stress sensitivity parameter, m, obtained were in the range of (20-34) for Al-Si alloy and (14-19) for Al-Si-Zr-Ti alloy. Time to rupture was found to be strongly increased by Zr and Ti additions. The activation energies of the precipitation process involved were found to be 81.9 kJ/mole and 33.7 kJ/mole of the Al-Si and Al-Si-Zr-Ti alloys respectively. (orig.) 17 refs.

  4. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan

    International Nuclear Information System (INIS)

    Gu, X N; Zheng, Y F; Lan, Q X; Cheng, Y; Xi, T F; Zhang, Z X; Zhang, D Y

    2009-01-01

    The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10 5 for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.

  5. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X N; Zheng, Y F; Lan, Q X [State Key Laboratory for Turbulence and Complex System and College of Engineering, Peking University, Beijing 100871 (China); Cheng, Y; Xi, T F [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Z X [Biomedical Engineering Research Center, Research Institute of Peking University in Shenzhen, Shenzhen 518057 (China); Zhang, D Y, E-mail: gxn139888@pku.edu.c, E-mail: yfzheng@pku.edu.c, E-mail: 8lanqiuxiang@163.co, E-mail: chengyan@pku.edu.c, E-mail: top5460@163.co, E-mail: xitingfei@tom.co, E-mail: zhangdeyuan@lifetechmed.co [Lifetech Scientific (Shenzhen) Co. Ltd, Hi-Tech Park, Shenzhen 518000 (China)

    2009-08-15

    The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10{sup 5} for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.

  6. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan.

    Science.gov (United States)

    Gu, X N; Zheng, Y F; Lan, Q X; Cheng, Y; Zhang, Z X; Xi, T F; Zhang, D Y

    2009-08-01

    The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10(5) for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.

  7. Acceptance of the 2014 V.M. Goldschmidt Award of the Gochemical Society by Timothy L. Grove

    Science.gov (United States)

    Grove, Timothy L.

    2015-06-01

    I am deeply honored to be the recipient of the 2014 V.M. Goldschmidt Award. Many of the past recipients of this award have been scientific heroes to me, and it is hard to express how it feels to be included in this distinguished group. My feelings run the full spectrum; from exhilaration and deep personal satisfaction for the recognition of the work that I have done, to humility and anxiety that maybe I am really not good enough to deserve this award. This is called impostor syndrome. You younger scientists should know that many of us, even those who appear very successful, still experience it - don't let it hold you back.

  8. Microstructure evolution during high cycle fatigue in Mg–6Zn–1Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Daliang [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Zhang, Dingfei, E-mail: zhangdingfei@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Luo, Yuanxin [College of Mechanical Engineering, Chongqing University, Chongqing 400030 (China); Sun, Jing; Xu, Junyao [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China)

    2016-03-21

    Microstructure evolution during high cycle fatigue in extruded Mg–6Zn–1Mn alloy was investigated by servo-hydraulic fatigue testing machine with pull–push sinusoidal loading. The results show that in high stress cycles (cyclic stress≥129 MPa) high cycle fatigue tests promote deformation; however, in low stress cycles (cyclic stress≤125 MPa) high cycle fatigue tests make a contribution to room temperature recrystallization in Mg–6Zn–1Mn alloy. The grain refinement increased with increasing cycles. Electron Back-Scattered Diffraction (EBSD) analyses showed that dynamic recrystallization (DRX) has occurred in post-fatigued alloys, accompanied by the presence of a high number density of low-angle grain boundaries (LAGBs). LAGBs generated in the vicinity of initiation grain boundaries and subdivided coarse grains. In the specimens that subjected to higher cycles, the fraction of LAGBs decreased and high-angle grain boundaries (HAGBs) gradually increased. With the cyclic number increasing the texture intensity was significantly weakened. The DRX in post-fatigued specimens was related to Continuous DRX (CDRX) mechanism.

  9. Pressure effect on thermopower of Y1-xGdxCo2 alloy system

    International Nuclear Information System (INIS)

    Nakama, T.; Takaesu, Y.; Uchima, K.; Yagasaki, K.; Hedo, M.; Uwatoko, Y.; Burkov, A.T.

    2007-01-01

    Thermopower of Y 1-x Gd x Co 2 pseudobinary compounds has been measured at temperatures from 1.5 to 300K under hydrostatic pressure up to 2GPa and in magnetic field 0-15T. In the inhomogeneous and paramagnetic regions of the phase diagram the main contribution to the electronic transport is related to the strong static magnetic fluctuations, which arise due to interplay of structural disorder within Gd-sublattice and Co-3d itinerant electron metamagnetism. This complex magnetic disorder brings about novel transport phenomena, such as anomalous positive magnetoresistance found in ferrimagnetic state of the alloys. The low-temperature thermopower is almost independent of alloy composition in the ferrimagnetic range of the phase diagram (x>0.3) indicating that the alloying does not change electronic structure of the compounds in a close vicinity of Fermi energy. However, the thermopower shows substantial variation with the composition in the inhomogeneous and in the paramagnetic regions of the phase diagram reflecting evolution of the magnetic structure with the composition

  10. Large roomtemperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn1-xVxCoGe alloys

    International Nuclear Information System (INIS)

    Ma, S.C.; Zheng, Y.X.; Xuan, H.C.; Shen, L.J.; Cao, Q.Q.; Wang, D.H.; Zhong, Z.C.; Du, Y.W.

    2012-01-01

    The magnetic and magnetocaloric properties have been investigated in a series of Mn 1-x V x CoGe (x=0.01, 0.02, 0.03, and 0.05) alloys. The substitution of V for Mn reduces the structural transformation temperature of MnCoGe alloy effectively and results in a second-order magnetic transition in Mn 0.95 V 0.05 CoGe alloys. Large room temperature magnetocaloric effect and almost zero magnetic hysteresis losses are simultaneously achieved in the alloys with x=0.01, 0.02, and 0.03. The reasons for the negligible magnetic hysteresis losses and the potential application for the roomtemperature magnetic refrigeration are discussed. - Highlights: → V-substitution for Mn reduces the structural transformation temperature of MnCoGe. → FM-PM transition presents the second-order nature in Mn0.95V0.05CoGe. → The first-order FM-PM transitions are observed for alloys with x=0.01, 0.02, and 0.03. → Large room temperature MCEs are achieved in these alloys. → Negligible magnetic HL is achieved for these alloys simultaneously.

  11. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  12. Fusion neutron irradiation of Ni-Si alloys at high temperature*1

    Science.gov (United States)

    Huang, J. S.; Guinan, M. W.; Hahn, P. A.

    1988-07-01

    Two Ni-4% Si alloys, with different cold work levels, have been irradiated with 14-MeV fusion neutrons at 623 K, and their Curie temperatures have been monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2-MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14-MeV fusion neutrons is only 6-7% of that for an identical alloy irradiated by 2-MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6-7% for the fusion neutron irradiated sample.

  13. Features of the Percolation Scheme of Vibrational Spectrum Reconstruction in the Ga1 - x Al x P Alloy

    Science.gov (United States)

    Kozyrev, S. P.

    2018-04-01

    Specific features of the properties of Ga-P lattice vibrations have been investigated using the percolation model of a mixed Ga1 - x Al x P crystal (alloy) with zero lattice mismatch between binary components of the alloy. In contrast to other two-mode alloy systems, in Ga1 - x Al x P a percolation splitting of δ 13 cm-1 is observed for the low-frequency mode of GaP-like vibrations. An additional GaP mode (one of the percolation doublet components) split from the fundamental mode is observed for the GaP-rich alloy, which coincides in frequency with the gap corresponding to the zero density of one-phonon states of the GaP crystal. The vibrational spectrum of impurity Al in the GaP crystal has been calculated using the theory of crystal lattice dynamics. Upon substitution of lighter Al for the Ga atom, the calculated spectrum includes, along with the local mode, a singularity near the gap with the zero density of phonon states of the GaP crystal, which coincides with the mode observed experimentally at a frequency of 378 cm-1 in the Ga1 - x Al x P ( x < 0.4) alloy.

  14. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

    Science.gov (United States)

    Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng

    2018-03-01

    This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

  15. Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy

    Directory of Open Access Journals (Sweden)

    Tao Li

    2014-06-01

    Full Text Available The microstructure, mechanical property, and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg–1.5Zn–0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy. The results show that the Mg–1.5Zn–0.6Zr alloy had a single-phase solid solution structure, with an average grain size of 34.7 ± 13.1 μm. The alloy exhibited ultimate tensile strength of 168 ± 2.0 MPa, yield strength of 83 ± 0.6 MPa, and elongation of 9.1 ± 0.6%. Immersion tests and electrochemical measurements reveal that the alloy displayed lower biocorrosion rate and more uniform corrosion mode than AZ91D in Hank's solution. The elimination of intensive galvanic corrosion reactions and the formation of a much more compact and uniform corrosion film mainly account for the better biocorrosion properties of the Mg–1.5Zn–0.6Zr alloy than AZ91D.

  16. Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid

    International Nuclear Information System (INIS)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W.; Shih, H.C.

    2008-01-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al x CrFe 1.5 MnNi 0.5 (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 Ωcm 2 as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 Ωcm 2 ). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H 2 SO 4 solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al 0.3 CrFe 1.5 MnNi 0.5 alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe 1.5 MnNi 0.5 and Al 0.3 CrFe 1.5 MnNi 0.5 alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al x CrFe 1.5 MnNi 0.5 alloys optimized their surface structures and minimized their susceptibility to pitting corrosion

  17. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Nickel based alloy, the characteristic of which is that it mainly includes in percentages by weight: 57-63 Ni, 7-18 Cr, 10-20 Fe, 4-6 Mo, 1-2 Nb, 0.2-0.8 Si, 0.01-0.05 Zr, 1.0-2.5 Ti, 1.0-2.5 Al, 0.02-0.06 C and 0.002-0.015 B. The aim is to create new nickel-chromium alloys, hardened in a solid solution and by precipitation, that are stable, exhibit reduced swelling and resistant to plastic deformation inside the reactor. These alloys of the gamma prime type have improved mechanical strengthm swelling resistance, structural stability and welding properties compared with Inconel 625 [fr

  18. Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg-1Ca alloy

    International Nuclear Information System (INIS)

    Harandi, Shervin Eslami; Hasbullah Idris, Mohd; Jafari, Hassan

    2011-01-01

    Research highlights: → Forging temperature demonstrates more pronounced effect compared to forging speed. → Precipitation of Mg 2 Ca phase at grain boundaries accelerates corrosion rate. → Forging process doesn't provide the corrosion resistance required for bone healing. -- Abstract: The performance of Mg-1Ca alloy, a biodegradable metallic material, may be improved by hot working in order that it may be of use in bone implant applications. In this study, Mg-1Ca cast alloy was preheated to different temperatures before undergoing forging process with various forging speeds. Macro- and microstructure of the samples were examined by stereo and scanning electron microscopes (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), respectively. To determine the mechanical properties of the alloy, hardness value and plastic deformation ability of the samples were measured. To investigate the corrosion behaviour of the alloy, immersion and electrochemical tests were performed on the samples in simulated body fluid and the corrosion products were characterized by SEM/EDS. The results showed that increasing forging temperature decreased grain size led to improved hardness value and plastic deformation ability of the alloy, whereas no significant effect was observed by changing forging speed. Moreover, forging at higher temperatures led to an increase in the amount of Mg 2 Ca phase at grain boundaries resulted in higher corrosion rates. It can be concluded that although forging process improved the mechanical properties of the alloy, it does not satisfy the corrosion resistance criteria required for bone healing.

  19. Corrosion-electrochemical and mechanical properties of aluminium-berylium alloys alloyed by rare-earth metals

    International Nuclear Information System (INIS)

    Safarov, A.M.; Odinaev, Kh.E.; Shukroev, M.Sh.; Saidov, R.Kh.

    1997-01-01

    In order to study influence of rare earth metals on corrosion-electrochemical and mechanical properties of aluminium-berylium alloys the alloys contain 1 mass % beryllium and different amount of rare earth metals were obtained.-electrochemical and mechanical properties of aluminium-berylium alloys. The electrochemical characteristics of obtained alloys, including stationary potential, potentials of passivation beginning and full passivation, potentials of pitting formation and re passivation were defined.

  20. High Temperature Creep of an Al-8,5Fe-1,3V-1,7Si Alloy

    Czech Academy of Sciences Publication Activity Database

    Kuchařová, Květa; Zhu, S. J.; Čadek, Josef

    2002-01-01

    Roč. 40, č. 2 (2002), s. 69-84 ISSN 0023-432X R&D Projects: GA AV ČR IBS2041001 Institutional research plan: CEZ:AV0Z2041904 Keywords : Al-8,5Fe 1,3V 1,7Si alloy * creep behavior , true threshold stress Subject RIV: JI - Composite Materials Impact factor: 0.493, year: 2002

  1. Analysis of Microstructure and Sliding Wear Behavior of Co1.5CrFeNi1.5Ti0.5 High-Entropy Alloy

    Science.gov (United States)

    Lentzaris, K.; Poulia, A.; Georgatis, E.; Lekatou, A. G.; Karantzalis, A. E.

    2018-04-01

    Α Co1.5CrFeNi1.5Ti0.5 high-entropy alloy (HEA) of the well-known family of CoCrFeNiTi has been designed using empirical parameters. The aim of this design was the production of a HEA with fcc structure that gives ductile behavior and also high strength because of the solid solution effect. The VEC calculations (8.1) supported the fcc structure while the δ factor calculations (4.97) not being out of the limit values, advised a significant lattice distortion. From the other hand, the ΔΗ mix calculations (- 9.64 kJ/mol) gave strong indications that no intermetallic would be formed. In order to investigate its potential application, the Co1.5CrFeNi1.5Ti0.5 HEA was prepared by vacuum arc melting and a primary assessment of its surface degradation response was conducted by means of sliding wear testing using different counterbody systems for a total sliding distance of 1000 m. An effort to correlate the alloy's wear response with the microstructural characteristics was attempted. Finally, the wear behavior of the Co1.5CrFeNi1.5Ti0.5 HEA was compared with that of two commercially used wear-resistant alloys. The results obtained provided some first signs of the high-entropy alloys' better wear performance when tested under sliding conditions against a steel ball.

  2. E centers in ternary Si1−x−yGexSny random alloys

    KAUST Repository

    Chroneos, Alexander; Bracht, H.; Grimes, R. W.; Jiang, C.; Schwingenschlö gl, Udo

    2009-01-01

    Density functional theory calculations are used to study the association of arsenic (As) atoms to lattice vacancies and the formation of As-vacancy pairs, known as E centers, in the random Si0.375Ge0.5Sn0.125 alloy. The local environments are described by 32-atom special quasirandom structures that represent random Si1−x−yGexSny alloys. It is predicted that the nearest-neighbor environment will exert a strong influence on the stability of E centers in ternary Si0.375Ge0.5Sn0.125.

  3. E centers in ternary Si1−x−yGexSny random alloys

    KAUST Repository

    Chroneos, Alexander

    2009-09-14

    Density functional theory calculations are used to study the association of arsenic (As) atoms to lattice vacancies and the formation of As-vacancy pairs, known as E centers, in the random Si0.375Ge0.5Sn0.125 alloy. The local environments are described by 32-atom special quasirandom structures that represent random Si1−x−yGexSny alloys. It is predicted that the nearest-neighbor environment will exert a strong influence on the stability of E centers in ternary Si0.375Ge0.5Sn0.125.

  4. Peculiarities of hydrogen permeation through Zr–1%Nb alloy and evaluation of terminal solid solubility

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, E.A.; Kompaniets, M.V.; Kompaniets, T.N., E-mail: tkompaniets@spbu.ru; Bobkova, I.S.

    2016-04-15

    Hydrogen permeation through Zr–1%Nb alloy was studied at the temperature below the temperature of α-β transition. Analysis of the transient permeation curves from a closed volume in a surface limited regime allowed to determine total and mobile hydrogen concentrations. At the mobile hydrogen concentration of 4.3 at% a part of the absorbed hydrogen is cut out of permeation process. Increase of the mobile hydrogen concentration in α-phase of Zr–1%Nb alloy is ceasing at the concentration of (5.5 ± 0.3) at%, which is the maximum possible concentration of the mobile hydrogen in α-phase of the studied alloy. From this moment on all absorbed hydrogen is spent on hydride formation. The obtained results are compared with those obtained by means of traditional techniques for terminal solid solubility determination.

  5. Particle stabilization of plastic flow in nanostructured Al-1 %Si Alloy

    DEFF Research Database (Denmark)

    Huang, Tianlin; Li, Chao; Wu, Guilin

    2014-01-01

    A nanostructured Al-1 %Si alloy containing a dispersion of Si particles in ultrapure aluminum (99.9996 %) was produced by heavy cold rolling to study the effect of second-phase particles on the occurrence of plastic instability during tensile testing of a nanostructured metal. Tensile tests were...

  6. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy

    Science.gov (United States)

    Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang

    2018-04-01

    Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.

  7. Strong composition-dependent disorder in InAs1-xNx alloys

    International Nuclear Information System (INIS)

    Benaissa, H.; Zaoui, A.; Ferhat, M.

    2009-01-01

    We investigate the main causes of disorder in the InAs 1-x N x alloys (x = 0, 0.03125, 0.0625, 0.09375, 0.125, 0.25, 0.5, 0.75, 0.875, 0.90625, 0.9375, 0.96875 and 1). The calculation is based on the density-functional theory in the local-density approximation. We use a plane wave-expansion non-norm conserving ab initio Vanderbilt pseudopotentials. To avoid the difficulty of considering the huge number of atomic configurations, we use an appropriate strategy in which we consider four configurations for a given composition where the N atoms are not randomly distributed. We mainly show that the band gap decreases (increases) rapidly with increasing (decreasing) compositions of N. As a consequence the optical band gap bowing is found to be strong and composition dependent. The obtained compounds, from these alloys, may change from semi-conducting to metal (passing to a negative bowing) and could be useful for device applications, especially at certain composition.

  8. Effect of Sr addition on microstructure and elevated temperature mechanical properties of Mg–3Zn–1Y alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junwei [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Peng, Xiaodong, E-mail: pxd@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing 400044 (China); Li, Mengluan; Wei, Guobing [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Xie, Weidong [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing 400044 (China); Yang, Yan [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2016-02-08

    The effects of Sr addition on the microstructure and elevated temperature mechanical behavior of Mg–3Zn–1Y alloys have been investigated in this research. The results show that α-Mg, W-phase and S-phase are found in the Sr-containing alloys. The S-phase has a higher thermal stability than W-phase, which significantly improves the elevated temperature mechanical properties of the alloy. To further confirm the crystal structure of the S-phase, high resolution transmission electron microscopy analysis was performed and the phase was confirmed to be Mg{sub 6}Zn{sub 2}Sr{sub 1}. With increasing content of Sr, the elevated temperature mechanical properties of the Mg–3Zn–1Y are improved. When the Sr content reached to 0.9 wt%, the alloy shows a much higher ultimate tensile strength of 204 MPa and yield strength of 171 MPa at 250 °C.

  9. Application of Al-2La-1B Grain Refiner to Al-10Si-0.3Mg Casting Alloy

    Science.gov (United States)

    Jing, Lijun; Pan, Ye; Lu, Tao; Li, Chenlin; Pi, Jinhong; Sheng, Ningyue

    2018-05-01

    This paper reports the application and microstructure refining effect of an Al-2La-1B grain refiner in Al-10Si-0.3Mg casting alloy. Compared with the traditional Al-5Ti-1B refiner, Al-2La-1B refiner shows better performances on the grain refinement of Al-10Si-0.3Mg alloy. Transmission electron microscopy analysis suggests that the crystallite structure features of LaB6 are beneficial to the heterogeneous nucleation of α-Al grains. Regarding the mechanical performances, tensile properties of Al-10Si-0.3Mg casting alloy are prominently improved, due to the refined microstructures.

  10. Amorphous magnetism in Mnx Sn1-x alloys

    International Nuclear Information System (INIS)

    Drago, V.; Saitovitch, E.M.B.; Abd-Elmeguid, M.M.

    1988-01-01

    Systematic low temperature in situ 119 Sn Moessbauer effect (ME) studies in vapor quenched amorphous Mn x Sn 1-x (0.09≤ x ≤0,95) alloys between 150 and 4.2 K, are presented. Its is shown that the magnetic behavior of the system is correctly displayed by the transferred magnetic hyperfine (hf) interactions, at the 119 Sn site. A complete magnetic phase diagram is proposed, and the effect of an external magnetic field (up to about 3T) on the spin correlations in the spin-glass state is also discussed. (author) [pt

  11. Niobium alloys production with elements of high steam pressure and high ductilidate Nb46,5%Ti, Nb 1%Zr, Nb 1%Ti and Nb20% Ta

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Baldan, C.A.; Dainesi, C.R.; Sandim, H.R.Z.

    1988-01-01

    The melting technology of niobium alloys with high ductilidade and high steam pressure, having the Ti, Zr and Ta as alloying elements is described. The electron beam technique for production of Nb 46,5%Ti, Nb 1%Zr and Nb 20%Ta alloys is analysed, aiming a product with high grade and low cost. (C.G.C.) [pt

  12. Hydrogen storage behavior of ZrCo1-xNix alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Parida, S.C.; Agarwal, Renu; Kulkarni, S.G.

    2012-01-01

    Intermetallic compound ZrCo is proposed as a candidate material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER) Storage and Delivery System (SDS). However, it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes disproportionation as per the reaction; 2ZrCo + H 2 ↔ ZrH 2 + ZrCO 2 . This results in reduction in hydrogen storage capacity of ZrCo, which is not a desirable property for SDS. Konishi et al. reported that the disproportionation reaction can be suppressed by decreasing the desorption temperature. It is anticipated that suitable ternary alloying of ZrCo can elevated the hydrogen equilibrium pressure and hence decrease the desorption temperature for supply of 100 kPa of hydrogen. In this study, we have investigated the effect of Ni content on the hydrogenation behavior of ZrCo 1-x Ni x alloys

  13. High pressure stability analysis and chemical bonding of Ti{sub 1-x}Zr{sub x}N alloy: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Mamta; Gupta, Dinesh C., E-mail: sosfizix@gmail.com, E-mail: mamta-physics@yahoo.co.in [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior – 474 011 (India)

    2016-05-23

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti{sub 1-x}Zr{sub x}N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  14. Neutron-absorbing alloys

    International Nuclear Information System (INIS)

    Portnoi, K.I.; Arabei, L.B.; Gryaznov, G.M.; Levi, L.I.; Lunin, G.L.; Kozhukhov, V.M.; Markov, J.M.; Fedotov, M.E.

    1975-01-01

    A process is described for the production of an alloy consiting of 1 to 20% In, 0.5 to 15% Sm, and from 3 to 18% Hf, the balance being Ni. Such alloys show a good absorption capacity for thermal and intermediate neutrons, good neutron capture efficiency, and good corrosion resistance, and find application in nuclear reactor automatic control and safety systems. The Hf provides for the maintenance of a reasonably high order of neutron capture efficiency throughout the lifetime of a reactor. The alloys are formed in a vacuum furnace operating with an inert gas atmosphere at 280 to 300 mm.Hg. They have a corrosion resistance from 3 to 3.5 times that of the Ag-based alloys commonly employed, and a neutron capture efficiency about twice that of the Ag alloys. Castability and structural strength are good. (U.K.)

  15. Probing the random distribution of half-metallic Co2Mn1-xFexSi Heusler alloys

    NARCIS (Netherlands)

    Wurmehl, S.; Kohlhepp, J.T.; Swagten, H.J.M.; Koopmans, B.; Wójcik, M.; Balke, B.; Blum, C.G.F.; Ksenofontov, V.; Fecher, G.H.; Felser, C.

    2007-01-01

    Co2Mn1-xFexSi Heusler alloys crystallize in the L21 structure. This structure type requires random distribution of Mn and Fe in case of the mixed alloys. The spin echo nuclear magnetic resonance (NMR) technique probes the direct local environments of the active atoms and is thus able to resolve next

  16. Temperature dependence of the magnetostriction in polycrystalline PrFe1.9 and TbFe2 alloys: Experiment and theory

    International Nuclear Information System (INIS)

    Tang, Y. M.; Chen, L. Y.; Huang, H. F.; Xia, W. B.; Zhang, S. Y.; Wei, J.; Tang, S. L.; Du, Y. W.; Zhang, L.

    2014-01-01

    A remarkable magnetostriction λ 111 as large as 6700 ppm was found at 70 K in PrFe 1.9 alloy. This value is even larger than the theoretical maximum of 5600 ppm estimated by the Steven's equivalent operator method. The temperature dependence of λ 111 for PrFe 1.9 and TbFe 2 alloys follows well with the single-ion theory rule, which yields giant estimated λ 111 values of about 8000 and 4200 ppm for PrFe 1.9 and TbFe 2 alloys, respectively, at 0 K. The easy magnetization direction of PrFe 1.9 changes from [111] to [100] as temperature decreases, which leads to the abnormal decrease of the magnetostriction λ. The rare earth sublattice moment increases sharply in PrFe 1.9 alloy with decreasing temperature, resulting in the remarkably largest estimated value of λ 111 at 0 K according to the single-ion theory

  17. Beta decomposition of (Hf/sub x/Zr/sub 1-x/)80Nb20 ternary alloys

    International Nuclear Information System (INIS)

    Jones, W.B.; Taggart, R.; Polonis, D.H.

    1978-01-01

    The processes of beta decomposition have been examined in ternary alloys of the form (Hf/sub x/Zr/sub 1-x/) 80 Nb 20 to determine the influence of Hf additions to a basic Zr 80 Nb 20 composition. In the chill cast condition, Hf additions have been found to decrease the temperature coefficient of electrical resistivity from a value of -0.0015%/K for the binary Zr 80 Nb 20 alloy to a value of -0.011%/K for a (Hf 50 Zr 50 ) 80 Nb 20 ternary alloy. This change is explained in terms of the bcc lattice instability typical of Ti, Zr, and Hf alloys. The Hf additions enhance the kinetics of omega-phase precipitation during aging at 648 K. The aging of a (Hf 05 Zr 95 ) 80 Nb 20 alloy for 12 h results in the precipitation of a high volume fraction of cuboidal shaped omega-phase particles. A phase separation which results in the formation of solute lean discs (β/sub l/) occurs together with the precipitation of the omega-phase. These discs formed both randomly within the matrix and heterogeneously along dislocations and at grain boundaries

  18. Effect of metallurgical factors on the oxidation of Zr - 1% Nb Alloy

    International Nuclear Information System (INIS)

    Soliman, H.M.

    1979-01-01

    The importance of study of the oxidation behaviour of zirconium and its niobium alloys arises from their suitability as cladding and structural materials in nuclear reactors and their use in oxidizing conditions. This work includes the oxidation behaviour of Zr - 1%Nb in both air and steam, and to less extent, zirconium was investigated in air. The effect of 1%Nb, oxidizing medium, fluoride ions contamination and thermal cycling on the oxidation behaviour has been investigated using weight gain, plastic deformation generated during oxidation, electron microscopy , metallography and X- ray techniques. The kinetics of oxidation of Zr-1%Nb alloy have been studied in the temperature range 500 - 1200 degree C and 500 - 900 degree C in both air and steam, respectively. The oxidation rate increases with temperature, Initially, the reaction proceeds with a decreasing rate ( mainly parabolic) followed by transition to a linear or acceleration, indicating breakaway. As the oxidation temperature increases, the time to breakaway transition decreases

  19. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  20. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    International Nuclear Information System (INIS)

    Sun, Zhen-Qi; Huang, Ming-Hui; Hu, Guo-Huai

    2012-01-01

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  1. Raman scattering from Ge{sub 1-x}Sn{sub x} (x ≤ 0.14) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Navarro C, H.; Rodriguez, A. G.; Vidal, M. A. [Universidad Autonoma de San Luis Potosi, Coordinacion para la Innovacion y la Aplicacion de la Ciencia y la Tecnologia, Alvaro Obregon No. 64, 78000 San Luis Potosi, S. L. P. (Mexico); Perez Ladron de G, H. [Universidad de Guadalajara, Centro Universitario de los Lagos, Av. Enrique Diaz de Leon No. 1144, Col. Paseos de la Montana, 47460 Lagos de Moreno, Jalisco (Mexico)

    2015-07-01

    Ge{sub 1-x}Sn{sub x} alloys with x concentration up to 0.14 were grown on Ge(001) and GaAs(001) substrates in a conventional R. F. Magnetron Sputtering system at low substrate temperatures. The structural characteristics of these alloys were studied for different Sn concentrations between 1 to 14% by high resolution X-ray diffraction, and Raman spectroscopy. Contrasting characteristics of the grown layers are observed if the Sn concentration is larger or smaller than 6% as revealed by X-ray diffraction and Raman spectroscopy. (Author)

  2. Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy

    OpenAIRE

    Tao Li; Yong He; Hailong Zhang; Xitao Wang

    2014-01-01

    The microstructure, mechanical property, and in vitro biocorrosion behavior of as-cast single-phase biodegradable Mg–1.5Zn–0.6Zr alloy were investigated and compared with a commercial as-cast AZ91D alloy. The results show that the Mg–1.5Zn–0.6Zr alloy had a single-phase solid solution structure, with an average grain size of 34.7 ± 13.1 μm. The alloy exhibited ultimate tensile strength of 168 ± 2.0 MPa, yield strength of 83 ± 0.6 MPa, and elongation of 9.1 ± 0.6%. Immersion tests and electroc...

  3. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    International Nuclear Information System (INIS)

    Liu, Chih-Yao; Hon, Min-Hsiung; Wang, Moo-Chin; Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long

    2014-01-01

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag 3 Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn 3 . No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging

  4. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chih-Yao [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hon, Min-Hsiung [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80728, Taiwan (China); Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)

    2014-01-05

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag{sub 3}Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn{sub 3}. No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging.

  5. Influence of Radiation Damage and Isochronal Annealing on the Magnetic Susceptibility of Pu1-xAmx Alloys

    International Nuclear Information System (INIS)

    McCall, Scott K.; Fluss, Michael J.; Chung, Brandon W.; Haire, Richard G.

    2008-01-01

    Results of radiation damage in Pu and Pu 1-x Am x alloys studied with magnetic susceptibility, χ(T), and resistivity are presented. Damage accumulated at low temperatures increases χ(T) for all measured alloys, with the trend generally enhanced as the lattice expands. There is a trend towards saturation observable in the damage induced magnetic susceptibility data. that is not evident in similar damage induced resistivity data taken on the same specimen. A comparison of isochronal annealing curves measured by both resistivity and magnetic susceptibility on a 4.3 at% Ga stabilized δ-Pu specimen show that Stage I annealing, where interstitials begin to move, is largely transparent to the magnetic measurement. This indicates that interstitials have little impact on the damage induced increase in the magnetic susceptibility. The isochronal annealing curves of the Pu 1-x Am x alloys do not show distinct annealing stages as expected for alloys. However, samples near 20% Am concentration show an unexpected increase in magnetization beginning when specimens are annealed to 35 K. This behavior is also reflected in a time dependent increase in the magnetic susceptibility of damaged specimens indicative of first order kinetics. These results suggest there may be a metastable phase induced by radiation damage and annealing in Pu 1-x Am x alloys. (authors)

  6. Modern quantitative microstructure analysis on the example of aicu5mg1 alloys

    Directory of Open Access Journals (Sweden)

    Zlatičanin Biljana V.

    2002-01-01

    Full Text Available Using an automatic, QUANTIMET 500 MC, device for quantitative picture analysis and applying linear method of measurement on the example of AlCu5Mg1 alloys, the grain size (min, max and medium values, as well as relative standard measuring errors (RSE, dendrite arm spacing (DAS and length eutectic (Le and also distribution by size (histogram and volume participation of -hard solution and eutectic have been determined. We have also studied the influence of grain-refining additives AlTi5B1 for the same chemical composition of the aluminium-capper-magnesium alloy. It has been concluded that with the increase of titanium content, the mean value of grain size decreases. We have also examined hardness and pressure strength.

  7. Fatigue crack growth rates and fracture toughness of rapidly solidified Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloys

    International Nuclear Information System (INIS)

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L.

