WorldWideScience

Sample records for alloy-ni73cr20mn3nb3

  1. Internal carbonitriding behavior of Ni-V, Ni-Cr, and Ni-3Nb alloys

    International Nuclear Information System (INIS)

    Allen, A.T.; Douglass, D.L.

    1999-01-01

    Ni-2V, Ni-5V, Ni-12V, Ni-10Cr, Ni-20Cr, and Ni-3Nb alloys were carbonitrided in C 3 H 6 and NH 3 gas mixtures (bal H 2 ) over the range 700--1,000 C. Carbonitridation of Ni-12V and Ni-20Cr in C 3 H 6 /NH 3 /H 2 (1.5/1.5/97 v/o) and (1.5/10/88.5 v/o) produced duplex subscales consisting of near-surface nitrides with underlying carbides. Growth of each zone obeyed the parabolic rate law under most conditions. The presence of carbon generally did not effect the depth of the nitride zones compared to nitriding the alloys in NH 3 /H 2 (10/90 v/o). However, at 700 C, the nitride zones were deeper in the carbonitrided Ni-V alloys and Ni-20Cr. The presence of nitrogen generally increased the depth of the carbide zones in Ni-12V and Ni-20Cr compared to carburizing these alloys in C 3 H 6 /H 2 (1.5/98.5 v/o). VN, CrN, and NbN formed in Ni-V, Ni-Cr, and Ni-Nb alloys, respectively, whereas the underlying carbide layers contained V 4 C 3 in Ni-12V, Cr 3 C 2 above a zone of Cr 7 C 3 in Ni-20Cr, and NbC in Ni-3Nb. The solubilities and diffusivities of nitrogen and carbon in nickel were determined. Nitrogen and carbon each exhibited retrograde solubility with temperature in pure Ni in both carbonitriding environments. Nitrogen diffusion in nickel was generally lower in each carbonitriding mixture compared to nitrogen diffusion in a nitriding environment, except at 700 C when nitrogen diffusion was higher. Carbon diffusion in nickel was generally higher in the carbonitriding environments compared to carbon diffusion in a carburizing environment

  2. Development of the dentistry alloy Ni-Cr-Nb; Desenvolvimento de ligas odontologicas Ni-Cr-Nb

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A.; Ramos, A.S.; Hashimoto, T.M., E-mail: mari_sou@hotmail.co [UNESP/FEG, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia

    2010-07-01

    This work reports on the structural characterization of Ni-Cr-Mo and Ni-Cr-Nb alloys produced by arc melting. Samples were characterized by means of optical microscopy, X-ray diffraction, scanning electron microscopy, and EDS analysis. Results indicated that the arc melting process was efficient to produce homogeneous structures in Ni-Cr-Mo and Ni-Cr-Nb alloys. The nickel dissolved large amounts of Cr, Mo and Nb, which was detected by EDS analysis and X-ray diffraction. The alloy containing molybdenum indicated the presence of structure based on Ni{sub SS}, while that the alloys containing niobium presented primary grains of Ni{sub SS} and precipitates formed by the simultaneous transformation of the Ni and Ni{sub 3}Nb phases. (author)

  3. Changes of structure and properties of cast steels GX10NiCrNb32-20 and GX10NiCrNb3-25 after long-term tempering at 600-1000 C

    International Nuclear Information System (INIS)

    Gommans, R.; Schrijen, H.; Sundermann, J.; Steinkusch, W.; Hering, W.

    2001-01-01

    Low-alloy cast steels of type GX 10NiCrNb 32.20 are commonly used for the outlet section of reformer and cracker tubes for the temperature range of 600-1000 C. There was a lack of data on the ductility of the 25%Cr alloyed cast steel GX10NiCrNb 35.25 at room temperature after tempering, which was investigated in a joint project of Pose-Marre and DSM. Mechanical tests were carried out at room temperature and at elevated temperatures. Apart from light microscopy, also SEM/EDX, SAM and TEM analyses were carried out. The 25% alloy has lower ductility than the 20% alloy, owing primarily to the more pronounced development of M 6 C carbide from primary NbC carbide, which takes up Ni and Si during tempering. The microstructure and composition of the M 6 C carbide wre not fully clarified. Information is presented on the potential application of low-carbon materials of the type GX10NiCrNb35.25 [de

  4. Effect of alloying elements on σ phase formation in Fe-Cr-Mn alloys

    International Nuclear Information System (INIS)

    Okazaki, Yoshimitsu; Miyahara, Kazuya; Hosoi, Yuzo; Tanino, Mitsuru; Komatsu, Hazime.

    1989-01-01

    Alloys of Fe-(8∼12%) Cr-(5∼30%) Mn were solution-treated at 1373 K for 3.6 ks, followed by cold-working of 50% reduction. Both solution-treated and 50% cold-worked materials were aged in the temperature range from 773 to 973 K for 3.6 x 10 3 ks. The identification of σ phase formation was made by using X-ray diffraction from the electrolytically extracted residues of the aged specimens. The region of σ phase formation determined by the present work is wider than that on the phase diagram already reported. It is to be noted that Mn promotes markedly the σ phase formation, and that three different types of σ phase formation are observed depending on Mn content: α→γ + α→γ + α + σ in 10% Mn, α→γ + σ in 15 to 20% Mn alloys, α→χ(Chi) →χ + σ + γ in 25 to 30% Mn alloys. An average electron concentration (e/a) in the σ phase was estimated by quantitative analysis of alloying elements using EPMA. The e/a value in the σ phase formed in Fe-(12∼16%) Cr-Mn alloys aged at 873 K for 3.6 x 10 3 ks is about 7.3, which is independent of Mn content. In order to prevent σ phase formation in Fe-12% Cr-15% Mn alloy, the value of Ni * eq of 11 (Ni * eq = Ni + 30(C) + 25(N)) is required. (author)

  5. The role of Zr and Nb in oxidation/sulfidation behavior of Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. (Argonne National Lab., IL (USA)); Baxter, D.J. (Argonne National Lab., IL (USA) INCO Alloy Ltd., Hereford, England (UK))

    1990-11-01

    05Structural Fe-Cr-Ni alloys may undergo rapid degradation at elevated temperatures unless protective surface oxide scales are formed and maintained. The ability of alloys to resist rapid degradation strongly depends on their Cr content and the chemistry of the exposure environment. Normally, 20 wt % Cr is required for service at temperatures up to 1000{degree}C; the presence of sulfur, however, inhibits formation of a protective surface oxide scale. The oxidation and sulfidation behavior of Fe-Cr-Ni alloys is examined over a wide temperature range (650 to 1000{degree}C), with particular emphasis on the effects of alloy Cr content and the radiation of reactive elements such as Nb and Zr. Both Nb and Zr are shown to promote protective oxidation behavior on the 12 wt % Cr alloy in oxidizing environments and to suppress sulfidation in mixed oxygen/sulfur environments. Additions of Nb and Zr at 3 wt % level resulted in stabilization of Cr{sub 2}O{sub 3} scale and led to a barrier layer of Nb- or Zr-rich oxide at the scale/metal interface, which acted to minimize the transport of base metal cations across the scale. Oxide scales were preformed in sulfur-free environments and subsequently exposed to oxygen/sulfur mixed-gas atmospheres. Preformed scales were found to delay the onset of breakaway corrosion. Corrosions test results obtained under isothermal and thermal cycling conditions are presented. 58 refs., 55 figs., 8 tabs.

  6. Erosion-oxidation behavior of thermal sprayed Ni20Cr alloy and WC and Cr3C2 cermet coatings

    Directory of Open Access Journals (Sweden)

    Clarice Terui Kunioshi

    2005-06-01

    Full Text Available An apparatus to conduct high temperature erosion-oxidation studies up to 850 °C and with particle impact velocities up to 15 m.s-1 was designed and constructed in the Corrosion Laboratories of IPEN. The erosion-oxidation behavior of high velocity oxy fuel (HVOF sprayed alloy and cermet coatings of Ni20Cr, WC 20Cr7Ni and Cr3C2 Ni20Cr on a steel substrate has been studied. Details of this apparatus and the erosion-oxidation behavior of these coatings are presented and discussed. The erosion-oxidation behavior of HVOF coated Cr3C2 25(Ni20Cr was better than that of WC 20Cr7Ni, and the erosion-oxidation regimes have been identified for these coatings at particle impact velocity of 3.5 m.s-1, impact angle of 90° and temperatures in the range 500 to 850 °C.

  7. Effects of air melting on Fe/0.3/3Cr/0.5Mo/2Mn and Fe/0.3C/3Cr/0.5Mo/2Ni structural alloy steels

    International Nuclear Information System (INIS)

    Steinberg, B.

    1979-06-01

    Changing production methods of a steel from vacuum melting to air melting can cause an increase in secondary particles, such as oxides and nitrides, which may have detrimental effects on the mechanical properties and microstructure of the alloy. In the present study a base alloy of Fe/0.3C/3Cr/0.5Mo with either 2Mn or 2Ni added was produced by air melting and its mechanical properties and microstructure were compared to an identical vacuum melted steel. Significant differences in mechanical behavior, morphology, and volume fraction of undissolved inclusions have been observed as a function of composition following air melting. For the alloy containing manganese, all properties remained very close to vacuum melted values but the 2Ni alloy displayed a marked loss in Charpy impact toughness and plane strain fracture toughness. This loss is attributed to an increase in volume fraction of secondary particles in the nickel alloy, as opposed to both the Mn alloy and vacuum melted alloys, as well as to substaintially increased incidence of linear coalescence of voids. Microstructural features are discussed

  8. Study of fatigue and fracture behavior of NbCr{sub 2}-based alloys: Phase stability in Nb-Cr-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.H.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Liu, C.T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    Phase stability in a ternary Nb-Cr-Ni Laves phase system was studied in this paper. Their previous study in NbCr{sub 2}-based transition-metal Laves phases has shown that the average electron concentration factor, e/a, is the dominating factor in controlling the phase stability of NbCr{sub 2}-based Laves phases when the atomic size ratios are kept identical. Since Ni has ten out-shell electrons, the substitution of Ni for Cr in NbCr{sub 2} will increase the average electron concentration of the alloy, thus leading to the change of the crystal structures from C15 to C14. In this paper, a number of pseudo-binary Nb(Cr,Ni){sub 2} alloys were prepared, and the crystal structures of the alloys after a long heat-treatment at 1000 C as a function of the Ni content were determined by the X-ray diffraction technique. The boundaries of the C15/C14 transition were determined and compared to their previous predictions. It was found that the electron concentration and phase stability correlation is obeyed in the Nb-Cr-Ni system. However, the e/a ratio corresponding to the C15/C14 phase transition was found to move to a higher value than the predicted one. The changes in the lattice constant, Vickers hardness and fracture toughness were also determined as a function of the Ni content, which were discussed in light of the phase stability difference of the alloys.

  9. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  10. Liquidus projection of the Nb-Cr-Al system near the Al3(Nb,Cr) + Cr(Al,Nb) eutectic region

    International Nuclear Information System (INIS)

    Souza, S.A.; Ferrandini, P.L.; Nunes, C.A.; Coelho, A.A.; Caram, R.

    2006-01-01

    The system Nb-Cr-Al was investigated in the region near the Al 3 (Nb,Cr) + Cr(Al,Nb) eutectic and the liquidus projection of that region was determined based on the microstructural characterization of arc melted alloys. The characterization utilized scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential thermal analysis (DTA) and X-ray diffraction (XRD). The results allowed one to determine three primary solidification liquidus surfaces ((Cr,Al) 2 Nb, Cr(Al,Nb) and Al 3 (Nb,Cr)), that are originated from the binary systems Cr-Nb, Cr-Al and Al-Nb. It is proposed the occurrence of the invariant reaction L + (Cr,Al) 2 Nb ↔ Al 3 (Nb,Cr) + Cr(Al,Nb) and of a point of minimum, which involves a three phase reaction, L ↔ Al 3 (Nb,Cr) + Cr(Al,Nb). All alloys studied showed formation of the Al 3 (Nb,Cr) + Cr(Al,Nb) eutectic as the last solidification step with Al(Nb)Cr 2 precipitating from Cr(Al,Nb)

  11. Microstructure and Wear Behavior of CoCrFeMnNbNi High-Entropy Alloy Coating by TIG Cladding

    Directory of Open Access Journals (Sweden)

    Wen-yi Huo

    2015-01-01

    Full Text Available Alloy cladding coatings are widely prepared on the surface of tools and machines. High-entropy alloys are potential replacements of nickel-, iron-, and cobalt-base alloys in machining due to their excellent strength and toughness. In this work, CoCrFeMnNbNi HEA coating was produced on AISI 304 steel by tungsten inert gas cladding. The microstructure and wear behavior of the cladding coating were studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, microhardness tester, pin-on-ring wear tester, and 3D confocal laser scanning microscope. The microstructure showed up as a nanoscale lamellar structure matrix which is a face-centered-cubic solid solution and niobium-rich Laves phase. The microhardness of the cladding coating is greater than the structure. The cladding coating has excellent wear resistance under the condition of dry sliding wear, and the microploughing in the worn cladding coating is shallower and finer than the worn structure, which is related to composition changes caused by forming the nanoscale lamellar structure of Laves phase.

  12. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application

    Science.gov (United States)

    Muralidharan, Govindarajan

    2017-09-05

    An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

  13. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qingfeng [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Lu, Fenggui [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Ruifeng [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003 (China); Huang, Jian; Wu, Yixiong [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China)

    2017-02-28

    Highlights: • Equimolar CrMnFeCoNi high entropy alloy coating are prepared by laser cladding. • The cladding layer forms a simple FCC phase solid solution with identical dendritic structure. • The cladding layer exhibits a noble corrosion resistance in both 3.5 wt.% NaCl and 0.5 M sulfuric acid. • Element segregation makes Cr-depleted interdendrites the starting point of corrosion reaction. - Abstract: Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower i{sub corr} than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted R{sub t} value reaches its maximum at 24 h during a 48 h’ immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H{sub 2}SO{sub 4} reveals that corrosion starts from Cr-depleted interdendrites.

  14. Sintering behaviour and mechanical properties of Cr3C2–NiCr ...

    Indian Academy of Sciences (India)

    fracture toughness. Keywords. Cermet; Cr3C2–NiCr; sintering; mechanical properties. ... et al investigated the mechanical properties of VC, Cr3C2 and NbC doped ..... Huang S G, Li L, Van der Biest O and Vleugels J 2008 J. Alloys. Compds.

  15. The characteristics of precipitates in 18% Cr/30% Ni cast steel with additions of Nb and Ti

    International Nuclear Information System (INIS)

    Piekarski, B.

    1995-01-01

    The microstructure of austenitic cast steel with approx. 0.3%C, 4.37%Si, 0.69%Mn, 17.8%Cr, 29.3%Ni, 1.47%Nb and 1.07%Ti have been examined after ageing at 900 C for 300 h. There was found five precipitates: M 23 C 6 , MnS, Ni 3 Fe, (Ti,Nb)C and an intermetallic Ni-Nb-S phase. Ni, Nb, Si-rich precipitate could have been formed in as cast condition. (author)

  16. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling.

    Science.gov (United States)

    Klimova, Margarita; Stepanov, Nikita; Shaysultanov, Dmitry; Chernichenko, Ruslan; Yurchenko, Nikita; Sanin, Vladimir; Zherebtsov, Sergey

    2017-12-29

    The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (<40%), while grain (twin) boundary strengthening prevailed at higher strains.

  17. Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid

    International Nuclear Information System (INIS)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W.; Shih, H.C.

    2008-01-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al x CrFe 1.5 MnNi 0.5 (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 Ωcm 2 as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 Ωcm 2 ). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H 2 SO 4 solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al 0.3 CrFe 1.5 MnNi 0.5 alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe 1.5 MnNi 0.5 and Al 0.3 CrFe 1.5 MnNi 0.5 alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al x CrFe 1.5 MnNi 0.5 alloys optimized their surface structures and minimized their susceptibility to pitting corrosion

  18. Effect of Manganese on Microstructures and Solidification Modes of Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    Science.gov (United States)

    Peng, Huabei; Wen, Yuhua; Du, Yangyang; Yu, Qinxu; Yang, Qin

    2013-10-01

    We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.

  19. Phase stability, crystal structure and magnetism in (U1-xNbx)2 Ni21B6 and (UyNb1-y)3Ni20B6

    Science.gov (United States)

    Provino, Alessia; Bhattacharya, Amitava; Dhar, Sudesh K.; Pani, Marcella; Gatti, Flavio; Paudyal, Durga; Manfrinetti, Pietro

    Ternary phases with composition T2M21X6 and T3M20X6 (T = transition metal; M = 3 d metal; X = B, C, P) are reported to crystallize with the W2Cr21C6-type and Mg3Ni20B6-type, respectively (ternary ordered derivatives of the cubic Cr23C6-type, cF116). They attract interest due to their refractory, mechanical, and peculiar magnetic properties. Literature data on these compounds only concern apparently stoichiometric 2:21:6 and 3:20:6 phases. Often only nominal composition has been reported, with few structural refinements and no measurements of physical properties. Lack of detailed stoichiometry and crystallographic data does not allow sufficient understanding of the crystal chemistry and properties of these compounds. We studied stability, crystal structure and magnetism of (U1-xNbx)2 Ni21B6 and (UyNb1-y)3Ni20B6; stable phases are U2Ni21B6 and Nb3Ni20B6, as also confirmed by theoretical calculations. The two pristine compounds solubilize Nb and U, respectively, up to a given extent. The substitution of U by Nb leads to a structural change from the W2Cr21C6- to the Mg3Ni20B6-type. While U2Ni21B6 is a Pauli paramagnet (itinerant non-magnetic state of U-5 f electrons), in agreement with literature, magnetization data for (UyNb1-y)3 Ni20B6 show itinerant ferromagnetism with TC >300 K.

  20. Room temperature magnetocaloric effect in Ni-Mn-In-Cr ferromagnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akkera, Harish Sharma [Functionalnanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand-247667 (India); Singh, Inderdeep [Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand-24667 (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Functionalnanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand-247667 (India)

    2017-02-15

    The influence of Cr substitution for In on the martensitic phase transformation and magnetocaloric effect (MCE) has been investigated in Ni-Mn-Cr-In ferromagnetic shape memory alloy (FSMA) thin films fabricated by magnetron sputtering. Temperature dependent magnetization (M-T) measurements demonstrated that the martensitic transformation temperatures (T{sub M}) monotonously increase with the increase of Cr content due to change in valence electron concentration (e/a) and cell volume. From the study of isothermal magnetization curves (M-H), magnetocaloric effect around the martensitic transformation has been investigated in these FSMA thin films. The magnetic entropy change ∆S{sub M} of 7.0 mJ/cm{sup 3}-K was observed in Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5} film at 302 K in an applied field of 2 T. Further, the refrigerant capacity (RC) was also calculated for all the films in an applied field of 2 T. These findings indicate that the Cr doped Ni-Mn-In FSMA thin films are potential candidates for room temperature micro-length-scale magnetic refrigeration applications. - Highlights: • The Cr content leads to an increase in the martensitic transformation temperature. • The ∆S{sub M} =7 mJ/cm{sup 3}-K at 302 K was observed in the Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5}. • The RC =39.2 mJ/K at 2 T was obtained in Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5} film.

  1. Effect of Nb doping on electrochemical properties of LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} at high cutoff voltage for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiefan [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); Liu, Hongguang, E-mail: hongguangliu_01@163.com [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); CNOOC Tianjin Chemical Research & Design Institute, Tianjin 300131 (China); Ye, Xuehai; Xia, Jiping; Lu, Yang; Lin, Chaowang; Yu, Xiaowei [CNOOC Tianjin Chemical Research & Design Institute, Tianjin 300131 (China)

    2015-09-25

    Highlights: • Nb substituted LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3−x}Nb{sub x}O{sub 2} (x = 0–0.03) was prepared by sol–gel method. • 2% Nb-substituted sample showed better cycle performance at high cutoff voltage. • Ex situ analysis was used to show the structure changes of Nb-doped samples. - Abstract: Nb doped cathode materials with the formula LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3−x}Nb{sub x}O{sub 2} (x = 0, 0.01, 0.02, 0.03) have been prepared successfully by sol–gel method. The effect of Nb substitution on the crystal structure and electrochemical properties of LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} were studied systematically by X-ray diffraction (XRD) and various electrochemical measurements. The results showed Nb substitution played an important role in the good cycling performance of LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2}. Charge/discharge tests revealed that LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3–0.02}Nb{sub 0.02}O{sub 2} showed a capacity retention of 94.1% at 1 C after 50 cycles in a high cutoff voltage range (3.0–4.6 V), while discharge capacity of LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} remains only 89.4% of that at 1 C. Ex-situ XRD analysis and EIS analysis indicated that the improved electrochemical properties of Nb-doped sample result from the more stable structure and lower resistance during the electrochemical cycling.

  2. MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 hydrogen storage alloys for high-power nickel/metal hydride batteries

    Science.gov (United States)

    Ye, Hui; Huang, Yuexiang; Chen, Jianxia; Zhang, Hong

    Non-stoichiometric La-rich MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 hydrogen storage alloys using B-Ni or B-Fe alloy as additive and Ce-rich MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 one using pure B as additive have been prepared and their microstructure, thermodynamic, and electrochemical characteristics have been examined. It is found that all investigated alloys show good activation performance and high-rate dischargeability though there is a certain decrease in electrochemical capacities compared with the commercial MmNi 3.55Co 0.75Mn 0.4Al 0.3 alloy. MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 alloys using B-Ni alloy as additive or adopting Ce-rich mischmetal show excellent rate capability and can discharge capacity over 190 mAh/g even under 3000 mA/g current density, which display their promising use in the high-power type Ni/MH battery. The electrochemical performances of these MmNi 3.55Co 0.75Mn 0.4Al 0.3B 0.3 alloys are well correlated with their microstructure, thermodynamic, and kinetic characteristics.

  3. The Influence of Cr on the Solidification Behavior of Polycrystalline γ(Ni)/ γ'(Ni3Al)- δ(Ni3Nb) Eutectic Ni-Base Superalloys

    Science.gov (United States)

    Xie, Mengtao; Helmink, Randolph; Tin, Sammy

    2012-04-01

    In the current investigation, the effect of Cr on the solidification characteristics and as-cast microstructure of pseudobinary γ- δ eutectic alloys based on a near-eutectic composition (Ni-5.5Al-13.5Nb at. pct) was investigated. It was found that Cr additions promote the formation of a higher volume fraction of γ- δ eutectic microstructure in the interdendritic region. Increasing levels of Cr also triggered morphological changes in the γ- δ eutectic and the formation of γ- γ'- δ ternary eutectic during the last stage of solidification. A detailed characterization of the as-cast alloys also revealed that Cr additions suppressed the liquidus, solidus, and γ' precipitation temperature of these γ/ γ'- δ eutectic alloys. A comparison of the experimental results with thermodynamic calculations using the CompuTherm Pandat database (CompuTherm LLC, Madison, WI) showed qualitative agreement.

  4. X-ray determination of static displacements of atoms in alloyed Ni3Al

    International Nuclear Information System (INIS)

    Morinaga, M.; Sone, K.; Kamimura, T.; Ohtaka, K.; Yukawa, N.

    1988-01-01

    Single crystals of Ni 3 (Al, M) were grown by the Bridgman method, where M is Ti, V, Cr, Mn, Fe, Nb, Mo and Ta. The composition was controlled to be about Ni 75 Al 20 M 5 so that the alloying element, M, substitutes mainly for Al. With these crystals conventional X-ray structural analysis was performed. The measured static displacements of atoms from the average lattice points depended largely on the alloying elements and varied in the range 0.00-0.13 A for Ni atoms and 0.09-0.18 A for Al atoms. It was found that these atomic displacements correlated well with the atomic radius of the alloying element, M. For example, when the atomic radius of M is larger than that of Al, the static displacements are large for the atoms in the Al sublattice but small for the atoms in the Ni sublattice. By contrast, when the atomic radius of M is smaller than that of Al, the displacements are more enhanced in the Ni sublattice than in the Al sublattice. Thus, there is an interesting correlation between the atomic displacements in both the Al and Ni sublattices in the presence of alloying elements. This seems to be one of the characteristics of alloyed compounds with several sublattices. (orig.)

  5. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  6. Enhancing pitting corrosion resistance of Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} high-entropy alloys by anodic treatment in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Shih, H.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan (China)], E-mail: hcshih@mx.nthu.edu.tw

    2008-12-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 {omega}cm{sup 2} as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 {omega}cm{sup 2}). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H{sub 2}SO{sub 4} solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe{sub 1.5}MnNi{sub 0.5} and Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} alloys optimized their surface structures and minimized their susceptibility to pitting corrosion.

  7. STUDY OF COATINGS OBTAINED FROM ALLOY Fe-Mn-C-B-Si-Ni-Cr

    Directory of Open Access Journals (Sweden)

    Mychajło Paszeczko

    2016-09-01

    Full Text Available Tribological behaviour of coatings obtained from eutectic alloy Fe-Mn-C-B-Si-Ni-Cr was studied. The coatings were obtained by the method of gas metal arc welding (GMA with use of powder wire. GMA welding method is widely used for the regeneration of machine parts. Eutectic Fe-Mn-C-B-Si-Ni-Cr alloys can be used to obtain high quality coatings resistant to wear and corrosion. Pin-on-disk dry sliding wear tests at sliding speeds 0.4 m/s and under load 10 MPa were conducted for pin specimens. During friction a typical tribological behavior was observed. The mechanism of wear was mechanical-chemical.

  8. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bei, H., E-mail: beih@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-10-25

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. The effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. The materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (∼70% at 77 K and ∼40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys. - Highlights: • Interstitial atom C was successfully added into FeNiCoCrMn high entropy alloys. • The strain hardening rate and strength are enhanced in the C-containing alloy. • The increased strain-hardening and strength are caused by the nano-twinning.

  9. Magnetic properties of the CrMnFeCoNi high-entropy alloy

    International Nuclear Information System (INIS)

    Schneeweiss, Oldřich; Friák, Martin; Masaryk University, Brno; Dudová, Marie; Holec, David

    2017-01-01

    In this paper, we present experimental data showing that the equiatomic CrMnFeCoNi high-entropy alloy undergoes two magnetic transformations at temperatures below 100 K while maintaining its fcc structure down to 3 K. The first transition, paramagnetic to spin glass, was detected at 93 K and the second transition of the ferromagnetic type occurred at 38 K. Field-assisted cooling below 38 K resulted in a systematic vertical shift of the hysteresis curves. Strength and direction of the associated magnetization bias was proportional to the strength and direction of the cooling field and shows a linear dependence with a slope of 0.006 ± 0.001 emu T. The local magnetic moments of individual atoms in the CrMnFeCoNi quinary fcc random solid solution were investigated by ab initio (electronic density functional theory) calculations. Results of the numerical analysis suggest that, irrespective of the initial configuration of local magnetic moments, the magnetic moments associated with Cr atoms align antiferromagnetically with respect to a cumulative magnetic moment of their first coordination shell. The ab initio calculations further showed that the magnetic moments of Fe and Mn atoms remain strong (between 1.5 and 2 μ B ), while the local moments of Ni atoms effectively vanish. Finally, these results indicate that interactions of Mn- and/or Fe-located moments with the surrounding magnetic structure account for the observed macroscopic magnetization bias.

  10. Effect of ion plating TiN on the oxidation of sputtered NiCrAlY-coated Ti3Al-Nb in air at 850-950 C

    International Nuclear Information System (INIS)

    Rizzo, F.C.; Zeng, C.; Chinese Academy of Sciences, Shenyang; Wu, W.

    1998-01-01

    A single sputtered NiCrAlY coating and a complex coating of inner ion-plated TiN and outer sputtered NiCrAlY were prepared on the intermetallic compound Ti 3 Al-Nb. Their oxidation behavior was examined at 850, 900, and 950 C in air by thermal gravimetry combined with XRD, SEM, and EDAX. The results showed that Ti 3 Al-Nb followed approximately parabolic oxidation, forming an outer thin Al 2 O 3 -rich scale and an inner TiO 2 -rich layer doped with Nb at the three temperatures. The TiO 2 -rich layer doped with Nb dominated the oxidation reaction. The single NiCrAlY coating did not follow parabolic oxidation exactly at 850 and 950 C, but oxidized approximately in a parabolic manner, because the instantaneous parabolic constants changed slightly with time. Besides the Al 2 O 3 scale, TiO 2 formed from the coating surface at the coating-substrate interface. The deterioration of the coating accelerated with increasing temperature. The NiCrAlY-TiN coating showed two-stage parabolic oxidation at 850 and 900 C, and an approximate parabolic oxidation at 950 C. The TiN layer was effective as a barrier to inhibit coating-alloy interdiffusion

  11. Effect of manganese and chromium on microstructure and toughness of Fe-Cr-Mn alloys resulting from solid-solution treatment

    International Nuclear Information System (INIS)

    Okazaki, Yoshimitsu; Miyahara, Kazuya; Wade, Noboru; Hosoi, Yuzo

    1989-01-01

    This study is aimed at making clear the effect of Mn and Cr on the microstructure and toughness of an Fe-Cr-Mn alloy which is considered as one of the candidate alloys for reduced activation materials for the first wall application of the fusion reactor. The microstructures of Fe-12% Cr-(5∼30)% Mn(mass%) alloys after solution treatment at 1373 K for 3.6 ks are markedly varied with Mn contents; α'(martensite) + δ(ferrite) in 5% Mn alloy, α' + δ + ε(martensite) + γ(austenite) in the 10% Mn alloy, α' + ε + γ in 15% Mn alloy, ε + γ in the 20% Mn alloy, and ε + γ +δ in the 25% Mn alloy, and γ + δ in the 30% Mn alloy. It is to be noted that the δ phase increases with increasing Mn content when the Fe-12% Cr alloy contains more than 25% Mn, which suggests that Mn plays the role of a ferrite former. In Fe-15% Mn-Cr alloy, the δ phase is not observed in the range of Cr contents up to 12%, whereas it is markedly increased with the addition of 16% Cr. C, N and Ni are very helpful in forming the γ phase in these alloys as generally known in Fe-Cr-Ni alloys. The toughness evaluated by the Charpy impact test at 273 K and room temperature is very low in the 5% Mn alloy which consists of the α' and δ phases. It is, however, significantly improved by a small amount of the γ phase and increases with increase of γ phase stability. (author)

  12. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy

    International Nuclear Information System (INIS)

    Chen, Weiping; Fu, Zhiqiang; Fang, Sicong; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: • FeNiCrCo 0.3 Al 0.7 high entropy alloy is prepared via MA and SPS. • Two BCC phases and one FCC phase were obtained after SPS. • The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure). • Bulk FeNiCrCo 0.3 Al 0.7 HEA exhibits excellent mechanical properties. - Abstract: The present paper reports the synthesis of FeNiCrCo 0.3 Al 0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01 Å and one FCC phase with the lattice parameter of 3.72 Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo 0.3 Al 0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo 0.3 Al 0.7 alloy are 2033 ± 41 MPa, 2635 ± 55 MPa, 8.12 ± 0.51% and 624 ± 26H v , respectively. The fracture mechanism of bulk FeNiCrCo 0.3 Al 0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture

  13. Modification of tribology and high-temperature behavior of Ti-48Al-2Cr-2Nb intermetallic alloy by laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Wang Huaming

    2006-01-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3 C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3 C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm x 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3 C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3 C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7 C 3 , TiC and both continuous and dense Al 2 O 3 , Cr 2 O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials

  14. Abrasive wear resistance and microstructure of Ni-Cr-B-Si hardfacing alloys with additions of Al, Nb, Mo, Fe, Mn and C

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.; Theisen, W.

    1987-01-01

    The development of new Ni-base hardfacing alloys for filler wire welding or metal spraying should result in materials with a good resistance against high temperature corrosion and abrasive wear. The first step is to design microstructures, which obtain a satisfactory abrasive wear behaviour at room temperature. Thus, different alloys are melted and scrutinized as to their microstructure and their abrasive wear resistance in laboratory. Compared to commercial Ni-base hardfacing alloys they show a higher volume fraction of coarse hard phases due to the additional, initial solidification of Nb-carbides and Cr-, and Mo-borides. Thus, the abrasive wear resistance is improved. For hard abrasive particles, such as corundum, the Ni-base alloys are more wear resistant than harder Fe-base alloys investigate earlier. This is due to the tougher Ni metal matrix that results in microcracking not to be the most significantly acting wear mechanism

  15. Microstructure of Precipitation Hardenable Powder Metallurgical Ni Alloys Containing 35 to 45 pct Cr and 3.5 to 6 pct Nb

    DEFF Research Database (Denmark)

    Bihlet, Uffe Ditlev; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2014-01-01

    the additional presence of metastable γ'' (Ni3Nb). A co-dependent growth morphology was found, where the preferred growth direction of γ'', the {001} planes of γ-Ni, caused precipitates of both α-Cr and d to appear in the form of mutually perpendicular oriented disks or plates. Solution heat treatment at 1373 K...

  16. INFLUENCE OF ANNEALING ON HARDNESS OF Cr-Mn-Ni CAST IRONS

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2015-01-01

    Full Text Available The necessary level of material’s hardness is determined by the exploitation conditions and presence of technological operations during manufacturing of articles. Mechanical edge cutting machining of wear resistant materials is impeded because of their high hardness. It is recommended to apply annealing in order to decrease hardness and improve machinability. The purpose of the work consisted in obtaining of regression dependences of cast iron’s macrohardness on its chemical content after annealing at 730 °С. With the use of mathematical experimental design the regression dependences of cast iron’s macrohardness and structural components’ microhardness on С, Cr, Mn, Ni content have been established. The minimal hardness of 27,6 HRC after annealing at 730 °С is obtained in the cast iron containing: 3,9% С; 11,4% Cr; 0,6% Mn; 0,2% Ni. The maximal hardness of 70,4 HRC is obtained when the content is as follows: 1,1% С; 25,6% Cr; 5,4% Mn; 3,0% Ni. Annealing at 730 °С decreases the cast irons’ hardness containing the minimal amount of Cr, Mn and Ni. Annealing at 730 °С is recommended for cast irons alloyed by Mn and Ni for increasing of hardness.

  17. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  18. Effect of Cr addition on the structural, magnetic and mechanical properties of magnetron sputtered Ni-Mn-In ferromagnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akkera, Harish Sharma [Indian Institute of Technology Roorkee, Functional Nanomaterials Research Lab, Department of Physics, Roorkee, Uttarakhand (India); Madanapalle Institute of Technology and Science, Department of Physics, Madanapalle, Chittoor, Andhra Pradesh (India); Kaur, Davinder [Indian Institute of Technology Roorkee, Functional Nanomaterials Research Lab, Department of Physics, Roorkee, Uttarakhand (India)

    2016-12-15

    The effect of Cr substitution for In on the structural, martensitic phase transformation and mechanical properties of Ni-Mn-In ferromagnetic shape memory alloy (FSMA) thin films was systematically investigated. X-ray diffraction results revealed that the Ni-Mn-In-Cr thin films possessed purely austenitic cubic L2{sub 1} structure at lower content of Cr, whereas higher Cr content, the Ni-Mn-In-Cr thin films exhibited martensitic structure at room temperature. The temperature-dependent magnetization (M-T) and resistance (R-T) results confirmed that the monotonous increase in martensitic transformation temperatures (T{sub M}) with the addition of Cr content. Further, the room temperature nanoindentation studies revealed the mechanical properties such as hardness (H), elastic modulus (E), plasticity index (H/E) and resistance to plastic deformation (H{sup 3}/E {sup 2}) of all the samples. The addition of Cr content significantly enhanced the hardness (28.2 ± 2.4 GPa) and resistance to plastic deformation H{sup 3}/E{sup 2} (0.261) of Ni{sub 50.4}Mn{sub 34.96}In{sub 13.56}Cr{sub 1.08} film as compared with pure Ni-Mn-In film. As a result, the appropriate addition of Cr significantly improved the mechanical properties with a decrease in grain size, which could be further attributed to the grain boundary strengthening mechanism. These findings indicate that the Cr-doped Ni-Mn-In FSMA thin films are potential candidates for microelectromechanical systems applications. (orig.)

  19. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate

    Science.gov (United States)

    Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P.

    2017-06-01

    Thermal coatings have a large scale application in aerospace and automotive field, as barriers improving wear mechanical characteristics and corrosion resistance. In present research, there have been used two types of coatings, Ni-Cr-Fe, respectively Cr3C2-NiCr which were deposited on magnesium based alloys (pure magnesium and Mg-30Y master alloy). There have been investigated the microstructural aspects through scanning electronic microscopy and XRD analysis and also a series of mechanical characteristics through microscratch and indentation determinations. The results revealed the formation of some adherent layers resistant to the penetration of the metallic indenter, the coatings did not suffer major damages. Microstructural analysis highlighted the formation of Cr3C2, Cr7C3, Cr3Ni2, Cr7Ni3, FeNi3, Cr-Ni phases. Also, the apparent coefficient of friction for Ni-Cr-Fe coatings presents superior values than Cr3C2-NiCr coatings.

  20. Hot corrosion behavior of Ni-Cr-W-C alloys in impure helium gas

    International Nuclear Information System (INIS)

    Ohmura, Taizo; Sahira, Kensho; Sakonooka, Akihiko; Yonezawa, Noboru

    1976-01-01

    Influence of the minor alloy constituents such as Al, Mn and Si on the hot corrosion behavior of Ni-20Cr-20W-0.07C alloy was studied in 99.995% helium gas at 1000 0 C, comparing with that behavior of commercial Ni-base superalloys (Hastelloy X and Inconel 617). The low oxidizing potential in the impure helium gas usually causes selective oxidation of these elements and the growth of oxide whiskers on the surface of specimen at elevated temperature. The intergranular attack was caused by selective oxidation of Al, Si and Mn. The spalling of oxide film was restrained by addition of Mn and Si, providing tough spinel type oxide film on the surface and 'Keyes' on the oxide-matrix interface respectively. The amount and the morphology of the oxide whiskers depended on Si and Mn content. More than 0.29% of Si content without Mn always caused the growth of rather thinner whiskers with smooth surface, and the whiskers analyzed by electron diffraction patterns and EPMA to be Cr 2 O 3 containing Si. Mn addition changed the whiskers to thicker ones of spinel type oxide (MnCr 2 O 1 ) with rough surface. On the basis of these results, the optimum content of Al, Mn and Si to minimize the growth of whiskers, the intergranular attack and the spalling of oxide film was discussed. (auth.)

  1. Corrosion effect on the electrochemical properties of LaNi3.55Mn0.4Al0.3Co0.75 and LaNi3.55Mn0.4Al0.3Fe0.75 negative electrodes used in Ni-MH batteries

    International Nuclear Information System (INIS)

    Khaldi, Chokri; Boussami, Sami; Rejeb, Borhene Ben; Mathlouthi, Hamadi; Lamloumi, Jilani

    2010-01-01

    The thermodynamic parameters, electrochemical capacity, equilibrium potential and the equilibrium pressure, of LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 and LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 alloys have been evaluated from the electrochemical isotherms (C/30 and OCV methods) and CV technique. A comparative study has been done between the parameter values deduced from the electrochemical methods and the solid-gas method. The parameter values deduced from the electrochemical methods are influenced by the electrochemical corrosion of the alloys in aqueous KOH electrolyte. The corrosion behaviour of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 and LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 electrodes after activation was investigated using the method of the potentiodynamic polarization. The variation of current and potential corrosion values with the state of charge (SOC) show that the substitution of cobalt by iron accentuates the corrosion process. The high-rate dischargeability (HRD) of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 and LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 alloys was examined. By increasing the discharge current the (HRD) decrease linearly for both the alloys and for the LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 compound is greater then for the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 one.

  2. Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Special austenitic steels are being designed in which alloying elements like Mo, Nb, and Ni are replaced with Mn, W, V, Ti, and/or Ta to reduce the long-term radioactivity induced by fusion reactor irradiation. However, the new steels still need to have properties otherwise similar to commercial steels like type 316. Precipitation strongly affects strength and radiation-resistance in austenitic steels during irradiation at 400--600/degree/C, and precipitation is also usually quite sensitive to alloy composition. The initial stage of development was to define a base Fe-Cr-Mn-C composition that formed stable austenite after annealing and cold-working, and resisted recovery or excessive formation of coarse carbide and intermetallic phases during elevated temperature annealing. These studies produced a Fe-12Cr-20Mn-0.25C base alloy. The next stage was to add the minor alloying elements W, Ti, V, P, and B for more strength and radiation-resistance. One of the goals was to produce fine MC precipitation behavior similar to the Ti-modified Fe-Cr-Ni prime candidate alloy (PCA). Additions of Ti+V+P+B produced fine MC precipitation along network dislocations and recovery/recrystallization resistance in 20% cold worked material aged at 800/degree/C for 166h, whereas W, Ti, W+Ti, or Ti+P+B additions did not. Addition of W+Ti+V+P+B also produced fine MC, but caused some σ phase formation and more recrystallization as well. 29 refs., 14 figs., 9 tabs

  3. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys

    International Nuclear Information System (INIS)

    Yang, Tai; Zhai, Tingting; Yuan, Zeming; Bu, Wengang; Xu, Sheng; Zhang, Yanghuan

    2014-01-01

    Highlights: • La–Mg–Ni system AB 2 -type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi 4 and the secondary phase LaNi 5 . However, the secondary phase of the Al substitution alloy changes into LaAlNi 4 . The lattice parameters and cell volumes of the LaMgNi 4 phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi 4 phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi 4 phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between hydriding and dehydriding

  4. Enhanced glass forming ability and refrigerant capacity of a Gd55Ni22Mn3Al20 bulk metallic glass

    International Nuclear Information System (INIS)

    Xia, L.; Chan, K.C.; Tang, M.B.

    2011-01-01

    Highlights: → A new Gd 55 Ni 22 Mn 3 Al 20 bulk metallic glass (BMG) was synthesized by minor Mn addition. → The BMG has enhanced glass forming ability and excellent refrigerant capacity (RC). → The RC of the BMG reaches a high value of 825 J kg -1 under a field of 3979 kA/m. → Its excellent RC is related to its large effective magnetic moment. - Abstract: In this work, a small amount of Mn was added to a Gd 55 Ni 25 Al 20 glass forming alloy, as a replacement for Ni, and a Gd 55 Ni 22 Mn 3 Al 20 bulk metallic glass (BMG) was obtained by suction casting. Its glass forming ability (GFA) was characterized by X-ray diffraction and differential scanning calorimetry, and its magnetic properties were measured using a magnetic property measurement system. It is found that the minor Mn addition can significantly improve both the GFA and the magnetocaloric effect (MCE) of the alloy. The refrigerant capacity (RC) of the BMG can reach a high value of 825 J kg -1 under a field of 3979 kA/m, which is about 29% larger than that of a Gd 55 Ni 25 Al 20 BMG. The effect of the minor Mn addition on the GFA and MCE of the BMG was investigated in the study.

  5. Hot corrosion behavior of Ni-Cr-W-C alloys in impure He gas

    International Nuclear Information System (INIS)

    Ohmura, Taizo; Sahira, Kensho; Sakonooka, Akihiko; Yonezawa, Noboru

    1977-01-01

    Influence of the minor alloy constituents such as Al, Mn and Si on the hot corrosion behavior of Ni-20Cr-20W-0.07C alloy was studied in 99.995%He gas at 1,000 0 C, in comparison with the behavior of commercial Ni-base superalloys (Hastelloy X and Inconel 617). The low oxidizing potential in the impure He gas usually causes selective oxidation of the elements described above and the growth of oxide whiskers on the surface of specimen at elevated temperatures. The intergranular attack was caused by selective oxidation of Al, Si and Mn. The spalling of oxide film was restrained by additions of Mn and Si, providing tough spinel type oxide film on the surface and 'keys' on the oxide-matrix interface respectively. The amount and morphology of the oxide whiskers depended on Si and Mn contents. Si of more than 0.29% without Mn always caused the growth of rather thinner whiskers with smooth surface, and the whiskers analyzed by electron diffraction patterns and EPMA to be Cr 2 O 3 containing Si. Mn addition changes the whiskers to thicker ones of spinel type oxide (MnCr 2 O 4 ) with rough surface. On the basis of these results, the optimum contents of Al, Mn and Si to minimize the growth of whiskers, the intergranular attack, and the spalling of oxide film were discussed. (auth.)

  6. Effect of heat treatment on the microstructure change and mechanical properties for the Ni-19Si-3Nb-0.15B intermetallic alloy

    International Nuclear Information System (INIS)

    Jang, J.S.C.; Chang, L.J.

    2003-01-01

    The microstructural change of the Ni-19Si-3Nb-0.15B alloys after different heat treatment was examined by scanning electron microscopy with energy dispersive spectrum. In addition, Vickers's hardness test was used to measure the variation of mechanical properties for each heat-treated alloy. The results reveal that the typical dendritic microstructure of the heat-treated alloys (comprised of dendritic β-phase, α-β eutectic, and the Nb-rich precipitates) remained almost the same microstructure as the as-cast alloy. However, the morphology of the sharp-edged Nb-rich precipitate (identified to be the cubic Nb 3 Ni 2 Si by electron diffraction of TEM) would be blunted by homogenization. In addition, the size of precipitates seemed to grow with increased aging temperature and aging time. Correlating the result of microhardness measurement with the microstructure observation, an aging temperature of 700 deg. C and an aging time of 10 h is found to be the optimum treating condition for the Ni-19Si-3Nb-0.15B alloy. In addition, the precipitate growth is revealed dominating by an interfacial-controlled kinetics with a thermal activation process of Arrhenius type. The strengthening effect of the heat treatment is not obvious from the hardness test. However, the effect of heat treatment exhibited significant improvement on the ductility of the Ni-19Si-3Nb-0.15B alloy (ε ∼3% for as-cast alloy and 12% for heat-treated alloy)

  7. Production and characterization of stainless steel based Fe-Cr-Ni-Mn-Si(-Co) shape memory alloys

    International Nuclear Information System (INIS)

    Otubo, J.

    1995-01-01

    It is well known that the Fe based alloys can exhibit shape memory effect due to the γ to ε martensitic transformation. The effect may not be as striking as observed in the NiTi alloy but it might become attractive from the practical point of view. In this work, two compositions of Fe-Cr-Ni-Mn-Si(-Co) stainless steel based shape memory alloy, prepared by the VIM technique, will be presented. The results are good with shape recovery of 95% for a pre-strain of 4% after some training cycles. In terms of workability the alloys produced are worse than the usual AISI304. However, adjusting the thermo-mechanical processing, it is perfectly possible to produce wire as thin as 1,20mm in dia. or down. (orig.)

  8. The electrochemical properties of Zr-Ti-V-Ni-Mn hydrogen storage alloys with various compositions for an electrode of Ni-MH secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Jun; Jung, So Yi; Park, Choong Nyeon [Dept. of Metallurgical Engineering, Chonnam National University, Kwangju (Korea)

    1999-12-01

    Effects of alloy modification for the Zr{sub 0.7}Ti{sub 0.3}V{sub 0.4}Ni{sub 1.2}Mn{sub 0.4} alloy as an electrode materials have been investigated. When Ti in the alloy was partially substituted by Zr, the hydrogen storage capacity and subsequently the discharge capacity increased significantly, however, the activation characteristic and rate capability decreased. By substituting Mn with other elements (Cr, Co and Fe) in the alloy, discharge capacity decreased but the cycle life and rate capability were improved. Considering both the discharge capacity, the high rate discharge property and cycle life, the Zaire.{sub 7}Ti{sub 0.3}V{sub 0.4}Ni{sub 1.2}Mn{sub 0.3}Cr{sub 0.1} alloy among the alloys subjected to the test was found to be a prominent alloy for a practical usage. 11 refs., 5 figs., 2 tabs.

  9. Influence of creep ductility on creep-fatigue behaviour of 20%Cr/25%Ni/Nb stainless steel

    International Nuclear Information System (INIS)

    Gladwin, D.; Miller, D.A.

    1985-01-01

    The influence of creep ductility on creep-fatigue endurance of 20%Cr/25%Ni/Nb stainless steel has been examined. In order to induce different creep ductilities in the 20/25/Nb stainless steel, three different thermo-mechanical routes were employed. These resulted in a range of ductilities (3-36%) being obtained at the strain rates of interest. Strain controlled slow-fast creep-fatigue cycles were used with strain rates of 10 -6 s -1 , 10 -7 s -1 in tension and 10 -3 s -1 in compression. It was found that creep ductility strongly influenced the creep-fatigue endurance of the 20/25/Nb stainless steel. When failure was creep dominated endurance was found to be directly proportional to the creep ductility. A ductility exhaustion model has been used to successfully predict creep-fatigue endurance when failure was creep dominated. (author)

  10. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  11. Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al–Cu–Mn casting alloy

    International Nuclear Information System (INIS)

    Chen Zhongwei; Chen Pei; Li Shishun

    2012-01-01

    Highlights: ► Rare earth element Ce can retard the formation of the Al 20 Cu 2 Mn 3 twin phase in an Al–Cu–Mn casting alloy. ► Patterns of the particles of the Al 20 Cu 2 Mn 3 phase in Al–Cu–Mn free Ce alloy are more diverse. ► The symmetry of neighboring components of twins is characterized by glide reflection and reflection. ► The twins of Al 20 Cu 2 Mn 3 phase can enhance the mechanical properties of the Al–Cu–Mn casting alloys. - Abstract: Effects of Ce addition on microstructure of Al 20 Cu 2 Mn 3 twin phase and mechanical properties of an Al–Cu–Mn casting alloy were investigated by transmission electron microscopy, selected area electron diffraction, high resolution transmission electron microscopy and tensile test. The results show that rare earth element Ce can retard the formation of the Al 20 Cu 2 Mn 3 phase in the Al–Cu–Mn alloy. Compared with the Ce containing alloy, patterns of particles of the Al 20 Cu 2 Mn 3 phase in the Al–Cu–Mn free Ce alloy are more diverse. The symmetry of neighboring components of twins is characterized by glide reflection and reflection. In addition, twins of the Al 20 Cu 2 Mn 3 phase can enhance the mechanical properties of the Al–Cu–Mn alloy.

  12. Aging of a cast 35Cr-45Ni heat resistant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sustaita-Torres, Ireri A., E-mail: ireri.sustaita@gmail.com [Unidad Academica de Ingenieria, Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza (Mexico); Haro-Rodriguez, Sergio, E-mail: haros907@hotmail.com [Unidad Academica de Ingenieria, Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Guerrero-Mata, Martha P., E-mail: martha.guerreromt@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza (Mexico); Garza, Maribel de la, E-mail: maribeldelagarza@yahoo.com.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza (Mexico); Valdes, Eduardo, E-mail: eduardo.valdes.57@gmail.com [Instituto Tecnologico de Saltillo, 25280 Saltillo (Mexico); Deschaux-Beaume, Frederic, E-mail: deschaux@iut-nimes.fr [Mechanical and Civil Engineering Laboratories, Universite de Montpellier 2, IUT Nimes, 30907 Nimes (France); and others

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer The as-cast microstructure is made of an austenitic matrix and primary carbides. Black-Right-Pointing-Pointer The carbides are of two different types: Cr- and Nb-rich. Black-Right-Pointing-Pointer The microstructure changes during aging. Black-Right-Pointing-Pointer These microstructural changes result in the degradation of mechanical properties. - Abstract: The microstructural evolution during aging and its effect on the mechanical properties of a centrifugally cast 35Cr-45Ni heat resistant alloy was studied by means of optical and electron microscopy, and by mechanical testing in samples aged in air at 750 Degree-Sign C for a period of time of up to 1000 h. The as-cast microstructure consisted of an austenitic matrix and a network of two types of primary carbides that were identified as NbC and M{sub 7}C{sub 3} by their light and dark tones when viewed in backscattered electron mode in a scanning electron microscope. Aging promoted the occurrence of different phenomena such as the transformation of primary M{sub 7}C{sub 3} to M{sub 23}C{sub 6} carbides, precipitation of secondary M{sub 23}C{sub 6} carbides and the transformation of NbC to Nb{sub 3}Ni{sub 2}Si. It was found that aging promoted an increase in Vickers microhardness of more than 50%, the increment in tensile strength of around 20% and the reduction in ductility of close to 70%.

  13. NbCl 5 and CrCl 3 catalysts effect on synthesis and hydrogen ...

    Indian Academy of Sciences (India)

    Two kinds of novel materials, Mg–1.6 mol% Ni–0.4 mol% NiO–2 mol% MCl (MCl = NbCl5, CrCl3), along with Mg–1.6 mol% Ni–0.4 mol% NiO for comparison, were examined for their potential use in hydrogen storage applications, having been fabricated via cryomilling. The effects of NbCl5 and CrCl3 on hydrogen storage ...

  14. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho [KAERI, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [KAIST, Daejeon (Korea, Republic of); Lee, Chang-Hee [Hanyang Univ., Seoul (Korea, Republic of)

    2011-08-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  15. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    International Nuclear Information System (INIS)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho; Lee, Ki-Hyoung; Lee, Chang-Hee

    2011-01-01

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  16. Development of Cr3C2-25(Ni20Cr) nanostructured coatings

    International Nuclear Information System (INIS)

    Cunha, Cecilio Alvares da

    2012-01-01

    This study is divided in two parts. The first part is about the preparation of nanostructured Cr 3 C 2 -25(Ni20Cr) powders by high energy milling followed by characterization of the milled and the as received powder. Analyses of some of the data obtained were done using a theoretical approach. The second part of this study is about the preparation and characterization of coatings prepared with the nanostructured as well as the as received Cr 3 C 2 -25(Ni20Cr) powders. The high temperature erosion-oxidation (E-O) behavior of the coatings prepared with the two types of powders has been compared based on a technological approach. The average crystallite size of the Cr 3 C 2 -25(Ni20Cr) powder decreased rapidly from 145 nm to 50 nm in the initial stages of milling and thereafter decreased slowly to a steady state value of around 10 nm with further increase in milling time. This steady state corresponds to the beginning of a dynamic recovery process. The maximum lattice strain (ε = 1,17%) was observed in powders milled for 16 hours, and this powders critical crystallite size was 28 nm. In contrast, the lattice parameter attained a minimum for powders milled for 16 hours. Upon reaching the critical crystallite size, the dislocation density attained a steady state regime and all plastic deformation introduced in the material there after was in the form of events occurring at the grain boundaries, due mainly to grain boundary sliding. The deformation energy stored in the crystal lattice of the Cr 3 C 2 -25(Ni20Cr) powders milled for different times was determined from enthalpy variation measurements. These results indicated that the maximum enthalpy variation (δH = 722 mcal) also occurred for powders milled for 16 hours. In a similar manner, the maximum specific heat variation (δC p = 0,278 cal/gK) occurred for powders milled for 16 hours. The following mechanical properties of Cr 3 C 2 -25(Ni20Cr) coatings prepared using the HVOF thermal spray process were determined

  17. Hydrogen storage properties of LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tai [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhai, Tingting; Yuan, Zeming; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Xu, Sheng [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2014-12-25

    Highlights: • La–Mg–Ni system AB{sub 2}-type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi{sub 4} and the secondary phase LaNi{sub 5}. However, the secondary phase of the Al substitution alloy changes into LaAlNi{sub 4}. The lattice parameters and cell volumes of the LaMgNi{sub 4} phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi{sub 4} phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi{sub 4} phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between

  18. Irradiation-induced softening of Ni3P and (Ni, Fe, Cr)3P alloys

    International Nuclear Information System (INIS)

    Schumacher, G.; Miekeley, W.; Wahi, R.P.

    1993-01-01

    Production of amorphous alloys by solid state reactions (SSR) has attracted much interest during the last few years. One of the methods to induce such a reaction is the irradiation of suitable crystalline alloys by fast particles. Examination of this kind of SSR in M 3 P type of brazing alloys (M: Metal) is attractive because of the following reason: In brazed joints of candidate structural materials like 316L stainless steel for applications in fusion reactors, crystalline intermetallic phases have been detected which are unstable relative to the amorphous state when irradiated at moderate temperatures with fast particles. It is expected that the transition to the amorphous state is accompanied by changes of the mechanical properties, which are of fundamental interest in this context. Until now, only a few studies on the evolution of mechanical properties during amorphization have been performed. Measurements of microhardness of the crystalline and the corresponding amorphous phase do not exist to the authors knowledge. In this communication, the authors present results on changes of microhardness, due to amorphization by fast ions. The measurements have been performed on a model alloy Ni 3 P and on the brazed joint of stainless steel 316L, containing M 3 P (M: Ni, Fe, Cr) as one of the phases. Though microhardness is not a fundamental property of materials, it is a manifestation of several related properties, such as yield stress, ductility, work-hardening, elastic modulus and residual stress states. It represents a resistance for indentation and is, therefore, appropriate for comparative purposes

  19. The influence of second-phase dispersion on environmental embrittlement of Ni3(Si,Ti) alloys

    International Nuclear Information System (INIS)

    Takasugi, T.; Hanada, S.

    1999-01-01

    Some quaternary Ni 3 (Si,Ti) alloyed with transition elements V, Nb, Zr and Hf was prepared beyond their maximum solubility limits to investigate the effect of second-phase dispersion on moisture-induced embrittlement. V-added Ni 3 (Si,Ti) alloy contained ductile fcc-type Ni solid solution as the second-phase, while Nb-, Zr- and Hf-added Ni 3 (Si,Ti) alloys contained hard dispersion compounds as the second-phase. V- and Nb-added Ni 3 (Si,Ti) alloys did not display reduced tensile elongation in air, indicating that their second phases have the effect of suppressing the moisture-induced embrittlement. Possible mechanisms for the beneficial effect by the second phase on the moisture-induced embrittlement of V- and Nb-added Ni 3 (Si,Ti) alloys are discussed in association with hydrogen behavior and deformation property in the constituent phases or at matrix/second-phase interface

  20. Electrochemical Properties of Hydrogen-Storage Alloys ZrMn{sub 2}Ni{sub x} and ZrMnNi{sub 1+x} for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Ryoung [Faculty of Applied Chemistry, Chonnam National University, Kwangju (Korea); Kwon, Ik Hyun [Automobile High-Technology Research Institute, Division of Advanced Materials Engineering, Chonbuk National University, Chonju (Korea)

    2001-04-01

    In order to improve the performance of AB{sub 2}-type hydrogen-storage alloys for Ni-MH secondary battery, AB{sub 2}-type alloys, ZrMn{sub 2}Ni{sub x}(x=0.0, 0.3, 0.6, 0.9 and 1.2) and ZrMnNi{sub 1+x}(x=0.0, 0.1, 0.2, 0.3 and 0.4) were prepared as the Zr-Mn-Ni three component alloys. The hydrogen-storage and the electrochemical properties were investigated. The C14 Laves phase formed in all alloys of ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2). The equilibrium plateau pressure of the alloy, ZrMn{sub 2}Ni{sub 0.6}-H{sub 2} system, was about 0.5 atm at 30 degree C. Among these alloys, ZrMn{sub 2}Ni{sub 0.6} was the easiest to activate, and it had the largest discharge capacity as well as the best cycling performance. The C14 Laves phase also formed in all alloys of ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4). The equilibrium plateau pressure of the alloy, ZrMnNi{sub 1.0}-H{sub 2} system, was about 0.45 atm at 30 degree C. Among these alloys, ZrMnNi{sub 1.0} was the easiest to activate, taking only 3 charge-discharge cycles, and it had the largest discharge capacity of 42 mAh/g. Among these alloys, ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2) and ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4), ZrMnNi{sub 1.0} had the largest discharge capacity (maximum value of 42 mAh/g), and it showed the fastest activation and good cycling performance. 23 refs., 4 figs., 2 tabs.