    1994-01-01

    The room-temperature fatigue crack growth rates (FCGR) and fracture toughness were evaluated for different crack plane Orientations of an Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloy produced by planar flow casting (PFC) and atomized melt deposition (AMD) processes. For the alloy produced by the PFC process, properties were determined in six different orientations, including the short transverse directions S-T and S-L. Diffusion bonding and adhesive bonding methods were used to prepare specimens for determining FCGR and fracture toughness in the short transverse direction. Interparticle boundaries control fracture properties in the alloy produced by PFC. Fracture toughness of the PFC alloy varies from 13.4 MPa√ bar m to 30.8 MPa√ bar m, depending on the orientation of the crack plane relative to the interparticle boundaries. Fatigue crack growth resistance and fracture toughness are greater in the L-T, L-S, and T-S directions than in the T-L, S-T, and S-L orientations. The alloy produced by AMD does not exhibit anisotropy in fracture toughness and fatigue crack growth resistance in the as-deposited condition or in the extruded condition. The fracture toughness varies from 17.2 MPa√ bar m to 18.5 MPa√ bar m for the as-deposited condition and from 19.8 MPa√ bar m to 21.0 MPa√ bar m for the extruded condition. Fracture properties are controlled by intrinsic factors in the alloy produced by AMD. Fatigue crack growth rates of the AMD alloy are comparable to those of the PFC alloy in the L-T orientation. The crack propagation modes were studied by optical metallographic examination of crack-microstructure interactions and scanning electron microscopy of the fracture surfaces

  8. The influence of alloying elements in aluminium on the grain refinement with ALTI5B1

    Directory of Open Access Journals (Sweden)

    Naglič I.

    2009-07-01

    Full Text Available This work deals with the influence of alloying elements in aluminium on the grain refinement with various additions of AlTi5B1. Grain-refinement tests were made at a cooling rate of 15 °C/s. The results revealed that in both aluminium and an Al-Fe alloy the grain size decreases with increasing additions of the AlTi5B1 grain refiner. We found that for the same boron content the grain size was smaller in the case of the Al-Fe alloy. The difference in the grain sizes for the same content of boron was approximately 15 μm; this is considerably smaller than the difference between the grain sizes in samples with the same difference of growth-restricting factor made at slower cooling rates.

  9. Role of Ag-alloy in the thermal stability of Ag-based ohmic contact to GaN(0 0 0 1) surface

    International Nuclear Information System (INIS)

    Xiong, Zhihua; Qin, Zhenzhen; Zhao, Qian; Chen, Lanli

    2015-01-01

    First-principles calculations are performed to study Ag and Ag-alloy adsorption stability on GaN(0 0 0 1) surface. We find Ag only contact to GaN surface is unstable under high temperature. While Ag-alloy adsorption exhibits better adsorption stability and electronic properties than that of the Ag only contact,due to the enhanced interaction between Ag-alloy and GaN(0 0 0 1) surface. The Ag-alloy, particularly AgNi, is proposed to be used as very promising ohmic contact to GaN for practical applications

  10. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    Science.gov (United States)

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  11. Electronic structure calculations for BaSxSe1-x alloys

    International Nuclear Information System (INIS)

    Feng Zhenbao; Hu Haiquan; Cui Shouxin; Wang Wenjun

    2009-01-01

    A series of first principles calculations have been carried out to study structural, electronic properties of BaS x Se 1-x alloys. We have used the local density as well as the generalized gradient approximations for the exchange-correlation potential. The structural properties of these materials, in particular the composition dependence to the lattice constant and bulk modulus, are found to be linear. It is also found linear relationship between theoretical band gaps and 1/a 2 (where a is lattice constant).

  12. CernVM Co-Pilot: an Extensible Framework for Building Scalable Computing Infrastructures on the Cloud

    Science.gov (United States)

    Harutyunyan, A.; Blomer, J.; Buncic, P.; Charalampidis, I.; Grey, F.; Karneyeu, A.; Larsen, D.; Lombraña González, D.; Lisec, J.; Segal, B.; Skands, P.

    2012-12-01

    CernVM Co-Pilot is a framework for instantiating an ad-hoc computing infrastructure on top of managed or unmanaged computing resources. Co-Pilot can either be used to create a stand-alone computing infrastructure, or to integrate new computing resources into existing infrastructures (such as Grid or batch). Unlike traditional middleware systems, Co-Pilot components communicate using the Extensible Messaging and Presence protocol (XMPP). This allows the system to be easily scaled in case of a high load, and it also simplifies the development of new components. In this contribution we present the latest developments and the current status of the framework, discuss how it can be extended to suit the needs of a particular community, as well as describe the operational experience of using the framework in the LHC@home 2.0 volunteer computing project.

  13. CernVM Co-Pilot: an Extensible Framework for Building Scalable Computing Infrastructures on the Cloud

    International Nuclear Information System (INIS)

    Harutyunyan, A; Blomer, J; Buncic, P; Charalampidis, I; Grey, F; Karneyeu, A; Larsen, D; Lombraña González, D; Lisec, J; Segal, B; Skands, P

    2012-01-01

    CernVM Co-Pilot is a framework for instantiating an ad-hoc computing infrastructure on top of managed or unmanaged computing resources. Co-Pilot can either be used to create a stand-alone computing infrastructure, or to integrate new computing resources into existing infrastructures (such as Grid or batch). Unlike traditional middleware systems, Co-Pilot components communicate using the Extensible Messaging and Presence protocol (XMPP). This allows the system to be easily scaled in case of a high load, and it also simplifies the development of new components. In this contribution we present the latest developments and the current status of the framework, discuss how it can be extended to suit the needs of a particular community, as well as describe the operational experience of using the framework in the LHC at home 2.0 volunteer computing project.

  14. The quasicrystalline phase formation in Al-Cu-Cr alloys produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Sviridova, T.A.; Shevchukov, A.P.; Shelekhov, E.V. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation); Diakonov, D.L. [Bardin Central Research Institute for the Iron and Steel Industry, Moscow 105005 (Russian Federation); Tcherdyntsev, V.V.; Kaloshkin, S.D. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation)

    2011-06-15

    Research highlights: > Formation of decagonal quasicrystalline phase in Al-Cu-Cr alloys. > Obtained decagonal phase belongs to D{sub 3} family of decagonal quasicrystals. > Decagonal phase has 1.26 nm periodicity along 10-fold axis. > Alloys were produced by combination of mechanical alloying and subsequent annealing. > Phase composition of as-milled powders depending on annealing temperature. - Abstract: Almost single-phase decagonal quasicrystal with periodicity of 1.26 nm along 10-fold axis was produced in Al{sub 69}Cu{sub 21}Cr{sub 10} and Al{sub 72.5}Cu{sub 16.5}Cr{sub 11} alloys using combination of mechanical alloying (MA) and subsequent annealing. Phase transformations of as-milled powders depending on annealing temperature in the range of 200-800 deg. C are examined. Since the transformations can be explained based on kinetic and thermodynamic reasons it seems that applied technique (short preliminary MA followed by the annealing) permits to produce the equilibrium phases rather than metastable ones.

  15. Theoretical investigation of the structural, electronic, and thermodynamic properties of CdS1-xSex alloys

    Science.gov (United States)

    Long, Debing; Li, Mingkai; Meng, Dongxue; Ahuja, Rajeev; He, Yunbin

    2018-03-01

    In this work, the structural, electronic, and thermodynamic properties of wurtzite (WZ) and zincblende (ZB) CdS1-xSex alloys are investigated using the density functional theory (DFT) and the cluster expansion method. A special quasirandom structure containing 16 atoms is constructed to calculate the band structures of random alloys. The band gaps of CdS1-xSex alloys are direct and decrease as the Se content increases. The delta self-consistent-field method is applied to correct band gaps that are underestimated by DFT. The band offsets clearly reflect the variation in valence band maxima and conduction band minima, thus providing information useful to the design of relevant quantum well structures. The positive formation enthalpies of both phases imply that CdS1-xSex is an immiscible system and tends to phase separate. The influence of lattice vibrations on the phase diagram is investigated by calculating the phonon density of states. Lattice vibration effects can reduce the critical temperature Tc and increase alloy solid solubilities. This influence is especially significant in the ZB structure. When only chemical interactions are present, the Tc values for WZ- and ZB-CdS1-xSex are 260 K and 249 K, respectively. The lattice vibration enthalpy and entropy lower the Tc to 255 K and 233 K, respectively.

  16. Adiabatic shear localization in a near beta Ti–5Al–5Mo–5 V–1Cr–1Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Sun, Jieying; Wang, Xiaoyan; Fu, Ao [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China)

    2015-07-15

    Adiabatic shear localization plays an important role in the deformation and failure of near beta Ti–5Al–5Mo–5 V–1Cr–1Fe alloy used in aircraft's gear at high rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of an adiabatic shear band under controlled shock-loading experiments. When the nominal shear strain is about 0.68, unstable shear deformation of the alloy emerges after the true flow stress reaches 1100 MPa, the first vibration peak during the split Hopkinson pressure bar testing, and the whole process lasts about 62 μs. The microstructures within the shear band in the Ti–5Al–5Mo–5V–1Cr–1Fe alloy are investigated by means of optical microscopy, scanning electron microscopy and transmission electron microscopy. Phase transformation occurs in the shear band when the nominal shear strain increases to 0.68. A number of equiaxed grains with sizes 50–200 nm and alpha″-phase are in the center of the shear band. Kinetic calculations indicate that during the deformation process, the recrystallized nanosized grains can be formed in the shear band by way of the subgrain boundaries rotation, and the alpha″ phase transformation start after the subgrain boundaries rotated to 30°.

  17. Nickel and cobalt base alloys

    International Nuclear Information System (INIS)

    Houlle, P.

    1994-01-01

    Nickel base alloys have a good resistance to pitting, cavernous or cracks corrosion. Nevertheless, all the nickel base alloys are not equivalent. Some differences exit between all the families (Ni, Ni-Cu, Ni-Cr-Fe, Ni-Cr-Fe-Mo/W-Cu, Ni-Cr-Mo/W, Ni-Mo). Cobalt base alloys in corrosive conditions are generally used for its wear and cracks resistance, with a compromise to its localised corrosion resistance properties. The choice must be done from the perfect knowledge of the corrosive medium and of the alloys characteristics (chemical, metallurgical). A synthesis of the corrosion resistance in three medium (6% FeCl 3 , 4% NaCl + 1% HCl + 0.1% Fe 2 (SO 4 ) 3 , 11.5% H 2 SO 4 + 1.2% HCl + 1% Fe 2 (SO 4 ) 3 + 1% CuCl 2 ) is presented. (A.B.). 11 refs., 1 fig., 12 tabs

  18. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    Science.gov (United States)

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  19. Effects of minor Zr and Sr on as-cast microstructure and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc (wt.%) magnesium alloy

    International Nuclear Information System (INIS)

    Pan Fusheng; Yang Mingbo; Shen Jia; Wu Lu

    2011-01-01

    Research highlights: → Minor Zr and/or Sr additions can effectively refine the grains of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the tensile properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. - Abstract: The effects of minor Zr and Sr on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc (wt.%) alloy were investigated by using optical and electron microscopies, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The results indicate that adding minor Zr and/or Sr to the Mg-3Ce-1.2Mn-0.9Sc alloy does not cause an obvious change in the morphology and distribution of the Mg 12 Ce phase. However, the grains of the Zr and/or Sr-containing alloys are effectively refined. Among the Zr and/or Sr-containing alloys, the grains of the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr are the finest, followed by the alloys with the additions of 0.5 wt.%Zr and 0.1 wt.%Sr, respectively. In addition, small additions of Zr and/or Sr can improve the tensile and creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. Among the Zr and/or Sr-containing alloys, the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr obtains the optimum tensile and creep properties.

  20. First-principles investigations on structural, elastic and mechanical properties of BNxAs1‑x ternary alloys

    Science.gov (United States)

    Zhang, Junqin; Ma, Huihui; Zhao, Bin; Wei, Qun; Yang, Yintang

    2018-05-01

    A systematic investigation of the structural optimization, elastic and mechanical properties of the BNxAs1‑x ternary alloys are reported in the present work using the density-functional theory with the generalized gradient approximation (GGA) of the exchange-correlation functional. Some of the constants which are used to analyze the properties including elastic constants and modulus, and some parameters describing the elastic anisotropy and Debye temperature are also calculated. Our calculations were performed to evaluate the equilibrium lattice constant and band structure compared with the available theoretical works. On the one hand, our results might be expected to provide a theoretical basis for future study of BNxAs1‑x alloys towards elastic or mechanical properties. On the other hand, we draw a conclusion that BNxAs1‑x alloys show direct bandgap when x equals 0.25, 0.5 or 0.75. We obtained the elastic modulus, Poisson’s ratio and universal anisotropic index which are used to demonstrate the elastic anisotropy of these alloys which is proved according to our calculations. Also, we calculated the Debye temperature to illustrate covalent interactions and obtained the lower limit of the thermal conductivity for further research.

  1. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  2. First-Principle Study of the Optical Properties of Dilute-P GaN1-xPx Alloys.

    Science.gov (United States)

    Borovac, Damir; Tan, Chee-Keong; Tansu, Nelson

    2018-04-16

    An investigation on the optical properties of dilute-P GaN 1-x P x alloys by First-Principle Density Functional Theory (DFT) methods is presented, for phosphorus (P) content varying from 0% up to 12.5%. Findings on the imaginary and real part of the dielectric function are analyzed and the results are compared with previously reported theoretical works on GaN. The complex refractive index, normal-incidence reflectivity and birefringence are presented and a difference in the refractive index in the visible regime between GaN and GaNP alloys of ~0.3 can be engineered by adding minute amounts of phosphorus, indicating strong potential for refractive index tunability. The optical properties of the GaN 1-x P x alloys indicate their strong potential for implementation in various III-nitride-based photonic waveguide applications and Distributed Bragg Reflectors (DBR).

  3. Engineering data bases for refractory alloys

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Harms, W.O.

    1985-01-01

    Refractory alloys based on niobium, molybdenum, tantalum, and tungsten are required for the multi-100kW(e) space nuclear reactor power concepts that have been assessed in the SP-100 Program because of the extremely high temperatures involved. A review is presented of the technology efforts on the candidate refractory alloys in the areas of availability/fabricability, mechanical properties, irradiation effects, and compatibility. Of the niobium-base alloys, only Nb-1Zr has a data base that is sufficiently comprehensive for the high level of confidence required in the reference-alloy selection process for the reactor concept to be tested in the Ground Engineering System (GES) Phase of the SP-100 Program. Based on relatively short-term tests, the alloy PWC-11 (Nb-1Zr-0.1C) appears to have significantly greater creep strength than Nb-1Zr; however, concerns as to whether this precipitation-hardened alloy will remain thermally stable during seven years of full-power reactor operation need to be resolved. Additional information on the reference GES alloy will be needed for the detailed engineering design of a space power system and the fabrication of prototypical GES test components. Expedient development and demonstration of an adequate total manufacturing capability will be required if a high risk of significant schedule slippages and cost overruns is to be avoided. 4 refs., 1 fig., 3 tabs

  4. Precipitation kinetics of Al-1.12 Mg{sub 2}Si-0.35 Si and Al-1.07 Mg{sub 2}Si-0.33 Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Gaffar, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)]. E-mail: mgaafar@aucegypt.edu; Mostafa, M.S. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Zeid, E.F. Abo [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2007-02-21

    The kinetics of hardening precipitates of Al-1.12 wt.% Mg{sub 2}Si-0.35 wt.% Si (excess Si) and Al-1.07 wt.% Mg{sub 2}Si-0.33 wt.% Cu (balanced + Cu) alloys have been investigated by means of differential scanning calorimetry and hardness measurements. The excess Si enhances the precipitation kinetics and improves the strength of the material. On the other hand, however addition of Cu assist formation of the Q' phase which positively changed the alloy strength. The high binding energy between vacancies and solute atoms (Si and Mg) enhances the combination of Si, Mg and vacancies to form Si-Mg-vacancy clusters. These clusters act as nucleation sites for GP-zones. The coexistence of the {beta}'- and Q'-precipitates in the balanced + Cu alloy results in a higher peak age hardening compared to the alloy with Si in excess.

  5. Effect of Ce-rich rare earth on microstructure and mechanical properties of Mg-10Zn-5Al-0.1Sb magnesium alloy

    Directory of Open Access Journals (Sweden)

    You Zhiyong

    2012-05-01

    Full Text Available To improve the comprehensive mechanical properties of Mg-10Zn-5Al-0.1Sb magnesium alloy, different amount of Ce-rich rare earth (RE was added to the alloy, and the effect of RE addition on the microstructure and mechanical properties of Mg-10Zn-5Al-0.1Sb alloy was investigated by means of Brinell hardness measurement, scanning electron microscopy (SEM, energy dispersive spectroscope (EDS and X-ray diffraction (XRD. The results show that an appropriate amount of Ce-rich rare earth addition can make the Al4Ce phase particles and CeSb phase disperse more evenly in the alloy. These phases refine the alloy抯 matrix and make the secondary phases [t-Mg32(Al,Zn49 phase and f-Al2Mg5Zn2 phase] finer and more dispersive, therefore significantly improve the mechanical properties of the Mg-10Zn-5Al-0.1Sb alloy. When the RE addition is 1.0 wt.%, the tensile strengths of the alloy both at room temperature and 150 篊 reach the maximum values while the impact toughness is slightly lower than that of the matrix alloy. The hardness increases with the increase of RE addition.

  6. Formation and characterization of Al–Ti–Nb alloys by electron-beam surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Valkov, S., E-mail: stsvalkov@gmail.com [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Petrov, P. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Lazarova, R. [Institute of Metal Science, Equipment and Technologies with Hydro and Aerodynamics Center, Bulgarian Academy of Science, 67 Shipchenski Prohod blvd., 1574 Sofia (Bulgaria); Bezdushnyi, R. [Department of Solid State Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kliment Ohridsky”, 1164 Sofia (Bulgaria); Dechev, D. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria)

    2016-12-15

    Highlights: • Al–Ti–Nb surface alloys have been successfully obtained by electron-beam surface alloying technology. • The alloys consist of (Ti,Nb)Al{sub 3} fractions, distributed in the biphasic structure of (Ti,Nb)Al{sub 3} particles dispersed in α-Al. • The alloying speed does not affect the lattice parameters of (Ti,Nb)Al{sub 3} and, does not form additional stresses, strains etc. • It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. • The measured hardness of (Ti,Nb)Al{sub 3} compound reaches 775 HV[kg/cm{sup 2}] which is much greater than the values of NbAl{sub 3}. - Abstract: The combination of attractive mechanical properties, light weight and resistance to corrosion makes Ti-Al based alloys applicable in many industrial branches, like aircraft and automotive industries etc. It is known that the incorporation of Nb improves the high temperature performance and mechanical properties. In the present study on Al substrate Ti and Nb layers were deposited by DC (Direct Current) magnetron sputtering, followed by electron-beam alloying with scanning electron beam. It was chosen two speeds of the specimen motion during the alloying process: V{sub 1} = 0.5 cm/s and V{sub 2} = 1 cm/s. The alloying process was realized in circular sweep mode in order to maintain the melt pool further. The obtained results demonstrate a formation of (Ti,Nb)Al{sub 3} fractions randomly distributed in biphasic structure of intermetallic (Ti,Nb)Al{sub 3} particles, dispersed in α-Al solid solution. The evaluated (Ti,Nb)Al{sub 3} lattice parameters are independent of the speed of the specimen motion and therefore the alloying speed does not affect the lattice parameters and thus, does not form additional residual stresses, strains etc. It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. The metallographic analyses demonstrate a

  7. Heat treatment effect on the properties of welded joint of niobium alloys of the Nb-1Zr-C system

    International Nuclear Information System (INIS)

    Aref'ev, Yu.V; Chernyshova, T.A.; Pokosov, V.S.

    1976-01-01

    Thermal treatment of weld joints of the alloys Nb-1 Zr-(0.01-0.12)C at 800-900 deg C leads to decomposition of the solid solution of the weld metal which is accompanied with a decrease in plasticity and impact strength. The decomposition of the solid solution takes place even in a relatively pure alloy containing only 0.025% of intrusion impurities. Thermal treatment is reasonable only when carbon content in the alloys is no less than 0.1%. The decomposition of the solid solution in the weld metal of the alloy containing 0.12% of C takes place during thermal treatment at the expense of liberating niobium carbides Nb 3 C 2 and Nb 2 C. When rearrangement takes place, i it is Nb 2 C that liberates mainly

  8. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  9. L1{sub 0} phase formation in ternary FePdNi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Arango, A.M. [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Bordeaux, N.C. [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); Liu, J.; Barmak, K. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Lewis, L.H., E-mail: lhlewis@neu.edu [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States)

    2015-11-05

    Metallurgical routes to highly metastable phases are required to access new materials with new functionalities. To this end, the stability of the tetragonal chemically ordered L1{sub 0} phase in the ternary Fe–Pd–Ni system is quantified to provide enabling information concerning synthesis of L1{sub 0}-type FeNi, a highly attractive yet highly elusive advanced permanent magnet candidate. Fe{sub 50}Pd{sub 50−x}Ni{sub x} (x = 0–7 at%) samples were arc-melted and annealed at 773 K (500 °C) for 100 h to induce formation of the chemically ordered L1{sub 0} phase. Coupled calorimetry, structural and magnetic investigations allow determination of an isothermal section of the ternary Fe–Pd–Ni phase diagram featuring a single phase L1{sub 0} region near the FePd boundary for x < 6 at%. It is demonstrated that increased Ni content in Fe{sub 50}Pd{sub 50−x}Ni{sub x} alloys systematically decreases the order-disorder transition temperature, resulting in a lower thermodynamic driving force for the ordering phase transformation. The Fe{sub 50}Pd{sub 50−x}Ni{sub x} L1{sub 0} → fcc disordering transformation is determined to occur via a two-step process, with compositionally-dependent enthalpies and transition temperatures. These results highlight the need to investigate ternary alloys with higher Ni content to determine the stability range of the L1{sub 0} phase near the FeNi boundary, thereby facilitating kinetic access to the important L1{sub 0} FeNi ferromagnetic phase. - Highlights: • Chemical ordering in FePdNi enhances intrinsic and extrinsic magnetic properties. • 773 K annealed FePdNi alloys studied show a stable L1{sub 0} phase for Ni ≤ 5.2 at%. • Chemical disordering in FePdNi occurs by a previously unreported two-step process. • Ni additions to FePd dramatically decrease the chemical order-disorder temperature. • The chemical-ordering transformation kinetics are greatly affected by Ni content.

  10. Corrosion cracking resistance of the VT3-1 titanium alloy with initial defects in the metal

    International Nuclear Information System (INIS)

    Konradi, G.G.; Mozhaev, A.V.; Zmievskij, V.I.; Sokolov, V.S.

    1978-01-01

    Investigated is the corrosion cracking resistance of thick sheet half-finished product of the VT3-1 alloy in 3% NaCl solution during 800 hrs. It is shown that crack development occurs during the first 24 hours with stress intensities above the threshold coefficient of stress intensities. Ratios of crack sizes permissible for using the alloy in the air and NaCl solution media are obtained

  11. Magnetic behavior of the alloys (Ce{sub 1-x}Y{sub x}){sub 2}PdSi{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, R [Tata Inst. of Fundamental Res., Colaba, Mumbai (India); Sampathkumaran, E V [Tata Inst. of Fundamental Res., Colaba, Mumbai (India)

    1996-11-01

    The results of X-ray diffraction (Cu K{sub {alpha}}), electrical resistivity ({rho}), heat capacity (C) and magnetic susceptibility ({chi}) measurements are reported for a new pseudoternary solid solution, (Ce{sub 1-x}Y{sub x}){sub 2}PdSi{sub 3} (x=0.0, 0.2, 0.5, 0.8, 1.0). The X-ray diffraction patterns indicate that single phase alloys can be formed in a derived version of the AlB{sub 2}-type hexagonal structure for x{>=}0.2, while for x=0.0, apparently there is an additional weak phase. In the case of the alloy Ce{sub 2}PdSi{sub 3}, the majority of Ce ions do not exhibit magnetic ordering down to 1.4 K, though magnetic ordering at 7 K from one of the two crystallographically inequivalent sites cannot be ruled out. For other compositions, no magnetic ordering is observed above 1.4 K. The Kondo effect is operative in all these alloys, with the strength of the Kondo effect increasing with the compression of the lattice by the gradual replacement of Ce by Y. The C/T exhibits a low temperature enhancement in all Ce containing alloys. (orig.).

  12. On The Utilization of (1-X)Cu-X Pb) Alloys for Gamma-Rays Shielding

    International Nuclear Information System (INIS)

    Abd El-Latif, A.A.; Saeid, Kh.S.; Abd El-Latif, A.A.

    2011-01-01

    The present work deals with the study of the attenuation properties of gamma rays for [(1-X) Cu -X Pb] alloys where, x=10%, 20%, 30%, and 40% Pb waste by weight. Investigation has been performed by measuring the transmitted gamma ray spectra behind cylindrical samples of [(1-X) Cu - X Pb] alloys of different thicknesses. A collimated beam of gamma ray measured by using γ - ray spectrometer NaI(Tl) Scintillation detector with multichannel analyzer (MCA) cassy. Total mass attenuation coefficients (μ/ρ) of γ-ray have been evaluated and calculated using measured results and XCOM code respectively . Comparison between measured and calculated results shows a reasonable divergence at 0.511 MeV ,and 0.662 MeV γ-ray energies, in addition there is a convergence at 1.17 MeV, 1.274 MeV, and 1.3 MeV γ-ray energies

  13. Microstructural Evolution of Al-1Fe (Weight Percent) Alloy During Accumulative Continuous Extrusion Forming

    Science.gov (United States)

    Wang, Xiang; Guan, Ren-Guo; Tie, Di; Shang, Ying-Qiu; Jin, Hong-Mei; Li, Hong-Chao

    2018-04-01

    As a new microstructure refining method, accumulative continuous extrusion forming (ACEF) cannot only refine metal matrix but also refine the phases that exist in it. In order to detect the refinements of grain and second phase during the process, Al-1Fe (wt pct) alloy was processed by ACEF, and the microstructural evolution was analyzed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results revealed that the average grain size of Al-1Fe (wt pct) alloy decreased from 13 to 1.2 μm, and blocky Al3Fe phase with an average length of 300 nm was granulated to Al3Fe particle with an average diameter of 200 nm, after one pass of ACEF. Refinement of grain was attributed to continuous dynamic recrystallization (CDRX), and the granulation of Al3Fe phase included the spheroidization resulting from deformation heat and the fragmentation caused by the coupling effects of strain and thermal effect. The spheroidization worked in almost the entire deformation process, while the fragmentation required strain accumulation. However, fragmentation contributed more than spheroidization. Al3Fe particle stimulated the formation of substructure and retarded the migration of recrystallized grain boundary, but the effect of Al3Fe phase on refinement of grain could only be determined by the contrastive investigation of Al-1Fe (wt pct) alloy and pure Al.

  14. Study of resistance to deformation dependence on temperature and strain degree during working with different rates for ABM-1 alloy

    International Nuclear Information System (INIS)

    Kharlamov, V.V.; Dvinskij, V.M.; Vashlyaev, Eh.V.; Dyblenko, Z.A.; Khamatov, R.I.; Zverev, K.P.

    1981-01-01

    On the basis of approximation of the experimental curves partial differential equations relating ABM-1 alloy deformation resistance to the deformation parameters are obtained. Using statistical processing of the experimental data the regression equations of the dependence of the deformation resistance on temperature rate and relative reduction of the samples are found. In the 2.1-23.6 1/c deformation rate range hardening and weakening rates of the AMB-1 alloy increases with the increase of the latter. The data obtained permit to calculate the deformation parameters of the studied alloy for different processes of metal plastic working in the studied temperature range [ru

  15. Comparison of three Ni-Hard I alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N.; Hawk, Jeffrey A.; Rice, J. (Texaloy Foundry Co., Inc., Floresville, Texas)

    2004-09-01

    This report documents the results of an investigation which was undertaken to reveal the similarities and differences in the mechanical properties and microstructural characteristics of three Ni-Hard I alloys. One alloy (B1) is ASTM A532 class IA Ni-Hard containing 4.2 wt. pct. Ni. The second alloy (B2) is similar to B1 but higher in Cr, Si, and Mo. The third alloy (T1) also falls in the same ASTM specification, but it contains 3.3 wt. pct. Ni. The alloys were evaluated in both as-cast and stress-relieved conditions except for B2, which was evaluated in the stress-relieved condition only. While the matrix of the high Ni alloys is composed of austenite and martensite in both conditions, the matrix of the low Ni alloy consists of a considerable amount of bainite, in addition to the martensite and the retained austenite in as cast condition, and primarily bainite, with some retained austenite, in the stress relieved condition. It was found that the stress relieving treatment does not change the tensile strength of the high Ni alloy. Both the as cast and stress relieved high Ni alloys had a tensile strength of about 350 MPa. On the other hand, the tensile strength of the low Ni alloy increased from 340 MPa to 452 MPa with the stress relieving treatment. There was no significant difference in the wear resistance of these alloys in both as-cast and stressrelieved conditions.

  16. Theoretical calculations of the surface tension of Ag(1-x)-Cu(x) liquid alloys

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Highlights: → A thermodynamic model for calculating the surface tension, and its temperature and composition dependences, of liquid binary alloys is described. → The model does not require the prior knowledge of the surface concentration and Gibbs energy. → The surface tension of the liquid Ag-Cu binary alloys has been calculated as a function of temperature and concentration. → The calculated values agree well with existing experimental data. - Abstract: The surface tension of silver-copper binary liquid alloys is calculated, in the frame work of Eyring theory. The calculations were made for different compositions (mole fraction, x Cu = 0, 0.2, 0.4, 0.6, 0.8 and 1), in the temperature range 1100-1800 K. The surface tension decreases with temperature increase, at a fixed copper fraction x Cu , and increases with increasing copper content. The calculated results are appropriately compared with existing literature data.

  17. Variation of equation of state parameters in the Mg2(Si 1-xSnx) alloys

    KAUST Repository

    Pulikkotil, Jiji Thomas Joseph

    2010-08-03

    Thermoelectric performance peaks up for intermediate Mg2(Si 1-x:Snx) alloys, but not for isomorphic and isoelectronic Mg2(Si1-xGex) alloys. A comparative study of the equation of state parameters is performed using density functional theory, Green\\'s function technique, and the coherent potential approximation. Anomalous variation of the bulk modulus is found in Mg2(Si1-xSn x) but not in the Mg2(Si1-xGex) analogs. Assuming a Debye model, linear variations of the unit cell volume and pressure derivative of the bulk modulus suggest that lattice effects are important for the thermoelectric response. From the electronic structure perspective, Mg2(Si1-xSnx) is distinguished by a strong renormalization of the anion-anion hybridization. © 2010 IOP Publishing Ltd.

  18. Effect of heat treatment on the precipitation in Al-1 at.% Mg-x at.% Si (x = 0.6, 1.0 and 1.6) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Afify, N. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: afify@aun.edu.eg; Mostafa, M.S.; Abbady, Gh. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2009-05-27

    The fine-scale precipitates, that occurs during aging, the supersaturated Al-1.0 at.% Mg-x at.% Si (x = 0.6, 1.0 and 1.6) alloys have been investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The strength of the alloys increases as a high density of very fine {beta}'' coherent and {beta}' semicoherent precipitates nucleate. The precipitates compositions have been determined by analyzing the X-ray diffraction (XRD) charts, by using Scherrer equation. The obtained results showed that the {beta}'' and {beta}' precipitates size lies in the nanometer range (from {approx}5 nm to {approx}32 nm). In addition, increasing Si concentration has exhibited an increase in the density of the precipitates, which fortifies the physical properties.

  19. Electrochemical Properties of Hydrogen-Storage Alloys ZrMn{sub 2}Ni{sub x} and ZrMnNi{sub 1+x} for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Ryoung [Faculty of Applied Chemistry, Chonnam National University, Kwangju (Korea); Kwon, Ik Hyun [Automobile High-Technology Research Institute, Division of Advanced Materials Engineering, Chonbuk National University, Chonju (Korea)

    2001-04-01

    In order to improve the performance of AB{sub 2}-type hydrogen-storage alloys for Ni-MH secondary battery, AB{sub 2}-type alloys, ZrMn{sub 2}Ni{sub x}(x=0.0, 0.3, 0.6, 0.9 and 1.2) and ZrMnNi{sub 1+x}(x=0.0, 0.1, 0.2, 0.3 and 0.4) were prepared as the Zr-Mn-Ni three component alloys. The hydrogen-storage and the electrochemical properties were investigated. The C14 Laves phase formed in all alloys of ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2). The equilibrium plateau pressure of the alloy, ZrMn{sub 2}Ni{sub 0.6}-H{sub 2} system, was about 0.5 atm at 30 degree C. Among these alloys, ZrMn{sub 2}Ni{sub 0.6} was the easiest to activate, and it had the largest discharge capacity as well as the best cycling performance. The C14 Laves phase also formed in all alloys of ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4). The equilibrium plateau pressure of the alloy, ZrMnNi{sub 1.0}-H{sub 2} system, was about 0.45 atm at 30 degree C. Among these alloys, ZrMnNi{sub 1.0} was the easiest to activate, taking only 3 charge-discharge cycles, and it had the largest discharge capacity of 42 mAh/g. Among these alloys, ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2) and ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4), ZrMnNi{sub 1.0} had the largest discharge capacity (maximum value of 42 mAh/g), and it showed the fastest activation and good cycling performance. 23 refs., 4 figs., 2 tabs.