  1. Observations on thermally cycled 20% Cr/25% Ni/Nb stabilised stainless steel

    International Nuclear Information System (INIS)

    Lobb, R.C.

    1984-06-01

    A variety of optical and electron techniques, such as optical metallography, scanning electron microscopy and electron probe microanalysis, have been used to study the morphology and composition of oxides formed on 20 Cr/25 Ni/Nb stainless steel during oxidation at 850 0 C and subsequent thermal cycling in simulated reactor gas. (author)

  2. Thermomechanical behavior of Fe-Mn-Si-Cr-Ni shape memory alloys modified with samarium

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad

    2009-01-01

    The deformation and training behavior of Fe-14Mn-3Si-10Cr-5Ni (wt.%) shape memory alloys containing samarium addition has been studied in the iron-based shape memory alloys. It is noticed that thermomechanical treatment (training) has significant influence on proof stress, critical stress and shape memory behavior of the alloys. The improvement in shape memory behavior can be attributed to the decrease in the proof stress and critical stress which facilitates the formation of ε (hcp martensite). It is also observed that alloy 2 containing samarium undergoes less softening as compared to alloy 1 with training which inhibits the formation of α (bcc martensite) and thus enhances the shape memory behavior. The excessive thermomechanical treatment with increase in the training cycle has led to the formation of α (bcc martensite) along with ε (hcp martensite) in the alloy 1 which appeared to have decline in the shape memory effect. This has been demonstrated by the examination of microstructure and identification of α (bcc martensite) martensite in the alloy 1 as compared to alloy 2

  3. The Development of the Low-Cost Titanium Alloy Containing Cr and Mn Alloying Elements

    Science.gov (United States)

    Zhu, Kailiang; Gui, Na; Jiang, Tao; Zhu, Ming; Lu, Xionggang; Zhang, Jieyu; Li, Chonghe

    2014-04-01

    The α + β-type Ti-4.5Al-6.9Cr-2.3Mn alloy has been theoretically designed on the basis of assessment of the Ti-Al-Cr-Mn thermodynamic system and the relationship between the molybdenum equivalent and mechanical properties of titanium alloys. The alloy is successfully prepared by the split water-cooled copper crucible, and its microstructures and mechanical properties at room temperature are investigated using the OM, SEM, and the universal testing machine. The results show that the Ti-4.5Al-6.9Cr-2.3Mn alloy is an α + β-type alloy which is consistent with the expectation, and its fracture strength, yield strength, and elongation reach 1191.3, 928.4 MPa, and 10.7 pct, respectively. Although there is no strong segregation of alloying elements under the condition of as-cast, the segregation of Cr and Mn is obvious at the grain boundary after thermomechanical treatment.

  4. Microstrucural characterization of gas atomized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} and Fe{sub 97}Si{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lieblich, M. [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lopez, M.; Marin, P. [Instituto de Magnetismo Aplicado, P.O. Box 155, 28230 Madrid (Spain)

    2011-06-15

    Research highlights: > Two FeSi-base alloys as precursors for small dimension soft magnets. > Small particles rapidly solidified by gas atomisation. > Increase effective magnetic anisotropy constant by alloying segregation. > Magnetic hardenning due to volume decrease. - Abstract: Powder particles of Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} and Fe{sub 97}Si{sub 3} soft magnetic alloys have been prepared by gas atomization. The gas atomized powder was microstructurally characterized and the dependence of coercivity with the composition and powder particle size investigated. As-atomized powder particles of both compositions were constituted by a bcc {alpha}-Fe (Si) solid solution. The Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} powder particles presented a grain microstructure with dendrite structure, which dendrite arms were enriched in Nb. The coercivity increased as the particle size decreased, with a minimum coercivity, of 5 Oe, measured in the Fe{sub 97}Si{sub 3} alloy in the range of 50-100 {mu}m powder particle size. The coercive fields were quite higher in the Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} than in the Fe{sub 97}Si{sub 3} powder, due to the Nb addition, which produced a phase segregation that leads to a noticeable magnetic hardening.

  5. Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tocci, Marialaura, E-mail: m.tocci@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy); Donnini, Riccardo, E-mail: riccardo.donnini@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Angella, Giuliano, E-mail: giuliano.angella@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Pola, Annalisa, E-mail: annalisa.pola@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy)

    2017-01-15

    In the present paper the effect of heat treatment on an AlSi3Mg alloy with and without Cr and Mn addition was investigated. Beside the well-known modification of the morphology of Fe-containing intermetallics, it was found that Cr and Mn allowed the formation of dispersoids in the aluminium matrix after solution heat treatment at 545 °C, as shown by scanning transmission electron microscope observations. These particles were responsible of the enhanced Vickers microhardness of the aluminium matrix in comparison with the base alloy after solution treatment and quenching, according to dispersion hardening mechanism. The presence of these particles was not affected by ageing treatment, which instead allowed the precipitation of β-Mg{sub 2}Si, as shown by the elaboration of differential scanning calorimeter curves. The formation of dispersoids and the study of their effect on mechanical properties can represent an interesting development for applications at high temperatures of casting alloys due to their thermal stability compared to other strengthening phases as β-Mg{sub 2}Si. - Highlights: •Cr and Mn successfully modified the morphology of Fe-containing intermetallics. •Cr- and Mn-dispersoids formed in the aluminium matrix during solution treatment. •Dispersion hardening was detected after solution treatment for Cr-containing alloy. •The dispersion hardening effect was maintained after ageing treatment.

  6. Development of Cr{sub 3}C{sub 2}-25(Ni20Cr) nanostructured coatings; Desenvolvimento de revestimentos nanostruturados de Cr{sub 3}C{sub 2}-25(Ni20Cr)

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Cecilio Alvares da

    2012-07-01

    This study is divided in two parts. The first part is about the preparation of nanostructured Cr{sub 3}C{sub 2}-25(Ni20Cr) powders by high energy milling followed by characterization of the milled and the as received powder. Analyses of some of the data obtained were done using a theoretical approach. The second part of this study is about the preparation and characterization of coatings prepared with the nanostructured as well as the as received Cr{sub 3}C{sub 2}-25(Ni20Cr) powders. The high temperature erosion-oxidation (E-O) behavior of the coatings prepared with the two types of powders has been compared based on a technological approach. The average crystallite size of the Cr{sub 3}C{sub 2}-25(Ni20Cr) powder decreased rapidly from 145 nm to 50 nm in the initial stages of milling and thereafter decreased slowly to a steady state value of around 10 nm with further increase in milling time. This steady state corresponds to the beginning of a dynamic recovery process. The maximum lattice strain ({epsilon} = 1,17%) was observed in powders milled for 16 hours, and this powders critical crystallite size was 28 nm. In contrast, the lattice parameter attained a minimum for powders milled for 16 hours. Upon reaching the critical crystallite size, the dislocation density attained a steady state regime and all plastic deformation introduced in the material there after was in the form of events occurring at the grain boundaries, due mainly to grain boundary sliding. The deformation energy stored in the crystal lattice of the Cr{sub 3}C{sub 2}-25(Ni20Cr) powders milled for different times was determined from enthalpy variation measurements. These results indicated that the maximum enthalpy variation ({delta}H = 722 mcal) also occurred for powders milled for 16 hours. In a similar manner, the maximum specific heat variation ({delta}C{sub p} = 0,278 cal/gK) occurred for powders milled for 16 hours. The following mechanical properties of Cr{sub 3}C{sub 2}-25(Ni20Cr) coatings

  7. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    Science.gov (United States)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  8. Phase Evolution in and Creep Properties of Nb-Rich Nb-Si-Cr Eutectics

    Science.gov (United States)

    Gang, Florian; Kauffmann, Alexander; Heilmaier, Martin

    2018-03-01

    In this work, the Nb-rich ternary eutectic in the Nb-Si-Cr system has been experimentally determined to be Nb-10.9Si-28.4Cr (in at. pct). The eutectic is composed of three main phases: Nb solid solution (Nbss), β-Cr2Nb, and Nb9(Si,Cr)5. The ternary eutectic microstructure remains stable for several hundred hours at a temperature up to 1473 K (1200 °C). At 1573 K (1300 °C) and above, the silicide phase Nb9(Si,Cr)5 decomposes into α-Nb5Si3, Nbss, and β-Cr2Nb. Under creep conditions at 1473 K (1200 °C), the alloy deforms by dislocation creep while the major creep resistance is provided by the silicide matrix. If the silicide phase is fragmented and, thus, its matrix character is destroyed by prior heat treatment [ e.g., at 1773 K (1500 °C) for 100 hours], creep is mainly controlled by the Laves phase β-Cr2Nb, resulting in increased minimum strain rates. Compared to state of the art Ni-based superalloys, the creep resistance of this three-phase eutectic alloy is significantly higher.

  9. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    Science.gov (United States)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  10. Thermo-mechanical treatment of low-cost alloy Ti-4.5Al-6.9Cr-2.3Mn and microstructure and mechanical characteristics

    Science.gov (United States)

    Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe

    2018-04-01

    In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.

  11. Hot Corrosion Behavior of Bare, Cr3C2-(NiCr) and Cr3C2-(NiCr) + 0.2wt.%Zr Coated SuperNi 718 at 900 °C

    Science.gov (United States)

    Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2015-01-01

    Corrosion in incinerators, power plants, and chemical industries are frequently encountered due to the presence of salts containing sodium, sulphur, and chlorine. To obviate this problem, bare and coated alloys were tested under environments simulating the conditions present inside incinerators and power plants. 0.2 wt.% zirconium powder was incorporated in the Cr3C2-(NiCr) coating powder. The original powder and Zr containing powder was sprayed on Superni 718 alloy by D-gun technique. The bare and coated alloys were tested under Na2SO4 + K2SO4 + NaCl + KCl and Na2SO4 + NaCl environment. The corrosion rate of specimens was monitored using weight change measurements. Characterization of the corrosion products has been done using FE-SEM/EDS and XRD techniques. Bare and coated alloys showed very good corrosion resistance under given molten salt environments. Addition of 0.2wt.%Zr in Cr3C2-25%(NiCr) coating further greatly reduced the oxidation rate as well as improved the adherence of oxide scale to the coating surface during the time of corrosion.

  12. Surface Roughness of a 3D-Printed Ni-Cr Alloy Produced by Selective Laser Melting: Effect of Process Parameters.

    Science.gov (United States)

    Hong, Min-Ho; Son, Jun Sik; Kwon, Tae-Yub

    2018-03-01

    The selective laser melting (SLM) process parameters, which directly determine the melting behavior of the metallic powders, greatly affect the nanostructure and surface roughness of the resulting 3D object. This study investigated the effect of various laser process parameters (laser power, scan rate, and scan line spacing) on the surface roughness of a nickel-chromium (Ni-Cr) alloy that was three-dimensionally (3D) constructed using SLM. Single-line formation tests were used to determine the optimal laser power of 200 W and scan rate of 98.8 mm/s, which resulted in beads with an optimal profile. In the subsequent multi-layer formation tests, the 3D object with the smoothest surface (Ra = 1.3 μm) was fabricated at a scan line spacing of 60 μm (overlap ratio = 73%). Narrow scan line spacing (and thus large overlap ratios) was preferred over wide scan line spacing to reduce the surface roughness of the 3D body. The findings of this study suggest that the laser power, scan rate, and scan line spacing are the key factors that control the surface quality of Ni-Cr alloys produced by SLM.

  13. Microstructural control of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si alloy by heat treatment

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Nomura, Takuya; Haga, Hideki; Fukutomi, Hiroshi; Dlouhy, Ivo; Brno University of Technology

    2014-01-01

    The effects of holding temperature, time and cooling rate on the microstructure of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si (at.%) alloys are studied. Three kinds of segregations are found in the as-cast material. In back scattered electron images these segregations are observed as dark regions formed by the solidification process, bright regions with irregular shaped blocks and imaged regions of lighter contrast formed by the cooling process from β phase to α phase and from α phase to (β + γ) two phase or (α + β + γ) three phase, respectively. Addition of small amounts of Cr, Ni and Si to the Ti-45Al-7Nb alloy shifts the (β + γ) two phase state and (α + γ + β) three phase state to a lower Nb concentration range. While cooling from the α single phase state to the (β + γ) two phase or (α + β + γ) three phase states, sequential type phase transformation occurs. The amounts of Cr, Ni and Si are too small to induce the pearlitic mode of transformation. Therefore, the sequential mode of the ternary alloy containing Nb occurs. The microstructures change depending on the cooling rate from α? single phase region. Massive transformation occurs in the range of 300 K s -1 to 50 K s -1 . However, the α phase is partially retained at the cooling rate of 300 K s -1 . A fully lamellar structure appears at cooling rates lower than 10 K s -1 .

  14. Microstructural control of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Makoto; Nomura, Takuya; Haga, Hideki; Fukutomi, Hiroshi [Yokohama National University (Japan). Div. of Materials Science and Chemical Engineering; Dlouhy, Ivo [Institute of Physics of Materials, Brno (Czech Republic); Brno University of Technology (Czech Republic). Inst. of Materials Science and Engineering

    2014-11-15

    The effects of holding temperature, time and cooling rate on the microstructure of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si (at.%) alloys are studied. Three kinds of segregations are found in the as-cast material. In back scattered electron images these segregations are observed as dark regions formed by the solidification process, bright regions with irregular shaped blocks and imaged regions of lighter contrast formed by the cooling process from β phase to α phase and from α phase to (β + γ) two phase or (α + β + γ) three phase, respectively. Addition of small amounts of Cr, Ni and Si to the Ti-45Al-7Nb alloy shifts the (β + γ) two phase state and (α + γ + β) three phase state to a lower Nb concentration range. While cooling from the α single phase state to the (β + γ) two phase or (α + β + γ) three phase states, sequential type phase transformation occurs. The amounts of Cr, Ni and Si are too small to induce the pearlitic mode of transformation. Therefore, the sequential mode of the ternary alloy containing Nb occurs. The microstructures change depending on the cooling rate from α? single phase region. Massive transformation occurs in the range of 300 K s{sup -1} to 50 K s{sup -1}. However, the α phase is partially retained at the cooling rate of 300 K s{sup -1}. A fully lamellar structure appears at cooling rates lower than 10 K s{sup -1}.

  15. Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys

    Science.gov (United States)

    Bae, Jae Wung; Moon, Jongun; Jang, Min Ji; Ahn, Dong-Hyun; Joo, Soo-Hyun; Jung, Jaimyun; Yim, Dami; Kim, Hyoung Seop

    2017-09-01

    Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.

  16. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  17. Diffusion of 51Cr along high-diffusivity paths in Ni-Fe alloys

    International Nuclear Information System (INIS)

    Cermak, J.

    1990-01-01

    Penetration profiles of 51 Cr in polycrystalline alloys Ni-xFe (x = 0, 20, 40, and 60 wt.% Fe) after diffusion anneals at temperatures between 693 and 1473 K are studied. Sectioning of diffusion zones of samples annealed above 858 K is carried out by grinding, at lower temperatures by DC glow discharge sputtering. The concentration of 51 Cr in depth x is assumed to be proportional to relative radioactivity of individual sections. With help of volume and pipe self-diffusion data taken from literature, the temperature dependence of product P = δD g (δ and D g are grain boundary width and grain boundary diffusion coefficient, respectively) is obtained: P = (2.68 - 0.88 +1.3 ) x 10 -11 exp [-(221.3 ± 3.0) kJ/mol/RT]m 3 /s. This result agrees well with the previous measurements of 51 Cr diffusivity in Fe-18 Cr-12 Ni and Fe-21 Cr-31 Ni. It indicates that the mean chemical composition of Fe-Cr-Ni ternary alloys is not a dominant factor affecting the grain boundary diffusivity of Cr in these alloys. (author)

  18. Study of hydrogenation for pulverization of rare earth alloys with Nb for metal hydride electrodes

    International Nuclear Information System (INIS)

    Ferreira, Eliner Affonso

    2013-01-01

    In this work were studied La ,7 Mg 0,3 Al 0,3 Mn 0,4 Co (0.5-x) NbxNi 3.8 (x= 0 - 0.5) and La 0,7 Mg 0,3 Al 0,3 Mn 0.4 Nb (05+x) Co 0,5 Ni (3.8-x) . (x=0.3; 0.5;1.3) alloys for negative electrodes of the Nickel-Metal Hydride batteries. The hydrogenation of the alloys was performed varying pressing of H 2 (2 and 9 bar). The discharge capacity of the nickel-metal hydride batteries were analyzed in the Arbin BT-4 electrical test equipment. The as-cast alloys were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and X-Ray diffraction. The increasing Niobium addition in the alloys decreased cycle life and the maximum discharge capacity of the batteries. The maximum discharge capacity was obtained with the La .7 Mg 0.3 Al 0.3 Mn 0,4 Co 0.5 Ni 3.8 (45.36 mAh) and the battery which presented the best performance was La .7 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Nb 0.1 Ni 3.8 (44.94 mAh). (author)

  19. The effect of silicon content on high temperature oxidation of 80Ni-20Cr alloys

    International Nuclear Information System (INIS)

    Takei, Atsushi; Nii, Kazuyoshi

    1981-01-01

    The effect of Si content on the oxidation behavior of 80Ni-20Cr alloys has been studied in the cyclic oxidation in an air stream at 1373K. The addition of 1% and 5%Si to the alloy lowered the mass gain in oxidation, whereas the amount of spalling of oxide scale was increased with the addition of Si. The structure of oxide layers observed by microphotography, X-ray diffraction and electron probe microanalysis (EPMA) were different with the Si content of alloys. The oxide layer of the alloy with 1%Si consists of multi-layers, that is Ni oxide, Cr 2 O 3 and SiO 2 as the external oxide layer. The oxide layer remaining on the alloy with 5%Si, however, was made of a single oxide layer of Cr 2 O 3 containing small amounts of Si and Ni. In spite of the fact that the amount of Si in this alloy is larger than that of the alloy with 1%Si, the SiO 2 oxide layer was not observed at the oxide-alloy interface. It was found by EPMA that the concentration of Si in the oxidized 5%Si alloy substrate was increased in the vicinity of the surface, although Si in the 1%Si alloy was depleted. From the above results the internal oxidation of Si is assumed in the near-surface region of the 5%Si alloy. The internal oxidation of the 5%Si alloy was confirmed by an increase in hardness in the near-surface region. The difference in oxidation behavior between the 1%Si and 5%Si alloys can be understood under the assumption that the oxide layer formed of the 5%Si alloy contained much larger amounts of Ni and Si than that on the 1%Si alloy, and that this oxide layer tends to crack more easily, thus being less protective for the penetration of oxygen. (author)

  20. Process for the manufacture of adhering NbC layers on components consisting of NiCr alloys

    International Nuclear Information System (INIS)

    Kleemann, W.

    1985-01-01

    The invention concerns a process for the manufacture of adhering NbC layers on Ni Cr alloys, whose adhesion is guaranteed in a helium atmosphere even at high temperatures (≥ 950 0 C). Differing from the conventional process in which such layers are applied by thermal spraying, and which does not provide layers adhering at high temperatures, the NbC layers are formed in situ, by applying a niobium layer on the components to be coated and by subsequent carburisation of the niobium layer by means of existing CH 4 impurities in the helium atmosphere. (orig.) [de

  1. KARAKTERISTIK MIKROSTRUKTUR DAN FASA PADUAN Zr- 0,3%Nb-0,5%Fe-0,5%Cr PASCA PERLAKUAN PANAS DAN PENGEROLAN DINGIN

    Directory of Open Access Journals (Sweden)

    Sungkono Sungkono

    2015-07-01

    Full Text Available KARAKTERISTIK MIKROSTRUKTUR DAN FASA PADUAN Zr-0,3%Nb-0,5%Fe-0,5%Cr PASCA PERLAKUAN PANAS DAN PENGEROLAN DINGIN. Logam paduan Zr-Nb-Fe-Cr dikembangkan sebagai material kelongsong elemen bakar dengan fraksi bakar tinggi untuk reaktor daya maju. Dalam penelitian ini telah dibuat paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr yang mendapat perlakuan panas pada temperatur 650 dan 750°C dengan waktu penahanan 1–2 jam. Tujuan penelitian adalah mendapatkan karakter paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr pasca perlakuan panas dan pengerolan dingin yaitu mikrostruktur, struktur kristal dan fasa-fasa yang ada dalam paduan. Hasil penelitian menunjukkan bahwa paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr pasca perlakuan panas (650ºC, 1-2 jam mempunyai struktur butir ekuiaksial dengan ukuran butir bertambah besar seiring dengan bertambahnya waktu penahanan. Sementara itu, pasca perlakuan panas (750ºC, 1-2 jam terjadi perubahan mikrostruktur paduan dari butir ekuiaksial dan kolumnar menjadi butir ekuiaksial lebih besar. Paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr pasca perlakuan panas (650°C, 1 jam dan (750°C, 1 jam tidak dapat dirol dingin dengan reduksi tebal 5 – 10%, sedangkan pasca perlakuan panas (650ºC, 2 jam dan (750°C, 1.5-2 jam mampu menerima deformasi dingin dengan reduksi ketebalan 5-10% tanpa mengalami keretakan. Senyawa Zr2Fe, ZrCr2 dan FeCr teridentifikai dari hasil uji kristalografi paduan Zr-0,3%Nb-0,5%Fe-0,5%Cr.   MICROSTRUCTURE AND PHASE CHARACTERISTICSOF Zr-0.3%Nb-0.5%Fe-0.5%Cr ALLOY POST HEAT TREATMENT AND COLD ROLLING. Zr-Nb-Fe-Cr alloys was developed as fuel elements cladding with high burn up for advanced power reactors. In this research has been made of Zr-0.3% Nb-0.5% Fe-0.5% Cr alloy were heat treated with varying temperatures at650 and 750°C for 1 until 2 hours. The objectives of this research was to obtain the character of Zr-0.3% Nb-0.5% Fe-0.5% Cr alloy post heat treatment and cold rolling, microstructure nomenclature, crystal structure and phases that presents in the

  2. Amorphous and nanocrystalline fraction calculus for the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Muraca, D. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Moya, J. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Carrera del Investigador, CONICET (Argentina); Cremaschi, V.J. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina) and Carrera del Investigador, CONICET (Argentina)]. E-mail: vcremas@fi.uba.ar; Sirkin, H.R.M. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Carrera del Investigador, CONICET (Argentina)

    2007-09-01

    We studied the relationship between the saturation magnetization (M {sub S}) of the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} alloy and its nanocrystalline structure. Amorphous ribbons obtained by the melt spinning technique were heat-treated for 1 h at different temperatures. The optimal treatment to obtain a homogeneous structure of Fe{sub 3}(Si,Ge) nanocrystals with a grain size of around 10 nm embedded in an amorphous matrix involved heating at 540 C for 1 h. We calculated the magnetic contribution of the nanocrystals to the heat treated alloy using a linear model and measured the M {sub S} of the Fe{sub 73.5}Si{sub 3.5}Ge{sub 10}Nb{sub 3}B{sub 9}Cu{sub 1} nanocrystalline and of an amorphous alloy of the same composition of the amorphous matrix: Fe{sub 58}Si{sub 0.5}Ge{sub 3.5}Cu{sub 3}Nb{sub 9}B{sub 26}. Using experimental data and theoretical calculations, we obtained the amorphous and crystalline fraction of the heat-treated ribbons.

  3. Effects of the partial substitution of Ni by Cr on the transport, magnetic, and magnetocaloric properties of Ni50Mn37In13

    Directory of Open Access Journals (Sweden)

    Sudip Pandey

    2017-05-01

    Full Text Available The structural, magnetic, and magnetotransport properties of Ni50-xCrxMn37In13 Heusler alloys have been synthesized and investigated by x-ray diffraction (XRD, field and pressure dependent magnetization, and electrical resistivity measurements. The partial substitution of Ni by Cr in Ni50Mn37In13 significantly improves the magnetocaloric effect in the vicinity of the martensitic transition (TM. This system also shows a large negative entropy change at the Curie temperature (TC, making it a candidate material for application in a refrigeration cycle that exploits both positive and negative magnetic entropy changes. The refrigeration capacity (RC values at TM and TC increase significantly by more than 20 % with Cr substitution. The application of hydrostatic pressure increases the temperature stability of the martensitic phase in Ni45Cr5Mn37In13. The influence of Cr substitution on the transport properties of Ni48Cr2Mn37In13 is discussed. An asymmetric magnetoresistance, i.e., a spin-valve-like behavior, has been observed near TM for Ni48Cr2Mn37In13.

  4. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, S.; Shimakura, H. [Niigata University of Pharmacy and Applied Life Sciences, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Tahara, S. [Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213 (Japan); Okada, T. [Niigata College of Technology, Kamishin’eicho, Nishi-ku, Niigata 950-2076 (Japan)

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  5. Mossbauer studies of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1996-01-01

    This paper reports a Mossbauer study of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy between 10 and 673 K. The Curie temperature Tc is found to be 620-+ 1 K. The temperature dependence of the reduced average hyperfine field can be explained on the basis of Handrich's model of amorphous ferromagnetism...

  6. Binary and tertiary reaction cross-sections of V, Cr, Mn, Fe, Ni, Cu, Zr, Nb, Mo, Ta, W, Pt and their isotopes

    International Nuclear Information System (INIS)

    Garg, S.B.

    1982-01-01

    Neutron induced binary and tertiary reaction cross-sections have been evaluated for V, Cr, Mn, Fe, Ni, Cu, Zr, Nb, Mo, Ta, W, Pt and their isotopes in the 'energy range 0.5 MeV to 20 MeV using the nuclear statistical empirical model. The reactions considered are (n,n'), (n,2n), (n,3n), (n,p), (n,d), (n,t), (n, 3 He), (n,α), (n,np), (n,nd), (n,nt), (n,n 3 He), (n,nα), (n,pn), (n,2p), (n,ν), (n,αp), (n,dn) and (n,pα). Most of the above mentioned elements are used as structural materials in nuclear reactors and the measured cross-section data for the above listed reactions are seldom available for the radiation damage and safety analysis. With a view to providing these data, this nuclear model based evaluation has been undertaken. The associated uncertainties in the cross-sections and their fission averages have also been evaluated. (author)

  7. Hydrogen storage and microstructure investigations of La0.7-xMg0.3PrxAl0.3Mn0.4Co0.5Ni3.8 alloys

    International Nuclear Information System (INIS)

    Galdino, G.S.; Casini, J.C.S.; Ferreira, E.A.; Faria, R.N.; Takiishi, H.

    2010-01-01

    The effects of substitution of Pr for La in the hydrogen storage capacity and microstructures of La 0.7-x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x=0, 0.1, 0.3, 0.5, 0.7) alloys electrodes have been studied. X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectrometry (EDS) and electrical tests were carried out in a the alloys and electrodes. Cycles of charge and discharge have also been carried out in the Ni/MH (Metal hydride) batteries based on the alloys negative electrodes. (author)

  8. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-25

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

  9. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  10. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel

    Science.gov (United States)

    Shi, Yan; Li, Yunfeng; Liu, Jia; Yuan, Zhenyu

    2018-02-01

    In this study, a gradient composite coating was manufactured on 20CrMnTi alloy steel by laser cladding. The laser power, cladding scan velocity and powder flow rate were selected as influencing factors of the orthogonal cladding experiments. The influencing factors were optimized by the comprehensive analysis of Taguchi OA and TOPSIS method. The high significant parameters and the predicted results were confirmed by the ANOVA method. The macromorphology and microstructures are characterized by using laser microscope, SEM, XRD and microhardness tester. Comparison tests of wear resistance of gradient composite coating, 20CrMnTi cemented quenching sample and the 20CrMnTi sample were conducted on the friction-wear tester. The results show that the phases are γ-Co solid solution, Co3B, M23C6 and etc. The interlayers and wear-resisting layer also contain new hard phases as WC, W2C. The microhardness of the gradient coating was increased to 3 times as compared with that of the 20CrMnTi substrate. The wear resistance of the gradient composite coating and 20CrMnTi cemented quenching sample was enhanced to 36.4 and 15.9 times as compared with that of the 20CrMnTi.

  11. Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys

    International Nuclear Information System (INIS)

    Sutou, Y.; Kainuma, R.; Ishida, K.

    1999-01-01

    The effect of alloying elements on the M s temperature, ductility and the shape memory properties of Cu-Al-Mn ductile shape memory (SM) alloys was investigated by differential scanning calorimetry, cold-rolling and tensile test techniques. It was found that the addition of Au, Si and Zn to the Cu 73 -Al 17 -Mn 10 alloy stabilized the martensite (6M) phase increasing the M s temperature, while the addition of Ag, Co, Cr, Fe, Ni, Sn and Ti decreased the stability of the martensite phase, decreasing the M s temperature. The SM properties were improved by the addition of Co, Ni, Cr and Ti. (orig.)

  12. Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior

    Science.gov (United States)

    Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping

    2016-02-01

    0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.

  13. Oxidation behavior of Al/Cr coating on Ti2AlNb alloy at 900 °C

    Science.gov (United States)

    Yang, Zhengang; Liang, Wenping; Miao, Qiang; Chen, Bowen; Ding, Zheng; Roy, Nipon

    2018-04-01

    In this paper, the Al/Cr coating was fabricated on the surface of Ti2AlNb alloy via rf magnetron sputtering and double glow treatment to enhance oxidation resistance. The protective coating with an outer layer of Al and inner layer of Cr has great bonding strength due to the in-diffusion of Cr and the inter-diffusion between Al and Cr to form Al-Cr alloyed layer which has great hardness. Acoustic emission curve which was detected via WS-2005 scratch tester indicates the bonding strength between Al/Cr coating and substrate is great. Morphology of Ti2AlNb alloy with Al/Cr coating after scratch test shows that the scratch is smooth without disbanding, and the depth and breadth of scratch are changed uniformly. The mass change was reduced after oxidation test due to the Al/Cr protective coating. Isothermal oxidation test at 900 °C was researched. Results indicate that Al/Cr coating provided oxidation resistance of Ti2AlNb alloy with prolonged air exposure at 900 °C. Al2O3 was detected by XRD patterns and SEM images, and was formed on the surface of Ti2AlNb alloy to protect substrate during oxidation test. A certain content of Cr is beneficial for the formation of Al2O3. Besides, Cr2O3 was produced under Al2O3 by outward diffusion of Cr to protect substrate sequentially, no cracks were discovered on Al/Cr protective coating. The process of Ti outward diffusion into surface was suppressive due to integration of Cr-Ti and Al-Ti intermetallics. A steady, adherent and continuous coated layer of Al/Cr on Ti2AlNb alloy increases oxidation resistance.

  14. Nuclear Magnetic Resonance (NMR) study of the nanocrystalline alloy Fe73.5 Cu1 Nb3 Si13.5 B9

    International Nuclear Information System (INIS)

    Aliaga-Guerra, D.; Iannarella, L.; Fontes, M.B.; Guimaraes, A.P.; Skorvanek, I.

    1994-05-01

    Nanocrystalline Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 alloys were studied with spin echo NMR at 4.2 K, from 15 to 100 MHz. Several lines are observed, with signals from domains and domain walls. Signals at 50-90 MHz appear to arise from 93 Nb nuclei in the amorphous matrix and in the interface of the crystallites. (author). 5 refs, 3 figs

  15. Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications

    Science.gov (United States)

    Park, Seon-Yeong; Choe, Han-Cheol

    2018-02-01

    In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.

  16. Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys

    Science.gov (United States)

    Antonov, Stoichko; Detrois, Martin; Tin, Sammy

    2018-01-01

    A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the γ' precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the γ' precipitates, while increasing the Fe content led to the destabilization of the γ' precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.

  17. Structure change in 25 Cr - 20 Ni steels as a function of their Cr, Ni, Si and W content

    International Nuclear Information System (INIS)

    Gribaudo, L.M.; Durand, F.; Durand-Charre, M.

    1983-01-01

    The influence of varying the Cr, Ni, Si and W concentrations on the type and composition of the carbides of solidification and on the phase shift temperature is studied with 18 alloys of composition close to stainless steel-25-20 (AISI 310) composition. Experimental techniques used are differential thermal analysis, microprobe and scanning electron microscope. Crystallization is interpreted with the equilibrium diagram Ni-Cr-C. The formation of the interdendritic σ phase for a chromium rich alloys is interpreted with the phase equilibrium diagram of Fe-Ni-Cr-C. Mechanical properties and corrosion resistance are dependent on the morphology of the carbides M 7 C 3 and M 23 C 6 [fr

  18. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    International Nuclear Information System (INIS)

    Lopez B, I.; Trapaga M, L. G.; Martinez F, E.; Zoz, H.

    2011-01-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  19. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Lopez B, I.; Trapaga M, L. G. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico); Martinez F, E. [Centro de Investigacion e Innovacion Tecnologica, Cerrada de Cecati s/n, Col. Santa Catarina Azcapotzalco, 02250 Mexico D. F. (Mexico); Zoz, H., E-mail: israelbaez@gmail.co [Zoz GmbH, D-57482, Wenden (Germany)

    2011-07-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  20. Estimation of the Temperature-Dependent Nitrogen Solubility in Stainless Fe-Cr-Mn-Ni-Si-C Steel Melts During Processing

    Science.gov (United States)

    Wendler, Marco; Hauser, Michael; Sandig, Eckhard Frank; Volkova, Olena

    2018-04-01

    The influence of chemical composition, temperature, and pressure on the nitrogen solubility of various high alloy stainless steel grades, namely Fe-14Cr-(0.17-7.77)Mn-6Ni-0.5Si-0.03C [wt pct], Fe-15Cr-3Mn-4Ni-0.5Si-0.1C [wt pct], and Fe-19Cr-3Mn-4Ni-0.5Si-0.15C [wt pct], was studied in the melt. The temperature-dependent N-solubility was determined using an empirical approach proposed by Wada and Pehlke. The thus calculated N-concentrations overestimate the actual N-solubility of all the studied Fe-Cr-Mn-Ni-Si-C steel melts at a given temperature and pressure. Consequently, the calculation model has to be modified by Si and C because both elements are not recognized in the original equation. The addition of the 1st and 2nd order interaction parameters for Si and C to the model by Wada and Pehlke allows a precise estimation of the temperature-dependent nitrogen solubility in the liquid steel bath, and fits very well with the measured nitrogen concentrations during processing of the steels. Moreover, the N-solubility enhancing effect of Cr- and Mn-additions has been demonstrated.

  1. Improvement of antiscuff properties and thermal stability of alloys of the Fe-Cr-Ni-Si system used for building-up of fittings

    International Nuclear Information System (INIS)

    Luzhanskij, I.B.; Runov, A.E.; Gel'man, A.S.; Stepin, V.S.

    1978-01-01

    Studied was the influence of the system and the degree of alloying of alloys of the Fe-Cr-Ni-Si system on their operational characteristics in the operation mode of the energy armature of superhigh parameters. The TsN18 alloy has been developed (containing 0.1 to 0.2% C; 3.5 to 6.0% Si; 0.5 to 3.0% Mn; 16 to 17% Cr; 10.5 to 12% Ni; 1.5 to 3% Mo; the balance being Fe), bombining a high resistance to scuffing with a fairly high heat resistance; the alloy lending itself to building up and to machining. The dependence of the wear resistance of the alloys of the Fe-Cr-Ni-Si system on two factors has been established; namely, - the antifriction characteristics of the film of secondary structures, and physico-mechanical properties of the alloy

  2. Precipitation in 20 Cr-25 Ni type stainless steel irradiated at low temperatures in a thermal reactor (AGR)

    International Nuclear Information System (INIS)

    Taylor, C.

    1983-01-01

    The effects of irradiation on the microstructure of AGR fuel rod cladding have been studied by analytical electron microscopy. Two alloys were investigated, the standard 20 Cr-25 Ni steel stabilised with Nb and a variant containing less Nb but strengthened with a dispersion of TiN precipitates. Irradiation at 360 deg C to 480 deg C produced (Ni, Si)-rich precipitates in both alloys; additionally the standard alloy contained (Ni, Nb, Si)-rich precipitates when irradiated at 440 deg C to 640 deg C. While similar features have been observed in other austenitic stainless steels irradiated in fast reactors, where the lattice-damage rate is greater than in a thermal reactor, their formation is not predicted by isothermal equilibrium diagrams. It is suggested here that the phases are irradiation-induced and that the total displacement damage is the controlling factor. Cladding solution-treated above 1050 deg C then irradiated at 2 -based reactor coolant occurred in cladding with low levels of cold-work at the outer surface, also resulting in Cr-rich carbide formation. (author)

  3. Effect of Si and Mn additions on ferrite and austenite phase fractions in 25Cr-7Ni-1.5Mo-3W base super duplex stainless steels

    International Nuclear Information System (INIS)

    Jeong, S.W.; Lee, Z.-H.; Lee, H.M.

    2000-01-01

    The effect of heat treatment and Si and Mn additions on the ferrite and austenite phase fractions of the super duplex stainless steel (SDSS), Fe-25Cr-7Ni-1.5Mo-3W-Si-Mn-0.25N (numbers are all in wt.% unless specified otherwise), was investigated. The thermodynamic calculations of phase equilibria and phase fractions were performed using the Thermo-Calc program. Based on the calculated results, specific compositions of Si and Mn were selected and alloys with these compositions were analysed by Feritscope, X-ray diffractometry and scanning electron microscopy. The calculated phase fractions and experimentally analysed ones were compared and there was a good agreement between calculations and measurements. The optimum heat treatment condition for Fe-25Cr-7Ni-1.5Mo-3W-0.5Si-0.5Mn-0.25N is to hold at 1050 to 1100 C for 2 h in considering the ferrite to austenite ratio of 50:50 and to avoid second phase precipitation such as the σ phase. It was suggested that an excessive addition of more than 0.8Si and 1.0Mn may induce the σ phase precipitation. (orig.)

  4. Effects of alloying and temperature on the high-temperature oxidation of Cr-Cr{sub 2}Nb

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; DeVan, J.H. [Oak Ridge National Lab., TN (United States); Carson, L.J. [Lincoln Univ., PA (United States)

    1993-06-01

    Effects of alloying additions and temperature on isothermal and cyclic oxidation resistance of Cr-Cr{sub 2}Nb alloys were examined for air exposures. An isothermal exposure temperature of 1100C led to rapid reaction of binary Cr-12 at.% Nb as manifested a high oxidation rate and nonprotective behavior. Generally parabolic kinetics, complicated by some isothermal scale cracking, were observed at 900--1000C. Scale damage was exacerbated by thermal cycling. The addition of 8 at.% Al to Cr-12 at.% Nb did not effect cyclic oxidation resistance, but there was some evidence that scale adherence on Cr-6 at.% Nb-8 at.% Al was better than that for binary Cr-6 at.% Nb. Alloying additions of Al (up to 18 at.%) or Re (2 at.%) did not improve the isothermal oxidation resistance of Cr-12 at.% Nb. However, the tendency for scale damage during both isothermal and thermal cycling exposures suggests that alloying additions that specifically improve scale plasticity or modify growth stresses could be effective for Cr-Nb alloys. 10 refs, 9 figs, 1 tab.

  5. Mechanical properties of steel 8 CrMoNiNb 9 10 in dependence on the microstructural condition

    International Nuclear Information System (INIS)

    Fabritius, H.; Schnabel, E.

    1976-01-01

    Tension tests at room temperature to 600 0 C and creep-rupture tests at 500 to 600 0 C lasting up to about 75,000 h on two casts of steel 8 CrMoNiNb 9 10 with about 0.08% C, 0.3% Si, 0.7% Mn, 0.012% N, 0.005% Al, 2.34% Cr, 0.95% Mo, 0.8% Nb and 0.64% Ni in bainitic and ferritic microstructural condition. Influence of annealing at 650 to 800 0 C on the properties in the tension test. Influence of aging at 500 to 600 0 C lasting up to 30,000 h with and without mechanical stress on the properties in the tension test at aging temperature and on the toughness behaviour in the notched bar impact bend test at room temperature. (orig.) [de

  6. Comparative studies on ultrasonic, friction, laser and resistance pressure welding of NiTi shape memory alloys with high-alloy steels. Final report; Vergleichende Untersuchungen zum Ultraschall-, Reib-, Laserstrahl- und Widerstandspressschweissen von NiTi-Shape-Memory-Metall mit hochlegierten Staehlen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Zuckschwerdt, K.

    2000-04-01

    The suitability of different welding techniques for welding of NiTi shape memory alloys with high-alloy steel (C12CrNi17-7, X5CrNiNb19-9, X20Cr13) was investigated. The quality of the welds was analyzed using mechanical-technological, fractographic, metallographic and electron microscopy analysis. [German] Ziel dieses Forschungsvorhabens ist es, die Eignung der einzelnen Schweissverfahren fuer das Fuegen von NiTi-Formgedaechtnislegierungen mit hochlegiertem Stahl (X12CrNi17-7, X5CrNiNb19-9, X20Cr13) darzustellen und zu beurteilen. Die Qualitaet der Fuegeverbindungen wird mit Hilfe mechanisch-technologischer, fraktographischer, metallographischer und elektronenmikroskopischer Untersuchungen bewertet.

  7. Transformation lines in an Fe-Cr-Ni-Mn-Si polycrystalline shape memory alloy

    International Nuclear Information System (INIS)

    Tanaka, Kikuaki; Hayashi, Toshimitsu; Fischer, F.D.; Buchmayr, B.

    1994-01-01

    Transformation lines, the martensite/austenite start and finish conditions in the stress-temperature plane, are determined in an Fe-Cr-Ni-Mn-Si polycrystalline shape memory alloy with two different experimental procedures. The transformation lines are shown to be almost linear with nearly the same slope. The martensitic transformation zone and the reverse transformation zone do not coincide, and the reverse transformation zone is very wide; T Af -T As ∼ 180 K. The strong dependence on the preloading of the transformation lines, especially of the reverse transformation lines, is examined. (orig.)

  8. Shape memory effect in Fe-Mn-Ni-Si-C alloys with low Mn contents

    Energy Technology Data Exchange (ETDEWEB)

    Min, X.H., E-mail: MIN.Xiaohua@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Sawaguchi, T.; Ogawa, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Maruyama, T. [Awaji Materia Co., Ltd. 2-3-13, Kanda ogawamachi, Chiyoda, Tokyo 101-0052 (Japan); Yin, F.X. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Tsuzaki, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-0047 (Japan)

    2011-06-15

    Highlights: {yields} A class of new Fe-Mn-Ni-Si-C shape memory alloys with low Mn contents has been designed. {yields} A Mn content for the onset of the {alpha}' martensite is less than 13 mass%, and the {epsilon} martensite still exists in the alloy with a 9 mass% Mn. {yields} The shape recovery strain decreases considerably when the Mn content is reduced from 13 to 11 mass%. {yields} The sudden decrease in the shape recovery strain is mainly caused by the formation of {alpha}' martensite. - Abstract: An attempt was made to develop a new Fe-Mn-Si-based shape memory alloy from a Fe-17Mn-6Si-0.3C (mass%) shape memory alloy, which was previously reported to show a superior shape memory effect without any costly training treatment, by lowering its Mn content. The shape memory effect and the phase transformation behavior were investigated for the as-solution treated Fe-(17-2x)Mn-6Si-0.3C-xNi (x = 0, 1, 2, 3, 4) polycrystalline alloys. The shape recovery strain exceeded 2% in the alloys with x = 0-2, which is sufficient for an industrially applicable shape memory effect; however, it suddenly decreased in the alloys between x = 2 and 3 although the significant shape recovery strain still exceeded 1%. In the alloys with x = 3 and 4, X-ray diffraction analysis and transmission electron microscope observation revealed the existence of {alpha}' martensite, which forms at the intersection of the {epsilon} martensite plates and suppresses the crystallographic reversibility of the {gamma} austenite to {epsilon} martensitic transformation.

  9. Comparison of SA508 Gr.3 and SA508 Gr.4N Low Alloy Steels for Reactor Pressure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S

    2009-12-15

    The microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure which has the coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as M{sub 23}C{sub 6} and M{sub 7}C{sub 3} due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. Besides, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect. And the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

  10. Microstructure evolution and mechanical properties of Ti−22Al−25Nb alloy joints brazed with Ti−Ni−Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Cai, X.Q.; Yang, Z.W., E-mail: tjuyangzhenwen@163.com; Qiu, Q.W.; Wang, D.P.; Liu, Y.C.

    2016-10-01

    Ti{sub 45}Ni{sub 45}Nb{sub 10} (at.%) brazing alloy, fabricated by arc melting, was successfully used to braze Ti−22Al−25Nb (at.%) alloy. The microstructures of Ti{sub 45}Ni{sub 45}Nb{sub 10} brazing alloy and Ti−22Al−25Nb alloy brazed joints were analyzed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and micro-area X-ray diffraction (XRD). The effects of the brazing parameters on the interfacial microstructure and mechanical properties of the Ti−22Al−25Nb alloy brazed joints were investigated. The results showed that the joint was primarily comprised of two characteristic zones: diffusion zone I and central zone II, and the reaction phases formed in the brazed joint were the B2, O, τ{sub 3}, and Ti{sub 2}Ni phase. The crystal orientation of B2 phase in diffusion zone I was consistent with that in the Ti−22Al−25Nb substrate. The O phase was precipitated from the B2 phase. As the brazing temperature or holding time increased, τ{sub 3} was gradually replaced by the B2 phase, and the Ti{sub 2}Ni phase decreased and ultimately disappeared. The maximum shear strength achieved at room temperature was 318 MPa when the joint was brazed at 1180 °C for 20 min, whereas it was 278 MPa at 650 °C. Crack primarily propagated in the τ{sub 3} compound, which was extremely hard and brittle, and partially traversed the B2 and O phases. - Highlights: • Ti{sub 45}Ni{sub 45}Nb{sub 10} alloy was successfully developed to braze Ti−22Al−25Nb alloy. • Ti−22Al−25Nb alloy was transformed from B2 phase into the O + B2 duplex phase after brazing. • Crystal orientation of B2 in joint was dependent on metal substrate. • Correlation between joint microstructure and mechanical properties was revealed. • Ti−22Al−25Nb brazed joint had excellent ambient and high temperature strength.

  11. Highly corrosive and high strength Cr-Mn series austenite sintered steel, method of manufacturing the same and the usage

    International Nuclear Information System (INIS)

    Arai, Masahiko; Hirano, Tatsumi; Aono, Yasuhisa; Kato, Takahiko; Kondo, Yasuo; Inagaki, Masatoshi

    1998-01-01

    The steel of the present invention comprises a highly corrosive and high strength Cr-Mn series austenite sintered steel containing up to 0.1% of C, up to 1% of Si, up to 0.4% of N, from 9 to 25% of (Mn + Ni) within a range of more than 2% and up to 15% of Mn and from 14 to 20% of Cr, and it has an average crystal grain size of 1μm or less and comprises at least 90 vol% of an austenite phase. In addition, the alloy is incorporated with one or more elements of up to 3% of Mo, 1.0% of Ti, up to 2.0% of Zr and up to 1.0% of Nb in an amount of up to 2.0% in total of Ti, Zr and Nb. When these materials are used under the circumstance where materials are generally deteriorated in grain boundaries, since they are excellent in corrosion resistance and strength, remarkable effects can be attained in the improvement of the safety and the reliability of products. In addition, they are applied not only to a reactor core but also to a water-cooled circumstance and a circumstance where hydrogen exists, thereby capable of exhibiting remarkable effects. (T.M.)

  12. Synthesis Of NiCrAlC alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M.

    2010-01-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni 3 Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  13. Electrochemical investigations and characterization of a metal hydride alloy (MmNi3.6Al0.4Co0.7Mn0.3) for nickel metal hydride batteries

    International Nuclear Information System (INIS)

    Begum, S. Nathira; Muralidharan, V.S.; Basha, C. Ahmed

    2009-01-01

    The use of new hydrogen absorbing alloys as negative electrodes in rechargeable batteries has allowed the consideration of nickel/metal hydride (Ni/MH) batteries to replace the conventional nickel cadmium alkaline or lead acid batteries. In this study the performance of trisubstituted hydrogen storage alloy (MmNi 3.6 Al 0.4 Co 0.7 Mn 0.3 ) electrodes used as anodes in Ni/MH secondary batteries were evaluated. MH electrodes were prepared and the electrochemical utilization of the active material was investigated. Cyclic voltammetric technique was used to analyze the beneficial effect of the alloy by various substitutions. The electrochemical impedance spectroscopic measurements of the Ni/MH battery were made at various states of depth of discharge. The effect of temperature on specific capacity is studied and specific capacity as a function of discharge current density was also studied and the results were analyzed. The alloy metal hydride electrode was subjected to charge/discharge cycle for more than 200 cycles. The discharge capacities of the alloy remains at 250 mAh/g with a nominal fading in capacity (to the extent of ∼20 mAh/g) on prolonged cycling

  14. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    Science.gov (United States)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  15. Hydrogenation Properties of Mg-5 wt.% TiCr_10NbX (x=1,3,5) Composites by Mechanical Alloying Process

    International Nuclear Information System (INIS)

    Kim, Kyeong-Il; Hong, Tae-Whan

    2011-01-01

    Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develop kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). Mg-TiCr_10Nb systems were evaluated for hydrogen kinetics by Sievert’s type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.

  16. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy

    International Nuclear Information System (INIS)

    Owen, L.R.; Pickering, E.J.; Playford, H.Y.; Stone, H.J.; Tucker, M.G.; Jones, N.G.

    2017-01-01

    The formation of single phase solid solutions from combinations of multiple principal elements, with differing atomic radii, has led to the suggestion that the lattices of high-entropy alloys (HEAs) must be severely distorted. To assess this hypothesis, total scattering measurements using neutron radiation have been performed on the CrMnFeCoNi alloy and compared with similar data from five compositionally simpler materials within the same system. The Bragg diffraction patterns from all of the studied materials were similar, consistent with a face-centered cubic structure, and none showed the pronounced dampening that would be expected from a highly distorted lattice. A more detailed evaluation of the local lattice strain was made by considering the first six coordination shells in the pair distribution functions (PDF), obtained from the total scattering data. Across this range, the HEA exhibited the broadest PDF peaks but these widths were not disproportionately larger than those of the simpler alloys. In addition, of all the materials considered, the HEA was at the highest homologous temperature, and hence the thermal vibrations of the atoms would be greatest. Consequently, the level of local lattice strain required to rationalise a given PDF peak width would be reduced. As a result, the data presented in this study do not indicate that the local lattice strain in the equiatomic CrMnFeCoNi HEA is anomalously large.

  17. Fe-Cr-Ni system alloys

    International Nuclear Information System (INIS)

    Levin, F.L.

    1986-01-01

    Phase diagram of Fe-Cr-Ni system, which is the basic one for production of corrosion resistant alloys, is considered. Data on corrosion resistance of such alloys are correlated depending on a number of factors: quality and composition of modifying elements, corrosion medium, temperature, alloy structure, mechanical and thermal treatment. Grades of Fe-Ni-Cr alloys are presented, and fields of their application are pointed out

  18. Hot rolling effect on the characters of Zr-0.6Nb-0.5Fe-0.5Cr alloy

    International Nuclear Information System (INIS)

    Sungkono; Siti Aidah

    2015-01-01

    Characters of Zr-0.6Nb-0.5Fe-0.5Cr alloy after hot rolling have been studied. The objective of this research was to obtain of hot rolling effect on the characteristics of microstructures, hardness and phases formed in Zr-0.6Nb-0.5Fe-0.5Cr alloy. The hot rolling process of alloy carried out at temperature of 800 °C with retention time of 1.5 and 2 hours and a thickness reduction between 5 to 25 %. The results of this experiment showed that the Zr-0.6Nb-0.5Fe-0.5Cr alloy has Widmanstaetten structure with microstructure evolving into deformed columnar grains and deformed elongated grains with increasing thickness reduction. Besides, the longer the retention time at temperature of 800 °C is the larger are the grain structures and formation of α-Zr and Zr_3Fe phase. The hardness of Zr-0.6Nb-0.5Fe-0.5Cr alloy has same trends i.e the larger thickness reduction gives higher hardness. The Zr-0.6Nb-0.5Fe-0.5Cr alloy can under go hot rolling deformation at a thickness reduction of 25 % and the formation of α-Zr and Zr_3Fe can increased of hardness and strength of Zr-0.6 Nb-0.5 Fe-0.5 Cr alloy. (author)

  19. The investigation of Fe-Mn-based alloys with shape memory effect by small-angle scattering of polarized neutrons

    International Nuclear Information System (INIS)

    Kopitsa, G.P.; Runov, V.V.; Grigoriev, S.V.; Bliznuk, V.V.; Gavriljuk, V.G.; Glavatska, N.I.

    2003-01-01

    The small-angle polarized neutron scattering (SAPNS) technique has been used to study a nuclear and magnetic homogeneity in the distribution of both substituent (Si, Cr, Ni) and interstitial (C, N) alloying elements on the mesoscopic range in Fe-Mn-based alloys with shape memory effect (SME). The four groups of alloys with various basic compositions: FeMn 18 (wt%), FeMn 20 Si 6 , FeMn 20 Cr 9 N 0.2 and FeMn 17 Cr 9 Ni 4 Si 6 were investigated. It was found that the small-angle scattering of neutrons and depolarization on these alloys are very small altogether. The scattering did not exceed 1.5% from the incident beam and depolarization ∼2% for all samples. It means that these alloys are well nuclear and magnetically homogeneous on the scale of 10-1000 A. However, the difference in the homogeneity depending on the compositions still takes place. Thus, the adding of Si in FeMn 18 and FeMn 20 Cr 9 N 0.2 alloys improves the homogeneity pronouncedly. At once, the effect of the doping by C or N atoms on the homogeneity in FeMn 20 Si 6 and FeMn 17 Cr 9 Ni 4 Si 6 alloys is multivalued and depend on the presence of substitutional atoms (Ni and Cr). The capability of SAPNS as a method for the study of mesoscopic homogeneity in materials with SME and testing of the quality of their preparation is discussed

  20. The Al-rich region of the Al-Mn-Ni alloy system. Part II. Phase equilibria at 620-1000 oC

    International Nuclear Information System (INIS)

    Balanetskyy, S.; Meisterernst, G.; Grushko, B.; Feuerbacher, M.

    2011-01-01

    Research highlights: → Phase equilibria in the Al-rich region of the Al-Mn-Ni alloy system were studied at 1000, 950, 850, 750, 700, 645 and 620 deg. C by means of SEM, TEM, powder XRD and DTA. → Three ternary thermodynamically stable intermetallics, the φ-phase (Al 5 Co 2 -type, hP26, P63/mmc; a = 0.76632(16), c = 0.78296(15) nm), the κ-phase (κ-Al 14.4 Cr 3.4 Ni l.1 -type, hP227, P63/m; a = 1.7625(10), c = 1.2516(10) nm), and the O-phase (O-Al 77 Cr 14 Pd 9 -type, Pmmn, oP650,: a = 2.3316(16), b = 1.2424(15), c = 3.2648(14) nm), as well as three ternary metastable phases, the decagonal D 3 -phase with periodicity about 1.25 nm, the Al 9 (Mn,Ni) 2 -phase (Al 9 Co 2 -type, P1121/a, mP22; a = 0.8585(16), b = 0.6269(9), c = 0.6205(11) nm, β = 95.34(10) o ) and the O 1 -phase (basecentered orthorhombic, a ∼ 23.8, b ∼ 12.4, c ∼ 32.2 nm) were revealed. → The existence of a thermodynamically stable R-phase of stoichiometry Al 60 Mn 11 Ni 4 , reported earlier in literature, was not confirmed in the present study. - Abstract: Phase equilibria in the Al-rich region of the Al-Mn-Ni alloy system were studied at 1000, 950, 850, 750, 700, 645 and 620 o C. Three ternary thermodynamically stable intermetallics, the φ-phase (Al 5 Co 2 -type, hP26, P6 3 /mmc; a = 0.76632(16), c = 0.78296(15) nm), the κ-phase (κ-Al 14.4 Cr 3.4 Ni l.1 -type, hP227, P6 3 /m; a = 1.7625(10), c = 1.2516(10) nm), and the O-phase (O-Al 77 Cr 14 Pd 9 -type, Pmmn, oP650,: a = 2.3316(16), b = 1.2424(15), c = 3.2648(14) nm), as well as three ternary metastable phases, the decagonal D 3 -phase with periodicity about 1.25 nm, the Al 9 (Mn,Ni) 2 -phase (Al 9 Co 2 -type, P112 1 /a, mP22; a = 0.8585(16), b = 0.6269(9), c = 0.6205(11) nm, β = 95.34(10) o ) and the O 1 -phase (base-centered orthorhombic, a ∼ 23.8, b ∼ 12.4, c ∼ 32.2 nm) were revealed. Their physicochemical behaviour in the Al-Mn-Ni alloy system was studied.

  1. Corrosion testing of NiCrAl(Y) coating alloys in high-temperature and supercritical water

    International Nuclear Information System (INIS)

    Biljan, S.; Huang, X.; Qian, Y.; Guzonas, D.

    2011-01-01

    With the development of Generation IV (Gen IV) nuclear power reactors, materials capable of operating in high-temperature and supercritical water environment are essential. This study focuses on the corrosion behavior of five alloys with compositions of Ni20Cr, Ni5Al, Ni50Cr, Ni20Cr5Al and Ni20Cr10AlY above and below the critical point of water. Corrosion tests were conducted at three different pressures, while the temperature was maintained at 460 o C, in order to examine the effects of water density on the corrosion. From the preliminary test results, it was found that the binary alloys Ni20Cr and Ni50Cr showed weight loss above the critical point (23.7 MPa and 460 o C). The higher Cr content alloy Ni50Cr suffered more weight loss than Ni-20Cr under the same conditions. Accelerated weight gain was observed above the critical point for the binary alloy Ni5Al. The combination of Cr, Al and Y in Ni20Cr10AlY provides stable scale formation under all testing conditions employed in this study. (author)

  2. Strength and ductility of Ni3Al alloyed with boron and substitutional elements

    International Nuclear Information System (INIS)

    Ishikawa, K.; Aoki, K.; Masumoto, T.

    1995-01-01

    The effect of simultaneous alloying of boron (B) and the substitutional elements M on mechanical properties of Ni 3 Al was investigated by the tensile test at room temperature. The yield strength of Ni 3 Al+B increases by alloying with M except for Fe and Ga. In particular, it increases by alloying with Hf, Nb, W, Ta, Pd and Si. The fracture strength of Ni 3 Al+B increases by alloying with Pd, Ga, Si and Hf, but decreases with the other elements. Elongation of Ni 3 Al+B increases by alloying with Ga, Fe and Pd, but decreases with other elements. Hf and Pd is the effective element for the increase of the yield strength and the fracture strength of Ni 3 Al+B, respectively. Alloying with Hf leads to the increases of the yield strength and the fracture strength of Ni 3 Al+B, but to the lowering of elongation. On the other hand, alloying with Pd improves all mechanical properties, i.e. the yield strength, the fracture strength and elongation. On the contrary, alloying with Ti, V and Co leads to the lowering of mechanical properties of Ni 3 Al+B. The reason why ductility of Ni 3 Al+B is reduced by alloying with some elements M is discussed

  3. Study of the microstructure and of microhardness variation of a Ni-Fe-Cr austenitic alloy by niobium

    International Nuclear Information System (INIS)

    Carvalho e Camargo, M.U. de; Lucki, G.

    1979-01-01

    The mechanisms of hardening and corrosion resistance increase in Ni-Fe-Cr austenitic stainless steels by Nb additions are of interest to nuclear technology Niobium additions to a 321 type stainless steel were made in order to study the microhardness, electrical resistivity and metallography. Experimental measurements results are shown. The effect of Nb additions as a micro-alloying element and the thermal and mechanical processes (cold working in particular) in the microstructure and microhardness properties of the 11% Ni - 70%Fe - 17% Cr austenitic alloys were studied. (Author) [pt

  4. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  5. The Phase Transformations in Hypoeutectoid Steels Mn-Cr-Ni

    Directory of Open Access Journals (Sweden)

    RoŻniata E.

    2015-04-01

    Full Text Available The results of a microstructure and hardness investigations of the hypoeutectoid steels Mn-Cr-Ni, imitating by its chemical composition toughening steels, are presented in the paper. The analysis of the kinetics of phase transformations of undercooled austenite of steels containing different amounts of alloying elements in their chemical composition, constitutes the aim of investigations.

  6. Advanced nickel base alloys for high strength, corrosion applications

    Science.gov (United States)

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  7. High temperature aging structures of Ni-20Cr-20W alloys

    International Nuclear Information System (INIS)

    Ohmura, Taizo; Sahira, Kensho; Sakonooka, Akihiko; Yonezawa, Noboru

    1977-01-01

    High temperature aging structures and age hardening of Ni-20Cr-20W alloys developed as the superalloys for the nuclear energy steelmaking, and effects of C and Zr additions to the alloys and the effect of preheat treatment on these properties were studied. M 6 C, α-W and two kinds of M 23 C 6 having different lattice parameters were found as precipitates in the alloys. M 23 C 6 whose lattice parameter was around 10.7A precipitated in the early stage of aging at 700 0 C-1,150 0 C, and the carbide changed to M 6 C at higher temperature than 1,000 0 C, but it remained as a stable carbide at lower temperature than 900 0 C. α-W precipitated at 800 0 C-1,100 0 C after precipitation of M 23 C 6 and it disappeared with increase of M 6 C. M 23 C 6 having the larger lattice parameter (10.9A) precipitated transitionally in aging stage of 26 x 10 3 in Larson Miller parameter at 900 0 C and 1,000 0 C. Age hardening corresponded to the precipitation of M 23 C 6 and it was reduced by the double pre-heat-treatment. Zr addition and amount of C influenced on the aging structure and age hardening. Zr seemed to be a favorable element to stabilize the carbide. (auth.)

  8. High Temperature Behavior of Cr3C2-NiCr Coatings in the Actual Coal-Fired Boiler Environment

    Science.gov (United States)

    Bhatia, Rakesh; Sidhu, Hazoor Singh; Sidhu, Buta Singh

    2015-03-01

    Erosion-corrosion is a serious problem observed in steam-powered electricity generation plants, and industrial waste incinerators. In the present study, four compositions of Cr3C2-(Ni-20Cr) alloy coating powder were deposited by high-velocity oxy-fuel spray technique on T-91 boiler tube steel. The cyclic studies were performed in a coal-fired boiler at 1123 K ± 10 K (850 °C ± 10 °C). X-ray diffraction, scanning electron microscopy/energy dispersive X-ray analysis and elemental mapping analysis techniques were used to analyze the corrosion products. All the coatings deposited on T-91 boiler tube steel imparted hot corrosion resistance. The 65 pctCr3C2 -35 pct (Ni-20Cr)-coated T-91 steel sample performed better than all other coated samples in the given environment.

  9. X-ray study of rapidly cooled ribbons of Al-Cr-Zr and Al-Ni-Y-Cr-Zr alloys

    International Nuclear Information System (INIS)

    Betsofen, S.Ya.; Osintsev, O.E.; Lutsenko, A.N.; Konkevich, V.Yu.

    2002-01-01

    One investigated into phase composition, lattice spacing and structure of rapidly cooled 25-200 μm gauge strips made of Al-4,1Cr-3,2Zr and Al-1,5Cr-1,5Zr-4Ni-3Y alloys, wt. %, produced by melt spinning to a water-cooled copper disk. In Al-4,1Cr-3,2Zr alloy one detected intermetallic phases: Al 3 Zr and two Al 86 Cr 14 composition icosahedral phases apart from aluminium solid solution with 4.040-4.043 A lattice spacing. In Al-1,5Cr-1,5Zr-4Ni-3Y alloy one identified two Al 86 Cr 14 icosahedral phases and two AlNiY and Al 3 Y yttrium-containing ones, lattice spacing of aluminium solid solution was equal to 4.052-4.053 A [ru

  10. Influence of Processing on the Microstructure and Mechanical Properties of a NbAl3-Base Alloy

    Science.gov (United States)

    Hebsur, Mohan G.; Locci, Ivan E.; Raj, S. V.; Nathal, Michael V.

    1992-01-01

    Induction melting and rapid solidification processing, followed by grinding to 75-micron powder and P/M consolidation, have been used to produce a multiphase, NbAl3-based, oxidation-resistant alloy of Nb-67Al-7Cr-0.5Y-0.25W composition whose strength and ductility are significantly higher than those of the induction-melted alloy at test temperatures of up to 1200 K. Attention is given to the beneficial role of microstructural refinement; the major second phase, AlNbCr, improves both oxidation resistance and mechanical properties.

  11. Alloying effect on hardening of martensite stainless steels of the Fe-Cr-Ni and Fe-Cr-Co systems

    International Nuclear Information System (INIS)

    Fel'dgandler, Eh.G.; Savkina, L.Ya.

    1975-01-01

    The effect of alloying elements is considered on the γ → a-transformation and hardening of certain compositions of the ternary Fe-Cr-Ni- and Fe-Cr-Co alloy systems with the martensite structure. In martensite Fe-(10 to 14)% Cr base steels the elements Co, Cu, W, Ni, Mo, Si, Cr decrease, Mn, Si, Mo, Cu increase, and Cr, Ni, Co decrease the temperature of α → γ-transition. The tempering of martensite steels of the Fe-Cr-Ni- and Fe-Cr-Co-systems containing 10 to 14% Cr, 4 to 9% Ni, and 7 to 12% Co does not lead to hardening. Alloyage of the martensite Fe-Cr-Ni-, Fe-Cr-Co- and Fe-Cr-Ni-Co base separately with Mo, W, Si or Cu leads to a hardening during tempering, the hardening being the higher, the higher is the content of Ni and, especially, of Co. The increase in the content of Mo or Si produces the same effect as the increase in the Co content. In on Fe-Cr-Co or Fe-Cr-Ni-Co based steels alloyed with Mo or Si, two temperature ranges of ageing have been revealed which, evidently, have different hardening natures. The compositions studied could serve as the base material for producing maraging stainless steels having a complex variety of properties

  12. Hydrogen evolution characteristics of Ni-Mn microencapsulated MlNi{sub 3.03}Si{sub 0.85}Co{sub 0.60}Mn{sub 0.31}Al{sub 0.08} alloys in 6 M KOH

    Energy Technology Data Exchange (ETDEWEB)

    Ananth, MV. [Ni-MH Section, Electrochemical Energy Sources Division, Central Electrochemical Research Institute, Karaikudi 630 006 (India); Ananthi, P. [Department of Chemistry, Dhanalakshmi Srinivasan College of Arts and Science for Women, Perambalur 621 212 (India)

    2008-10-15

    Nickel-manganese alloys were coated from sulphate baths by electrodeposition with 'Packed Bed' technique on the surface of proprietary lanthanum rich non-stoichiometric MlNi{sub 3.03}Si{sub 0.85}Co{sub 0.60}Mn{sub 0.31}Al{sub 0.08} (Ml = lanthanum rich misch metal) hydrogen storage alloy particles. The structure and nature of the microencapsulated alloys were characterized using X-ray diffraction (XRD) and electron paramagnetic resonance (EPR). The hydrogen evolution reaction (HER) was investigated in 6 M KOH at 30 C by galvnostatic cathodic polarisation technique. The effects of Ni/Mn ratio in the bath and deposition current density were studied. Among the investigated depositions, Ni{sub 150}Mn{sub 100} (30) and Ni{sub 150}Mn{sub 10} (60) (concentration of Ni and Mn salts in electrodeposition bath given in grams per liter; electrodeposition current density (CD) given within brackets in milliamphere per square centimeter) coated samples exhibited the highest activity towards the HER. It can be concluded that disordered paramagnetic coatings with Ni concentrations above 80 at.% exhibit higher catalytic activity towards HER. The Tafel mechanism is the easiest pathway for HER on most of the studied coatings. However, some of the Ni-rich coatings prefer the Volmer-Tafel path and one sample [Ni{sub 150}Mn{sub 150} (80)] prefers the Heyrovsky-Volmer path. (author)

  13. Enhancement of wear and corrosion resistance of low modulus β-type Zr-20Nb-xTi (x=0, 3) dental alloys through thermal oxidation treatment.

    Science.gov (United States)

    Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong

    2017-07-01

    In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance

  14. Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys in the temperature range of 700-750 deg C

    Science.gov (United States)

    Chiang, K. T.; Meier, G. H.

    1980-01-01

    The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Co-Cr-Al alloys was studied in the temperature range 700 to 750 C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pitting corrosion morphology was induced by a number of different mechanisms.

  15. Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys

    Science.gov (United States)

    La Roca, P.; Baruj, A.; Sade, M.

    2017-03-01

    Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.

  16. Solubility of sulfur in Fe-Cr-Ni alloys

    International Nuclear Information System (INIS)

    Bogolyubskij, S.D.; Petrova, E.F.; Rogov, A.I.; Shvartsman, L.A.

    1979-01-01

    The solubility of 35 S was determined in Fe-Cr-Ni alloys in the range of temperatures between 910 and 1050 deg C by the method of radiometric analysis. It was found that the solubility of sulfur increases with the concentration of chromium in alloys with 20% Ni

  17. First-Principles Study on the Structural Stability and Segregation Behavior of γ-Fe/Cr2N Interface with Alloying Additives M (M = Mn, V, Ti, Mo, and Ni

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2016-07-01

    Full Text Available This study investigated the structural stability and electrochemical properties of alloying additives M (M = Mn, V, Ti, Mo, or Ni at the γ-Fe(111/Cr2N(0001 interface by the first-principles method. Results indicated that V and Ti were easily segregated at the γ-Fe(111/Cr2N(0001 interface and enhanced interfacial adhesive strength. By contrast, Ni and Mo were difficult to segregate at the γ-Fe(111/Cr2N(0001 interface. Moreover, the results of the work function demonstrated that alloying additives Mn reduced local electrochemical corrosion behavior of the γ-Fe(111/Cr2N(0001 interface by cutting down Volta potential difference (VPD between clean γ-Fe(111 and Cr2N(0001, while alloying additives V, Ti, Mo, and Ni at the γ-Fe(111/Cr2N(0001 interface magnified VPD between clean γ-Fe(111 and Cr2N(0001, which were low-potential sites that usually serve as local attack initiation points.

  18. Designing magnetic compensated states in tetragonal Mn{sub 3}Ge-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    You, Yurong; Xu, Guizhou, E-mail: gzxu@njust.edu.cn; Hu, Fang; Gong, Yuanyuan; Liu, Er; Peng, Guo; Xu, Feng, E-mail: xufeng@njust.edu.cn

    2017-05-01

    Magnetic compensated materials attracted much interests due to the observed large exchange bias and large coercivity, and also their potential applications in the antiferromagnetic spintronics with merit of no stray field. In this work, by using ab-initio studies, we designed several Ni (Pd, Pt) doped Mn{sub 3}Ge-based D0{sub 22}-type tetragonal Heusler alloys with fully compensated states. Theoretically, we find the total moment change is asymmetric across the compensation point (at ~x=0.3) in Mn{sub 3-x}Y{sub x}Ge (Y=Ni, Pd, Pt). In addition, an uncommon discontinuous jump is observed across the critical zero-moment point, indicating that some non-trivial properties may emerge at this point. Further electronic analyses of these compensated alloys reveal high spin polarizations at the Fermi level, which is advantageous for spin transfer torque applications. - Highlights: • Several new fully compensated magnetic states are identified in Mn{sub 3}Ge-based tetragonal alloys. • The magnetic moment changes are asymmetric upon Ni, Pd and Pt substitution. • Discontinuous jumps exist across the compensated points. • The three compensated alloys possess large spin polarizations.

  19. Effects of environment on the release of Ni, Cr, Fe, and Co from new and recast Ni-Cr alloy.

    Science.gov (United States)

    Oyar, Perihan; Can, Gülşen; Atakol, Orhan

    2014-07-01

    The addition of previously cast alloy to new alloy for economic reasons may increase the release of elements. The purpose of this study was to analyze the effects of the immersion period, immersion media, and addition of previously cast alloy to new alloy on the release of elements. Disk-shaped specimens were prepared from a Ni-Cr alloy (Ni: 61 wt%, Cr: 26 wt%, Mo: 11 wt%, Si: 1.5 wt%, Fe, Ce, Al, and Co alloy (group N) and 50% new/50% recast alloy (group R). After the immersion of the specimens in both NaCl (pH 4) and artificial saliva (pH 6.7) for 3, 7, 14, 30, and 60 days, the release of ions was determined by using atomic absorption spectrometry. Data were analyzed with a 3-way ANOVA (α=.001). The release of Ni was significantly affected by the immersion period, of Ni and Cr by the alloy and media (Palloy (Palloy in artificial saliva was 109.71 for Ni, 6.49 for Cr, 223.22 for Fe, and 29.90 μg/L for Co. The release of Co in NaCl was below the detection limit in both groups. The release of Ni in NaCl and artificial saliva increased with the length of the immersion period in both groups. The release of Cr and Fe was higher in artificial saliva than in NaCl in group R, regardless of the immersion period. The release of Co in NaCl was below the detection limit in both groups. Copyright © 2014 The Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Structure of Ni-rich Ni--Cr--B--Si coating alloys

    International Nuclear Information System (INIS)

    Knotek, O.; Lugscheider, E.; Reimann, H.

    1975-01-01

    The structures of quaternary, nickel-rich Ni--Cr--B--Si alloys were analyzed at a constant boron content of 10 at. percent and a temperature of 850 0 C. The composition range for silicide formation was determined. In these quaternary alloys, known binary nickel silicides, nickel and chromium borides, and the ternary silico-boride Ni 6 Si 2 B were confirmed. A new composition for the W 5 Si 3 -type phase in the Ni--B--Si system was proposed. (U.S.)

  1. Structure of as cast L12 compounds in Al3Zr-base alloys containing Cu and Mn

    International Nuclear Information System (INIS)

    Virk, I.S.; Varin, R.A.

    1991-01-01

    It was first shown that the low symmetry, tetragonal DO 23 crystal structure of Al 3 Zr intermetallic can be changed to the related cubic L1 2 crystal structure by alloying with Ni (Al 5 NiZr 2 ) and Cu(Al 5 CuZr 2 ). It has been reported that previous work has successfully modified Al 3 Zr with Fe, Cu, Cr and Ni obtaining nearly single phase materials with L1 2 structure. However, they only studied the microstructure and mechanical properties of Fe - modified intermetallic (Al-6at% Fe-25at% Zr). The purpose of the paper is to describe and interpret experimental observations on the microstructure of Al 5 CuZr 2 and Al 66 Mn 9 Zr 25 (at.%) modifications of base Al 3 Zr intermetallic. The one modified with Mn has not been reported in literature although its Al 3 Ti - base counterpart has recently been successfully produced (3, 4)

  2. Density of liquid NiCrAlMo quarternary alloys measured by a modified sessile drop method

    International Nuclear Information System (INIS)

    Fang, L.; Wang, Y.F.; Xiao, F.; Tao, Z.N.; MuKai, K.

    2006-01-01

    The densities of liquid NiCrAlMo quaternary alloys with a fixed molar ratio of Ni:Cr:Al (approximately as 73:14:13) and molybdenum concentration from 0 to 10 mass% were measured by a modified sessile drop method (MSDM). It was found that the density of the liquid NiCrAlMo quaternary alloys decreases with increasing temperature, but increases with the increase of molybdenum concentration. The molar volume of liquid NiCrAlMo quaternary alloys increases with the increase of temperature and molybdenum concentration. The density of liquid NiCrAlMo quaternary alloys calculated from the partial molar volumes of nickel, chromium, aluminum and molybdenum in the corresponding Ni-based binary alloys are in good agreement with the experimental results, means, within the error tolerance range the density of liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state

  3. Local magnetic moments in dilute Cr-Nb alloys: the effects of applied magnetic field and Nb concentration

    International Nuclear Information System (INIS)

    Souza, P E N de; Oliveira, L M de; Ortiz, W A; Camargo, P C de; Oliveira, A J A de

    2005-01-01

    In this work we present magnetic susceptibility results for Cr-x at.% Nb alloys (x = 0.2, 0.6, 0.7, 1.4, and 2.0), showing that a local short-range order spin-density wave (L-SDW) appears at a characteristic temperature (T loc ) above the Neel temperature. The evidence for L-SDW is based on a Curie-Weiss-like behaviour, which is suppressed when large magnetic fields are applied or for alloys with Nb concentration above x = 2.0 at.%

  4. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  5. Phase transitions and thermal expansion in Ni51- x Mn36 + x Sn13 alloys

    Science.gov (United States)

    Kaletina, Yu. V.; Gerasimov, E. G.; Kazantsev, V. A.; Kaletin, A. Yu.

    2017-10-01

    Thermal expansion and structural and magnetic phase transitions in alloys of the Ni-Mn-Sn system have been investigated. The spontaneous martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) alloys is found to be accompanied by high jumps in the temperature dependences of the linear thermal expansion. The relative change in the linear sizes of these alloys at the martensitic transformation is 1.5 × 10-3. There are no anomalies in the magnetic-ordering temperature range in the temperature dependences of the coefficient of linear thermal expansion. The differences in the behavior of linear thermal expansion at the martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) and Ni47Mn40Sn13( x = 4) alloys have been established.

  6. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys

    International Nuclear Information System (INIS)

    Krenke, T.

    2007-01-01

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y alloys with 5 at%≤x(y)≤25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni 50 Mn 25 Sn 25 and Ni 50 Mn 25 Sn 25 do not exhibit a structural transition on lowering of the temperature, whereas alloys with x≤15 at% Tin and y≤16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni 50 Mn 50 order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%≤x≤15 at% and 15 at%≤x≤16 at% for Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni 50 Mn 34 In 16 alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2 1 structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M s up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about 0.12 % appear. Additionally, the alloys Ni 50 Mn 35 Sn 15 , Ni 50 Mn 37 Sn 13 , Ni 50 Mn 34 In 16 , Ni 51.5 Mn 33 In

  7. Effect of annealing treatment on structure and electrochemical performance of quenched MmNi4.2Co0.3Mn0.4Al0.3Mg0.03 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhou Zenglin; Song Yueqing; Cui Shun; Huang Changgeng; Qian Wenlian; Lin Chenguang; Zhang Yongjian; Lin Yulin

    2010-01-01

    MmNi 4.2 Co 0.3 Mn 0.4 Al 0.3 Mg 0.03 hydrogen storage alloy was prepared by single-roll rapid quenching followed by different annealing treatments for 8 h at 1133 K, 1173 K, 1213 K, and 1253 K, respectively. Alloy structure, phase composition, pressure-composition-temperature (PCT) properties, and electrochemical performance of different annealed alloys have been investigated by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), energy dispersion spectrometer (EDS), automatic Sieverts-type apparatus, and electrochemical experiments. Electrochemical experiments indicate that the annealing treatment at 1213 K extends cycle life from 193 cycles to 358 cycles, increases the maximum discharge capacity, and slightly decreases the activation behavior. Alloy structure analyses show that the improvement in cycle life is attributed to the formation of a single CaCu 5 -type structure or the relief of an Mg-containing AlMnNi 2 -type second phase. Pressure composition isotherms results illustrate that both the hydrogen absorption capability and the dehydriding equilibrium pressure go up with increased annealing temperature. For its good performance/cost ratio, the Mg-added low-Co alloy annealed at 1213 K would be a promising substitution for MmNi 4.05 Co 0.45 Mn 0.4 Al 0.3 alloy product.

  8. Application of electroless Ni-P coating on magnesium alloy via CrO3/HF free titanate pretreatment

    Science.gov (United States)

    Rajabalizadeh, Z.; Seifzadeh, D.

    2017-11-01

    The titanate conversion coating was applied as CrO3/HF free pretreatment for the electroless Ni-P plating on AM60B magnesium alloy. The microscopic images revealed that the alloy surface was completely covered by a cracked conversion film after titanate pretreatment which was mainly composed of Mg(OH)2/MgO, MgF2, TiO2, SiO2, and Al2O3/Al(OH)3. The microscopic images also revealed that numerous Ni nucleation centers were formed over the titanate film after short electroless plating times. The nucleation centers were created not only on the cracked area but also over the whole pretreated surface due to the catalytic action of the titanate film. Also, uniform, dense, and defect-free Ni-P coating with fine structure was achieved after 3 h plating. The Ni-P coating showed mixed crystalline-amorphous structure due to its moderate phosphorus content. The results of two traditional corrosion monitoring methods indicated that the Ni-P coating significantly increases the corrosion resistance of the magnesium alloy. Moreover, Electrochemical Noise (EN) method was used as a non-polarized technique to study the corrosion behavior of the electroless coating at different immersion times. The results of the EN tests were clearly showed the localized nature of the corrosion process. Micro-hardness value of the magnesium alloy was remarkably enhanced after the electroless plating. Finally, suitable adhesion between the Ni-P coating and the magnesium alloy substrate was confirmed by thermal shock and pull-off-adhesion tests.

  9. New ternary ordered structures in CuMPt6 (M=3d elements) alloys

    International Nuclear Information System (INIS)

    Das, Ananda Kumar; Nakamura, Reo; Takahashi, Miwako; Ohshima, Ken-ichi; Iwasaki, Hiroshi; Shishido, Toetsu

    2006-01-01

    X-ray and electron diffraction measurements were performed to investigate the structure and ordering behaviour of the ternary alloys CuMPt 6 (M=Ti, V, Cr, Mn, Fe, Co, and Ni). X-ray polycrystalline diffraction patterns of all the speciments quenched from 1000degC have shown that a single phase is formed at this stoichiometric composition. The alloys with M=Cr, Mn, Co, and Ni have the face-centred cubic (fcc) structure, while in the alloys with M=Ti, V, and Fe ordering has occurred and the structure is of the Cu 3 Au type. On annealing at lower temperatures ordering has been induced in the alloys with M=Cr, Mn, and Co and the structure is of the Cu 3 Au type, though the ordering in the last alloy has remained incomplete. Detailed X-ray diffraction measurements on single crystals of the CuMnPt 6 alloy have revealed that further ordering takes place and structure changes from the Cu 3 Au type into the cubic ABC 6 type with the unit cell as large 2 x 2 x 2 as the fcc unit cell, a new observation of the double-step ordering in the ternary fcc alloy. The corresponding transition temperatures are T c =970(±5)degC and T cl =750(±5)degC. (author)

  10. Influence of manganese, carbon and nitrogen on high-temperature strength of Fe-Cr-Mn austenitic alloys

    International Nuclear Information System (INIS)

    Hosoi, Y.; Okazaki, Y.; Wade, N.; Miyahara, K.

    1990-01-01

    High Mn-Cr-Fe base alloys are candidates for the first wall material of fusion reactors because of rapid decay of radioactivity of the alloys after neutron irradiation compared with that of Ni-Cr-Fe base alloys. Their high temperature properties, however, are not clearly understood at present. In this paper, a study has been made of the effects of Mn, C and N content on the high-temperature tensile strength and creep properties of a 12% CR-Fe base alloy. Mn tends to decrease tensile strength and proof stress at intermediate temperatures. At higher temperatures in the austenite range, however, tensile properties scarcely depend on Mn content. C and N additions improve the tensile properties markedly. The combined addition of 0.2%C and 0.2%N to a 12%Cr-15%Mn-Fe base alloy makes the strength at 873K as high as that of a modified type 316 stainless steel. Combined alloying with C and N also improves the creep strength. Cold working is very useful in increasing the creep strength because of the finely dispersed precipitates in the matrix during creep. From these results, Fe-12%Cr-15%Mn-15%Mn-0.2%c-0.2%N is recommended as one of the most suitable alloys in this system for high temperature usage. (author)

  11. Cr-Ni ALLOY ELECTRODEPOSITION AND COMPARISON WITH CONVENTIONAL PURE Cr COATING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    M. Moniruzzaman

    2012-12-01

    Full Text Available Cr coating is widely used as the outer surface of precision parts due to its attractive appearance and superior corrosion resistance properties. It is obtained by electrodeposition via a conventional bath with hexavalent Cr ions. This manufacturing technique has many drawbacks, such as very low efficiency and high operating temperature and it is hazardous to health. In this work, we studied a Cr-Ni alloy deposition technique and compared the alloy coating properties to those with conventional Cr coating. Sequential two-step alloy electrodeposition was also compared. We took varying concentrations of Cr, Ni and complexing agents for the electrodeposition of Cr-Ni alloy and sequential Cr-Ni alloy coating on mild steel. Operating parameters, i.e. current density and temperature, were varied to examine their effects on the coating properties. The coatings thus obtained were characterized by visual observation, corrosion test, microhardness measurement, morphology and chemical analysis. The Cr-Ni alloy coating was found to be more corrosion resistant in 5% NaCl solution and harder than the pure Cr coating obtained by conventional electrodeposition. Toxic gas was produced in a much lower extent in the alloy coating than the conventional Cr coating technique. Again, the two-step Cr-Ni alloy coating was found better in terms of corrosion resistance as well as hardness compared to the Cr-Ni alloy coating. The process was also found to be much more environmentally friendly.

  12. Synthesis Of NiCrAlC alloys by mechanical alloying; Sintese de ligas NiCrAlC por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M., E-mail: alissonkws@gmail.co [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil)

    2010-07-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni{sub 3}Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  13. Pitting Corrosion of Ni3(Si,Ti+2Cr Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-05-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 2 at% Cr containing two regions of a Ni3(Si,Ti single-phase of L12 structure and a mixture phase of of (L12 +Niss was investigated as function of chloride concentrations by using a polarization method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  The pitting corrosion of Ni3(Si,Ti with and without the addition of aluminium and type C276 alloy were also studied under the same experimental condition for the comparison.  The pitting potential obtained for the Ni3(Si,Ti with 2 at% Cr decreased with increasing chloride concentration.  The specific pitting potentials and the pitting potentials were decreased in the order of C276 alloy > Ni3(Si,Ti > Ni3(Si,Ti + 2Cr > Ni3(Si,Ti + 4Al, which means that the pitting corrosion resistance of Ni3(Si,Ti with 2 at% Cr was higher than Ni3(Si,Ti with 4 at% Al, but lower than that of Ni3(Si,Ti.  A critical chloride concentration of Ni3(Si,Ti with 2 at% Cr was found to be higher than that of Ni3(Si,Ti with at% Al. In addition, the presence of high concentration for oxygen indicates the occurrence of pit formation.

  14. GITT studies on oxide cathode LiNi1/3Co1/3Mn1/3O2 synthesized ...

    Indian Academy of Sciences (India)

    Li diffusion; LiNi1/3Co1/3Mn1/3O2; lithium ion batteries; layered structure. 1. Introduction ... The coin-type cell CR2012 consisting of a metallic- lithium foil anode ... and the polyvinylidenefluoride (PVDF) binder with a mass ratio of 4:1:1 in NMP ...

  15. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    Science.gov (United States)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-09-01

    Electric resistivity ρ and thermoelectric power S of Ni 36Nb 24Zr 40 and (Ni 0.36Nb 0.24Zr 0.4) 90H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T2 and slight increase of S/ T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  16. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    International Nuclear Information System (INIS)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-01-01

    Electric resistivity ρ and thermoelectric power S of Ni 36 Nb 24 Zr 40 and (Ni 0.36 Nb 0.24 Zr 0.4 ) 90 H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T 2 and slight increase of S/T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  17. Influence of the chemical composition of rapidly quenched amorphous alloys (Ni, Fe, Cr)-B-Si on its crystallization process

    Science.gov (United States)

    Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.

    2016-04-01

    This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.

  18. Fatigue damage evolution of cold-worked austenitic nickel-free high-nitrogen steel X13CrMnMoN18-14-3 (1.4452)

    Energy Technology Data Exchange (ETDEWEB)

    Tikhovskiy, I.; Weiss, S.; Fischer, A. [Univ. of Duisburg-Essen, Materials Science and Engineering II, Duisburg (Germany)

    2004-07-01

    Due to the fact that the risk of Ni-allergies becomes more and more important for modern therapies, the necessity of Ni-free implant materials becomes increasingly important. Beside Co- and Ti-base alloys Ni-free high-nitrogen steels may offer an attractive alternative. The present work presents the austenitic high-nitrogen and nickel-free steel X13CrMnMoN18-14-3, (Material No.: 1.4452) after 20% cold-working. In addition this material was deformed under axial cyclic total strain controlled fatigue tests at room temperature. The development of dislocation structure due to different loading amplitudes was compared to none cyclically deformed material. The good mechanical und fatigue properties of these austenitic high-nitrogen steels as well as the better tribological, chemical and biological properties compared to CrNiMo-steels qualify these steels as a promising alternative in medical applications. (orig.)

  19. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

    Science.gov (United States)

    Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai

    2018-04-01

    The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.

  20. Efficiency of Energy Harvesting in Ni-Mn-Ga Shape Memory Alloys

    Science.gov (United States)

    Lindquist, Paul; Hobza, Tony; Patrick, Charles; Müllner, Peter

    2018-03-01

    Many researchers have reported on the voltage and power generated while energy harvesting using Ni-Mn-Ga shape memory alloys; few researchers report on the power conversion efficiency of energy harvesting. We measured the magneto-mechanical behavior and energy harvesting of Ni-Mn-Ga shape memory alloys to quantify the efficiency of energy harvesting using the inverse magneto-plastic effect. At low frequencies, less than 150 Hz, the power conversion efficiency is less than 0.1%. Power conversion efficiency increases with (i) increasing actuation frequency, (ii) increasing actuation stroke, and (iii) decreasing twinning stress. Extrapolating the results of low-frequency experiments to the kHz actuation regime yields a power conversion factor of about 20% for 3 kHz actuation frequency, 7% actuation strain, and 0.05 MPa twinning stress.

  1. Role of structural factors in formation of chiral magnetic soliton lattice in Cr{sub 1/3}NbS₂

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, L. M.; Marinin, D. V. [Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok (Russian Federation)

    2014-10-07

    The sign and strength of magnetic interactions not only between nearest neighbors, but also for longer-range neighbors in the Cr{sub 1/3}NbS₂ intercalation compound have been calculated on the basis of structural data. It has been found that left-handed spin helices in Cr{sub 1/3}NbS₂ are formed from strength-dominant at low temperatures antiferromagnetic (AFM) interactions between triangular planes of Cr³⁺ ions through the plane of just one of two crystallographically equivalent diagonals of side faces of embedded into each other trigonal prisms building up the crystal lattice of magnetic Cr³⁺ ions. These helices are oriented along the c axis and packed into two-dimensional triangular lattices in planes perpendicular to these helices directions and lay one upon each other with a displacement. The competition of the above AFM helices with weaker inter-helix AFM interactions could promote the emergence of a long-period helical spin structure. One can assume that in this case, the role of Dzyaloshinskii-Moriya interaction consists of final ordering and stabilization of chiral spin helices into a chiral magnetic soliton lattice. The possibility of emergence of solitons in M{sub 1/3}NbX{sub 2} and M{sub 1/3}TaX₂ (M = Cr, V, Ti, Rh, Ni, Co, Fe, and Mn; X = S and Se) intercalate compounds has been examined. Two important factors caused by the crystal structure (predominant chiral magnetic helices and their competition with weaker inter-helix interactions not destructing the system quasi-one-dimensional character) can be used for the crystal chemistry search of solitons.

  2. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  3. Density of liquid NiCoAlCr quarternary alloys measured by modified sessile drop method

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; ZHANG Shu-fang; XIAO Feng; YANG Ling-chuan; DONG Jian-xin; CAO Chun-lan; TAO Zai-nan; K. MUKAI

    2006-01-01

    The densities of liquid NiCoAlCr quaternary alloys with a fixed molar ratio of Ni to Co to Al (x(Ni)-x(Co)-x(Al)≈73-12-15) which is close to the average value of the commercial Ni-based superalloys TMS75, INCO713, CM247LC and CMSX-4, and the mass fraction of chromium changes from 0 to 9% were measured by a modified sessile drop method. It is found that with increasing temperature and chromium concentration in the alloys, the densities of the liquid NiCoAlCr quaternary alloys decrease, whereas the molar volume of the liquid NiCoAlCr quaternary alloys increases. And the liquid densities of NiCoAlCr quaternary alloys calculated from the partial molar volumes of nickel, cobalt, aluminum and chromium in the corresponding Ni-bases binary alloys are in good agreement with the experimental ones, i.e. within the error tolerance range the densities of the liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state. The molar volume of liquid NiCoAlCr binary alloy shows a negative deviation from the ideal linear mixing and the deviation changes small with the increase of chromium concentration at the same temperature.

  4. Transient Liquid Phase Bonding of Cu-Cr-Zr-Ti Alloy Using Ni and Mn Coatings: Microstructural Evolution and Mechanical Properties

    Science.gov (United States)

    Venkateswaran, T.; Ravi, K. R.; Sivakumar, D.; Pant, Bhanu; Janaki Ram, G. D.

    2017-08-01

    High-strength copper alloys are used extensively in the regenerative cooling parts of aerospace structures. Transient liquid phase (TLP) bonding of a Cu-Cr-Zr-Ti alloy was attempted in the present study using thin layers of elemental Ni and Mn coatings applied by electroplating. One of the base metals was given a Ni coating of 4 µm followed by a Mn coating of 15 µm, while the other base metal was given only the Ni coating (4 µm). The bonding cycle consisted of the following: TLP stage—heating to 1030 °C and holding for 15 min; homogenization stage—furnace cooling to 880 °C and holding for 2 h followed by argon quenching to room temperature. Detailed microscopy and electron probe microanalysis analysis of the brazed joints were carried out. The braze metal was found to undergo isothermal solidification within the 15 min of holding time at 1030 °C. At the end of TLP stage, the braze metal showed a composition of Cu-17Ni-9Mn (wt.%) at the center of the joint with a steep gradient in Ni and Mn concentrations from the center of the braze metal to the base metal interfaces. After holding for 2 h at 880 °C (homogenization stage), the compositional gradients were found to flatten significantly and the braze metal was found to develop a homogeneous composition of Cu-11Ni-7Mn (wt.%) at the center of the joint. In lap-shear tests, failures were always found to occur in the base metal away from the brazed region. The copper alloy base metal was found to undergo significant grain coarsening due to high-temperature exposure during brazing and, consequently, suffer considerable reduction in yield strength.

  5. Ductility and fracture behavior of polycrystalline Ni/sub 3/Al alloys

    International Nuclear Information System (INIS)

    Liu, C.T.

    1987-01-01

    This paper provides a comprehensive review of the recent work on tensile ductility and fracture behavior of Ni/sub 3/Al alloys tested at ambient and elevated temperatures. Polycrystalline Ni/sub 3/Al is intrinsically brittle along grain boundaries, and the brittleness has been attributed to the large difference in valency, electronegativity, and atom size between nickel and aluminum atoms. Alloying with B, Mn, Fe, and Be significantly increases the ductility and reduces the propensity for intergranular fracture in Ni/sub 3/Al alloys. Boron is found to be most effective in improving room-temperature ductility of Ni/sub 3/Al with <24.5 at.% Al. The tensile ductility of Ni/sub 3/Al alloys depends strongly on test environments at elevated temperatures, with much lower ductilities observed in air than in vacuum. The loss in ductility is accompanied by a change in fracture mode from transgranular to intergranular. This embrittlement is due to a dynamic effect involving simultaneously high localized stress, elevated temperature, and gaseous oxygen. The embrittlement can be alleviated by control of grain shape or alloying with chromium additions. All the results are discussed in terms of localized stress concentration and grain-boundary cohesive strength

  6. Measurements of the electrical resistance and the hydrogen depth distribution for Ni 60Nb 20Zr 20 amorphous alloy before and after hydrogen charging

    Science.gov (United States)

    Nakano, Sumiaki; Ohtsu, Naofumi; Nagata, Shinji; Yamaura, Shin-ichi; Uchinashi, Sakae; Kimura, Hisamichi; Shikama, Tatsuo; Inoue, Akihisa

    2005-02-01

    A Ni 60Nb 20Zr 20 amorphous alloy was prepared by the single-roller melt-spinning technique. The change in the electrical resistance of the alloy after electrochemical hydrogen charging in 6 N KOH solution was investigated. The change in the hydrogen depth distribution in the alloy was also investigated by elastic recoil detection. As a result, we found that the electrical resistance of the alloy increases with increasing the hydrogen content in the alloy and that a large number of hydrogen atoms are remained in the surface area of the hydrogen-charged alloy.

  7. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  8. The Study of Heat Treatment Effects on Chromium Carbide Precipitation of 35Cr-45Ni-Nb Alloy for Repairing Furnace Tubes

    Directory of Open Access Journals (Sweden)

    Nakarin Srisuwan

    2016-01-01

    Full Text Available This paper presents a specific kind of failure in ethylene pyrolysis furnace tubes. It considers the case in which the tubes made of 35Cr-45Ni-Nb high temperature alloy failed to carburization, causing creep damage. The investigation found that used tubes became difficult to weld repair due to internal carburized layers of the tube. The microstructure and geochemical component of crystallized carbide at grain boundary of tube specimens were characterized by X-ray diffractometer (XRD, scanning electron microscopy (SEM with back-scattered electrons mode (BSE, and energy dispersive X-ray spectroscopy (EDS. Micro-hardness tests was performed to determine the hardness of the matrix and the compounds of new and used tube material. The testing result indicated that used tubes exhibited a higher hardness and higher degree of carburization compared to those of new tubes. The microstructure of used tubes also revealed coarse chromium carbide precipitation and a continuous carbide lattice at austenite grain boundaries. However, thermal heat treatment applied for developing tube weld repair could result in dissolving or breaking up chromium carbide with a decrease in hardness value. This procedure is recommended to improve the weldability of the 35Cr-45Ni-Nb used tubes alloy.

  9. Evaluation of austenitic stainless steels for transpassive corrosion by metal purification technology. Synergistic effect of Si and P on intergranular corrosion of Fe-18Cr-14Ni alloys

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Joji; Kako, Kenji; Kawakami, Eishi

    2001-01-01

    The synergistic effect of Si, Mn, C, P, and S on the transpassive corrosion of HP18Cr-14Ni alloys was studied in 13N nitric acid. The specimens were fabricated using a cold crucible method in a high-vacuum chamber to reduce contamination. The additions of Si<1% and Mn<2% had no effect on the corrosion behavior of HP18Cr-14Ni alloys, and the addition of Si<1% also had no effect on the corrosion behavior of HP18Cr-14Ni-1Mn alloys, although 1% Si induced intergranular corrosion in both the alloys. Thus, HP18Cr-14Ni-1Mn-0.5Si alloys were selected to evaluate the effects of C, P and S (100 ppm each). The addition of P, and the co-addition of C, P, and S to HP18Cr-14Ni-1Mn-0.5Si induced intergranular corrosion of the same degree in the solution annealed condition. This result suggests the synergistic effect of Si and P to induce intergranular corrosion, since the single addition of Si or P to this level did not lead to intergranular corrosion of HP18Cr-14Ni alloys. HP18Cr-14Ni-1Mn-0.5Si alloys containing C, P, and S at the 100 ppm level each showed superior corrosion resistance compared to a commercial Type 304L in 13N nitric acid. (author)

  10. Glass forming ability and mechanical properties of the NiZrTiSi amorphous alloys modified with Al, Cu and Nb additions

    International Nuclear Information System (INIS)

    Czeppe, Tomasz; Ochin, Patrick; Sypien, Anna

    2007-01-01

    The composition of the amorphous alloy Ni 59 Zr 20 Ti 16 Si 5 was modified with 2-9 at.% additions of Cu, Al and Nb. The ribbons and the bars 2.7 mm in diameter were prepared by melt spinning and injection casting from the alloys of the compositions: Ni 56 Zr 18 Ti 16 Si 5 Al 3 Cu 2 , Ni 56 Zr 18 Ti 13 Al 6 Si 5 Cu 2 , Ni 56 Zr 16 Ti 12 Nb 9 Al 3 Cu 2 Si 2 and Ni 56 Zr 16 Ti 12 Nb 6 Al 6 Cu 2 Si 2 . All ribbons were amorphous up to the resolution of the X-ray diffraction and conventional transmission electron microscopy, however rods were partially crystalline. Increase of Al content lowered and Nb content slightly increased crystallization start temperature T x and glass transition temperature T g . The influence of composition changes on the overcooled liquid range ΔT was more complicated. The increase of Nb and decrease of Ti and Zr content led to the remarkable increase of the liquidus temperature T l . As a result GFA calculated as T g /T l was lowered to the values about 0.63 for 6 and 9 at.% Nb addition. The activation energies for primary crystallization in alloy with 6 at.% Al and 6 at.% of Nb, were determined. The changes of tensile test strength and microhardness with Al and Nb additions showed hardening effect caused by Nb additions and increase in fracture strength with increasing Al content

  11. Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi

    Science.gov (United States)

    Jo, Min-Gu; Kim, Han-Jin; Kang, Minjung; Madakashira, Phaniraj P.; Park, Eun Soo; Suh, Jin-Yoo; Kim, Dong-Ik; Hong, Sung-Tae; Han, Heung Nam

    2018-01-01

    The high entropy alloy CrMnFeCoNi has been shown to have promising structural properties. For a new alloy to be used in a structural application it should be weldable. In the present study, friction stir welding (FSW) and laser welding (LW) techniques were used to butt weld thin plates of CrMnFeCoNi. The microstructure, chemical homogeneity and mechanical behavior of the welds were characterized and compared with the base metal. The tensile stress-strain behavior of the welded specimens were reasonable when compared with that of the base metal. FSW refined the grain size in the weld region by a factor of ˜14 when compared with the base metal. High-angle annular dark field transmission electron microscopy in combination with energy dispersive X-ray spectroscopy showed chemical inhomogeneity between dendritic and interdendritic regions in the fusion zone of LW. Large fluctuations in composition (up to 15 at%) did not change the crystal structure in the fusion zone. Hardness measurements were carried out in the weld cross section and discussed in view of the grain size, low angle grain boundaries and twin boundaries in FSW specimens and the dendritic microstructure in LW specimens.

  12. Interface Resistance between FeCr Interconnects and La0.85Sr0.15Mn1.1O3

    DEFF Research Database (Denmark)

    Mikkelsen, Lars; Neufeld, Kai; Hendriksen, Peter Vang

    2009-01-01

    The long term oxidation behaviour and the electrical interface resistance between FeCr interconnects and La0,85Sr0,15Mn1,1O3 plates was studied by a DC four-point method in air at 750{degree sign}C for 10000 h. The tested FeCr alloys were: Crofer 22 APU, Sanergy HT, Plansee IT10, Plansee IT11, an....... Low degradation rates of less than 1 mcm2/1000 h were measured on all interfaces. The microstructure analysis showed that a duplex Cr2O3-(Mn,Co,Cr)3O4 oxide scale with a thickness of 3-5 µm had evolved on the alloys....

  13. Calculation of phase equilibria in Ti-Al-Cr-Mn quaternary system for developing lower cost titanium alloys

    International Nuclear Information System (INIS)

    Lu, X.G.; Li, C.H.; Chen, L.Y.; Qiu, A.T.; Ding, W.Z.

    2011-01-01

    Highlights: → This paper is about the concept of designing the lower cost titanium alloy. → The thermodynamic database of Ti-Al-Cr-Mn system is built up by Calphad method. → The pseudobinary sections with Cr: Mn = 3:1 and Al = 3, 4.5 and 6.0 wt% are calculated. → This may provide the theoretical support for designing the lower cost titanium alloy. - Abstract: The Ti-Al-Cr-Mn system is a potentially useful system for lower cost titanium alloy development; however, there are few reports about the experimental phase diagrams and the thermodynamical assessment for this system. In this study, the previous investigations for the thermodynamic descriptions of the sub-systems in the Ti-Al-Cr-Mn system are reviewed, our previous assessment for the related sub-systems in this quaternary system is summarized, the thermodynamical database of this quaternary system is built up by directly extrapolating from all sub-systems assessed by means of the Calphad method, then the pseudobinary sections with Cr:Mn = 3:1 and Al = 0.0, 3.0, 4.5 and 6.0 wt% are calculated, respectively. These pseudobinary phase diagrams may provide the theoretical support for designing the lower cost titanium alloys with different microstructures (α, α + β, and β titanium alloy).

  14. Density of Ni-Cr Alloy in the Mushy State

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of Ni-Cr alloy in the mushy state has been measured using the modified sessile drop method. The density of Ni-Cr alloy in the mushy state was found to decrease with increasing temperature and Cr concentration in alloy.The molar volume of Ni-Cr alloy in the mushy state therefore increases with increasing the Cr concentration in alloy.The ratio of the difference of density divided by the temperature difference between liquidus and solidus temperatures decreases with increasing Cr concentration. The density of the alloy increased with the precipitation of a solid phase in alloy during the solidification process. The temperature dependence of the density of alloy in the mushy state was not linear but biquadratic.

  15. Recent advances in alloy design of Ni{sub 3}Al alloys for structural use

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; George, E.P.

    1996-12-31

    This is a comprehensive review of recent advances in R&D of Ni{sub 3}Al-based alloys for structural use at elevated temperatures in hostile environments. Recent studies indicate that polycrystalline Ni{sub 3}Al is intrinsically quite ductile at ambient temperatures, and its poor tensile ductility and brittle grain-boundary fracture are caused mainly by moisture-induced hydrogen embrittlement when the aluminide is tested in moisture- or hydrogen-containing environments. Tensile ductility is improved by alloying with substitutional and interstitial elements. Among these additives, B is most effective in suppressing environmental embrittlement and enhancing grain-boundary cohesion, resulting in a dramatic increase of tensile ductility at room temperature. Both B-doped and B-free Ni{sub 3}Al alloys exhibit brittle intergranular fracture and low ductility at intermediate temperatures (300-850 C) because of oxygen-induced embrittlement in oxidizing environments. Cr is found to be most effective in alleviating elevated-temperature embrittlement. Parallel efforts on alloy development using physical metallurgy principles have led to development of several Ni{sub 3}Al alloys for industrial use. The unique properties of these alloys are briefly discussed. 56 refs, 15 figs, 3 tabs.

  16. Electron concentration and phase stability in NbCr2-based Laves phase alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.H.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Liu, C.T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-05-12

    Phase stability in NbCr{sub 2}-based transition-metal Laves phases was studied, based on the data reported for binary X-Cr, Nb-X, and ternary Nb-Cr-X phase diagrams. It was shown that when the atomic size ratios are kept identical, the average electron concentration factor, e/a, is the dominating factor in controlling the phase stability of NbCr{sub 2}-based transition-metal Laves phases. The e/a ratios for different Laves polytypes were determined as followed: with e/a < 5.76, the C15 structure is stabilized; at an e/a range of 5.88--7.53, the C14 structure is stabilized; with e/a > 7.65, the C15 structure is stabilized again. A further increase in the electron concentration factor (e/a > 8) leads to the disordering of the alloy. The electron concentration effect on the phase stability of Mg-based Laves phases and transition-metal A{sub 3}B intermetallic compounds is also reviewed and compared with the present observations in transition-metal Laves phases. In order to verify the e/a/phase stability relationship experimentally, additions of Cu (with e/a = 11) were selected to replace Cr in the NbCr{sub 2} Laves phase. Experimental results for the ternary Nb-Cr-Cu system are reported and discussed in terms of the correlation between the e/a ratio and phase stability in NbCr{sub 2}-based Laves phases. A new phase was found, which has an average composition of Nb-47Cr-3Cu. Within the solubility limit, the electron concentration and phase stability relationship is obeyed in the Nb-Cr-Cu system.

  17. A survey of the mechanical properties of uranium alloys U-5Mo-3Nb wt.% and U-3Mo-3Nb wt.%

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, G.

    1969-04-15

    In a continuing program on the development of soft and ductile uranium alloys for armament applications, two compositions were studied. These gamma extruded uranium alloys were U-5Mo-3Nb wt.% and U-3Mo-3Nb wt.%. This study was carried out to determine the influence of tempering heat treatments associated with extrusion on the ductility of these uranium alloys. The mechanical properties of both alloys were measured in the extruded condition, in the extruded and annealed condition and in the quenched and tempered condition. A maximum elongation of 13.7% in tension with a low amount of work hardening was obtained for the U-3Mo-3Nb wt.% alloy after 1 1/2 hours anneal at 1200 deg F (650 deg C) followed by a rapid cooling in water at 70 deg F (21 deg C). A maximum elongation of 17.3% with a large amount of work hardening was obtained for alloy U-5Mo-3Nb wt.% after vacuum annealing, normalizing, gamma phase solubilizing at 1500 deg F (815 deg C) and quenching in water at 700 deg F (210 deg C). The maximum ductility achieved in these two alloys by our approaches is low compared with the ductility of Armco Iron employed for the same applications in the field of ballistics.

  18. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    International Nuclear Information System (INIS)

    Lee, Kee Ahn; Kim, Yong Chan; Kim, Jung Han; Lee, Chong Soo; Namkung, Jung; Kim, Moon Chul

    2007-01-01

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys

  19. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Ahn [School of Advanced Materials Engineering, Andong National University, Andong 760-749 (Korea, Republic of)]. E-mail: keeahn@andong.ac.kr; Kim, Yong Chan [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Jung Han [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Lee, Chong Soo [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Namkung, Jung [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Moon Chul [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of)

    2007-03-25

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys.

  20. Fabrication of nano ZrO2 dispersed novel W79Ni10Ti5Nb5 alloy by mechanical alloying and pressureless sintering

    Science.gov (United States)

    Sahoo, R. R.; Patra, A.; Karak, S. K.

    2017-02-01

    A high energy planetary ball-mill was employed to synthesize tungsten (W) based alloy with nominal composition of W79Ni10Ti5Nb5(ZrO2)1 (in wt. %) for 20 h with chrome steel as grinding media, toluene as process control agent (PCA) along with compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h using Ar atmosphere. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), elemental mapping and Transmission electron microscopy (TEM) was used to study the phase formation, microstructure of both milled powder and consolidated alloy. The crystallite size of W in W79Ni10Ti5Nb5(ZrO2)1 powder was 37 nm, 14.7 nm at 10 h and 20 h of milling respectively and lattice strain enhances to 0.54% at 20 h of milling. The crystallite size reduction is more at 10 h of milling and the rate drop beyond 10 to 20 h of milling. The intense improvement in dislocation density was evident upto 10 h of milling and the rate decreases between 10 to 20 h of milling. Increase in the lattice parameter of tungsten in W79Ni10Ti5Nb5(ZrO2)1 alloy upto 0.09% was observed at 10 h of milling owing to severe stress assisted deformation followed by contraction upto 0.07% at 20 h of milling due to formation of solid solution. The large spherical particles at 0 h of milling transformed to elongated shape at 10 h of milling and finer morphology at 20 h of milling. The average particle size reduced from 100 µm to 4.5 µm with the progress of milling from 0 to 20 h. Formation of fine polycrystallites of W was revealed by bright field TEM analysis and the observed crystallite size from TEM study was well supported by the evaluated crystallite size from XRD. XRD pattern and SEM micrograph of sintered alloy revealed the formation of NbNi, Ni3Ti intermetallic phases. Densification of 91.5% was attained in the 20 h milled and sintered alloy. Mechanical behaviour of the sintered product was evaluated by hardness and wear study. W79Ni10Ti5Nb5(ZrO2)1 alloy

  1. Creep behavior of Ti3Al-Nb intermetallic alloys

    International Nuclear Information System (INIS)

    Yu, T.H.; Yue, W.J.; Koo, C.H.

    1997-01-01

    It is well known that Ti 3 Al-Nb alloys are potential materials for aerospace applications. The creep property is an important consideration when materials are used at high temperature. In this article, the effect of microstructure of Ti-25Al-10Nb alloy on the creep property was investigated, and the creep property of Ti-25Al-10Nb alloy modified by small addition of silicon 0.2 at.% or carbon 0.1 at.% was observed. The alloy with the addition of molybdenum to replace part of niobium 2 at.% was also studied. The experimental results show that the furnace-cooled Ti-25Al-10Nb alloy has superior creep resistance to the air-cooled Ti-25Al-10Nb alloy at 200 MPa, but exhibits poor creep resistance at 250 MPa or above. Small addition of silicon to the Ti-25Al-10Nb alloy may increase creep resistance. Small addition of carbon to the Ti-25Al-10Nb alloy may reduce creep resistance but raise rupture strain. Molybdenum is the most effective alloying element to increase creep resistance for the Ti-25Al-10Nb alloy. The creep mechanism of Ti-25Al-10Nb alloy is governed by dislocation climb. (orig.)

  2. Artificial Neural Network-Based Three-dimensional Continuous Response Relationship Construction of 3Cr20Ni10W2 Heat-Resisting Alloy and Its Application in Finite Element Simulation

    Science.gov (United States)

    Li, Le; Wang, Li-yong

    2018-04-01

    The application of accurate constitutive relationship in finite element simulation would significantly contribute to accurate simulation results, which plays a critical role in process design and optimization. In this investigation, the true stress-strain data of 3Cr20Ni10W2 heat-resisting alloy were obtained from a series of isothermal compression tests conducted in a wide temperature range of 1203-1403 K and strain rate range of 0.01-10 s-1 on a Gleeble 1500 testing machine. Then the constitutive relationship was modeled by an optimally constructed and well-trained back-propagation artificial neural network (BP-ANN). The evaluation of the BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of 3Cr20Ni10W2 heat-resisting alloy. Meanwhile, a comparison between improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions and construct the three-dimensional continuous response relationship for temperature, strain rate, strain, and stress. Finally, the three-dimensional continuous response relationship was applied to the numerical simulation of isothermal compression tests. The results show that such constitutive relationship can significantly promote the accuracy improvement of numerical simulation for hot forming processes.

  3. The effect of small 4th element alloying additions on the calculated phase stability in the Fe-Cr-Ni system

    International Nuclear Information System (INIS)

    Watkin, J.S.

    1979-01-01

    Recent studies into the void swelling of Fe-Cr-Ni alloys have revealed that the magnitude of swelling depends upon alloy constitution and this together with the fact that minor element additions also play a major role in swelling necessitate a detailed knowledge of the influence of small 4th element additions on phase stability. In this paper the effects of additions of Nb, Ti, Al, Mo, Co and C to the Fe-Cr-Ni ternary are assessed by calculation. They confirm the ferritising tendencies of Nb, Ti and Al and the strong austenitising effect of C. Confirmation is also found for the scaling factors in the equivalent Ni and Cr equations in common usage and the paper presents Fe-Cr-Ni ternary sections at 400, 550 and 700 0 C modified for 1 at.% addition of each of the above elements. (orig.) [de

  4. Corrosion resistance of amorphous NiCrZr and NiCrMoZr alloys

    International Nuclear Information System (INIS)

    Naka, M.; Miyake, M.; Okamoto, I.