  20. Noninjection Synthesis of CdS and Alloyed CdSxSe1−xNanocrystals Without Nucleation Initiators

    Directory of Open Access Journals (Sweden)

    Zou Yu

    2010-01-01

    Full Text Available Abstract CdS and alloyed CdSxSe1−x nanocrystals were prepared by a simple noninjection method without nucleation initiators. Oleic acid (OA was used to stabilize the growth of the CdS nanocrystals. The size of the CdS nanocrystals can be tuned by changing the OA/Cd molar ratios. On the basis of the successful synthesis of CdS nanocrystals, alloyed CdSxSe1−x nanocrystals can also be prepared by simply replacing certain amount of S precursor with equal amount of Se precursor, verified by TEM, XRD, EDX as well as UV–Vis absorption analysis. The optical properties of the alloyed CdSxSe1−x nanocrystals can be tuned by adjusting the S/Se feed molar ratios. This synthetic approach developed is highly reproducible and can be readily scaled up for potential industrial production.

  1. Structural and electronic properties of Si{sub 1–x}Ge{sub x} alloy nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Iori, Federico [Dipartimento di Scienze e Metodi dell' Ingegneria, Centro Interdipartimentale Intermech and En and tech, Università di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42122 Reggio Emilia (Italy); European Theoretical Spectroscopy Facility (ETSF) and Institut de Ciència de Materials de Barcelona (ICMAB–CSIC), Campus de Bellaterra, 08193 Bellaterra, Barcelona (Spain); Ossicini, Stefano [Dipartimento di Scienze e Metodi dell' Ingegneria, Centro Interdipartimentale Intermech and En and tech, Università di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42122 Reggio Emilia (Italy); “Centro S3”, CNR-Istituto di Nanoscienze, Via Campi 213/A, 41125 Modena (Italy); Rurali, Riccardo, E-mail: rrurali@icmab.es [Institut de Ciència de Materials de Barcelona (ICMAB–CSIC), Campus de Bellaterra, 08193 Bellaterra, Barcelona (Spain)

    2014-10-21

    We present first-principles density-functional calculations of Si{sub 1–x}Ge{sub x} alloy nanowires. We show that given the composition of the alloy, the structural properties of the nanowires can be predicted with great accuracy by means of Vegard's law, linearly interpolating the values of a pure Si and a pure Ge nanowire of the same diameter. The same holds, to some extent, also for electronic properties such as the band-gap. We also assess to what extend the band-gap varies as a function of disorder, i.e., how it changes for different random realization of a given concentration. These results make possible to tailor the desired properties of SiGe alloy nanowires starting directly from the data relative to the pristine wires.

  2. Magnesium secondary alloys: Alloy design for magnesium alloys with improved tolerance limits against impurities

    Energy Technology Data Exchange (ETDEWEB)

    Blawert, C., E-mail: carsten.blawert@gkss.d [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Fechner, D.; Hoeche, D.; Heitmann, V.; Dietzel, W.; Kainer, K.U. [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Zivanovic, P.; Scharf, C.; Ditze, A.; Groebner, J.; Schmid-Fetzer, R. [TU Clausthal, Institut fuer Metallurgie, Robert-Koch-Str. 42, 38678 Clausthal-Zellerfeld (Germany)

    2010-07-15

    The development of secondary magnesium alloys requires a completely different concept compared with standard alloys which obtain their corrosion resistance by reducing the levels of impurities below certain alloy and process depending limits. The present approach suitable for Mg-Al based cast and wrought alloys uses a new concept replacing the {beta}-phase by {tau}-phase, which is able to incorporate more impurities while being electro-chemically less detrimental to the matrix. The overall experimental effort correlating composition, microstructure and corrosion resistance was reduced by using thermodynamic calculations to optimise the alloy composition. The outcome is a new, more impurity tolerant alloy class with a composition between the standard AZ and ZC systems having sufficient ductility and corrosion properties comparable to the high purity standard alloys.

  3. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  4. First-principles study of electronic properties of FeSe{sub 1-x}S{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P. [Department of Physics, Indian Institute of Technology-Bombay, Mumbai-400076 (India)

    2016-05-06

    We have studied the electronic and superconducting properties of FeSe{sub 1-x}S{sub x} (x = 0.0, 0.04) alloys by first-principles calculations using the Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). The electronic structure calculations show the ground states of S-doped FeSe to be nonmagnetic. We present the results of our unpolarized calculations for these alloys in terms of density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe and FeSe{sub 0.96}S{sub 0.04} alloys. We find that the substitution of S at Se site into FeSe exhibit the subtle changes in the electronic structure with respect to the parent FeSe. We have also estimated bare Sommerfeld constant (γ{sub b}), electron-phonon coupling constant (λ) and the superconducting transition temperature (T{sub c}) for these alloys, which were found to be in good agreement with experiments.

  5. Microstructure and mechanical properties of spray-deposited Mg-12.55Al-3.33Zn-0.58Ca-1Nd alloy

    International Nuclear Information System (INIS)

    Bai Pucun; Dong Taishang; Hou Xiaohu; Zhao Chunwang; Xing Yongming

    2010-01-01

    A Mg-Al-Zn-Ca-Nd magnesium alloy was prepared by spray forming technology, and the spray-deposited alloy was subsequently hot-extruded with a reduction rate of 16:1 at 623 K. The mechanical properties of the extruded alloy were investigated, and the result shows that the spray-formed Mg alloy offers superior tensile strength with poor ductility. The morphologies, fracture characteristic and chemical compositions of the extruded alloy were then explored by scanning electron microscopy with energy dispersive spectrometer. Furthermore, microstructure of the extruded alloy was examined by X-ray diffractometry and transmission electron microscopy. The results indicate that the microstructure of the spray-deposited magnesium alloy consists of α-Mg and Al 2 Ca phases, and the Al 2 Ca compound is distributed along the grain boundaries of the primary α-Mg. Moreover, twin substructure is found to exist in microstructure of the Al 2 Ca phase, rare earth Nd in the Al 2 Ca phase in the form of solid solution.

  6. Microemulsion synthesis and magnetic properties of Fe{sub x}Ni{sub (1−x)} alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, H., E-mail: hossein.beygi@stu-mail.um.ac.ir; Babakhani, A.

    2017-01-01

    This paper investigates synthesis of Fe{sub x}Ni{sub (1−x)} bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. Fe{sub x}Ni{sub (1−x)} nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl{sub 2}·6H{sub 2}O to FeCl{sub 2}·4H{sub 2}O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of Fe{sub x}Ni{sub (1−x)} alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like Fe{sub x}Ni{sub (1−x)} alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties. - Highlights: • Fe{sub x}Ni{sub (1−x)} alloy NPs synthesized by simultaneous metal ions reduction in microemulsion. • Finer NPs synthesized at lower amount of oil and water and higher amount of CTAB. • Chain-like Fe{sub x}Ni{sub (1−x)} NPs are ferromagnetic; higher aspect ratio, more magnetization. • Spherical Fe{sub x}Ni({sub 1−x)} NPs with smaller size (7 nm) are superparamagnetic. • Spherical Fe{sub x}Ni{sub (1−x)} nanoparticles with higher x had increased magnetic properties.

  7. Influence of chemical composition of zirconium alloy E110 on embrittlement under LOCA conditions - Part 1: Oxidation kinetics and macrocharacteristics of structure and fracture

    Science.gov (United States)

    Nikulin, S. A.; Rozhnov, A. B.; Belov, V. A.; Li, E. V.; Glazkina, V. S.

    2011-11-01

    Exploratory investigations of the influence of alloying and impurity content in the E110 alloy cladding tubes on the behavior under conditions of Loss of Coolant Accidents (LOCA) has been performed. Three alloys of E110 type have been tested: E110 alloy of nominal composition Zr-1%Nb (E110), E110 alloy of modified composition Zr-1%Nb-0.12%Fe-0.13%O (E110M), E110 alloy of nominal composition Zr-1%Nb with reduced impurity content (E110G). Alloys E110 and E110M were manufactured on the electrolytic basis and alloy E110G was manufactured on the basis of zirconium sponge. The high temperature oxidation tests in steam ( T = 1100 °C, 18% of equivalent cladding reacted (ECR)) have been conducted, kinetics of oxidation was investigated. Quantitative research of structure and fracture macrocharacteristics was performed by means of optical and electron microscopy. The results received were compared with the residual ductility of specimens. The results of the investigation showed the existence of "breakaway oxidation" kinetics and white spalling oxide in E110 and E110M alloys while the specimen oxidation kinetics in E110G alloy was characterized by a parabolic law and specimens had a dense black oxide. Oxygen and iron alloying in the E110 alloy positively changed the macrocharacteristics of structure and fracture. However, in general, it did not improve the resistance to embrittlement in LOCA conditions apparently because of a strong impurity influence caused by electrolytic process of zirconium production.

  8. Austenitic alloys Fe-Ni-Cr dominating

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Austenitic alloy essentially comprising 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminium, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06% zirconium, the balance being iron. The characteristic of this alloy is a conventional elasticity limit to within 2% of at least 450 MPa, with a maximum tensile strength of at least 500 MPa at a test temperature of 650 0 C after immersion annealing at 1038 0 C and 30% hardening. To this effect the invention concerns Ni-Cr-Fe high temperature alloys possessing excellent mechanical strength characteristics, that can be obtained with lower levels of nickel and chromium than those used in alloys of this kind in the present state of the technique, a higher amount of niobium than in the previous alloys and with the addition of 0.5 to 1.5% vanadium [fr

  9. CernVM Co-Pilot: a Framework for Orchestrating Virtual Machines Running Applications of LHC Experiments on the Cloud

    International Nuclear Information System (INIS)

    Harutyunyan, A; Sánchez, C Aguado; Blomer, J; Buncic, P

    2011-01-01

    CernVM Co-Pilot is a framework for the delivery and execution of the workload on remote computing resources. It consists of components which are developed to ease the integration of geographically distributed resources (such as commercial or academic computing clouds, or the machines of users participating in volunteer computing projects) into existing computing grid infrastructures. The Co-Pilot framework can also be used to build an ad-hoc computing infrastructure on top of distributed resources. In this paper we present the architecture of the Co-Pilot framework, describe how it is used to execute the jobs of the ALICE and ATLAS experiments, as well as to run the Monte-Carlo simulation application of CERN Theoretical Physics Group.

  10. Study of fatigue crack propagation in magnesium alloys

    International Nuclear Information System (INIS)

    Yarema, S.Ya.; Zinyuk, O.D.; Ostash, O.P.; Kudryashov, V.G.; Elkin, F.M.

    1981-01-01

    Fatigue crack propagation in standard (MA2-1, MA8) and super light (MA21, MA18) alloys has been investigated in the whole range of load amplitude changes-from threshold to critical; the materials have been compared by cyclic crack resistance, fractographic analysis has been made. It is shown that MA2-1 alloy crack resistance is slightly lower than the resistance of the other three alloys. MA8 and MA21 alloys having similar mechanical properties almost do not differ in cyclic crack resistance as well. MA18 alloy has the highest resistance to fatigue crack propagation in the whole range of Ksub(max) changes. The presented results on cyclic crack resistance of MA21 and MA18 alloys agree with the data on statistic fracture toughness. The fractures have been also investigated using a scanning electron microscope. Fracture microrelieves of MA8 and MA21 alloys are very similar. At low crack propagation rates (v - 7 m/cycle) it develops through grains, in MA2-1 alloy fracture intergrain fracture areas can be observed. In MA8 and MA21 alloy fractures groove covered areas can be seen alonside with areas of slipping plane laminatron; their specific weight increases with #betta# decrease. Lower crack propagation rates and higher values of threshold stress intensity factors for MA8 and MA21 alloys than for MA2-1 alloy are caused by the absence of intergrain fracture

  11. Band gap characterization of ternary BBi1−xNx (0≤x≤1) alloys using modified Becke–Johnson (mBJ) potential

    International Nuclear Information System (INIS)

    Yalcin, Battal G.

    2015-01-01

    The semi-local Becke–Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi 1−x N x (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi 1−x N x structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew–Burke–Ernzerhof (PBE). For electronic properties the modified Becke–Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi 1−x N x almost perfectly matches with Vegard's law. The spin–orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations

  12. Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys

    Science.gov (United States)

    Kukshal, Vikas; Patnaik, Amar; Bhat, I. K.

    2018-04-01

    The present paper investigates the effect of Co addition on the alloying behaviour, microstructure and the resulting properties of cast AlCr1.5CuFeNi2Cox high-entropy alloys intended to be used for high temperature applications. The elements Al, Cr, Cu, Fe, Ni and Co (Purity > 99) weighing approximately 800 g was melted in a high temperature vacuum induction furnace. The microstructure, phase transformation, density, microhardness and compressive strength of the samples were analysed using x-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers microhardness tester and universal Testing machine. The crystalline structure of the alloys exhibits simple FCC and BCC phases. The microstructures investigation of the alloys shows the segregation of copper in the interdendritic region resulting in Cu-rich FCC phase. The addition of Co further enhances the formation of FCC phase resulting in the decrease in micro hardness value of the alloys, which varies from 471 HV to 364 HV with increase in the cobalt content from x = 0 to x = 1 (molar ratio). The similar decreasing trend is also observed for the compressive strength of the alloys.

  13. Comment on "An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model" by Purcell et al.

    Science.gov (United States)

    Richard Peltier, W.; Argus, Donald F.; Drummond, Rosemarie

    2018-02-01

    The most recently published model of the glacial isostatic adjustment process in the ICE-NG (VMX) sequence from the University of Toronto, denoted ICE-6G_C (VM5a), was originally developed to degree and order 256 in spherical harmonics and has been shown to provide accurate fits to a voluminous database of GPS observations from North America, Eurasia, and Antarctica, to time dependent gravity data being provided by the GRACE satellites, and to radiocarbon-dated relative sea level histories through the Holocene epoch. The authors of the Purcell et al. (2016, https://doi.org/10.1002/2015JB012742) paper have suggested this model to be flawed. We have produced a further version of our model, denoted ICE-6G_D (VM5a), by employing the same BEDMAP2 bathymetry for the Southern Ocean as employed in their analysis which has somewhat reduced the differences between our results. However, significant physically important differences remain, including the magnitude of present-day vertical crustal motion in the embayments and in the spectrum of Stokes coefficients for present-day geoid height time dependence which continues to "flatten" at high spherical harmonic degree. We explore the reasons for these differences and trace them to the use by Purcell et al. of a loading history for the embayments that differs significantly from that tabulated for both the original and modified versions of our model.

  14. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  15. Nickel aluminide alloy suitable for structural applications

    Science.gov (United States)

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  16. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  17. The modification of some properties of Al-2%Mg alloy by Ti &Li alloying elements

    Directory of Open Access Journals (Sweden)

    Talib Abdulameer Jasim

    2017-11-01

    Full Text Available Aluminium-Magnisium alloys are light, high strength with resistance to corrosion and good weldability. When the content of magnesium  exceeds 3% there is a tendency to stress corrosion . This work is an attempt is to prepare low density alloy with up to approximately 2.54 g / cm3 by adding different contents of Ti, and lithium to aluminum-2%Magnisium alloy. The lithium is added in two aspects, lithium chloride and pure metal. The casting performed using conventional casting method. Moreover, solution heat treatment (SHT at 520 ºC for 4 hrs, quenching in cold water, and aging at 50ºC for 4 days were done to get better mechanical properties of all samples. Microstructure was inspected by light optical microscope before and after SHT. Alloy3 which contains 1.5%Ti was tested by SEM and EDS spectrometer to exhibit the shape and micro chemical analysis of Al3Ti phase. Hardness, ultimate tensile strength, and modulus of elasticity were tested for all alloys. The results indicated that Al3Ti phase precipitates in alloys contain 0.5%T, 1%Ti, And 1.5%Ti.  The phases Al3Li as well as Al3Ti were precipitated in alloy4 which contains 2%Ti, and 2.24%Li. Mechanical properties test results also showed that the alloy4 has achieved good results, the modulus of elasticity chanced from 310.65GPa before SHT to 521.672GPa, after SHT and aging, the ultimate tensile strength was changed from 365MPa before SHT to 469MPa, after SHT and aging,  and hardness was increased from 128 to 220HV.

  18. In vitro corrosion and biocompatibility of binary magnesium alloys.

    Science.gov (United States)

    Gu, Xuenan; Zheng, Yufeng; Cheng, Yan; Zhong, Shengping; Xi, Tingfei

    2009-02-01

    As bioabsorbable materials, magnesium alloys are expected to be totally degraded in the body and their biocorrosion products not deleterious to the surrounding tissues. It's critical that the alloying elements are carefully selected in consideration of their cytotoxicity and hemocompatibility. In the present study, nine alloying elements Al, Ag, In, Mn, Si, Sn, Y, Zn and Zr were added into magnesium individually to fabricate binary Mg-1X (wt.%) alloys. Pure magnesium was used as control. Their mechanical properties, corrosion properties and in vitro biocompatibilities (cytotoxicity and hemocompatibility) were evaluated by SEM, XRD, tensile test, immersion test, electrochemical corrosion test, cell culture and platelet adhesion test. The results showed that the addition of alloying elements could influence the strength and corrosion resistance of Mg. The cytotoxicity tests indicated that Mg-1Al, Mg-1Sn and Mg-1Zn alloy extracts showed no significant reduced cell viability to fibroblasts (L-929 and NIH3T3) and osteoblasts (MC3T3-E1); Mg-1Al and Mg-1Zn alloy extracts indicated no negative effect on viabilities of blood vessel related cells, ECV304 and VSMC. It was found that hemolysis and the amount of adhered platelets decreased after alloying for all Mg-1X alloys as compared to the pure magnesium control. The relationship between the corrosion products and the in vitro biocompatibility had been discussed and the suitable alloying elements for the biomedical applications associated with bone and blood vessel had been proposed.

  19. Analysis of the creep behaviour of die-cast Mg–3Al–1Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, S.M., E-mail: suming.zhu@monash.edu [CAST Cooperative Research Centre, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Easton, M.A. [CAST Cooperative Research Centre, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Gibson, M.A. [CAST Cooperative Research Centre, CSIRO Process Science and Engineering, Clayton, Victoria 3169 (Australia); Dargusch, M.S. [Centre for Advanced Materials Processing and Manufacturing, School of Mechanical and Mining Engineering, The University of Queensland, Queensland 4075 (Australia); Defence Materials Technology Centre, The University of Queensland, Queensland 4075 (Australia); Nie, J.F. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia)

    2013-08-20

    The creep behaviour of die-cast Mg–3Al–1Si (AS31) alloy has been studied at 125 °C, 150 °C and 175 °C with stresses ranging 50–110 MPa. The alloy exhibits anomalously high stress exponents, i.e. 14.4 at 125 °C, 11.6 at 150 °C and 9.5 at 175 °C. Contrary to work reported previously, these high stress exponents cannot be rationalised using the threshold stress approach that is commonly adopted in analysing creep behaviour of dispersion strengthened alloys or metal matrix composites. It is shown that the observed high stress exponents are associated with the dominance of power-law breakdown creep in this study, and the stress dependence can be well described by the Garofalo sinh relationship with the natural exponent of 5. Transmission electron microscopy (TEM) observations reveal that cross-slip of 〈a〉 type dislocations is probably the controlling creep mechanism.

  20. Analysis of the creep behaviour of die-cast Mg–3Al–1Si alloy

    International Nuclear Information System (INIS)

    Zhu, S.M.; Easton, M.A.; Gibson, M.A.; Dargusch, M.S.; Nie, J.F.

    2013-01-01

    The creep behaviour of die-cast Mg–3Al–1Si (AS31) alloy has been studied at 125 °C, 150 °C and 175 °C with stresses ranging 50–110 MPa. The alloy exhibits anomalously high stress exponents, i.e. 14.4 at 125 °C, 11.6 at 150 °C and 9.5 at 175 °C. Contrary to work reported previously, these high stress exponents cannot be rationalised using the threshold stress approach that is commonly adopted in analysing creep behaviour of dispersion strengthened alloys or metal matrix composites. It is shown that the observed high stress exponents are associated with the dominance of power-law breakdown creep in this study, and the stress dependence can be well described by the Garofalo sinh relationship with the natural exponent of 5. Transmission electron microscopy (TEM) observations reveal that cross-slip of 〈a〉 type dislocations is probably the controlling creep mechanism

  1. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    International Nuclear Information System (INIS)

    Cabral P, A.; Garcia S, I.; Contreras V, J. A.; Garcia S, F.; Nava, N.

    2010-01-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  2. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Garcia S, I. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Contreras V, J. A.; Garcia S, F. [Universidad Autonoma del Estado de Mexico, Facultad de Ciencias, El Cerrillo Piedras Blancas, Toluca, Estado de Mexico (Mexico); Nava, N., E-mail: agustin.cabral@inin.gob.m [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico)

    2010-07-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  3. Thermo-mechanical processing of a Ti 49.5Al 1.25Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, A.; Viana, F.; Vieira, M.F.; Santos, H.M.C. [GMM/IMAT, Dept. de Engenharia Metalurgica e de Materiais, FEUP, Porto (Portugal)

    2002-07-01

    Gamma titanium aluminide is an important candidate to several applications in the aerospace and automotive industries. The great drawback of these alloys is its low ductility at room temperature. This work is part of a study that intends to increase the ductility of gamma titanium aluminide through the addition of alloying elements. In this paper the effects of the heat treatment and the deformation processing on the microstructure of a Ti 49.5Al 1.25Ag are described. The alloy was produced by arc melting, under an argon atmosphere, using a water-cooled copper crucible. The as-cast samples were heat treated at 1300 and 1400 C. Encapsulated samples were deformed by double forging and multiple step rolling. The as-cast {gamma}-TiAl alloy presented an extended degree of segregation, have been detected three microconstituents: lamellar dendrites, interdendritic Al enriched {gamma}-phase and a number of Ag rich particles located at the dendritic/interdendritic interface. The heat treatment at 1400 C for 6 hours allowed the elimination of the as-cast microstructure and its replacement by a fully lamellar one. The thermomechanical processing produced non-homogenous microstructures of deformed lamellar grains and recrystallized gamma grains. The microstructure changes occurring during the several stages of the processing were characterized using optical and scanning electron microscopy. The modification of the chemical composition of the phases was determined using SEM-EDS facilities. (orig.)

  4. Magnetic properties of the binary Nickel/Bismuth alloy

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa; Şarlı, Numan, E-mail: numansarli82@gmail.com

    2017-09-01

    Highlights: • We model and investigate the magnetic properties of the Ni/Bi alloy within the EFT. • Magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc. • Magnetization of the Bi1 is dominant and Ni is at least dominant T < Tc. • Total magnetization of the Ni/Bi alloy is close to those of Ni at T < Tc. • Hysteresis curves are overlap at T < 0.1 and they behave separately at T > 0.1. - Abstract: Magnetic properties of the binary Nickel/Bismuth alloy (Ni/Bi) are investigated within the effective field theory. The Ni/Bi alloy has been modeled that the rhombohedral Bi lattice is surrounded by the hexagonal Ni lattice. According to lattice locations, Bi atoms have two different magnetic properties. Bi1 atoms are in the center of the hexagonal Ni atoms (Ni/Bi1 single layer) and Bi2 atoms are between two Ni/Bi1 bilayers. The Ni, Bi1, Bi2 and Ni/Bi undergo a second-order phase transition from the ferromagnetic phase to paramagnetic phase at Tc = 1.14. The magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc; hence the magnetization of the Bi1 is dominant and Ni is at least dominant. However, the total magnetization of the Ni/Bi alloy is close to magnetization of the Ni at T < Tc. The corcivities of the Ni, Bi1, Bi2 and Ni/Bi alloy are the same with each others, but the remanence magnetizations are different. Our theoretical results of M(T) and M(H) of the Ni/Bi alloy are in quantitatively good agreement with the some experimental results of binary Nickel/Bismuth systems.

  5. Description of vibrational properties of random alloy ZnTe1-xSex within the percolation model

    International Nuclear Information System (INIS)

    Souhabi, Jihane; Chafi, Allal; Kassem, Mohammed; Nassour, Ayoub; Gleize, Jerome; Postnikov, A.V.; Hugel, J.; Pages, Olivier

    2009-01-01

    We discuss the classification of the phonon type behavior of semiconductor alloys as apparent in the Raman and infrared spectra, i.e. in terms of types (i) 1-bond→1-mode and (ii) 2-bond→1-mode (both covered by the Modified Random Element Isodisplacement model, operating at the macroscopic scale), and also (iii) the modified 2-mode type (exceptional), in the framework of the recent 1-bond→2-mode percolation model based on a description of the alloy disorder at the mesoscopic scale. The leading systems of types (i) and (iii), i.e., InGaAs and InGaP, respectively, were earlier shown to obey the percolation model. The aim of this work is to investigate whether the percolation model further extends to the leading system of the last type (ii), i.e. ZnTeSe. With this end in view, we perform a careful re-examination of the Raman and infrared spectra of this alloy, as available in the literature. Special attention is awarded to the discussion and modeling of the puzzling multi-mode infrared reflectivity spectra. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Corrosion behaviour of material no. 1. 4539 and nickel based alloys in gas waters. Korrosionsverhalten des Werkstoffs 1. 4539 und von Nickelbasis-Legierungen in Gaswaessern

    Energy Technology Data Exchange (ETDEWEB)

    Rolle, D [Didier Saeurebau GmbH, Koenigswinter (Germany); Buehler, H E [Didier-Werke AG, Anlagentechnik, Wiesbaden (Germany); Kalfa, H

    1993-01-01

    Laboratory tests with synthetic gas waters containing the gases ammonia, carbon dioxide, hydrogen sulphide and hydrogen cyanide were carried out in order to examine the influence of medium components on the corrosion of material No. 1.4539 and nickel based alloys Hastelloy C-4, C-22 and C-276. Hydrogen sulfide was identified as the decisive component for corrosion. For stainless steel corrosion rates of about 2 mm.a[sup -1] were already found at 50deg C in a critical pH-range with sulfide concentrations > 2%. As cyanide stimulates corrosion by dissolving sulfide surface layers by complexation of the iron ions, an increased material loss rate per unit area was found in the critical range with increasing cyanide concentration. The much more stable nickel based alloys only revealed considerable weight losses after being exposed in the autoclave at 100deg C. The graduation of the loss rates C-22 > C-4 > C-276 can be explained by the different contents of high grade alloy elements. The testing of nickel based alloys of the Hastelloy type and of material No. 1.4539 and 1.4571 by means of the dynamic tensile test (CERT-method) revealed no risks of stress corrosion cracking in the tested media. (orig.).

  7. High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy

    International Nuclear Information System (INIS)

    Bobbili, Ravindranadh; Paman, Ashish; Madhu, V.

    2016-01-01

    The purpose of the current study is to perform quasi static and high strain rate tensile tests on Al-4.8Cu-1.2Mg alloy under different strain rates ranging from 0.01–3500/s and also at temperatures of 25,100, 200 and 300 °C. The combined effect of strain rate, temperature and stress triaxiality on the material behavior is studied by testing both smooth and notched specimens. Johnson–Cook (J–C) constitutive and fracture models are established based on high strain rate tensile data obtained from Split hopkinson tension bar (SHTB) and quasi-static tests. By modifying the strain hardening and strain rate hardening terms in the Johnson–Cook (J–C) constitutive model, a new J–C constitutive model of Al-4.8Cu-1.2Mg alloy was obtained. The improved Johnson–Cook constitutive model matched the experiment results very well. With the Johnson–Cook constitutive and fracture models, numerical simulations of tensile tests at different conditions for Al-4.8Cu-1.2Mg alloy were conducted. Numerical simulations are performed using a non-linear explicit finite element code autodyn. Good agreement is obtained between the numerical simulation results and the experiment results. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  8. Processing and properties of Nb-Ti-based alloys

    International Nuclear Information System (INIS)

    Sikka, V.K.; Viswanathan, S.

    1992-01-01

    The processing characteristics, tensile properties, and oxidation response of two Nb-Ti-Al-Cr alloys were investigated. One creep test at 650 C and 172 MPa was conducted on the base alloy which contained 40Nb-40Ti-10Al-10Cr. A second alloy was modified with 0.11 at. % carbon and 0.07 at. % yttrium. Alloys were arc melted in a chamber backfilled with argon, drop cast into a water-cooled copper mold, and cold rolled to obtain a 0.8-mm sheet. The sheet was annealed at 1,100 C for 0.5 h. Longitudinal tensile specimens and oxidation specimens were obtained for both the base alloy and the modified alloy. Tensile properties were obtained for the base alloy at room temperature, 400, 600, 700, 800, 900, and 1,000 C, and for the modified alloy at room temperature, 400, 600, 700, and 800 C. Oxidation tests on the base alloy and modified alloy, as measured by weight change, were carried out at 600, 700, 800, and 900 C. Both the base alloy and the modified alloy were extremely ductile and were cold rolled to the final sheet thickness of 0.8 mm without an intermediate anneal. The modified alloy exhibited some edge cracking during cold during cold rolling. Both alloys recrystallized at the end of a 0.5-h annealing treatment. The alloys exhibited moderate strength and oxidation resistance below 600 C, similar to the results of alloys reported in the literature

  9. Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy

    Science.gov (United States)

    Hotea, V.; Juhasz, J.; Cadar, F.

    2017-05-01

    This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.

  10. Electrical resistivity of amorphous Fesub(1-x) Bsub(x) alloys

    International Nuclear Information System (INIS)

    Paja, A.; Stobiecki, T.

    1984-07-01

    The concentration dependence of the electrical resistivity of amorphous Fesub(1-x) Bsub(x) alloys has been studied over a broad composition range. The measurements for RF sputtered films made in the liquid helium temperature have been analyzed in the framework of the diffraction model. The calculated results are in good agreement with the experimental data in the range of concentration 0.12< x <0.37 where samples are amorphous and have a metallic character. (author)

  11. Characterization of Dispersion Strengthened Copper Alloy Prepared by Internal Oxidation Combined with Mechanical Alloying

    Science.gov (United States)

    Zhao, Ziqian; Xiao, Zhu; Li, Zhou; Zhu, Mengnan; Yang, Ziqi

    2017-11-01

    Cu-3.6 vol.% Al2O3 dispersion strengthened alloy was prepared by mechanical alloying (MA) of internal oxidation Cu-Al powders. The lattice parameter of Cu matrix decreased with milling time for powders milled in argon, while the abnormal increase of lattice parameter occurred in the air resulting from mechanochemical reactions. With a quantitative analysis, the combined method makes residual aluminum oxidized completely within 10-20 h while mechanical alloying method alone needs longer than 40 h. Lamellar structure formed and the thickness of lamellar structure decreased with milling time. The size of Al2O3 particles decreased from 46 to 22 nm after 40 h milling. After reduction, core-shell structure was found in MAed powders milled in the air. The compacted alloy produced by MAed powders milled in the argon had an average hardness and electrical conductivity of 172.2 HV and 82.1% IACS while the unmilled alloy's were 119.8 HV and 74.1% IACS due to the Al2O3 particles refinement and residual aluminum in situ oxidization.

  12. Effect of hydrostatic pressure application at cryogenic temperatures on the properties of VT1-0 alloy

    International Nuclear Information System (INIS)

    Khajmovich, P.A; Shulgin, N.A.; Chernyaeva, E.V.

    2015-01-01

    Attempt was made to determine the influence of hydrostatic pressure on the properties of the alloy VT1-0 at cryogenic temperatures both under straining of the alloy and without it. Hardening of the material is observed only in that part of the specimen, which experienced a deformation, while the very exposure of the alloy under hydrostatic pressure does not lead to strengthening of the material. At the same time, measurements of acoustic emission (AE) show that in the near-surface layers the forces of hydrostatic compression alone, i.e. without a deformation, cause some changes in the structure, which stipulate an increase of the energy and (to a lesser extent) of the median frequency of AE signals. An explanation of this phenomenon is suggested

  13. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si{sub 1-x}C{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Ho; Chang, Hyun-Jin [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Min, Byoung-Gi [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of); Ko, Dae-Hong [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)], E-mail: dhko@yonsei.ac.kr; Cho, Mann-Ho [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Sohn, Hyunchul [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Tae-Wan [Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of)

    2008-12-05

    We investigated the silicide formation in Ni/epi-Si{sub 1-x}C{sub x} systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si{sub 1-x}C{sub x}/Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si{sub 1-x}C{sub x} systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si{sub 1-x}C{sub x} system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films.