    1987-01-01

    One of the authors has reported that the corrosion resistance of chromium containing amorphous alloys is extremely improved by alloying phosphorus among metalloids. Two factors operate for the improvement of corrosion resistance of the amorphous alloys. First, phosphorus serves for the rapid formation of protective passive film. Second, the compositional and structural homogeneity in amorphous state also account for the formation of protective film. The latter factor has been clearly seen in the high corrosion resistance of CoCrMoZr and CoCrWZr alloys without metalloids. In order to clarify the separately two factors in the corrosion resistance of amorphous alloys, the corrosion resistance of amorphous alloys without metalloids has to be further investigated. This paper also deals with the corrosion resistance and electrochemical behavior of NiCrZr and NiCrMoZr alloys in 1N HCl, and compare them with the corrosion behavior of the crystalline alloys containing the same composition as that of the amorphous alloys

  5. Interfacial microstructure and performance of brazed diamond grits with Ni-Cr-P alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y. [Faculty of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China)], E-mail: cywang@gdut.edu.cn; Zhou, Y.M.; Zhang, F.L.; Xu, Z.C. [Faculty of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2009-05-12

    The reaction mechanism of the interface among diamond, commercial Ni-Cr-P alloy and steel substrate has been studied by optical microscopy, scanning electron microscope, X-ray diffraction and Raman spectroscopy. The reaction layers formed among diamond, brazing alloy and steel substrate produced good wettability of diamond grits for achieving better quality tools. The reaction layer between diamond and brazing alloy comprised a reaction layer of brazing alloy and a reaction layer of diamond. Cr{sub 7}C{sub 3} and Cr{sub 3}C{sub 2} formed in the reaction layer of brazing alloy was the main reason for improving the bonding strength of Ni-Cr alloy to the diamond grits. A reaction layer of diamond may be a graphitization layer formed on the surface of diamond under high temperature brazing. The reaction layer of brazing alloy and steel substrate was the co-diffusion of Ni, Cr and Fe between the brazing alloy and the steel substrate. The life and sharpness of brazed diamond boring drill bits fabricated in this study were superior to the electroplated one in the market owing to its high protrusion and bonding strength.

  6. Effect of alloying elements on martensitic transformation in the binary NiAl(β) phase alloys

    International Nuclear Information System (INIS)

    Kainuma, R.; Ohtani, H.; Ishida, K.

    1996-01-01

    The characteristics of the B2(β) to L1 0 (β') martensitic transformation in NiAl base alloys containing a small amount of third elements have been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is found that in addition to the normal L1 0 (3R) martensite, the 7R martensite is also present in the ternary alloys containing Ti, Mo, Ag, Ta, or Zr. While the addition of third elements X (X: Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ta, W, and Si) to the binary Ni 64 Al 36 alloy stabilizes the parent β phase, thereby lowering the M s temperature, addition of third elements such as Co, Cu, or Ag destabilizes the β phase, increasing the M s temperature. The occurrence of the 7R martensite structure is attributed to solid solution hardening arising from the difference in atomic size between Ni and Al and the third elements added. The variation in M s temperature with third element additions is primarily ascribed to the difference in lattice stabilities of the bcc and fcc phases of the alloying elements

  7. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    Science.gov (United States)

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  8. Development of a tungsten heavy alloy, W-Ni-Mn, used as kinetic energy penetrator

    International Nuclear Information System (INIS)

    Zahraee, S. M.; Salehi, M. T.; Arabi, H.; Tamizifar, M.

    2007-01-01

    The objective of this research was to develop a tungsten heavy alloy having a microstructure and properties good enough to penetrate hard rolled steels as deep as possible. In addition this alloy should not have environmental problems as depleted uranium materials, For this purpose a wide spread literature survey was performed and on the base of information obtained in this survey, three compositions of tungsten heavy alloy were chosen for investigation in this research. The alloys namely 90 W-7 Ni-3 Fe, 90 W-9 Ni-Mn and 90 W-8 Ni-2 Mn were selected and after producing these alloys through powder metallurgy technique, their thermal conductivity, compression flow properties and microstructure, were studied. The results of these investigations indicated that W-Ni-Mn alloys had better flow properties and lower thermal conductivities relative to W-Ni-Fe alloy. In addition Mn helped to obtain a finer microstructure in tungsten heavy alloy. Worth mentioning that a finer microstructure as well as lower thermal conductivity in this type of alloys increased the penetration depth due to formation of adiabatic shear bands during impact

  9. Electronic structure of Ni/sub 3/Al and Ni/sub 3/Ga alloys

    CERN Document Server

    Pong, W F; Chang, Y K; Tsai, M H; Hsieh, H H; Pieh, J Y; Tseng, P K; Lee, J F; Hsu, L S

    1999-01-01

    This work investigates the charge transfer and Al(Ga) p-Ni d hybridization effects in the intermetallic Ni/sub 3/Al(Ni/sub 3/Ga) alloy using the NiL/sub 3.2/- and K-edge and Al(Ga)K X-ray absorption near edge structure (XANES) measurements. We find that the intensity of white-line features at the NiL/sub 3.2/-edge in the Ni/sub 3/Al(Ni /sub 3/Ga) alloy decreased in comparison with that of pure Ni, which can be attributed to the enhancement of Ni3d states filling and the depletion of the density of Ni 3d unoccupied states in the Ni/sub 3 /Al(Ni/sub 3/Ga) alloy. Two clear features are also observed in the Ni/sub 3/Al(Ni/sub 3/Ga) XANES spectrum at the Al(Ga) K-edge, which can be assigned to the Al(Ga) unoccupied 3p (4p) states and their hybridized states with the Ni 3d/4sp states above the Fermi level in Ni/sub 3/Al(Ni/sub 3/Ga). The threshold at Al K-edge XANES for Ni/sub 3/Al clearly shifts towards higher photon energies relative to that of pure Al, indicating that Al loses charges upon forming Ni/sub 3 /Al. ...

  10. Hydrogen storage and microstructure investigations of La{sub 0.7-x}Mg{sub 0.3}Pr{sub x}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Galdino, G.S.; Casini, J.C.S.; Ferreira, E.A.; Faria, R.N.; Takiishi, H., E-mail: agsgaldino@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (DM/IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Dept. de Metalurgia

    2010-07-01

    The effects of substitution of Pr for La in the hydrogen storage capacity and microstructures of La{sub 0.7-x}Pr{sub x}Mg{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} (x=0, 0.1, 0.3, 0.5, 0.7) alloys electrodes have been studied. X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectrometry (EDS) and electrical tests were carried out in a the alloys and electrodes. Cycles of charge and discharge have also been carried out in the Ni/MH (Metal hydride) batteries based on the alloys negative electrodes. (author)

  11. The influence of Ta on the solidification microstructure and segregation behavior of γ(Ni)/γ′(Ni3Al)–δ(Ni3Nb) eutectic Ni-base superalloys

    International Nuclear Information System (INIS)

    Xie, M.; Helmink, R.; Tin, S.

    2013-01-01

    Highlights: ► Ta and Nb have a nominally identical influence on equilibrium δ volume fraction. ► Ta and Nb impact the sequence and segregation differently during solidification. ► Microstructure varies with both overall Ta + Nb level and Ta/Nb ratio. ► Pandat (PanNi7) is unable to predict trends quantitatively in this system. -- Abstract: Polycrystalline γ/γ′–δ eutectic Ni-base superalloys based on the Ni–Al–Nb alloy system were recently demonstrated to possess excellent high temperature strength and creep resistance. Investigations aimed to establish the fundamental relationships between alloy chemistry, solidification behavior and cast microstructure in these novel Ni–Al–Nb γ/γ′–δ alloy systems are currently underway. This particular study is focused on understanding the influence of Ta additions on the solidification sequence, phase volume fraction, distribution coefficient and solid state partitioning parameter of this eutectic alloy system by systematically investigating a series of experimental alloys with nominally constant overall levels of Ta + Nb content but varying Ta/Nb ratios. Although many of the tendencies observed in these multi-component γ/γ′–δ eutectic alloys are in agreement with trends observed in lower order model alloy systems, Ta additions were found to significantly modify solidification characteristics of the alloys. The experimental observations were also used to critically assess the predictive capability of thermodynamic database calculations. Despite the qualitative agreement observed between the experimental results and predictions for relatively simple quaternary and quinary model alloys, comparison of the results for higher order, multi-component γ/γ′–δ eutectic alloys reveals notable differences

  12. Microstructure of Al2O3 scales formed on NiCrAl alloys. Ph.D. Thesis - Case Western Reserve Univ.

    Science.gov (United States)

    Smialek, J. L.

    1981-01-01

    The structure of transient scales formed on pure and Y or Zr-doped Ni-15Cr-13Al alloys oxidized for 0.1 hr at 1100 C was studied by the use of transmission electron microscopy. Crystallographically oriented scales were found on all three alloys, but especially for the Zr-doped NiCrAl. The oriented scales consisted of alpha-(Al,Cr)2O3, Ni(Al,Cr)2O4 and gamma-Al2O3. They were often found in intimate contact with each other such that the close-packed planes and directions of one oxide phase were aligned with those of another. The prominent structural features of the oriented scales were approximately equal to micrometer subgrains; voids, antiphase domain boundaries and aligned precipitates were also prevalent. Randomly oriented alpha-Al2O3 was also found and was the only oxide ever observed at the immediate oxide metal interface. These approximately 0.15 micrometer grains were populated by intragranular voids which decreased in size and number towards the oxide metal interface. A sequence of oxidation was proposed in which the composition of the growing scale changed from oriented oxides rich in Ni and Cr to oriented oxides rich in Al. At the same time the structure changed from cubic spinels to hexagonal corundums with apparent precipitates of one phase in the matrix of the other. Eventually randomly oriented pure alpha-Al2O3 formed as the stable oxide with an abrupt transition: there was no gradual loss of orientation, no gradual compositional change or no gradual decrease in precipitate density.

  13. Symmetry breaking and electrical conductivity of La0.7Sr0.3Cr0.4Mn0.6O3-δ perovskite as SOFC anode material

    International Nuclear Information System (INIS)

    Reyes-Rojas, A.; Alvarado-Flores, J.; Esparza-Ponce, H.; Esneider-Alcala, M.; Espitia-Cabrera, I.; Torres-Moye, E.

    2011-01-01

    Research highlights: → Perovskite-type La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 O 3-δ -NiO nucleation kinetics. Symmetry-breaking by introducing Ni 2+ cations at 1050 deg. C. Phase transition from high temperature aristotype R3-bar c to hettotype I4/mmm. At low Ni concentration ρ resistivity decreases when increasing the temperature. For Ni concentration higher than 25% ρ resistivity increases. - Abstract: This work is focused on nanocrystalline solid oxide fuel cell synthesis and characterization (SOFC) anodes of La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 O 3-δ (perovskite-type) with Nickel. Perovskite-type oxide chemical reactivity, nucleation kinetics and phase composition related with La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 O 3-δ -NiO to La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 O 3-δ -Ni transformation have been analyzed. SOFC anode powders were obtained by sol-gel synthesis, using polyvinyl alcohol as an organic precursor to get a porous cermet electrode after sintering at 1365 deg. C and oxide reduction by hydrogen at 800 deg. C/1050 deg. C for 8 h in a horizontal tubular reactor furnace under 10% H 2 /N 2 atmosphere. Composite powders were compressed into 10-mm diameter discs with 25-75 wt% Ni. Electrical and structural characterization by four-point probe method for conductivity, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Rietveld method were carried out. Symmetry-breaking by phase transition from high temperature aristotype R3-bar c to hettotype I4/mmm has been identified and confirmed by XRD and Rietveld method which can be produced by introducing Ni 2+ cations in the perovskite solid solution. Rietveld analysis suggests that Ni contents are directly proportional to La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 NiO 3.95 tetragonal structure cell volume and inversely proportional to Ni cubic structure cell volume after reduction at 1050 deg. C. Kinetic analysis indicated that the Johnson-Mehl-Avrami equation is able to provide a good fit to phase

  14. Study of phase transformations in Fe-Mn-Cr Alloys

    International Nuclear Information System (INIS)

    Schule, W.; Panzarasa, A.; Lang, E.

    1988-01-01

    Nickel free alloys for fusion reactor applications are examined. Phase changes in fifteen, mainly austenitic iron-manganese-chromium-alloys of different compositions were investigated in the temperature range between -196 0 C and 1000 0 C after different thermo-mechanical treatments. A range of different physical measuring techniques was employed to investigate the structural changes occurring during heating and cooling and after cold-work: electrical resistivity techniques, differential thermal analysis, magnetic response, Vickers hardness and XRD measurement. The phase boundary between the α Fe-phase and the γ-phase of the iron manganese alloy is approximately maintained if chromium is added to the two component materials. Consequently all the alloy materials for contents of manganese smaller than about 30% Mn are not stable below 500 0 C. This concerns also the AMCR alloys. However the α Fe-phase is not formed during slow cooling from 1000 0 C to ambient temperature and is only obtained if nucleation sites are provided and after very long anneals. A cubic α Mn-type-phase is found for alloys with 18% Cr and 15% Mn, with 13% Cr and 25% Mn, with 10% Cr and 30% Mn, and with 10% Cr and 40% Mn. For these reasons the γ-phase field of the iron-chromium-manganese alloys is very small below 600 0 C and much narrower than reported in the literature. 95 figs. 22 refs

  15. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A., E-mail: sabriggs2@wisc.edu [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Barr, Christopher M. [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pakarinen, Janne [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); SKC-CEN Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Mamivand, Mahmood [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Hattar, Khalid [Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185 (United States); Morgan, Dane D. [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Taheri, Mitra [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Sridharan, Kumar [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States)

    2016-10-15

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni{sup 4+} ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy. - Highlights: • Binary Ni-Cr alloys were irradiated with protons or Ni ions at 400 and 500 °C. • Higher irradiation temperatures yield increased size, decreased density of defects. • Hypothesize that varying Cr content affects interstitial binding energy. • Fitting CD models for loop nucleation to data supports this hypothesis.

  16. The effect of cooling and strain on martensitic transformation in Fe-Ni-Cr-Mn-Si alloy

    International Nuclear Information System (INIS)

    Park, Shin Hwa; Nam, Won Jong; Yoon, Man Son; Kang, Shin Wang; Lee, Dong Hyung

    1991-01-01

    In Fe-Ni-Cr-Mn-Si shape memory alloy, the effect of cooling methods and strain on the martensitic transformation was investigated. After the solution treatment at 900 deg C for 30 minutes, the specimens were air cooled, water cooled and quenched in liquid nitrogen. For air cooled specimens only austenite phase was detected, whereas austenite and ε-martensite phases were detected for specimens water cooled or quenched in liquid nitrogen. The amount of ε-martensite was increased with the cooling rate and strain. But the increasing rate of the amount of ε-martensite was decreased at 5% strain in air cooling and at 3% strain in water cooling, respectively. The occurrence of α-martensite was found at about 5% strain in air cooled specimens. For water cooled specimens it was found at about 3% strain. These strains almost coinceded with the strains at which the increasing rate of the amount of ε-martensite was changed. The occurrence of α-martensite in specimens quenched in liquid nitrogen was found less than 0.5% strain. (Author)

  17. Microstructures of neutron-irradiated Fe-12Cr-XMn (X=15-30) ternary alloys

    International Nuclear Information System (INIS)

    Miyahara, K.; Hosoi, Y.; Garner, F.A.

    1992-01-01

    The objective of this effort is to determine the factors which control the stability of irradiated alloys proposed for reduced activation applications. The Fe-Cr-Mn alloy system is being studied as an alternative to the Fe-Cr-Ni system because of the need to reduce long-term radioactivation in fusion-power devices. In this study, four Fe-12Cr-XMn (X =15, 20, 25, 30 wt%) alloys were irradiated in the Fast Flux Test Facility to 20 dpa at 643K and 40 dpa at 679, 793, and 873K to investigate the influence of manganese content on void swelling and phase stability. The results confirm and expand the results of earlier studies that indicate that the Fe-Cr-Mn system is relatively unstable compared to that of the Fe-Cr-Ni system, with alpha and sigma phases forming as a consequence of thermal aging or high temperature irradiation

  18. The role of the Mg2+ ions in Cr3+ spectroscopy for near-stoichiometric LiNbO3 crystals

    International Nuclear Information System (INIS)

    Han, T P J; Jaque, F; Bermudez, V; Dieguez, E

    2003-01-01

    The optical spectroscopy of Cr 3+ ions doped into near-stoichiometric LiNbO 3 crystals, pure and co-doped with MgO, has been investigated. In the near-stoichiometric LiNbO 3 :Cr(0.2 mol%):Mg(2 mol%) crystal, the optical spectra resemble those previously observed for congruent LiNbO 3 :Cr:MgO samples when the total MgO content exceeds the 4.6 mol% threshold. The coexistence of two types of Cr 3+ centre ([Cr] Li and [Cr] Nb ) characterized the optical and luminescence spectra of this sample. The concentration equilibrium between the two types of centre is strongly displaced towards the [Cr 3+ ] Nb centre, permitting us to obtain with accuracy the parameters of the broad bands. The R-line associated with the [Cr] Nb centre is only observable in the low-temperature emission spectrum. The Fano anti-resonance lines present have been observed to be more pronounced for the near-stoichiometric samples than for congruent ones

  19. Effects of composition on the order-disorder transformation in Ni-Cr based alloys

    International Nuclear Information System (INIS)

    Marucco, A.

    1991-01-01

    The Ni-Cr based alloys undergo an ordering transformation, due to the formation of an ordered Ni 2 Cr phase, which causes a lattice contraction and it is responsisble for ''negative creep'' or excessive stresses in constrained components. A short-range ordered (SRO) structure develops in the matrix phase after solution treatment and at early stages of ageing, which can transform to a long-range ordered (LRO) structure, depending on the alloy composition and on time and temperature of ageing, upon prolonged annealing below the critical temperature. In stoichiometric Ni 2 Cr alloy LRO forms in a few hours, but in off-stoichiometric alloys the transformation kinetics are very sluggish and LRO takes several tens of thousands of hours to form, when it forms. The ordering behaviours of stoichiometric Ni 2 Cr and Ni 3 Cr were studied by means of isothermal treatments in the temperature range 450-600degC for different ageing times up to 30 000 h, followed by lattice parameter measurements by X-ray diffraction and electrical resistivity measurements. Similar studies performed on a series of ternary Ni-Cr-Fe alloys revealed the dependence of the degree of order on Cr concentration and a markedly delaying influence of Fe on the ordering kinetics. Finally, long-term microstructural stability of some commercial Ni-Cr based alloys, widely used for high temperature applications, have been studied: the ordering behaviour and associated microstructural changes are discussed in this paper

  20. Electrochemical properties of the MmNi3.55Mn0.4Al0.3Co0.75-xFex (x = 0.55 and 0.75) compounds

    International Nuclear Information System (INIS)

    Ben Moussa, M.; Abdellaoui, M.; Mathlouthi, H.; Lamloumi, J.; Guegan, A. Percheron

    2008-01-01

    The hydrogen storage alloys MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75-x Fe x (x = 0.55 and 0.75) were used as negative electrodes in the Ni-MH accumulators. The chronopotentiommetry and the cyclic voltammetry were applied to characterize the electrochemical properties of these alloys. The obtained results showed that the substitution of the cobalt atoms by iron atoms has a good effect on the life cycle of the electrode. For the MmNi 3.55 Mn 0.4 Al 0.3 Co 0.2 Fe 0.55 compound, the discharge capacity reaches its maximum of 210 mAh/g after 12 cycles and then decreases to 190 mAh/g after 30 charge-discharge cycles. However, for the MmNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 compound, the discharge capacity reaches its maximum of 200 mAh/g after 10 cycles and then decreases to 160 mAh/g after 30 cycles. The diffusion behavior of hydrogen in the negative electrodes made from these alloys was characterized by cyclic voltammetry after few activation cycles. The values of the hydrogen coefficient in MmNi 3.55 Mn 0.4 Al 0.3 Co 0.2 Fe 0.55 and MmNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 are, respectively, equal to 2.96 x 10 -9 and 4.98 x 10 -10 cm 2 s -1 . However, the values of the charge transfer coefficients are, respectively, equal to 0.33 and 0.3. These results showed that the substitution of cobalt by iron decreases the reversibility and the kinetic of the electrochemical reaction in these alloys

  1. Behaviour of Tiu-Nb-Ni alloys in sulfuric and hydrochloric acids

    International Nuclear Information System (INIS)

    Shcherbakov, A.I.; Dorofeeva, V.N.; Tomashov, N.D.; Goncharenko, B.A.; Mikheev, V.S.

    1991-01-01

    Regularities of corrosion behaviour and passivation of ternary alloys containing 0.2; 0.5, 1,2, 3% Ni and 1,2,3,4,5,6,8 % Nb in 5n. H 2 SO 4 and 5n HCl, i.e. under conditions when unalloyed titanium dissolves actively, are considered. High cathodic efficiency of nickel plays essential role for the ternary alloy transfer to passive state, while a lower cathodic efficiency of niobium is sufficient for the alloy maintaining in the passive state. At the same time high corrosion resistance of niobium (in contract to nickel) undr potentials of titanium passive state promotes stable maintenance of the alloy in the passive state

  2. Structural stability of high entropy alloys under pressure and temperature

    DEFF Research Database (Denmark)

    Ahmad, Azkar S.; Su, Y.; Liu, S. Y.

    2017-01-01

    The stability of high-entropy alloys (HEAs) is a key issue before their selection for industrial applications. In this study, in-situ high-pressure and high-temperature synchrotron radiation X-ray diffraction experiments have been performed on three typical HEAs Ni20Co20Fe20Mn20Cr20, Hf25Nb25Zr25Ti...

  3. Reduced-activation austenitic stainless steels: The Fe--Mn--Cr--C system

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1988-01-01

    Nickel-free manganese-stabilized steels are being developed for fusion-reactor applications. As the first part of this effort, the austenite-stable region in the Fe--Mn--Cr--C system was determined. Results indicated that the Schaeffler diagram developed for Fe--Ni--Cr--C alloys cannot be used to predict the constituents expected for high-manganese steels. This is true because manganese is not as strong an austenite stabilizer relative to δ-ferrite formation as predicted by the diagram, but it is a stronger austenite stabilizer relative to martensite than predicted. Therefore, the austenite-stable region for Ne--Mn--Cr--C alloys occurs at lower chromium and hugher combinations of manganese and carbon than predicted by the Schaeffler diagram. Development of a manganese-stabilized stainless steel should be possible in the composition range of 20 to 25% Mn, 10 to 15% Cr, and 0.01 to 0.25%C. Tensile behavior of an Fe--20%Mn--12%Cr--0.25%C alloy was determined. The strength and ductility of this possible base composition was comparable to type 316 stainless steel in both the solution-annealed and cold-worked condition

  4. Magnetic properties of (Mn1-xRux)3Ga alloys

    International Nuclear Information System (INIS)

    Hori, T.; Akimitsu, M.; Miki, H.; Ohoyoama, K.; Yamaguchi, Y.

    2002-01-01

    We found that the pseudo binary alloys Mn 1-x Ru x 3 Ga, with 0.33≤x≤0.67, have an ordered b.c.c. structure. The lattice constant a is almost constant with respect to x: a=6.000 A for x=0.33 and a=5.992 A for x=0.67. For the alloy with x=0.33, i.e. Mn 2 RuGa, the magnetization is almost saturated in a field of 20 kOe. The saturation magnetization at 4.2 K is 23 emu/g, and the Curie temperature, T C , is 460 K. The T C of (Mn 1-x Ru x ) 3 Ga decreases almost linearly with increasing x, and it vanishes around x=0.67 (MnRu 2 Ga). We also determined atomic and magnetic structures from neutron diffraction experiments. The alloy Mn 2 RuGa (x=0.33) has an ordered structure of CuHg 2 Ti type; the magnetic Mn atoms mainly occupy the 4a (0,0,0) and 4d (3/4,3/4,3/4) sites. We also observed that the magnetic moments of Mn atoms on the 4a and 4d sites are antiparallel to each other; values of the magnetic moment are μ a =4.6 and μ d =3.3 μ B per Mn atom. (orig.)

  5. Synthesis and characterization of La(Cr,Fe,Mn)O{sub 3} nanoparticles obtained by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, F.A., E-mail: fernandafabianro@gmail.com [Universidade Federal de Sergipe, Campus Prof. Aluísio Campos, Departamento de Física, 49100-000 São Cristóvão, SE (Brazil); Pedra, P.P.; Filho, J.L.S. [Universidade Federal de Sergipe, Campus Prof. Aluísio Campos, Departamento de Física, 49100-000 São Cristóvão, SE (Brazil); Duque, J.G.S.; Meneses, C.T. [Universidade Federal de Sergipe, Campus Prof. Alberto Carvalho, Departamento de Física, 49500-000 Itabaiana, SE (Brazil)

    2015-04-01

    Magnetic and structural properties have been investigated in La(Cr,Fe,Mn)O{sub 3} nanoparticles obtained by co-precipitation method. The X-ray diffraction measurements allied to Rietveld method confirm the formation of LaCrO{sub 3}, LaFeO{sub 3} and LaMnO{sub 3} nanoparticles with crystal structure orthorhombic (Pbnm), orthorhombic (Pnma) and rhombohedral (R-3c), respectively. We also verified an decreasing in the average crystallite size from 73 to 26 nm, depending of the transition metal. The magnetic measurements reveal an antiferromagnetic behavior for the LaCrO{sub 3} sample with T{sub N}~289 K, and a weak ferromagnetic ordering for the LaMnO{sub 3} sample with T{sub c}~200 K. - Highlights: • La(Cr,Fe,Mn)O{sub 3} nanoparticles were synthesized by coprecipitation method. • XRD results confirm the formation single phase in the compounds studied. • Magnetic property in the La(Fe,Cr,Mn)O{sub 3} nanoparticles dependent on the TM. • La(Cr,Fe)O{sub 3} nanoparticles presented behavior antiferromagnetic and LaMnO{sub 3} ferromagnetic.

  6. Welding and corrosion resistance of the new nitrogen alloyed steel X2 CrNiMnMoN241764

    International Nuclear Information System (INIS)

    Arit, N.; Henser, H.; GroB, V.

    1994-01-01

    Remanit 4565 S is a new developed nitrogen alloyed austenitic stainless steel. Characteristic features are: improved strength and toughness, delayed precipitation of carbides and intermetallic phases, improved corrosion resistance. Welding fabrication is possible without the risk of pore formation. TIG-welded joints are as resistant as the base metal, using filler metal SG-NiCr 20 Mo 15 (Thermanit Nimo C) respectively SG-NiCr 28 Mo(Thermanit 30/40 E) according to the area of application. (Author) 8 refs

  7. Formation of Cr-modified silicide coatings on a Ti-Nb-Si based ultrahigh-temperature alloy by pack cementation process

    Science.gov (United States)

    Qiao, Yanqiang; Guo, Xiping

    2010-10-01

    Cr-modified silicide coatings were prepared on a Ti-Nb-Si based ultrahigh temperature alloy by Si-Cr co-deposition at 1250 °C, 1350 °C and 1400 °C for 5-20 h respectively. It was found that both coating structure and phase constituents changed significantly with increase in the co-deposition temperature and holding time. The outer layers in all coatings prepared at 1250 °C for 5-20 h consisted of (Ti,X) 5Si 3 (X represents Nb, Cr and Hf elements). (Ti,X) 5Si 4 was found as the only phase constituent in the intermediate layers in both coatings prepared at 1250 °C for 5 and 10 h, but the intermediate layers in the coatings prepared at 1250 °C for 15 and 20 h were mainly composed of (Ti,X) 5Si 3 phase that was derived from the decomposition of (Ti,X) 5Si 4 phase. In the coating prepared at 1350 °C for 5 h, single (Ti,X) 5Si 3 phase was found in its outmost layer, the same as that in the outer layers in the coatings prepared at 1250 °C; but in the coatings prepared at 1350 °C for 10-20 h, (Nb 1.95Cr 1.05)Cr 2Si 3 ternary phase was found in the outmost layers besides (Ti,X) 5Si 3 phase. In the coatings prepared at 1400 °C for 5-20 h, (Nb 1.95Cr 1.05)Cr 2Si 3 ternary phase was the single phase constituent in their outmost layers. The phase transformation (Ti,X) 5Si 4 → (Ti,X) 5Si 3 + Si occurred in the intermediate layers of the coatings prepared at 1350 and 1400 °C with prolonging co-deposition time, similar to the situation in the coatings prepared at 1250 °C for 15 and 20 h, but this transformation has been speeded up by increase in the co-deposition temperature. The transitional layers were mainly composed of (Ti,X) 5Si 3 phase in all coatings. The influence of co-deposition temperature on the diffusion ability of Cr atoms was greater than that of Si atoms in the Si-Cr co-deposition processes investigated. The growth of coatings obeyed inverse logarithmic laws at all three co-deposition temperatures. The Si-Cr co-deposition coating prepared at 1350

  8. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.

    1987-01-01

    The abrasive wear of machine parts and tools used in the mining, earth moving, and transporting of mineral materials can be lowered by filler wire welding of hardfacing alloys. In this paper, the microstructures of Fe-Cr-C and Fe-Cr-C-Nb/Ti hardfacing alloys and deposits and those of newly developed Fe-Cr-C-B and Fe-Ti-Cr-C-B ones are described. They show up to 85 vol.% of primarily solidified coarse hard phases; i.e., Carbides of MC-, M/sub 7/C/sub 3/-, M/sub 3/C-type and Borides of MB/sub 2/-, M/sub 3/B/sub 2/-, M/sub 2/B-, M/sub 3/B-, M/sub 23/B/sub 6/-type, which are embedded in a hard eutectic. This itself consists of eutectic hard phases and a martensitic or austenitic metal matrix. The newly developed Fe-Cr-C-B alloys reach hardness values of up to 1200 HV and are harder than all purchased ones. The primary solidification of the MB/sub 2/-type phase of titanium requires such high amounts of titanium and boron that these alloys are not practical for manufacture as commercial filler wires

  9. Austenitic alloys Fe-Ni-Cr dominating

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Austenitic alloy essentially comprising 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminium, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06% zirconium, the balance being iron. The characteristic of this alloy is a conventional elasticity limit to within 2% of at least 450 MPa, with a maximum tensile strength of at least 500 MPa at a test temperature of 650 0 C after immersion annealing at 1038 0 C and 30% hardening. To this effect the invention concerns Ni-Cr-Fe high temperature alloys possessing excellent mechanical strength characteristics, that can be obtained with lower levels of nickel and chromium than those used in alloys of this kind in the present state of the technique, a higher amount of niobium than in the previous alloys and with the addition of 0.5 to 1.5% vanadium [fr

  10. Solidification processing of intermetallic Nb-Al alloys

    Science.gov (United States)

    Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.

    1992-01-01

    Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.

  11. Sulfidation behavior of Fe20Cr alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    2001-01-01

    Alloys for use in high temperature environments rely on the formation of an oxide layer for their protection. Normally, these protective oxides are Cr 2 O 3 , Al 2 O 3 and, some times, SiO 2 . Many industrial gaseous environments contain sulfur. Sulfides, formed in the presence of sulfur are thermodynamically less stable, have lower melting points and deviate much more stoichiometrically, compared to the corresponding oxides. The mechanism of sulfidation of various metals is as yet not clear, in spite of the concerted efforts during the last decade. To help address this situation, the sulfidation behavior of Fe20Cr has been studied as a function of compositional modifications and surface state of the alloy. The alloys Fe20Cr, Fe20Cr0.7Y, Fe20Cr5Al and Fe20Cr5Al0.6Y were prepared and three sets of sulfidation tests were carried out. In the first set, the alloys were sulfidized at 700 deg C and 800 deg C for 10h. In the second set, the alloys were pre-oxidized at 1000 deg C and then sulfidized at 800 deg C for up to 45h. In the third set of tests, the initial stages of sulfidation of the alloys was studied. All the tests were carried out in a thermobalance, in flowing H 2 /2%H 2 S, and the sulfidation behavior determined as mass change per unit area. Scanning electron microscopy coupled to energy dispersive spectroscopy and X-ray diffraction analysis were used to characterize the reaction products. The addition of Y and Al increased sulfidation resistance of Fe20Cr. The addition of Y altered the species that diffused predominantly during sulfide growth. It changed from predominant cationic diffusion to predominant anionic diffusion. The addition of Al caused an even greater increase in sulfidation resistance of Fe20Cr, with the parabolic rate constant decreasing by three orders of magnitude. Y addition to the FeCrAl alloy did not cause any appreciable alteration in sulfidation resistance. Pre-oxidation of the FeCrAl and FeCrAlY alloys resulted in an extended

  12. CORRELATION OF THE FERMI ENERGY OF Ni, Cr, Mn WITH THE ELECTROCATALYTIC ACTIVITY OF THE TRIPLE ALLOYS ON THE BASE OF THESE METALS

    Directory of Open Access Journals (Sweden)

    A. D. Andreyanov

    2016-04-01

    Full Text Available It was established the dependence of the electrocatalytic activity of alloys Ni-Cr-Mn at the variable contents of copper with values of Fermy energy of their components. Electrocatalytic activity of alloys was estimated by density of the current, determined by the method of suspended half-element. For Fermi energy calculation of various metals Sommerfeld model, in which distribution of electrons by speed is described by Fermi-Dirac statistic was used.

  13. The effect of microstructure and temperature on the oxidation behavior of two-phase Cr-Cr2X (X=Nb,Ta) alloys

    International Nuclear Information System (INIS)

    Brady, M.P.; Tortorelli, P.F.

    1998-01-01

    The oxidation behavior of Cr(X) solid solution (Cr ss ) and Cr 2 X Laves phases (X = Nb, Ta) was studied individually and in combination at 950--1,100 C in air. The Cr ss phase was significantly more oxidation resistant than the Cr 2 X Laves phase. At 950 C, two-phase alloys of Cr-Cr 2 Nb and Cr-Cr 2 Ta exhibited in-situ internal oxidation, in which remnants of the Cr 2 X Laves phase were incorporated into a growing chromia scale. At 1,100 C, the Cr-Cr 2 Nb alloys continued to exhibit in-situ internal oxidation, which resulted in extensive O/N penetration into the alloy ahead of the alloy-scale interface and catastrophic failure during cyclic oxidation. IN contrast, the Cr-Cr 2 Ta alloys exhibited a transition to selective Cr oxidation and the formation of a continuous chromia scale. The oxidation mechanism is interpreted in terms of multiphase oxidation theory

  14. Interaction of Cr-Ti-Si coating on VN-3 niobium alloy with air environment

    International Nuclear Information System (INIS)

    Lazarev, Eh.M.; Kozlov, A.T.; Monakhova, L.A.

    1985-01-01

    Investigation of heat-resistance, microstructure and phase composition of Cr-Ti-Si coating on VN-3 niobium alloy with air oxidation in the temperature interval of 1200-1600 deg C is conducted. Thermogravimetry, metallography, X-ray diffraction and microprobe analysis methods are used. It is ascertained that the coating is a dense niobium disilicide layer, luriched on the surface with chromium and titanium disilicides and separated and from the protected alloy by a narrow zone of the lowest niobium silicide Nb 5 Si 3 . The coating protective junctions are provided by a selective chromium and titanium disilicides oxidation as well as niobium disilicide oxidation at the temperature of 1600 deg C, and by the rates of niobium and silicon diffusion through Nb 5 SI 3 and NbSi 2 and oxygen diffusion through the amorphous SiO 2

  15. Stacking fault energy measurements in solid solution strengthened Ni-Cr-Fe alloys using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Unfried-Silgado, Jimy [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil); Universidade Estadual de Campinas UNICAMP, Faculdade de Engenharia Mecanica FEM, Campinas (Brazil); Universidad Autonoma del Caribe, Grupo IMTEF, Ingenieria Mecanica, Barranquilla (Colombia); Wu, Leonardo [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil); Furlan Ferreira, Fabio [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas (CCNH), Sao Paulo (Brazil); Mario Garzon, Carlos [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia); Ramirez, Antonio J, E-mail: antonio.ramirez@lnnano.org.br [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil)

    2012-12-15

    The stacking fault energy (SFE) in a set of experimental Ni-Cr-Fe alloys was determined using line profile analysis on synchrotron X-ray diffraction measurements. The methodology used here is supported by the Warren-Averbach calculations and the relationships among the stacking fault probability ({alpha}) and the mean-square microstrain (<{epsilon}{sup 2}{sub L}>). These parameters were obtained experimentally from cold-worked and annealed specimens extracted from the set of studied Ni-alloys. The obtained results show that the SFE in these alloys is strongly influenced by the kind and quantity of addition elements. Different effects due to the action of carbide-forming elements and the solid solution hardening elements on the SFE are discussed here. The simultaneous addition of Nb, Hf, and, Mo, in the studied Ni-Cr-Fe alloys have generated the stronger decreasing of the SFE. The relationships between SFE and the contributions on electronic structure from each element of additions were established.

  16. Precision casting of Ti-15V-3Cr-3Al-3Sn alloy setting

    OpenAIRE

    Nan Hai; Liu Changkui; Huang Dong

    2008-01-01

    In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured. The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al-3Sn alloy were studied.

  17. Promising Cu-Ni-Cr-Si alloy for first wall ITER applications

    International Nuclear Information System (INIS)

    Ivanov, A.; Abramov, V.; Rodin, M.

    1996-01-01

    Precipitation-hardened Cu-Ni-Cr-Si alloy, a promising material for ITER applications, is considered. Available commercial products, chemical composition, physical and mechanical properties are presented. Embrittlement of Cu-Ni-Cr-Si alloy at 250-300 C is observed. Mechanical properties of Cu-Ni-Cr-Si alloy neutron irradiated to a dose of ∝0.2 dpa at 293 C are investigated. Embrittlement of Cu-Ni-Cr-Si alloy can be avoided by annealing. (orig.)

  18. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys; Untersuchung der martensitischen Umwandlung und der magnetischen Eigenschaften Mangan-reicher Ni-Mn-In- und Ni-Mn-Sn-Heusler-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Krenke, T.

    2007-06-29

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} alloys with 5 at%{<=}x(y){<=}25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni{sub 50}Mn{sub 25}Sn{sub 25} and Ni{sub 50}Mn{sub 25}Sn{sub 25} do not exhibit a structural transition on lowering of the temperature, whereas alloys with x{<=}15 at% Tin and y{<=}16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni{sub 50}Mn{sub 50} order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%{<=}x{<=}15 at% and 15 at%{<=}x{<=}16 at% for Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni{sub 50}Mn{sub 34}In{sub 16} alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2{sub 1} structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M{sub s} up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about

  19. Hysteresis properties of conventionally annealed and Joule-heated nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys

    International Nuclear Information System (INIS)

    Tiberto, P.; Basso, V.; Beatrice, C.; Bertotti, G.

    1996-01-01

    The dependence of magnetic properties on the thermal treatment used to induce the amorphous-to-nanocrystalline transformation in Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 alloy has been studied. Quasi-static hysteresis loops and initial permeability measurements were performed on nanocrystalline samples obtained by conventional annealing and Joule heating. A comparison between the magnetic properties of nanocrystalline samples obtained by the two heating procedures is presented. (orig.)

  20. High temperature oxidation-sulfidation behavior of Cr-Al2O3 and Nb-Al2O3 composites densified by spark plasma sintering

    International Nuclear Information System (INIS)

    Saucedo-Acuna, R.A.; Monreal-Romero, H.; Martinez-Villafane, A.; Chacon-Nava, J.G.; Arce-Colunga, U.; Gaona-Tiburcio, C.; De la Torre, S.D.

    2007-01-01

    The high temperature oxidation-sulfidation behavior of Cr-Al 2 O 3 and Nb-Al 2 O 3 composites prepared by mechanical alloying (MA) and spark plasma sintering (SPS) has been studied. These composite powders have a particular metal-ceramic interpenetrating network and excellent mechanical properties. Oxidation-sulfidation tests were carried out at 900 deg. C, in a 2.5%SO 2 + 3.6%O 2 + N 2 (balance) atmosphere for 48 h. The results revealed the influence of the sintering conditions on the specimens corrosion resistance, i.e. the Cr-Al 2 O 3 and Nb-Al 2 O 3 composite sintered at 1310 deg. C/4 min showed better corrosion resistance (lower weight gains) compared with those found for the 1440 deg. C/5 min conditions. For the former composite, a protective Cr 2 O 3 layer immediately forms upon heating, whereas for the later pest disintegration was noted. Thus, under the same sintering conditions the Nb-Al 2 O 3 composites showed the highest weight gains. The oxidation products were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy

  1. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, N.Yu. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Stepanov, N.D., E-mail: stepanov@bsu.edu.ru [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Shaysultanov, D.G. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Tikhonovsky, M.A. [National Science Center “Kharkov Institute of Physics and Technology”, NAS of Ukraine, Kharkov, 61108 (Ukraine); Salishchev, G.A. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation)

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The density of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.

  2. Microstructure and Corrosion Behavior of Ni-Alloy/CrN Nanolayered Coatings

    Directory of Open Access Journals (Sweden)

    Hao-Hsiang Huang

    2011-01-01

    Full Text Available The Ni-alloy/CrN nanolayered coatings, Ni-Al/CrN and Ni-P/CrN, were deposited on (100 silicon wafer and AISI 420 stainless steel substrates by dual-gun sputtering technique. The influences of the layer microstructure on corrosion behavior of the nanolayered thin films were investigated. The bilayer thickness was controlled approximately 10 nm with a total coating thickness of 1m. The single-layer Ni-alloy and CrN coatings deposited at 350∘C were also evaluated for comparison. Through phase identification, phases of Ni-P and Ni-Al compounds were observed in the single Ni-alloy layers. On the other hand, the nanolayered Ni-P/CrN and Ni-Al/CrN coatings showed an amorphous/nanocrystalline microstructure. The precipitation of Ni-Al and Ni-P intermetallic compounds was suppressed by the nanolayered configuration of Ni-alloy/CrN coatings. Through Tafel analysis, the corr and corr values ranged from –0.64 to –0.33 V and 1.42×10−5 to 1.14×10−6 A/cm2, respectively, were deduced for various coating assemblies. The corrosion mechanisms and related behaviors of the coatings were compared. The coatings with a nanolayered Ni-alloy/CrN configuration exhibited a superior corrosion resistance to single-layer alloy or nitride coatings.

  3. Thermal, magnetic, and structural properties of soft magnetic FeCrNbCuSiB alloy ribbons

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Valencia, V.H.; Quintero, D.L.; Pineda-Gomez, P.; Gomez, M.

    2006-01-01

    The thermal, magnetic and structural properties of amorphous magnetic Fe 73.5-x Cr x Nb 3 Cu 1 Si 13.5 B 9 alloy ribbons, with x=0, 2, 4, 6, 8, and 10, were studied by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), magneto-impedance measurements and X-ray diffraction (XRD). The ribbons exhibit ultrasoft magnetic behavior, especially giant magneto-impedance effect, GMI. A three-peak behavior was observed in GMI curves. Particular attention has been given to observation of crystallization kinetics via DSC and TGA. The primary crystallization T pcr , and Curie T c , temperatures were determined from DSC and TGA data, respectively. The effect of partial substitution of iron by Cr on the thermal and magnetic properties is discussed

  4. Precipitation kinetics in austenitic 18Cr-30Ni-Nb cast steel

    Directory of Open Access Journals (Sweden)

    M. Garbiak

    2008-08-01

    Full Text Available The study presents the results of investigations on the precipitation kinetics in austenitic 18%Cr-30%Ni cast steel stabilised with an addition of 1.84 wt% niobium. Phase analysis of isolates extracted from the alloy subjected to annealing within the temperature range of 600–1000oC during 10–1000 h was made. The phase constitution of the isolates mainly comprised niobium carbides of the NbC type and complex chromium carbides of the Cr23C6 type. In specimens annealed within the temperature range of 700–900oC, a high-silicon G phase was additionally identified. The highest kinetics of the precipitation process was recorded after annealing at the temperatures of 800 and 900oC.

  5. Ductility of Ni3Al doped with substitutional elements

    International Nuclear Information System (INIS)

    Hanada, S.; Chiba, A.; Guo, H.Z.; Watanabe, S.

    1993-01-01

    This paper reports on ductility of B-free Ni 3 Al alloys. Recrystallized Ni 3 Al binary alloys with Ni-rich compositions show appreciable ductility when an environmental effect is eliminated, while the alloys with stoichiometric and Al-rich compositions remain brittle. The ductility in the Ni-rich Ni 3 Al alloys is associated with low ordering energy. The additions of ternary elements, which are classified as γ formers, ductilize ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Pd, Pt, Cu and Co), whereas the additions of γ' formers embrittle ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Ta, Mo, Nb, Zr, Hf, V, Ti and Si). The additions of small amounts (less than 1 at%) of γ' formers such as Zr and Hf also ductilize as-cast ternary Ni 3 Al alloys. Ductility of Ni 3 Al alloys doped with substitutional elements is discussed in terms of ordering energy and microstructure

  6. Phase transformation, magnetic property and microstructure of Ni-Mn-Fe-Co-Ga ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Tsuchiya, K.; Sho, Y.; Kushima, T.; Todaka, Y.; Umemoto, M.

    2007-01-01

    Effects of addition of Fe and Co on the phase stability, magnetic property and microstructures were investigated for Ni-Mn-Ga. In Ni-Mn 21- x -Fe x -Ga 27 alloys, martensitic transformation temperatures decreased with increasing amount of Fe (x) up to 15 mol%, then slightly increased by the further addition. The crystal structure of martensite phase was 10 M for x 15 mol%. Relatively high martensite stability was obtained for Ni 52 -Mn 16- x -Fe x -Co 5 -Ga 27 alloys. The highest stability of the ferromagnetic martensite phase was achieved in Ni 52 -Mn 6 -Fe 10 -Co 5 -Ga 27 after aging at 773 K for 3.6 ks. Martensite structure was non-modulated 2 M in this series of alloys

  7. Mid - infrared transmission of polycrystalline (LaSr) (MnNi)O3

    International Nuclear Information System (INIS)

    Laksanawati, W. D.; Kurniawan, B.; Saptari, S. A.

    2016-01-01

    Polycrystalline (LaSr)(MnNi)O 3 was shintesized using sol gel methods with nitrat precursors La(NO 3 ) 3 , Sr(NO 3 ) 2 , Mn(NO 3 ) 2 .4H 2 O, and Ni(NO3)2.6H2O and the different heating process. Sample (LaSr)(MnNi)O 3 with chemical formulation La 0,67 Sr 0,33 Mn 1-x Ni x O 3 with × = 0,05 and 0,10. We report the crystallite structure of La 0,67 Sr 0,33 Mn 1-x Ni x O 3 with x= 0,00 and 0,10 are single phase with characterization by X-ray diffraction. Refinement has result that crystallite size of La 0,67 Sr 0,33 Mn 0,95 Ni 0,05 O 3 is 24,67 and La 0,67 Sr 0,33 Mn 0,9 Ni 0,1 O 3 is 21,84 with crystallite system rombohedral, it show us that increasing at Ni composition influence of decreased crystallite size. Sampel (LaSr)(MnNi)O3 has been characterization with Fourier Transform Infrared with range of wave number from 450 to 4000 cm -1 were chategories at mid infrared wave. The FTIR pattern show to us that the Mn-O-Mn bounded has absorp infrared at wave number 605 cm -1 and the dominant peak at wave number 3750 cm -1 caused the hidroxy compound in sampel La 0,67 Sr 0,33 Mn 0,95 Ni 0,05 O 3 . (paper)

  8. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  9. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.

    2007-12-01

    We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.

  10. Oxidation-resistant Ge-doped silicide coating on Cr-Cr2Nb alloys by pack cementation

    International Nuclear Information System (INIS)

    He Yirong

    1997-01-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on Cr-Cr 2 Nb alloys in a single processing step. The morphology and composition of the coating depended both on the pack composition and processing schedule and also on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi 2 and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. Under cyclic and isothermal oxidation conditions, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation and from pesting by the formation of a Ge-doped silica film. (orig.)

  11. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys

    International Nuclear Information System (INIS)

    Novakovic, R

    2011-01-01

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi 2 composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al 8 Cr 5 and CrNi 2 chemical complexes, respectively, as energetically favoured.

  12. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    Science.gov (United States)

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  13. Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. II - Oxidation behavior

    Science.gov (United States)

    Haasch, R. T.; Tewari, S. K.; Sircar, S.; Loxton, C. M.; Mazumder, J.

    1992-01-01

    Isothermal oxidation behaviors of NbAl3 alloy synthesized by laser cladding were investigated at temperatures between 800 and 1400 C, and the effect of vanadium microalloying on the oxidation of the laser-clad alloy was examined. The oxidation kinetics of the two alloys were monitored using thermal gravimetric weight gain data, and the bulk and surface chemistries were analyzed using XRD and XPS, respectively. It was found that NbAl3 did not form an exclusive layer of protective Al2O3. The oxidation products at 800 C were found to be a mixture of Nb2O5 and Al2O3. At 1200 C, a mixture of NbAlO4, Nb2O5, and Al2O3 formed; and at 1400 C, a mixture of NbAlO4, Al2O3, NbO2, NbO(2.432), and Nb2O5 formed. The addition of V led to a dramatic increase of the oxidation rate, which may be related to the formation of (Nb, V)2O5 and VO2, which grows in preference to protective Al2O3.

  14. Shape memory effect of Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals

    International Nuclear Information System (INIS)

    Inagaki, Hirosuke

    1992-01-01

    Factors affecting the shape memory effect in Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals were studied in detail. It was found that the shape memory effect in this alloy was most influenced by the amount of deformation. With increasing amount of deformation, the shape memory effect diminished appreciably. Although the fraction of the initial dimensional change that could be restored was about 45% in the specimen strained by 4%, only 21% of the initial dimensional change was recovered in the specimen strained by 9%. Temperatures of deformation were found to be also an important factor that affected the shape memory effect. The maximum shape memory effect was observed in the specimens strained at temperatures between the M s and M d temperatures. In this alloy, however, specimens strained at temperatures below the M s temperature indicated a relatively large shape memory effect, too. It was further found that the shape memory effect was appreciably intensified by repeated straining and annealing, especially when straining was performed at 500deg C. It was suggested that the shape memory effect in Fe base alloys was strongly influenced by the dislocation substructure present in the starting material. (orig.) [de

  15. Discharge capacity and microstructures of La Mg Pr Al Mn Co Ni alloys for nickel-metal hydride batteries

    International Nuclear Information System (INIS)

    Casini, J.C.S.; Galdino, G.S.; Ferreira, E.A.; Takiishi, H.; Faria, R.N.

    2010-01-01

    La 0.7-x Mg x Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x = 0.0, 0.3 and 0.7) alloys have been investigated aiming the production of negative electrodes for nickel-metal hydride batteries. The alloys employed in this work were used in the as cast state. The results showed that the substitution of magnesium by lanthanum increased the discharge capacity of the Ni-MH batteries. A battery produced with the La 0.4 Mg 0.3 Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy shown a high discharge capacity (380mAh/g) also good stability compared to other alloys. The electrode materials were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). (author)

  16. LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Song, Rak-Hyun; Shin, Dong Ryul [Korea Institute of Energy Research, Taejon (Korea, Republic of); Dokiya, Masayuki [National Institute of Materials and Chemical Research, Ibaraki (Japan)

    1996-12-31

    In the planar SOFC, the interconnect materials plays two roles as an electrical connection and as a gas separation plate in a cell stack. The interconnect materials must be chemically stable in reducing and oxidizing environments, and have high electronic conductivity, high thermal conductivity, matching thermal expansion with an electrolyte, high mechanical strength, good fabricability, and gas tightness. Lanthanum chromite so far has been mainly used as interconnect materials in planar SOFC. However, the ceramic materials are very weak in mechanical strength and have poor machining property as compared with metal. Also the metallic materials have high electronic conductivity and high thermal conductivity. Recently some researchers have studied metallic interconnects such as Al{sub 2}O{sub 3}/Inconel 600 cermet, Ni-20Cr coated with (LaSr)CoO{sub 3}, and Y{sub 2}O{sub 3-} or La{sub 2}O{sub 3}-dispersed Cr alloy. These alloys have still some problems because Ni-based alloys have high thermal expansion, the added Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and La{sub 2}O{sub 3} to metals have no electronic conductivity, and the oxide formed on the surface of Cr alloy has high volatility. To solve these problems, in this study, LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC was investigated. The LaCrO{sub 3}-dispersed Cr can be one candidate of metallic interconnect because LaCrO{sub 3} possesses electronic conductivity and Cr metal has relatively low thermal expansion. The content of 25 vol.% LaCrO{sub 3} Was selected on the basis of a theoretically calculated thermal expansion. The thermal expansion, electrical and oxidation properties were examined and the results were discussed as related to SOFC requirements.

  17. Enhancement of electrochemical performance of LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 by surface modification with MnO_2

    International Nuclear Information System (INIS)

    Guo, Xin; Cong, Li-Na; Zhao, Qin; Tai, Ling-Hua; Wu, Xing-Long; Zhang, Jing-Ping; Wang, Rong-Shun; Xie, Hai-Ming; Sun, Li-Qun

    2015-01-01

    LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 is successfully coated with MnO_2 by a chemical deposition method. The X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) results demonstrate that MnO_2 forms a thin layer on the surface of LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 without destroying the crystal structure of the core material. Compared with pristine LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2, the MnO_2-coated sample shows enhanced electrochemical performance especially the rate capability. Even at a current density of 750 mA g"−"1, the discharge capacity of MnO_2-coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 is 155.15 mAh g"−"1, while that of the pristine electrode is only 132.84 mAh g"−"1 in the range of 2.5–4.5 V. The cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) curves show that the MnO_2 coating layer reacts with Li"+ during cycling, which is responsible for the higher discharge capacity of MnO_2-coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2. Electrochemical impedance spectroscopy (EIS) results confirmed that the MnO_2 coating layer plays an important role in reducing the charge transfer resistance on the electrolyte–electrode interfaces. - Highlights: • MnO_2 coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 cathode material is synthesized for the first time. • MnO_2 offers available sites for insertion of extracted lithium. • The preserved surface and crystal structures results in the improved kinetics.

  18. Anomalous grain growth in nanocrystalline Fe73.5Cu1Nb3Su13.5B9 alloys

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1997-01-01

    The grain growth of the FeSi phase during the crystallization process of the amorphous Fe73.5Cu1Nb3Si13.5B9 alloy was studied using transmission electron microscopy and x-ray diffractometry. An anomalous grain growth behaviour of the FeSi phase in the samples annealed in temperature range from 743...... to 823 K for one hour was observed, i.e. the grain size of the FeSi phase slightly decreases when the annealing temperature increases from 743 K ot 823 K. The mechanism of the anomalous grain growth may be due to the different nucleation and volume diffusion rates in the samples anneales at low and high...

  19. Formation of Cr-modified silicide coatings on a Ti-Nb-Si based ultrahigh-temperature alloy by pack cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Yanqiang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Guo Xiping, E-mail: xpguo@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-10-01

    Cr-modified silicide coatings were prepared on a Ti-Nb-Si based ultrahigh temperature alloy by Si-Cr co-deposition at 1250 deg. C, 1350 deg. C and 1400 deg. C for 5-20 h respectively. It was found that both coating structure and phase constituents changed significantly with increase in the co-deposition temperature and holding time. The outer layers in all coatings prepared at 1250 deg. C for 5-20 h consisted of (Ti,X){sub 5}Si{sub 3} (X represents Nb, Cr and Hf elements). (Ti,X){sub 5}Si{sub 4} was found as the only phase constituent in the intermediate layers in both coatings prepared at 1250 deg. C for 5 and 10 h, but the intermediate layers in the coatings prepared at 1250 deg. C for 15 and 20 h were mainly composed of (Ti,X){sub 5}Si{sub 3} phase that was derived from the decomposition of (Ti,X){sub 5}Si{sub 4} phase. In the coating prepared at 1350 deg. C for 5 h, single (Ti,X){sub 5}Si{sub 3} phase was found in its outmost layer, the same as that in the outer layers in the coatings prepared at 1250 deg. C; but in the coatings prepared at 1350 deg. C for 10-20 h, (Nb{sub 1.95}Cr{sub 1.05})Cr{sub 2}Si{sub 3} ternary phase was found in the outmost layers besides (Ti,X){sub 5}Si{sub 3} phase. In the coatings prepared at 1400 deg. C for 5-20 h, (Nb{sub 1.95}Cr{sub 1.05})Cr{sub 2}Si{sub 3} ternary phase was the single phase constituent in their outmost layers. The phase transformation (Ti,X){sub 5}Si{sub 4} {yields} (Ti,X){sub 5}Si{sub 3} + Si occurred in the intermediate layers of the coatings prepared at 1350 and 1400 deg. C with prolonging co-deposition time, similar to the situation in the coatings prepared at 1250 deg. C for 15 and 20 h, but this transformation has been speeded up by increase in the co-deposition temperature. The transitional layers were mainly composed of (Ti,X){sub 5}Si{sub 3} phase in all coatings. The influence of co-deposition temperature on the diffusion ability of Cr atoms was greater than that of Si atoms in the Si-Cr co

  20. Effect of Fe substitution at the Ni and Mn sites on the magnetic properties of Ni50Mn35In15 Heusler alloys

    International Nuclear Information System (INIS)

    Halder, Madhumita; Suresh, K.G.

    2015-01-01

    The structural and magnetic properties of Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 Heusler alloys have been investigated. At room temperature, Ni 48 Fe 2 Mn 35 In 15 has L2 1 cubic structure, whereas Ni 50 Mn 34 FeIn 15 shows a two-phase structure due to the martensitic transition. In the case of Ni 48 Fe 2 Mn 35 In 15 , there is only one magnetic transition at 316 K with no martensitic transition. However, in Ni 50 Mn 34 FeIn 15 , we observe the martensitic transition at about 280 K. The Curie temperatures for austenite and martensite phases are 314 and 200 K, respectively. The maximum magnetic entropy changes are found to be 5.5 and 4.5 J kg −1 K −1 for Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 , respectively, for 50 kOe. Ni 50 Mn 34 FeIn 15 exhibits exchange bias behavior, with a bias field of 130 Oe at 5 K. Both the alloys satisfy the empirical relation between the martensitic transition and the valence electron concentration (e/a) ratio. - Highlights: • Structural and magnetic properties of Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 Heusler alloys have been investigated. • Ni 48 Fe 2 Mn 35 In 15 does not undergo a martensitic transition, whereas Ni 50 Mn 34 FeIn 15 shows martensitic transition. • Ni 50 Mn 34 FeIn 15 alloy exhibits exchange bias behavior. • Both alloys satisfy the empirical relation between martensitic transition and valence electron concentration (e/a)

  1. The effects of minor alloy modifications and heat treatment on the microstructure and creep rupture behavior of 2.25Cr-1Mo Steel

    International Nuclear Information System (INIS)

    Todd, J.A.; Chung, D.W.; Parker, E.R.

    1983-01-01

    The effects of alloy additions on the microstructure of simulated cooled and tempered 2.25Cr-1Mo steels have been studied using transmission electron microscopy. Carbide precipitation sequences have been identified in the modification 3Cr-1Mo-1Mn-1Ni and compared to those in 2.25Cr-1Mo steels modified with Mn and Ni and also with Ti, V and B. The influence of minor compositional changes on the creep rupture behavior of 2.25Cr-1Mo steel has been studied at 500 C, 560 C, and 600 C. The most significant effect of alloy modifications on creep properties resulted from additions of Mn and Cr. Preliminary studies show that 1% Mn and 0.5Mn + 1Ni + 0.75Cr additions significantly reduce creep strength at all three temperatures for tests up to 2000 hours duration. The 3Cr-1Mo-1Mn-1Ni steel showed improvements in rupture ductility at all temperatures when compared with the base 2.25Cr-1Mo steel and the manganese-nickel modifications. Plots of the Larson-Miller parameter for both these modifications lay within the scatter band for commercial 2.25Cr-1Mo steels

  2. Oxidation behavior of U-2wt%Nb, Ti, and Ni alloys in air

    International Nuclear Information System (INIS)

    Ju, J. S.; Yoo, K. S.; Jo, I. J.; Gug, D. H.; Su, H. S.; Lee, E. P.; Bang, K. S.; Kim, H. D.

    2003-01-01

    For the long term storage safety study of the metallic spent fuel, U-Nb, U-Ti, U-Ni, U-Zr, and U-Hf simulated metallic uranium alloys, known as corrosion resistant alloys, were fabricated and oxidized in oxygen gas at 200 .deg. C-300 .deg. C. Simulated metallic uranium alloys were more corrosion resistant than pure uranium metal, and corrosion resistance increases Nb, Ni, Ti in that order. The oxidation rates of uranium alloys determined and activation energy was calculated for each alloy. The matrix microstructure of the test specimens were analyzed using OM, SEM, and EPMA. It was concluded that Nb was the best acceptable alloying elements for reducing corrosion of uranium metal considered to suitable as candidate

  3. Ostwald ripening of decomposed phases in Cu-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Hernandez-Santiago, Felipe; Lopez-Hirata, Victor; Dorantes-Rosales, Hector J.; Saucedo-Munoz, Maribel L.; Gonzalez-Velazquez, Jorge L.; Paniagua-Mercado, Ana Ma.

    2008-01-01

    A study of the coarsening process of the decomposed phases was carried out in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys using transmission electron microscopy. As aging progressed, the morphology of the coherent decomposed Ni-rich phase changed from cuboids to platelets aligned in the Cu-rich matrix directions. Prolonged aging caused the loss of coherency between the decomposed phases and the morphology of the Ni-rich phase changed to ellipsoidal. The variation of mean radius of the coherent decomposed phases with aging time followed the modified LSW theory for thermally activated growth in ternary alloy systems. The linear variation of the density number of precipitates and matrix supersaturation with aging time, also confirmed that the coarsening process followed the modified LSW theory in both alloys. The coarsening rate was faster in the symmetrical Cu-45 wt.% Ni-10 wt.% Cr alloy due to its higher volume fraction of precipitates. The activation energy for thermally activated growth was determined to be about 182 and 102 kJ mol -1 in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys, respectively. The lower energy for the former alloy seems to be related to an increase in the atomic diffusion process as the chromium content increases. The size distributions of precipitates in the Cu-Ni-Cr alloys were broader and more symmetric than that predicted by the modified LSW theory for ternary alloys

  4. Electrochemical hydrogen storage behaviour of as-cast and as-spun RE-Mg-Ni-Mn-based alloys applied to Ni-MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanghuan; Hou, Zhonghui; Hu, Feng [Inner Mongolia University of Science and Technology, Baotou (China). Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources; Central Iron and Steel Research Institute, Beijing (China). Dept. of Functional Material Research; Cai, Ying [Inner Mongolia University of Science and Technology, Baotou (China). Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources; Qi, Yan; Zhao, Dongliang [Central Iron and Steel Research Institute, Beijing (China). Dept. of Functional Material Research

    2016-09-15

    La-Mg-Ni-Mn-based AB{sub 2}-type La{sub 1-x}Ce{sub x}MgNi{sub 3.5}Mn{sub 0.5} (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning. X-ray diffraction and scanning electron microscopy revealed that the experimental alloys consisted of a major phase LaMgNi{sub 4} and a secondary phase LaNi{sub 5}. The Ce substitution for La and melt spinning refined the grains of the alloys clearly. Electrochemical tests showed that the as-cast and as-spun alloys exhibited excellent activation capability. With the increase in the spinning rate and Ce content, the discharge capacities of the alloys initially increased and then decreased, whereas their cycle stabilities always increased. Moreover, the electrochemical kinetics of the alloys initially increased and then decreased with the growth of Ce content and spinning rate. The major reason leading to the capacity degradation of the alloy electrodes was determined to be the pulverisation of the alloy particles and the corrosion and oxidation of the alloy surface.

  5. Microstructural Influence on Dynamic Properties of Age Hardenable FeMnAl Alloys

    Science.gov (United States)

    2011-04-01

    strain amplitude on a wrought Fe-28Mn-9Al-0.86C-0.7W-0.43Mo-0.49Nb alloy and on a martensitic stainless steel of composition Fe-12Cr-1.25Ni-0.2V-1.8W...the martensite and loss of strength was used to explain the lower cyclic life of the stainless steel at elevated temperatures. Within the Fe-Mn-Al-C...through F in Table 2), 1010 carbon steel and 304 stainless steel as functions of exposure time in 1 atm flowing oxygen at 700°C (a) and 500°C (b).56

  6. Observations of a Cast Cu-Cr-Zr Alloy

    Science.gov (United States)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  7. Plastic deformation of Ni3Nb single crystals

    International Nuclear Information System (INIS)

    Hagihara, Kouji; Nakano, Takayoshi; Umakoshi, Yukichi

    1999-01-01

    Temperature dependence of yield stress and operative slip system in Ni 3 Nb single crystals with the D0 a structure was investigated in comparison with that in an analogous L1 2 structure. Compression tests were performed at temperatures between 20 C and 1,200 C for specimens with loading axes perpendicular to (110), (331) and (270). (010)[100] slip was operative for three orientations, while (010)[001] slip for (331) and [211] twin for (270) orientations were observed, depending on deformation temperature. The critical resolved shear stress (CRSS) for the (010)[100] slip anomaly increased with increasing temperature showing a maximum peak between 400 C and 800 C depending on crystal orientation. The CRSS showed orientation dependence and no significant strain rate dependence in the temperature range for anomalous strengthening. The [100] dislocations with a screw character were aligned on the straight when the anomalous strengthening occurred. The anomalous strengthening mechanism for (010)[100] slip in Ni 3 Nb single crystals is discussed on the basis of a cross slip model which has been widely accepted for some L1 2 -type compounds

  8. Synthesis, crystallization behavior and surface modification of Ni-Cr-Si-Fe amorphous alloy

    International Nuclear Information System (INIS)

    Iqbal, M.; Akhter, J.I.; Rajput, M.U.; Mahmood, K.; Hussain, Z.; Hussain, S.; Rafiq, M.

    2011-01-01

    A quaternary Ni/sub 86/Cr/sub 7/Si/sub 4/Fe/sub 3/ amorphous alloy was synthesized by melt spinning technique. Surface modification was done by electron beam melting (EBM), neutron irradiation and gamma-rays. Microstructure of as cast, annealed and modified samples was examined by scanning electron microscope. Crystallization behavior was studied by annealing the samples in vacuum at different temperatures in the range 773-1073 K. Techniques of X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for characterization. Differential scanning calorimetry (DSC) was conducted at various heating rates in the range 10-40 K/min. Thermal parameters like glass transition temperature T/sub g/, crystallization temperature T/sub x/, supercooled liquid region delta T/sub x/ and reduced glass transition temperature T/sub rg/ were measured. The Ni/sub 86/Cr/sub 7/Si/sub 4/Fe/sub 3/ alloy exhibits wide supercooled liquid region of 60 K indicating good thermal stability. The activation energy was calculated to be 160 +- 4 kJ/mol using Kissinger and Ozawa equations respectively which indicates high resistance against crystallization. The XRD results of the samples annealed at 773 K, 923 K, 973 K and 1073 K/20 min show nucleation of Ni/sub 2/Cr/sub 3/ and NiCrFe crystalline phases. Vickers microhardness of the as cast ribbon was measured to be 680. About 30-50 % increase in hardness was achieved by applying EBM technique. (author)

  9. Effect of Ni Addition on the Wear and Corrosion Resistance of Fe-20Cr-1.7C-1Si Hardfacing Alloy

    International Nuclear Information System (INIS)

    Lee, Sung Hoon; Kim, Ki Nam; Kim, Seon Jin

    2011-01-01

    In order to improve the corrosion resistance of Fe-20Cr-1.7C-1Si hardfacing alloy without a loss of wear resistance, the effect of Ni addition was investigated. As expected, the corrosion resistance of the alloy increased with increasing Ni concentration. The wear resistance of the alloy did not decrease, even though the hardness decreased, up to Ni concentration of 5 wt.%. This was attributed to the fact that the decrease in hardness was counterbalanced by the strain-induced martensitic transformation. The wear resistance of the alloy, however, decreased abruptly with increases of the Ni concentration over 5 wt.%.

  10. Effect of Mn on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy

    Directory of Open Access Journals (Sweden)

    Zhao Zhihao

    2012-11-01

    Full Text Available In order to improve the performances of the Al-Mg-Si-Cu-Cr-V alloy, various amounts of Mn (0-0.9wt.% were added. The effect of this Mn on the microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloys in different states, especially after hot extrution and solid solution treatment, was systematically studied using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and mechanical tests at room temperature. The results show that 0.2wt.% Mn can both refine the as-cast microstructure of the alloy and strengthen the extrusion+T6 state alloy without damaging the plasticity badly due to the formation of Al15(FeMn3Si2 and Al15Mn3Si2 dispersoids. Compared with the extrusion+T6 state alloy without Mn addition, the ultimate tensile strength and yield strength of the alloy with 0.2wt.% Mn addition are increased from 416.9 MPa to 431.4 MPa, 360.8 MPa to 372 MPa, respectively. The elongation of the extrusion+T6 state alloy does not show obvious change when the Mn addition is less than 0.5wt.%, and for the alloy with 0.2wt.% Mn addition its elongation is still as high as 15.6%. However, when over 0.7wt.% Mn is added to the alloy, some coarse, stable and refractory AlVMn and Al(VMnSi phases form. These coarse phases can reduce the effect of Mn on the inhibition of re-crystallization; and they retain the angular morphology permanently after the subsequent deformation process and heat treatment. This damages the mechanical properties of the alloy.

  11. Extractive photometric determination of zirconium in magnetic alloys

    International Nuclear Information System (INIS)

    Kutyrev, I.M.; Chernysheva, G.M.; Basargin, N.N.; Mikheev, N.I.

    1996-01-01

    A method for extractive photometric determination of Zr in magnetic alloys is presented. Extractive system - trioctylamine in toluene -H 2 SO 4 -Zr ensure selective and rapid (in single extraction) separation of Zr from Fe(3), Fe(2), Co, Ni, Cu, Al, Ti, Cr(3), Mn, Si, P, Nb, and Ta. The reliability of the method is confirmed in determination of Zr in the standerd sample SS 132c

  12. 3-D MnNb{sub 2}O{sub 6} nanogears from 1-D Nb{sub 2}O{sub 5} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weibing, E-mail: w.hu@tom.com [School of Chemical and Environmental Engineering, Hubei Institute for Nationalities, Enshi 445000 (China); Cui Zhicai [School of Chemical and Environmental Engineering, Hubei Institute for Nationalities, Enshi 445000 (China); Mi Yuanzhu [School of Chemistry and Environmental Engineering, Yangtze University, Nanhuan Road 1, Jingzhou 434023 (China)

    2012-04-16

    Graphical abstract: The geometry morphology of Nb-based nanomaterial evolved from long Nb{sub 2}O{sub 5} nanorods to a mixture of short Nb{sub 2}O{sub 5} nanorods and MnNb{sub 2}O{sub 6} 6-teeth nanogears, and eventually to fully developed pure 3-D nanogears. Highlights: Black-Right-Pointing-Pointer MnNb{sub 2}O{sub 6} nanogears have been generated by a simple solvothermal process when the Mn: Nb ratio was 1:1. Black-Right-Pointing-Pointer MnNb{sub 2}O{sub 6} 6-teeth nanogears accompanied with MnNb{sub 2}O{sub 6} 5-teeth nanogears are got when the Mn:Nb ratio reached 1:2. Black-Right-Pointing-Pointer The nanomaterial consists of nanorods and 6-teeth nanogears at low Mn:Nb molar ratio(1:4). Black-Right-Pointing-Pointer Pure long Nb{sub 2}O{sub 5} nanorods are achieved by only using NbCl{sub 5} - Abstract: MnNb{sub 2}O{sub 6} nanogears have been generated by using mixed NbCl{sub 5} and MnCl{sub 2} at an optimized ratio of 1:1 in a cyclohexanol solvent in a simple solvothermal process. It has shown that the Mn:Nb ratio determines the shape of the products. Detailed characterization by electron microscopy has shown that increasing the Mn{sup +2} concentration during the solvo-thermal synthesis promotes a morphological evolution from relatively long Nb{sub 2}O{sub 5} nanorods to a mixture of short Nb{sub 2}O{sub 5} nanorods and MnNb{sub 2}O{sub 6} 6-teeth nanogears, then to a mixture of short Nb{sub 2}O{sub 5} nanorods and more MnNb{sub 2}O{sub 6} 6-teeth nanogears, then to more and more MnNb{sub 2}O{sub 6} 6-teeth nanogears that are occasionally accompanied with under-developed MnNb{sub 2}O{sub 6} 5-teeth nanogears, and eventually to fully developed pure 3-D nanogears. The driving force for such interesting geometry transformations is attributed to the inclusion of Mn{sup 2+} into the Nb{sub 2}O{sub 5} template at low Mn{sup 2+} concentrations, which introduces internal stresses to the Nb{sub 2}O{sub 5} nanorods. At high Mn{sup 2+} concentrations, close to the

  13. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  14. The effect of hot pressing time on the microstructure and properties of Laves phase NbCr{sub 2} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, X. [College of Electromechanical Engineering, Nanjing University of Aeronautical and Astronautics, Nanjing 210016 (China); School of Materials Science and Engineering, Nanchang Institute of Aeronautical Technology, Nanchang 330063 (China); Lu, S.Q. [School of Materials Science and Engineering, Nanchang Institute of Aeronautical Technology, Nanchang 330063 (China)], E-mail: niatlusq@126.com; Hu, P.; Huang, M.G.; Nie, X.W. [School of Materials Science and Engineering, Nanchang Institute of Aeronautical Technology, Nanchang 330063 (China); Fu, M.W. [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2008-06-25

    The microstructure and properties were investigated on the Laves phase NbCr{sub 2} alloys prepared through 20 h mechanical alloying of niobium and chromium powders and subsequent hot pressing at 1250 deg. C for different time. The results indicate that the Laves phase NbCr{sub 2} alloy with homogeneous microstructure and fine grains and high relative density is obtained. With the increase of hot pressing time, the density, grain size and Vickers hardness increase, the fracture toughness, however, decreases gradually. The alloy fabricated by hot pressing at 1250 deg. C for 30 min has the best overall properties. Its average grain size reaches about 248 nm, the relative density is 97.8% and the fracture toughness at room temperature is more than 4.7 MPa m{sup 1/2}. Compared with the Laves phase NbCr{sub 2} alloy prepared by arc-melting, which has the fracture toughness of 1.2 MPa m{sup 1/2}, the fracture toughness in this research is increased significantly.

  15. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy

    Science.gov (United States)

    Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang

    2018-04-01

    Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.

  16. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application.

    Science.gov (United States)

    Okulov, I V; Pauly, S; Kühn, U; Gargarella, P; Marr, T; Freudenberger, J; Schultz, L; Scharnweber, J; Oertel, C-G; Skrotzki, W; Eckert, J

    2013-12-01

    The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys. © 2013.

  17. Influence on SME and microstructure in FeMnSiCrNi SMA for strengthening of austenite matrix

    International Nuclear Information System (INIS)

    Gu, N.; Lin, C.; Song, X.; Peng, H.; Yin, F.

    2000-01-01

    Influences of solution- and deformation-strengthening on SME and the microstructures of FeMnSiCrNi SMA were researched. SME and the training effect were both obviously improved when 0.3%C added into the alloy. It was observed that some thermo-induced martensites, distributing disorderly in the matrix, formed in the alloy without carbon, while in the alloy with carbon, more stress-induced martensites, distributing orderly in the matrix, were found, thus resulting in the better SME. As far as the treatment methods were concerned, one time deformation-strengthening could be better than training many times. The ε-martensites in the strengthened alloy appeared larger in amount, short plate in shape and distributed with nearly the same orientation, which is closely related to the better SME. (orig.)

  18. Supercritical water corrosion of high Cr steels and Ni-base alloys

    International Nuclear Information System (INIS)

    Jang, Jin Sung; Han, Chang Hee; Hwang, Seong Sik

    2004-01-01

    High Cr steels (9 to 12% Cr) have been widely used for high temperature high pressure components in fossil power plants. Recently the concept of SCWR (supercritical water-cooled reactor) has aroused a keen interest as one of the next generation (Generation IV) reactors. Consequently Ni-base (or high Ni) alloys as well as high Cr steels that have already many experiences in the field are among the potential candidate alloys for the cladding or reactor internals. Tentative inlet and outlet temperatures of the anticipated SCWR are 280 and 510 .deg. C respectively. Among many candidate alloys there are austenitic stainless steels, Ni base alloys, ODS alloys as well as high Cr steels. In this study the corrosion behavior of the high Cr steels and Ni base (or high Ni) alloys in the supercritical water were investigated. The corrosion behavior of the unirradiated base metals could be used in the near future as a guideline for the out-of-pile or in-pile corrosion evaluation tests

  19. Formation and structure of nanocrystalline Al-Mn-Ni-Cu alloys

    International Nuclear Information System (INIS)

    Latuch, J.; Krasnowski, M.; Ciesielska, B.

    2002-01-01

    This paper reports the results of the short investigation on the effect of Cu additions upon the nanocrystallization behaviour of an Al-Mn-Ni alloy. 2 at.% Cu added to the base alloy of Al 85 Mn 10 Ni 5 alloy by substitution for Mn(mischmetal). The control of cooling rate did not cause the formation of nanocrystals of fcc-Al phase. The nanocrystalline structure fcc-Al + amorphous phase in quarternary alloy was obtained by isothermal annealing and continuous heating method, but the last technique is more effective. The volume fraction, lattice parameter, and size of Al-phase were calculated. (author)

  20. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    International Nuclear Information System (INIS)

    Venkatesh, L.; Samajdar, I.; Tak, Manish; Doherty, Roger D.; Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S.V.

    2015-01-01

    Highlights: • Microstructural development during laser cladding has been studied. • In this multi component system Cr 7 C 3 is found to be the stable carbide phase. • Phases were identified by EBSD since XRD results were not conclusive. • Increase in laser power and/or scanning speed reduced the carbide content. • Hardness seems to depend on phase content as well as microstructure. - Abstract: Microstructural development in laser clad layers of Chromium carbide (Cr x C y )-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr 3 C 2 and Cr 7 C 3 , the clad layers showed only the presence of Cr 7 C 3 . Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr 7 C 3 with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr 7 C 3 is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ 2 ) of the Cr 7 C 3 dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  1. Discharge capacity and microstructures of La Mg Pr Al Mn Co Ni alloys for nickel-metal hydride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Casini, J.C.S.; Galdino, G.S.; Ferreira, E.A.; Takiishi, H.; Faria, R.N., E-mail: jcasini@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (DM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Dept. de Metalurgia

    2010-07-01

    La{sub 0.7-x}Mg{sub x}Pr{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} (x = 0.0, 0.3 and 0.7) alloys have been investigated aiming the production of negative electrodes for nickel-metal hydride batteries. The alloys employed in this work were used in the as cast state. The results showed that the substitution of magnesium by lanthanum increased the discharge capacity of the Ni-MH batteries. A battery produced with the La{sub 0.4}Mg{sub 0.3}Pr{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} alloy shown a high discharge capacity (380mAh/g) also good stability compared to other alloys. The electrode materials were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). (author)

  2. Formation, thermal stability and mechanical properties of bulk glassy alloys with a diameter of 20 mm in Zr-(Ti,Nb)-Al-Ni-Cu system

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang, Q.S.; Zhang, W.; Yubuta, K.; Son, K.S.; Wang, X.M.

    2009-01-01

    Bulk glassy alloy rods with a diameter of 20 mm were produced for Zr 61 Ti 2 Nb 2 Al 7.5 Ni 10 Cu 17.5 and Zr 60 Ti 2 Nb 2 Al 7.5 Ni 10 Cu 18.5 by a tilt casting method. The replacement of Zr by a small amount of Ti and Nb caused a distinct increase in the maximum diameter from 16 mm for Zr 65 Al 7.5 Ni 10 Cu 17.5 to 20 mm, accompanying the decrease in liquidus temperature and the increase in reduced glass transition temperature. The primary precipitation phase from supercooled liquid also shows a distinct change, i.e., from coexistent Zr 2 Cu, Zr 2 Ni and Zr 6 NiAl 2 phases for the 65%Zr alloy to an icosahedral phase for the 61%Zr and 60%Zr alloys. These results allow us to presume that the enhancement of the glass-forming ability is due to an increase in the stability of supercooled liquid against crystallization caused by the development of icosahedral short-range ordered atomic configurations. The 60%Zr specimens taken from the central and near-surface regions in the transverse cross section at the site which is 15 mm away from the bottom surface of the cast glassy rod with a diameter of 20 mm exhibit good mechanical properties under a compressive deformation mode, i.e., Young's modulus of 81 GPa, large elastic strain of 0.02, high yield strength of 1610 MPa and distinct plastic strain of 0.012. Besides, a number of shear bands are observed along the maximum shear stress plane on the peripheral surface near the final fracture site. The finding of producing the large scale Zr-based bulk glassy alloys exhibiting reliable mechanical properties is encouraging for future advancement of bulk glassy alloys as a new type of functional material. (author)

  3. Abrupt symmetry decrease in the ThT2Al20 alloys (T = 3d transition metal)

    International Nuclear Information System (INIS)

    Uziel, A.; Bram, A.I.; Venkert, A.; Kiv, A.E.; Fuks, D.; Meshi, L.

    2015-01-01

    Th-T-Al system, where T-3d transition metals, was studied at ThT 2 Al 20 stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT 2 Al 20 phase adopts CeCr 2 Al 20 structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT 2 Al 20 alloys. • It was found that cubic ThT 2 Al 20 phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT 2 Al 10 are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results

  4. Effects of lipopolysaccharides on the corrosion behavior of Ni-Cr and Co-Cr alloys.

    Science.gov (United States)

    Yu, Weiqiang; Qian, Chao; Weng, Weimin; Zhang, Songmei

    2016-08-01

    Lipopolysaccharides (LPS) are constituents of gingival crevicular fluid and may affect the base metal alloys used in metal ceramic crowns. The role of LPS in base metal alloys is currently unknown. The purpose of this in vitro study was to evaluate the effects of gram-negative bacterial LPS on the electrochemical behavior of Ni-Cr and Co-Cr alloys. Alloy specimens were divided into 4 groups according to Escherichia coli LPS concentration (0, 0.15, 15, and 150 μg/mL) in acidic saliva (pH 5). Open circuit potential (OCP) and potentiodynamic polarization behavior were examined using a computer-controlled potentiostat. Metal ions released from the 2 alloys were measured by immersion in LPS-free solution and 150 μg/mL LPS solution and analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Data were evaluated using 1-way ANOVA (α=.05). Compared with control groups, medium LPS concentration (15 μg/mL) accelerated Ni-Cr alloy corrosion (Palloy corrosion (Pcorrosion current density, and polarization resistance parameters. After immersion in high LPS concentrations (150 μg/mL), a slight increase in Ni ion release (P >.05) was observed for the Ni-Cr alloy, while a more significant Co ion release (Palloy. LPS negatively affected the electrochemical behavior of both the Ni-Cr and Co-Cr alloys. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Crystal and magnetic structures of Cr{sub 1∕3}NbSe{sub 2} from neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gubkin, A. F., E-mail: agubkin@imp.uran.ru; Baranov, N. V. [M.N. Miheev Institute of Metal Physics, Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Natural Sciences, Ural Federal University, 620083 Yekaterinburg (Russian Federation); Proskurina, E. P.; Sherokalova, E. M.; Selezneva, N. V. [Institute of Natural Sciences, Ural Federal University, 620083 Yekaterinburg (Russian Federation); Kousaka, Y.; Akimitsu, J. [Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Center for Chiral Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Miao, P.; Lee, S.; Ishikawa, Y.; Torii, S. [Institute of Materials Structure Science, KEK, Tokai, Ibaragi 319-1106 (Japan); Zhang, J. [Institute of Materials Structure Science, KEK, Tokai, Ibaragi 319-1106 (Japan); China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803, Guangdong (China); Kamiyama, T. [Institute of Materials Structure Science, KEK, Tokai, Ibaragi 319-1106 (Japan); Sokendai (Graduate University for Advanced Studies), KEK, Tokai, Ibaragi 319-1106 (Japan); Campo, J. [Aragón Materials Science Institute (CSIC - University of Zaragoza), 50009 Zaragoza (Spain)

    2016-01-07

    Neutron diffraction measurements of the Cr intercalated niobium diselenide Cr{sub 1∕3}NbSe{sub 2} together with magnetization measurements have revealed that this compound exhibits ferromagnetic ordering below T{sub C} = 96 K unlike a chiral helimagnetic order observed in the sulfide compound Cr{sub 1∕3}NbS{sub 2}. As derived from neutron diffraction data, the Cr magnetic moments μ{sub Cr} = 2.83 ± 0.03 μ{sub B} in Cr{sub 1∕3}NbSe{sub 2} are aligned within basal plane. The discrepancy in the magnetic states of Cr{sub 1∕3}NbS{sub 2} and Cr{sub 1∕3}NbSe{sub 2} is ascribed to the difference in the preferential site occupation of Cr ions in crystal lattices. In Cr{sub 1∕3}NbSe{sub 2}, the Cr ions are predominantly distributed over 2b Wyckoff site, which determines a centrosymmetric character of the crystal structure unlike Cr{sub 1∕3}NbS{sub 2}, where the Cr ions are mainly located in 2c position and the crystal structure is non-centrosymmetric.

  6. Evaluation of Some (n,n'), (n,γ), (n,p), (n,2n) and (n,3n) Reaction Excitation Functions for Fission and Fusion Reactor Dosimetry Applications; Evaluation of the Excitation Functions for the 54Fe(n,p)54Mn, 58Ni(n,2n)57Ni, 67Zn(n,p)67Cu, 92Mo(n,p)92mNb, 93Nb(n,γ)94Nb, 113In(n,n')113mIn, 115In(n,γ) 116mIn, and 169Tm(n,3n)167Tm Reactions. Progress Report on Research Contract No 16242

    International Nuclear Information System (INIS)

    Zolotarev, K.I.; Zolotarev, P.K.

    2013-12-01

    Cross section data for the 54 Fe(n,p) 54 Mn, 58 Ni(n,2n) 57 Ni, 67 Zn(n,p) 67 Cu, 92 Mo(n,p) 92m Nb, 93 Nb(n,γ) 94 Nb, 113 In(n,n') 113m In, 115 In(n,γ) 116m In, 169 Tm(n,3n) 167 Tm reactions are needed to solve a wide spectrum of scientific and technical tasks. Activation detectors based on these reactions may be used in the field of reactor dosimetry. Furthermore, the 54 Fe(n,p) 54 Mn reaction is often used in experimental nuclear physics as a monitor reaction for measurements of unknown cross sections by means of the activation method over the neutron energy range from 5 to 15 MeV. The 93 Nb(n,γ) 94 Nb reaction is also very promising for using in retrospective neutron dosimetry for determination of total neutron fluence during a campaign of a reactor. In the existing version of the International Reactor Dosimetry File and the new extended version named as IRDFF data for excitation functions of 67 Zn(n,p) 67 Cu, 92 Mo(n,p) 92m Nb, 113 In(n,n') 113m In, and 169 Tm(n,3n) 167 Tm reactions are absent. Data for these reactions are also absent in the JENDL/D-99 dosimetry file. Excitation functions of 67 Zn(n,p) 67 Cu and 169 Tm(n,3n) 167 Tm are presented in the TENDL-2012, EAF-2010, JENDL-4.0, JEFF-3.1/A, MENDL-2 libraries. Cross section data for the 67 Zn(n,p) 67 Cu reaction up to 20 MeV are given also in the JENDL/HE-2007 library. Excitation functions of the 92 Mo(n,p) 92m Nb and 113 In(n,n') 113m In reactions are evaluated in the EAF-2010 and JEFF-3.1/A libraries. Cross section data for the 113 In(n,n') 113m In reaction are given also in the TENDL-2010 library. It is necessary to note that neutron data in the JEFF-3.1/A and JENDL-4.0 libraries were evaluated up to 20 MeV. Neutron data in the TENDL-2012, EAF-2010, MENDL-2 and TENDL-2010 libraries had been evaluated up to 30 MeV, 60 MeV, 100 MeV and 200 MeV, respectively. Neutron cross sections in the MENDL-2, TENDL-2010 and TENDL-2012 libraries had been obtained on the basis of pure theoretical model calculations

  7. Hydrogen solubility in austenite of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Zhirnova, V.V.; Mogutnov, B.M.; Tomilin, I.A.

    1981-01-01

    Hydrogen solubility in Fe-Ni-Cr alloys at 600-1000 deg C is determined. Hydrogen solubility in ternary alloys can not be predicted on the basis of the data on its solubility in binary Fe-Ni, Fe-Cr alloys. Chromium and nickel effect on hydrogen solubility in iron is insignificant in comparison with the effect of these elements on carbon or nitrogen solubility [ru

  8. Spin reversal in Gd(Me,MnO3 (Me = Co, Ni

    Directory of Open Access Journals (Sweden)

    Gutiérrez, D.

    2004-06-01

    Full Text Available Partial substitution of the rare-earth by calcium at the cationic site of the ABO3 perovskites may show extraordinary effects of spin reversal due to a negative polarization between the rare-earth and the manganese networks, as it occurs in the solid solution Gd1‑xCaxMnO3. We present herein similar effects in gadolinium perovskites of the Gd(Me,MnO3 type, in which the manganese sublattice has been partially substituted by transition metal elements Me, leaving the gadolinium network intact. The spin reversal phenomena is observed at a critical concentration of x(Me = 1/3, which implies an optimum number of pairs Mn3+-Mn4+. Néel temperatures of 48 and 67 K are obtained for Me = Co and Ni, respectively, at the optimum concentration of substituent. A comparison between these different solid solutions allows us to generalize the interpretation of two interacting magnetic sublattices : a Mn-based ferromagnetic one and a negatively-aligned gadolinium network.La sustitución parcial del lantánido por el elemento calcio en el sitio catiónico (sitio A de la perovskita ABO3 puede dar lugar a efectos importantes ligados a una inversión del espín. Dicha inversión se debe a una interacción negativa entre la tierra rara y la subred de manganeso, tal como ocurre en la solución solida Gd1-xCaxMnO3. Se presentan en este trabajo efectos similares que ocurren en las perovskitas de gadolinio de fórmula Gd(Me,MnO3, en las cuales la subred de manganeso (sitio B ha sido reemplazada parcialmente por otros metales de transición Me, dejando intacta la subred de gadolinio. Se observa el fenómeno de inversión de espín para una concentración crítica x(Me = 1/3, para la cual se logra una cantidad óptima de pares Mn3+‑Mn4+. Para esta concentración crítica se observan temperaturas de Néel antiferromagnéticas del orden de 48 y 67 K, respectivamente para Me = Co y Ni. Un análisis comparativo entre estos diferentes sistemas permite generalizar la

  9. Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys

    Science.gov (United States)

    Fukuhara, Mikio; Umemori, Yoshimasa

    2013-11-01

    The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.

  10. On the corrosion testing of weldments of high alloyed CrNiMo-stainless steels and NiCrMo-alloys

    International Nuclear Information System (INIS)

    Riedel, G.; Voigt, C.; Werner, H.

    1997-01-01

    Weldments of high-alloyed CrNiMo stainless steels and NiCrMo alloys can be more susceptible to localized corrosion than the solution annealed basic material owing to segregations and precipitations in the heat affected zone, the high temperature zone and/or in the weld. To investigate these differences the FeCl 3 -test (10% FeCl 3 . 6aq), the test ''green death'' (11.5% H 2 SO 4 , 1.2% HCl, 1% CuCl 2 , 1% FeCl 3 ) as well as chronopotentiostatic tests in artificial sea water or in 3% NaCl-solution are used. In particular for testing the highest alloyed materials a CaCl 2 -test was developed (4.5 M CaCl 2 , chronopotentiostatic test in duration of 8 to 10 hours at + 200 mV (SCE)), which can be carried out to a temperature of 115 C at atmospheric pressure. The aggressivity increases in the range FeCl 3 -test, ''green death''-test, CaCl 2 -test. Matching and graduated over-alloyed weldments (TIG, heat input of 7 and 15.5 kJ/cm) of materials 1.4529, 1.4562, 2.4856, 2.4819 (german materials No.) are comparingly examined in various tests, of materials 1.4406, 1.4539, 1.4439 and 1.4563 (german materials No.) only matching weldments in the FeCl 3 -test. In strongly oxidizing media only a highly over-alloyed performed weldment (filler material 2.4607, german material No.) produces the best corrosion behaviour, measured as the critical temperatures of localized corrosion. Measurements of critical current densities of passivation can be used for investigations of corrosion behaviour of weldments, too. Critical current densities of passivation are showing a tendency to inverse proportion to the critical temperatures of localized corrosion. Suitable electrolytes are among others 0.2 M H 2 SO 4 + 1 M NaCl + 10 -3 % KSCN, N 2 -bubbled, 25 to 60 C and xM H 2 SO 4 + 4 M NaCl + 10 -3 % KSCN (x = 0.05 to 1), 25 C, in contact with air. An influence of heat input at the welding is indicated in the test of localized corrosion, but it is only small. It is sometimes more clearly shown at

  11. Development of Ti-12Mo-3Nb alloy for biomedical application

    International Nuclear Information System (INIS)

    Panaino, J.V.P.; Gabriel, S.B.; Mei, P.; Brum, M.V.; Nunes, C.A.

    2010-01-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  12. Formation process of lamella structures by deformation in an Fe-Mn-Si-Cr-Ni shape memory alloy

    International Nuclear Information System (INIS)

    Kikuchi, T.; Kajiwara, S.; Tomota, Y.

    1995-01-01

    For Fe-Mn-Si-Cr-Ni shape memory alloys, it was previously found by HREM study that the formation of the nanometric lamella structures consisting of f.c.c. and h.c.p. phase is very important to exhibit good shape memory effect. In the present work, the formation process of such lamella structures has been studied in detail. The results are as follows. The transformation is initiated by random formation of extremely thin martensite plates with 1-2 nm width and then these plates are clustered and some of them coalesce to form thicker martensite plates with increasing deformation. The clustered regions are 400-600 nm wide and will correspond to the above mentioned lamella structures. These clustered regions are considered also to correspond to the thinnest martensite plate observable with optical microscope. In the optical microscopic scale, the thin martenite plates with the smallest width are formed rather uniformly in an austenite grain, and with further increasing deformation, they are clustered and coalesce into thicker plates with 3-8 μm width. (orig.)

  13. Structural high-temperature and (βNiAl+γ)-alloys based on Ni-Al-Co-Me systems with an improved low-temperature ductility

    International Nuclear Information System (INIS)

    Povarova, K.B.; Kazanskaya, N.K.; Drozdov, A.A.; Lomberg, B.S.; Gerasimov, V.V.

    2001-01-01

    The βNiAl-based alloys (B2) have lower density higher resistance to oxidation, and higher melting temperature relative to those of Ni-superalloys or γ'Ni 3 Al-base alloys. An improved low-temperature ductility of advanced Ni-AI-Co-M β+γ alloys(El=9-16 % at 293-1173 K is achieved due to the formation γ-Ni solid solution intergranular interlayers of eutectic origin. Secondary γ and/or γ' precipitates form in the grains of the supersaturated β-solid solution upon heat treatment at 1473-1573 K and 1073-1173 K. The limiting contents of alloying elements (Ti, Hf, Nb, Ta, Cr, Mo) for the (β+γ) alloys Ni - (19-29) % AI - (22-35) % Co, are determined which allowed to avoid the formation of primary γ'-phase (decrease solidus temperature ≤1643 K) and hard phases of the types σ, η and δ (decrease ductility). Alloying affects the morphology of the secondary γ and γ' precipitates: globular equiaxed precipitates are formed in the alloys containing Cr, Mo, and needle precipitates are formed in alloys alloys containing γ'-forming elements Nb, Ta and, especially, Ti and Hf. After directional solidification, (β+γ')-alloys have directed columnar special structure with a low extension of transverse grain boundaries. This microstructure allows one to increase UTS, by a factor 1,5-2 and long-term strength (time to rupture increase by a factor of 5-10 at 1173 K). (author)

  14. Influence of Pr in the microstructure and electrical properties in LaPrMgAlMnCoNi based alloys for using for Ni-MH batteries

    International Nuclear Information System (INIS)

    Galdino, Gabriel Souza

    2011-01-01

    The La 0.7-x Pr x Mg 0.3 Al 0.3 Mn- 0.4 Co 0.5 Ni 3.8 (x= 0 a 0.7) as-cast alloys to apply in negative electrodes for nickel-metal hydride batteries (Ni-MH). The characterizations of the alloys were realized by: scanning electron microscope (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction techniques. A study of hydrogen absorption capacity of the alloys realized. The hydrogenation of the material was performed in two processes: the low pressure (0.2 MPa of hydrogen and temperature of the 773 K) and high pressure (1 MPa of hydrogen and temperature of the 298 K). It was observed that with increasing Pr content occurred a decrease the hydrogen absorption capacity. The capacity of discharge of the batteries was determined utilizing an analyzer digital computerized composed of four channels. It was observed decreases of the discharge capacity of the batteries when increase praseodymium content in La 0.7- x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni-3 .8 (x= 0 a 0.3) alloys. The highest discharge capacity (386 mAhg -1 ) and stability cyclic were obtained to La 0.2 Pr 0.5 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy. This capacity can be related to the higher proportion of phase LaMg 2 Ni 9 in the alloy with the addition of 0.5 at.% Pr. (author)

  15. Shape memory effect of Fe-17%Mn-X alloys

    International Nuclear Information System (INIS)

    Lee, S.-H.; Kim, H.-J.; Choi, C.-S.; Baik, S.-H.

    2000-01-01

    SME of Fe-17%Mn-X alloy decreased with increasing Ni and Cr contents. This is because the occurrence of stress-induced martensite transformation of γ to ε is difficult due to the increase in stability of retained austenite with increasing Ni and Cr contents. SME of Fe-17%Mn-X alloy increased with increasing the number of thermal cycles. The reason is that the prior bending deformation for SME is associated with coalescence of the pre-existing ε plates due to their rearrangement, thereby the more the ε content, the greater the SME. (orig.)

  16. Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Joo, S.-H.; Kato, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Jang, M.J.; Moon, J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Tsai, C.W.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Kim, H.S., E-mail: hskim@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Center for High Entropy Alloys, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of)

    2017-03-24

    The tensile deformation and strain hardening behaviors of an equimolar CoCrFeMnNi high-entropy alloy (HEA) were investigated and compared with low and medium entropy equiatomic alloys (LEA and MEA). The HEA had a lower yield strength than the MEA because the addition of Mn weakens solid solution hardening in the HEA. However, deformation twinning induced the multiple stage strain hardening behavior of the HEA and enhanced strength and elongation. Using tensile-interrupted electron backscatter diffraction analysis, geometrically necessary dislocations were observed as plume-shaped features in grain interior, and a considerable texture was characterized, which is typical of face centered cubic metals. Moreover, the relationship between favorably oriented grains and twinning in the HEA bore a clear resemblance to the same tendency in TWIP steels. The thickness of the twin bundles was less than 100 nm. A high density of stacking defects was found in the nanotwins. Nano twinning and stacking faults were found to contribute to the remarkable mechanical properties. Deformation induced twinning not only demonstrated the dynamic Hall-Petch effect but also changed dislocation cell substructures into microband structures.

  17. Effects of Nb doping level on the electronic transport, photoelectric effect and magnetoresistance across La0.5Ca0.5MnO3/Nb:SrTiO3 junctions

    Science.gov (United States)

    Wang, J. F.; Jiang, Y. C.; Chen, M. G.; Gao, J.

    2013-12-01

    Heterojunctions composed of La0.5Ca0.5MnO3 and Nb doped SrTiO3 were fabricated, and the effects of the Nb doping level on their electronic transport, photoelectric effect, and magnetoresistance were investigated. A lower doping concentration of Nb led to better rectifying properties and higher open circuit voltages. The I-V curves for La0.5Ca0.5MnO3/0.7 wt. % Nb-SrTiO3 showed a negligible response to magnetic fields for all temperatures, whereas La0.5Ca0.5MnO3/0.05 wt. % Nb-SrTiO3 exhibited distinct magnetoresistance, which depended on both the bias voltage and temperature. These results are discussed with the assistance of conventional semiconductor theories.

  18. The behavior of ZrO_2/20%Y_2O_3 and Al_2O_3 coatings deposited on aluminum alloys at high temperature regime

    International Nuclear Information System (INIS)

    Pintilei, G.L.; Crismaru, V.I.; Abrudeanu, M.; Munteanu, C.; Baciu, E.R.; Istrate, B.; Basescu, N.

    2015-01-01

    Highlights: • In both the ZrO_2/20%Y_2O_3 and Al_2O_3 coatings the high temperature caused a decrease of pores volume and a lower thickness of the interface between successive splats. • The NiCr bond layer in the sample with a ZrO_2/20%Y_2O_3 suffered a fragmentation due to high temperature exposure and thermal expansion which can lead to coating exfoliation. • The NiCr bond layer in the sample with an Al_2O_3 coating showed an increase of pore volume due to high temperature. - Abstract: Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO_2/20%Y_2O_3 and Al_2O_3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  19. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm2O3 addition prepared by laser deposition

    International Nuclear Information System (INIS)

    Zhang Shihong; Li Mingxi; Yoon, Jae Hong; Cho, Tong Yul

    2008-01-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm 2 O 3 powders, which are prepared on Q235 steel plate by 2.0 kW CO 2 laser deposition. The results indicate that with rare earth oxide Sm 2 O 3 addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm 2 O 3 /Ni-base alloy coatings have similar microstructure showing the primary phase of γ-Ni dendrite and eutectic containing γ-Ni and Cr 23 C 6 phases. However, compared to micron-Sm 2 O 3 /Ni-base alloy, preferred orientation of γ-Ni dendrite of nano-Sm 2 O 3 /Ni-base alloy is weakened. Planar crystal of several-μm thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm 2 O 3 /Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm 2 O 3 /Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm 2 O 3 size from micron to nano. The improvement on tribological property of nano-Sm 2 O 3 /Ni-base alloy over micron-Sm 2 O 3 /Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO 3 solution, the corrosion resistance is greatly improved with nano-Sm 2 O 3 addition since the decrease of corrosion ratio along grain-boundary in nano-Sm 2 O 3 /Ni-base alloy coating contributes to harmonization of corrosion potential

  20. Development of an oxidation resistant glass-ceramic composite coating on Ti-47Al-2Cr-2Nb alloy

    Science.gov (United States)

    Li, Wenbo; Zhu, Shenglong; Chen, Minghui; Wang, Cheng; Wang, Fuhui

    2014-02-01

    Three glass-ceramic composite coatings were prepared on Ti-47Al-2Cr-2Nb alloy by air spraying technique and subsequent firing. The aim of this work is to study the reactions between glass matrix and inclusions and their effects on the oxidation resistance of the glass-ceramic composite coating. The powders of alumina, quartz, or both were added into the aqueous solution of potassium silicate (ASPS) to form slurries used as the starting materials for the composite coatings. The coating formed from an ASPS-alumina slurry was porous, because the reaction between alumina and potassium silicate glass resulted in the formation of leucite (KAlSi2O6), consuming substantive glass phase and hindering the densification of the composite coating. Cracks were observed in the coating prepared from an ASPS-quartz slurry due to the larger volume shrinkage of the coating than that of the alloy. In contrast, an intact and dense SiO2-Al2O3-glass coating was successfully prepared from an ASPS-alumina-silica slurry. The oxidation behavior of the SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy was studied at 900 °C. The SiO2-Al2O3-glass composite coating acted as an oxygen diffusion barrier, and prevented the inward diffusion of the oxygen from the air to the coating/alloy interface, therefore, decreasing the oxidation rate of the Ti-47Al-2Cr-2Nb alloy significantly.

  1. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, L., E-mail: venkatesh@arci.res.in [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005 (India); Department of Metallurgical Engineering & Materials Science, IIT Bombay, Powai, Mumbai 400076 (India); Samajdar, I. [Department of Metallurgical Engineering & Materials Science, IIT Bombay, Powai, Mumbai 400076 (India); Tak, Manish [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005 (India); Doherty, Roger D. [Department of Materials Engineering, Drexel University, Philadelphia, PA 19104 (United States); Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S.V. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005 (India)

    2015-12-01

    Highlights: • Microstructural development during laser cladding has been studied. • In this multi component system Cr{sub 7}C{sub 3} is found to be the stable carbide phase. • Phases were identified by EBSD since XRD results were not conclusive. • Increase in laser power and/or scanning speed reduced the carbide content. • Hardness seems to depend on phase content as well as microstructure. - Abstract: Microstructural development in laser clad layers of Chromium carbide (Cr{sub x}C{sub y})-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr{sub 3}C{sub 2} and Cr{sub 7}C{sub 3}, the clad layers showed only the presence of Cr{sub 7}C{sub 3}. Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr{sub 7}C{sub 3} with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr{sub 7}C{sub 3} is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ{sub 2}) of the Cr{sub 7}C{sub 3} dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  2. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Rebak, Raul B.

    2009-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly-corrosive environments. This versatility is due to the excellent performance of nickel in hot alkaline solutions and the beneficial effect of chromium and molybdenum in oxidizing and reducing conditions, respectively. Alloy C-22 (22 % Cr-13 % Mo-3% W) is a well known versatile member of this family. Due to its excellent corrosion resistance in a wide variety of environments, Alloy C-22 has been selected for the fabrication of the corrosion-resistant outer shell of the high-level nuclear waste container. The increasing demand of the industry for corrosion resistant alloys with particular properties of corrosion and mechanical resistance has led to the development of new alloys. Alloy C-22HS (Ni-21 % Cr-17 % Mo) is a new high-strength corrosion resistant material recently developed and introduced into the market. This alloy provides a corrosion resistance comparable with that of other C-type alloys, and it can also be age hardened to effectively double its yield strength. HASTELLOY HYBRID-BC1 (Ni-22 % Mo-15 % Cr) is a new development intended for filling the gap between Ni-Mo and Ni-Cr-Mo alloys. This novel alloy is able to withstand HCl and H 2 SO 4 , even in the presence of dissolved oxygen and other oxidizing species. Its resistance to chloride-induced pitting corrosion, crevice corrosion and stress corrosion cracking is also remarkable. Thermal aging of Ni-Cr-Mo alloys leads to microstructure changes depending on the temperature range and exposure time at temperature. A Long Range Ordering (LRO) reaction can occur in the range of 350 C degrees to 600 C degrees, producing an ordered Ni 2 (Cr,Mo) phase. This ordering reaction does not seem to affect the corrosion resistance and produces only a slight loss in ductility. LRO transformation is homogeneous and has proven to be useful to fabricate the age-hard enable Alloy C22-HS. Tetrahedral Close Packed (TCP) phases, like μ, σ and

  3. Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys

    Science.gov (United States)

    Li, Hui; Xia, Shuang; Liu, Wenqing; Liu, Tingguang; Zhou, Bangxin

    2013-08-01

    Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni-Cr-Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni-Cr-Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni-Cr-Fe alloys were carried out based on the experimental results. The impurity and solute atoms segregate inhomogeneously in the same grain boundary both in 304 SS and Alloy 690. The grain boundary segregation tendencies (Sav) are B (11.8 ± 1.4) > P (5.4 ± 1.4) > N (4.7 ± 0.3) > C (3.7 ± 0.4) in 304 SS, and B (6.9 ± 0.9) > C (6.7 ± 0.4) > Si (1.5 ± 0.2) in Alloy 690. Cr atoms may co-segregate with C atoms at grain boundaries before carbide nucleation at the grain boundaries both in 304 SS and Alloy 690. Ni atoms generally deplete at grain boundary both in 304 SS and Alloy 690. The literature shows that the Ni atoms may co-segregate with P atoms at grain boundaries [28], but the P atoms segregation do not leads to Ni segregation in the current study. In the current study, Fe atoms may segregate or deplete at grain boundary in Alloy 690. But Fe atoms generally deplete at grain boundary in 304 SS. B atoms have the strongest grain boundary segregation tendency both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of B in 304 SS is higher than in Alloy 690. C atoms are easy to segregate at grain boundaries both in 304 SS and Alloy 690. The grain boundary segregation

  4. Characterisation of Pb(Mn{sub 1/3}Nb{sub 2/3})O{sub 3} ceramics by SEM, XRD, XPS and dielectric permittivity tests

    Energy Technology Data Exchange (ETDEWEB)

    Molak, A. [Institute of Physics, University of Silesia, Ul. Uniwersytecka 4, PL-40-007 Katowice (Poland)]. E-mail: molak@us.edu.pl; Talik, E. [Institute of Physics, University of Silesia, Ul. Uniwersytecka 4, PL-40-007 Katowice (Poland); Kruczek, M. [Institute of Physics, University of Silesia, Ul. Uniwersytecka 4, PL-40-007 Katowice (Poland); Paluch, M. [Institute of Physics, University of Silesia, Ul. Uniwersytecka 4, PL-40-007 Katowice (Poland); Ratuszna, A. [Institute of Physics, University of Silesia, Ul. Uniwersytecka 4, PL-40-007 Katowice (Poland); Ujma, Z. [Institute of Physics, University of Silesia, Ul. Uniwersytecka 4, PL-40-007 Katowice (Poland)

    2006-03-15

    The Pb(Mn{sub 1/3}Nb{sub 2/3})O{sub 3} ceramics has been obtained from oxides by sintering in air, using a two-stage process with precursor columbite-like (Mn{sub 0.5}Nb)O{sub 3} phase. The PbO oxide was added in the second stage. Analysis of the X-ray diffraction pattern shows that the ceramics consist of 91% of major perovskite phase. A monoclinic distortion of the perovskite structure was found. The cell parameters are a = 12.193(3) A, b = 11.966(6) A, c 12.144(2) A, {beta} = 90{sup o}10.7'. The microanalysis made with SEM exhibited fluctuation in chemical composition of the perovskite phase. Precipitation of MnO{sub 2}, PbO and the Pb-Mn-Nb-O phase different from perovskite was found. The X-ray photoelectron spectroscopy was used to study the electronic structure of the Pb(Mn{sub 1/3}Nb{sub 2/3})O{sub 3} ceramics. The core levels of lead, manganese, niobium and oxygen were measured. The shape of valence band ridge is influenced by Mn 3d states. The real average chemical composition obtained from the XPS measurement is Pb{sub 0.99}(Mn{sub 0.42}Nb{sub 0.67})O{sub 2.92}. Broadband dielectric measurement was carried out in 10{sup -2} to 10{sup 6} Hz and within 80-700 K ranges. The dominant relaxation process exhibits characteristic times typical for ionic processes {tau} {sub 0,H} = 1 x 10{sup -11} s for the higher temperature range and, {tau} {sub 0,L} = 1 x 10{sup -9} s for lower temperatures. The activation energy of relaxation process, E {sub M,H} = 0.43 eV and E {sub M,L} = 0.34 eV corresponds to activation energy of electric conductivity. The dielectric relaxation is ascribed to dipoles created by oxygen vacancies and/or Mn-V {sub O} complexes.

  5. Method of mechanochemical synthesis for the production of nanocrystalline Nb-Al alloys

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tret'yakov, K.V.; Logacheva, A.I.; Logunov, A.V.; Razumovskij, I.M.

    2004-01-01

    Using X-ray diffraction and DS analyses the process of solid phase synthesis on cooperative comminution of components (Nb, Al, Cr) in a planetary ball mill is investigated. Powder nanocrystalline Nb 3 Al base alloys of various compositions with simultaneous introduction of chromium are synthesized. High power milling results in block size of ∼ 20 nm. It is shown that final chromium dissolution and partial decomposition of Nb(Al) supersaturated solid solutions proceed after heating up to 1100 deg C only. With the help of doping with niobium by the method of mechanical alloying, a two-phase alloy Nb 3 Al + Nb 2 Al having been produced by arc melting, is corrected by composition and transferred to the two-phase region of Nb 3 Al + Nb(Al). It is revealed that the process of niobium aluminide phase formation during mechanochemical synthesis and the process of mechanical activation of Nb-Al system intermetallics enriched with niobium always proceed through formation of supersaturated solid solutions. The mechanism of the process is probably associated with stacking faults formation due to deformation [ru

  6. Investigation of Mn Implanted LiNbO3 applying electron paramagnetic resonance technique

    International Nuclear Information System (INIS)

    Darwish, A.; Ila, D.; Poker, D.B.; Hensley, D.K.

    1997-10-01

    The effect of ion implantation on the LiNbO 3 crystal is studied using electron paramagnetic resonance spectroscopy (EPR). EPR measurements on these crystals were performed as a function of ion species Mn and Fe and fluence at room temperature. Also the effect of the laser illumination on the EPR signal was determined by illuminating the crystal in situ and measuring the decay and growth of the EPR signal. LiNbO 3 :Mn 2+ at a depth of approximately 200 nm was formed by implantation of 2.5 x 10 14 Mncm 2 and 1 x 10 17 Mn/cm 2 at 2 MeV. The implanted samples were compared with bulk doped crystals. It was found that the decay and growth of Mn EPR for the implanted crystal is very small compared with the bulk doped LiNbO 3 :Mn crystal. This was found to be primarily due to the spin concentration on the crystals. On the other, hand the decay time of the high fluence is about 40% slower than the decay of the low fluence implanted crystal

  7. Ductile-phase toughening and fatigue crack growth in Nb3Al base alloys

    International Nuclear Information System (INIS)

    Gnanamoorthy, R.; Hanada, S.

    1996-01-01

    Niobium aluminide (Nb 3 Al) base intermetallic compounds exhibit good high-temperature strength and creep properties and potential for applications above 1,200 C provided their inadequately low room-temperature ductility, fracture toughness and fatigue crack growth behavior are improved. Addition of tantalum to Nb 3 Al base materials improves the high-temperature strength significantly and seems to be a potential alloying element. In the present study, room temperature fracture toughness and fatigue crack growth behavior of tantalum alloyed Nb 3 Al base alloy prepared by ingot metallurgy are investigated

  8. Effect of boron addition on the microstructures and electrochemical properties of MmNi3.8Co0.4Mn0.6Al0.2 electrode alloys prepared by casting and rapid quenching

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Chen Meiyan; Wang Xinlin; Wang Guoqing; Lin Yufang; Qi Yan

    2004-01-01

    The rapid quenching technology was used in the preparation of the MmNi 3.8 Co 0.4 Mn 0.6 Al 0.2 B x (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys. The microstructures and electrochemical performances of the as-cast and quenched alloys were analysed and measured. The effects of boron additive on the microstructures and electrochemical properties of as-cast and quenched alloy MmNi 3.8 Co 0.4 Mn 0.6 Al 0.2 were investigated. The experimental results showed that the microstructure of as-cast MmNi 3.8 Co 0.4 Mn 0.6 Al 0.2 B x (x=0, 0.1, 0.2, 0.3, 0.4) alloy is composed of CaCu 5 -type main phase and a small amount of CeCo 4 B-type secondary phase. The abundance of the secondary phase increases with the increase of the boron content x. The secondary phase in the alloys disappears when quenching rate is larger than 22 m/s. The electrochemical measurement showed that the addition of boron slightly modifies the activation performance and dramatically enhances the cycle life of the alloys, whereas it reduces the capacities of the as-cast and quenched alloys. The influence of boron additive on the electrochemical characteristics of the as-quenched alloy is much stronger than that on the as-cast alloy. It is because boron strongly promotes the formation of the amorphous phase in the as-quenched alloy

  9. Al2O3 adherence on CoCrAl alloys

    International Nuclear Information System (INIS)

    Kingsley, L.M.

    1980-04-01

    Adherence of protective oxides on NiCrAl and CoCrAl superalloys has been promoted by a dispersion of a highly oxygen reactive element or its oxide being produced within the protection system. Two aspects of this subject are investigated here: the use of Al 2 O 3 as both the dispersion and protective oxide; and the production of an HfO 2 dispersion while simultaneously aluminizing the alloy. It was found that an Al 2 O 3 dispersion will act to promote the adherence of an external scale of Al 2 O 3 to a degree comparable to previously tested dispersions and an HfO 2 dispersion comparable to that produced by a Rhines pack treatment is produced during aluminization

  10. Development of Ti-12Mo-3Nb alloy for biomedical application; Desenvolvimento da liga Ti-12Mo-3Nb para aplicacao biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Panaino, J.V.P.; Gabriel, S.B., E-mail: josevicentepanaino@hotmail.co [Centro Universidade de Volta Redonda (UNIFOA), RJ (Brazil); Mei, P. [Universidade Estadual de Campinas (DEMa/UNICAMP), SP (Brazil). Dept. de Materiais; Brum, M.V. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Nunes, C.A. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  11. Large adiabatic temperature change in magnetoelastic transition in Ni{sub 50}Mn{sub 35}Cr{sub 2}Sn{sub 13} Heusler alloy of granular nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, H. R.; Sharma, S. K.; Ram, S., E-mail: prakashhr73@gmail.com [Materials Science Centre, Indian Institute of Technology, Kharagpur-721302 (India); Chatterjee, S. [High Magnetic Field Lab, UGC-DAE Consortium of Scientific Research, Kolkata-700098 (India)

    2016-05-06

    The Ni-Mn-Sn alloys are a pioneering series of magnetocaloric materials of a huge heat-energy exchanger in the martensite transition. A small additive of nearly 2 at% Cr effectively tunes the valence electron density of 8.090 electrons per atom and a large change in the entropy ΔS{sub M←A} = 4.428 J/kg-K (ΔS{sub M→A} = 3.695 J/kg-K in the recycle) at the martensite ← austenite phase transition as it is useful for the magnetic refrigeration and other cooling devices. The Cr additive tempers the tetragonality with the aspect ratio c/a = 0.903 of the martensite phase and exhibits an adiabatic temperature change of 10 K. At room temperature, a hysteresis loop exhibits 48.91 emu/g saturation magnetization and 82.1 Oe coercivity.