  14. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  15. Coupling between bulk ordering and surface segregation: from alloy surfaces to surface alloys

    International Nuclear Information System (INIS)

    Gallis, Coralie

    1997-01-01

    -The knowledge of the alloy surfaces is of prime interest to understand their catalytic properties. On the one hand, the determination of the stability of the surface alloys depends very strongly on the behaviours of the A c B 1-c alloy surfaces. On the other hand, the knowledge of the kinetics of the formation-dissolution of surface alloys can allow to understand the equilibrium segregation isotherm. We have then studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A/B and the inverse deposit. We have used an energetic model derived from the electronic structure (T.I.B.M.) allowing us to study the surface segregation both in the disordered state and in the ordered one. The kinetics of dissolution were studied using the kinetic version of this model (K.T.I.B.M.) consistent with the equilibrium model. To illustrate our study, we have chosen the Cu-Pd system, a model for the formation of surface alloys and for which a great number of studies, both experimental and theoretical, are in progress. We then have shown for the (111) surface of this system that the surface alloys obtained during the dissolution are related to the alloy surfaces observed for the equilibrium segregation. The Cu-Pd system is characteristic of systems which have a weak segregation energy. Then, we have performed an equivalent study for a system with a strong segregation energy. Our choice was directly put on the Pt-Sn system. The surface behaviour, both in equilibrium and during the kinetics of dissolution, is very different from the Cu-Pd case. In particular, we have found pure 2-D surface alloys. Finally, a quenched molecular dynamics study has allowed us to determine the relative stability of various possible surface superstructures. (author) [fr

  16. Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti-6.5Al-1Mo-1V-2Zr

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianhua; Zhan Zhongwei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yu Mei, E-mail: yumei@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li Songmei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The adsorption isotherm of glycidoxypropyl-trimethoxy-silane (GTMS) on a titanium alloy was found fitting Temkin isotherm by XPS. Black-Right-Pointing-Pointer From an electrochemical point of view, the in situ adsorption process of GTMS molecules agreed with XPS results. Black-Right-Pointing-Pointer At 30 Degree-Sign C, the adsorption of GTMS molecules is spontaneous, and follows a chemisorption-based mechanism. - Abstract: The adsorption behavior of glycidoxypropyl-trimethoxy-silane (GTMS) on titanium alloy Ti-6.5Al-1Mo-1V-2Zr was investigated by using X-ray photoelectron spectroscopy (XPS), Tafel polarization test, and electrochemical impedance spectroscopy (EIS). From the XPS results, it was found that the silane coverage on the titanium surface generally increased with GTMS concentration, with a slight decrease at concentration of 0.1%. Based on the relationship between isoelectronic point (IEP) of titanium surface and the pH values of silane solutions, adsorption mechanisms at different concentrations were proposed. The surface coverage data of GTMS on titanium surface was also derived from electrochemical measurements. By linear fitting the coverage data, it revealed that the adsorption of GTMS on the titanium alloy surface at 30 Degree-Sign C was of a physisorption-based mechanism, and obeyed Langmuir adsorption isotherm. The adsorption equilibrium constant (K{sub ads}) and free energy of adsorption process ({Delta}G{sub ads}) were calculated to elaborate the mechanism of GTMS adsorption.

  17. New Quality Assessment Criterion of AlSi5Cu1 Alloy

    Directory of Open Access Journals (Sweden)

    M. Wierzbińska

    2007-07-01

    Full Text Available The paper presents the discussion of the results of mechanical testing for aluminium foundry alloy AlSi5Cu1Mg for high-loaded machine elements. Values of yield strength (Rp0.2, tensile strength (Rm, elongation(A5 and hardness (HB are usually considered as the primary quality assessment criterion for a manufacturing process. It was concluded, that this criterion, A5 index particularly, is unsatisfactory to estimate the plasticity of the alloy and its crack resistance in the presence of sharp-pointed stress concentrators or microcracks. More adequate parameter is plane strain fracture toughness KIc. However, size of the samples appeared to be twice as large as would be needed to fulfill requirements of test conditions, and the test itself is laborious and time-consuming that it becomes impractical as a acceptance test. Therefore, substitute test for quality assessment – determination of tensile strength in the presence of a sharp notch kmR was applied. The comparative analysis of kmR/Rp0.2 ratio, as a more enhanced fatigue resistance criterion than kmR and plane strain fracture toughness KIc of the alloy was performed. It was assumed that kmR/Rp0.2 parameter has good correlation with the critical stress intensity factor KIc Thus, under manufacturing process conditions, being unable to carry out KIc test, it may be successfully replaced by kmR test.

  18. Irradiation assisted stress corrosion cracking of HTH Alloy X-750 and Alloy 625

    International Nuclear Information System (INIS)

    Mills, W.J.; Lebo, M.R.; Bajaj, R.; Kearns, J.J.; Hoffman, R.C.; Korinko, J.J.

    1994-01-01

    In-reactor testing of bolt-loaded precracked compact tension specimens was performed in 360 degree C water to determine effect of irradiation on the SCC behavior of HTH Alloy X-750 and direct aged Alloy 625. Out-of-flux and autoclave control specimens provided baseline data. Primary test variables were stress intensity factor, fluence, chemistry, processing history, prestrain. Results for the first series of experiments were presented at a previous conference. Data from two more recent experiments are compared with previous results; they confirm that high irradiation levels significantly reduce SCC resistance in HTH Alloy X-750. Heat-to-heat differences in IASCC were related to differences in boron content, with low boron heats showing improved SCC resistance. The in-reactor SCC performance of Alloy 625 was superior to that for Alloy X-750, as no cracking was observed in any Alloy 625 specimens even though they were tested at very high K 1 and fluence levels. A preliminary SCC usage model developed for Alloy X-750 indicates that in-reactor creep processes, which relax stresses but also increase crack tip strain rates, and radiolysis effects accelerate SCC. Hence, in-reactor SCC damage under high flux conditions may be more severe than that associated with postirradiation tests. In addition, preliminary mechanism studies were performed to determine the cause of IASCC In Alloy X-750

  19. Improvement of magnetocaloric properties of Gd-Ge-Si alloys by alloying with iron

    Directory of Open Access Journals (Sweden)

    Erenc-Sędziak T.

    2013-01-01

    Full Text Available The influence of annealing of Gd5Ge2Si2Fex alloys at 1200°C and of alloying with various amount of iron on structure as well as thermal and magnetocaloric properties is investigated. It was found that annealing for 1 to 10 hours improves the entropy change, but reduces the temperature of maximum magnetocaloric effect by up to 50 K. Prolonged annealing of the Gd5Ge2Si2 alloy results in the decrease of entropy change due to the reduction of Gd5Ge2Si2 phase content. Addition of iron to the ternary alloy enhances the magnetocaloric effect, if x = 0.4 – 0.6, especially if alloying is combined with annealing at 1200°C: the peak value of the isothermal entropy change from 0 to 2 T increases from 3.5 to 11 J/kgK. Simultaneously, the temperature of maximum magnetocaloric effect drops to 250 K. The changes in magnetocaloric properties are related to the change in phase transformation from the second order for arc molten ternary alloy to first order in the case of annealed and/or alloyed with iron. The results of this study indicate that the minor addition of iron and heat treatment to Gd-Ge-Si alloys may be useful in improving the materials’ magnetocaloric properties..

  20. Growth and characterization of ZnO{sub 1−x}S{sub x} highly mismatched alloys over the entire composition

    Energy Technology Data Exchange (ETDEWEB)

    Jaquez, M.; Ting, M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Hettick, M.; Javey, A. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Sánchez-Royo, J. F. [ICMUV, Instituto de Ciencia de Materiales, Universitat de València, P.O. Box 22085, 46071 Valencia (Spain); Wełna, M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Experimental Physics, Wrocław University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław (Poland); Dubon, O. D. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Walukiewicz, W., E-mail: w-walukiewicz@lbl.gov [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-12-07

    Alloys from ZnO and ZnS have been synthesized by radio-frequency magnetron sputtering over the entire alloying range. The ZnO{sub 1−x}S{sub x} films are crystalline for all compositions. The optical absorption edge of these alloys decreases rapidly with small amount of added sulfur (x ∼ 0.02) and continues to red shift to a minimum of 2.6 eV at x = 0.45. At higher sulfur concentrations (x > 0.45), the absorption edge shows a continuous blue shift. The strong reduction in the band gap for O-rich alloys is the result of the upward shift of the valence-band edge with x as observed by x-ray photoelectron spectroscopy. As a result, the room temperature bandgap of ZnO{sub 1−x}S{sub x} alloys can be tuned from 3.7 eV to 2.6 eV. The observed large bowing in the composition dependence of the energy bandgap arises from the anticrossing interactions between (1) the valence-band of ZnO and the localized sulfur level at 0.30 eV above the ZnO valence-band maximum for O-rich alloys and (2) the conduction-band of ZnS and the localized oxygen level at 0.20 eV below the ZnS conduction band minimum for the S-rich alloys. The ability to tune the bandgap and knowledge of the location of the valence and conduction-band can be advantageous in applications, such as heterojunction solar cells, where band alignment is crucial.

  1. The Synthesis and Characterization of W- 1wt.% TiC Alloy Using a Chemical Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taehee; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The tungsten and its alloys have been used in many applications due to their excellent mechanical and thermal properties such as high melting point, high thermal conductivity, high strength at elevated temperatures, low sputtering yield in radiation environment and low tritium inventory. Moreover, many researchers consider tungsten alloys as the most promising candidate for plasma facing components for future nuclear fusion reactors. Three samples of W – 1.0 wt.% TiC composites with the different fabrication methods were successfully developed. The combined method of the wet chemical method and 3D mixing showed small amount of agglomeration of TiC particles, however, the TiC particle sizes were smaller than 3DM1 sample. Since the WCM1 showed the better mechanical property, microhardness, the main future plan is to achieve the same or improved mechanical property of W3D1.

  2. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO 2 dissolves in Nb 2 O 5 to form 6HfO-Nb 2 O 5 . This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 2400 0 F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 2400 0 F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  3. Stability of Cd_1_–_xZn_xO_yS_1_–_y Quaternary Alloys Assessed with First-Principles Calculations

    International Nuclear Information System (INIS)

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus; Lordi, Vincenzo

    2017-01-01

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se_2 and Cu_2ZnSn(S,Se)_4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd_1_–_xZn_xO_yS_1_–_y) alloys within a regular solution model. Our results identify that full miscibility of most Cd_1_–_xZn_xO_yS_1_–_y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phases such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.

  4. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    2017-08-01

    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  5. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    Science.gov (United States)

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  6. Interaction between Nd-rich phase particles and liquid-solid interface in as-cast Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd titanium alloy

    International Nuclear Information System (INIS)

    Li, G.P.; Li, D.; Liu, Y.Y.; Hu, Z.Q.

    1995-01-01

    The composition (wt%) of ingot fir this investigation is 86.75%Ti, 5%Al, 4%Sn, 2%Zr, 1%Mo, 0.25%Si, 1%Nd. The alloy was prepared by vacuum arc melting in the form of buttons of mass 500 kg, which was remelted three times repeatedly to obtain homogeneous composition. The Nd-rich phase particles in the as-cast Ti-55 alloy are about 1.2∼11.07 microm and uniformly distribute in the matrix. The shapes of the particles are mainly ellipsoids together with short needle-like and blocky morphologies. The calculated diameter of the Nd-rich phase particles is ∼ 10 microm, which is within the 1.2∼11.07 microm range of the particle diameter experimentally measured in the as-cast Ti-55 alloy. The practical interface velocity is three orders of magnitude greater than V c, and the Nd-rich phase particles in the as-cast Ti-55 alloy are trapped by the liquid-solid interface

  7. Electrical resistivity at high temperatures of Heusler alloys of the Cu2MnAl sub(1-x) Sn sub (x)

    International Nuclear Information System (INIS)

    Grandi, T.A.

    1978-01-01

    The structural fase L2 1 of the Heusler alloys Cu 2 MnAl sub (1-x) Sn sub(x), with x varying between 0 and 1, was studied. X-ray diffraction, metallography and diferential termoanalysis techniques were employed. For the alloys with x = 0; 0,05; 0,10 and 0,15 the electrical resistivity measurements were performed in the temperature range 300 K [pt

  8. Topological phase transitions of (BixSb1-x)2Se3 alloys by density functional theory.

    Science.gov (United States)

    Abdalla, L B; Padilha José, E; Schmidt, T M; Miwa, R H; Fazzio, A

    2015-07-01

    We have performed an ab initio total energy investigation of the topological phase transition, and the electronic properties of topologically protected surface states of (BixSb1-x)2Se3 alloys. In order to provide an accurate alloy concentration for the phase transition, we have considered the special quasirandom structures to describe the alloy system. The trivial → topological transition concentration was obtained by (i) the calculation of the band gap closing as a function of Bi concentration (x), and (ii) the calculation of the Z2 topological invariant number. We show that there is a topological phase transition, for x around 0.4, verified for both procedures (i) and (ii). We also show that in the concentration range 0.4 x < 0.7, the alloy does not present any other band at the Fermi level besides the Dirac cone, where the Dirac point is far from the bulk states. This indicates that a possible suppression of the scattering process due to bulk states will occur.

  9. Effect of Gd–Ca combined additions on the microstructure and creep properties of Mg–7Al–1Si alloys

    International Nuclear Information System (INIS)

    Liu, Jian; Wang, Wuxiao; Zhang, Sha; Zhang, Dongjie; Zhang, Haiyan

    2015-01-01

    Highlights: • The effect of compound addition of Ca and Gd on the microstructure and creep properties of Mg–7Al–1Si alloys was investigated. • After adding 1 wt.% of (Ca + Gd), the creep strain and steady-state creep rate were reduced by about 80% and 84%, respectively. • After adding 1 wt.% of (Ca + Gd), the creep properties of Mg–7Al–1Si alloys were superior to that containing single Gd additive. • The improvement of creep properties after compound addition of Gd and Ca is a result of multiple factors. - Abstract: The microstructure and creep properties of Mg–7Al–1Si alloys with combined additions of alkaline earth element Ca and rare earth element (RE) Gd were investigated using scanning electron microscope (SEM), optical microscope, energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and compressive creep tests. It was found that the combined additions of Ca and Gd contributed to grain refinement, modification of the morphology of coarse Chinese script Mg 2 Si phase, and reduction of β-Mg 17 Al 12 content. Mg–7Al–1Si alloys containing 1 wt.% compound modifier (0.5 wt.% Gd + 0.5 wt.% Ca) exhibited the minimal steady-state creep rate, and were even superior to Mg–7Al–1Si alloys containing single Gd addition. The great improvement of creep properties is mainly attributed to the reduction in the amount and continuity of eutectic β-Mg 17 Al 12 phase, morphology modification of Mg 2 Si phase, solution strengthening of Gd, as well as the formation of thermally stable intermetallic Al 2 Gd, which acted as an effective barrier against grain boundary sliding and dislocation movement

  10. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and spark-plasma sintering.

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Moravec, H.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Kubatík, Tomáš František; Kopeček, Jaromír

    2017-01-01

    Roč. 51, č. 1 (2017), s. 141-144 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : mechanical alloying * spark plasma sintering * NiTi * shape memory alloy Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) OBOR OECD: Materials engineering ; Materials engineering (FZU-D) Impact factor: 0.436, year: 2016 https://www.researchgate.net/publication/313900224_Powder-metallurgy_preparation_of_NiTi_shape-memory_alloy_using_mechanical_alloying_and_spark-plasma_sintering

  11. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization

    Science.gov (United States)

    Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.

    2018-04-01

    This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.

  12. RESEARCH OF FATIGUE AND MECHANICAL PROPERTIES AlMg1SiCu ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Mária Mihaliková

    2015-11-01

    Full Text Available The paper is concerned with an analysis of utility and fatigue properties of industrially produced aluminium alloy, specifically EN AW 6061 (AlMg1SiCu, reinforced with the particles of SiC. The following properties were subject to evaluation: microstructure and sub-structure, mechanical characteristics. All of these mechanical properties in pre- and post- equal channel angular pressed (ECAP state have been studied. The hardness was evaluated by Vickers hardness test at the load of HV10. The significant part the thesis was devoted to the fatigue properties at cyclic load in torsion. The presented results demonstrate well that the combination of fractography and microscopy can give a significant contribution to the knowledge of initiation and propagation crack in the aluminium alloy.

  13. Microstructure and creep behavior of an orthorhombic Ti-25Al-17Nb-1Mo alloy

    International Nuclear Information System (INIS)

    Zhang, J.W.; Zou, D.X.; Li, S.Q.; Lee, C.S.; Lai, J.K.L.

    1998-01-01

    Microstructural evolution during three heat-treatment schedules and the terminal microstructures in an orthorhombic alloy of Ti-25Al-17Nb-1Mo were observed and analyzed with optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The creep behavior of the alloy with three different microstructures (a coarse-lath, fine-lath, and fine equiaxed microstructure) was studied over a temperature range of 600 C to 750 C and over a stress range of 150 to 400 MPa in air. The steady-state creep rates, apparent stress exponents, and apparent creep activation energies of the various samples have been determined. The results show that creep behaviors in the alloy are strongly influenced by microstructure. The effect on creep by some of the microstructural features, such as the multivariants within the coarse laths and the interfaces of the laths and the equiaxed grains, is also discussed

  14. Cellular Shape Memory Alloy Structures: Experiments & Modeling (Part 1)

    Science.gov (United States)

    2012-08-01

    High -­‐ temperature  SMAs 24 Braze  Joint  between  two  wrought  pieces  of  a  Ni24.5Pd25Ti50.5  HTSMA   (HTSMA  from...process  can  be  used   to  join  other  metal  alloys  and   high -­‐ temperature   SMAs 25 Cellular  Shape  Memory...20 30 40 50 60 910 3 4 8 5 2 T (°C) Shape memory & superelasticity 1 0 e (%) (GPa) 6 7 A NiTi wire

  15. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  16. Microstructural evolution in Mg-rich Mg-Zn-Y alloys

    International Nuclear Information System (INIS)

    Biswas, T.; Ranganathan, S.; Nair, S.; Bajargan, G.

    2005-01-01

    Mg-rich Mg-Zn-Y alloys with nominal compositions Mg 97 Zn 1 Y 2 , Mg 97 Zn 2 Y 1 , Mg 92 Zn 6.5 Y 1.5 and Mg 97-x Zn 1 Y 2 Zr x have been chosen for the present study. These alloys are prepared by using sand casting mold. The sand cast alloys are remelted and subjected to copper mold casting and melt spinning techniques. The effect of cooling rate on microstructures was studied. It is observed that the size of the precipitates decreases with an increase of cooling rate. The formation of nano precipitates results in higher strength of the alloy as compared to the conventional alloys. The microstructures of melt spun ribbons are compared with RS/PM (rapidly solidified power metallurgy) Mg 97 Zn 1 Y 2 alloy, obtained from a different source. (author)

  17. Swelling in neutron-irradiated titanium alloys

    International Nuclear Information System (INIS)

    Peterson, D.T.

    1982-04-01

    Immersion density measurements have been performed on a series of titanium alloys irradiated in EBR-II to a fluence of 5 x 10 22 n/cm 2 (E > 0.1 MeV) at 450 and 550 0 C. The materials irradiated were the near-alpha alloys Ti-6242S and Ti-5621S, the alpha-beta alloy Ti-64, and the beta alloy Ti-38644. Swelling was observed in all alloys with the greater swelling being observed at 550 0 C. Microstructural examination revealed the presence of voids in all alloys. Ti-38644 was found to be the most radiation resistant. Ti-6242S and Ti-5621S also displayed good radiation resistance, whereas considerable swelling and precipitation were observed in Ti-64 at 550 0 C

  18. Inconel type resistive alloys based on ultrahigh purity nickel

    International Nuclear Information System (INIS)

    Matsarin, K.A.; Matsarin, S.K.

    2000-01-01

    The new nickel high-ohm alloys (ρ = 1.2-1.4 μOhm · m), containing the W, Al, Mo alloying elements in the quantity, not exceeding their solubility in a solid solution, are developed on the basis of the Inconel-type standard alloy. The optical composition of the alloy was determined by the results of the alloy was determined by the results of the electric resistance measurement and technological effectiveness indices (relative to the pressure and workable metal yield). The following optimal component concentrations were established: 14-17 %Cr; 10-12 %Fe; 0.5-1.0 %Cu; 1.0-1.5 %Mn; 0.1-0.2 %C; 0.4-0.6 %Si; 0.5-3.0 %W; 5-16 %Mo; 0.5-2.0 %Al; the remainder - Ni. The new alloys are recommended as materials for resistive elements of direct-glow cathode nodes of low capacity electron tubes [ru

  19. Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bao-sheng; Kuang, Ya-fei; Fang, Da-qing; Chai, Yue-sheng [Taiyuan Univ. of Science and Technology (China). College of Materials Science and Engineering; Taiyuan Univ. of Science and Technology (China). Engineering Research Center for Magnesium Alloys of Shanxi Province; Zhang, Yue-zhong [Taiyuan Univ. of Science and Technology (China). Engineering Research Center for Magnesium Alloys of Shanxi Province; Taiyuan Univ. of Science and Technology (China). College of Chemical and Biological Engineering

    2017-04-15

    In petroleum drilling engineering, materials with high strength and rapid degradation are required for degradable fracturing ball applications. In this work, the microstructure, mechanical properties, and corrosion behavior of extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5 weight percent) alloys are investigated using optical microscopy, scanning electronic microscopy equipped with energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electronic microscopy, compression tests, electrochemical measurements, and hydrogen evolution tests, to explore their potential as excellent candidate alloys for degradable fracturing ball applications. It is found that the Mg-3Zn-Y alloy is mainly composed of α-Mg, Mg{sub 3}Zn{sub 3}Y{sub 2}, and Mg{sub 3}Zn{sub 6}Y phases. After Cu addition, a new MgZnCu phase is formed, while the Mg{sub 3}Zn{sub 3}Y{sub 2} phase disappears. The Mg-3Zn-Y-3Cu alloy shows the highest compressive strength (473 MPa) and yield strength (402 MPa), mainly attributed to the combined effect of the fine-grain and dispersed precipitation of Mg{sub 3}Zn{sub 6}Y and MgZnCu. The corrosion rate of Mg-3Zn-Y-3Cu reaches 0.41 mm day{sup -1} in 3.5 wt.% KCl solution. Consequently, Mg-3Zn-Y-3Cu alloy is a suitable degradable fracturing ball-seat material.

  20. Structural and electronic properties of Ga{sub 1-x}In{sub x} As{sub 1-y}N{sub y} quaternary semiconductor alloy on GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Metin, E-mail: maslan@sakarya.edu.tr [Sakarya University, Art, Science Faculty, Department of Physics, Esentepe Campus, 54187 Sakarya (Turkey); Yalc Latin-Small-Letter-Dotless-I n, Battal G.; Uestuendag, Mehmet [Sakarya University, Art, Science Faculty, Department of Physics, Esentepe Campus, 54187 Sakarya (Turkey)

    2012-04-05

    Highlights: Black-Right-Pointing-Pointer In this study we used DFT in the frame of LDA approach to determine electronic and structural properties of GaInAsN alloy. Black-Right-Pointing-Pointer We calculated lattice parameter and band gap energy of binary (GaAs, InAs, and GaN), ternary (GaInAs, GaAsN) and quaternary (GaInAsN) semiconductor alloys. Black-Right-Pointing-Pointer We formulated lattice parameter of GaInAsN respect to In and N composition. Black-Right-Pointing-Pointer We investigated different In and N composition of GaInAsN/GaAs heterostructure for various device applications. - Abstract: We have presented structural and electronic properties of binary (GaAs, GaN and InAs), ternary (Ga{sub 1-x}In{sub x}As and GaAs{sub 1-y}N{sub y}) and quaternary (Ga{sub 1-x}In{sub x}As{sub 1-y}N{sub y}) semiconductor alloys by using a first-principles pseudopotential technique. The structural and electronic properties of Zinc-Blende phase of these materials have been calculated by using the local density approximation (LDA) of the density-functional theory (DFT). To obtain the lattice parameter and band gap energy of the (GaInAsN) quaternary semiconductor alloy we separately calculated the lattice constant and band gap energies of ternary semiconductor alloys, namely GaAsN and GaInAs. The calculated lattice constant, bulk modulus and the direct band gaps for studied semiconductors showed great parallelism with the previous available theoretical and experimental studies.

  1. Investigation on mechanical alloying process for v-cr-ti alloys

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Bucsa, G.; Abrudeanu, M.; Galateanu, A.

    2015-01-01

    Mechanical alloying (MA) is an efficient approach for fabricating oxide-dispersion alloys and structural materials including vanadium alloys for fusion and fission application. Dissolution behaviour of the alloying elements is a key issue for optimizing the mechanical alloying process in fabricating vanadium alloys. This paper studies the MA process of V-4wt.%Cr-4wt.%Ti alloy. The outcomes of the MA powders in a planetary ball mill are reported in terms of powder particle size and morphology evolution and elemental composition. The impact of spark-plasma sintering process on the mechanically alloyed powder is analysed. An optimal set of sintering parameters, including the maximum temperature, the dwell time and the heating rate are determined. (authors)

  2. Degradation mode survey candidate titanium-base alloys for Yucca Mountain project waste package materials. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.

    1997-12-01

    The Yucca Mountain Site Characterization Project (YMP) is evaluating materials from which to fabricate high-level nuclear waste containers (hereafter called waste packages) for the potential repository at Yucca Mountain, Nevada. Because of their very good corrosion resistance in aqueous environments titanium alloys are considered for container materials. Consideration of titanium alloys is understandable since about one-third (in 1978) of all titanium produced is used in applications where corrosion resistance is of primary importance. Consequently, there is a considerable amount of data which demonstrates that titanium alloys, in general, but particularly the commercial purity and dilute {alpha} grades, are highly corrosion resistant. This report will discuss the corrosion characteristics of Ti Gr 2, 7, 12, and 16. The more highly alloyed titanium alloys which were developed by adding a small Pd content to higher strength Ti alloys in order to give them better corrosion resistance will not be considered in this report. These alloys are all two phase ({alpha} and {beta}) alloys. The palladium addition while making these alloys more corrosion resistant does not give them the corrosion resistance of the single phase {alpha} and near-{alpha} (Ti Gr 12) alloys.

  3. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  4. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    Science.gov (United States)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  5. Stress corrosion cracking of uranium--niobium alloys

    International Nuclear Information System (INIS)

    Magnani, N.J.

    1978-03-01

    The stress corrosion cracking behavior of U-2 1 / 4 , 4 1 / 2 , 6 and 8 wt % Nb alloys was evaluated in laboratory air and in aqueous Cl - solutions. Thresholds for crack propagation were obtained in these environments. The data showed that Cl - solutions are more deleterious than air environments. Tests were also conducted in pure gases to identify the species in the air responsible for cracking. These data showed the primary stress corrodent is water vapor for the most reactive alloy, U-2 1 / 4 % Nb, while O 2 is primarily responsible for cracking in the more corrosion resistant alloys, U-6 and 8% Nb. The 4 1 / 2 % alloy was found to be susceptible in both H 2 O and O 2 environments

  6. Capacity retention in hydrogen storage alloys

    Science.gov (United States)

    Anani, A.; Visintin, A.; Srinivasan, S.; Appleby, A. J.; Reilly, J. J.; Johnson, J. R.

    1992-01-01

    Results of our examination of the properties of several candidate materials for hydrogen storage electrodes and their relation to the decrease in H-storage capacity upon open-circuit storage over time are reported. In some of the alloy samples examined to date, only about 10 percent of the hydrogen capacity was lost upon storage for 20 days, while in others, this number was as high as 30 percent for the same period of time. This loss in capacity is attributed to two separate mechanisms: (1) hydrogen desorbed from the electrode due to pressure differences between the cell and the electrode sample; and (2) chemical and/or electrochemical degradation of the alloy electrode upon exposure to the cell environment. The former process is a direct consequence of the equilibrium dissociation pressure of the hydride alloy phase and the partial pressure of hydrogen in the hydride phase in equilibrium with that in the electrolyte environment, while the latter is related to the stability of the alloy phase in the cell environment. Comparison of the equilibrium gas-phase dissociation pressures of these alloys indicate that reversible loss of hydrogen capacity is higher in alloys with P(eqm) greater than 1 atm than in those with P(eqm) less than 1 atm.

  7. Quantitative description of the magnetization curves of amorphous alloys of the series a-DyxGd1-xNi

    International Nuclear Information System (INIS)

    Barbara, B.; Filippi, J.; Amaral, V.S.

    1992-01-01

    The magnetization curves of the series of amorphous alloys Dy x Gd 1-x Ni measured between 1.5 and 4.2 K and up to 15 T, have been fitted to the zero kelvin analytical model of Chudnovsky. The results of these fits allow a detailed understanding of the magnetization curves of amorphous alloys with ferromagnetic interactions. In particular, the ratio D/J of the local anisotropy and exchange energies, and the magnetic and atomic correlation lengths, are accurately determined. (orig.)

  8. Enhancing pitting corrosion resistance of Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} high-entropy alloys by anodic treatment in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Shih, H.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan (China)], E-mail: hcshih@mx.nthu.edu.tw

    2008-12-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 {omega}cm{sup 2} as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 {omega}cm{sup 2}). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H{sub 2}SO{sub 4} solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe{sub 1.5}MnNi{sub 0.5} and Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} alloys optimized their surface structures and minimized their susceptibility to pitting corrosion.

  9. Study of Influence of an Annealing on Corrosion Stability of Pipes-shells for Fuel of Zr1Nb Alloy

    International Nuclear Information System (INIS)

    Petel'guzov, I.A.; Rodak, A.G.; Pasenov, F.A.; Ishchenko, N.I.

    2006-01-01

    Explored influence an annealing to the kinetics of corrosion and mechanical characteristics of pipe material for shells fuel elements made from the experimental zirconium alloy Zr1Nb calcium-thermal way of production, in the comparison with the staff alloy E110 electrolytic way of production. Determined parameters of kinetics of corrosion depending on temperature and duration annealing before testing. Conducted also mechanical testing the alloys on the ring samples. Determined ranges of temperatures, within which corrosion characteristics save values, close to source, and connecting temperatures, under which is observed reduction research; investigating features

  10. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  11. Quantitative description of the magnetization curves of amorphous alloys of the series a-Dy xGd 1-xNi

    Science.gov (United States)

    Barbara, B.; Amaral, V. S.; Filippi, J.

    1992-10-01

    The magnetization curves of the series of amorphous alloys Dy xGd 1- xNi measured between 1.5 and 4.2 K and up to 15 T, have been fitted to the zero kelvin analytical model of Chudnovsky [1]. The results of these fits allow a detailed understanding of the magnetization curves of amorphous alloys with ferromagnetic interactions. In particular, the ratio D/ J of the local anisotropy and exchange energies, and the magnetic and atomic correlation lengths, are accurately determined.

  12. [Compressive and bend strength of experimental admixed high copper alloys].

    Science.gov (United States)

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  13. Microstructural characterization of laser and electron beam (EB) welds of Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Tewari, R.; Dey, G.K.; Samajdar, I.

    2015-01-01

    Nb-1wt%Zr-0.1wt%C alloy is being considered for the structural applications in proposed Compact High Temperature Reactor (CHTR) on account of its excellent combination of high temperature properties. The applications of this alloy calls for welding, which is a difficult task due to its reactive nature, higher thermal conductivity and melting point. The high energy density techniques like laser and electron beam were employed to produce the welds on sheets of Nb-alloy at various processing parameters in bead-on-plate and square butt joint configurations. The weld joints produced were characterized by studying their optical, Scanning Electron Microscopy (SEM) and Electron Back Scattering Diffraction (EBSD) micro-graphs. The SEM micrograph of EB fusion zone along with the heat affected zone (HAZ) and the base region were studied and abrupt changes in the grain morphology were found in each zone. The fusion zone shows larger grains indicating the rapid grain growth after solidification, whereas the HAZ shows relatively smaller size of the grains but still much larger than the base zone. The SEM micrograph of central part of the same butt weld shows clear grain boundaries with a large variation in the grain size (45-82 micrometer) in the weld region. The heat affected zone (HAZ) and base metal showed fine carbide precipitates along the grain boundaries, whereas carbides were found dissolved in the weld zone. The EBSD micrograph of electron beam fusion zone describing the grain orientation in the weld region are described. The micro-hardness profile across the width of welds was also studied. The detailed results of all these studies are described in this paper. (author)

  14. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  15. ALLOY DESIGN AND PROPERTY EVALUATION OF TI ALLOY ...

    African Journals Online (AJOL)

    eobe

    1,2 DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING, UNIVERSITY OF NIGERIA, NSUKKA, NIGERIA. 2 DEPT ... a result of this structural change, titanium alloys fall ... the phase stability and mechanical behaviours of Ti-.

  16. MO-HF-C alloy composition

    International Nuclear Information System (INIS)

    Whelan, E.P.; Kalns, E.