  12. Favorable ultraviolet photoelectric effects in TbMnO3/Nb-SrTiO3 heterostructures

    KAUST Repository

    Jin, Kexin; Zhai, Y. X.; Li, Hui; Tian, Y. F.; Luo, B. C.; Wu, Tao

    2014-01-01

    The rectifying properties and ultraviolet photoelectric effects in TbMnO3/Nb-doped SrTiO3 heterostructures have been investigated. The ideality factors and the diffusion voltages obtained from the current-voltage curves nonlinearly decrease

  13. Effect of chemical composition of Ni-Cr dental casting alloys on the bonding characterization between porcelain and metal.

    Science.gov (United States)

    Huang, H-H; Lin, M-C; Lee, T-H; Yang, H-W; Chen, F-L; Wu, S-C; Hsu, C-C

    2005-03-01

    The purpose of this study was to investigate the influence of chemical composition of Ni-Cr dental casting alloys on the bonding behaviour between porcelain and metal. A three-point bending test was used to measure the fracture load of alloy after porcelain firing. A scanning electron microscope, accompanied by an energy dispersion spectrometer, was used to analyse the morphology and chemical composition of the fracture surface. An X-ray photoelectron spectrometer and glow discharge spectrometer were used to identify the structure and cross-sectional chemical composition, respectively, of oxide layers on Ni-Cr alloys after heat treatment at 990 degrees C for 5 min. Results showed that the oxide layers formed on all Ni-Cr alloys contained mainly Cr2O3, NiO, and trace MoO3. The Ni-Cr alloy with a higher Cr content had a thicker oxide layer, as well as a weaker bonding behaviour of porcelain/metal interface. The presence of Al (as Al2O3) and Be (as BeO) on the oxide layer suppressed the growth of the oxide layer, leading to a better porcelain/metal bonding behaviour. However, the presence of a small amount of Ti (as TiO2) on the oxide layer did not have any influence on the bonding behaviour. The fracture propagated along the interface between the opaque porcelain and metal, and exhibited an adhesive type of fracture morphology.

  14. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing.

    Science.gov (United States)

    Qiu, Jing; Yu, Wei-Qiang; Zhang, Fu-Qiang; Smales, Roger J; Zhang, Yi-Lin; Lu, Chun-Hui

    2011-02-01

    This study evaluated the corrosion behaviour and surface properties of a commercial cobalt-chromium (Co-Cr) alloy and two nickel-chromium (Ni-Cr) alloys [beryllium (Be)-free and Be-containing] before and after a simulated porcelain-firing process. Before porcelain firing, the microstructure, surface composition and hardness, electrochemical corrosion properties, and metal-ion release of as-cast alloy specimens were examined. After firing, similar alloy specimens were examined for the same properties. In both as-cast and fired conditions, the Co-Cr alloy (Wirobond C) showed significantly more resistance to corrosion than the two Ni-Cr alloys. After firing, the corrosion rate of the Be-free Ni-Cr alloy (Stellite N9) increased significantly, which corresponded to a reduction in the levels of Cr, molybdenum (Mo), and Ni in the surface oxides and to a reduction in the thickness of the surface oxide film. The corrosion properties of the Co-Cr alloy and the Be-containing Ni-Cr alloy (ChangPing) were not significantly affected by the firing process. Porcelain firing also changed the microstructure and microhardness values of the alloys, and there were increases in the release of Co and Ni ions, especially for Ni from the Be-free Ni-Cr alloy. Thus, the corrosion rate of the Be-free Ni-Cr alloy increased significantly after porcelain firing, whereas the firing process had little effect on the corrosion susceptibility of the Co-Cr alloy and the Be-containing Ni-Cr alloy. © 2011 Eur J Oral Sci.

  15. Thermodynamics of oxygen solutions in Fe-40% Ni-15% Cr melts containing Mn, Si, Ti, Al

    International Nuclear Information System (INIS)

    Dashevskij, V.Ya.; Makarova, N.N.; Grigorovich, K.V.; Kashin, V.I.; Polikarpova, N.V.

    2000-01-01

    Thermodynamic analysis and experimental studied are performed for oxygen solutions in Fe-40% Ni-15% Cr melts where Mn, Si, Ti, Al are used as reducing agents. It is revealed that in the alloys studied the affinity of reducing agents to oxygen essentially lower than in liquid iron, nickel and Fe-40% Ni alloy. This is explained by the fact that the oxygen activity in melts noticeably decreases due to a high chromium content whereas the activity of reducing elements increases in a rather less degree. The agreement between analytical and experimental results confirms the validity of the calculation technique [ru

  16. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

    Science.gov (United States)

    Pang, Q.; Hu, Z. L.; Wu, G. H.

    2016-12-01

    Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

  17. Study on properties of stress relaxation for NiTiNb shape memory alloy

    International Nuclear Information System (INIS)

    Zhou Xuchang; Mo Huaqiang; Zeng Guangting; Shen Baoluo; Huo Yongzhong

    2002-01-01

    Stress relaxation tests at high temperature are performed for NiTiNb shape memory alloy to obtain the properties of stress relaxation. The relaxation curve fitted with the expression, which is deduced based on the relation between the relaxation and the creep. With the aid of experimental data, relaxation characteristic coefficient and remaining stress ratio are obtained, which characterize the relaxation behavior. The results of the study show that stress relaxation would be more evident with the higher temperature and/or greater initial stress. NiTiNb alloy has good relaxation resistance in the temperature range 300-400 degree C and the initial stress range 260-360 MPa. NiTiNb has better properties to resist relaxation than NiTiFe, therefore it is more applicable to work at high temperature

  18. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  19. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  20. Resistencia a la corrosión a alta temperatura de recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por APS

    Directory of Open Access Journals (Sweden)

    José Luis Tristancho-Reyes

    2014-12-01

    Full Text Available La corrosión a alta temperatura de las tuberías utilizadas en equipos generadores de vapor (calderas ha sido reconocida como un grave problema que trae consigo el adelgazamiento de éstas y, por consiguiente, la falla de los equipos. En la última década se han incrementado las investigaciones que involucran recubrimientos protectores que ayudan de alguna manera a prolongar la vida útil de estos equipos. Esta investigación determinó el comportamiento de los recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por proyección térmica asistida por plasma (APS sobre la aleación SA213 – T22 (2¼Cr – 1Mo, en un ambiente corrosivo de 80%V2O5–20%K2SO4 a 800°C. Los valores de la cinética de corrosión fueron determinados mediante resistencia a la polarización lineal (RPL y espectroscopia de impedancia electroquímica (EIE. Los resultados obtenidos muestran una menor cinética de corrosión en el recubrimiento NiCrFeNbMoTiAl que la presentada por el recubrimiento NiCrAlY, corroborado por Microscopia Electrónica de Barrido (MEB.

  1. Magnetoresistance in ferromagnetic shape memory alloy NiMnFeGa

    International Nuclear Information System (INIS)

    Liu, Z.H.; Ma, X.Q.; Zhu, Z.Y.; Luo, H.Z.; Liu, G.D.; Chen, J.L.; Wu, G.H.; Zhang Xiaokai; Xiao, John Q.

    2011-01-01

    The magnetoresistance (MR){=[R(H)-R(0)]/R(0)} properties in ferromagnetic shape memory alloy of NiMnFeGa ribbons and single crystals, and NiFeGa ribbons have been investigated. It is found that the NiMnFeGa melt-spun ribbon exhibited GMR effect, arising from the spin-dependent scattering from magnetic inhomogeneities consisting of antiferromagnetically coupled Mn atoms in B2 structure. In the absence of these magnetic inhomogeneities, Heusler alloys seem to show a common linear MR behavior at around 0.8T C , regardless of sample structures. This may be explained by the s-d model. At low temperatures, conventional AMR behaviors due to the spin-orbital coupling are observed. This is most likely due to the diminished MR from s-d model because of much less spin fluctuation, and is not associated with martensite phase. MR anomaly at intermediate field (ρ perpendicular >ρ || ) is also observed in single crystal samples, which may be related to unique features of Heusler alloys. - Highlights: → NiMnFeGa melt-spun ribbon exhibited GMR effect with a large negative MR up to -13%. → GMR behavior is arising from the spin-dependent scattering from magnetic inhomogeneities. → In the absence of these magnetic inhomogeneities, Heusler alloys seem to show a common linear MR behavior at around 0.8T C . → Conventional AMR behaviors due to the spin-orbital coupling are observed in NiMnFeGa single crystal and Ni 2 FeGa ribbon samples at low temperatures.

  2. Local atomic characterization of LiCo1/3Ni1/3Mn1/3O2 cathode material

    International Nuclear Information System (INIS)

    Nedoseykina, Tatiana; Kim, Sung-Soo; Nitta, Yoshiaki

    2006-01-01

    Co, Ni and Mn K-edge XAFS investigation of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as alternative cathode material to commercially used LiCoO 2 in lithium rechargeable battery has been performed. Parameters of a local atomic structure such as radii of metal-oxygen and metal-metal coordination shells and disorder in those shells have been determined. It has been found that the radius of the first coordination shell (metal-oxygen) as well as a local disorder in the second shell (metal-metal) around each of the 3d-metals are in a good agreement with obtained for superlattice model of √3 x √3] R30 o type in triangular lattice of sites by first principle calculation. Other parameters of the local atomic structure around Co, Ni and Mn atoms do not provide evidence for presence of superstructure in LiCo 1/3 Ni 1/3 Mn 1/3 O 2

  3. Influence of electroless coatings of Cu, Ni-P and Co-P on MmNi3.25Al0.35Mn0.25Co0.66 alloy used as anodes in Ni-MH batteries

    International Nuclear Information System (INIS)

    Raju, M.; Ananth, M.V.; Vijayaraghavan, L.

    2009-01-01

    Electroless coatings of Ni-P, Co-P and Cu were applied on the surface of non-stoichiometric MmNi 3.25 Al 0.35 Mn 0.25 Co 0.66 (Mm: misch metal) metal hydride alloy. Elemental analysis was made with Energy Dispersive X-ray Analysis (EDAX). The structural analysis of bare and coated alloys was done by X-ray diffraction (XRD) whereas surface morphology was examined with scanning electron microscope (SEM) and transmission electron microscope (TEM). The electrode characteristics inclusive of electrochemical capacity and cycle life were studied at C/5 rate. Superior performance is obtained with copper coated alloy. Microstructure observations indicate that the observed excellent performance could be attributed to uniform and efficient surface coverage with copper. Also, lanthanum surface enrichment in samples during Cu coating leads to improvement in performance. It is inferred from electro analytical investigations that copper coatings act as microcurrent collectors with alterations in hydrogen transport mechanism and facilitate charge transfer reaction on the alloy surface without altering battery properties. Moreover, supportive first time TEM evidence of existence of such copper nano current collectors (about 8 nm in diameter and length about 20 nm) is reported.

  4. Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}X{sub 0.05}O{sub 3} (Cr, Ni, Co and Fe) manganites

    Energy Technology Data Exchange (ETDEWEB)

    Selmi, A. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia); M’nassri, R., E-mail: rafik_mnassri@yahoo.fr [Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University, B.P. 471, 1200 Kasserine (Tunisia); Cheikhrouhou-Koubaa, W. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia); Chniba Boudjada, N. [Institut NEEL, B.P. 166, 38042 Grenoble Cedex 9 (France); Cheikhrouhou, A. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia)

    2015-01-15

    Highlights: • Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}X{sub 0.05}O{sub 3}(X = Cr, Ni, Co and Fe) ceramics were prepared by solid state method. • The manganite phases crystallize in an orthorhombic (Pnma) structure. • The samples exhibit a second order paramagnetic (PM)–ferromagnetic (FM) phase transition at the Curie temperature T{sub C}. • Maximum RCP equal to 405 J/kg observed for Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}Cr{sub 0.05}O{sub 3}. • Second order phase transition is confirmed by Arrott plots and universal curves of entropy change. • The experimental ΔS{sub M} are well predicted by the phenomenological universal curve. - Abstract: Structural, magnetic and magnetocaloric properties of Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}X{sub 0.05}O{sub 3}(X = Cr, Ni, Co and Fe) ceramics have been investigated by X-ray diffraction (XRD) and magnetic measurements. Powder samples have been elaborated using the solid state reaction method at high temperature. The Rietveld analysis of the powder X-ray diffraction shows that the samples crystallize in the orthorhombic structure with Pnma space group. Magnetic measurements show that all our materials exhibit a paramagnetic–ferromagnetic transition with decreasing temperature. The Arrott plots of ours materials reveal the occurrence of a second-order phase transition. The maximum values of magnetic entropy change |ΔS{sub M}{sup max}| are 2.92, 2.96, 3.1, and 2.38 J kg{sup −1} K{sup −1} and the relative cooling power (RCP) values are 405.8, 378.2, 352.2 and 337.4 J kg{sup −1} for a magnetic-field change from 0 to 5 T for Cr, Ni, Co and Fe respectively. The large RCP found in our substituted samples will be interesting for magnetic refrigeration over a wide temperature range ∼130 K around its paramagnetic to ferromagnetic transition temperature. With the scaling laws of ΔS{sub M}, the experimental ΔS{sub M} collapse onto a universal curve for several ceramics, where an average curve is obtained. With the

  5. Unified explanation for optical and electron paramagnetic resonance spectra of Cr sup 3 sup + ions in LiNbO sub 3 crystals

    CERN Document Server

    Zhao, M G

    1997-01-01

    An approximately microscopic model is developed for the Cr sup 3 sup + -6O sup 2 sup - cluster and applied to study the optical data and electron paramagnetic resonance (EPR) g-factors and the zero-field splitting D-value in LiNbO sub 3 :Cr sup 3 sup +. Analysis of the optical and EPR data indicate that Cr sup 3 sup + ions substitute at Nb sites and Nb-vacancy (Li) sites simultaneously. The results are in good agreement with the experimental findings. This means that the optical and EPR data and the substitution site of Cr sup 3 sup + ions in LiNbO sub 3 can be interpreted uniformly. (author)

  6. Microstructure of aluminized coating on a Ni-Cr alloy after annealing treatment

    International Nuclear Information System (INIS)

    Huang, H.-L.; Gan Dershin

    2008-01-01

    The effects of annealing on the microstructure of first stage (high-Al activity pack) aluminized coating on Ni-15Cr alloy prepared by pack cementation method were analyzed by transmission electron microscope. The coating consists of a thin layer of γ'-Ni 3 Al, an interfacial zone of mixed β-NiAl and α-Cr, and a thick outer zone of β-NiAl (A layer) and mixed β-NiAl and α-Cr (B layer). Martensitic transformation was observed in the β-NiAl grains in the interfacial zone. Parallel crystallographic relationship was found at the γ/γ' interface in the substrate and the α/β interface in the interfacial zone. Cr 2 Al was found to precipitate in the β-NiAl and α-Cr grains in the B layer of the outer zone. The formation mechanisms of the coating layers, the precipitates, and the observed crystallographic relationships are discussed

  7. Developing prospects of NiAlMn high temperature shape memory alloy

    International Nuclear Information System (INIS)

    Zou Min

    1999-01-01

    The reason and information on high temperature shape memory alloy research are introduced briefly Also, referring to some experimental reports on NiAlMn high temperature shape memory alloy, it is pointed out that ductility and memory property of this alloy can be improved by adapting proper composition and procedure to control its microstructure. Meanwhile, the engineering details must be considered when NiAlMn high temperature shape memory alloy being developed so as to resolve the problems of its practical use

  8. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  9. Effect of the addition of Sm2O3 on the microstructure of laser cladding alloy coating layers

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Cho, Tong Yul; Yoon, Jae Hong; Fang, Wei; Joo, Yun Kon; Kang, Jin Ho; Lee, Chan Gyu

    2008-06-01

    The effects on the microstructures and phases of coating layers by the addition of micron-sized (m) and nano-sized (n) (m&n) Sm2O3 powders were investigated. The coating materials, which were prepared by means of 2.0 kW CO2 laser cladding, consist of a powder mixture of m Ni-based alloy (NBA) powders comprising 1.5 wt.% m Sm2O3 and 3.0% n Sm2O3 powders. The results indicate that γ-Ni, Cr23C6 and Ni3B are the primary phases of the NBA coatings. The Fe7Sm and Ni3Si phases are highlighted by the addition of m&n Sm2O3 powders. From the substrate, planar crystal layers are first grown in all NBA and m&n Sm2O3/NBA coatings. The dendrite growth then occurs as a result of the addition of the m Sm2O3 powder, and the equiaxed dendrite growth occurs as a result of the addition of the n Sm2O3. With the addition of a rare earth oxide such as Sm2O3 powder, the width of the planar crystal becomes smaller than that of the NBA coating.

  10. The use of Nb in rapid solidified Al alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Wheatley Campus, OX33 1HX Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Saporiti, F. [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina)

    2014-12-05

    Highlights: • The use of Nb in RS Al alloys and composites has been reviewed. • Nb was found to improve the GFA of rapid solidified Al–Fe and Al–Ni alloys. • Nb has higher effect in increasing the corrosion resistance than RE in Al–Fe alloys. • Nb improves the stability of the Al–Fe–Cr icosahedral phase. • Nb improves strength, ductility and toughness of nanoquasicrystalline Al matrix composites. - Abstract: The worldwide requirements for reducing the energy consumption and pollution have increased the demand of new and high performance lightweight materials. The development of nanostructured Al-based alloys and composites is a key direction towards solving this demand. High energy prices and decreased availability of some alloying elements open up the opportunity to use non-conventional elements in Al alloys and composites. In this work the application of Nb in rapid solidified Al-based alloys and Al alloys matrix composites is reviewed. New results that clarify the effect of Nb on rapid solidified Al alloys and composites are also presented. It is observed that Nb stabilises the icosahedral Al–Fe/Cr clusters, enhances the glass forming ability and shifts the icosahedral phase decomposition towards higher temperatures. Nb provides higher corrosion resistance with respect to the pure Al and Al–Fe–RE (RE: rare earth) alloys in the amorphous and crystalline states. The use of Nb as a reinforcement to produce new Al alloy matrix composites is explored. It is observed that Nb provides higher strength, ductility and toughness to the nanoquasicrystalline matrix composite. Nb appears as a new key element that can improve several properties in rapid solidified Al alloys and composites.

  11. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    International Nuclear Information System (INIS)

    Schuon, S.R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life

  12. Oxidation resistance of nickel alloys at high temperature

    International Nuclear Information System (INIS)

    Tyuvin, Yu.D.; Rogel'berg, I.L.; Ryabkina, M.M.; Plakushchaya, A.F.

    1977-01-01

    The heat resistance properties of nickel alloys Ni-Cr-Si, Ni-Si-Al, Ni-Si-Mn and Ni-Al-Mn have been studied by the weight method during oxidation in air at 1000 deg and 1200 deg C. It is demonstrated that manganese reduces the heat resistance properties of Ni-Si and Ni-Al alloys, whilst the addition of over 3% aluminium enhances the heat resistance properties of Ni-Si (over 1.5%) alloys. The maximum heat resistance properties are shown by Ni-Si-Al and Ni-Cr-Si alloys with over 2% Si. These alloys offer 3 to 4 times better oxidation resistance as compared with pure nickel at 1000 deg C and 10 times at 1200 deg C

  13. A FeNiMnC alloy with strain glass transition

    Directory of Open Access Journals (Sweden)

    Hui Ma

    2018-02-01

    Full Text Available Recent experimental and theoretical investigations suggested that doping sufficient point defects into a normal ferroelastic/martensitic alloy systems could lead to a frozen disordered state of local lattice strains (nanomartensite domains, thereby suppressing the long-range strain-ordering martensitic transition. In this study, we attempt to explore the possibility of developing novel ferrous Elinvar alloys by replacing nickel with carbon and manganese as dopant species. A nominal Fe89Ni5Mn4.6C1.4 alloy was prepared by argon arc melting, and XRD, DSC, DMA and TEM techniques were employed to characterize the strain glass transition signatures, such as invariance in average structure, frequency dispersion in dynamic mechanical properties (storage modulus and internal friction and the formation of nanosized strain domains. It is indicated that doping of Ni, Mn and C suppresses γ→α long-range strain-ordering martensitic transformation in Fe89Ni5Mn4.6C1.4 alloy, generating randomly distributed nanosized domains by strain glass transition. Keywords: Strain glass transition, Elinvar alloys, Point defects, Nanosized domains

  14. CoCr double-layered media with NiFe and CoZrNb soft-magnetic layers (invited)

    International Nuclear Information System (INIS)

    Bernards, J.P.C.; Schrauwen, C.P.G.; Zieren, V.; Luitjens, S.B.

    1988-01-01

    The magnetic, structural, and recording properties of CoCr double-layered media are investigated. The underlayer materials NiFe (crystalline) and CoZrNb (amorphous) were combined with two different kinds of intermediate layers: Ti (crystalline) and Ge (amorphous). Applying a bias voltage during sputtering of NiFe results in a low coercivity of the NiFe layer and in a high coercivity of the CoCr layer. The structure of the NiFe layer influences the structure of the CoCr layer. A Ti layer between the NiFe and CoCr layers decreases the in-plane remanence of the CoCr layer. The coercivity of all CoZrNb layers is low, independent of the application of a bias voltage. The orientation and structure of CoCr on CoZrNb can be improved by using a Ge intermediate layer, which results in a low coercivity of the CoCr. A Ti intermediate layer increases the coercivity. Ring heads show a dependence of spike noise on the underlayer coercivity and on the applied normal force. A probe-type head shows a dependence of its output on the CoCr coercivity, which may be understood in terms of demagnetization and writing depth

  15. Magnetic domain structure in a metamagnetic shape memory alloy Ni45Co5Mn36.7In13.3

    International Nuclear Information System (INIS)

    Murakami, Y.; Yano, T.; Shindo, D.; Kainuma, R.; Oikawa, K.; Ishida, K.

    2006-01-01

    Correlation between the magnetism and the martensitic transformation in Ni 45 Co 5 Mn 36.7 In 13.3 has been revealed by electron holography and Lorentz microscopy. The parent phase exhibits typical closure magnetic domains due to low magnetocrystalline anisotropy. Upon cooling, the magnetic flux density of the parent phase monotonically increases, while the magnetic domain structure remains almost unchanged; in other words, the effect of premartensitic lattice modulation appears to be small in this alloy. The magnetic domains disappear immediately when the martensitic transformation occurs

  16. Electrochemical properties of the ball-milled LaMg10NiMn alloy with Ni powders

    International Nuclear Information System (INIS)

    Wang Yi; Wang Xin; Gao Xueping; Shen Panwen

    2008-01-01

    The electrochemical characteristics of the ball-milled LaMg 10 NiMn alloys with Ni powders were investigated. It was found that the ball-milled LaMg 10 NiMn + 150 wt.% Ni composite exhibited higher first discharge capacity and better cycle performance. By means of the analysis of electrochemical impedance spectra (EIS), it was shown that the existence of manganese in LaMg 10 NiMn alloy increased the electrocatalytic activity due to its catalytic effect, and destabilized metal hydrides, and so reduced the hydrogen diffusion resistance. These contributed to the higher discharge capacity of the ball-milled LaMg 10 NiMn-Ni composite. According to the analytical results of X-ray diffraction (XRD), EIS and steady-state polarization (SSP) experiments, the inhibition of metal corrosion is not the main reason for the better cycle performance. The main reason is that the electrochemical reaction resistance of the ball-milled LaMg 10 NiMn-Ni composite is always lower than that of the ball-milled LaMg 10 Ni 2 -Ni composite because the former one contains manganese, which is a catalyst for the electrode reaction

  17. The impact of Ti and temperature on the stability of Nb5Si3 phases: a first-principles study.

    Science.gov (United States)

    Papadimitriou, Ioannis; Utton, Claire; Tsakiropoulos, Panos

    2017-01-01

    Nb-silicide based alloys could be used at T > 1423 K in future aero-engines. Titanium is an important additive to these new alloys where it improves oxidation, fracture toughness and reduces density. The microstructures of the new alloys consist of an Nb solid solution, and silicides and other intermetallics can be present. Three Nb 5 Si 3 polymorphs are known, namely αNb 5 Si 3 ( tI 32 Cr 5 B 3 -type, D8 l ), βNb 5 Si 3 ( tI 32 W 5 Si 3 -type, D8 m ) and γNb 5 Si 3 ( hP 16 Mn 5 Si 3 -type, D8 8 ). In these 5-3 silicides Nb atoms can be substituted by Ti atoms. The type of stable Nb 5 Si 3 depends on temperature and concentration of Ti addition and is important for the stability and properties of the alloys. The effect of increasing concentration of Ti on the transition temperature between the polymorphs has not been studied. In this work first-principles calculations were used to predict the stability and physical properties of the various Nb 5 Si 3 silicides alloyed with Ti. Temperature-dependent enthalpies of formation were computed, and the transition temperature between the low (α) and high (β) temperature polymorphs of Nb 5 Si 3 was found to decrease significantly with increasing Ti content. The γNb 5 Si 3 was found to be stable only at high Ti concentrations, above approximately 50 at. % Ti. Calculation of physical properties and the Cauchy pressures, Pugh's index of ductility and Poisson ratio showed that as the Ti content increased, the bulk moduli of all silicides decreased, while the shear and elastic moduli and the Debye temperature increased for the αNb 5 Si 3 and γNb 5 Si 3 and decreased for βNb 5 Si 3 . With the addition of Ti the αNb 5 Si 3 and γNb 5 Si 3 became less ductile, whereas the βNb 5 Si 3 became more ductile. When Ti was added in the αNb 5 Si 3 and βNb 5 Si 3 the linear thermal expansion coefficients of the silicides decreased, but the anisotropy of coefficient of thermal expansion did not change significantly.

  18. Point defect properties of ternary fcc Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wróbel, J.S., E-mail: jan.wrobel@inmat.pw.edu.pl [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Nguyen-Manh, D.; Dudarev, S.L. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2017-02-15

    Highlights: • Properties of point defects depend on the local atomic environment. • As the degree of chemical order increases, the formation energies increase, too. • Relaxation volumes are larger for the more ordered structures. - Abstract: The properties of point defects in Fe-Cr-Ni alloys are investigated, using density functional theory (DFT), for two alloy compositions, Fe{sub 50}Cr{sub 25}Ni{sub 25} and Fe{sub 55}Cr{sub 15}Ni{sub 30}, assuming various degrees of short-range order. DFT-based Monte Carlo simulations are applied to explore short-range order parameters and generate representative structures of alloys. Chemical potentials for the relevant structures are estimated from the minimum of the substitutional energy at representative atoms sites. Vacancies and 〈1 0 0〉 dumbbells are introduced in the Fe{sub 2}CrNi intermetallic phase as well as in two Fe{sub 55}Cr{sub 15}Ni{sub 30} alloy structures: the disordered and short range-ordered structures, generated using Monte Carlo simulations at 2000 K and 300 K, respectively. Formation energies and relaxation volumes of defects as well as changes of magnetic moments caused by the presence of defects are investigated as functions of the local environment of a defect.

  19. Electrode characteristics of the (Mm)Ni 5-based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Soo; Choi, Seung Jun; Chang, Min Ho; Choi, Jeon; Park, Choong Nyun [Chonnam National University, Kwangju (Korea, Republic of)

    1995-06-01

    The MmNi-based alloy electrode was studied for use a negative electrode in Ni-MH battery. Alloys with MmNi{sub 5}-{sub x} M{sub x}(M=Co,Al,Mn) composition were synthesized, and their electrode characteristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in MmNi{sub 5}-{sub x} M{sub x} increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is MmNi{sub 3}.5 Co{sub 0}.7 Al{sub 0}.5 Mn{sub 0}.3. (author). 9 refs., 9 figs., 1 tab.

  20. Microstructures and room temperature fracture toughness of Nb/Nb5Si3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Xiong, Bowen; Cai, Changchun; Wang, Zhenjun

    2014-01-01

    Highlights: • Microstructure of Nb/Nb 5 Si 3 composite alloyed with W and Mo is change obviously. • W and Mo elements can solid solution in Nb and Nb 5 Si 3 phase respectively. • Alloyed with W and Mo together, the solid solubility of Nb 5 Si 3 phases is undetected. • The Nb/Nb 5 Si 3 composite alloyed with W and Mo together has high fracture toughness. - Abstract: Microstructures and room temperature fracture toughness of Nb/Nb 5 Si 3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering were investigated. The microstructures were examined using scanning electron microscope (SEM). X-ray diffraction (XRD) was performed on the bulk specimens for identification of phases. The chemical species were analyzed using electron-probe micro-analysis (EPMA). Results indicated that the microstructures of Nb/Nb 5 Si 3 composites alloyed with W or Mo is unaltered, including primary Nb and eutectic mixtures of Nb and Nb 5 Si 3 , and the coarse and fine eutectic mixtures. The W and Mo elements solid solution in Nb and Nb 5 Si 3 phase are detected. But that alloyed with W and Mo together, The microstructures are change obviously, including Nb phase, the solid solubility phases of W and Mo atoms in Nb, and the solid solubility phases of Nb atoms in W are also found, but the solid solubility phenomenon of Nb 5 Si 3 phases is not detected. The microhardness of Nb and Nb 5 Si 3 phases increases obviously because of solid solution strengthening. The Nb/Nb 5 Si 3 composite alloyed with W and Mo together hashing high fracture toughness is attributable to the big eutectic Nb and interface of eutectic phases, which can bear large deformation to absorb the crack energy and form the decohesion between eutectic phases

  1. Stress Corrosion Cracking of Ni-Fe-Cr Alloys Relevant to Nuclear Power Plants

    Science.gov (United States)

    Persaud, Suraj

    Stress corrosion cracking (SCC) of Ni-Fe-Cr alloys and weld metals was investigated in simulated environments representative of high temperature water used in the primary and secondary circuits of nuclear power plants. The mechanism of primary water SCC (PWSCC) was studied in Alloys 600, 690, 800 and Alloy 82 dissimilar metal welds using the internal oxidation model as a guide. Initial experiments were carried out in a 480°C hydrogenated steam environment considered to simulate high temperature reducing primary water. Ni alloys underwent classical internal oxidation intragranularly resulting in the expulsion of the solvent metal, Ni, to the surface. Selective intergranular oxidation of Cr in Alloy 600 resulted in embrittlement, while other alloys were resistant owing to their increased Cr contents. Atom probe tomography was used to determine the short-circuit diffusion path used for Ni expulsion at a sub-nanometer scale, which was concluded to be oxide-metal interfaces. Further exposures of Alloys 600 and 800 were done in 315°C simulated primary water and intergranular oxidation tendency was comparable to 480°C hydrogenated steam. Secondary side work involved SCC experiments and electrochemical measurements, which were done at 315°C in acid sulfate solutions. Alloy 800 C-rings were found to undergo acid sulfate SCC (AcSCC) to a depth of up to 300 microm in 0.55 M sulfate solution at pH 4.3. A focused-ion beam was used to extract a crack tip from a C-ring and high resolution analytical electron microscopy revealed a duplex oxide structure and the presence of sulfur. Electrochemical measurements were taken on Ni alloys to complement crack tip analysis; sulfate was concluded to be the aggressive anion in mixed sulfate and chloride systems. Results from electrochemical measurements and crack tip analysis suggested a slip dissolution-type mechanism to explain AcSCC in Ni alloys.

  2. Representation of the properties 10 CrMoNiNb 9 10

    International Nuclear Information System (INIS)

    Dette, M.; Hahn, H.; Nieuwland, H.C.D.; Tichler, J.W.

    The high-temperature ferritic steal 10 CrMoNiNb 9 10 is used as structural material in nuclear steam generators. It is exposed to loads within the creep range. In order to resist safety also loads caused by incidents after long temperature stress, the time-independent stability parameters must not fall below specified minimum values. The material is characterised by the stability degree Nb/C+N and the niobium excess δ Nb. (orig.) [de

  3. Material properties of Ni-Cr-Al alloy and design of a 4 GPa class non-magnetic high-pressure cell

    CERN Document Server

    Uwatoko, Y; Ueda, K; Uchida, A; Kosaka, M; Mori, N; Matsumoto, T

    2002-01-01

    The Ni-Cr-Al Russian alloy was prepared. Its magnetic and mechanical properties were better than those of MP35N alloy. We fabricated the a piston-cylinder-type hybrid high-pressure cell using the Ni-Cr-Al alloy. It has been found that the maximum working pressure can be repeatedly raised to 3.5 GPa at T = 2 K without any difficulties.

  4. Neutron irradiation effect on thermomechanical properties of shape memory alloys

    International Nuclear Information System (INIS)

    Abramov, V.Ya.; Ionajtis, R.R.; Kotov, V.V.; Loguntsev, E.N.; Ushakov, V.P.

    1996-01-01

    Alloys of Ti-Ni, Ti-Ni-Pd, Fe-Mn-Si, Mn-Cu-Cr, Mn-Cu, Cu-Al-Mn, Cu-Al-Ni systems are investigated after irradiation in IVV-2M reactor at various temperatures with neutron fluence of 10 19 - 10 20 cm -2 . The degradation of shape memory effect in titanium nickelide base alloys is revealed after irradiation. Mn-Cu and Mn-Cu-Cr alloys show the best results. Trends in shape memory alloy behaviour depending on irradiation temperature are found. A consideration is given to the possibility of using these alloys for components of power reactor control and protection systems [ru

  5. Electroless siliconizing Fe-3% Cr-3% Si alloy

    International Nuclear Information System (INIS)

    Nurlina, Enung; Darmono, Budy; Purwadaria, Sunara

    2000-01-01

    In this research Fe-3%Cr-3%Mo-3%Si and Fe-3%Cr-3%Cu-3%Si alloys had been coated by silicon metal without electricity current which knows as electroless siliconizing. Coating was conducted by immersed sampler into melt fluoride-chloride salt bath at temperature of 750 o C for certain period. The layer consisted of Fe3Si phase. Observation by microscope optic and EDAX showed that the silicide layer were thick enough, adherent, free for crack and had silicon content on the surface more than 15%. The growth rate of silicide layer followed parabolic rate law, where the process predominantly controlled by interdiffusion rate in the solid phase. Key words : electroless siliconizing, the melt fluoride- chloride salt mix, silicide layer

  6. Microstructure and magnetic behavior studies of processing-controlled and composition-modified Fe-Ni and Mn-Al alloys

    Science.gov (United States)

    Geng, Yunlong

    L10-type (Space group P4/mmm) magnetic compounds, including FeNi and MnAl, possess promising technical magnetic properties of both high magnetization and large magnetocrystalline anisotropy energy, and thus offer potential in replacing rare earth permanent magnets in some applications. In equiatomic Fe-Ni, the disorder-order transformation from fcc structure to the L10 structure is a diffusional transformation, but is inhibited by the low ordering temperature. The transformation could be enhanced through the creation of vacancies. Thus, mechanical alloying was employed to generate more open-volume defects. A decrease in grain size and concomitant increase in grain boundary area resulted from the mechanical alloying, while an initial increase in internal strain (manifested through an increase in dislocation density) was followed by a subsequent decrease with further alloying. However, a decrease in the net defect concentration was determined by Doppler broadening positron annihilation spectroscopy, as open volume defects utilized dislocations and grain boundaries as sinks. An alloy, Fe32Ni52Zr3B13, formed an amorphous structure after rapid solidification, with a higher defect concentration than crystalline materials. Mechanical milling was utilized in an attempt to generate even more defects. However, it was observed that Fe32Ni52Zr3B13 underwent crystallization during the milling process, which appears to be related to enhanced vacancy-type defect concentrations allowing growth of pre-existing Fe(Ni) nuclei. The milling and enhanced vacancy concentration also de-stabilizes the glass, leading to decreased crystallization temperatures, and ultimately leading to complete crystallization. In Mn-Al, the L10 structure forms from the parent hcp phase. However, this phase is slightly hyperstoichiometric relative to Mn, and the excess Mn occupies Al sites and couples antiparallel to the other Mn atoms. In this study, the Zr substituted preferentially for the Mn atoms in the

  7. Synthesis of hard magnetic Mn3Ga micro-islands by e-beam evaporation

    Science.gov (United States)

    Akdogan, O.

    2018-05-01

    The permanent magnet industry heavily depends on Nd-Fe-B and Sm-Co alloys because of their high-energy product and high room temperature coercivity. Main ingredient for having such superior magnetic properties compared to other known ferromagnetic materials is rare earth elements (Nd, Sm, Dy…). However recent worldwide reserve and export limitation problem of rare earths, shifted researchers' focus to rare earth free permanent magnets. Among many alternatives (FePt, Zr2Co11, FeNi …), Mn-based alloys are the most suitable due to abundance of the forming elements and trivial formation of the necessary hard phases. In this study, Mn3Ga micro islands have been prepared. Mn3Ga owes its hard magnetic properties to tetragonal D022 phase with magnetic anisotropy energy of 2 MJ/m3. Thin films and islands of Cr/MnGa/Cr layers have been deposited on Si/SiO2 wafers using combination of e-beam and thermal evaporation techniques. Cr has been used as buffer and cover layer to protect the sample from the substrate and prevent oxidation during annealing. Annealing under Ar/H2 forming gas has been performed at 350oC for 10 min. Nano thick islands of 25, 50 and 100 μm lateral size have been produced by photolithography technique. Room temperature coercivity of 7.5 kOe has been achieved on 100 μm micro islands of Mn3Ga. Produced micro islands could be a rare earth free alternative for magnetic memory and MEMS applications.

  8. Synthesis of hard magnetic Mn3Ga micro-islands by e-beam evaporation

    Directory of Open Access Journals (Sweden)

    O. Akdogan

    2018-05-01

    Full Text Available The permanent magnet industry heavily depends on Nd-Fe-B and Sm-Co alloys because of their high-energy product and high room temperature coercivity. Main ingredient for having such superior magnetic properties compared to other known ferromagnetic materials is rare earth elements (Nd, Sm, Dy…. However recent worldwide reserve and export limitation problem of rare earths, shifted researchers’ focus to rare earth free permanent magnets. Among many alternatives (FePt, Zr2Co11, FeNi …, Mn-based alloys are the most suitable due to abundance of the forming elements and trivial formation of the necessary hard phases. In this study, Mn3Ga micro islands have been prepared. Mn3Ga owes its hard magnetic properties to tetragonal D022 phase with magnetic anisotropy energy of 2 MJ/m3. Thin films and islands of Cr/MnGa/Cr layers have been deposited on Si/SiO2 wafers using combination of e-beam and thermal evaporation techniques. Cr has been used as buffer and cover layer to protect the sample from the substrate and prevent oxidation during annealing. Annealing under Ar/H2 forming gas has been performed at 350oC for 10 min. Nano thick islands of 25, 50 and 100 μm lateral size have been produced by photolithography technique. Room temperature coercivity of 7.5 kOe has been achieved on 100 μm micro islands of Mn3Ga. Produced micro islands could be a rare earth free alternative for magnetic memory and MEMS applications.

  9. Effect of Carbide Dissolution on Chlorine Induced High Temperature Corrosion of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatings

    Science.gov (United States)

    Fantozzi, D.; Matikainen, V.; Uusitalo, M.; Koivuluoto, H.; Vuoristo, P.

    2018-01-01

    Highly corrosion- and wear-resistant thermally sprayed chromium carbide (Cr3C2)-based cermet coatings are nowadays a potential highly durable solution to allow traditional fluidized bed combustors (FBC) to be operated with ecological waste and biomass fuels. However, the heat input of thermal spray causes carbide dissolution in the metal binder. This results in the formation of carbon saturated metastable phases, which can affect the behavior of the materials during exposure. This study analyses the effect of carbide dissolution in the metal matrix of Cr3C2-50NiCrMoNb coatings and its effect on chlorine-induced high-temperature corrosion. Four coatings were thermally sprayed with HVAF and HVOF techniques in order to obtain microstructures with increasing amount of carbide dissolution in the metal matrix. The coatings were heat-treated in an inert argon atmosphere to induce secondary carbide precipitation. As-sprayed and heat-treated self-standing coatings were covered with KCl, and their corrosion resistance was investigated with thermogravimetric analysis (TGA) and ordinary high-temperature corrosion test at 550 °C for 4 and 72 h, respectively. High carbon dissolution in the metal matrix appeared to be detrimental against chlorine-induced high-temperature corrosion. The microstructural changes induced by the heat treatment hindered the corrosion onset in the coatings.

  10. Effects of the Microstructure on Segregation behavior of Ni-Cr-Mo High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an improved fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be achieved by adding Ni and Cr. So there are several researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and time of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, it requires a resistance of thermal embrittlement in the high temperature range including temper embrittlement resistance. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. In this study, we have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels) were evaluated after a long-term heat treatment(450 .deg. C, 2000hr. Then, the images of the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  11. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  12. Short-range ferromagnetism in alloy ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

    Energy Technology Data Exchange (ETDEWEB)

    THANH, P. Q.; HOA, N. Q.; CHAU, N. [Vietnam National University, Hanoi (Viet Nam); HUU, C. X. [Danang University of Technology, Danang (Viet Nam); NGO, D. T. [Technical University of Denmark, Kgs. Lyngby (Denmark); PHAN, T. L. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-04-15

    We have studied the magnetic properties of two amorphous alloy ribbons Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Ag{sub 1} (FCSNB-Ag) and Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Cu{sub 1} (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (T{sub C} ) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded the exponent values of β = 0.369 ± 0.005, γ = 1.359 ± 0.005 and δ = 4.7 ± 0.1 for FCSNB-Ag, and β = 0.376 ± 0.002, γ = 1.315 ± 0.006 and δ = 4.5 ± 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg model, demonstrating the existence of short-range FM order in the amorphous alloy ribbons.

  13. Temperature dependent spin momentum densities in Ni-Mn-In alloys

    International Nuclear Information System (INIS)

    Ahuja, B L; Dashora, Alpa; Vadkhiya, L; Heda, N L; Priolkar, K R; Lobo, Nelson; Itou, M; Sakurai, Y; Chakrabarti, Aparna; Singh, Sanjay; Barman, S R

    2010-01-01

    The spin-dependent electron momentum densities in Ni 2 MnIn and Ni 2 Mn 1.4 In 0.6 shape memory alloy using magnetic Compton scattering with 182.2 keV circularly polarized synchrotron radiation are reported. The magnetic Compton profiles were measured at different temperatures ranging between 10 and 300 K. The profiles have been analyzed mainly in terms of Mn 3d electrons to determine their role in the formation of the total spin moment. We have also computed the spin polarized energy bands, partial and total density of states, Fermi surfaces and spin moments using full potential linearized augmented plane wave and spin polarized relativistic Korringa-Kohn-Rostoker methods. The total spin moments obtained from our magnetic Compton profile data are explained using both the band structure models. The present Compton scattering investigations are also compared with magnetization measurements.

  14. Ternary alloying study of MoSi2

    International Nuclear Information System (INIS)

    Yi, D.; Li, C.; Akselsen, O.M.; Ulvensoen, J.H.

    1998-01-01

    Ternary alloying of MoSi 2 with adding a series of transition elements was investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Iron, Co, Ni, Cr, V, Ti, and Nb were chosen as alloying elements according to the AB 2 structure map or the atomic size factor. The studied MoSi 2 base alloys were prepared by the arc melting process from high-purity metals. The EDS analysis showed that Fe, Co, and Ni have no solid solubility in as-cast MoSi 2 , while Cr, V, Ti, and Nb exhibit limited solid solubilities, which were determined to be 1.4 ± 0.7, 1.4 ± 0.4, 0.4 ± 0.1, and 0.8 ± 0.1. Microstructural characterization indicated that Mo-Si-M VIII (M VIII = Fe, Co, Ni) and Mo-Si-Cr alloys have a two-phase as-cast microstructure, i.e., MoSi 2 matrix and the second-phase FeSi 2 , CoSi, NiSi 2 , and CrSi 2 , respectively. In as-cast Mo-Si-V, Mo-Si-Ti, and Mo-Si-Nb alloys, besides MoSi 2 and C40 phases, the third phases were observed, which have been identified to be (Mo, V) 5 Si 3 , TiSi 2 , and (Mo, Nb) 5 Si 3

  15. The role of Ti, Zr and Ce in shaping of the Cr-Ni-Nb cast steel resistance to carburising

    Directory of Open Access Journals (Sweden)

    G. Tęcza

    2008-08-01

    Full Text Available From the centrifugally cast Cr-Ni-Nb steel pipes, specimens were cut out and subjected to carburising for 100 hours in a mixture of charcoal (90% and Na2CO3 (10% at the temperatures of 950 and 1150°C. The specimens were cut in direction normal to the pipe axis and were examined by optical and scanning microscopy. As a parameter describing the resistance of the examined alloy to the carburising effect, the thickness of a carburised layer was accepted. It has been observed that additions of Ti and Zr, and of Ti+Zr+Ce introduced jointly, increase the thickness of the carburised layer, while the addition of Ce improves the alloy resistance to carburising. On the alloy surface, a layer composed of oxides, mainly of chromium, silicon and iron, has been formed. Changes in the chemical composition of the surface layer were examined by scanning microscopy.

  16. High temperature oxidation-sulfidation behavior of Cr-Al{sub 2}O{sub 3} and Nb-Al{sub 2}O{sub 3} composites densified by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Acuna, R.A. [Instituto e Ingenieria y Tecnologia, Universidad Autonoma de Cd. Juarez, Av. Del Charro 450 Norte, Col. Partido Romero, C.P. 32310, Cd. Juarez, Chihuahua (Mexico); Monreal-Romero, H.; Martinez-Villafane, A. [Centro de Investigacion en Materiales Avanzados, Departamento de Fisica de Materiales, Miguel de Cervantes 120, Complejo Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico); Chacon-Nava, J.G. [Centro de Investigacion en Materiales Avanzados, Departamento de Fisica de Materiales, Miguel de Cervantes 120, Complejo Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico)], E-mail: jose.chacon@cimav.edu.mx; Arce-Colunga, U. [Centro de Investigacion en Materiales Avanzados, Departamento de Fisica de Materiales, Miguel de Cervantes 120, Complejo Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico); Universidad Autonoma de Tamaulipas, Matamoros 8 y 9 Col. Centro C.P. 87110, Cd. Victoria, Tamaulipas (Mexico); Gaona-Tiburcio, C. [Centro de Investigacion en Materiales Avanzados, Departamento de Fisica de Materiales, Miguel de Cervantes 120, Complejo Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico); De la Torre, S.D. [Centro de Investigacion e Innovacion Tecnologica (CIITEC)-IPN, D.F. Mexico (Mexico)

    2007-12-15

    The high temperature oxidation-sulfidation behavior of Cr-Al{sub 2}O{sub 3} and Nb-Al{sub 2}O{sub 3} composites prepared by mechanical alloying (MA) and spark plasma sintering (SPS) has been studied. These composite powders have a particular metal-ceramic interpenetrating network and excellent mechanical properties. Oxidation-sulfidation tests were carried out at 900 deg. C, in a 2.5%SO{sub 2} + 3.6%O{sub 2} + N{sub 2}(balance) atmosphere for 48 h. The results revealed the influence of the sintering conditions on the specimens corrosion resistance, i.e. the Cr-Al{sub 2}O{sub 3} and Nb-Al{sub 2}O{sub 3} composite sintered at 1310 deg. C/4 min showed better corrosion resistance (lower weight gains) compared with those found for the 1440 deg. C/5 min conditions. For the former composite, a protective Cr{sub 2}O{sub 3} layer immediately forms upon heating, whereas for the later pest disintegration was noted. Thus, under the same sintering conditions the Nb-Al{sub 2}O{sub 3} composites showed the highest weight gains. The oxidation products were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy.

  17. Atomic displacements in dilute alloys of Cr, Nb and Mo

    Indian Academy of Sciences (India)

    physics pp. 497–514. Atomic displacements in dilute alloys of Cr, Nb and Mo ... used to calculate dynamical matrix and the impurity-induced forces up to second nearest ... origin, the lattice is strained, and the host atoms get displaced to new ...

  18. Influence of the Cr and Ni concentration in CoCr and CoNi alloys on the structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, E. [Nipson Technology, 12 Avenue des Trois chênes, Techn’Hom 3, Belfort 90000 (France); Liu, T. [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy 54506 (France); Billard, A. [IRTES-LERMPS EA 7274, UTBM, Site de Montbéliard, Belfort Cedex 90010 (France); Dekens, A. [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy 54506 (France); Perry, F. [PVDco, 30 rue de Badménil, Baccarat 54120 (France); Mangin, S.; Hauet, T. [Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy 54506 (France)

    2017-01-15

    The crystalline and magnetic properties of micron thick magnetron sputtered Co{sub 1−x}Cr{sub x} and Co{sub 1−x}Ni{sub x} alloy films are analyzed in the view of their implementation as semi-hard magnets. All of the tested films crystallize in an hcp lattice, at least up to 35 at% of alloying elements (Cr or Ni). The structural study shows that the ratio of hcp phase with [0001] axis orientated perpendicular to the film as compared with in-plane orientation increases (resp. decreases), when Ni (resp. Cr) concentration increases independently of the post-annealing temperature. The orientation of the magnetization results from the competition between the demagnetization field which tends to align the magnetization in plane and the crystalline anisotropy which tends to maintain the magnetization along the [0001] axis. Interestingly, we find that, although Co and Ni are very similar atoms, Co{sub 1−x}Ni{sub x} alloys crystalline anisotropy can be strongly increased and reach up to twice the anisotropy of the best Co{sub 1−x}Cr{sub x} alloy, while maintaining a magnetization at saturation above 1200 kA/m. The thermal stability of the structural and magnetic properties of both alloys is demonstrated for an annealing temperature up to 300 °C. - Highlights: • Sputtered CoCr and CoNi films are analyzed for their semi-hard magnetic properties. • CoNi alloys exhibits higher saturation magnetization and crystalline anisotropy. • These evolutions can be directly correlated to the quality of hcp crystal orientation. • Thermal stability of structural and magnetic properties is demonstrated up to 300 °C.

  19. Ce3+ doping into 0.6Li2MnO3·0.4LiNi0.5Co0.2Mn0.3O2 as cathode material for Li-ion batteries applied in new energy vehicle

    Science.gov (United States)

    Peng, Han; Yao, Linxiao; Zhang, Ming

    2018-06-01

    The pristine Li1.20[Mn0.52Ni0.20Co0.08]O2 and Ce3+-doped Li1.20[Mn0.50Ni0.20Co0.08Ce0.02]O2 cathode materials have been synthesized by using the typical sol-gel method. The XRD, SEM, ICP-OES and galvanostatic charge-discharge tests were carried out to study the influence of Ce3+ doping on the crystal structural, morphology and electrochemical properties of Li1.20Mn0.54Ni0.13Co0.13O2. The XRD result revealed the Ce3+ doping modification could decrease the cation mixing degree. The galvanostatic charge-discharge tests results showed that the sample after Ce3+ doping demonstrated the smaller irreversible capacity loss, more stable cyclic performance and better rate capacity than those of the pristine one.

  20. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reclaru, L., E-mail: lucien.reclaru@pxgroup.com [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Unger, R.E.; Kirkpatrick, C.J. [Institute for Pathology, REPAIR Lab, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr.1, D-55101 Mainz (Germany); Susz, C.; Eschler, P.-Y.; Zuercher, M.-H. [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Antoniac, I. [Materials Science and Engineering Faculty, Politehnica of Bucharest, 060042 Bucharest (Romania); Luethy, H. [Institute of Dental Materials Science and Technology, University of Basel, Hebelstrasse 3, CH-4056 Basel (Switzerland)

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: Black-Right-Pointing-Pointer Nickel released was higher than the limits imposed in EU in contact with the skin. Black-Right-Pointing-Pointer No direct relationship between the

  1. Effect of long-term aging on microstructural stabilization and mechanical properties of 20Cr32Ni1Nb steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaofeng; Jia, Xiankai [School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); Gong, Jianming, E-mail: gongjm@njtech.edu.cn [School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); Key Lab of Design and Manufacture of Extreme Pressure Equipment, Jiangsu Province (China); Geng, Luyang; Tang, Jianqun; Jiang, Yong [School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); Key Lab of Design and Manufacture of Extreme Pressure Equipment, Jiangsu Province (China); Ni, Yingying; Yang, Xinyu [School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816 (China)

    2017-04-06

    The centrifugally cast 20Cr32Ni1Nb stainless steel aged at 950 ℃ from 200 h up to 5000 h was investigated on the mechanical properties and microstructural evolution using post-aged tensile tests, post-aged Charpy impact tests, Optical microscopy (OM) observations, and field emission-scanning electron microscopy (FE-SEM) examinations. Experimental results indicate that the as-cast microstructure of the steel typically consists of a supersaturated solid solution of austenite matrix with a network of interdendritic primary carbides (NbC and M{sub 23}C{sub 6}). During aging process, the growth and coarsening of NbC carbides and M{sub 23}C{sub 6} carbides as well as the transformation of NbC carbide into G phase take place. Meanwhile, the transformation of NbC into G phase releases C into the matrix during aging exposure. This released C tends to combine with Cr, and forms M{sub 23}C{sub 6} at the dendrite boundaries. Compared with a continuous reduction of the elongation in the whole aging period, the strength parameters (σ{sub ult} and σ{sub ys}) exhibit an initial increase followed by a continuous decrease with the aging time prolonged from 1000 h to 5000 h. Additionally, the variation of Charpy impact absorbed energy is relatively complex during aging process. The microstructural evolution during long-term aging process is consistent with the variation of mechanical properties.

  2. High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Yamamoto, Yukinori [Oak Ridge, TN; Liu, Chain-tsuan [Oak Ridge, TN

    2010-07-13

    An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.

  3. Synthesis of 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2 cathode materials using 3-D urchin-like MnO2 as precursor for high performance lithium ion battery

    International Nuclear Information System (INIS)

    Zhao, Chenhao; Hu, Zhibiao; Zhou, Yunlong; Fang, Shuzhen; Cai, Shaohan

    2015-01-01

    In the paper, we report synthesis of lithium rich layered oxide 0.3Li 2 MnO 3 ·0.7LiNi 1/3 Co 1/3 Mn 1/3 O 2 by using an urchin-like MnO 2 as precursor. The influences of calcination temperatures on the structures and electrochemical performances of as-prepared materials are systematically studied. The results show that the obtained sample can partially retain the morphology of urchin-like precursor especially at low temperature, and a higher calcination temperature helps to improve the layered structure and particle size. As lithium ion battery cathodes, the 750 °C sample with the size of 100–200 nm reveals an optimal electrochemical performance. The initial discharge capacity of 234.6 mAh g −1 with high Coulombic efficiency of 84.6 % can be reached at 0.1C within 2.0–4.7 V. After 50 cycles, the capacity retention can reach 90.2 % at 0.5C. Even at high current density of 5C, the sample also shows a stable discharge capacity of 120.5 mAh g −1 . Anyways, the urchin-like MnO 2 directed route is suitable to prepare 0.3Li 2 MnO 3 ·0.7LiNi 1/3 Co 1/3 Mn 1/3 O 2 as lithium ion battery cathode

  4. B-site cation order/disorder and their valence states in Ba3MnNb2O9 perovskite oxide

    Science.gov (United States)

    Xin, Yan; Huang, Qing; Shafieizadeh, Zahra; Zhou, Haidong

    2018-06-01

    Polycrystalline samples Ba3MnNb2O9 synthesized by solid state reaction and single crystal samples grown by optical floating zone have been characterized using scanning transmission electron microscopy and electron energy loss spectroscopy. Three types of B-site Mn and Nb ordering phase are observed: fully ordered 1Mn:2Nb; fully disordered; nano-sized 1Mn:1Nb ordered. No electronic structure change for crystals with different ordering/disordering. The Mn valence is determined to be 2+, and Nb valence is 5+. Oxygen 2p orbitals hybridize with Mn 3d and Nb 4d orbitals. Factors that affect the electron energy loss near edge structures of transition metal white-lines in electron energy loss spectroscopy are explicitly illustrated and discussed.