    1987-01-01

    This patent describes, as an article of manufacture, a cast ingot of a molybdenum-hafnium-carbon alloy consisting essentially by weight of about 0.6% to about 1% Hf, about 0.045% to about 0.08% C, and the balance essentially molybdenum. The amount of Hf and C present are substantially stoichiometric with respect to HfC and within about +-15% of stoichiometry. The ingot is characterized in that it has a substantially less tendency to crack compared to alloys containing Hf in excess of about 1% by weight and carbon in excess of 0.08% by weight, without substantial diminution in strength properties of the alloy

  17. Iron-titanium-mischmetal alloys for hydrogen storage

    Science.gov (United States)

    Sandrock, Gary Dale

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  18. Lattice vibrations study of Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} quaternary alloys with low (In, As) content grown by liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Olvera-Herandez, J [Centro de Investigacion en Dispositivos Semiconductores (CIDS), BUAP, Puebla, Pue. 72570 (Mexico); Olvera-Cervantes, J [Centro de Investigacion en Dispositivos Semiconductores (CIDS), BUAP, Puebla, Pue. 72570 (Mexico); Rojas-Lopez, M [Centro de Investigacion en BiotecnologIa Aplicada (CIBA), IPN, Tlaxcala, Tlax. 72160 (Mexico); Navarro-Contreras, H [Instituto de Investigacion en Comunicacion Optica (IICO), UASLP, 78100, San Luis PotosI, S.L.P. (Mexico); Vidal, M A [Instituto de Investigacion en Comunicacion Optica (IICO), UASLP, 78100, San Luis PotosI, S.L.P. (Mexico); Anda, F de [Instituto de Investigacion en Comunicacion Optica (IICO), UASLP, 78100, San Luis PotosI, S.L.P. (Mexico)

    2006-01-01

    Raman scattering spectroscopy was used to measure and analyze the lattice vibrations in some quaternary Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} alloys with low (In, As) contents (0.03 alloy composition, thickness and lattice mismatch of the layer. Raman scattering results show phonon frequencies associated to the TO and LO GaAs-like modes as well as GaSb + InAs-like mode, which are characteristic of this quaternary alloy. The As content dependence of the phonon frequency measured in this alloy for low (In, As) contents agree well with the modified Random-Element Isodisplacement (REI) model and also with other available experimental reports. This method can also be used to estimate alloy compositions for this kind of quaternary alloys.

  19. Study of the oxidation of Fe-Cr alloys at high temperatures

    International Nuclear Information System (INIS)

    Carneiro, J.F.; Sabioni, A.C.S.

    2010-01-01

    The high temperature oxidation behavior of Fe-1.5%Cr, Fe-5.0%Cr, Fe-10%Cr and Fe- 15%Cr model alloys were investigated from 700 to 850 deg C, in air atmosphere. The oxidation treatments were performed in a thermobalance with a sensitivity of 1μg. The oxide films grown by oxidation of the alloys were characterized by scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The oxide films are Fe-Cr spinels with variable composition depending on the alloy composition. For all conditions studied, the oxidation kinetics of these alloys follow a parabolic law. The comparison of the oxidation rates of the four alloys, at 700 deg C, shows that the parabolic oxidation constants decrease from 1.96x10 -9 g 2 .cm -4 .s -1 , for the alloy Fe-1.5% Cr, to 1.18 x 10-14g 2 .cm -4 .s -1 for the alloy Fe-15% Cr. Comparative analysis of the oxidation behavior of the Fe-10%Cr and Fe-15%Cr alloys, between 700 and 850 deg C, shows that the oxidation rates of these alloys are comparable to 800 deg C, above this temperature the Fe-10%Cr alloy shows lower resistance to oxidation. (author)

  20. Environment assisted degradation mechanisms in aluminum-lithium alloys

    Science.gov (United States)

    Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.

    1988-01-01

    Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this.

  1. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys

    International Nuclear Information System (INIS)

    Asghar, Z.; Requena, G.; Boller, E.

    2011-01-01

    The three-dimensional (3-D) architecture of rigid multiphase networks present in AlSi10Cu5Ni1 and AlSi10Cu5Ni2 piston alloys in as-cast condition and after 4 h spheroidization treatment is characterized by synchrotron tomography in terms of the volume fraction of rigid phases, interconnectivity, contiguity and morphology. The architecture of both alloys consists of α-Al matrix and a rigid long-range 3-D network of Al 7 Cu 4 Ni, Al 4 Cu 2 Mg 8 Si 7 , Al 2 Cu, Al 15 Si 2 (FeMn) 3 and AlSiFeNiCu aluminides and Si. The investigated architectural parameters of both alloys studied are correlated with room-temperature and high-temperature (300 deg. C) strengths as a function of solution treatment time. The AlSi10Cu5Ni1 and AlSi10Cu5Ni2 alloys behave like metal matrix composites with 16 and 20 vol.% reinforcement, respectively. Both alloys have similar strengths in the as-cast condition, but the AlSi10Cu5Ni2 is able to retain ∼15% higher high temperature strength than the AlSi10Cu5Ni1 alloy after more than 4 h of spheroidization treatment. This is due to the preservation of the 3-D interconnectivity and the morphology of the rigid network, which is governed by the higher degree of contiguity between aluminides and Si.

  2. Phase diagrams of two dimensional Pd{sub x}Ag{sub 1-x}/Pd(111) and Pt{sub x}Ag{sub 1-x}/Pt(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Engstfeld, Albert K.; Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany)

    2011-07-01

    The distribution of Ag and Pd or Pt in Ag{sub x}Pd{sub 1-x}/Pd(111) and Ag{sub x}Pt{sub 1-x}/Pt(111) surface alloys was studied by high resolution UHV-STM. The alloys were prepared by evaporating Ag on the respective substrate and subsequent annealing to 800 K. From quantitative 2D atom distributions we can show that AgPt tends towards two dimensional clustering and AgPd towards a 'quasi' random distribution, with small deviations for low and high coverages. From effective pair interactions, we are able to calculate the surface mixing energy and determine 2D phase diagrams. Furthermore we will elucidate whether the size mismatch or the differences in the intermetallic bonding are the dominant factor for the respective distribution in the surface alloy.

  3. Valence Band Structure of InAs1-xBix and InSb1-xBix Alloy Semiconductors Calculated Using Valence Band Anticrossing Model

    Directory of Open Access Journals (Sweden)

    D. P. Samajdar

    2014-01-01

    Full Text Available The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs1-xBix and InSb1-xBix alloy systems. It is found that both the heavy/light hole, and spin-orbit split E+ levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E− energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.

  4. Thermoelectric properties of p-type pseudo-binary (Ag0.365Sb0.558Te) x -(Bi0.5Sb1.5Te3)1-x (x=0-1.0) alloys prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Cui, J.L.; Xue, H.F.; Xiu, W.J.; Jiang, L.; Ying, P.Z.

    2006-01-01

    In this paper, pseudo-binary (Ag 0.365 Sb 0.558 Te) x -(Bi 0.5 Sb 1.5 Te 3 ) 1- x (x=0-1.0) alloys were prepared using spark plasma sintering technique, and the composition-dependent thermoelectric properties were evaluated. Electrical conductivities range from 7.9x10 4 to 15.6x10 4 Ω -1 m -1 at temperatures of 507 and 318 K, respectively, being about 3.0 and 8.5 times those of Bi 0.5 Sb 1.5 Te 3 alloy at the corresponding temperatures. The optimal dimensionless figure of merit (ZT) of the sample with molar fraction x=0.025 reaches 1.1 at 478 K, whereas that of the ternary Bi 0.5 Sb 1.5 Te 3 alloy is 0.58 near room temperature. The results also reveal that a direct introduction of Ag 0.365 Sb 0.558 Te in the Bi-Sb-Te system is much more effective to the property improvement than naturally precipitated Ag 0.365 Sb 0.558 Te in the Ag-doped Ag-Bi-Sb-Te system. - Graphical abstract: The temperature dependence of the dimensionless thermoelectric figure of merit ZT for different (Ag 0.365 Sb 0.558 Te) x -(Bi 0.5 Sb 1.5 Te 3 ) 1- x (x=0-1.0) alloys prepared by spark plasma sintering

  5. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  6. In-situ electrochemical study of Zr1nb alloy corrosion in high temperature Li{sup +} containing water

    Energy Technology Data Exchange (ETDEWEB)

    Krausová, Aneta [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Macák, Jan, E-mail: macakj@vscht.cz [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Sajdl, Petr [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Novotný, Radek [JRC-IET, Westerduinveg 3, 1755 LE Petten (Netherlands); Renčiuková, Veronika [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Vrtílková, Věra [ÚJP a.s., Nad Kamínkou 1345, 156 10 Prague 5 (Czech Republic)

    2015-12-15

    Long-term in-situ corrosion tests were performed in order to evaluate the influence of lithium ions on the corrosion of zirconium alloy. Experiments were carried out in a high-pressure high-temperature loop (280 °C, 8 MPa) in a high concentration water solution of LiOH (70 and 200 ppm Li{sup +}) and in a simulated WWER primary coolant environment. The kinetic parameters characterising the oxidation process have been explored using in-situ electrochemical impedance spectroscopy and slow potentiodynamic polarization. Also, a suitable equivalent circuit was suggested, which would approximate the impedance characteristics of the corrosion of Zr–1Nb alloy. The Mott–Schottky approach was used to determine the semiconducting character of the passive film. - Highlights: • Zr1Nb alloy was tested in WWER coolant and in LiOH solutions at 280 °C. • Corrosion rates were estimated in-situ from electrochemical data. • Electrochemical data agreed well with weight gains and metallography data. • Increase of corrosion rate in LiOH appeared after short exposure (300–500 h). • Very high donor densities (1.11.2 × 10{sup 20} cm{sup −3}) of Zr oxide grown in LiOH were found.

  7. Corrosion behavior of electrodeposited Co-Fe alloys in aerated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chansena, A. [Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Sutthiruangwong, S., E-mail: sutha.su@kmitl.ac.th [Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2017-05-01

    Co-Fe alloy is an important component for reader-writer in hard disk drive. The surface of the alloy is exposed to the environment both in gas phase and in liquid phase during manufacturing process. The study of corrosion behavior of Co-Fe alloys can provide useful fundamental data for reader-writer production planning especially when corrosion becomes a major problem. The corrosion study of electrodeposited Co-Fe alloys from cyclic galvanodynamic polarization was performed using potentiodynamic polarization technique. The composition of electrodeposited Co-Fe alloys was determined by X-ray fluorescence spectrometry. The patterns from X-ray diffractometer showed that the crystal structure of electrodeposited Co-Fe alloys was body-centered cubic. A vibrating sample magnetometer was used for magnetic measurements. The saturation magnetization (M{sub s}) was increased and the intrinsic coercivity (H{sub ci}) was decreased with increasing Fe content. The corrosion rate study was performed in aerated deionized water and aerated acidic solutions at pH 3, 4 and 5. The corrosion rate diagram for Co-Fe alloys was constructed. It was found that the corrosion rate of Co-Fe alloys was increased with increasing Fe content in both aerated deionized water and aerated acidic solutions. In aerated pH 3 solution, the Co-Fe alloy containing 78.8% Fe showed the highest corrosion rate of 7.7 mm yr{sup −1} with the highest M{sub s} of 32.0 A m{sup 2} kg{sup −1}. The corrosion rate of the alloy with 23.8% Fe was at 1.1 mm yr{sup −1} with M{sub s} of 1.2 A m{sup 2} kg{sup −1}. In aerated deionized water, the alloy with the highest Fe content of 78.5% still showed the highest corrosion rate of 0.0059 mm yr{sup −1} while the alloy with the lowest Fe content of 20.4% gave the lowest corrosion rate of 0.0045 mm yr{sup −1}. - Highlights: • The aeration during corrosion measurement simulates reader-writer head production environment. • The corrosion rate diagram for Co-Fe alloys

  8. Microstructures and creep properties of Mg–4Al–(1–4) La alloys produced by different casting techniques

    International Nuclear Information System (INIS)

    Bai Jing; Sun Yangshan; Xue Feng; Qiang Jing

    2012-01-01

    The microstructures, mechanical properties and creep resistance of Mg–4Al–(1–4) La alloys produced by permanent mold casting and high pressure die casting (HPDC) were investigated. In addition to solute atoms in α-Mg matrix, Al element may exist in the form of three different intermetallic phases in the present alloys depending on the experimental conditions. In both casting states, the increase of La addition results in a rise in the volume fraction of Al 11 La 3 eutectic, and simultaneously Mg 17 Al 12 phase, including divorced eutectic in as-cast state and discontinuous precipitation after creep, is suppressed until completely disappears. This leads to a gradual increase in creep resistance. The formation of more Mg 17 Al 12 phase in HPDC alloys is considered a major factor in causing their worse creep properties by comparison with that of the permanent mold casting alloys when La content is in a lower level below 2 wt.%. By contrast, the HPDC alloys show better creep resistance with La content added above 2 wt.% owing to the formation of denser network distribution of Al 11 La 3 phase along grain/dendrite boundaries as a result of more rapid solidification rate and higher solidification pressure. For the alloys studied, grain/dendrite boundary sliding is suggested to be a possible controlling mechanism responsible for creep deformation at elevated temperatures.

  9. Fatigue Characteristics of Selected Light Metal Alloys

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-03-01

    Full Text Available The paper addresses results of fatigue testing of light metal alloys used in the automotive as well as aerospace and aviation industries, among others. The material subject to testing comprised hot-worked rods made of the AZ31 alloy, the Ti-6Al-4V two-phase titanium alloy and the 2017A (T451 aluminium alloy. Both low- and high-cycle fatigue tests were conducted at room temperature on the cycle asymmetry ratio of R=-1. The low-cycle fatigue tests were performed using the MTS-810 machine on two levels of total strain, i.e.Δεc= 1.0% and 1.2%. The high-cycle fatigue tests, on the other hand, were performed using a machine from VEB Werkstoffprufmaschinen-Leipzig under conditions of rotary bending. Based on the results thus obtained, one could develop fatigue life characteristics of the materials examined (expressed as the number of cycles until failure of sample Nf as well as characteristics of cyclic material strain σa=f(N under the conditions of low-cycle fatigue testing. The Ti-6Al-4V titanium alloy was found to be characterised by the highest value of fatigue life Nf, both in lowand high-cycle tests. The lowest fatigue life, on the other hand, was established for the aluminium alloys examined. Under the high-cycle fatigue tests, the life of the 2017A aluminium and the AZ31 magnesium alloy studied was determined by the value of stress amplitude σa. With the stress exceeding 150 MPa, it was the aluminium alloy which displayed higher fatigue life, whereas the magnesium alloy proved better on lower stress.

  10. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  11. Microstructural characterization of a rapidly solidified ultrahigh strength Al94.5Cr3Co1.5Ce1 alloy

    International Nuclear Information System (INIS)

    Ping, D.H.; Hono, K.; Inoue, A.

    2000-01-01

    The microstructure of a rapidly solidified Al 94.5 Cr 3 Co 1.5 Ce 1 alloy has been examined in detail by means of high resolution transmission electron microscopy (HRTEM) and atom probe field ion microscopy (APFIM). In the as-quenched microstructure, nanoscale particles of a solute-enriched amorphous phase and an Al-Cr compound are dispersed in randomly oriented fine grains of α-Al ( 200nm ). The interface between the Al grains and the amorphous particles is not smooth but irregular with atomic protrusions and concavities, suggesting that interfacial instability occurs during the solidification process. Nanoscale amorphous particles are formed as a result of solute trapping within the rapidly grown Al grains. After annealing at 400 C for 15 minutes grain growth occurs, and the interface of the Al grains is smoothed. The amorphous region trapped within the grains if crystallized to an Al-Cr compound, but no icosahedral phase has been confirmed. The APFIM results have revealed that Cr and Ce atoms have a similar partitioning behavior, i.e., they are rejected from the α-Al phase and partitioned into the trapped amorphous regions. On the other hand, Co atoms are not partitioned between the two phases in the as-quenched state but are partitioned into the α-Al grains in the annealed alloys being rejected from the Al compounds and finally form Al-Co compounds. Based on these microstructural characterization results, the origins of high strength of this alloy are discussed

  12. Alloying effects on structural and thermal behavior of Ti1-xZrxC: A first principles study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti 1-x Zr x C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti 1-x Zr x C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  13. Features of argon-arc welding of aluminium alloy AD1 to stainless steel 12Kh18N10T

    International Nuclear Information System (INIS)

    Sadov, I.I.

    1982-01-01

    Welding of pipes made of the 12Kh18N10T stainless steel and the AD1 aluminium alloy is proposed to perform using one-sided aluminizing. It is recommended to use shields in order to protect internal and external surfaces of pipes, aluminizing of which is impossible. It is shown that developed technological process for welded joints made of aluminium and stainless steel for cryogenic apparatus permits to create light-duty cryostat assembly using aluminium alloys instead of copper alloys, to increase reliability of apparatus (usage of welded joints instead of soldered ones), and to improve labour conditions

  14. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...... in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...... for the preparation of materials under highly non-equilibrium conditions in systems with positive heats of mixing by mechanical alloying....

  15. Multiple organ gigantism caused by mutation in VmPPD gene in blackgram (Vigna mungo).

    Science.gov (United States)

    Naito, Ken; Takahashi, Yu; Chaitieng, Bubpa; Hirano, Kumi; Kaga, Akito; Takagi, Kyoko; Ogiso-Tanaka, Eri; Thavarasook, Charaspon; Ishimoto, Masao; Tomooka, Norihiko

    2017-03-01

    Seed size is one of the most important traits in leguminous crops. We obtained a recessive mutant of blackgram that had greatly enlarged leaves, stems and seeds. The mutant produced 100% bigger leaves, 50% more biomass and 70% larger seeds though it produced 40% less number of seeds. We designated the mutant as multiple-organ-gigantism ( mog ) and found the mog phenotype was due to increase in cell numbers but not in cell size. We also found the mog mutant showed a rippled leaf ( rl ) phenotype, which was probably caused by a pleiotropic effect of the mutation. We performed a map-based cloning and successfully identified an 8 bp deletion in the coding sequence of VmPPD gene, an orthologue of Arabidopsis PEAPOD ( PPD ) that regulates arrest of cell divisions in meristematic cells . We found no other mutations in the neighboring genes between the mutant and the wild type. We also knocked down GmPPD genes and reproduced both the mog and rl phenotypes in soybean. Controlling PPD genes to produce the mog phenotype is highly valuable for breeding since larger seed size could directly increase the commercial values of grain legumes.

  16. An investigation on hydrogen storage kinetics of nanocrystalline and amorphous Mg2Ni1-xCox (x = 0-0.4) alloy prepared by melt spinning

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Li Baowei; Ren Huipin; Ding Xiaoxia; Liu Xiaogang; Chen Lele

    2011-01-01

    Research highlights: → The investigation of the structures of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys indicates that a nanocrystalline and amorphous structure can be obtained in the experiment alloys by melt spinning technology. The substitution of Co for Ni facilitates the glass formation in the Mg 2 Ni-type alloy. And the amorphization degree of the alloys visibly increases with increasing Co content. → Both the melt spinning and Co substitution significantly improve the hydrogen storage kinetics of the alloys. The hydrogen absorption saturation ratio (R t a ) and hydrogen desorption ratio (R t d ) as well as the high rate discharge ability (HRD) increase with rising spinning rate and Co content. The hydrogen diffusion coefficient (D), the Tafel polarization curves and the electrochemical impedance spectra (EIS) measurements show that the electrochemical kinetics notably increases with rising spinning rate and Co content. → Furthermore, all the as-spun alloys, when the spinning rate reaches to 30 m/s, have nearly same hydrogen absorption kinetics, indicating that the hydrogen absorption kinetics of the as-spun alloy is predominately controlled by diffusion ability of hydrogen atoms. - Abstract: In order to improve the hydrogen storage kinetics of the Mg 2 Ni-type alloys, Ni in the alloy was partially substituted by element Co, and melt-spinning technology was used for the preparation of the Mg 2 Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys. The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system. The hydrogen diffusion coefficients in the alloys are calculated by virtue of potential-step method. The electrochemical impedance spectrums (EIS) and the Tafel

  17. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  18. Effect of neutron irradiation on vanadium alloys

    International Nuclear Information System (INIS)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600 0 C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520 0 C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys

  19. Effect of neutron irradiation on vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  20. Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg{sub 94}Y{sub 4}Zn{sub 2} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huan, E-mail: liuhuanseu@hotmail.com [Jiangsu Key Lab of Advanced Metallic Materials, School of Material Science and Engineering, Southeast University, Nanjing 211189 (China); Xue, Feng, E-mail: xuefeng@seu.edu.cn [Jiangsu Key Lab of Advanced Metallic Materials, School of Material Science and Engineering, Southeast University, Nanjing 211189 (China); Bai, Jing; Zhou, Jian [Jiangsu Key Lab of Advanced Metallic Materials, School of Material Science and Engineering, Southeast University, Nanjing 211189 (China); Liu, Xiaodao [Nanjing Yunhai Special Metals Co., Ltd., Nanjing 211200 (China)

    2013-11-15

    The microstructure and mechanical properties of Mg{sub 94}Y{sub 4}Zn{sub 2} and Mg{sub 94}Y{sub 4}Zn{sub 1}Ni{sub 1} alloys have been systematically investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and an electronic universal testing machine. The as-cast WZ42 alloy is composed of α-Mg matrix, 18R LPSO (long period stacking ordered) phase and a small fraction of Mg{sub 24}(Y,Zn){sub 5} phases. With the replacement of 1 at% Ni atoms, the phase structures in WZN411 alloy remain unchanged, but their chemical compositions vary obviously. A great number of stacking faults exist in α-Mg grains of WZ42 alloy, while they are barely observed in WZN411 alloy. After annealing at 500 °C for 12 h, there are plenty of 14H LPSO lamellas formed in WZ42 alloy and many nano-scale α-Mg slices generated between 18R phases. In contrast, the 18R in WZN411 alloy is thermally stable, and both the formation of α-Mg slices and 14H lamellas are restricted for annealed WZN411 alloy. Tensile tests indicate that the as-extruded WZ42 alloy exhibits ultimate tensile strength of 390 MPa, tensile yield strength of 246 MPa and elongation of 2.8% at room temperature. With the replacement of 1 at% Ni, the UTS and TYS of WZN411 alloy increase by 20 MPa and the ductility improves as well. The improvement of comprehensive mechanical properties could be ascribed to the substitution of 1 at% Ni element, which could enhance the degree of solid-solution strengthening and stimulate the thermal stability of 18R phase during annealing and extrusion processes.

  1. The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1

    Science.gov (United States)

    Aikin, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.

  2. Atom distribution and interactions in Ag{sub x}Pt{sub 1-x} and Au{sub x}Pt{sub 1-x} surface alloys on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2009-07-01

    The atom distributions in Ag{sub x}Pt{sub 1-x}/Pt(111) and Au{sub x}Pt{sub 1-x}/Pt(111) surface alloys were studied by high resolution UHV-STM. These surfaces were prepared by submonolayer Ag (Au) metal deposition on Pt(111), followed by annealing at 900 K or 1000 K, respectively, which in both cases results in surface confined 2D alloys, with equilibrated distribution of the components. Both systems show a tendency towards two-dimensional clustering, which fits well to their known bulk immiscibility. Effective cluster interactions (ECIs) will be derived by a quantitative evaluation of the 2D atom distributions in the surface alloys. By comparing the ECIs for PtAg and PtAu on Pt(111), and considering that Ag and Au have almost similar lattice constants, the results allow conclusion on the physical origin of the tendency for clustering.

  3. Electrochemistry of vanadium(II and the electrodeposition of aluminum-vanadium alloys in the aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Tsuda T.

    2003-01-01

    Full Text Available The electrochemical behavior of vanadium(II was examined in the 66.7-33.3 mole percent aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt containing dissolved VCl2 at 353 K. Voltammetry experiments revealed that V(II could be electrochemically oxidized to V(III and V(IV. However at slow scan rates the V(II/V(III electrode reaction is complicated by the rapid precipitation of V(III as VCl3. The reduction of V(II occurs at potentials considerably negative of the Al(III/Al electrode reaction, and Al-V alloys cannot be electrodeposited from this melt. However electrodeposition experiments conducted in VCl2-saturated melt containing the additive, 1-ethyl-3-methylimidazolium tetrafluoroborate, resulted in Al-V alloys. The vanadium content of these alloys increased with increasing cathodic current density or more negative applied potentials. X-ray analysis of Al-V alloys that were electrodeposited on a rotating copper wire substrate indicated that these alloys did not form or contain an intermetallic compound, but were non-equilibrium or metastable solid solutions. The chloride-pitting corrosion properties of these alloys were examined in aqueous NaCl by using potentiodynamic polarization techniques. Alloys containing ~10 a/o vanadium exhibited a pitting potential that was 0.3 V positive of that for pure aluminum.

  4. A new high-strength iron base austenitic alloy with good toughness and corrosion resistance (GE-EPRI alloy-TTL)

    International Nuclear Information System (INIS)

    Ganesh, S.

    1989-01-01

    A new high strength, iron based, austenitic alloy has been successfully developed by GE-EPRI to satisfy the strength and corrosion resistance requirements of large retaining rings for high capacity generators (>840Mw). This new alloy is a modified version of the EPRI alloy-T developed by the University of California, Berkeley, in an earlier EPRI program. It is age hardenable and has the nominal composition (weight %): 34.5 Ni, 5Cr, 3Ti, 1Nb, 1Ta, 1Mo, .5Al, .3V, .01B. This composition was selected based on detailed metallurgical and processing studies on modified versions of alloy-T. These studies helped establish the optimum processing conditions for the new alloy and enabled the successful scale-up production of three large (50-52 inch dia) test rings from a 5,000 lb VIM-VAR billet. The rings were metallurgically sound and exhibited yield strength capabilities in the range 145 to 220 ksi depending on the extent of hot/cold work induced. The test rings met or exceeded all the property goals. The above alloy can provide a good combination of strength, toughness and corrosion resistance and, through an suitable modification of chemistry or processing conditions, could be a viable candidate for high strength LWR internal applications. 3 figs

  5. High strength cast aluminum alloy development

    Science.gov (United States)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  6. Heat treatments and low temperature fracture toughness of a Ti-6A1-4V alloy

    International Nuclear Information System (INIS)

    Nagai, K.; Hiraga, K.; Ishikawa, K.; Ogata, T.

    1984-01-01

    Titanium alloy is one of the reliable structural materials for cryogenic use owing to its high strength, high specific strength and low thermal conductivity. Heat treatment is one method of controlling the normally poor fracture toughness of this alloy at ambient temperature. However, there have been few attempts to improve the low temperature fracture toughness by heat treatment. This study was conducted to elucidate the effects of heat treatments on the low temperature fracture toughness in a Ti-6A1-4V alloy. The effects of the heat treatments were as follows: the beta treatment was a very feasible method to improve the low temperature fracture properties; the alpha+beta treatment was favorable for the increment in the low temperature ductility but did not largely improve the fracture toughness; the double treatment yielded good ductility but was not useful for improving the fracture toughness

  7. SIMS and thermal evolution analysis of oxygen in Zr-1%Nb alloy after high-temperature transitions

    Czech Academy of Sciences Publication Activity Database

    Lorinčík, Jan; Klouček, V.; Negyesi, M.; Kabátová, J.; Novotný, L.; Vrtílková, V.

    2011-01-01

    Roč. 43, 1-2 (2011), s. 618-620 ISSN 0142-2421 Institutional research plan: CEZ:AV0Z20670512 Keywords : SIMS * Thermal evolution analysis * Zirconium alloy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.180, year: 2011

  8. Thermodynamic analysis of binary Fe{sub 85}B{sub 15} to quinary Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloys for primary crystallizations of α-Fe in nanocrystalline soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, A., E-mail: takeuchi@imr.tohoku.ac.jp; Zhang, Y.; Takenaka, K.; Makino, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-05-07

    Fe-based Fe{sub 85}B{sub 15}, Fe{sub 84}B{sub 15}Cu{sub 1}, Fe{sub 82}Si{sub 2}B{sub 15}Cu{sub 1}, Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, and Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} (NANOMET{sup ®}) alloys were experimental and computational analyzed to clarify the features of NANOMET that exhibits high saturation magnetic flux density (B{sub s}) nearly 1.9 T and low core loss than conventional nanocrystalline soft magnetic alloys. The X-ray diffraction analysis for ribbon specimens produced experimentally by melt spinning from melts revealed that the samples were almost formed into an amorphous single phase. Then, the as-quenched samples were analyzed with differential scanning calorimeter (DSC) experimentally for exothermic enthalpies of the primary and secondary crystallizations (ΔH{sub x1} and ΔH{sub x2}) and their crystallization temperatures (T{sub x1} and T{sub x2}), respectively. The ratio ΔH{sub x1}/ΔH{sub x2} measured by DSC experimentally tended to be extremely high for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy, and this tendency was reproduced by the analysis with commercial software, Thermo-Calc, with database for Fe-based alloys, TCFE7 for Gibbs free energy (G) assessments. The calculations exhibit that a volume fraction (V{sub f}) of α-Fe tends to increase from 0.56 for the Fe{sub 85}B{sub 15} to 0.75 for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy. The computational analysis of the alloys for G of α-Fe and amorphous phases (G{sub α-Fe} and G{sub amor}) shows that a relationship G{sub α-Fe} ∼ G{sub amor} holds for the Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, whereas G{sub α-Fe} < G{sub amor} for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy at T{sub x1} and that an extremely high V{sub f} = 0.75 was achieved for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy by including 2.8 at. % Si and 4.5 at. % P into α-Fe. These computational results indicate that the Fe{sub 85}Si{sub 2}B

  9. Surface of Ti-Ni alloys after their preparation

    International Nuclear Information System (INIS)

    Saldan, I.; Frenzel, J.; Shekhah, O.; Chelmowski, R.; Birkner, A.; Woell, Ch.

    2009-01-01

    The Ti 3.87 Ni 1.73 Fe 0.7 O 0.3, Ti 3.87 Ni 1.73 Fe 0.4 N 0.3 and Ti 3.87 Ni 1.73 Fe 0.4 C 0.3 alloys were investigated regarding their surface characteristics. The scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used for phase characterization. The X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical composition of alloy surface. The atomic force microscopy (AFM) to observe alloy surface topography after cutting and electrochemical polishing separately has been done. The transmission electron microscopy (TEM) with X-ray diffraction was carried out to get a high contrast images and the diffraction pattern from alloy surface. The results clearly shown, that all alloys were multiphase, and their surface was totally oxidized with no pure metals

  10. Direct gap Ge1-ySny alloys: Fabrication and design of mid-IR photodiodes

    Science.gov (United States)

    Senaratne, C. L.; Wallace, P. M.; Gallagher, J. D.; Sims, P. E.; Kouvetakis, J.; Menéndez, J.

    2016-07-01

    Chemical vapor deposition methods were developed, using stoichiometric reactions of specialty Ge3H8 and SnD4 hydrides, to fabricate Ge1-ySny photodiodes with very high Sn concentrations in the 12%-16% range. A unique aspect of this approach is the compatible reactivity of the compounds at ultra-low temperatures, allowing efficient control and systematic tuning of the alloy composition beyond the direct gap threshold. This crucial property allows the formation of thick supersaturated layers with device-quality material properties. Diodes with composition up to 14% Sn were initially produced on Ge-buffered Si(100) featuring previously optimized n-Ge/i-Ge1-ySny/p-Ge1-zSnz type structures with a single defected interface. The devices exhibited sizable electroluminescence and good rectifying behavior as evidenced by the low dark currents in the I-V measurements. The formation of working diodes with higher Sn content up to 16% Sn was implemented by using more advanced n-Ge1-xSnx/i-Ge1-ySny/p-Ge1-zSnz architectures incorporating Ge1-xSnx intermediate layers (x ˜ 12% Sn) that served to mitigate the lattice mismatch with the Ge platform. This yielded fully coherent diode interfaces devoid of strain relaxation defects. The electrical measurements in this case revealed a sharp increase in reverse-bias dark currents by almost two orders of magnitude, in spite of the comparable crystallinity of the active layers. This observation is attributed to the enhancement of band-to-band tunneling when all the diode layers consist of direct gap materials and thus has implications for the design of light emitting diodes and lasers operating at desirable mid-IR wavelengths. Possible ways to engineer these diode characteristics and improve carrier confinement involve the incorporation of new barrier materials, in particular, ternary Ge1-x-ySixSny alloys. The possibility of achieving type-I structures using binary and ternary alloy combinations is discussed in detail, taking into account

  11. Collective effects of interface roughness and alloy disorder in InxGa1-xN/GaN multiple quantum wells

    International Nuclear Information System (INIS)

    Zeng, K.C.; Smith, M.; Lin, J.Y.; Jiang, H.X.

    1998-01-01

    The collective effects of alloy disorder and interface roughness on optical properties of In x Ga 1-x N/GaN multiple quantum wells (MQWs) have been studied. The results are compared with those of GaN/AlGaN MQWs and InGaN epilayers. In x Ga 1-x N/GaN MQWs emit a broad and asymmetrical photoluminescence (PL) band, while GaN/AlGaN MQWs and InGaN epilayers emit narrower and Gaussian-shaped PL bands. Furthermore, the decay of excitons at low temperatures in In x Ga 1-x N/GaN MQWs follows a nonexponential function even at the lower-energy side of the PL spectral peak, while those in GaN/AlGaN MQWs and in InGaN epilayers follow a single exponential function. Both alloy disorder and interface roughness have to be included in order to interpret the PL emission spectrum and the decay dynamics in In x Ga 1-x N/GaN MQWs. Important parameters of the In x Ga 1-x N/GaN MQWs, σ x ,σ L , and dτ/dL, denoting the alloy disorder, the interface roughness, and the rate of changing of the exciton decay lifetime with well width, respectively, have been deduced. The method developed here can be used to determine σ x ,σ L , and dτ/dL in any MQW systems with wells being alloy materials. copyright 1998 American Institute of Physics

  12. A comparing study of alloy 600 and alloy 690 on resistance to intergranular stress corrosion cracking(IGSCC)

    International Nuclear Information System (INIS)

    Lee, Jae Hun

    1993-02-01

    In order to compare the effect of senitization on the intergranular stress corrosion cracking(IGSCC) between Alloy 600 and Alloy 690, these alloys have been sensitized for 1 to 100 hours at 700 .deg. C. The degree of sensitization(DOS) has evaluated by the ratio of Ir(the maximum current density at anodic scan) to Ia(the maximum current density at reverse scan) in the modified double loop EPR(electrochemical potentiokinetic reactivation) test in 0.01M H 2 SO 4 + 0.0001M KSCN at 25 .deg. C and at scan rate of 0.5mV/sec. The susceptibility to IGSCC has been measured in 0.01M Na 2 S 4 O 6 solution using CERT(constant extension rate tester) at strain rate of 1.0 x 10 -6 S -1 . With increasing sensitization time the DOS of Alloy 600 increases to the maximum value at 5 hours and decreases gradually due to the replenishment of Cr to the Cr-depleted grain boundaries. For Alloy 600 samples except those sensitized for less than 1 hour, the DOS measured by the modified EPR test parallel to susceptibility to IGSCC revealed by the ratio of strain to failure (εf, Na 2 S 4 O 6 /εf, Air). It appears that the susceptibility to IGSCC is closely associated with the depth in Cr-depleted concentration profile across grain boundary. For the sensitized Alloy 690 samples exhibited extremely low value of Ir/Ia less than 0.074% and also were immune to IGSCC. The good resistance of Alloy 690 to IGSCC is considered to be attributed to the higher Cr concentration to avoid serious Cr-depletion problems adjacent to grain boundary

  13. On the position of local levels of defects in proton-irradiated Pb1-xSnxTe alloys

    International Nuclear Information System (INIS)

    Brandt, N.B.; Gas'kov, A.M.; Ladygin, E.A.; Skipetrov, E.P.; Khorosh, A.G.

    1989-01-01

    Effect of fast proton irradiation (T≅300 K, E=200 keV, F≤2x10 14 cm -2 ) on electrophysical properties of thin layers p-Pb 1-x Sn x Te (0.17 ≤x≤ 0.26) is investigated. Saturation of radiation flux dependences of hole density due to occurrence of a resonance level under irradiation, which is near the ceiling of the valence band of alloys, and due to stabilization of the Fermi level with the resonance level is detected. Possibility of coordination of novadays data on the position of the levels of radiation defects in alloys Pb 1-x Sn x Te is discussed

  14. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    International Nuclear Information System (INIS)

    Wang, Hong-bin; Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao; Lu, Xiong-gang; Li, Chong-he

    2016-01-01

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr 2 Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  15. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-bin [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China); Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xiong-gang; Li, Chong-he [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China)

    2016-08-30

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr{sub 2}Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  16. Hyperfine interactions in dilute Se doped Fe{sub x}Sb{sub 1−x} bulk alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Mitesh, E-mail: miteshsarkar-msu@yahoo.com; Agrawal, Naveen [The M. S. University of Baroda, Department of Physics (India); Chawda, Mukesh [Polytechnic, The M. S. University of Baroda, Department of Applied Physics (India)

    2016-12-15

    Hyperfine Interaction technique like Moessbauer spectroscopy is a very sensitive tool to study the local probe interactions in Iron doped alloys and compounds. We report here the Moessbauer study of the effect of Fe concentration variations in dilute magnetic semiconducting Se{sub 0.004}Fe{sub x}Sb{sub 1−x} alloys for x = 0.002, 0.004 and 0.008. The materials were characterized using X-ray diffraction technique (XRD), Fourier Transform Infra-red spectroscopy (FTIR), Neutron depolarization and Moessbauer spectroscopy. The FTIR result shows the semiconducting behavior of the alloys with band gap of 0.18 eV. From Moessbauer spectroscopy two magnetic sites (A and B) were observed. The value of hyperfine magnetic fields (HMF) of ∼ 308 kOe (site A) and 270 kOe (site B) was constant with increase in Fe concentration. A nonmagnetic interaction was also observed with quadrupole splitting (QS) of 1.26 mm/sec (site C) for x = 0.004 and x = 0.008. The Neutron depolarization studies indicate that the clusters of Fe or Fe based compounds having net magnetic moments with a size greater than 100 Å is absent.

  17. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Caskey, G.R. Jr.; Dexter, A.H.

    1976-01-01

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D 2 / = 1.9 x 10 -2 exp (--22,400/RT) cc (NTP)atm/sup -- 1 / 2 / s -1 cm -1 . The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  18. XPS study on Mg0.9-xTi0.1PdxNi (x = 0.04, 0.06, 0.08, 0.1) hydrogen storage electrode alloys after charge-discharge cycles

    International Nuclear Information System (INIS)

    Tian Qifeng; Zhang Yao; Wu Yuanxin

    2009-01-01

    The passive film composition of Mg 0.9-x Ti 0.1 Pd x Ni (x = 0.04, 0.06, 0.08, 0.1) hydrogen storage alloys after 40 charge-discharge cycles has been investigated by means of X-ray photoelectron spectroscopy (XPS) in combination with Ar + sputtering technology. With the XPSPEAK software, high resolution spectra of alloy elements and oxygen were deconvolved into individual peaks. Composites formed by metal elements and their relative contents were also deduced. It was found that the composites originated from Mg and Ni were mainly in the form of their oxides and hydroxides, which existed at the top surface of alloys. With the increase of sputtering depth, the hydroxides of Mg and Ni gradually disappeared while corresponding oxides dominated their passive products. According to the analysis results of oxygen spectra, the elemental segregation of Mg and Ni was influenced by the substitution of Pd because the addition of Pd slightly enhanced the surface energy of the alloys and suppressed the formation of Mg hydroxide and oxide. Ti and Pd presented multiple-oxides from the surface to the inner alloys and metallic Pd appeared in the sub-layers of the alloys' surface. The possible mechanisms of the formation of passive products were suggested on the basis of the discussion in the paper.

  19. Phase transformations in ion-mixed metastable (GaSb)1/sub 1 -x/(Ge2)/sub x/ semiconducting alloys

    International Nuclear Information System (INIS)

    Cadien, K.C.; Muddle, B.C.; Greene, J.E.

    1984-01-01

    Low energy (75--175 eV) Ar + ion bombardment during film deposition has been used to produce well-mixed amorphous GaSb/Ge mixtures which, when annealed, transform first to single phase polycrystalline metastable (GaSb)/sub 1-x/(Ge 2 )/sub x/ alloys before eventually transforming to the equilibrium two-phase state. At 500 0 C, for example, the annealing time t/sub a/ required for the amorphous to crystalline metastable (ACM) transformation was approx.10 min, while t/sub a/ for the crystalline metastable to equilibrium (CME) transformation was >6 h. The exothermic enthalpy of crystallization and the onset temperature of the ACM transition were determined as a function of alloy composition using differential thermal analysis. The thermodynamic data was then used to calculate the surface energy per unit area sigma of the amorphous/metastable-crystal interface. sigma was found to exhibit a minimum between x = 0.3 and 0.4. The driving energy for the transition from the crystalline metastable state to the equilibrium two-phase state was of the order of 0.12 kJ cm -3 while the activation barrier was approx.19 kJ cm -3 . Thus, the metastable alloys, which had average grain sizes of 100--200 nm and a lattice constant which varied linearly with x, exhibited good thermal and temporal stability

  20. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting

    2011-05-03

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse AuxAg1-x alloy nanoparticles in the size range of 3-6 nm. The precursors employed in this work are M(I)-alkanethiolates (M = Au and Ag), which can be easily prepared by mixing common chemicals such as HAuCl4 or AgNO3 with alkanethiols at room temperature. In this half-seeding approach, one of the M(I)-alkanethiolates is first heated and reduced in oleylamine solvent, and freshly formed metal clusters will then act as premature seeds on which both the first and second metals (from M(I)-alkanethiolates, M = Au and Ag) can grow accordingly without additional nucleation and thus achieve high monodispersity for product alloy nanoparticles. Unlike in other prevailing methods, both Au and Ag elements present in these solid precursors are in the same monovalent state and have identical supramolecular structures, which may lead to a more homogeneous reduction and complete interdiffusion at elevated reaction temperatures. When the M(I)-alkanethiolates are reduced to metallic forms, the detached alkanethiolate ligands will serve as capping agent to control the growth. More importantly, composition, particle size, and optical properties of AuxAg1-x alloy nanoparticles can be conveniently tuned with this approach. The optical limiting properties of the prepared particles have also been investigated at 532 and 1064 nm using 7 ns laser pulses, which reveals that the as-prepared alloy nanoparticles exhibit outstanding broadband optical limiting properties with low thresholds. © 2011 American Chemical Society.

  1. First-principles calculations of structural, electronic and optical properties of CdxZn1-xS alloys

    KAUST Repository

    Noor, Naveed Ahmed; Ikram, Nazma; Ali, Sana Zulfiqar; Nazir, Safdar; Alay-E-Abbas, Syed Muhammad; Shaukat, Ali

    2010-01-01

    Structural, electronic and optical properties of ternary alloy system CdxZn1-xS have been studied using first-principles approach based on density functional theory. Electronic structure, density of states and energy band gap values for CdxZn1-xS

  2. On the causes of compositional order in the NicPt(1-c) alloys

    International Nuclear Information System (INIS)

    Gyorffy, B.L.; Staunton, J.B.

    1991-01-01

    We review, briefly, the arguments which gave rise to the current controversy concerning the origin of compositional order in Ni c Pt 1-c alloys. We note that strain fluctuations play an important role in determining the state of compositional order in this system and outline a theoretical framework that takes account of them. 29 refs., 4 figs

  3. Microstructure and electrochemical corrosion behavior of a Pb-1 wt%Sn alloy for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Leandro C.; Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970, Campinas - SP (Brazil)

    2009-07-15

    The aim of this study was to evaluate the effect of solidification cooling rates on the as-cast microstructural morphologies of a Pb-1 wt%Sn alloy, and to correlate the resulting microstructure with the corresponding electrochemical corrosion resistance in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Cylindrical low-carbon steel and insulating molds were employed permitting the two extremes of a significant range of solidification cooling rates to be experimentally examined. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response of Pb-1 wt%Sn alloy samples. It was found that lower cooling rates are associated with coarse cellular arrays which result in better corrosion resistance than fine cells which are related to high cooling rates. The experimental results have shown that that the pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance. (author)

  4. Effect of electrical discharge machining on uranium-0.75 titanium and tungsten-3.5 nickel-1.5 iron alloys

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-06-01

    It was found that U--0.75 Ti alloy cracked if the EDM parameters were out of control, and precipitation of carbides adjacent to the EDM surface took place during subsequent solution quenching. Cracks form in the ''recast'' layer when solution-quenched U--0.75 Ti alloy undergoes EDM, and the cracks propagated during subsequent nickel plating. If the recast layer was removed prior to nickel plating, only a slight loss in strength resulted, compared to conventional machining. W--3.5 Ni--1.5 Fe alloy also sustained some surface damage during EDM and also experienced a small loss in strength compared to conventionally machined material. 12 figures, 4 tables

  5. Ab initio studies of Co{sub 2}FeAl{sub 1−x}Si{sub x} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Szwacki, N. Gonzalez, E-mail: gonz@fuw.edu.pl; Majewski, Jacek A., E-mail: jam@fuw.edu.pl

    2016-07-01

    We present results of extensive theoretical studies of Co{sub 2}FeAl{sub 1−x}Si{sub x} Heusler alloys, which have been performed in the framework of density functional theory employing the all-electron full-potential linearized augmented plane-wave scheme. It is shown that the Si-rich alloys are more resistive to structural disorder and as a consequence Si stabilizes the L2{sub 1} structure. Si alloying changes position of the Fermi level, pushing it into the gap of the minority spin-band. It is also shown that the hyperfine field on Co nuclei increases with the Si concentration, and this increase originates mostly from the changes in the electronic density of the valence electrons. - Highlights: • GGA+U calculations: μ and E{sub g} dependence on the value of U for Co{sub 2}FeAl and Co{sub 2}FeSi. • Behavior of magnetic hyperfine fields on the Co site of Co{sub 2}FeAl{sub 1−x}Si{sub x} versus x. • DFT proof of suppression of formation of antisites defects with x in Co{sub 2}FeAl{sub 1−x}Si{sub x}.

  6. Study of corrosion kinetics of fuel element tubes from calcium-thermal zirconium alloy Zr1Nb in water at 350 degree C and in vapour at 400 and 500 degree C

    International Nuclear Information System (INIS)

    Petel'guzov, I.A.

    2002-01-01

    In the report brought results of corrosion process studies in water medium of pipe samples for fuel element shells from Zr1Nb alloy (earlier KTZ-110),made from the calcium-thermal zirconium alloys developed in the Ukraine of technology and,for the comparison,samples of pipes from the staff alloy E110, applicable in fuel elements acting reactors of type WWER. Tests were conducted under the working temperature of fuel shells in the reactor (350 degree C) in during of 14000 hours and under increased temperatures (400 degree C) within a time acordinly 4000 hours. Samples from the alloy Zr1Nb had more high contents of oxygen (before 0,12%...0,16%), than staff alloy Eh110 (0,08%O). Studies have shown sufficiently high corrosion stability of experimental alloy Zr1Nb, close to stability of alloy E110.Discovered signs of corrosion 'breakway' or 'transition' on kinetic corrosion curves of Zr1Nb alloys and E110 alloy, characterisating zircaloy type of alloy. Considered mechanism of influence of oxygen on the corrosion process of zirconium alloys with the additive a niobium

  7. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Olvera, S.; Sánchez-Marcos, J.; Palomares, F.J.; Salas, E.; Arce, E.M.; Herrasti, P.

    2014-01-01

    CoNi alloys including Co 30 Ni 70 , Co 50 Ni 50 and Co 70 Ni 30 were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ B /atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H 2 SO 4 and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H 2 SO 4 and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni x Co 100-x alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions

  8. The Method of Measured Electrical Resistivity in Studying Phase Transformations in Zr1Nb Alloy

    International Nuclear Information System (INIS)

    Gritsina, V.M.; Klimenko, S.P.; Chernyaeva, T.P.

    2006-01-01

    The paper systematically arranges and analyzes the data on the methods of research into α ↔ β transformation process in zirconium alloys, as well as capabilities and information provided by each method. A special emphasis is put on the method of measured electrical resistivity. The authors also present the results of their own research into α ↔ β transformation process in Zr1Nb alloy (in the material of Zr+1% Nb tubing produced in Ukraine from calciothermal zirconium). The ρ →T curve was used to define the maximum and minimum values for transformation temperatures. Combined processing of the phase data on Zr+1% Nb found in literature and obtained from measured resistivity suggests that transformation process happens in several stages. The maximum value on the ρ → T curve corresponds to the beginning of stage 3, whereas the minimum - to its completion; as suggested by the pooled data, accounts for over 95% of the total volume of the material

  9. Overcoming Limitations in Semiconductor Alloy Design

    Science.gov (United States)

    Christian, Theresa Marie

    Inorganic semiconductors provide an astonishingly versatile, robust, and efficient platform for optoelectronic energy conversion devices. However, conventional alloys and growth regimes face materials challenges that restrict the full potential of these devices. Novel alloy designs based on isoelectronic co-doping, metamorphic growth and controllable atomic ordering offer new pathways to practical and ultra-high-efficiency optoelectronic devices including solar cells and light-emitting diodes. Abnormal isoelectronic alloys of GaP1-xBix, GaP 1-x-yBixNy, and GaAs1-xBix with unprecedented bismuth incorporation fractions and crystalline quality are explored in this thesis research. Comparative studies of several GaP1-xBix and GaP1-x-yBixNy alloys demonstrate that the site-specific incorporation of bismuth during epitaxial growth is sensitive to growth temperature and has dramatic effects on carrier transfer processes in these alloys. Additionally, distinctive bismuth-related localized states are spectrally identified for the first time in samples of GaAs1-xBix grown by laser-assisted epitaxial growth. These results address fundamental questions about the nature of bismuth-bismuth inter-impurity interactions. Finally, a metamorphic growth strategy for a novel light-emitting diode (LED) design is also discussed. This work utilized direct-bandgap AlxIn1-xP active layers with atomic ordering-based electron confinement to improve emission in the yellow and green spectral regions, where incumbent technologies are least effective, and demonstrated the feasibility of non-lattice-matched LED active materials for visible light emission.

  10. Low in reactor creep Zr-base alloy tubes

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Holt, R.A.

    1984-01-01

    This invention relates to zirconium alloy tubes especially for use in nuclear power reactors. More particularly it relates to quaternary 3.5 percent Sn, 1 percent Mo, 1 percent Nb, balance Zr alloy tubes which have been extruded, cold worked and heat treated to lower their dislocation density. In one embodiment the alloys are cold worked less than 5 percent and stress relieved to produce a low dislocation density and in another embodiment the alloys are cold worked up to about 50 percent and annealed to produce a very low dislocation density and also small equiaxed β grains

  11. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, N.Yu. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Stepanov, N.D., E-mail: stepanov@bsu.edu.ru [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Shaysultanov, D.G. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Tikhonovsky, M.A. [National Science Center “Kharkov Institute of Physics and Technology”, NAS of Ukraine, Kharkov, 61108 (Ukraine); Salishchev, G.A. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation)

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The density of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.

  12. Prevention of pin tract infection with titanium-copper alloys.

    Science.gov (United States)

    Shirai, Toshiharu; Tsuchiya, Hiroyuki; Shimizu, Tohru; Ohtani, Kaori; Zen, Yo; Tomita, Katsuro

    2009-10-01

    The most frequent complication in external fixation is pin tract infection. To reduce the incidence of implant-associated infection, many published reports have looked at preventing bacterial adhesion by treating the pin surface. This study aimed to evaluate the antibacterial activity of a Titanium-Copper (Ti-Cu) alloy on implant infection, and to determine the potential use of the Ti-Cu alloy as a biomaterial. Two forms of Ti-Cu alloys were synthesized: one with 1% Cu and the other with 5% Cu. For analyzing infectious behavior, the implants were exposed to Staphylococcus aureus and Escherichia coli. The reaction of pathogens to the Ti-Cu alloys was compared with their reaction to stainless steel and pure titanium as controls. Both Ti-Cu alloys evidently inhibited colonization by both bacteria. Conversely, cytocompatibility studies were performed using fibroblasts and colony formation on the metals was assessed by counting the number of colonies. Ti-1% Cu alloy showed no difference in the number of colonies compared with the control. External fixator pins made of Ti-Cu alloys were evaluated in a rabbit model. The tissue-implant interactions were analyzed for the presence of infection, inflammatory changes and osteoid-formation. Ti-1% Cu alloy significantly inhibited inflammation and infection, and had excellent osteoid-formation. Copper blood levels were measured before surgery and at 14 days postoperatively. Preoperative and postoperative blood copper values were not statistically different. Overall, it was concluded that Ti-Cu alloys have antimicrobial activity and substantially reduce the incidence of pin tract infection. Ti-1% Cu alloy shows particular promise as a biomaterial. (c) 2009 Wiley Periodicals, Inc.

  13. Corrosion behaviour of sensitized and unsensitized Alloy 900 (UNS 1.4462) in concentrated aqueous lithium bromide solutions at different temperatures

    International Nuclear Information System (INIS)

    Leiva-Garcia, R.; Munoz-Portero, M.J.; Garcia-Anton, J.

    2010-01-01

    Duplex stainless steels can undergo microstructural changes if they are heated improperly. When that happens, duplex stainless steels are sensitized and intermetallic phases appear. The high Chromium and Molybdenum content promotes the formation of secondary phases as a consequence of the heat treatment. These secondary phases, which are rich in alloying elements, such as Cr and Mo, deplete these elements from the neighbouring phases, leading to a reduction in corrosion resistance. In order to study the influence of the secondary phases on the corrosion parameters, samples of duplex stainless steel, Alloy 900 (UNS 1.4462), have been heated in argon atmosphere at 825 deg. C for 1 h. The corrosion behaviour of sensitized and unsensitized Alloy 900 has been analyzed in a concentrated aqueous lithium bromide (LiBr) solution of 992 g/L by means of cyclic potentiodynamic curves. Secondary phase presence reduces the pitting potential value of Alloy 900. Besides, the pitting potential decreases with temperature. On the other hand, the corrosion potential and open circuit potential values increase with temperature and sensitization.

  14. Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75 mass% Si-Fe alloy electrode

    Energy Technology Data Exchange (ETDEWEB)

    Stambekova, Kuralay [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China); Lin, Hung-Mao [Department of Mechanical Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan (China); Uan, Jun-Yen, E-mail: jyuan@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China)

    2012-03-01

    This study experimentally investigates the surface modification of 5083 Al alloy by the electrical discharge alloying (EDA) process with a Si-Fe alloy as an electrode. Samples were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), micro-hardness and corrosion resistance tests. The micro-hardness of EDA alloyed layer was evidently higher than that of the base metal (5083 Al alloy). The TEM results show that the matrix of the alloyed layer has an amorphous-like structure; the matrix contains fine needle-like Si particles, block-like Si particles and nano-size Al{sub 4.5}FeSi and Al{sub 13}Fe{sub 4} particles. The TEM results support experimental results for the high hardness of the alloyed layer. Moreover, the EDA alloyed layer with composite microstructures has good corrosion resistance in NaCl aqueous solution.

  15. Characterization of Tubing from Advanced ODS alloy (FCRD-NFA1)

    International Nuclear Information System (INIS)

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman; Lavender, Curt; Anderson, Iver; Rieken, Joel; Lewandowski, John; Hoelzer, Dave; Odette, George R.

    2016-01-01

    Fabrication methods are being developed and tested for producing fuel clad tubing of the advanced ODS 14YWT and FCRD-NFA1 ferritic alloys. Three fabrication methods were based on plastically deforming a machined thick-wall tube sample of the ODS alloys by pilgering, hydrostatic extrusion or drawing to decrease the outer diameter and wall thickness and increase the length of the final tube. The fourth fabrication method consisted of the additive manufacturing approach involving solid-state spray deposition (SSSD) of ball milled and annealed powder of 14YWT for producing thin-wall tubes. Of the four fabrication methods, two methods were successful at producing tubing for further characterization: production of tubing by high-velocity oxy-fuel spray forming and production of tubing using high-temperature hydrostatic extrusion. The characterization described shows through neutron diffraction the texture produced during extrusion while maintaining the beneficial oxide dispersion. In this research, the parameters for innovative thermal spray deposition and hot extrusion processing methods have been developed to produce the final nanostructured ferritic alloy (NFA) tubes having approximately 0.5 mm wall thickness. Effect of different processing routes on texture and grain boundary characteristics has been investigated. It was found that hydrostatic extrusion results in combination of plane strain and shear deformations which generate rolling textures of ?- and ?-fibers on and together with a shear texture of ?-fiber on and . On the other hand, multi-step plane strain deformation in cross directions leads to a strong rolling textures of ?- and ?-fiber on together with weak ?-fiber on . Even though the amount of the equivalent strain is similar, shear deformation leads to much lower texture indexes compared to the plane strain deformations. Moreover, while 50% of hot rolling brings about a large number of high-angle grain boundaries (HAB), 44% of shear deformation results

  16. Characterization of Tubing from Advanced ODS alloy (FCRD-NFA1)

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Iver [Ames Lab., Ames, IA (United States); Rieken, Joel [Ames Lab., Ames, IA (United States); Lewandowski, John [Case Western Reserve Univ., Cleveland, OH (United States); Hoelzer, Dave [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odette, George R. [Univ. of California, Santa Barbara, CA (United States)

    2016-09-20

    Fabrication methods are being developed and tested for producing fuel clad tubing of the advanced ODS 14YWT and FCRD-NFA1 ferritic alloys. Three fabrication methods were based on plastically deforming a machined thick-wall tube sample of the ODS alloys by pilgering, hydrostatic extrusion or drawing to decrease the outer diameter and wall thickness and increase the length of the final tube. The fourth fabrication method consisted of the additive manufacturing approach involving solid-state spray deposition (SSSD) of ball milled and annealed powder of 14YWT for producing thin-wall tubes. Of the four fabrication methods, two methods were successful at producing tubing for further characterization: production of tubing by high-velocity oxy-fuel spray forming and production of tubing using high-temperature hydrostatic extrusion. The characterization described shows through neutron diffraction the texture produced during extrusion while maintaining the beneficial oxide dispersion. In this research, the parameters for innovative thermal spray deposition and hot extrusion processing methods have been developed to produce the final nanostructured ferritic alloy (NFA) tubes having approximately 0.5 mm wall thickness. Effect of different processing routes on texture and grain boundary characteristics has been investigated. It was found that hydrostatic extrusion results in combination of plane strain and shear deformations which generate rolling textures of α- and γ-fibers on {001}<110> and {111}<110> together with a shear texture of ζ-fiber on {011}<211> and {011}<011>. On the other hand, multi-step plane strain deformation in cross directions leads to a strong rolling textures of θ- and ε-fiber on {001}<110> together with weak γ-fiber on {111}<112>. Even though the amount of the equivalent strain is similar, shear deformation leads to much lower texture indexes compared to the plane strain deformations. Moreover, while 50% of hot rolling brings about a large number of

  17. Synthesis Of NiCrAlC alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M.

    2010-01-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni 3 Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  18. Comparison of brazed joints made with BNi-1 and BNi-7 nickel-base brazing alloys

    Directory of Open Access Journals (Sweden)

    Zorc, Borut

    2000-04-01

    Full Text Available Kinetics of the processes are different with different types of brazing alloys. Precipitation processes in the parent metal close to the brazing gap are of great importance. They control the mechanical properties of the joint area when the brittle eutectic has disappeared from the gap. A comparative study of brazed joints on austenitic stainless alloys made with BNi-7 (Ni-P type and BNi-1 (Ni-Si-B type brazing alloys was made. Brazing alloys containing phosphorus behave in a different manner to those containing boron.

    Las aleaciones de níquel se producen mediante tres sistemas de aleación: Ni-P, Ni-Si y Ni-B. Durante las reacciones metalúrgicas con el metal de base, la eutéctica frágil en la separación soldada puede transformarse en la solución dúctil-sólida con todas aleaciones. La cinética del proceso varía según el tipo de aleación. Los procesos de precipitación en el metal de base cerca de la separación soldada son de mucha importancia, ya que controlan las propiedades mecánicas de la área de unión después de desaparecer la eutéctica frágil de la separación. Se ha hecho un análisis comparativo de uniones soldadas en aleaciones austeníticas inoxidables realizadas con aleaciones BNi-7 (tipo Ni-P y BNi-1 (tipo Ni-Si-B. Las aleaciones que contienen fósforo se comportan de una manera diferente, tanto con el cambio de la eutéctica a la solución sólida, como con los procesos de precipitación en el metal de base cerca de la unión soldada.

  19. Shape-memory effect in Ti-Nb alloys

    International Nuclear Information System (INIS)

    Peradze, T.; Berikashvili, T.; Chelidze, T.; Gorgadze, K.; Bochorishvili, M.; Taktakishvili, M.

    2009-01-01

    The work deals with the investigation of the binary alloy of titanium with niobium and is aimed at demonstrating the functional-mechanical possibilities of Ti-Nb alloys from the viewpoint of their potential application in practice. The shape-memory effect, super elasticity and reactive stress in alloys of Ti-Nb system were studied. It turned out that the work carried out expanded the interval of Nb content in the investigated alloys from 25.9 to 33.1 wt%. The shape recovery made up not less than 90% at the deformation of 6-8%. The reactive stress reached 350-450 MPa. In the alloys under study another (high-temperature) shape-memory effect was found, and the influence of hydrogen and oxygen on the inelastic properties of alloys was studied. (author)

  20. Systematic corrosion investigation of various Cu-Sn alloys electrodeposited on mild steel in acidic solution: Dependence of alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Suerme, Yavuz, E-mail: ysurme@nigde.edu.t [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey); Guerten, A. Ali [Department of Chemistry, Faculty of Science and Art, Osmaniye Korkut Ata University, 80000 Osmaniye (Turkey); Bayol, Emel; Ersoy, Ersay [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey)

    2009-10-19

    Copper-tin alloy films were galvanostatically electrodeposited on the mild steel (MS) by combining the different amount of Cu and Sn electrolytes at a constant temperature (55 deg. C) and pH (3.5). Alloy films were characterized by using the energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and micrographing techniques. Corrosion behaviours were evaluated with electrochemical impedance spectrometry (EIS) and electrochemical polarization measurements. Time gradient of electrolysis process was adjusted to obtain same thickness of investigated alloys on MS. The systematic corrosion investigation of various Cu{sub x}-Sn{sub 100-x} (x = 0-100) alloy depositions on MS substrate were carried out in 0.1 M sulphuric acid medium. Results indicate that the corrosion resistance of the alloy coatings depended on the alloy composition, and the corrosion resistance increased at Cu-Sn alloy deposits in proportion to Sn ratio.

  1. Phase transformations on Zr-Nb alloys

    International Nuclear Information System (INIS)

    Doi, Sergio Norifumi

    1980-01-01

    This research intended the laboratory scale experimental development of Zr-Nb alloys with adequate characteristics for use as fuel element cladding or for the making of irradiation capsules. Zr-Nb alloys with different Nb contents were melted and the resulting material was characterised. The following metallurgical aspects were considered: preparation of Zr-Nb alloys with various Nb contents; heat and thermomechanical treatments; microstructural characterization; mechanical properties; oxidation properties. The influence of the heat treatment and thermomechanical treatment, on the out-of-pile mechanical and oxidation properties of the Zr-Nb alloys were studied. It was found that the alloy microhardness increases with the Nb content and/or with the thermomechanical treatment. Mechanical properties such as yield and ultimate tensile strength as well as elongation were determined by means of compression tests. The results showed that the alloy yield stress increases with the Nb content and with the thermomechanical treatment, while its elongation decreases. Thermogravimetric analysis determined the alloy oxidation kinetics, in the 400 - 800 deg C interval, at 1 atm. oxygen pressure. The results showed that the alloy oxidation rate increases with the temperature and Nb content. It was also observed that the oxidation rate increases considerably for temperatures higher than 600 deg C.(author)

  2. Electronic structure of Mo1-x Re x alloys studied through resonant photoemission spectroscopy

    Science.gov (United States)

    Sundar, Shyam; Banik, Soma; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Ganguli, Tapas; Lodha, G. S.; Pandey, Sudhir K.; Phase, D. M.; Roy, S. B.

    2016-08-01

    We studied the electronic structure of Mo-rich Mo1-x Re x alloys (0≤slant x≤slant 0.4 ) using valence band photoemission spectroscopy in the photon energy range 23-70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to  -6 eV, whereas s states lie in the binding energy range  -4 to  -10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p-5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p-4d transition (threshold: 42 eV) and the Re 5p-5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE  =  0) to  -5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x  >  0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1-x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s-d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x.

  3. Microstructure and magnetic behavior of Cu–Co–Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chabri, Sumit, E-mail: sumitchabri2006@gmail.com [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Bera, S. [Department of Metallurgical & Materials Engineering, National Institute of Technology, Durgapur 713209 (India); Mondal, B.N. [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Basumallick, A.; Chattopadhyay, P.P. [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2017-03-15

    Microstructure and magnetic behavior of nanocrystalline 50Cu–40Co–10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450–650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  4. Recovery of electron irradiated V-Ga alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Monge, M.; Pareja, R.; Hodgson, E.R.

    2000-01-01

    The recovery characteristics of electron-irradiated V-Ga alloys with 1.2 and 4.6 at.% Ga have been investigated by positron annihilation spectroscopy (PAS). It is found that vacancies created by electron irradiation become mobile in these alloys at ∼293 K. This temperature is noticeably lower than that in pure V and V-Ti alloys. The vacancies aggregate into microvoids in V-4.6Ga, but do not in V-1.2Ga. The results indicate that vacancies are bound to Ga-interstitial impurity pairs

  5. Ion scattering studies of ordered alloy surfaces: CuAu(1 0 0) and NiAl

    International Nuclear Information System (INIS)

    Beikler, R.; Taglauer, E.