  5. Magnetocaloric effect and multifunctional properties of Ni-Mn-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dubenko, Igor, E-mail: igor_doubenko@yahoo.com [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Samanta, Tapas; Kumar Pathak, Arjun [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Kazakov, Alexandr; Prudnikov, Valerii [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); Stadler, Shane [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Granovsky, Alexander [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); IKERBASQUE, The Basque Foundation for Science, 48011 Bilbao (Spain); Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Paseo M. de Lardizabal 3, 20018 Donostia - San Sebastian (Spain); Zhukov, Arcady [IKERBASQUE, The Basque Foundation for Science, 48011 Bilbao (Spain); Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Paseo M. de Lardizabal 3, 20018 Donostia - San Sebastian (Spain); Ali, Naushad [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States)

    2012-10-15

    The studies of magnetocaloric properties, phase transitions, and phenomena related to magnetic heterogeneity in the vicinity of the martensitic transition (MT) in Ni-Mn-In and Ni-Mn-Ga off-stoichiometric Heusler alloys are summarized. The crystal structure, magnetocaloric effect (MCE), and magnetotransport properties were studied for the following alloys: Ni{sub 50}Mn{sub 50-x}In{sub x}, Ni{sub 50-x}Co{sub x}Mn{sub 35}In{sub 15}, Ni{sub 50}Mn{sub 35-x}Co{sub x}In{sub 15}, Ni{sub 50}Mn{sub 35}In{sub 14}Z (Z=Al, Ge), Ni{sub 50}Mn{sub 35}In{sub 15-x}Si{sub x}, Ni{sub 50-x}Co{sub x}Mn{sub 25+y}Ga{sub 25-y}, and Ni{sub 50-x}Co{sub x}Mn{sub 32-y}FeyGa{sub 18}. It was found that the magnetic entropy change, {Delta}S, associated with the inverse MCE in the vicinity of the temperature of the magneto-structural transition, TM, persists in a range of (125-5) J/(kg K) for a magnetic field change {Delta}H=5 T. The corresponding temperature varies with composition from 143 to 400 K. The MT in Ni{sub 50}Mn{sub 50-x}In{sub x} (x=13.5) results in a transition between two paramagnetic states. Associated with the paramagnetic austenite-paramagnetic martensite transition {Delta}S=24 J/(kg K) was detected for {Delta}H=5 T at T=350 K. The variation in composition of Ni{sub 2}MnGa can drastically change the magnetic state of the martensitic phase below and in the vicinity of TM. The presence of the martensitic phase with magnetic moment much smaller than that in the austenitic phase above TM leads to the large inverse MCE in the Ni{sub 42}Co{sub 8}Mn{sub 32-y}FeyGa{sub 18} system. The adiabatic change of temperature ({Delta}T{sub ad}) in the vicinity of TC and TM of Ni{sub 50}Mn{sub 35}In{sub 15} and Ni{sub 50}Mn{sub 35}In{sub 14}Z (Z=Al, Ge) was found to be {Delta}T{sub ad}=-2 K and 2 K for {Delta}H=1.8 T, respectively. It was observed that |{Delta}T{sub ad}| Almost-Equal-To 1 K for {Delta}H=1 T for both types of transitions. The results on resistivity, magnetoresistance, Hall

  6. Composites Li2MnO3·LiMn1/3Ni1/3Co1/3O2: Optimized synthesis and applications as advanced high-voltage cathode for batteries working at elevated temperatures

    International Nuclear Information System (INIS)

    Yu Chuang; Li Guangshe; Guan Xiangfeng; Zheng Jing; Li Liping; Chen Tianwen

    2012-01-01

    Highlights: ► Composites xLi 2 MnO 3 ·(1 − x)LiMn 1/3 Ni 1/3 Co 1/3 O 2 (x = 0.1–0.4) were prepared by a novel two-step molten-salt route. ► Structure and chemical compositions of the composites were optimized to show an optimum electrochemical property. ► Composite electrode 0.3Li 2 MnO 3 ·0.7LiMn 1/3 Ni 1/3 Co 1/3 O 2 exhibited an excellent electrochemical performance at elevated temperature of 45.4 °C. ► Electrode kinetics of composites was uncovered for the excellent electrochemical performance at elevated temperature. - Abstract: This work reports on the optimized preparation of a series of composites xLi 2 MnO 3 ·(1 − x)LiMn 1/3 Ni 1/3 Co 1/3 O 2 (x = 0.1–0.4) with an aim to find an advanced high-voltage cathode for lithium-ion batteries that can work at elevated temperatures. Developing a two-step molten-salt method leads to composites with a layered-type structure, showing a particle size distribution ranging from 350 to 450 nm. The composites are featured by oxidation states stabilized as Mn 4+ , Ni 2+ , and Co 3+ , and by lattice occupation of Li + in both transition-metal layers and lithium layer of LiMn 1/3 Ni 1/3 Co 1/3 O 2 . When acting as a cathode of lithium-ion batteries, the composite at x = 0.3 shows an optimum electrochemical performance as characterized by a discharge capacity of 120 mAh g −1 at a high current density of 500 mA g −1 and a capacity retention of 64% after 20 cycles. Surprisingly, this electrochemical performance is significantly improved at elevated temperatures. Namely, discharge capacity is increased to 140.4 mAh g −1 at a high current density of 500 mA g −1 , while average capacity decay rate becomes very small to 0.76%. These excellent performance is explained in terms of the dramatically improved lithium-ion diffusions in both electrode and surface films at elevated temperatures.

  7. Al2O3 Coated Concentration-Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material by Freeze Drying for Long-Life Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Wang, Jingpeng; Du, Chunyu; Yan, Chunqiu; He, Xiaoshu; Song, Bai; Yin, Geping; Zuo, Pengjian; Cheng, Xinqun

    2015-01-01

    Highlights: • Al 2 O 3 -coated concentration-gradient oxide is synthesized by a freeze drying method. • The effect of Al 2 O 3 -coating on concentration-gradient cathode is firstly studied. • Al 2 O 3 -coated sample exhibits high capacity and significantly enhanced cyclability. • Improved cyclability is ascribed to the effective protection of uniform Al 2 O 3 layer. - Abstract: In order to enhance the electrochemical performance of the high capacity layered oxide cathode with a Ni-rich core and a concentration-gradient shell (NRC-CGS), we use a freeze drying method to coat Al 2 O 3 layer onto the surface of NRC-CGS Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material. The samples are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge-discharge measurements and electrochemical impedance spectroscopy. It is revealed that an amorphous Al 2 O 3 layer of about 5 nm in thickness is uniformly formed on the surface of NRC-CGS Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material by the freeze drying procedure. The freeze drying Al 2 O 3 -coated (FD-Al 2 O 3 -coated) sample demonstrates similar discharge capacity and significantly enhanced cycling performances, in comparison to the pristine and conventional heating drying Al 2 O 3 -coated (HD-Al 2 O 3 -coated) samples. The capacity decay rate of FD-Al 2 O 3 -coated Li[Ni 0.73 Co 0.12 Mn 0.15 ]O 2 material is 1.7% after 150 cycles at 55 °C, which is 9 and 12 times lower than that of the pristine and HD-Al 2 O 3 -coated samples. The superior electrochemical stability of the FD-Al 2 O 3 -coated sample is attributed to the synergistic protection of CGS and high-quality Al 2 O 3 coating that effectively protect the active material from electrolyte attack. The freeze drying process provides an effective method to prepare the high performance surface-coated electrode materials

  8. Effect of conventional and subzero treating on the mechanical properties of aged martensitic Fe-12 wt.% Ni-X wt.% Mn alloys

    International Nuclear Information System (INIS)

    Nedjad, S. Hossein; Nili-Ahmadabadi, M.; Mahmudi, R.; Farhangi, H.

    2003-01-01

    Fe-Ni-Mn maraging alloys are suffering from sever embrittlement after aging. Mechanism of the embrittelement has not been well understood yet. Segregation of Mn atoms or formation of Austenite particles at prior Austenite grain boundaries (PAGBs) have been reported as embrittelement mechanisms while it remains controversial now. For better understanding of embrittelement behavior, effect of subzero treating after aging, double aging and modification of alloy composition on the mechanical properties and fracture behavior were investigated. Alloys of chemical compositions Fe-11.9 wt.% Ni-6.3 wt.% Mn and Fe-10.5 wt.% Ni-5.8 wt.% Mo-3 wt.% Mn were studied. Double solution annealing was performed at 1223 and 1093 K for 3.6 ks followed by water quenching. After aging at 723 K for 0.9 ks (under aging) and 172.8 ks (over aging), tensile properties of specimens heat treated conventionally and cryogenically were measured. Double aging was done at 623 K for 3.6 ks followed by a step aging at 753, 783 and 803 K. Aging behavior and tensile properties of Fe-10.5 wt.% Ni-5.8 wt.% Mo-3 wt.% Mn were investigated after aging at 773 K. Results showed that alloy modification yields reasonable tensile properties while subzero treatment and double aging couldn't improve tensile properties. An insight toward more investigation of the embrittelement mechanism was made on the basis of this study

  9. Preparation of Nb-Si phases by cathode sputtering, in particulat the superconducting phase of epitactically grown A15-Nb3Si

    International Nuclear Information System (INIS)

    Siefken, U.

    1979-01-01

    The search for new superconducting materials with high transition temperatures is concentrated on alloys with a cubic A15 structure (Cr 3 Si structure). In this paper we present the preparation of metastable A15-Nb 3 Si which is expected to have a very high transition temperature Tsub(c). The properties of the A15 structure which are relevant for superconductivity are described, in particular the orthogonal chains as the most important structural characteristic, metastability, and the relation between lattice defects and transition temperature. For target compositions of 75% Nb / 25% Si and 80% Nb / 20% Si A15-Nb 3 Si transition temperatures of Tsub(c) = 5.3 K and Tsub(c) = 7.5 K have been measured respectively, with lattice constants asub(o) = 5.19 A and asub(o) = 5.18 A. (orig.) [de

  10. Resistivity and Passivity Characterization of Ni-Base Glassy Alloys in NaOH Media

    Directory of Open Access Journals (Sweden)

    Khadijah M. Emran

    2018-01-01

    Full Text Available Resistivity and passivation behavior of two Ni-base bulk metallic glasses, with the nominal composition of Ni70Cr21Si0.5B0.5P8C ≤ 0.1Co ≤ 1Fe ≤ 1 (VZ1 and Ni72.65Cr7.3-Si6.7B2.15C ≤ 0.06Fe8.2Mo3 (VZ2, in various concentrations of NaOH solutions were studied. The investigations involved cyclic polarization (CP, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM methods. Cyclic polarization measurements showed spontaneous passivation for both Ni-base glassy alloys at all alkaline concentrations, due to the presence of chromium as an alloying element that formed an oxide film on the alloy surface. The EIS analysis showed that the passive layers grown on the two Ni-base glassy alloy surfaces are formed by a double oxide layer structure. Scanning electron microscope (SEM examinations of the electrode surface showed Cr, Ni, Fe, and O rich corrosion products that reduced the extent of corrosion damage. Atomic force microscopy (AFM imaging technique was used to evaluate the topographic and morphologic features of surface layers formed on the surface of the alloys.

  11. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    Science.gov (United States)

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (pTIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys.

  12. Corrosion performance of Cr3C2-NiCr+0.2%Zr coated super alloys under actual medical waste incinerator environment

    Science.gov (United States)

    Ahuja, Lalit; Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2018-03-01

    Incineration techniques are widely used to dispose of various types of waste which lead to formation of very corrosive environment. Such corrosive environment leads to the degradation of the alloys used in these areas. To obviate this problem, zirconium modified Cr3C2-(NiCr) coating powder has been deposited on three superalloys namely Superni 718, Superni 600 and Superco 605 using Detonation gun technique. Corrosion test was conducted in actual medical waste incinerator environment. The samples were hung inside the secondary chamber operated at 1050°C for 1000h under cyclic condition. Corrosion kinetics was monitored using the weight gain measurements and thickness loss. Corrosion products were characterized using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction technique. It was observed that coating is found to be successful in impeding the corrosion problem in superalloys.

  13. Abrupt symmetry decrease in the ThT{sub 2}Al{sub 20} alloys (T = 3d transition metal)

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, A.; Bram, A.I. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Venkert, A. [Nuclear Research Center-Negev, POB 9001, Beer-Sheva (Israel); Kiv, A.E.; Fuks, D. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Meshi, L., E-mail: louisa@bgu.ac.il [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel)

    2015-11-05

    Th-T-Al system, where T-3d transition metals, was studied at ThT{sub 2}Al{sub 20} stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT{sub 2}Al{sub 20} phase adopts CeCr{sub 2}Al{sub 20} structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT{sub 2}Al{sub 20} alloys. • It was found that cubic ThT{sub 2}Al{sub 20} phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT{sub 2}Al{sub 10} are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results.

  14. Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors.

    Science.gov (United States)

    Zou, Xu; Sun, Qing; Zhang, Yuxin; Li, Guo-Dong; Liu, Yipu; Wu, Yuanyuan; Yang, Lan; Zou, Xiaoxin

    2018-03-14

    Amorphous Ni-Mn bimetallic hydroxide film on the three-dimensional nickle foam (NF)-supported conductive Ni 3 S 2 nanosheets (denoted as Ni-Mn-OH@Ni 3 S 2 /NF) is successfully synthesized by an ultrafast process (5 s). The fascinating structural characteristic endows Ni-Mn-OH@Ni 3 S 2 /NF electrodes better electrochemical performance. The specific capacitance of 2233.3 F g -1 at a current density of 15 A g -1 can achieve high current density charge and discharge at 20/30 A g -1 that the corresponding capacitance is 1529.16 and 1350 F g -1 , respectively. As well as good cycling performance after 1000 cycles can maintain 72% at 15 A g -1 . The excellent performance can be attributed to unique surface modification nanostructures and the synergistic effect of the bimetallic hydroxide film. The impressive results provide new opportunity to produce advanced electrode materials by simple and green route and this material is expected to apply in high energy density storage systems.

  15. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3

    International Nuclear Information System (INIS)

    Zhang, L.; Wu, J.

    1997-01-01

    Silicides are among those potential candidates for high temperature application because of their high melting temperature, low density and good oxidation resistance. Recent interest is focused on molybdenum silicides and titanium silicides. Extensive investigation has been carried out on MoSi 2 , yet comparatively less work was performed on titanium silicides such as Ti 5 Si 3 and Ti 3 and TiSi 2 which are of lower density than MoSi 2 . Fundamental understanding of the titanium silicides' properties for further evaluation their potential for practical application are thus needed. The thermal expansion coefficients and elastic moduli of intermetallic compounds are two properties important for evaluation as a first step. The thermal expansion determines the possible stress that might arise during cooling for these high melting point compounds, which is crucial to the preparation of defect free specimens; and the elastic moduli are usually reflections of the cohesion in crystal. In Frommeyer's work and some works afterwards, the coefficients of thermal expansion were measured on both polycrystalline and single crystal Ti 5 Si 3 . The elastic modulus of polycrystalline Ti 5 Si 3 was measured by Frommeyer and Rosenkranz. However, in the above works, the referred Ti 5 Si 3 was the binary one, no alloying effect has been reported on this matter. Moreover, the above parameters (coefficient of thermal expansion and elastic modulus) of Nb 5 Si 3 remain unreported so far. In this paper, the authors try to extend the knowledge of alloyed Ti 5 Si 3 compounds with Nb and Cr additions. Results on the coefficients of thermal expansion and elastic moduli of Ti 5 Si 3 compounds and Nb 5 Si 3 are presented and the discussion is focused on the alloying effect

  16. Electron energy loss spectroscopy of CH3N2CH3 adsorbed on Ni(100), Ni(111), Cr(100), Cr(111)

    International Nuclear Information System (INIS)

    Schulz, M.A.

    1985-07-01

    A study of the adsorption of CH 3 N 2 CH 3 on Ni(100), Ni(111), Cr(100), and Cr(111) using high resolution electron energy loss spectroscopy (EELS) is presented. Under approximately the same conditions of coverage, the vibrational spectra of CH 3 N 2 CH 3 on these four surfaces are quite distinct from one another, implying that the CH 3 N 2 CH 3 -substrate interaction is very sensitive to the physical and electronic structure of each surface. In addition to the room temperature studies, the evolution of surface species on the Ni(100) surface in the temperature range 300 to 425 K was studied. Analysis of the Ni(100) spectra indicates that molecular adsorption, probably through the N lone pair, occurs at room temperature. Spectra taken after annealing the CH 3 N 2 CH 3 -Ni(100) surfaces indicate that CH and CN bond scission occurred at the elevated temperatures. Decomposition of CH 3 N 2 CH 3 takes place on the Ni(111), Cr(100), and Cr(111) surfaces at room temperature, as evidenced by the intensity of the carbon-metal stretch in the corresponding spectra. Possible identities of coadsorbed dissociation products are considered. The stable coverage of surface species on all four surfaces at 300 K is less than one monolayer. A general description of an electron energy loss (EEL) spectrometer is given. Followed by a more specific discussion of some recent modifications to the EEL monochromator assembly used in this laboratory. Both the previous configuration of our monochromator and the new version are briefly described, as an aid to understanding the motivation for the changes as well as the differences in operation of the two versions. For clarity, the new monochromator design is referred to as variable pass, while the previous design is referred to as double pass. A modified tuning procedure for the new monochromator is also presented. 58 refs., 11 figs

  17. Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, H. Ben [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825 Doha (Qatar); Essehli, R., E-mail: ressehli@qf.org.qa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825 Doha (Qatar); Avdeev, M. [Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights NSW 2234 (Australia); Park, J-B.; Sun, Y-K. [Department of Energy Engineering Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Al-Maadeed, M.A. [Center for Advanced Materials (CAM), Qatar University, 2713 Doha (Qatar); Belharouak, I., E-mail: ibelharouak@qf.org.qa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825 Doha (Qatar)

    2016-06-15

    The new compounds NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} were synthesized by sol-gel method and their crystal structures were determined by using neutron powder diffraction data. These compounds were characterized by galvanometric cycling and cyclic voltammetry. NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} crystallize with a stuffed α-CrPO{sub 4}-type structure. The structure consists of a 3D-framework made of octahedra and tetrahedra that are sharing corners and/or edges generating channels along [100] and [010], in which the sodium atoms are located. Of significance, in the structures of NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} a statistical disorder Ni{sup 2+}/Cr{sup 3+} was observed on both the 8g and 4a atomic positions, whereas in NaCoCr{sub 2}(PO{sub 4}){sub 3} the statistical disorder Co{sup 2+}/Cr{sup 3+} was only observed on the 8g atomic position. When tested as negative electrode materials, NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} delivered specific capacities of 352, 385, and 368 mA h g{sup −1}, respectively, which attests to the electrochemical activity of sodium in these compounds. - Highlights: • NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} were synthesized by sol-gel method. • The crystal structures were determined by using neutron powder diffraction data. • The three compounds crystallize with a stuffed α-CrPO{sub 4}-type structure. • The three compounds were tested as anodes in sodium-ion batteries. • Relatively high specific capacities were obtained for these compounds.

  18. Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

    CERN Document Server

    SAE Aerospace Standards. London

    2012-01-01

    Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

  19. Microstructure and mechanical properties of Al-20Si-5Fe-2X (X = Cu, Ni, Cr) alloys produced by melt-spinning

    International Nuclear Information System (INIS)

    Rajabi, M.; Simchi, A.; Davami, P.

    2008-01-01

    Al-20Si-5Fe-2X (X = Cu, Ni and Cr) ribbons were produced by melt-spinning and consolidated by hot pressing at 400 deg. C for 60 min. The microstructure of the ribbons and the consolidated alloys was investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) method, and transmission electron microscopy (TEM). The hardness and compressive strength of the specimens at ambient and elevated temperatures were examined. The microstructure of the ribbons exhibited featureless and dendritic zones. Results of XRD and TEM showed formation of spherically shaped Si particles with an average diameter of 20 nm. Ultrafine Si (110-150 nm) and iron-containing intermetallic particles were noticed in the microstructure of the consolidated ribbons. An improved strength was achieved by alloying of Al-20Si-5Fe with Cu, Ni, and Cr. Nickel was found to be the most effective element in increasing the maximum stress, particularly at elevated temperatures

  20. Low-activation Mn-Cr austenitic stainless steel with further reduced content of long-lived radioactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Saida, T.; Hirai, S. [Mitsubishi Heavy Ind. Ltd., Yokohama (Japan); Kusuhashi, M.; Sato, I.; Hatakeyama, T. [The Japan Steel Works Ltd., Chatsu-machi 4, Muroran 051-8505 (Japan)

    1998-06-01

    Low-activation austenitic stainless steel based on Mn-Cr non-magnetic steels has been developed. The alloying elements of long-life activation, such as Ni, Mo and Co, were eliminated and substituted with Mn along with an addition of N. A Mn-Cr austenitic stainless steel, 24.5Mn-13.5Cr-0.02C-0.2N, has been developed successfully. Examined material properties, including mechanical, thermal and magnetic properties, as well as weldability and characteristics of corrosion resistance, are presented. It was found that the alloy has excellent material properties virtually equivalent to those of 316SS. In this study, the applicability of the Schaeffler, DeLong and Hull constitution diagrams for the stainless steels with low Ni and high Mn contents was also examined. The boundary conditions distinguishing the single austenite phase from the others have been identified for the Mn-Cr steels. (orig.) 22 refs.

  1. Low-activation Mn Cr austenitic stainless steel with further reduced content of long-lived radioactive elements

    Science.gov (United States)

    Onozuka, Masanori; Saida, Tomikane; Hirai, Shouzou; Kusuhashi, Mikio; Sato, Ikuo; Hatakeyama, Tsuyoshi

    1998-06-01

    Low-activation austenitic stainless steel based on Mn-Cr non-magnetic steels has been developed. The alloying elements of long-life activation, such as Ni, Mo and Co, were eliminated and substituted with Mn along with an addition of N. A Mn-Cr austenitic stainless steel, 24.5Mn-13.5Cr-0.02C-0.2N, has been developed successfully. Examined material properties, including mechanical, thermal and magnetic properties, as well as weldability and characteristics of corrosion resistance, are presented. It was found that the alloy has excellent material properties virtually equivalent to those of 316SS. In this study, the applicability of the Schaeffler, DeLong and Hull constitution diagrams for the stainless steels with low Ni and high Mn contents was also examined. The boundary conditions distinguishing the single austenite phase from the others have been identified for the Mn-Cr steels.

  2. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm{sub 2}O{sub 3} addition prepared by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shihong [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)], E-mail: zsh10110903@hotmail.com; Li Mingxi [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); Yoon, Jae Hong; Cho, Tong Yul [School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2008-12-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm{sub 2}O{sub 3} powders, which are prepared on Q235 steel plate by 2.0 kW CO{sub 2} laser deposition. The results indicate that with rare earth oxide Sm{sub 2}O{sub 3} addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm{sub 2}O{sub 3}/Ni-base alloy coatings have similar microstructure showing the primary phase of {gamma}-Ni dendrite and eutectic containing {gamma}-Ni and Cr{sub 23}C{sub 6} phases. However, compared to micron-Sm{sub 2}O{sub 3}/Ni-base alloy, preferred orientation of {gamma}-Ni dendrite of nano-Sm{sub 2}O{sub 3}/Ni-base alloy is weakened. Planar crystal of several-{mu}m thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm{sub 2}O{sub 3}/Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm{sub 2}O{sub 3} size from micron to nano. The improvement on tribological property of nano-Sm{sub 2}O{sub 3}/Ni-base alloy over micron-Sm{sub 2}O{sub 3}/Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO{sub 3} solution, the corrosion resistance is greatly improved with nano-Sm{sub 2}O{sub 3} addition since the decrease of corrosion ratio along grain-boundary in nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating contributes to harmonization of corrosion potential.

  3. Effect of mechanical alloying on FeCrC reinforced Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S. Osman [Univ. of Namik Kemal, Tekirdag (Turkey); Teker, Tanju [Adiyaman Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Demir, Fatih [Batman Univ. (Turkey)

    2016-05-01

    Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. In the present study, the intermetallic matrix composites (IMCs) of Ni-Al reinforced by M{sub 7}C{sub 3} were produced by powder metallurgical routes via solid state reaction of Ni, Al and M{sub 7}C{sub 3} particulates by mechanical alloying processes. Ni, Al and M{sub 7}C{sub 3} powders having 100 μm were mixed, mechanical alloyed and the compacts were combusted in a furnace. The mechanically alloyed (MAed) powders were investigated by X-ray diffraction (XRD), microhardness measurement, optic microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The presence of the carbides depressed the formation of unwanted NiAl intermetallic phases. The mechanical alloyed M{sub 7}C{sub 3} particles were unstable and decomposed partially within the matrix during alloying and sintering, and the morphology of the composites changed with the dissolution ratio of M{sub 7}C{sub 3} and sintering temperature.

  4. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under Sodium Chloride Aqueous Conditions

    Directory of Open Access Journals (Sweden)

    Alvaro A. Rodriguez

    2018-01-01

    Full Text Available The corrosion behavior of high-entropy alloys (HEAs CoCrFeNi2 and CoCrFeNi2Mo0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276 and stainless steel 316L (UNS 31600 to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pitting corrosion. Cyclic voltammetry (CV can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi2Mo0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi2 and stainless steel 316L.

  5. Creep rupture properties of oxidised 20%Cr austenitic stainless steels

    International Nuclear Information System (INIS)

    Lobb, R.C.; Ecob, R.C.

    1989-02-01

    Sheet specimens of stabilised 20%Cr/25%Ni/Nb and nitrided 20%Cr/25%Ni/Ti stainless steels, both used as fuel cladding materials in CAGRs, have been oxidised in simulated reactor gas (Co 2 /1-2%CO) for up to l.9kh at 850 0 C, including intermediate thermal cycles to room temperature. The oxidised specimens have been creep tested subsequently at 750 0 C, under conditions of constant stress. The creep rupture properties are affected differently for the two materials. For 20%Cr/25%Ni/Nb stainless steel, there was no effect of oxidation on the intrinsic microstructure, when compared with thermally aged, non-oxidised material. Any differences in creep ductility were ascribed to geometric effects in specimens of this alloy. Lower ductilities were associated with an increased incidence of pitting attack (higher oxide spallation) and it was concluded that the extent of local, rather than general, loss of section controlled the ductility. For nitrided 20%Cr/25%Ni/Ti stainless steel, the intrinsic microstructure was affected by oxidation, such that increased grain boundary precipitation of M 23 C 6 occurred. The resultant effect was for a greater tendency for intergranular failure at lower ductility than for the thermally aged material. The magnitude of this reduction could not be quantified because the specimen geometry was also changed by oxidation. In this instance, the oxidation mode that produced the most severe loss of section was grain boundary, rather than pitting, attack. This mode of attack was not linked directly to oxide fracture/spallation, but to the period of oxidation. (author)

  6. Investigation of route to martensitic transition in Ni-Mn-In shape memory alloys

    Science.gov (United States)

    Nevgi, R.; Priolkar, K. R.; Righi, L.

    2018-04-01

    The temperature dependent x-ray diffraction and magnetization measurements on the off stoichiometric Ni2Mn1+xIn1-x alloys have confirmed the appearance of martensite at critical Mn concentration of x=0.35. The high temperature phase of all the alloys have cubic L21 structure with the lattice constant steadily decreasing with increase in Mn concentration. Martensitic transition begins to appear in Ni2Mn1.35In0.65 at about 197K and the structure seems to adopt two phases including the major cubic along with the modulated monoclinic phase. This has been explained on the basis of number of Mn-Ni-Mn hybridized pairs that are responsible for inducing martensitic transition.

  7. Al{sub 2} O{sub 3}:Cr,Ni: a possible thermoluminescent dosemeter; Al{sub 2} O{sub 3}: Cr, Ni un posible dosimetro termoluminiscente

    Energy Technology Data Exchange (ETDEWEB)

    Mariani R, Francisco; Roman B, Alvaro; Saavedra S, Renato [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Ibarra S, Angel [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain). Seccion Materiales para Fusion

    1997-12-31

    Results from a study on the thermoluminescent (Tl) emission from Al{sub 2} O{sub 3}:Cr,Ni are presented. The measurements were obtained for evaluation of the Al{sub 2} O{sub 3}:Cr,Ni dosimetric properties. Different crystal batches were exposed to two kind of ionizing radiation (X-ray and {beta}{sup -}). The Tl spectrum has a main peak with high thermal and optical stability, deviating from linearity for doses lower than 3.6 Gy. Furthermore, this material shows advantages (thermal resistance, reusability, multiple heating cycles) compared to TLD-100. Measured Al{sub 2} O{sub 3}:Cr,Ni properties indicate that it could be used as a dosemeter. (author). 5 refs., 4 figs.

  8. Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors

    International Nuclear Information System (INIS)

    Xiao, Kang; Li, Jing-Wei; Chen, Gao-Feng; Liu, Zhao-Qing; Li, Nan; Su, Yu-Zhi

    2014-01-01

    Highlights: • A novel 3D dendrites-like MnO2 @Ni has been prepared by a simple electrochemical process. • The as-prepared 3D metal Ni can be improved the electrochemical performance by decorating MnO2. • The findings indicate that the novel 3D architectures offer a very promising design for supercapacitors. - Abstract: In this paper, we report a metal oxide/metal MnO 2 /3D dendrites-like Ni core-shell electrode on Ni foam for high-performance supercapacitors. The MnO 2 /3D-Ni electrode exhibits a large areal capacitance (837.6 mF cm −2 ) at high loading mass of MnO 2 (3 mg cm −2 ). Moreover, MnO 2 /3D-Ni composite electrodes exhibit excellent rate capability and high cycling stability (16% degradation after 2000 cycles). The high electrochemical properties of MnO 2 /3D-Ni electrode can be attributed to the high conductivity of the Ni metal core, high porous and large specific surface structure of the MnO 2 /3D-Ni nanocomposites, which facilitates electrolyte diffusion, electron transport, and material utilization. These results indicate highly conductive 3D dendrites-like Ni nanoparticles may could provide new opportunities for the development of high performance supercapacitors

  9. Oxygen storage capacity and structural properties of Ni-doped LaMnO3 perovskites

    International Nuclear Information System (INIS)

    Ran, Rui; Wu, Xiaodong; Weng, Duan; Fan, Jun

    2013-01-01

    Graphical abstract: Dynamic OSC of (a) fresh and (b) aged LaMn 1−x Ni x O 3 perovskites (0.1 Hz). Aged condition: 1050 °C, 5 h, 7% steam in air. The LaMn 1−x Ni x O 3 perovskites exhibit considerable dynamic OSC in comparison to CeO 2 –ZrO 2 (CZ), even after 1050 °C hydrothermal ageing for 5 h. Highlights: •Ni-doped LaMnO 3 perovskites exhibit very large dynamic OSC and high oxygen storage rate. •Mn 4+ is favourable to the releasable oxygen. •Doping of Ni ions increase the Mn 4+ content and the oxygen vacancies. •Doping of Ni ions reduce the BO 6 distortion in the LaMnO 3 perovskites. -- Abstract: A series of Ni doped LaMnO 3 perovskites were prepared by a sol–gel method as oxygen storage materials. Powder X-ray diffraction (XRD), X-ray adsorption fine structure (XAFS), oxygen storage capacity (OSC) and H 2 -temperature program reduction (TPR) measurements were performed to investigate the OSC of the perovskites as well as the effects of Ni on the structural properties. The results showed that the Ni-doped LaMnO 3 perovskite exhibited very large dynamic OSC and high oxygen release rate, which provided a possibility to serve as an oxygen storage material candidate in three-way catalysts. The available oxygen species below 500 °C primarily originated from the redox reaction between Mn 4+ and Mn 3+ , and the more Mn 4+ were favourable to the releasable oxygen. The doping of appropriate Ni ions promoted the OSC of the LaMnO 3 perovskites by increasing the Mn 4+ content and adjusting the structural defects. On the other hand, the doped Ni ions could make the BO 6 distortion disappearing in the LaMnO 3 perovskites to reduce the lattice oxygen activity

  10. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manzoni, A., E-mail: anna.manzoni@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany); Daoud, H.; Völkl, R.; Glatzel, U. [Metals and Alloys, University Bayreuth, Ludwig-Thoma-Strasse 36b, D-95447 Bayreuth (Germany); Wanderka, N. [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany)

    2013-09-15

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al–Ni rich matrix and Cr–Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr–Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr–Fe-rich precipitates. - Highlights: ► The Alloy separates into an Al–Ni rich matrix and Cr–Fe-rich precipitates. ► Concentration depth profiles in the Cr–Fe rich regions show opposite fluctuations. ► They have been attributed to the spinodal decomposition of Fe- and Cr-rich phases. ► The Al–Ni rich region corresponds well to the Al–Ni rich phases observed in the 6 component AlCoCrCuFeNi alloy.

  11. An ab initio study on the structural, electronic and mechanical properties of quaternary full-Heusler alloys FeMnCrSn and FeMnCrSb

    Science.gov (United States)

    Erkişi, Aytaç

    2018-06-01

    The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.

  12. Al2 O3:Cr,Ni: a possible thermoluminescent dosemeter

    International Nuclear Information System (INIS)

    Mariani R, Francisco; Roman B, Alvaro; Saavedra S, Renato; Ibarra S, Angel

    1996-01-01

    Results from a study on the thermoluminescent (Tl) emission from Al 2 O 3 :Cr,Ni are presented. The measurements were obtained for evaluation of the Al 2 O 3 :Cr,Ni dosimetric properties. Different crystal batches were exposed to two kind of ionizing radiation (X-ray and β - ). The Tl spectrum has a main peak with high thermal and optical stability, deviating from linearity for doses lower than 3.6 Gy. Furthermore, this material shows advantages (thermal resistance, reusability, multiple heating cycles) compared to TLD-100. Measured Al 2 O 3 :Cr,Ni properties indicate that it could be used as a dosemeter. (author)

  13. Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries

    International Nuclear Information System (INIS)

    Zhao, Wenwen; Tanaka, Akinobu; Momosaki, Kyoko; Yamamoto, Shinji; Zhang, Fabi; Guo, Qixin; Noguchi, Hideyuki

    2015-01-01

    Highlights: • Ti substituted P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode was synthesized. • Structural and electrochemical properties of Na 2/3 Ni 1/4 Ti x Mn 3/4-x O 2 were studied. • Ti substituted cathodes exhibit enhanced cycleability and rate performance. • Ti substitution has impact on stabilizing the P2 structure during cycling. -- Abstract: Ti substituted P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode material with the composition of Na 2/3 Ni 1/4 Ti x Mn 3/4-x O 2 has been synthesized by solid state method. The influence of Ti substitution for Mn on the structure, morphology and electrochemical performances of P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 has been investigated. X-ray diffraction (XRD) results of Ti substituted sample show that they exhibit same diffraction patterns as those of pristine P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 . Progressive change in the lattice parameters of Ti substituted samples suggests that Mn was successfully substituted by Ti. In contrast to P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 which shows step-type voltage profiles, Ti substituted samples show sloping voltage profiles. Drastic capacity fade occurred for P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode, while Ti substituted cathodes still show high capacity retention over 92% after 25 cycles at the voltage range of 2.0-4.3 V. Even cycled at high upper cut-off voltage of 4.5 V, Ti=0.20 sample can deliver a reversible capacity of 140 mAhg −1 with the capacity retention over 92% after 25 cycles. Furthermore, Ti substituted cathodes exhibit enhanced rate capability over pristine P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode. Comparison of the Ex-situ XRD results of the cycled P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 and its substituted samples provides evidence that the improved electrochemical performance of Ti substituted cathodes would be attributed to the stabilization of the structure with Ti substitution

  14. Corrosion behavior of high purity Fe-Cr-Ni alloys in trans-passive condition

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Jyoji; Kako, Kenji

    1998-01-01

    The corrosion behavior of high-purity (99.99%) Fe-Cr-Ni alloys was investigated in 13 N nitric acid with/without Ce 4+ ions to clarify the effect of impurities on the trans-passive corrosion of stainless steel. The following results were obtained. (1) Almost no intergranular corrosion was observed in the high-purity alloys, although the corrosion rate of the matrix region was nearly the same as that of a commercial stainless steel with the same Cr and Ni content. (2) Due to the improved intergranular corrosion resistance, the effect of the purification became significant in the corrosion condition with the grain-separation being predominant. (3) The high-purity alloys showed higher susceptivility to intergranular corrosion with aging treatment between 873 K and 1073 K. Although the sulfuric acid/copper sulfate test suggested the formation of Cr-depleted zones, a grain boundary micro-analysis using a FETEM with an EDX did not reveal any change in Cr content or impurity segregain along the grain boundaries. The mechanism of corrosion enhancement resulting from the aging treatment remains nuclear. (author)

  15. Adsorption and diffusion of fluorine on Cr-doped Ni(111) surface: Fluorine-induced initial corrosion of non-passivated Ni-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cui-Lan, E-mail: rencuilan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Han [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Gong, Wen-Bin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Shanghai 215123 (China); Wang, Cheng-Bin; Zhang, Wei [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Cheng, Cheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhi-Yuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-09-15

    Adsorption and diffusion behaviors of fluorine on Cr-doped Ni(111) surface are investigated by using first-principles simulation. It shows that the Cr in the Cr-doped Ni(111) surface serve a trap site for fluorine with adsorption energy 3.52 eV, which is 1.04 eV higher than that on Ni(111) surface. Moreover, the Cr atom is pulled out the surface for 0.41 Å after the fluorine adsorption, much higher than that on Ni(111) surface. Further diffusion behaviors analysis confirms the conclusion because the fluorine diffusion from neighbored sites onto the Cr top site is an energy barrierless process. Detailed electronic structure analysis shows that a deeper hybrid state of F 2 p-Cr 3 d indicates a strong F−Cr interaction. The Ni−Cr bond is elongated and weakened due to the new formed F−Cr bonding. Our results help to understanding the basic fluorine-induced initial corrosion mechanism for Ni-based alloy in molten salt environment.

  16. Continuous, flexible, and high-strength superconducting Nb3Ge and Nb3Sn filaments

    International Nuclear Information System (INIS)

    Ahmad, I.; Heffernan, W.J.

    1976-01-01

    Fabrication of continuous, flexible, and high-strength (1600 MN/m 2 ) composite filaments of Nb 3 Ge (T/subc/ 18 0 K) and Nb 3 Sn is reported, involving chemical vapor deposition of these compounds on Nb-coated high-strength W--1% ThO 2 filaments

  17. Optimization of the Deposition Parameters of HVOF FeMnCrSi+Ni+B Thermally Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Gustavo Bavaresco Sucharski

    2015-06-01

    Full Text Available AbstractHVOF thermal spray process produces coatings with low porosity and low oxide content, as well as high substrate adhesion. Small variations on the parameters of the HVOF process can generate coatings with different characteristics and properties, which also is chemical composition depended of the alloy. FeMnCrSi alloy is a cavitation resistant class of material with a great potential for HVOF deposition use. The main goal of this article is to study the influence of some HVOF parameters deposition, as standoff distance, powder feed rate and carrier gas pressure on three different alloys. FeMnCrSi experimental alloys with some variations in nickel and boron content were studied. Taguchi experimental design with L9 orthogonal array was used in this work. Porosity, oxide content, tensile adhesion strength and microhardness of the coatings were evaluated. The results indicated that all factors have significant influence on these properties. Chemical composition of the alloys was the most important factor, followed by the carrier gas pressure, standoff distance and powder feed rate. The addition of Ni, produces coatings with lower levels of oxide content and porosity. An experiment with improved parameters was conducted, and a great improvement on the coating properties was observed.

  18. A Study of Thin Film Resistors Prepared Using Ni-Cr-Si-Al-Ta High Entropy Alloy

    Directory of Open Access Journals (Sweden)

    Ruei-Cheng Lin

    2015-01-01

    Full Text Available Ni-Cr-Si-Al-Ta resistive thin films were prepared on glass and Al2O3 substrates by DC magnetron cosputtering from targets of Ni0.35-Cr0.25-Si0.2-Al0.2 casting alloy and Ta metal. Electrical properties and microstructures of Ni-Cr-Si-Al-Ta films under different sputtering powers and annealing temperatures were investigated. The phase evolution, microstructure, and composition of Ni-Cr-Si-Al-Ta films were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, and Auger electron spectroscopy (AES. When the annealing temperature was set to 300°C, the Ni-Cr-Si-Al-Ta films with an amorphous structure were observed. When the annealing temperature was at 500°C, the Ni-Cr-Si-Al-Ta films crystallized into Al0.9Ni4.22, Cr2Ta, and Ta5Si3 phases. The Ni-Cr-Si-Al-Ta films deposited at 100 W and annealed at 300°C which exhibited the higher resistivity 2215 μΩ-cm with −10 ppm/°C of temperature coefficient of resistance (TCR.

  19. Characterization of a new beta titanium alloy, Ti–12Mo–3Nb, for biomedical applications

    International Nuclear Information System (INIS)

    Gabriel, S.B.; Panaino, J.V.P.; Santos, I.D.; Araujo, L.S.; Mei, P.R.; Almeida, L.H. de; Nunes, C.A.

    2012-01-01

    Highlights: ► This paper focused on the development of Ti–12Mo–3Nb alloy for it to be used as a bone substitute. ► The alloy show good mechanical properties and exhibit spontaneous passivity. ► The Ti–12Mo–3Nb alloy can be a promising alternative for biomedical application. - Abstract: In recent years, different beta titanium alloys have been developed for biomedical applications with a combination of mechanical properties including a low Young's modulus, high strength, fatigue resistance and good ductility with excellent corrosion resistance. From this perspective, a new metastable beta titanium Ti–12Mo–3Nb alloy was developed with the replacement of both vanadium and aluminum from the traditional Ti–6Al–4V alloy. This paper presents the microstructure, mechanical properties and corrosion resistance of the Ti–12Mo–3Nb alloy heat-treated at 950 °C for 1 h. The material was characterized by X-ray diffraction and by scanning electron microscopy. Tensile tests were carried out at room temperature. Corrosion tests were performed using Ringer's solution at 25 °C. The results showed that this alloy could potentially be used for biomedical purposes due to its good mechanical properties and spontaneous passivation.

  20. Structure and composition of layers of Ni-Co-Mn-In Heusler alloys obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wisz, Grzegorz; Sagan, Piotr; Stefaniuk, Ireneusz; Cieniek, Bogumil; Maziarz, Wojciech; Kuzma, Marian

    2017-01-01

    In present work we were analysing thin layers of Ni-Co-Mn-In alloys, grown by pulsed laser deposition method (PLD) on Si, NaCl and glass substrates. For target ablation the second harmonics of YAG:Nd 3+ laser was used. The target had the composition Ni 45 Co 5 Mn 34.5 In 14.5 . The morphology of the layers and composition were studied by electron microscopy TESCAN Vega3 equipped with microanalyzer EDS – Easy EdX system working with Esprit Bruker software. The X-ray diffraction measurements (XRD), performed on spectrometer Bruker XRD D8 Advance system, reveals Ni 2 -Mn-In cubic phase having lattice constant a = 6.02Å.

  1. Unidirectional solidification of a Nbss/Nb5Si3 in-situ composite

    International Nuclear Information System (INIS)

    Guo, X.P.; Ding, X.; Zhang, J.; Fu, H.Z.; Guan, P.; Kusabiraki, K.

    2005-01-01

    The directionally solidified specimens of Nb-13.52 Si-22.60 Ti-6.88 Hf-2.54 Cr-2.24 Al alloy were prepared in an electron beam floating zone melting furnace at the withdrawing rate of 0.1, 0.3, 0.6, 1.0, 2.4 and 6.0 mm/min. All the primary Nb solid solution (Nb ss ) columns, Nb ss + (Nb) 3 Si/(Nb) 5 Si 3 eutectic colonies and divorced (Nb) 3 Si/(Nb) 5 Si 3 plates or chains align well along the longitudinal axis of the specimens. With increasing of the withdrawing rate, the microstructure is gradually refined, and the amount of Nb ss + (Nb) 3 Si/(Nb) 5 Si 3 eutectic colonies increases. Both the room temperature ultimate tensile strength σ b and fracture toughness K Q are improved for the directionally solidified specimens. The tensile fracture occurs in a cleavage way. (orig.)

  2. Powder metallurgy and mechanical alloying effects on the formation of thermally induced martensite in an FeMnSiCrNi SMA

    Directory of Open Access Journals (Sweden)

    Pricop Bogdan

    2015-01-01

    Full Text Available By ingot metallurgy (IM, melting, alloying and casting, powder metallurgy (PM, using as-blended elemental powders and mechanical alloying (MA of 50 % of particle volume, three types of FeMnSiCrNi shape memory alloy (SMA specimens were fabricated, respectively. After specimen thickness reduction by hot rolling, solution treatments were applied, at 973 and 1273 K, to thermally induce martensite. The resulting specimens were analysed by X-ray diffraction (XRD and scanning electron microscopy (SEM, in order to reveal the presence of ε (hexagonal close-packed, hcp and α’ (body centred cubic, bcc thermally induced martensites. The reversion of thermally induced martensites, to γ (face centred cubic, fcc austenite, during heating, was confirmed by dynamic mechanical analysis (DMA, which emphasized marked increases of storage modulus and obvious internal friction maxima on DMA thermograms. The results proved that the increase of porosity degree, after PM processing, increased internal friction, while MA enhanced crystallinity degree.

  3. Fabrication of Nb_3Al superconductor by the optimized mechanical alloying method with low temperature

    International Nuclear Information System (INIS)

    Zhang, Y.; Lin, W.J.; Xu, L.Y.; Yang, D.W.; Chen, Y.L.; Li, P.Y.; Pan, X.F.; Yan, G.; Zhao, Y.

    2016-01-01

    Highlights: • Due to a much better strain tolerance than Nb_3Sn, Nb_3Al has been considered as an excellent candidate for making high field magnets. At present, the Nb_3Al superconducting wires were prepared mainly by the Jelly-roll method combined with a rapid heating and quenching (RHQ) heat treatment at around 2000 °C. In this study, Nb_3Al superconductor with T_c of 15.6 K is directly prepared with a mechanical alloying method followed by a low temperature annealing at 800 to 900 °C. Our results hint the possibility that Nb_3Al superconducting wire with high performance can be prepared below the melting point of Cu (1080 °C) by a conventional powder in tube (PIT) method, thus effectively avoiding high temperature heat treatment and RHQ device. - Abstract: Mechanical alloying was used to synthesize Nb_3Al superconductor successfully, and the process was optimization under various preparation conditions. In the current study, Nb_3Al superconductor with T_c of 15.6 K was directly prepared from high quality Nb (Al) solid solution by mechanical alloying method and heat treatment at a low temperature of 800 to 900 °C. The results showed that Nb_3Al superconducting wire with high performance could be prepared after heat treatment below the melting point of Cu (1080°C) and using Nb (Al) solid solution and conventional powder in tube (PIT) method, thus effectively avoiding ultra-high temperature heat treatment and special rapid heating and quenching(RHQ) device.

  4. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    Science.gov (United States)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  5. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    Science.gov (United States)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  6. Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eunsoo; Yoon, Soon-Jong [Department of Civil Engineering, Hongik University, Seoul 121-791 (Korea, Republic of); Nam, Tae-Hyun [School of Materials Science and Engineering and ERI, Gyeongsang National University, Jinju, Gyeongnam 600-701 (Korea, Republic of); Cho, Sun-Kyu [School of Civil Engineering, Seoul National University of Technology, Seoul 139-743 (Korea, Republic of); Park, Joonam, E-mail: eunsoochoi@hongik.ac.k [Department of Railroad Structure Research, Korea Railroad Research Institute, Uiwang 437-050, Korea (Korea, Republic of)

    2010-05-01

    This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mmx300 mm ({phi}xL). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.

  7. Surface of Ti-Ni alloys after their preparation

    International Nuclear Information System (INIS)

    Saldan, I.; Frenzel, J.; Shekhah, O.; Chelmowski, R.; Birkner, A.; Woell, Ch.

    2009-01-01

    The Ti 3.87 Ni 1.73 Fe 0.7 O 0.3, Ti 3.87 Ni 1.73 Fe 0.4 N 0.3 and Ti 3.87 Ni 1.73 Fe 0.4 C 0.3 alloys were investigated regarding their surface characteristics. The scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used for phase characterization. The X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical composition of alloy surface. The atomic force microscopy (AFM) to observe alloy surface topography after cutting and electrochemical polishing separately has been done. The transmission electron microscopy (TEM) with X-ray diffraction was carried out to get a high contrast images and the diffraction pattern from alloy surface. The results clearly shown, that all alloys were multiphase, and their surface was totally oxidized with no pure metals

  8. Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping

    Science.gov (United States)

    Gómez, A.; Chavarriaga, E.; Supelano, I.; Parra, C. A.; Morán, O.

    2018-04-01

    The effect of Ni2+ doping on the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 manganites synthesized via the auto-combustion method is reported. The aim of studying Ni2+-substituted La0.7Ca0.3Mn1 - xNixO3 (x = 0 , 0.02 , 0.07, and 0.1) manganites was to explore the possibility of increasing the operating temperature range for the magnetocaloric effect through tuning of the magnetic transition temperature. X-ray diffraction analysis confirmed the phase purity of the synthesized samples. The substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice was also corroborated through this technique. The dependence of the magnetization on the temperature reveals that all the compositions exhibit a well-defined ferromagnetic to paramagnetic transition near the Curie temperature. A systematic decrease in the values of the Curie temperature is clearly observed upon Ni2+ doping. Probably the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and the magnetic moment in the samples. By using Arrott plots, it was found that the phase transition from ferromagnetic to paramagnetic is second order. The maximum magnetic entropy changes observed for the x = 0 , 0.02 , 0.07, and 0.1 composites was 0.85, 0.77, 0.63, and 0.59 J/kg K, respectively, under a magnetic field of 1.5 T. In general, it was verified that the magnetic entropy change achieved for La0.7Ca0.3Mn1 - xNixO3 manganites synthesized via the auto-combustion method is higher than those reported for other manganites with comparable Ni2+-doping levels synthesized via standard solid state reaction. The addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (∼60 J/kg) is found for a Ni-doping level of 2% around 230 K in a field of 1.5 T.

  9. Determination of chemical activities of Fe, Cr, Ni and Mn in stainless steel 316 by Knudsen effusion cell mass spectrometry

    International Nuclear Information System (INIS)

    Venugopal, V.; Kulkarni, S.G.; Subbanna, C.S.; Sood, D.D.

    1995-01-01

    Cold-worked austenitic stainless steel of the type AISI 316 is being used as the cladding and wrapper materials in fast reactor fuel pins. Knowledge of the thermodynamic activities of the steel constituents is necessary to predict the possibility of fuel-cladding, coolant-cladding or fission product-cladding chemical reactions. The thermodynamic activities of Fe, Cr, Ni and Mn for stainless steel 316 were determined by measuring their partial pressures in the temperature range 1293-2120 K, using Knudsen effusion cell mass spectrometry. High purity Ag was used as an internal calibrant. The chemical activities of Fe (a Fe ), Cr (a Cr ), Ni (a Ni ) and Mn (a Mn ) were evaluated using literature data for the vapour pressures of pure metals. log a Fe ±0.18=-1.586+2074/T (T=1293-1872 K)log a Cr ±0.30=-2.350+2612/T (T=1293-2120 K)log a Ni ±0.20=-2.140+1794/T (T=1468-1974 K)log a Mn ±0.23=-2.041-5478/T (T=1302-1894 K) ((orig.))

  10. [The effect of bacteria reaction time on corrosion properties of Ni-Cr alloys pretreated with different proteins].

    Science.gov (United States)

    Qi, Han-quan; Zhang, Song-mei; Qian, Chao; Yuan-Li, Zheng

    2015-12-01

    To evaluate the corrosion properties of absorbed protein on the surface of NiCr alloys, and provide experimental base for corrosion resistance of dental casting alloys. NiCr alloy specimens were divided into 3 groups: one group was exposed to the artificial saliva(control group), and the other 2 groups were exposed to the artificial saliva with 1% bovine serum albumin(BSA), or 0.22% lysozyme(LSZ). Group of BSA and group of LSZ were the experimental group. Specimens in 3 groups were cultured in solution of Streptococcus mutans for 12 h, 24 h, 36 h and 48h, and investigated with electrochemical impedance spectroscopy measurement(EIS) and potentiodynamic polarization measurement(POT) to determine the corrosion resistance of the alloys. The data was analyzed with SPSS 17.0 software package. The results indicated that the corrosion resistance of both BSA group and LSZ group were higher than that of the control group (Pcorrosion resistance of BSA group and LSZ group had no significant difference (P>0.05), but was still higher than that of the control group. After 36 h culture time, the control group and the BSA group had no statistical difference in corrosion resistance (P>0.05), while the LSZ group had the poorest corrosion resistance. When the culture time extended to 48 h, the control group had a better corrosion resistance compared with the BAS group and the LSZ group(Pcorrosion properties than LSZ group. The potentiodynamic polarization curve and electrochemical impedance spectroscopy had similar results. The adhesion of BSA and LSZ on the surface of the NiCr alloys in the early time could effectively inhibit the corrosive effect of Streptococcus mutans. The LSZ had better effect than BSA. With the continuing role of bacteria and the consumption of the absorb protein, the corrosion resistance of NiCr alloys toward Streptococcus mutans becomes lower than the alloys without absorb protein, which demonstrated that the adhesion of protein would change the surface

  11. Preparation of layered oxide Li(Co1/3Ni1/3Mn1/3)O2 via the sol-gel process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen; LIU Hanxing; HU Chen; ZHU Xianjun; LI Yanxi

    2008-01-01

    To obtain homogenous layered oxide Li(Co1/3Ni1/3Ni1/3Mn1/3)O2 as a lithium insertion positive electrode material,the sol-gel process using citric acid as a chelating agent was applied.The material Li(Co1/3,Ni1/3Mn1/3)O2 was synthesized at different calcination temperatures.XRD experiment indicated that the hyered Li(Co1/3Ni1/3Mn1/3)O2material could he synthesized at a lower temperature of 800℃,and the oxidation state of Co,Ni,and Mn in the cathode confirmed by XPS were +3,+2,and +4,respectively.SEM observations showed that the synthesized material could form homogenous particle morphology with the particle size of about 200nm In spite of different calcination temperatures,the charge-discharge curves of all the samples for the initial cycle were similar,and the cathode synthesized at 900℃ showed a small irreversible capacity loss of 11.24% and a high discharge capacity of 212.2 mAh.g-1 in the voltage range of 2.9-4.6 V.

  12. Paduan Ni-Cu-Mn Sebagai Logam Alternatif Kedokteran Gigi: Efek Perendaman dalam Larutan 0,1% Sodium Sulfida

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-09-01

    Full Text Available In this study, the ternary base alloys of nickel-copper-manganese (Ni-Cu-Mn alloys are prepared and these ternary alloys systems, which were constituted from higher nickel and lower copper contents than copper-base alloy ones, were evaluated by a tarnish test. Tarnish tests conducted in a 0,1% sodium sulphide solution (pH=12 at 37◦C. All test specimens were case into square paddles of 15 mm x 20 mm x 2,5 mm using the lost-wax technique with a phosphate-bonded investment. The surface of the specimens were then prepared with abrasion papers down to a 600 grit finish. Tarnish attack was quantitatively evaluated by Fibre colorimetry. The results of tarnish test showed that ternary nickel-copper-manganese alloys, such as 40Ni-30Cu-30Mn and 50Ni-30Cu-20Mn, have superior tarnishment resistance than other alloys, e.g. 20Ni-40Cu-40Mn, 30Ni-30Cu-40Mn and 30Ni-40Cu-30Mn. It was also found that 40Ni-30Cu-30Mn and 50Ni-30Cu-20Mn alloys have lower values of colour change vector than the other alloys given above.

  13. Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides

    Science.gov (United States)

    Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang

    2018-05-01

    In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.

  14. Magnetic and magnetocaloric properties of Ni-Mn-Cr-Sn Heusler alloys under the effects of hydrostatic pressure

    Science.gov (United States)

    Pandey, Sudip; Us Saleheen, Ahmad; Quetz, Abdiel; Chen, Jing-Han; Aryal, Anil; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2018-05-01

    The magnetic, thermal, and magnetocaloric properties of Ni45Mn43CrSn11 Heusler alloy have been investigated using differential scanning calorimetry and magnetization with hydrostatic pressure measurements. A shift in the martensitic transition temperature (TM) to higher temperatures was observed with the application of pressure. The application of pressure stabilizes the martensitic state and demonstrated that pressure can be a parameter used to control and tune the martensitic transition temperature (the temperature where the largest magnetocaloric effect is observed). The magnetic entropy change significantly decreases from 33 J/kg K to 16 J/kg K under the application of a hydrostatic pressure of 0.95 GPa. The critical field of the direct metamagnetic transition increases, whereas the initial susceptibility (dM/dH) in the low magnetic field region drastically decreases with increasing pressure. The relevant parameters that affect the magnetocaloric properties are discussed.

  15. Glow discharge mass spectrometric analysis of nickel-based heat-resisting alloys

    International Nuclear Information System (INIS)

    Itoh, Shinji; Yamaguchi, Hitoshi; Kobayashi, Takeshi; Hasegawa, Ryosuke

    1996-01-01

    GD-MS analysis of nickel-based heat-resisting alloys has been performed using a VG 9000 glow discharge (GD) mass spectrometer. Concentrations of not only alloying elements (Al, Si, Ti, V, Cr, Mn, Fe, Co, Cu, Y, Nb, Mo and W) but also trace elements (B, C, Mg, P, S, Zn, Ga, As, Zr, Cd, Sn, Sb, Te, Pb and Bi) were successfully determined in disk shaped samples. The examination of spectral interference confirmed the following. The influence of manganese argide ( 55 Mn 40 Ar + ) on the ion beam intensity of 95 Mo + was negligible because manganese content of the alloys is usually less than 1 mass%. Mass spectra of 31 P + and 32 S + may be affected by the spectral interference of 62 Ni 2+ and 64 Ni 2+ , respectively, due to the matrix element. However, these ion species were sufficiently separated at the mass resolution 5000 (m/Δm, at 5% peak height) used in this study. Relative sensitivity factors (RSFs) were determined by analyzing standard reference materials: JAERI CRMs, a NIST SRM, a BS CRM, BCS CRMs and the alloys prepared in our Institute. The average RSF-values obtained for Ni=1 were 0.436 for Al, 0.826 for Si, 0.281 for Ti, 0.375 for V, 1.480 for Cr, 1.122 for Mn, 0.754 for Fe, 0.653 for Co, 3.321 for Cu, 0.303 for Y, 0.436 for Nb, 0.862 for Mo, 0.935 for Ta and 1.052 for W. The analytical accuracy (σ d ) obtained was comparable to that of FP-XRF analysis, except for chromium and iron determinations. Relative standard deviations (RSDs) of five replicate measurements were within about 2.5%, except for phosphorus (P; 0.003 mass%, RSD; 3.31%) and sulfur (S; 0.005 mass%, RSD; 3.08%). GD-MS analytical values for ODS MA6000 alloy were obtained using a RSF correction program, and the values were in good agreement with those obtained by FP-XRF and by chemical analysis (author)

  16. Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel

    Science.gov (United States)

    Anwar, M. S.; Prifiharni, S.; Mabruri, E.

    2017-05-01

    The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.

  17. Electrodeposited Mn3O4-NiO-Co3O4 as a composite electrode material for electrochemical capacitor

    International Nuclear Information System (INIS)

    Rusi; Majid, S.R.

    2015-01-01

    Highlights: • Composite electrodes were synthesized by in situ electrodeposition method. • The highest specific capacitance of composite electrode is 7404 F g −1 . • The power density of composite electrode is 99 kW kg −1 at current density of 20 A g −1 . • The addition of K 3 Fe(CN) 6 in KOH electrolyte has improved the electrochemical performance. - Abstract: A simple and easy galvanostatic electrodeposition method is used to synthesise a composite electrode consisting of manganese oxide (Mn 3 O 4 ), nickel oxide (NiO) and cobalt oxide (Co 3 O 4 ). The influence of Co 3 O 4 on the morphology of fixed Mn 3 O 4 -NiO particles is investigated with a field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The nature and elemental of the composite are examined by means of X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The electrochemical performances of an Mn 3 O 4 -NiO-Co 3 O 4 nanostructure/SS composite electrode are studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD) in various electrolytes, i.e. 0.5 M Na 2 SO 4 , 0.5 M KOH, 0.5 M Na 2 SO 4 /0.04 M K 3 Fe(CN) 6 and 0.5 M KOH/0.04 M K 3 Fe(CN) 6 electrolytes. The composite electrode prepared from 0.15 M Co deposition solution exhibits the optimum specific capacitance of 7404 F g −1 with high energy and power density of 1028 Wh kg −1 and 99 kW kg −1 at 20 A g −1 in mix KOH/0.04 M K 3 Fe(CN) 6 electrolyte, respectively. The results show that the incorporation of K 3 Fe(CN) 6 in KOH electrolyte influences the capacitance of Mn 3 O 4 -NiO-Co 3 O 4 composite electrodes

  18. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  19. XHM-1 alloy as a promising structural material for water-cooled fusion reactor components

    International Nuclear Information System (INIS)

    Solonin, M.I.; Alekseev, A.B.; Kazennov, Yu.I.; Khramtsov, V.F.; Kondrat'ev, V.P.; Krasina, T.A.; Rechitsky, V.N.; Stepankov, V.N.; Votinov, S.N.