    2000-01-01

    The composition and structure of alloy surfaces can differ from the corresponding bulk properties due to segregation and relaxation effects. We studied the (1 0 0) surface of the ordered alloy CuAu and amorphous Ni and Al by low-energy Ne + and Na + ion scattering. The interpretation of the experimental results is supported by numerical simulations using the MARLOWE code. In the CuAu system a certain geometry was found to be very sensitive to Au presence in the 2nd layer. Comparison with MARLOWE results also allows to study variations in the ion yields arising from neutralization effects. By trajectory analysis ion survival probabilities are estimated for Ni and Al

  6. The effect of PI3K inhibitor LY294002 and gemcitabine hydrochloride combined with ionizing radiation on the formation of vasculogenic mimicry of Panc-1 cells in vitro and in vivo.

    Science.gov (United States)

    Bai, R; Ding, T; Zhao, J; Liu, S; Zhang, L; Lan, X; Yu, Y; Yin, L

    2016-01-01

    This research's purpose was to explore the existence of vasculogenic mimicry (VM) in both 3-D matrices of Panc-1 cells in vitro and orthotopic Panc-1 xenografts in vivo and to test the hypothesis that PI3K inhibitor LY294002 and gemcitabine hydrochloride would offer clear treatment benefit when integrated into ionizing radiation (IR) therapeutic regimens for treatment of pancreatic cancer. We explored the existence of VM in both 3-D matrices of Panc-1 cells and orthotopic Panc-1 xenografts. We subsequently investigated the activation of the PI3K/MMPs/Ln-5γ2 signaling pathway in response to IR. LY294002 and gemcitabine hydrochloride were then evaluated for their radiosensitizing effect solely and in combination. We found that VM existed in both 3-D matrices of Panc-1 cells in vitro and orthotopic Panc-1 xenografts in vivo. The expressions of p-Akt and MMP- 2 were found to increase in response to IR. LY294002 and gemcitabine hydrochloride combined with IR better inhibited cell migration, VM formation and MMP-2 mRNA expression of Panc-1 cells in vitro, and we also proved that the novel therapeutic regimen better inhibited tumor growth, tumor metastasis and VM formation of orthotopic Panc-1 xenografts by suppressing the PI3K/MMPs/Ln-5γ2 signaling pathway in vivo. Our present study is among the first to prove the VM formation in orthotopic Panc-1 xenografts. Furthermore, our current study is also among the first to provide preliminary evidence for the use of the novel therapeutic regimen LY294002 and gemcitabine hydrochloride combined with IR for treatment of pancreatic cancer.

  7. Narrow-gap physical vapour deposition synthesis of ultrathin SnS1-xSex (0 ≤ x ≤ 1) two-dimensional alloys with unique polarized Raman spectra and high (opto)electronic properties.

    Science.gov (United States)

    Gao, Wei; Li, Yongtao; Guo, Jianhua; Ni, Muxun; Liao, Ming; Mo, Haojie; Li, Jingbo

    2018-05-10

    Here we report ultrathin SnS1-xSex alloyed nanosheets synthesized via a narrow-gap physical vapour deposition approach. The SnS1-xSex alloy presents a uniform quadrangle shape with a lateral size of 5-80 μm and a thickness of several nanometers. Clear orthorhombic symmetries and unique in-plane anisotropic properties of the 2D alloyed nanosheets were found with the help of X-ray diffraction, high resolution transmission electron microscopy and polarized Raman spectroscopy. Moreover, 2D alloyed field-effect transistors were fabricated, exhibiting a unipolar p-type semiconductor behavior. This study also provided a lesson that the thickness of the alloyed channels played the major role in the current on/off ratio, and the high ratio of 2.10 × 102 measured from a large ultrathin SnS1-xSex device was two orders of magnitude larger than that of previously reported SnS, SnSe nanosheet based transistors because of the capacitance shielding effect. Obviously enhanced Raman peaks were also found in the thinner nanosheets. Furthermore, the ultrathin SnS0.5Se0.5 based photodetector showed a highest responsivity of 1.69 A W-1 and a short response time of 40 ms under illumination of a 532 nm laser from 405 to 808 nm. Simultaneously, the corresponding highest external quantum efficiency of 392% and detectivity of 3.96 × 104 Jones were also achieved. Hopefully, the narrow-gap synthesis technique provides us with an improved strategy to obtain large ultrathin 2D nanosheets which may tend to grow into thicker ones for stronger interlayer van der Waals forces, and the enhanced physical and (opto)electrical performances in the obtained ultrathin SnS1-xSex alloyed nanosheets prove their great potential in the future applications for versatile devices.

  8. Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-1.5Nd Alloys

    Directory of Open Access Journals (Sweden)

    Xiumin Ma

    2016-01-01

    Full Text Available Corrosion behavior of Mg-5Y-1.5Nd alloy was investigated after heat treatment. The microstructure and precipitation were studied by scanning electron microscope (SEM and energy dispersive spectrometer (EDS. The weight loss rates of different samples were arranged as T6-24 h>T6-6 h>T6-14 h>as-cast>T4. The open circuit potential (OCP showed that T4 sample had a more positive potential than that of other samples. The potentiodynamic polarization curves showed that the T6-24 h sample had the highest corrosion current density of 245.362 μA·cm−2, whereas the T4 sample had the lowest at 52.164 μA·cm−2. The EIS results confirmed that the heat treatment reduced the corrosion resistance for Mg-5Y-1.5Nd alloy, because the precipitations acted as the cathode of electrochemical reactions to accelerate the corrosion process. The corrosion rates of different samples were mainly determined by the amount and distribution of the precipitations. The precipitations played dual roles that depended on the amount and distribution. The presence of the phase in the alloys could deteriorate the corrosion performance as it could act as an effective galvanic cathode. Otherwise, a fine and homogeneous phase appeared to be a better anticorrosion barrier.

  9. Measurement and Analysis of Density of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XIAO Feng; TAO Zainan; MuKai Kusuhiro

    2005-01-01

    The density of molten Ni-W alloys was measured with a modified pycnometric method. It is found that the density of the molten Ni- W alloys decreases with temperature rising, but increases with the increase of tungsten concentration in the alloys. The molar volume of molten Ni- W binary alloys increases with the increase of temperature and tungsten concentration. The partial molar volume of tungsten in liquid Ni- W binary alloy has been calculated approximately as ( - 1.59+ 5.64 × 10-3 T) × 10-6m3 ·mol-1.

  10. Self-assembly of bimetallic AuxPd1-x alloy nanoparticles via dewetting of bilayers through the systematic control of temperature, thickness, composition and stacking sequence

    Science.gov (United States)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-03-01

    Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.

  11. Tungsten wire-nickel base alloy composite development

    Science.gov (United States)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  12. Corrosion of high-density sintered tungsten alloys

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1989-01-01

    In comparative corrosion tests, the corrosion resistance of an Australian tungsten alloy (95% W, 3.5% Ni, 1.5% Fe) was found to be superior to three other tungsten alloys and, under certain conditions, even more corrosion-resistant than pure tungsten. Corrosion resistance was evaluated after immersion in both distilled water and 5% sodium chloride solutions, and in cyclic humidity and salt mist environments. For all but the Australian alloy, the rate of corrosion in sodium chloride solution was markedly less than that in distilated water. In all cases, alloys containing copper had the greatest corrosion rates. Corrosion mechanisms were investigated using a scanning electron microscope, analysis of corrosion products and galvanic corrosion studies. For the alloys, corrosion was attributed primarily to a galvanic reaction. Whether the tungsten or binder phase of the alloy became anodic, and thus was attacked preferentially, depended upon alloy composition and corrosion environment. 16 refs., 4 tabs., 4 figs

  13. 1 Molar concentration hydrofluoric acid effect at 400 C in the corrosion resistance of alloys containing nickel

    International Nuclear Information System (INIS)

    Contreras P, H.

    1992-01-01

    Corrosion rate for pure nickel, Inconel 600 and Monel alloys in a 1 Molar hydrofluoric acid solution at a 40 0 C temperature were determined. For contrasting purposes both SAE 304 SS and SAE 316 SS were included. As expected these Stainless Steels do not show good corrosion performance in the solution used. Several expressions correlating the weight and thickness loss v/s time were obtained. In the particular case of Monel, up to 2.021 hours, two expressions for the weight loss and three expressions for the thickness loss were obtained with a close to 1,0 correlation coefficient value. The Monel showed the best overall corrosion performance among the tested alloys. (author)

  14. Vanadium alloys for structural applications in fusion systems: A review of vanadium alloy mechanical and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, B.A.; Smith, D.L.

    1991-12-16

    The current knowledge is reviewed on (1) the effects of neutron irradiation on tensile strength and ductility, ductile-brittle transition temperature, creep, fatigue, and swelling of vanadium-base alloys, (2) the compatibility of vanadium-base alloys with liquid lithium, water, and helium environments, and (3) the effects of hydrogen and helium on the physical and mechanical properties of vanadium alloys that are potential candidates for structural materials applications in fusion systems. Also, physical and mechanical properties issues are identified that have not been adequately investigated in order to qualify a vanadium-base alloy for the structural material in experimental fusion devices and/or in fusion reactors.

  15. Vanadium alloys for structural applications in fusion systems: A review of vanadium alloy mechanical and physical properties

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1991-01-01

    The current knowledge is reviewed on (1) the effects of neutron irradiation on tensile strength and ductility, ductile-brittle transition temperature, creep, fatigue, and swelling of vanadium-base alloys, (2) the compatibility of vanadium-base alloys with liquid lithium, water, and helium environments, and (3) the effects of hydrogen and helium on the physical and mechanical properties of vanadium alloys that are potential candidates for structural materials applications in fusion systems. Also, physical and mechanical properties issues are identified that have not been adequately investigated in order to qualify a vanadium-base alloy for the structural material in experimental fusion devices and/or in fusion reactors

  16. Absence of intrinsic ferromagnetism in Zn1-xMnxO alloys

    International Nuclear Information System (INIS)

    Zhang Huawei; Shi Erwei; Chen Zhizhan; Liu Xuechao; Xiao Bing

    2006-01-01

    Zn 1-x Mn x O alloys, with different Mn concentrations, were prepared by the hydrothermal method. X-ray diffraction and electron paramagnetic resonance spectra demonstrate that Zn 2+ ions are homogeneously substituted by Mn 2+ ions without changing the ZnO wurtzite structure. The x = 0.02 and 0.04 samples are paramagnetic. When the Mn concentrations are increased to x = 0.08 and 0.10, the samples exhibit some ferromagnetism due to a secondary phase (Zn,Mn)Mn 2 O 4 . (letter to the editor)

  17. United modification of Al-24Si alloy by Al-P and Al-Ti-C master alloys

    Institute of Scientific and Technical Information of China (English)

    韩延峰; 刘相法; 王海梅; 王振卿; 边秀房; 张均艳

    2003-01-01

    The modification effect of a new type of Al-P master alloy on Al-24Si alloys was investigated. It is foundthat excellent modification effect can be obtained by the addition of this new type of A1-P master alloy into Al-24Simelt and the average primary Si grain size is decreased below 47 μm from original 225 μm. It is also found that theTiC particles in the melt coming from Al8Ti2C can improve the modification effect of the Al-P master alloy. Whenthe content of TiC particles in the Al-24Si melt is 0.03 %, the improvement reaches the maximum and keeps steadywith increasing content of TiC particles. Modification effect occurs at 50 min after the addition of the Al-P master al-loy and TiC particles, and keeps stable with prolonging holding time.

  18. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  19. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  20. Influence of alloy microstructure on the microshear bond strength of basic alloys to a resin luting cement.

    Science.gov (United States)

    Bauer, José; Costa, José Ferreira; Carvalho, Ceci Nunes; Souza, Douglas Nesadal de; Loguercio, Alessandro Dourado; Grande, Rosa Helena Miranda

    2012-01-01

    The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13 mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.

  1. Welding of the VNZh7-3 alloy with the VT1-0 titanium by laser beam

    International Nuclear Information System (INIS)

    Baranov, M.S.; Voshchinskij, M.L.; Fedorov, P.M.; Shilov, I.F.; Zytner, G.D.

    1980-01-01

    Found is the principle possibility of the laser welding of dissimilar metals and the optimum welding mode as well with the testing of quality and strength indices of welded joints and with mode test on structural elements. The possibility of laser welding of the sintered VNZh 7-3 alloy with the VT1-0 titanium in argon is shown. Studied is the technique of forming of welded edge joint of the above dissimilar metals. Established is the optimum method of laser beam setting at an angle of 20 deg to the butt surface and with the shift by 1/3 of diameter of welded point in the titanium direction. Shear tests of elementary and natural samples have shown that real strength of welded joint exceeds the VT1-0 titanium strength. Macro- and microstructure of welded joints has layer-vortex alloy structure on the base of the VT1-0 titanium inclusion of tungsten grains that indicates the intensive mixing of metals during the welding

  2. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  3. Inhibition of xyloglucanase from an alkalothermophilic Thermomonospora sp. by a peptidic aspartic protease inhibitor from Penicillium sp. VM24.

    Science.gov (United States)

    Menon, Vishnu; Rao, Mala

    2012-11-01

    A bifunctional inhibitor from Penicillium sp VM24 causing inactivation of xyloglucanase from Thermomonospora sp and an aspartic protease from Aspergillus saitoi was identified. Steady state kinetics studies of xyloglucanase and the inhibitor revealed an irreversible, non-competitive, two-step inhibition mechanism with IC(50) and K(i) values of 780 and 500nM respectively. The interaction of o-phthalaldehyde (OPTA)-labeled xyloglucanase with the inhibitor revealed that the inhibitor binds to the active site of the enzyme. Far- and near-UV spectrophotometric analysis suggests that the conformational changes induced in xyloglucanase by the inhibitor may be due to irreversible denaturation of enzyme. The bifunctional inhibitor may have potential as a biocontrol agent for the protection of plants against phytopathogenic fungi. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The Effect of Deep Cryogenic Treatment on the Corrosion Behavior of Mg-7Y-1.5Nd Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Quantong Jiang

    2017-10-01

    Full Text Available The effect of quenching on the corrosion resistance of Mg-7Y-1.5Nd alloy was investigated. The as-cast alloy was homogenized at 535 °C for 24 h, followed by quenching in air, water, and liquid nitrogen. Then, all of the samples were peak-aged at 225 °C for 14 h. The microstructures were studied by scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction. Corrosion behavior was analyzed by using weight loss rate and gas collection. Electrochemical characterizations revealed that the T4-deep cryogenic sample displayed the strongest corrosion resistance among all of the samples. A new square phase was discovered in the microstructure of the T6-deep cryogenic sample; this phase was hugely responsible for the corrosion property. Cryogenic treatment significantly improved the corrosion resistance of Mg-7Y-1.5Nd alloy.

  5. Microstructural evolution of direct chill cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy during solution treatment

    Directory of Open Access Journals (Sweden)

    He Kezhun

    2011-08-01

    Full Text Available Heat treatment has important influence on the microstructure and mechanical properties of Al-Si alloys. The most common used heat treatment method for these alloys is solution treatment followed by age-hardening. This paper investigates the microstructural evolution of a direct chill (DC cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy after solution treated at 500, 510, 520 and 530℃, respectively for different times. The major phases observed in the as-cast alloy are α-aluminum dendrite, primary Si particle, eutectic Si, Al7Cu4Ni, Al5Cu2Mg8Si6, Al15(Cr, Fe, Ni, Cu4Si2 and Al2Cu. The Al2Cu phase dissolves completely after being solution treated for 2 h at 500℃, while the eutectic Si, Al5Cu2Mg8Si6 and Al15(Cr, Fe, Ni, Cu4Si2 phases are insoluble. In addition, the Al7Cu4Ni phase is substituted by the Al3CuNi phase. The α-aluminum dendrite network disappears when the solution temperature is increased to 530℃. Incipient melting of the Al2Cu-rich eutectic mixture occurrs at 520℃, and melting of the Al5Cu2Mg8Si6 and Al3CuNi phases is observed at a solution temperature of 530℃. The void formation of the structure and deterioration of the mechanical properties are found in samples solution treated at 530℃.

  6. Long Non-coding RNA LINC00339 Stimulates Glioma Vasculogenic Mimicry Formation by Regulating the miR-539-5p/TWIST1/MMPs Axis

    Directory of Open Access Journals (Sweden)

    Junqing Guo

    2018-03-01

    Full Text Available Glioma is recognized as a highly angiogenic malignant brain tumor. Vasculogenic mimicry (VM greatly restricts the therapeutic effect of anti-angiogenic tumor therapy for glioma patients. However, the molecular mechanisms of VM formation in glioma remain unclear. Here, we demonstrated that LINC00339 was upregulated in glioma tissue as well as in glioma cell lines. The expression of LINC00339 in glioma tissues was positively correlated with glioma VM formation. Knockdown of LINC00339 inhibited glioma cell proliferation, migration, invasion, and tube formation, meanwhile downregulating the expression of VM-related molecular MMP-2 and MMP-14. Furthermore, knockdown of LINC00339 significantly increased the expression of miR-539-5p. Both bioinformatics and luciferase reporter assay revealed that LINC00339 regulated the above effects via binding to miR-539-5p. Besides, overexpression of miR-539-5p resulted in decreased expression of TWIST1, a transcription factor known to play an oncogenic role in glioma and identified as a direct target of miR-539-5p. TWIST1 upregulated the promoter activities of MMP-2 and MMP-14. The in vivo study showed that nude mice carrying tumors with knockdown of LINC00339 and overexpression of miR-539-5p exhibited the smallest tumor volume through inhibiting VM formation. In conclusion, LINC00339 may be used as a novel therapeutic target for VM formation in glioma.

  7. Improvement of high-temperature thermomechanical treatment of the rolled section made of VT3-1 alloy

    International Nuclear Information System (INIS)

    Gavze, A.L.; Korostelev, Yu.P.

    2002-01-01

    Changes in mechanical properties and structure are investigated in alloy VT3-1 rods produced with the use of high temperature thermomechanical treatment (HTMT) on their heating and deformation during straightening as well as during preliminary hot deformation of the billets on a helical rolling mill (HRM). It is stated that the straightening at 550-700 deg C with elongation of ∼ 2% results in some decrease of ultimate strength and in essential enhancement of plasticity and impact strength. In a similar manner, preliminary rolling on HRM affects the properties of rods after final heat treatment. It is shown that rod production according to the experimental processing procedure increases the quality of the rods and can be realized when manufacturing rolled products of alloy VT3-1 with the use of HTMT [ru

  8. Titanium alloys. Advances in alloys, processes, products and applications

    International Nuclear Information System (INIS)

    Blenkinsop, P.A.

    1993-01-01

    The last few years have been a period of consolidation of existing alloys and processes. While the aerospace industry remains the principal driving force for alloy development, the paper illustrates examples of new markets being established in 'older' alloys, by a combination of product/process development and a re-examination of engineering design parameters. Considerable attention is still being directed towards the titanium aluminide systems, but other more conventional alloy developments are underway aimed at specific engineering and process requirements, both in the aerospace and non-aerospace sectors. Both the advanced high temperature and conventional alloy developments are considered, before the paper goes on to assess the potential of new processes and products, like spray-forming, metal matrix composites and shaped-plate rolling. (orig.)

  9. Effect of heat treatment on Fe-B-Si-Nb alloy powder prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rodrigo Estevam Coelho

    2005-06-01

    Full Text Available The effect of heat treatment on crystallization behavior of Fe73.5B15Si10Nb1.5 alloy powder prepared by mechanical alloying was studied. The powder samples were prepared by mechanical alloying (MA and for different milling times (1, 5, 25, 70 and 100 hours. Crystalline powders of iron, boron, silicon and niobium were sealed with tungsten carbide balls in a cylindrical vial under nitrogen atmosphere. The ball-to-powder weight ratio was 20 to 1. A Fritsch Pulverizette 5 planetary ball mill was used for MA the powders at room temperature and at 250 rpm. To study the microstructural evolution, a small amount of powder was collected after different milling times and examined by X-ray diffraction, using CuKalpha radiation (lambda = 0.15418 nm. The crystallization behavior was studied by differential thermal analysis, from 25 up to 1000 °C at a heating rate of 25 °C min-1.

  10. Bandgap engineering of Cu2CdxZn1−xSnS4 alloy for photovoltaic applications: A complementary experimental and first-principles study

    KAUST Repository

    Xiao, Zhen-Yu

    2013-11-11

    We report on bandgap engineering of an emerging photovoltaic material of Cu2CdxZn1-xSnS4 (CCZTS) alloy. CCZTS alloy thin films with different Cd contents and single kesterite phase were fabricated using the sol-gel method. The optical absorption measurements indicate that the bandgap of the kesterite CCZTS alloy can be continuously tuned in a range of 1.55-1.09 eV as Cd content varied from x = 0 to 1. Hall effect measurements suggest that the hole concentration of CCZTS films decreases with increasing Cd content. The CCZTS-based solar cell with x = 0.47 demonstrates a power conversion efficiency of 1.2%. Our first-principles calculations based on the hybrid functional method demonstrate that the bandgap of the kesterite CCZTS alloy decreases monotonically with increasing Cd content, supporting the experimental results. Furthermore, Cu2ZnSnS4/Cu 2CdSnS4 interface has a type-I band-alignment with a small valence-band offset, explaining the narrowing of the bandgap of CCZTS as the Cd content increases. Our results suggest that CCZTS alloy is a potentially suitable material to fabricate high-efficiency multi-junction tandem solar cells with different bandgap-tailored absorption layers. © 2013 AIP Publishing LLC.

  11. High-temperature deformation of a mechanically alloyed niobium-yttria alloy

    International Nuclear Information System (INIS)

    Chou, I.; Koss, D.A.; Howell, P.R.; Ramani, A.S.

    1997-01-01

    Mechanical alloying (MA) and hot isostatic pressing have been used to process two Nb alloys containing yttria particles, Nb-2 vol.%Y 2 O 3 and Nb-10 vol.%Y 2 O 3 . Similar to some thermomechanically processed nickel-based alloys, both alloys exhibit partially recrystallized microstructures, consisting of a 'necklace' of small recrystallized grains surrounding much larger but isolated, unrecrystallized, cold-worked grains. Hot compression tests from 1049 to 1347 C (0.5-0.6T MP ) of the 10% Y 2 O 3 alloy show that MA material possesses a much higher yield and creep strength than its powder-blended, fully recrystallized counterpart. In fact, the density-compensated specific yield strength of the MA Nb-10Y 2 O 3 exceeds that of currently available commercial Nb alloys. (orig.)

  12. Bond-length strain in buried Ga1-xInxAs thin-alloy films grown coherently on InP(001)

    International Nuclear Information System (INIS)

    Woicik, J.C.; Gupta, J.A.; Watkins, S.P.; Crozier, E.D.

    1998-01-01

    The bond lengths in a series of strained, buried Ga 1-x In x As thin-alloy films grown coherently on InP(001) have been determined by high-resolution extended x-ray absorption fine-structure measurements. Comparison with a random-cluster calculation demonstrates that the external in-plane epitaxial strain imposed by pseudomorphic growth opposes the natural bond-length distortions due to alloying.copyright 1998 American Institute of Physics

  13. PROOF as a Service on the Cloud: a Virtual Analysis Facility based on the CernVM ecosystem

    CERN Document Server

    Berzano, Dario; Buncic, Predrag; Charalampidis, Ioannis; Ganis, Gerardo; Lestaris, Georgios; Meusel, René

    2014-01-01

    PROOF, the Parallel ROOT Facility, is a ROOT-based framework which enables interactive parallelism for event-based tasks on a cluster of computing nodes. Although PROOF can be used simply from within a ROOT session with no additional requirements, deploying and configuring a PROOF cluster used to be not as straightforward. Recently great efforts have been spent to make the provisioning of generic PROOF analysis facilities with zero configuration, with the added advantages of positively affecting both stability and scalability, making the deployment operations feasible even for the end user. Since a growing amount of large-scale computing resources are nowadays made available by Cloud providers in a virtualized form, we have developed the Virtual PROOF-based Analysis Facility: a cluster appliance combining the solid CernVM ecosystem and PoD (PROOF on Demand), ready to be deployed on the Cloud and leveraging some peculiar Cloud features such as elasticity. We will show how this approach is effective both for sy...

  14. Mechanical and microstructural characterization of the nickel base alloy (Alloy 600) after heat treatment

    International Nuclear Information System (INIS)

    Fernandes, Stela Maria de Carvalho

    1993-01-01

    The characterization of microstructural and mechanical properties of cold rolled and heat treated alloys 600 made in Brazil were investigated. The recovery and recrystallization behavior as well as solubilization and aging have been studied using optical, scanning electron and transmission electron microscopy. Microhardness and tensile testing have been carried out. The recovery process of the cold rolled alloy 600 occurred until 600 deg C and the recrystallization stage was situated between 600 and 850 deg C. The primary recrystallization temperature was obtained at 850 deg C after 1 hour (isochronal heat treatments). The aged alloy 600 shows carbide precipitation on grains bu with ductility maintenance. (author)

  15. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, S. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, México, D. F. (Mexico); Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Sánchez-Marcos, J. [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, 28049 Madrid (Spain); Salas, E. [Spline Spanish CRG Beamline at the European Synchrotron Radiation Facilities, ESRF, BP 220-38043, Grenoble Cedex (France); Arce, E.M. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, México, D. F. (Mexico); Herrasti, P., E-mail: pilar.herrasti@uam.es [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain)

    2014-07-01

    CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.

  16. Iron titanium manganase alloy hydrogen storage

    Science.gov (United States)

    Reilly, James J.; Wiswall, Jr., Richard H.

    1979-01-01

    A three component alloy capable of reversible sorption of hydrogen having the chemical formula TiFe.sub.1-x Mn.sub.x where x is in the range of about 0.02 to 0.5 and the method of storing hydrogen using said alloy.

  17. Electrocatalysis on bimetallic and alloy surfaces

    NARCIS (Netherlands)

    Koper, M.T.M.

    2004-01-01

    Bimetallic surfaces and alloys are well known to have unique catalytic properties for many important chemical transformations [1]. In electrocatalysis, bimetallic and alloy catalysts have been a particularly active area of research in relation to low-temperature fuel cells [2]. On the anode side,

  18. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  19. Structural, electronic, mechanical, thermal and optical properties of B(P,As)1-xNx; (x = 0, 0.25, 0.5, 0.75, 1) alloys and hardness of B(P,As) under compression using DFT calculations

    Science.gov (United States)

    Viswanathan, E.; Sundareswari, M.; Jayalakshmi, D. S.; Manjula, M.; Krishnaveni, S.

    2017-09-01

    First principles calculations are carried out in order to analyze the structural, electronic, mechanical, thermal and optical properties of BP and BAs compounds by ternary alloying with nitrogen namely B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys at ambient condition. Thereby we report the mechanical and thermal properties of B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys namely bulk modulus, shear modulus, Young's modulus, hardness, ductile-brittle nature, elastic wave velocity, Debye temperature, melting point, etc.; optical properties of B(P)1-xNx (x = 0.25, 0.5, 0.75) and B(As)1-xNx (x = 0.25, 0.75) alloys namely the dielectric function of real and imaginary part, refractive index, extinction coefficient and reflectivity and the hardness profile of the parent compounds BP and BAs under compression. The charge density plot, density of states histograms and band structures are plotted and discussed for all the ternary alloys of the present study. The calculated results agree very well with the available literature. Analysis of the present study reveals that the ternary alloy combinations namely BP.25N.75 and BAs.25N.75 could be superhard materials; hardness of BP and BAs increases with compression.

  20. Antibacterial biodegradable Mg-Ag alloys

    Directory of Open Access Journals (Sweden)

    D Tie

    2013-06-01

    Full Text Available The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4 and aging (T6 heat treatment.The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH2 and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7, revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231 and Staphylococcus epidermidis (DSMZ 3269, and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  1. Computational study of GaAs1-xNx and GaN1-yAsy alloys and arsenic impurities in GaN

    International Nuclear Information System (INIS)

    Laaksonen, K; Komsa, H-P; Arola, E; Rantala, T T; Nieminen, R M

    2006-01-01

    We have studied the structural and electronic properties of As-rich GaAs 1-x N x and N-rich GaN 1-y As y alloys in a large composition range using first-principles methods. We have systematically investigated the effect of the impurity atom configuration near both GaAs and GaN sides of the concentration range on the total energies, lattice constants and bandgaps. The N (As) atoms, replacing substitutionally As (N) atoms in GaAs (GaN), cause the surrounding Ga atoms to relax inwards (outwards), making the Ga-N (Ga-As) bond length about 15% shorter (longer) than the corresponding Ga-As (Ga-N) bond length in GaAs (GaN). The total energies of the relaxed alloy supercells and the bandgaps experience large fluctuations within different configurations and these fluctuations grow stronger if the impurity concentration is increased. Substituting As atoms with N in GaAs induces modifications near the conduction band minimum, while substituting N atoms with As in GaN modifies the states near the valence band maximum. Both lead to bandgap reduction, which is at first rapid but later slows down. The relative size of the fluctuations is much larger in the case of GaAs 1-x N x alloys. We have also looked into the question of which substitutional site (Ga or N) As occupies in GaN. We find that under Ga-rich conditions arsenic prefers the substitutional N site over the Ga site within a large range of Fermi level values

  2. Effect of Zn on the microstructure and mechanical properties of as-cast Mg–7Gd–3Y–1Nd–0.5Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Zhang, K., E-mail: zhkui@grinm.com; Li, X.G.; Yuan, J.W.; Li, Y.J.; Ma, M.L.; Shi, G.L.; Li, T.; Liu, J.B.

    2015-06-25

    The microstructure and mechanical properties of as-cast Mg–7Gd–3Y–1Nd–xZn–0.5Zr (x=0, 0.5, 1 and 2 wt%) alloys have been investigated by optical microscopy (OM), scanning electron microscopy equipped with energy dispersive spectrum, transmission electron microscopy (TEM), X-ray diffraction and tensile tests at room temperature (RT). Experimental results reveal that the microstructure of the alloy without Zn contains α-Mg and Mg{sub 5}RE phase, the microstructure of the alloy with 0.5% Zn consists of α-Mg, (Mg, Zn){sub 3}RE phase, Mg{sub 5}(RE, Zn) phase and stacking fault. The addition of 1% and 2% Zn results in the disappearance of the Mg{sub 5}(RE, Zn) phase, but the stacking fault can be seen more clearly. Moreover, a new block-like long period stacking ordered (LPSO) phase is observed in grain boundaries with increasing Zn content up to 2%. TEM analyses indicate that the Mg{sub 5}RE, (Mg, Zn){sub 3}RE and Mg{sub 5}(RE, Zn) phases have a face-centered cubic (f.c.c.) structure with lattice constants of 2.22 nm, 0.73 nm and 2.23 nm, respectively. The new block-like LPSO phase belongs to 10H-type. The tensile tests at RT exhibit that the alloy containing 1% Zn shows the optimal mechanical properties and the ultimate tensile strength (UTS), yield strength (YS) and elongation are 187 MPa, 145 MPa and 3.1%, respectively. As indicated by fracture analyses, the fracture modes of the alloys with 0% and 0.5% Zn are typically intercrystalline fracture, whereas both intercrystalline and transcrystalline fractures are observed in the alloys with 1% and 2% Zn.

  3. Effect of structure and alloying elements on void formation in austenitic steels and nickel alloys

    International Nuclear Information System (INIS)

    Levy, V.; Azam, N.; Le Naour, L.; Didout, G.; Delaplace, J.

    1977-01-01

    In the development of the fast breeder reactors the phenomenon of metal swelling due to the formation of radiation induced voids is a large problem. In the complex alloys small fluctuations in composition can have a considerable effect on swelling and a great deal of investigation on the effect of both major and minor alloying elements is needed to be able to predict swelling. To provide more insight a research program involving irradiation of both commercial or specially cast alloys by 500 keV Ni + ions or 1 MeV electrons has been developed. The major results are presented

  4. Viscosity of Ga-Li liquid alloys

    Science.gov (United States)

    Vidyaev, Dmitriy; Boretsky, Evgeny; Verkhorubov, Dmitriy

    2018-03-01

    The measurement of dynamic viscosity of Ga-Li liquid alloys has been performed using low-frequency vibrational viscometer at five temperatures in the range 313-353 K and four gallium-based dilute alloy compositions containing 0-1.15 at.% Li. It was found that the viscosity of the considered alloys increases with decreasing temperature and increasing lithium concentration in the above ranges. It was shown that dependence of the viscosity of Ga-Li alloys in the investigated temperature range has been described by Arrhenius equation. For this equation the activation energy of viscous flow and pre-exponential factor were calculated. This study helped to determine the conditions of the alkali metals separating process in gallam-exchange systems.

  5. Packing properties 1-alkanols and alkanes in a phospholipid membrane

    DEFF Research Database (Denmark)

    Westh, Peter

    2006-01-01

    We have used vibrating tube densitometry to investigate the packing properties of four alkanes and a homologous series of ten alcohols in fluid-phase membranes of dimyristoyl phosphatidylcholine (DMPC). It was found that the volume change of transferring these compounds from their pure states int...... into the membrane core, which is loosely packed. In this region, they partially occupy interstitial (or free-) volume, which bring about a denser molecular packing and generate a negative contribution to Vm(puremem)....... into the membrane, Vm(puremem), was positive for small (C4-C6) 1-alkanols while it was negative for larger alcohols and all alkanes. The magnitude of Vm(puremem) ranged from about +4 cm3/mol for alcohols with an alkyl chain about half the length of the fatty acids of DMPC, to -10 to -15 cm3/mol for the alkanes...

  6. A New Resources Provisioning Method Based on QoS Differentiation and VM Resizing in IaaS

    Directory of Open Access Journals (Sweden)

    Rongdong Hu

    2015-01-01

    Full Text Available In order to improve the host energy efficiency in IaaS, we proposed an adaptive host resource provisioning method, CoST, which is based on QoS differentiation and VM resizing. The control model can adaptively adjust control parameters according to real time application performance, in order to cope with changes in load. CoST takes advantage of the fact that different types of applications have different sensitivity degrees to performance and cost. It places two different types of VMs on the same host and dynamically adjusts their sizes based on the load forecasting and QoS feedback. It not only guarantees the performance defined in SLA, but also keeps the host running in energy-efficient state. Real Google cluster trace and host power data are used to evaluate the proposed method. Experimental results show that CoST can provide performance-sensitive application with a steady QoS and simultaneously speed up the overall processing of performance-tolerant application by 20~66%. The host energy efficiency is significantly improved by 7~23%.

  7. Advanced neuroblastoma: improved response rate using a multiagent regimen (OPEC) including sequential cisplatin and VM-26.

    Science.gov (United States)

    Shafford, E A; Rogers, D W; Pritchard, J

    1984-07-01

    Forty-two children, all over one year of age, were given vincristine, cyclophosphamide, and sequentially timed cisplatin and VM-26 (OPEC) or OPEC and doxorubicin (OPEC-D) as initial treatment for newly diagnosed stage III or IV neuroblastoma. Good partial response was achieved in 31 patients (74%) overall and in 28 (78%) of 36 patients whose treatment adhered to the chemotherapy protocol, compared with a 65% response rate achieved in a previous series of children treated with pulsed cyclophosphamide and vincristine with or without doxorubicin. Only six patients, including two of the six children whose treatment did not adhere to protocol, failed to respond, but there were five early deaths from treatment-related complications. Tumor response to OPEC, which was the less toxic of the two regimens, was at least as good as tumor response to OPEC-D. Cisplatin-induced morbidity was clinically significant in only one patient and was avoided in others by careful monitoring of glomerular filtration rate and hearing. Other centers should test the efficacy of OPEC or equivalent regimens in the treatment of advanced neuroblastoma.

  8. Valence band structure of InAs(1-x)Bi(x) and InSb(1-x)Bi(x) alloy semiconductors calculated using valence band anticrossing model.

    Science.gov (United States)

    Samajdar, D P; Dhar, S

    2014-01-01

    The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs(1-x)Bi(x) and InSb(1-x)Bi(x) alloy systems. It is found that both the heavy/light hole, and spin-orbit split E + levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E - energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.

  9. Microhardness of the YbxY1-xInCu4 alloy system: the of electronic structure on hardness

    International Nuclear Information System (INIS)

    Ocko, M; Sarrao, J L; Stubicar, N; Aviani, I; Simek, Z; Stubicar, M

    2003-01-01

    We show that the Vickers microhardness, measured on flux grown single crystals of the Yb x Y 1-x InCu 4 alloy system, although sample dependent, exhibits clear concentration dependence; it increases with decreasing x. Such a dependence is not expected because the cubic lattice parameter increases with decreasing x and one expects then a decrease of hardness with decreasing x. Also, such a concentration dependence is in accordance with neither the Mott-Nabarro theory nor other known experimental results. We ascribe the observed dependence to the change of the electronic structure of the Yb x Y 1-x InCu 4 alloy system with x

  10. First principles examination of electronic structure and optical features of 4H-GaN1-xPx polytype alloys

    Science.gov (United States)

    Laref, A.; Hussain, Z.; Laref, S.; Yang, J. T.; Xiong, Y. C.; Luo, S. J.

    2018-04-01

    By using first-principles calculations, we compute the electronic band structures and typical aspects of the optical spectra of hexagonally structured GaN1-xPx alloys. Although a type III-V semiconductor, GaP commonly possesses a zinc-blende structure with an indirect band gap; as such, it may additionally form hexagonal polytypes under specific growth conditions. The electronic structures and optical properties are calculated by combining a non-nitride III-V semiconductor and a nitride III-V semiconductor, as GaP and GaN crystallizing in a 4H polytype, with the N composition ranging between x = 0-1. For all studied materials, the energy gap is found to be direct. The optical properties of the hexagonal materials may illustrate the strong polarization dependence owing to the crystalline anisotropy. This investigation for GaN1-xPx alloys is anticipated to supply paramount information for applications in the visible/ultraviolet spectral regions. At a specific concentration, x, these alloys would be exclusively appealing candidates for solar-cell applications.

  11. Oxidation performance of V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.

    2000-01-01

    Vanadium-base alloys are being considered as candidates for the first wall in advanced V-Li blanket concepts in fusion reactor systems. However, a primary deterrent to the use of these alloys at elevated temperatures is their relatively high affinity for interstitial impurities, i.e., O, N, H, and C. The authors conducted a systematic study to determine the effects of time, temperature, and oxygen partial pressure (pO 2 ) in the exposure environment on O uptake, scaling kinetics, and scale microstructure in V-(4--5) wt.% Cr-(4--5) wt.% Ti alloys. Oxidation experiments were conducted on the alloys at pO 2 in the range of 5 x 10 -6 -760 torr (6.6 x 10 -4 -1 x 10 5 Pa) at several temperatures in the range of 350--700 C. Models that describe the oxidation kinetics, oxide type and thickness, alloy grain size, and depth of O diffusion in the substrate of the two alloys were determined and compared. Weight change data were correlated with time by a parabolic relationship. The parabolic rate constant was calculated for various exposure conditions and the temperature dependence of the constant was described by an Arrhenius relationship. The results showed that the activation energy for the oxidation process is fairly constant at pO 2 levels in the range of 5 x 10 -6 -0.1 torr. The activation energy calculated from data obtained in the air tests was significantly lower, whereas that obtained in pure-O tests (at 760 torr) was substantially higher than the energy obtained under low-pO 2 conditions. The oxide VO 2 was the predominant phase that formed in both alloys when exposed to pO 2 levels of 6.6 x 10 -4 to 0.1 torr. V 2 O 5 was the primary phase in specimens exposed to air and to pure O 2 at 760 torr. The implications of the increased O concentration are increased strength and decreased ductility of the alloy. However, the strength of the alloy was not a strong function of the O concentration of the alloy, but an increase in O concentration did cause a substantial decrease

  12. Relaxation resistance of heat resisting alloys with cobalt

    International Nuclear Information System (INIS)

    Borzdyka, A.M.

    1977-01-01

    Relaxation resistance of refractory nickel-chromium alloys containing 5 to 14 % cobalt is under study. The tests involve the use of circular samples at 800 deg to 850 deg C. It is shown that an alloy containing 14% cobalt possesses the best relaxation resistance exceeding that of nickel-chromium alloys without any cobalt by a factor of 1.5 to 2. The relaxation resistance of an alloy with 5% cobalt can be increased by hardening at repeated loading

  13. Microstructure and Aging of Powder-Metallurgy Al Alloys

    Science.gov (United States)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  14. Crystallographic orientation-spray formed hypereutectic aluminium-silicon alloys

    Directory of Open Access Journals (Sweden)

    Hamilta de Oliveira Santos

    2005-06-01

    Full Text Available Aluminium-silicon alloys have been wide accepted in the automotive, electric and aerospace industries. Preferred orientation is a very common condition for metals and alloys. Particularly, aluminium induces texture during the forming process. The preparation of an aggregate with completely random crystal orientation is a difficult task. The present work was undertaken to analyse the texture by X-ray diffraction techniques, of three spray formed hypereutectic Al-Si alloys. Samples were taken from a billet of an experimental alloy (alloy 1 and were subsequently hot-rolled and cold-rolled (height reduction, 72% and 70%, respectively. The other used samples, alloys 2 and 3, were taken from cylinders liners. The results from the Laue camera showed texture just in the axial direction of alloy 3. The pole figures also indicated the presence of a typical low intensity deformation texture, especially for alloy 3. The spray formed microstructure, which is very fine, hinders the Al-Si texture formation during mechanical work.

  15. Steady state creep during metastable phase transition in Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Youssef, S.B.; Mahmoud, M.A. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics

    1998-08-16

    The early stages of decomposition of Guinier-Preston zones (G.P. zones) in Al-16 wt% Ag and Al-16 wt% Ag-0.1 wt% Zr alloys were investigated through creep measurements and electron microscopy observations. It was found that the strengthening and softening of the alloys has been achieved during the formation of metastable phases (G.P. zones and {gamma}`-phase) in the ageing temperature range (428 to 498 K). TEM investigations confirmed that the addition of zirconium to the Al-Ag alloy accelerates the formation and coarsening of the metastable phases. The mean values of activation energy of both alloys were found to be equal to that quoted for precipitate-dislocation interactions. (orig.) 23 refs.

  16. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  17. Corrosion resistance of tantalum base alloys

    International Nuclear Information System (INIS)

    Gypen, L.A.; Brabers, M.; Deruyttre, A.

    1984-01-01

    The corrosion behaviour of substitutional Ta-Mo, Ta-W, Ta-Nb, Ta-Hf, Ta-Zr, Ta-Re, Ta-Ni, Ta-V, Ta-W-Mo, Ta-W-Nb, Ta-W-Hf and Ta-W-Re alloys has been investigated in various corrosive media, i.e. (1) concentrated sulfuric acid at 250 0 C and 200 0 C, (2) boiling hydrochloric acid of azeotropic composition, (3) concentrated hydrochloric acid at 150 0 C under pressure, (4) HF-Containing solutions and (5) 0.5% H 2 SO 4 at room temperature (anodisation). In highly corrosive media such as concentrated H 2 SO 4 at 250 0 C and concentrated HCl at 150 0 C tantalum is hydrogen embrittled, probably by stress induced precipitation of β-hydride. Both corrosion rate and hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C are strongly influenced by alloying elements. Small alloying additions of either Mo or Re decrease the corrosion rate and the hydrogen embrittlement, while Hf has the opposite effect. Hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C is completely eliminated by alloying Ta with 1 to 3 at % Mo (0.5 to 1.5 wt % Mo). These results can be explained in terms of oxygen deficiency of the Ta 2 O 5 film and the electronic structure of these alloys. (orig.) [de

  18. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.

    Science.gov (United States)

    Guan, Ren-guo; Cipriano, Aaron F; Zhao, Zhan-yong; Lock, Jaclyn; Tie, Di; Zhao, Tong; Cui, Tong; Liu, Huinan

    2013-10-01

    A new biodegradable magnesium-zinc-strontium (Mg-Zn-Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8h improved the mechanical properties when compared to those of the as-cast alloy. Specifically, the aged ZSr41 alloy had an ultimate tensile strength of 270 MPa, Vickers hardness of 71.5 HV, and elongation at failure of 12.8%. The mechanical properties of the ZSr41 alloy were superior as compared with those of pure magnesium and met the requirements for load-bearing medical implants. Furthermore, the immersion of the ZSr41 alloy in SBF showed a degradation mode that progressed cyclically, alternating between pitting and localized corrosion. The steady-state average degradation rate of the aged ZSr41 alloy in SBF was 0.96 g/(m(2)·hr), while the pH of SBF immersion solution increased. The corrosion current density of the ZSr41 alloy in SBF solution was 0.41 mA/mm(2), which was much lower than 1.67 mA/mm(2) for pure Mg under the same conditions. In summary, compared to pure Mg, the mechanical properties of the new ZSr41 alloy improved while the degradation rate decreased due to the addition of Zn and Sr alloying elements and specific processing conditions. The superior mechanical properties and corrosion resistance of the new ZSr41 alloy make it a promising alloy for next-generation implant applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Irradiation of copper alloys in FFTF

    International Nuclear Information System (INIS)

    Brager, H.R.; Garner, F.A.

    1984-01-01

    Nine copper-base alloys in thirteen material conditions have been inserted into the MOTA-18 experiment for irradiation in FFTF at approx.450 0 C. The alloy Ni-1.9Be is also included in this experiment, which includes both TEM disks and miniature tensile specimens

  20. Search for fully compensated ferrimagnet in Co substituted Mn2VGa alloy

    International Nuclear Information System (INIS)

    Deka, Bhargab; Singh, R.K.; Srinivasan, A.

    2015-01-01

    Crystallographic and magnetic properties of bulk (Mn 1−x Co x ) 2 VGa alloys with 0≤x≤0.50 are reported in this work. All the alloys exhibit stable L2 1 structure. Unit cell volume of this series of alloys decreased from 207.5 Å 3 to 195.1 Å 3 as x was increased from 0 to 0.50. All the alloys shows ferrimagnetic behavior with Curie temperature decreasing from 763 K to 367 K with increase in x. Saturation magnetization (M s ) measured for the alloys with x=0, 0.25 and 0.50 are 1.84 μ B /f.u., 0.85 μ B /f.u. and 0.30 μ B /f.u., respectively, as compared to the values of 2.00 μ B /f.u., 1.00 μ B /f.u. and 0 μ B /f.u., predicted by the Slater–Pauling (S–P) rule. While explaining the deviations in the M s from the values predicted by the S–P rule, a fully compensated ferrimagnet is expected in an alloy with total number of valance electrons of 24.1. - Highlights: • (Mn 1−x Co x ) 2 VGa alloys with highly ordered L2 1 structure has been obtained • With Co substitution, magnetization of (Mn 1-x Co x ) 2 VGa alloys reduces to 0.3= B /f.u. • Fully compensated ferrimagnet is expected in the alloy with 24.1 valance electrons

  1. TEM of nanostructured metals and alloys

    International Nuclear Information System (INIS)

    Karnthaler, H.P.; Waitz, T.; Rentenberger, C.; Mingler, B.

    2004-01-01

    Nanostructuring has been used to improve the mechanical properties of bulk metals and alloys. Transmission electron microscopy (TEM) including atomic resolution is therefore appropriate to study these nanostructures; four examples are given as follows. (1) The early stages of precipitation at RT were investigated in an Al-Mg-Si alloy. By high resolution TEM it is shown that the precipitates lie on (0 0 1) planes having an ordered structure. (2) In Co alloys the fronts of martensitic phase transformations were analysed showing that the transformation strains are very small thus causing no surface relief. (3) Re-ordering and recrystallization were studied by in situ TEM of an Ni 3 Al alloy being nanocrystalline after severe plastic deformation. (4) In NiTi severe plastic deformation is leading to the formation of amorphous shear bands. From the TEM analysis it is concluded that the amorphization is caused by plastic shear instability starting in the shear bands

  2. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  3. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    Science.gov (United States)

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−11.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  4. Energy gaps, effective masses and ionicity of AlxGa1-xSb ternary semiconductor alloys

    Science.gov (United States)

    Bouarissa, N.; Boucenna, M.; Saib, S.; Siddiqui, S. A.

    2017-12-01

    A pseudopotential calculation of the electronic structure of AlxGa1-xSb ternary alloys in the zinc-blende structure has been performed. The compositional dependence of energy gaps, electron and heavy hole effective masses and ionicity of the material system of interest have been examined and discussed. Special attention has been given to the effect of the alloy disorder on the direct (Γ-Γ) bandgap energy. It is found that all features of interest vary monotonically with increasing the Al concentration x. Besides, bandgap bowing parameters and extent of the direct-to-indirect bandgap transition have been determined. Our findings agree generally well with the data reported in the literature. Trends in ionicity are found to be consistent with the Phillips ionicity scale.

  5. Description of vibrational properties of random alloy ZnTe{sub 1-x}Se{sub x} within the percolation model

    Energy Technology Data Exchange (ETDEWEB)

    Souhabi, Jihane; Chafi, Allal; Kassem, Mohammed; Nassour, Ayoub; Gleize, Jerome; Postnikov, A.V.; Hugel, J.; Pages, Olivier [Laboratoire de Physique des Milieux Denses, Universite Paul Verlaine - Metz, 1 Bd Arago, 57070 Metz (France)

    2009-05-15

    We discuss the classification of the phonon type behavior of semiconductor alloys as apparent in the Raman and infrared spectra, i.e. in terms of types (i) 1-bond{yields}1-mode and (ii) 2-bond{yields}1-mode (both covered by the Modified Random Element Isodisplacement model, operating at the macroscopic scale), and also (iii) the modified 2-mode type (exceptional), in the framework of the recent 1-bond{yields}2-mode percolation model based on a description of the alloy disorder at the mesoscopic scale. The leading systems of types (i) and (iii), i.e., InGaAs and InGaP, respectively, were earlier shown to obey the percolation model. The aim of this work is to investigate whether the percolation model further extends to the leading system of the last type (ii), i.e. ZnTeSe. With this end in view, we perform a careful re-examination of the Raman and infrared spectra of this alloy, as available in the literature. Special attention is awarded to the discussion and modeling of the puzzling multi-mode infrared reflectivity spectra. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Growth and properties of Al-rich InxAl1-xN ternary alloy grown on GaN template by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Oh, Tae Su; Suh, Eun-Kyung; Kim, Jong Ock; Jeong, Hyun; Lee, Yong Seok; Nagarajan, S; Lim, Kee Young; Hong, Chang-Hee

    2008-01-01

    An Al-rich In x Al 1-x N ternary alloy was grown on a GaN template by metal-organic chemical vapour deposition (MOCVD). The GaN template was fabricated on a c-plane sapphire with a low temperature GaN nucleation layer. The growth of the 300 nm thick In x Al 1-x N layer was carried out under various growth temperatures and pressures. The surface morphology and the InN molar fraction of the In x Al 1-x N layer were assessed by using atomic force microscopy (AFM) and high resolution x-ray diffraction, respectively. The AFM surface images of the In x Al 1-x N ternary alloy exhibited quantum dot-like grains caused by the 3D island growth mode. The grains, however, disappeared rapidly by increasing diffusion length and mobility of the Al adatoms with increasing growth temperature and the full width at half maximum value of ternary peaks in HR-XRD decreased with decreasing growth pressure. The MOCVD growth condition with the increased growth temperature and decreased growth pressure would be effective to grow the In x Al 1-x N ternary alloy with a smooth surface and improved quality. The optical band edge of In x Al 1-x N ternary alloys was estimated by optical absorbance and, based on the results of HR-XRD and optical absorbance measurements, we obtained the bowing parameter of the In x Al 1-x N ternary alloy at b = 5.3 eV, which was slightly larger than that of previous reports

  7. Electroluminescence and phototrigger effect in single crystals of GaSxSe1-x alloys

    International Nuclear Information System (INIS)

    Kyazym-Zade, A. G.; Salmanov, V. M.; Mokhtari, A. G.; Dadashova, V. V.; Agaeva, A. A.

    2008-01-01

    The effects of switching and electroluminescence as well as the interrelation between these effects in single crystals of GaS x Se 1-x alloys are detected and studied. It is established that the threshold voltage for switching depends on temperature, resistivity, and composition of alloys, and also on the intensity and spectrum of photoactive light. As a result, a phototrigger effect is observed; this effect arises under irradiation with light from the fundamental-absorption region. Electroluminescence is observed in the subthreshold region of the current-voltage characteristic; the electroluminescence intensity decreases drastically to zero as the sample is switched from a high-resistivity state to a low-resistivity state. Experimental data indicating that the electroluminescence and the switching effect are based on the injection mechanism (as it takes place in other layered crystals of the III-V type) are reported

  8. Mechanical and irradiation properties of zirconium alloys irradiated in HANARO

    International Nuclear Information System (INIS)

    Kwon, Oh Hyun; Eom, Kyong Bo; Kim, Jae Ik; Suh, Jung Min; Jeon, Kyeong Lak

    2011-01-01

    These experimental studies are carried out to build a database for analyzing fuel performance in nuclear power plants. In particular, this study focuses on the mechanical and irradiation properties of three kinds of zirconium alloy (Alloy A, Alloy B and Alloy C) irradiated in the HANARO (High-flux Advanced Neutron Application Reactor), one of the leading multipurpose research reactors in the world. Yield strength and ultimate tensile strength were measured to determine the mechanical properties before and after irradiation, while irradiation growth was measured for the irradiation properties. The samples for irradiation testing are classified by texture. For the irradiation condition, all samples were wrapped into the capsule (07M-13N) and irradiated in the HANARO for about 100 days (E > 1.0 MeV, 1.1 10 21 n/cm 2 ). These tests and results indicate that the mechanical properties of zirconium alloys are similar whether unirradiated or irradiated. Alloy B has shown the highest yield strength and tensile strength properties compared to other alloys in irradiated condition. Even though each of the zirconium alloys has a different alloying content, this content does not seem to affect the mechanical properties under an unirradiated condition and low fluence. And all the alloys have shown the tendency to increase in yield strength and ultimate tensile strength. Transverse specimens of each of the zirconium alloys have a slightly lower irradiation growth tendency than longitudinal specimens. However, for clear analysis of texture effects, further testing under higher irradiation conditions is needed

  9. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  10. Visualization of direct contact heat transfer between water and molten alloy by neutron radiography. 1

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi; Takenaka, Nobuyuki; Matsubayashi, Masahito.

    1997-01-01

    Design of an innovative Steam Generator (SG) for Liquid Metal Fast Reactors (LMFRs) using liquid-liquid direct contact heat transfer has been developing. In this concept, the SG shell is filled with a molten alloy, which is heated by primary sodium. Water is fed into the high-temperature, molten alloy, and evaporates by direct contact heating. In order to obtain the fundamental information needed to discuss the heat transfer mechanisms of direct contact between the water and molten alloy, this phenomenon was observed by neutron radiography. JRR-3M thermal neutron radiography at the Japan Atomic Energy Research Institute was used. This paper deals with the results of visualization of direct contact heat exchange in the molten alloy. (author)

  11. Quantitative analysis of Si1-xGex alloy films by SIMS and XPS depth profiling using a reference material

    Science.gov (United States)

    Oh, Won Jin; Jang, Jong Shik; Lee, Youn Seoung; Kim, Ansoon; Kim, Kyung Joong

    2018-02-01

    Quantitative analysis methods of multi-element alloy films were compared. The atomic fractions of Si1-xGex alloy films were measured by depth profiling analysis with secondary ion mass spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS). Intensity-to-composition conversion factor (ICF) was used as a mean to convert the intensities to compositions instead of the relative sensitivity factors. The ICFs were determined from a reference Si1-xGex alloy film by the conventional method, average intensity (AI) method and total number counting (TNC) method. In the case of SIMS, although the atomic fractions measured by oxygen ion beams were not quantitative due to severe matrix effect, the results by cesium ion beam were very quantitative. The quantitative analysis results by SIMS using MCs2+ ions are comparable to the results by XPS. In the case of XPS, the measurement uncertainty was highly improved by the AI method and TNC method.

  12. Effect of 1.0% Ni on high-temperature impression creep and hardness of recycled aluminium alloy with high Fe content

    Science.gov (United States)

    Faisal, M.; Mazni, Noor; Prasada Rao, A. K.

    2018-03-01

    Reported work focusses on the effect of 1.0% Ni addition on the microstructure, high- temperature impression creep and thereby the hardness of recycled Al-alloy containing >2wt% Fe, obtained from automotive scrap. Present studies have shown that the addition of 1.0% Ni have supress the formation of α-phase (Al5FeSi) by supressing the peritectic transformation of β-phase (Al8Fe2Si). Such suppression is found to improve the hardness and high-temperature impression creep of the recycled aluminium alloy.

  13. Preparation of nanocrystalline Ce1-xSmx(Fe,Co)11Ti by melt spinning and mechanical alloying

    Science.gov (United States)

    Wuest, H.; Bommer, L.; Huber, A. M.; Goll, D.; Weissgaerber, T.; Kieback, B.

    2017-04-01

    Permanent magnetic materials based on Ce(Fe, Co)12-xTix with the ThMn12 structure are promising candidates for replacing NdFeB magnets. Its intrinsic magnetic properties are not far below the values of Nd2Fe14B, and the high amount of Fe and the fact that Ce is much more abundant and less expensive than Nd encourages the reasonable interest in these compounds. Nanocrystalline magnetic material of the composition Ce1-xSmxFe11-yCoyTi (x=0-1 and y=0; 1.95) has been produced by both melt spinning and mechanical alloying. Alloys containing only Ce as rare earth element (x=0) show coercivities below 77 kA/m, while for x=1 Hc,J values up to 392 kA/m are reached. Coercivity shows rather an exponential than a linear dependence on the gradual substitution of Ce by Sm.

  14. Magnetic moment distribution in Co-V alloys

    International Nuclear Information System (INIS)

    Cable, J.W.

    1982-01-01

    Magnetization and neutron scattering measurements were made on Co-V alloys containing 10, 15, and 20 at.% V to determine the local environment effects on the magnetic moment distribution in this system. The magnetization data agree with earlier results and suggest the presence of some hcp phase in the 10% sample. This was confirmed by the neutron data which showed both fcc and hcp phases in an approximate 4:1 volume ratio for this alloy. The other two samples were single phase fcc but the 15% alloy was disordered while the 20% alloy was ordered in the Cu 3 Au-type structure with the maximum order consistent with the concentration. In this ordered alloy, the excess Co occupies the V sites. These ''wrong sited'' Co atoms have 12 Co nearest neighbors and larger magnetic moments than the ''properly sited'' Co atoms which have an average of 8.8 Co nearest neighbors. The average moments associated with these two types of sites were determined from flipping-ratio measurements on the superlattice and fundamental reflections. The values obtained are 0.28 μ/sub B//Co for the proper-site atoms and 1.3 μ/sub B//Co for the wrong-site atoms. Average moments at the Co and V sites were determined from the diffuse scattering for the 10% and 15% alloys. The results are 1.38 μ/sub B//Co and -0.26 μ/sub B//V for the 10% sample and 1.05 μ/sub B//Co and -0.11 μ/sub B//V for the 15% sample

  15. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  16. Effect of heat treatments on the microstructure and mechanical properties of an extruded Mg{sub 95.5}Y{sub 3}Zn{sub 1.5} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huan; Xue, Feng, E-mail: xuefeng@seu.edu.cn; Bai, Jing; Sun, Yangshan

    2013-11-15

    The microstructure and mechanical properties of the extruded Mg{sub 95.5}Y{sub 3}Zn{sub 1.5} alloy under different heat treatment were systematically investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and an electronic universal testing machine. The results show that the as-extruded alloy is composed of 18R LPSO stripes and α-Mg matrix with stacking faults (SFs) in it. The fine 14H LPSO lamellas are formed in α-Mg matrix near the areas of SFs during solution treatment at 500 °C for 8 h. A great number of fine β′ phases are precipitated in the α-Mg matrix of T6-treated (aging of the T4-treated alloy at 225 °C for 24 h) and T5-treated (aging of the as-extruded alloy at 225 °C for 32 h) alloys. Moreover, the SFs which were first observed in extruded alloy are retained in T5-staged specimen, and exhibit a cross arrangement with β′ precipitates. The absence of 14H LPSO phase in T5-treated alloy indicates that the 14H structure cannot be formed during aging at 225 °C. Tensile tests reveal that the presence of 14H lamellas improves the ductility of the alloy, but decreases the strength, suggesting that the 18R LPSO stripes are more effective in strengthening the alloy than 14H LPSO lamellas. The T6-staged alloy exhibits superior comprehensive mechanical properties with ultimate tensile strength of 358 MPa, tensile yield strength of 226 MPa and elongation of 6.1% at room temperature.

  17. Electrodeposition of engineering alloy coatings

    DEFF Research Database (Denmark)

    Christoffersen, Lasse

    Nickel based electrodeposited alloys were investigated with respect to their deposition process, heat treatment, hardness, corrosion resistance and combined wear-corrosion resistance. The investigated alloys were Ni-B, Ni-P and Ni-W, which are not fully developed for industrial utilisation...... are written in brackets). Temperature and especially pH influenced the cathodic efficiency of the electrodeposition processes for Ni-W and Ni-P. Mass balance problems of the development alloy processes are identified.Heat treatment for one hour at approx. 350°C, 400°C and 600°C of electrodeposited Ni-B, Ni......-P and Ni-W, respectively, resulted in hardness values of approx. 1000 HV0.1 in the case of Ni-P(6), approx. 1100 HV0.1 in the case of Ni-W(40-53) and approx. 1300 HV0.1 in the case of Ni-B(5). Cracks, which emerged during electrodeposition and heat treatment, were observed on Ni-W and Ni-B.The corrosion...

  18. Interphase thermodynamic bond in heterogeneous alloys: effects on alloy properties

    International Nuclear Information System (INIS)

    Savchenko, A.M.; Konovalov, Yu.V.; Yuferov, O.I.

    2005-01-01

    Inconsistency between a conventional thermodynamic description of alloys as a mechanical mixture of phases and a real alloys state as a common thermodynamic system in which there is a complicated physical-chemical phases interaction has been considered. It is supposed that in heterogeneous alloys (eutectic ones, for instance), so called interphase thermodynamic bond can become apparent due to a partial electron levels splitting under phase interaction. Thermodynamic description of phase equilibrium in alloys is proposed taking into account a thermodynamic bond for the system with phase diagram of eutectic type, and methods of the value of this bond estimation are presented. Experimental evidence (Al-Cu-Si, Al-Si-Mg-Cu, U-Mo + Al) of the effect of interphase thermodynamic bond on temperature and enthalpy of melting of alloys are produced as well as possibility of its effects on alloys electrical conduction, strength, heat and corrosion resistance is substantiated theoretically [ru

  19. Microstructure and Tensile Properties of Sn-1Ag-0.5Cu Solder Alloy Bearing Al for Electronics Applications

    Science.gov (United States)

    Shnawah, Dhafer Abdul-Ameer; Said, Suhana Binti Mohd; Sabri, Mohd Faizul Mohd; Badruddin, Irfan Anjum; Hoe, Teh Guan; Che, Fa Xing; Abood, Adnan Naama

    2012-08-01

    This work investigates the effects of 0.1 wt.% and 0.5 wt.% Al additions on bulk alloy microstructure and tensile properties as well as on the thermal behavior of Sn-1Ag-0.5Cu (SAC105) lead-free solder alloy. The addition of 0.1 wt.% Al reduces the amount of Ag3Sn intermetallic compound (IMC) particles and leads to the formation of larger ternary Sn-Ag-Al IMC particles. However, the addition of 0.5 wt.% Al suppresses the formation of Ag3Sn IMC particles and leads to a large amount of fine Al-Ag IMC particles. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions suppress the formation of Cu6Sn5 IMC particles and lead to the formation of larger Al-Cu IMC particles. The 0.1 wt.% Al-added solder shows a microstructure with coarse β-Sn dendrites. However, the addition of 0.5 wt.% Al has a great effect on suppressing the undercooling and refinement of the β-Sn dendrites. In addition to coarse β-Sn dendrites, the formation of large Sn-Ag-Al and Al-Cu IMC particles significantly reduces the elastic modulus and yield strength for the SAC105 alloy containing 0.1 wt.% Al. On the other hand, the fine β-Sn dendrite and the second-phase dispersion strengthening mechanism through the formation of fine Al-Ag IMC particles significantly increases the elastic modulus and yield strength of the SAC105 alloy containing 0.5 wt.% Al. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions worsen the elongation. However, the reduction in elongation is much stronger, and brittle fracture occurs instead of ductile fracture, with 0.5 wt.% Al addition. The two additions of Al increase both solidus and liquidus temperatures. With 0.5 wt.% Al addition the pasty range is significantly reduced and the differential scanning calorimetry (DSC) endotherm curve gradually shifts from a dual to a single endothermic peak.

  20. Grindability of dental cast Ti-Ag and Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okabe, Toru; Okuno, Osamu

    2003-06-01

    Experimental Ti-Ag alloys (5, 10, and 20 mass% Ag) and Ti-Cu alloys (2, 5, and 10 mass% Cu) were cast into magnesia molds using a dental casting machine, and their grindability was investigated. At the lowest grinding speed (500 m min(-1)), there were no statistical differences among the grindability values of the titanium and titanium alloys. The grindability of the alloys increased as the grinding speed increased. At the highest grinding speed (1500 m x min(-1)), the grindability of the 20% Ag, 5% Cu, and 10% Cu alloys was significantly higher than that of titanium. It was found that alloying with silver or copper improved the grindability of titanium, particularly at a high speed. It appeared that the decrease in elongation caused by the precipitation of small amounts of intermetallic compounds primarily contributed to the favorable grindability of the experimental alloys.