    1996-01-01

    Experience gained in utilizing austenitic stainless steel components in water-cooled power reactors indicates that the main cause of their failure is the steel's propensity for corrosion cracking. In search of a material immune to this type of corrosion, different types of austenitic steels and chromium-nickel alloys were investigated and tested at VNIINM. This paper presents the results of studying physical and mechanical properties, irradiation and corrosion resistance in a water coolant at <350 C of the alloy XHM-1 as compared with austenitic stainless steels 00Cr16Ni15Mo3Nb, 00Cr20Ni25Nb and alloy 00Cr20Ni40Mo5Nb. Analysis of the results shows that, as distinct from the stainless steels studied, the XHM-1 alloy is completely immune to corrosion cracking (CC). Not a single induced damage was encountered within 50 to 350 C in water containing different amounts of chlorides and oxygen under tensile stresses up to the yield strength of the material. One more distinctive feature of the alloy compared to steels is that no change in the strength or total elongation is encountered in the alloy specimens irradiated to 32 dpa at 350 C. The XHM-1 alloy has adequate fabricability and high weldability characteristics. As far as its properties are concerned, the XHM-1 alloy is very promising as a material for water-cooled fusion reactor components. (orig.)

  20. A study of phase transformation in a TiAlNb alloy and the effect of Cr addition

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, Michael S.; Goyel, Sonalika; Rios, Orlando [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States); Cupid, Damian M. [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States); Freiberg University of Mining and Technology, Institute of Materials Science, Freiberg (Germany); Seifert, Hans J. [Freiberg University of Mining and Technology, Institute of Materials Science, Freiberg (Germany); Ebrahimi, Fereshteh, E-mail: febra@mse.ufl.edu [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States)

    2010-05-15

    The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 deg. C to 1600 deg. C. Both alloys solidified as single {beta}-phase and transformed to {gamma} + {sigma} phases upon slow cooling. The addition of Cr did not affect the {beta} {yields} {gamma} transformation temperature upon slow cooling. In contrast, the temperature, at which the {sigma}-phase formed, was reduced noticeably. Upon heating, the temperature at which the {beta}-phase evolves from the {gamma} + {sigma} microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the {gamma}-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the {beta}-phase to room temperature. These results are explained by the partitioning of Cr into the {beta}-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.

  1. A study of phase transformation in a TiAlNb alloy and the effect of Cr addition

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, Michael [University of Florida, Gainesville; Goyel, Sonalika [University of Florida, Gainesville; Rios, Orlando [ORNL; Cupid, Damian M [Freiberg University of Mining and Technology; Seifert, Hans J [Freiberg University of Mining and Technology; Ebrahimi, Fereshteh [University of Florida, Gainesville

    2010-01-01

    The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 C to 1600 C. Both alloys solidified as single {beta}-phase and transformed to {gamma} + {sigma} phases upon slow cooling. The addition of Cr did not affect the {beta} {yields} {gamma} transformation temperature upon slow cooling. In contrast, the temperature, at which the {sigma}-phase formed, was reduced noticeably. Upon heating, the temperature at which the {beta}-phase evolves from the {gamma} + {sigma} microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the {gamma}-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the {beta}-phase to room temperature. These results are explained by the partitioning of Cr into the {beta}-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.

  2. A study of phase transformation in a TiAlNb alloy and the effect of Cr addition

    International Nuclear Information System (INIS)

    Kesler, Michael S.; Goyel, Sonalika; Rios, Orlando; Cupid, Damian M.; Seifert, Hans J.; Ebrahimi, Fereshteh

    2010-01-01

    The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 deg. C to 1600 deg. C. Both alloys solidified as single β-phase and transformed to γ + σ phases upon slow cooling. The addition of Cr did not affect the β → γ transformation temperature upon slow cooling. In contrast, the temperature, at which the σ-phase formed, was reduced noticeably. Upon heating, the temperature at which the β-phase evolves from the γ + σ microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the γ-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the β-phase to room temperature. These results are explained by the partitioning of Cr into the β-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.

  3. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  4. Irradiation-Induced Solute Clustering in a Low Nickel FeMnNi Ferritic Alloy

    International Nuclear Information System (INIS)

    Meslin, E.; Barbu, A.; Radiguet, B.; Pareige, P.; Toffolon, C.

    2011-01-01

    Understanding the radiation embrittlement of reactor pressure vessel (RPV) steels is required to be able to operate safely a nuclear power plant or to extend its lifetime. The mechanical properties degradation is partly due to the clustering of solute under irradiation. To gain knowledge about the clustering process, a Fe-1.1 Mn-0.7 Ni (at.%) alloy was irradiated in a test reactor at two fluxes of 0.15 and 9 *10 17 n E≥1MeV . m -2 .s -1 and at increasing doses from 0.18 to 1.3 *10 24 n E≥1MeV ) . m -2 at 300 degrees C. Atom probe tomography (APT) experiments revealed that the irradiation promotes the formation in the α iron matrix of Mn/Mn and/or Ni/Ni pair correlations at low dose and Mn-Ni enriched clusters at high dose. These clusters dissolve partially after a thermal treatment at 400 degrees C. Based on a comparison with thermodynamic calculations, we show that the solute clustering under irradiation can just result from an induced mechanism. (authors)

  5. Interdiffusion and atomic mobility studies in Ni-rich fcc Ni−Al−Mn alloys

    International Nuclear Information System (INIS)

    Cheng, Kaiming; Liu, Dandan; Zhang, Lijun; Du, Yong; Liu, Shuhong; Tang, Chengying

    2013-01-01

    Highlights: •The interdiffusion coefficients of fcc Ni–Al–Mn alloys are experimentally determined. •The atomic mobilities of fcc Ni–Al–Mn alloys have been assessed. •The calculated results agree well with the present experimental diffusivities. •The mobility parameters obtained can be used to predict many diffusion phenomena. -- Abstract: By employing nine groups of bulk diffusion couples together with electron probe microanalysis technique, the composition dependence of ternary interdiffusion coefficients in Ni-rich fcc Ni−Al−Mn alloys at 1373 K was determined via the Matano–Kirkaldy method. The experimental interdiffusion coefficients were critically assessed to obtain the atomic mobilities of Ni, Al and Mn in fcc Ni−Al−Mn alloys by using the DICTRA (DIffusion-Controlled TRAnsformations) software package. The reliability of these mobilities was validated by comprehensive comparison between the model-predicted diffusion properties and the experimental data. The obtained atomic mobilities could be used to describe various diffusion phenomena in fcc Ni–Al–Mn alloys, such as the concentration profiles, interdiffusion flux and diffusion paths

  6. Effect of thermo-mechanical processing on microstructure and mechanical properties of U - Nb - Zr alloys: Part 2 - U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr

    Science.gov (United States)

    Morais, Nathanael Wagner Sales; Lopes, Denise Adorno; Schön, Cláudio Geraldo

    2018-04-01

    The present work is the second and final part of an extended investigation on Usbnd Nb - Zr alloys. It investigates the effect of mechanical processing routes on microstructure of alloys U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr, through X-ray diffraction and scanning electron microscopy, completing the investigation, which started with alloy U - 6 wt% Nb - 6 wt% Zr in part 1. Mechanical properties are determined using microhardness and bending tests and correlated with the developed microstructures. The results show that processing sequence, in particular the inclusion of a 1000 °C heat treatment step, affects significantly the microstructure and mechanical properties of these alloys alloy in different ways. Microstructural characterization shows that both alloys present significant volume fraction of precipitates of a body-centered cubic (BCC) γ-Nb-Zr rich phase in addition the uranium-rich matrix. Bending tests show that sample ductility does not correlate necessarily with hardness and that the key factor appears to be the amount of the γ-Nb-Zr precipitates, which controls the matrix microstructure. Samples with a monoclinic α″ cellular microstructure and/or with the tetragonally-distorted BCC phase (γ0), although not strictly ductile, showed the largest allowed strains-before-break and complete elastic recovery of the broken pieces, pointing out to the macroscopic observation of superelasticity.

  7. Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis

    Science.gov (United States)

    Ellis, David L.; Michal, Gary M.

    1989-01-01

    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

  8. Microstructural investigations of fast reactor irradiated austenitic and ferritic-martensitic stainless steel fuel cladding

    International Nuclear Information System (INIS)

    Agueev, V.S.; Medvedeva, E.A.; Mitrofanova, N.M.; Romanueev, V.V.; Tselishev, A.V.

    1992-01-01

    Electron microscopy has been used to characterize the microstructural changes induced in advanced fast reactor fuel claddings fabricated from Cr16Ni15Mo3NbB and Cr16Ni15Mo2Mn2TiVB austenitic stainless steels in the cold worked condition and Cr13Mo2NbVB ferritic -martensitic steel following irradiation in the BOR-60, BN-350 and BN-600 fast reactors. The data are compared with the results obtained from a typical austenitic commercial cladding material, Cr16Ni15Mo3Nb, in the cold worked condition. The results reveal a beneficial effect of boron and other alloying elements in reducing void swelling in 16Cr-15Ni type austenitic steels. The high resistance of ferritic-martensitic steels to void swelling has been confirmed in the Cr13Mo2NbVB steel. (author)

  9. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?

    Science.gov (United States)

    Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.

  10. Electrochemical hydrogen-storage properties of La{sub 0.78}Mg{sub 0.22}Ni{sub 2.67}Mn{sub 0.11}Al{sub 0.11}Co{sub 0.52}-M1Ni{sub 3.5}Co{sub 0.6}Mn{sub 0.4}Al{sub 0.}-5 composites

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hongxia, E-mail: hhxhunan@126.com [Key Lab of New Processing Technology for Nonferrous Metals and Materials Ministry of Education, Guilin University of Technology, Guilin (China); Li, Guohui [Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin (China); Zhuang, Shuxin [School of Material Science and engineering, Xiamen University of Technology, Xiamen (China)

    2013-07-15

    For improving the electrochemical properties of nonstoichiometric AB{sub 3} -type La{sub 0.7}8Mg{sub 0.22}Ni{sub 2.67}Mn{sub 0.11}Al{sub 0.11}Co{sub 0.52} alloy as negative electrode of Ni-MH battery, its related composites La{sub 0.78}Mg{sub 0.22}Ni{sub 2.67}Mn{sub 0.11}Al{sub 0.11}Co{sub 0.52}-x wt.% M1Ni{sub 3.5}Co{sub 0.6}Mn{sub 0.4}Al{sub 0.5} (x = 0, 10, 20, 30) were prepared. Analysis by X-ray diffractometry (XRD) revealed that the composites consist mainly of LaNi{sub 5} and La{sub 2}Ni{sub 7} phases. Despite the small decrease in the maximum discharge capacity, the cycle performance was significantly enhanced. Linear polarization (LP), anodic polarization (AP) and potential step discharge experiments revealed that the electrochemical kinetics increases first and then decreases with increasing x. (author)

  11. Structure of the c(2x2) Mn/Ni(001) surface alloy by quantitative photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Denlinger, J.; Chen, X. [Univ. of Wisconsin, Milwaukee, WI (United States)] [and others

    1997-04-01

    Surface alloys are two-dimensional metallic systems that can have structures that are unique to the surface, and have no counterpart in the bulk binary phase diagram. A very unusual structure was reported for the Mn-Ni system, based on a quantitative LEED structure determination, which showed that the Mn atoms were displaced out of the surface by a substantial amount. This displacement was attributed to a large magnetic moment on the Mn atoms. The structure of the Mn-Ni surface alloy was proposed to be based on a bulk termination model. Magnetic measurements on the Mn-Ni surface alloys, however, showed conclusively that the magnetic structure of these surface alloys is completely different from the bulk alloy analogs. For example, bulk MnNi is an antiferromagnet, whereas the surface alloy is ferromagnetic. This suggests that the proposed structure based on bulk termination, may not be correct. X-ray Photoelectron Diffraction (XPD) techniques were used to investigate this structure, using both a comparison to multiple scattering calculations and photoelectron holography. In this article the authors present some of the results from the quantitative analysis of individual diffraction patterns by comparison to theory.

  12. [Differential study of the bonding characterization of dental porcelain to Ni-Cr alloys].

    Science.gov (United States)

    Wei, Fang; Zhan, De-song; Wang, Yan-yan

    2008-10-01

    To study the bonding capability when Ni-Cr porcelain alloy was added with Ti, compound rare earth metals and removed the element of Be. Ni-Cr-Ti porcelain alloys manufactured by Institute of Metal Research of Chinese Academy of Sciences were tested. The test alloys were divided into three groups according to whether containing Be and compound rare earth metals or not. And HI BOND Ni-Cr base-metal alloy was chosen as control. The metal-ceramic specimens were prepared for shear test, scanning electron microscope (SEM) and energy spectrum analysis. The shear bond strength of the four groups were analyzed. No significant difference were observed among them (P > 0.05). No crackle was found and they were contacted tightly between the porcelain and metal. The composition and contents of the four groups' interfaces were closed. The shear bond strength of the self-made Ni-Cr-Ti porcelain alloys all can satisfy the clinical requirements. Experimental groups containing Ti, compound rare earth metals and removing the element of Be can be used as better recommendation for clinical practice.

  13. A facile synthesis of Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C composites as cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Rong; Wang, Liqing; Deng, Kunfa; Lv, Mengni; Xu, Yunhua

    2016-01-01

    The novel Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C has been successfully synthesized by a feasible solution process in ternary system. The spherical carbon-coated composites are obtained using a heat treatment in the presence of sucrose. X-ray diffraction (XRD) diffractogram displays that the Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C crystallized in an orthorhombic structure with a space group of Pmn21. The energy-dispersive X-ray spectroscopy mappings indicate that Fe, Mn and Ni elements are distributed homogenously in Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C nano-spherical particle with size less than 50 nm. The lithium storage capacity and cycling performance of the Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C presents good results when tested as cathode materials in lithium cells at room temperature. It delivers an initial discharge capacity of 181.4 mAh g"−"1 and a discharge capacity of 172.9 mAh g"−"1 after 20 cycles at 0.1C in the voltage range of 1.5–4.6V. Furthermore, it also exhibits an excellent rate capability with a capacity under different current densities of about 144.0 mAh g"−"1 (0.2 C), 117.9 mAh g"−"1 (0.5 C), 106.1 mAh g"−"1 (1 C), respectively and a good capacity cycling maintenance of 153.7 mAh g"−"1 after 60 cycles. Above results indicate that the spherical Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C becomes a very promising candidate for cathode material in lithium-ion batteries. - Highlights: • Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C was obtained by solution process in a ternary system. • The material was pure phase ternary solid solution with tetrahedral morphology. • The spherical particle size was less than 50 nm with graphitized carbon coating. • The nanocomposite revealed high discharge capacity and excellent rate capability.

  14. Corrosion behavior of Ni-based structural materials for electrolytic reduction in lithium molten salt

    International Nuclear Information System (INIS)

    Cho, Soo Haeng; Park, Sung Bin; Lee, Jong Hyeon; Hur, Jin Mok; Lee, Han Soo

    2011-01-01

    In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li 2 O molten salt at 650 deg. C for 24-216 h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700 deg. C under an inert atmosphere. The melt was poured into a preheated metallic mold to prepare an as-cast alloy. The corrosion products and fine structures of the corroded specimens were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS), and X-ray diffraction (XRD). The corrosion products of as cast and heat treated low Si/high Ti alloys were Cr 2 O 3 , NiCr 2 O 4 , Ni, NiO, and (Al,Nb,Ti)O 2 ; those of as cast and heat treated high Si/low Ti alloys were Cr 2 O 3 , NiCr 2 O 4 , Ni, and NiO. The corrosion layers of as cast and heat treated low Si/high Ti alloys were continuous and dense. However, those of as cast and heat treated high Si/low Ti alloys were discontinuous and cracked. Heat treated low Si/high Ti alloy showed the highest corrosion resistance among the examined alloys. The superior corrosion resistance of the heat treated low Si/high Ti alloy was attributed to the addition of an appropriate amount of Si, and the metallurgical evaluations were performed systematically.

  15. Study and characterization of FeNi and NiCr(80-20) % w alloys, during and after neutron irradiation, using the resistivity method

    International Nuclear Information System (INIS)

    Otero, Mauro Pereira

    1978-01-01

    We have used the resistivity method with and without neutron irradiation to study the parameters that appear in the Order-Disorder Transitions of Fe Ni(50-50)% at. and Ni Cr( 80 - 20) % w. alloys. The results obtained with Fe Ni are in agreement with those obtained by Marchand at the University of Grenoble. Several isothermal annealings were made in the range 400 - 302 deg C in which T c (Order-Disorder Transition Critical Temperature) was determined between 327 and 310 deg C. The activation energy obtained was E a = 0,49 eV and is in agreement with works of Marchand, Dienes and Damask. As for Ni Cr(80-20)% the following has been done: a) Electrical Properties characterizations, having in mind the technological applications; b) Linear and isothermal annealings were performed to determine the Order-Disorder Transition Critical Temperature (I ) supported by hypothesis made, taking into account the Yano's and Taylor's marks. The-result is T c = (536 +- 4) deg C; c) determination of activation energy E a = (1,36 +- 0.14) eV. The resistivity measurements mere performed by means of the classical 4-wire method. An anisotropy of electrical resistivity was found to exist depending on the sense of the applied electrical field. (author)

  16. A study of corrosion behavior of Ni-22Cr-13Mo-3W alloy under hygroscopic salt deposits on hot surface

    International Nuclear Information System (INIS)

    Badwe, Sunil; Raja, K.S.; Misra, M.

    2006-01-01

    Alloy 22, a nickel base Ni-22Cr-13Mo-3W alloy has an excellent corrosion resistance in oxidizing and reducing environments. Most of the corrosion studies on Alloy 22 have been conducted using conventional chemical or electrochemical methods. In the present investigation, the specimen was directly heated instead of heating the electrolyte, thereby simulating the nuclear waste package container temperature profile. Corrosion behavior of Alloy 22 and evaporation conditions of water diffusing on the container were evaluated using the newly devised heated electrode corrosion test (HECT) method in simulated acidified water (SAW) and simulated concentrated water (SCW) environments. In this method, the concentration of the environment varied with test duration. The corrosion rate of Alloy 22 was not affected by the continuous increase in ionic strength of the SAW (pH 3) environment. Passivation kinetics was faster with increase in concentration of the electrolytes. The major difference between the conventional test and HECT was the aging characteristics of the passive film of Alloy 22. The heated electrode corrosion test can be used for evaluating materials for construction of heat transfer equipments such as evaporators

  17. A combined diffraction and dielectric properties investigation of Ba3MnNb2O9 complex perovskites

    International Nuclear Information System (INIS)

    Liu Yun; Withers, Ray L.; Whichello, A.P.; Noren, Lasse; Ting, Valeska; Brink, Frank; Fitz Gerald, John D.

    2005-01-01

    A combined synthesis, diffraction and dielectric properties investigation of the dependence (and effect) of Mn 2+ /Nb 5+ ordering in Ba 3 MnNb 2 O 9 (BMN) upon annealing atmosphere and processing conditions has been carried out. Annealing in different atmospheres was not found to significantly alter either nominal stoichiometry or structure type. The obtained structure type (disordered metrically cubic or ordered trigonal) as well as the measured electrical properties (in particular, the dielectric loss) were, however, found to be sensitive to the synthesis route. Samples obtained via solid-state reaction were found to be predominantly of 1:2 Mn 2+ /Nb 5+ ordered, P3-bar m1 trigonal structure type whereas samples obtained via an aqueous solution route were found to be of a Mn 2+ /Nb 5+ 'disordered', metrically cubic structure type. All solid-state synthesized samples showed reasonable dielectric properties. The microwave dielectric constant and dielectric quality factor, Q, at 8GHz of an as-synthesized BMN sample were 38 and 100, respectively. By contrast, the dielectric loss of the metrically cubic, Mn 2+ /Nb 5+ 'disordered' samples obtained via an aqueous solution synthesis process were significantly worse

  18. Martensitic transformation and phase stability of In-doped Ni-Mn-Sn shape memory alloys from first-principles calculations

    International Nuclear Information System (INIS)

    Xiao, H. B.; Yang, C. P.; Wang, R. L.; Luo, X.; Marchenkov, V. V.

    2014-01-01

    The effect of the alloying element Indium (In) on the martensitic transition, magnetic properties, and phase stabilities of Ni 8 Mn 6 Sn 2−x In x shape memory alloys has been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The energy difference between the austenitic and martensitic phases was found to increase with increasing In content, which implies an enhancement of the martensitic phase transition temperature (T M ). Moreover, the formation energy results indicate that In-doping increases the relative stability of Ni 8 Mn 6 Sn 2−x In x both in austenite and martensite. This results from a reduction in density of states near the Fermi level regions caused by Ni-3d–In-5p hybridization when Sn is replaced by In. The equilibrium equation of state results show that the alloys Ni 8 Mn 6 Sn 2−x In x exhibit an energetically degenerated effect for an In content of x = ∼1.5. This implies the coexistence of antiparallel and parallel configurations in the austenite.

  19. The influence of Zr substitution for Nb on the corrosion behaviors of the Ni-Nb-Zr bulk metallic glasses

    Science.gov (United States)

    Li, DengKe; Zhu, ZhengWang; Zhang, HaiFeng; Wang, AiMin; Hu, ZhuangQi

    2012-12-01

    The influence of Zr content on corrosion behaviors of the Ni61.5Nb38.5- x Zr x ( x=1, 3, 5, 7, 9 at.%) bulk metallic glasses (BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy (XPS). It was found that these BMG alloys possess superior corrosion resistance, that is, with large passive region of about 1.5 V and low passive current density (as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7). XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb- and Zr-enriched surface films formed in the aggressive acid solution. The Zr substitution for Nb effectively reduces the Ni content, particularly the metallic state Ni content in the surface films, which depresses the electrical conduction of the surface films and reduces the passive current density, thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs. These alloys may potentially be useful for engineering applications.

  20. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.

    Science.gov (United States)

    Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K

    2012-12-19

    A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.

  1. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    Science.gov (United States)

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  2. Permeability and giant magnetoimpedance in Co69Fe4.5X1.5Si10B15 (X=Cr, Mn, Ni) amorphous ribbons

    International Nuclear Information System (INIS)

    Byon, Kwang Seok; Yu, Seong-Cho; Kim, Cheol Gi

    2001-01-01

    The magnetoimpedance (MI) has been measured in the amorphous ribbons of the soft ferromagnetic alloy Co 69 Fe 4.5 X 1.5 Si 10 B 15 (X=Cr, Mn, Ni) as functions of frequency (f). For all of the three samples, at low frequency, f≤5MHz, the MI ratio increases with increasing frequency, but the MI ratio decreases at high frequency, f≥5MHz. The MI profiles are not changed at low frequency regions of f≤1MHz in the amorphous ribbons. The MI ratio at high frequency of f=5MHz becomes 57% in Co 69 Fe 4.5 Cr 1.5 Si 10 B 15 , but the MI ratio becomes 30% in Co 69 Fe 4.5 Mn 1.5 Si 10 B 15 and Co 69 Fe 4.5 Ni 1.5 Si 10 B 15 . The MI ratio at f=10MHz becomes 45% in Co 69 Fe 4.5 Cr 1.5 Si 10 B 15 and the MI ratio becomes 23% in Co 69 Fe 4.5 Mn 1.5 Si 10 B 15 and Co 69 Fe 4.5 Ni 1.5 Si 10 B 15 , respectively. The maximum values of field sensitivity are 2.7(X=Cr), 2.5(X=Mn), 2.2(X=Ni)%/Oe for f=5MHz. [copyright] 2001 American Institute of Physics

  3. Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys

    International Nuclear Information System (INIS)

    Matkovic, Tanja; Matkovic, Prosper; Malina, Jadranka

    2004-01-01

    Influences of adding Ni and Mo on the microstructure and properties of as-cast Co-Cr base alloys have been investigated in order to determine the region of their optimal characteristics for biomedical application. The alloys were produced by arc-melting technique under argon atmosphere. Using optical metallography and scanning electron micro analyser it has been established that among 10 samples of Co-Cr-Ni alloys only samples 5 and 9 with the composition Co 55 Cr 40 Ni 5 and Co 60 Cr 30 Ni 10 have appropriate dendritic solidification microstructure. This microstructure, typical for commercial dental alloys, appears and beside greater number of as-cast Co-Cr-Mo alloys. The results of hardness and corrosion resistance measurements revealed the strong influence of different alloy chemistry and of as-cast microstructure. Hardness of alloys decreases with nickel content, but increases with chromium content. Therefore all Co-Cr-Ni alloys have significantly lower hardness than Co-Cr-Mo alloys. Corrosion resistance of alloys in artificial saliva was evaluated on the base of pitting potential. Superior corrosion characteristics have the samples with typical dendritic microstructure and higher chromium content, until nickel content have not significant effect. According to this, in ternary Co-Cr-Ni phase diagram was located the small concentration region (about samples 5 and 9) in them alloy properties can satisfied the high requirements for biomedical applications. This region is considerably larger in Co-Cr-Mo phase diagram

  4. Negative and positive magnetocaloric effect in Ni-Fe-Mn-Ga alloy

    International Nuclear Information System (INIS)

    Duan Jingfang; Huang Peng; Zhang Hu; Long Yi; Wu Guangheng; Rongchang Ye; Chang Yongqin; Farong Wan

    2007-01-01

    The phase transition process and magnetic entropy change ΔS of Ni 54.5 FeMn 20 Ga 24.5 alloy were studied. Substitution of Fe for Ni increases the Curie temperature and decreases the temperature of martensitic phase transition. The transition from ferromagnetic martensitic to ferrormagnetic austenitic state leads to an abrupt increase of magnetization below 0.5T and an abrupt decrease of magnetization above 0.5T. The sign of ΔS changes from positive to negative with increasing the applied field from 0.5 to 2T. The maximal value of the positive magnetic entropy change ΔS is about 3.1J/kgK for the applied field from 0 to 0.5T. The increase of applied field from 1.5T results in a negative ΔS. The peak of negative ΔS is -2.1J/kgK for a field change of 2T

  5. Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal

    International Nuclear Information System (INIS)

    Chen, Y.X.; Cui, C.Y.; Guo, J.T.; Li, D.X.

    2004-01-01

    The microstructure of a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal in as-processed and heat-treated states has been studied by means of scanning electron microscopy and high resolution electron microscopy (HREM). The microstructure of the NiAl-Cr(Mo) eutectic was characterized by lamellar Cr(Mo) phases embedded within NiAl matrix with common growth direction of . The interface between NiAl and lamellar Cr(Mo) did not have any transition layers. Misfit dislocations were observed at the NiAl-Cr(Mo) interface. In addition to lamellar Cr(Mo) phases, coherent Cr(Mo, Ni, Al) precipitates and NiAl precipitates were also observed in the NiAl matrix and lamellar Cr(Mo) phases, respectively. After hot isostatic pressing and heat treatment, the NiAl-Cr(Mo) interfaces became smooth and straight. Square array of misfit dislocations was directly observed at the (0 0 1) interface between NiAl and Cr(Mo, Ni, Al) precipitate. The configuration of misfit dislocation network showed a generally good agreement with prediction based on the geometric O-lattice model

  6. Search for high entropy alloys in the X-NbTaTiZr systems (X = Al, Cr, V, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Marco Gabriele, E-mail: marcogabriele.poletti@unito.it [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Fiore, Gianluca [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Szost, Blanka A. [Strategic and Emerging Technologies Team (TEC-TS), European Space Agency, ESTEC, 1 Keplerlaan, 2201 AZ Noordwijk (Netherlands); Battezzati, Livio [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2015-01-25

    Highlights: • Composition of refractory high entropy alloys predicted. • Solid solutions found in VNbTaTiZr and AlNbTaTiZr. • Alloys containing Cr and Sn are multi-phased. - Abstract: High entropy alloys, i.e. solid solution phases, are sought in the X-NbTaTiZr equiatomic system where the X element was chosen as Al, Cr, V and Sn by applying recent criteria based on size and electronegativity mismatch of alloy components, number of itinerant and total valence electrons, and the temperature at which the free energy of mixing changes at the alloy composition. The alloys containing V and Al are mostly constituted by solid solutions in good agreement with prediction.

  7. Explosive device of conduit using Ti Ni alloy

    Directory of Open Access Journals (Sweden)

    A. Yu. Kolobov

    2014-01-01

    Full Text Available Presently, materials have been developed which are capable at changing temperate to return significant inelastic deformations, exhibit rubber-like elasticity, convert heat into mechanical work, etc. The aggregate of these effects is usually called the shape memory effect.At present a great number of compounds and alloys with a shape memory effect has been known.These are alloys based on titanium nickelide (TiNi, copper-based alloys (Cu-Al, Cu-Sn, Cu-Al-Ni, Cu-Zn-Si, etc., gold and silver (Ag-Cd, Au-Ag-Cd, Au-Cd-Cu, Au-Zn-Cu, etc., manganese (Mn-Cr, Fe-Cu, Mn-Cu-Ni, Mn-Cu-Zr, Mn-Ni, etc., iron (Fe-Mn, Fe-Ni, Fe-Al, etc., and other compounds.The alloys based on titanium nickelide (nitinol are the most widely used.Alloys with shape memory effect find various applications in engineering and medicine, namely connecting devices, actuators, transformable design, multipurpose medical implants, etc.There is a task of breaking fuel conduit during separating the spacecraft from the rocket in space technology.The paper examines the procedure for design calculation of the separating device of conduit with the use of Ti-Ni alloy. This device can be used instead of the pyro-knives.The device contains two semi-rings from Ti-Ni alloy. In the place of break on the conduit an annular radius groove is made.At a temperature of martensite passage the semi-rings undergo deformation and in the strained state are set in the device. With heating to the temperature of the austenitic passage of bushing macro-deformation the energy stored by the nitinol bushing is great enough to break the conduit on the neck.The procedures of design calculation and response time of device are given.

  8. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  9. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    International Nuclear Information System (INIS)

    Wang, Hong-bin; Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao; Lu, Xiong-gang; Li, Chong-he

    2016-01-01

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr 2 Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  10. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-bin [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China); Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xiong-gang; Li, Chong-he [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China)

    2016-08-30

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr{sub 2}Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  11. A first-principles study of cementite (Fe{sub 3}C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, G., E-mail: g-ghosh@northwestern.edu [Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108 (United States)

    2015-08-15

    A comprehensive computational study of elastic properties of cementite (Fe{sub 3}C) and its alloyed counterparts (M{sub 3}C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr{sub 2}FeC and CrFe{sub 2}C) having the crystal structure of Fe{sub 3}C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, C{sub ij}, of above M{sub 3}Cs; (ii) anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated C{sub ij}s, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio) of M{sub 3}Cs by homogenization of calculated C{sub ij}s; and (iv) acoustic Debye temperature, θ{sub D}, of M{sub 3}Cs based on calculated C{sub ij}s. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  12. Properties of the passive films on Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Lloyd, A.C.; Noel, J.J.; McIntyre, N.S.; Shoesmith, D.W.

    2003-01-01

    Ni-Cr-Mo alloys are among the most corrosion resistant materials known, showing exceptional localized corrosion resistance under extreme industrial conditions. Accordingly, one such alloy, Alloy-22. is a candidate material for the outer sheathing of nuclear waste packages for the Yucca Mountain repository. Nevada, USA. We briefly report our results on the passive behaviour for a series of Ni-Cr-Mo alloys, with the emphasis on determining if there is a temperature dependence associated with it. The change of passive corrosion rate with temperature is a critical parameter required for long-term performance assessment calculations. The results show that alloy C22 performed better than the other members of the C-series of alloys under acidic conditions. This indicates that its selection as a waste package material is appropriate, and that it possess the potential for long-term containment of radio-nuclides. (author)

  13. The behavior of ZrO{sub 2}/20%Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} coatings deposited on aluminum alloys at high temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Pintilei, G.L., E-mail: laura_rares082008@yahoo.com [Pitesti University, Faculty of Mechanics and Technology, Str. Targu din Vale nr.1, 110040 Pitesti, Arges (Romania); Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania); Crismaru, V.I. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania); Abrudeanu, M. [Pitesti University, Faculty of Mechanics and Technology, Str. Targu din Vale nr.1, 110040 Pitesti, Arges (Romania); Munteanu, C. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania); Baciu, E.R. [University of Medicine and Pharmacy “Gr.T.Popa”, Department Implantology, Removable Restorations, Technology, Str. Universitatii nr. 16, 700115 Iasi (Romania); Istrate, B.; Basescu, N. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Mechanics, Bld D. Mangeron nr. 61, 700050 Iasi (Romania)

    2015-10-15

    Highlights: • In both the ZrO{sub 2}/20%Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} coatings the high temperature caused a decrease of pores volume and a lower thickness of the interface between successive splats. • The NiCr bond layer in the sample with a ZrO{sub 2}/20%Y{sub 2}O{sub 3} suffered a fragmentation due to high temperature exposure and thermal expansion which can lead to coating exfoliation. • The NiCr bond layer in the sample with an Al{sub 2}O{sub 3} coating showed an increase of pore volume due to high temperature. - Abstract: Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO{sub 2}/20%Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  14. Intermartensitic transitions in Ni-Mn-Fe-Cu-Ga Heusler alloys

    International Nuclear Information System (INIS)

    Khan, Mahmud; Gautam, Bhoj; Pathak, Arjun; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2008-01-01

    A series of Fe doped Ni 2 Mn 0.75-x Fe x Cu 0.25 Ga Heusler alloys have been investigated by means of x-ray diffraction, magnetizations, thermal expansion, and electrical resistivity measurements. In Ni 2 Mn 0.75 Cu 0.25 Ga, martensitic and ferromagnetic transitions occur at the same temperature. Partial substitution of Mn by Fe results in a decrease of the martensitic transition temperature, T M , and an increase of the ferromagnetic transition temperature, T C , resulting in separation of the two transitions. In addition to the martensitic transition, complete thermoelastic intermartensitic transformations have been observed in the Fe doped Ni 2 Mn 0.75-x Fe x Cu 0.25 Ga samples with x>0.04. An unusual transition is observed in the alloy with x = 0.04. The magnetization curve as a function of increasing temperature shows only one first-order transition in the temperature range 5-400 K, which is identified as a typical coupled magnetostructural martensitic transformation. The magnetization curve as a function of decreasing temperature shows three different transitions, which are characterized as the ferromagnetic transition, the martensitic transition and the intermartensitic transition.

  15. Characterization of Ni-Cr alloys using different casting techniques and molds.

    Science.gov (United States)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Comparison of the segregation behavior between tempered martensite and tempered bainite in Ni-Cr-Mo high strength low alloy RPV steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Kim, Min Chul; Kim, Hyung Jun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an superior fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be obtained by adding Ni and Cr. So several were performed on researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and term of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, the resistance of thermal embrittlement in the high temperature range including temper embrittlement is required. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. We have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels were evaluated after a long-term heat treatment. Then, the the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  17. The study of mechanical properties and reactive stresses in the i-Ni-Nb shape memory alloys

    International Nuclear Information System (INIS)

    Popov, N.N.; Sysoeva, T.I.; Lar'kin, V.F.; Vedernikova, I.I.; Prokoshkin, S.D.

    2007-01-01

    One investigated into the effect of the induced deformation value, rate and temperature, of the thermal treatment procedure and of the chemical composition on the mechanical properties and the development of the reactive stresses in Ti-Ni-Nb system shape memory alloys. One showed the effect of the material composition and of the deformation temperature on the mechanical features of the investigated alloys. One determined the temperature and deformation conditions ensuring the maximum level of the reactive stresses in the alloys. One revealed the dependence of the maximum reactive stress value on the austenite mechanical features, namely, on its yield limit. One chose Ti-Ni-Nb alloy compositions applicable in the pipeline thermomechanical connections [ru

  18. Microstructure and mechanical properties of cast Ti-47Al-2Cr-2Nb alloy melted in various crucibles

    Directory of Open Access Journals (Sweden)

    Wang Ligang

    2012-02-01

    Full Text Available The main factors limiting the mass production of TiAl-based components are the high reactivity of TiAl-based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y2O3 ceramic crucibles and water-cooled copper crucible were used to fabricate the Ti-47Al-2Cr-2Nb alloy in a vacuum induction furnace. The effects of crucible materials and melting parameters on the microstructure and mechanical properties of the alloy were analyzed by means of microstructure observation, chemical analysis, tensile test and fracture surface observation. The possibilities of melting TiAl alloys in crucibles made of CaO and Y2O3 refractory materials were also discussed.

  19. Ni3Al intermetallide-based alloy: a promising material for turbine blades

    International Nuclear Information System (INIS)

    Kablov, E.N.; Lomberg, B.S.; Buntushkin, V.P.; Golubovskij, E.R.; Muboyadzhyan, S.A.

    2002-01-01

    A consideration is given to properties and structure of a cast intermetallic alloy grade VKNA-4U-mono- with monocrystalline structure in the temperature range of 20-1250 deg C. The influence of long-term heating at 1200 deg C on the stability of alloy mechanical properties is investigated. The advantages of a cast alloy on the basis of alloyed intermetallic compound Ni 3 Al are demonstrated, the processing and physical properties of the alloy are presented [ru

  20. Thermodynamic investigations of the Mn-Ni-C-N quarternary alloys by solid-state galvanic cell technique

    International Nuclear Information System (INIS)

    Teng Lidong; Aune, Ragnhild; Seetharaman, Seshadri

    2005-01-01

    In view of the important applications of carbides and nitrides of transition metals in the hard materials industries, the thermodynamic activities of manganese in Mn-Ni-C-N alloys have been studied by solid-state galvanic cell technique with CaF 2 as the solid electrolyte. The phase compositions and microstructure of various alloys have been analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Nitrogen was introduced into the alloy by equilibrating with N 2 gas. It was established during the experiments that the solubility of nitrogen in the alloys was affected by the carbon content. A (Mn,Ni) 4 (N,C) nitride was formed during the nitriding procedure in the alloys. The electromotive force (EMF) measurements were carried out in the temperature range 940-1127 K in order to determine the activities of Mn in the alloys. The activities of manganese were calculated and compared with those of the corresponding Mn-Ni-C ternary alloys

  1. Chemical diffusion of Cr, Ni and Si in welded joints. II

    International Nuclear Information System (INIS)

    Kucera, J.; Ciha, K.

    1987-01-01

    The results are given of a study in chemical diffusion in welded joints P2/A and P3/A. P2 stands for the steel (Fe-17.48 Cr-8.15 Ni-0.14 Si), P3 for (Fe-18.52 Cr-8.20 Ni-1.78 Si) and A for the Fe-Arema. Triadic sandwiche-like samples were diffusion heated at temperatures from 920 to 1170 degC. The concentration distributions N(x,t) of the given elements were measured with microprobe JXA-3A. The evaluation of the experimental data was carried out either by Grube's method, or in some cases by the spline-polynomial method. The evaluated diffusivities D-bar satisfy the Arrhenius relation and yield the standard diffusion characteristics D 0 and H. The diffusivities D-bar of Cr, Ni and Si in P1/A, in P2/A and P3/A welded joints vary with Si content in P1, P2 and P3 alloys, similar to the Cr-51 and Ni-63 self-diffusivities in Fe-18 Cr-12 Ni-X Si steels, and tend to increase with increasing Si content. The values D-bar measured in the vicinity of grain boundaries are higher than the bulk diffusion coefficients. The most rapid diffusant is Si and the slowest one Ni. Thus, the relations D-bar Si :D-bar Cr :D-bar Ni ≅ 6:3:1 (P3/A) and D-bar Si :D-bar Cr :D-bar Ni ≅ 1.7:1.4:1 (P3/A) are valid at 1050 degC. Comparing the results with those published if can be noted that the Cr-51 and Ni-63 self-diffusion in Fe-18 Cr-12 Ni-X Si steels is faster than chemical diffusion of these elements in the said steel welded joints P2/A and P3/A; X varies from 0.14 to 1.98. (author). 7 tabs., 7 figs., 20 refs

  2. Pressure-induced positive electrical resistivity coefficient in Ni-Nb-Zr-H glassy alloy

    Science.gov (United States)

    Fukuhara, M.; Gangli, C.; Matsubayashi, K.; Uwatoko, Y.

    2012-06-01

    Measurements under hydrostatic pressure of the electrical resistivity of (Ni0.36Nb0.24Zr0.40)100-xHx (x = 9.8, 11.5, and 14) glassy alloys have been made in the range of 0-8 GPa and 0.5-300 K. The resistivity of the (Ni0.36Nb0.24Zr0.40)86H14 alloy changed its sign from negative to positive under application of 2-8 GPa in the temperature range of 300-22 K, coming from electron-phonon interaction in the cluster structure under pressure, accompanied by deformation of the clusters. In temperature region below 22 K, the resistivity showed negative thermal coefficient resistance by Debye-Waller factor contribution, and superconductivity was observed at 1.5 K.

  3. Fabrication of Nb{sub 3}Al superconductor by the optimized mechanical alloying method with low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: yongzhang@swjtu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Lin, W.J.; Xu, L.Y.; Yang, D.W.; Chen, Y.L. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, P.Y.; Pan, X.F.; Yan, G. [Western Superconducting Technoligies Co., Ltd., Xi' an 710018 (China); Zhao, Y., E-mail: yzhao@home.swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052 NSW (Australia)

    2016-11-15

    Highlights: • Due to a much better strain tolerance than Nb{sub 3}Sn, Nb{sub 3}Al has been considered as an excellent candidate for making high field magnets. At present, the Nb{sub 3}Al superconducting wires were prepared mainly by the Jelly-roll method combined with a rapid heating and quenching (RHQ) heat treatment at around 2000 °C. In this study, Nb{sub 3}Al superconductor with T{sub c} of 15.6 K is directly prepared with a mechanical alloying method followed by a low temperature annealing at 800 to 900 °C. Our results hint the possibility that Nb{sub 3}Al superconducting wire with high performance can be prepared below the melting point of Cu (1080 °C) by a conventional powder in tube (PIT) method, thus effectively avoiding high temperature heat treatment and RHQ device. - Abstract: Mechanical alloying was used to synthesize Nb{sub 3}Al superconductor successfully, and the process was optimization under various preparation conditions. In the current study, Nb{sub 3}Al superconductor with T{sub c} of 15.6 K was directly prepared from high quality Nb (Al) solid solution by mechanical alloying method and heat treatment at a low temperature of 800 to 900 °C. The results showed that Nb{sub 3}Al superconducting wire with high performance could be prepared after heat treatment below the melting point of Cu (1080°C) and using Nb (Al) solid solution and conventional powder in tube (PIT) method, thus effectively avoiding ultra-high temperature heat treatment and special rapid heating and quenching(RHQ) device.

  4. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping

    Energy Technology Data Exchange (ETDEWEB)

    Kunce, I., E-mail: ikunce@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Polanski, M.; Karczewski, K. [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Plocinski, T.; Kurzydlowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska Str., 02-507 Warsaw (Poland)

    2015-11-05

    Laser engineered net shaping (LENS) was used to produce thin-walled samples of the high-entropy alloy AlCoCrFeNi from a prealloyed powder. To determine the effect of the cooling rate during solidification on the microstructure of the alloy, different laser scanning rates were used. A microstructural study of the surfaces of the sample walls was performed using X-ray diffraction analysis and optical and scanning/transmission electron microscopy. The crystal structure of the alloy was determined to be a body-centred cubic (bcc)-derivative B2-ordered type. The microstructure of the alloy produced by LENS was dendritic. Further, it was found that with an increase in the laser scanning rate from 2.5 to 40 mm s{sup −1}, the average grain size decreased from 108.3 ± 32.4 μm to 30.6 ± 9.2 μm. The maximum cooling rate achieved during the laser cladding of the alloy was 44 × 10{sup 3} K s{sup −1}. The electron microscopy study of the alloy showed the presence of precipitates. The morphology of the disordered bcc (Fe, Cr)-rich precipitates in the ordered B2 (Al, Ni)-rich matrix changed in the dendritic and interdendritic regions from fine and spherical (with a diameter of less 100 nm) to spinodal (with the thickness being less than 100 nm). The LENS- produced AlCoCrFeNi alloy exhibited an average microhardness of approximately 543 HV0.5; this was approximately 13% higher than the hardness in the as-cast state and can be attributed to the grain refinemet in the LENS- produced alloy. Moreover, it was found that increasing the cooling rate during laser cladding increasess the microhardness of the alloy. - Highlights: • Laser-engineered net shaping is used to produce samples of AlCoCrFeNi alloy. • The alloy has a body-centred cubic (bcc)-derivative B2-ordered crystal structure. • Electron microscopy images of the alloy show the presence of precipitates. • The microhardness of the laser-clad alloy is higher than that of the as-cast alloy. • The cooling rate

  5. Study on soft magnetic properties of Finemet-type nanocrystalline alloys with Mo substituting for Nb

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Dehui; Zhou, Bingwen; Jiang, Boyu; Ya, Bin; Zhang, Xingguo [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China)

    2017-10-15

    The thermal stability, microstructure, and soft magnetic properties as a function of annealing time were studied for Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3-x}Mo{sub x} (x = 0, 1, 2, 3) (atom percent, at.%,) ribbons. It was found that substituting Nb by Mo reduced the thermal stability. After 15 min short time vacuum annealing, Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples obtained higher permeability and similar coercivity compared to the original Finemet alloy (Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3}), Mo substituting Nb reduced the optimum annealing time in Finemet-type alloys, and meanwhile marginally increased the saturation magnetization. Substituting all Nb by Mo led to the earlier formation of non-soft magnetic phase, thus deteriorated the soft magnetic properties. XRD and TEM structural analysis showed that in Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples (annealed for 15 min), nanocrystals ∝10 nm in size were obtained, and the good soft magnetic properties of these alloys could be attributed to the small grain size. The relationship between annealing time, soft magnetic properties, and microstructure was established. Reducing annealing time and temperature to obtain best soft magnetic properties could cut down the production costs of Finemet-type alloys. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application

    Science.gov (United States)

    Kök, Mediha; Ateş, Gonca

    2017-04-01

    In biomedical applications, NiTi and NiTi-based alloys that show their shape memory effects at body temperature are preferred. In this study, the purpose is to produce NiTi and NiTi-based alloys with various chemical rates and electron concentrations and to examine their various physical properties. N45Ti55, Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Sn, Co) alloys were produced in an arc melter furnace in this study. After the homogenization of these alloys, the martensitic phase transformation temperatures were determined with differential-scanner calorimeter. The transformation temperature was found to be below the 37 ° C (body temperature) in Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys; and the transformation temperature of the N45Ti55, Ni48Ti51Sn alloys was found to be over 37 ° C . Then, the micro and crystal structure analyses of the alloys were made, and it was determined that Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys, which were in austenite phase at room temperature, included B2 (NiTi) phase and Ti2Ni precipitation phase, and the alloys that were in the martensite phase at room temperature included B19ı (NiTi) phase and Ti2Ni phase. The common phase in both alloy groups is the Ti2Ni phase, and this type of phase is generally seen in NiTi alloys that are rich in titanium (Ti-rich).

  7. The effect of high charging rates activation on the specific discharge capacity and efficiency of a negative electrode based on a LaMgAlMnCoNi alloy

    International Nuclear Information System (INIS)

    Ferreira, E.A.; Zarpelon, L.M.C.; Casini, J.C.S.; Takiishi, H.; Faria, R.N.

    2009-01-01

    A nickel-metal hydride (Ni-MH) rechargeable battery has been prepared using a La 0.7 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy as the negative electrode. The maximum discharge capacity of the La 0.7 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy has been determined (350 mAh/g). Using a high starting charging rate (2857 mAg -1 ) an efficiency of 49% has been achieved in the 4 th cycle. The alloy and powders have been characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD). (author)

  8. Solute transport and the prediction of breakaway oxidation in gamma + beta Ni-Cr-Al alloys

    Science.gov (United States)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    The Al transport and the condition leading to breakaway oxidation during the cyclic oxidation of gamma + beta NiCrAl alloys have been studied. The Al concentration/distance profiles were measured after various cyclic oxidation exposures at 1200 C. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide/metal interface, maintaining a constant flux of Al to the Al2O3 scale. It was also observed that breakaway oxidation occurs when the Al concentration at the oxide/metal interface approaches zero. A numerical model was developed to simulate the diffusional transport of Al and to predict breakaway oxidation in gamma + beta NiCrAl alloys undergoing cyclic oxidation. In a comparison of two alloys with similar oxide spalling characteristics, the numerical model was shown to predict correctly the onset of breakaway oxidation in the higher Al-content alloy.

  9. X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni-Mn-Ga alloys

    International Nuclear Information System (INIS)

    Martynov, V.V.

    1995-01-01

    Using in-situ single crystal X-ray diffraction methods, thermally- and stress-induced crystal structure evolution was investigated in two Ni-Mn-Ga Heusler-type alloys. For the 51at.%Ni-24at.%Mn-25at.%Ga alloy it was found that application of external stress in a temperature range ∼20 C above the M s at first causes intensity changes of X-ray diffuse scattering peaks in β-phase. Further stressing results in stress-induced phase transformations and under the appropriate conditions three successive martensitic transformations (one is parent-to-martensite and two are martensite-to-martensite transformations) can be stress induced. Of these only the parent-to-martensite transformation can be thermally-induced. Two successive structural transformations (thermally-induced parent-to-martensite and stress-induced martensite-to-martensite transformations) were found in 52at.%Ni-25at.%Mn-23at.%Ga alloy. Crystal structure, lattice parameters, type of modulation, and the length of modulation period for all martensites were identified. (orig.)

  10. Applications Ni59Nb40Pt(1-x) Xx (X= Sn,Sby and Ru) amorphous alloy as anodes for direct methanol (DMFC) fuel cells

    International Nuclear Information System (INIS)

    Rodriguez Pierna, A

    2005-01-01

    The search of new anode materials of amorphous nature for methanol fuel cells is one of the aims of this work.The main problem that fuel cells present is related to the catalytic material and its distribution in a suitable matrix.Amorphous alloys are particularly attractive materials as catalyst supports because of their high conductivity, high corrosion resistance in sulphuric acid, as well as the possibility of a good distribution of the electrocatalytic particles, mainly platinum and platinum-tin, on a conducting matrix.The electrooxidation of methanol, in percloric acid medium, has been used as probe to evaluate the performance of metallic amorphous electrodes, with compositions Ni 5 9Nb 4 0Pt 1 , Ni 5 9Nb 4 0Pt 0 .6Sn0.4, Ni 5 9Nb 4 0Pt 0 .6Sb 0 .4 and Ni 5 9Nb 4 0Pt 0 .6Ru 0 .4.The electrocatalytic activity of the alloyed ribbons of compositions (x = 0.6, 1% at. in platinum) is improved considerably, so much for the change in their composition, as for the roughness degree that the catalytic surfaces present. The increase of the tolerance to adsorbed species, and better resistance to the poisoning of their catalytic centers, can be observed by means of voltammetric experiments at different activation times with HF 48%. The electrooxidation of methanol in the amorphous alloy of composition Ni 5 9Nb 4 0Pt 1 , is influenced by the nature of the used electrolyte, presenting smaller values of current density in solutions 1M H 2 SO 4 than in 1M of HClO 4 .This behavior is not observed in the alloy Ni 5 9Nb 4 0Pt 0 .6Sn 0 .4, Ni 5 9Nb 4 0Pt 0 .6Sb 0 .4 and Ni 5 9Nb 4 0Pt 0 .6Ru 0 .4which does not present a poisoning of the catalytic centers depending on the used electrolyte.Adding tin to the alloys showed the existence of a synergetic effect in the methanol electrooxidation process, attaining to a descent of 20 mV vs Ag/AgCl in the onset potential, and about 200 mV in the maximun peak potential

  11. Magnetic and electrical properties of several Mn-based amorphous alloys

    Science.gov (United States)

    Obi, Y.; Morita, H.; Fujimori, H.

    1987-03-01

    Magnetic and electrical properties of amorphous Mn-Y, Mn-Zr, and Mn-Nb alloys have been investigated. All these alloys have a temperature-dependent susceptibility which is well fitted by a Curie-Weiss law. This implies the existence of localized magnetic moments associated with the Mn atoms. In addition, amorphous Mn-Y alloys exhibit spin-glass characteristics at low temperature. The experimental results of the electrical resistivity show that the temperature coefficient of resistivity (TCR) of both Mn-Y and Mn-Zr are negative, while Mn-Nb has a positive TCR. On the other hand, the resistivity-temperature curves of Mn-Zr and Mn-Nb have nearly the same tendency but are different from that of Mn-Y.

  12. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  13. Three-peak behavior in giant magnetoimpedance effect in Fe73.5-x Cr x Nb3Cu1Si13.5B9 amorphous ribbons

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Valencia, V.H.; Pineda-Gomez, P.

    2007-01-01

    A systematic study of the giant magnetoimpedance (GMI) effect in Fe 73.5- x Cr x Nb 3 Cu 1 Si 13.5 B 9 amorphous ribbons with x=0, 2, 4, 6, 8 and 10 is presented. The complex impedance in these compounds was measured for applied fields from -80 to 80 Oe at room temperature, via the so-called four-probe technique. Depending on the frequency, the experimentally observed GMI curves usually exhibit two types of behavior, namely single-peak (SP), and two-peak (TP). In this work, we emphasize the presence of a 'three-peak behavior' in GMI curves. It occurs between SP and TP behaviors. The mechanisms leading to the three-peak behavior are discussed

  14. The role of the Mg sup 2 sup + ions in Cr sup 3 sup + spectroscopy for near-stoichiometric LiNbO sub 3 crystals

    CERN Document Server

    Han, T P J; Bermudez, V; Diéguez, E

    2003-01-01

    The optical spectroscopy of Cr sup 3 sup + ions doped into near-stoichiometric LiNbO sub 3 crystals, pure and co-doped with MgO, has been investigated. In the near-stoichiometric LiNbO sub 3 :Cr(0.2 mol%):Mg(2 mol%) crystal, the optical spectra resemble those previously observed for congruent LiNbO sub 3 :Cr:MgO samples when the total MgO content exceeds the 4.6 mol% threshold. The coexistence of two types of Cr sup 3 sup + centre ([Cr] sub L sub i and [Cr] sub N sub b) characterized the optical and luminescence spectra of this sample. The concentration equilibrium between the two types of centre is strongly displaced towards the [Cr sup 3 sup + ] sub N sub b centre, permitting us to obtain with accuracy the parameters of the broad bands. The R-line associated with the [Cr] sub N sub b centre is only observable in the low-temperature emission spectrum. The Fano anti-resonance lines present have been observed to be more pronounced for the near-stoichiometric samples than for congruent ones.

  15. Magnetic, transport, and magnetocaloric properties of boron doped Ni-Mn-In alloys

    International Nuclear Information System (INIS)

    Pandey, S.; Quetz, A.; Aryal, A.; Dubenko, I.; Ali, N.; Rodionov, I. D.; Blinov, M. I.; Titov, I. S.; Prudnikov, V. N.; Granovsky, A. B.; Stadler, S.

    2015-01-01

    The impact of B substitution in Ni 50 Mn 35 In 15−x B x Heusler alloys on the structural, magnetic, transport, and parameters of the magnetocaloric effect (MCE) has been studied by means of room-temperature X-ray diffraction and thermomagnetic measurements (in magnetic fields (H) up to 5 T, and in the temperature interval 5–400 K). Direct adiabatic temperature change (ΔT AD ) measurements have been carried out for an applied magnetic field change of 1.8 T. The transition temperatures (T-x) phase diagram has been constructed for H = 0.005 T. The MCE parameters were found to be comparable to those observed in other MCE materials such as Ni 50 Mn 34.8 In 14.2 B and Ni 50 Mn 35 In 14 X (X=In, Al, and Ge) Heusler alloys. The maximum absolute value of ΔT AD  = 2.5 K was observed at the magnetostructural transition for Ni 50 Mn 35 In 14.5 B 0.5

  16. Mechanical and functional properties of two-phase Ni53Mn22Co6Ga19 high-temperature shape memory alloy with the addition of Dy

    International Nuclear Information System (INIS)

    Yang, S Y; Wang, C P; Liu, X J

    2013-01-01

    The effects of Dy addition on microstructure, martensitic transformation, mechanical and shape memory properties of the two-phase Ni 53 Mn 22 Co 6 Ga 19 high-temperature shape memory alloy were investigated. It is found that a small Dy addition results in the refinement of grain size, which can effectively improve the tensile ductility and strength of the two-phase Ni 53 Mn 22 Co 6 Ga 19 alloy. However, a Dy(Ni,Mn) 4 Ga precipitate forms in the alloys with the Dy addition, and its amount increases with an increase in the Dy addition. This change causes the ductility of the alloys to decrease when the Dy addition is further increased to 0.3 at.%. The results further show that the changes in the martensitic transformation temperature of the studied alloys can be attributed to the combined effects of the tetragonality (c/a) and electron concentration (e/a) of martensite. Additionally, the shape memory effects of the alloys are closely related to the refinement of grain size and the alloy strength. In this study, the (Ni 53 Mn 22 Co 6 Ga 19 ) 99.8 Dy 0.2 alloy exhibits a variety of good properties, including a high martensitic transformation starting temperature of 385.7 °C, a tensile ductility of 10.3% and a shape memory effect of 2.8%. (paper)

  17. Effect of addition of V and C on strain recovery characteristics in Fe-Mn-Si alloy

    International Nuclear Information System (INIS)

    Lin Chengxin; Wang Guixin; Wu Yandong; Liu Qingsuo; Zhang Jianjun

    2006-01-01

    Shape recoverable strain, recovery stress and low-temperature stress relaxation characteristics in an Fe-17Mn-5Si-10Cr-4Ni (0.08C) alloy and an Fe-17Mn-2Cr-5Si-2Ni-1V (0.23C) alloy have been studied by means of X-ray diffraction, transmission electron microscopy and measurement of recoverable strain and recovery stress. The amount of stress-induced ε martensite under tensile deformation at room temperature, recoverable strain and recovery stress are increased obviously with addition V and C in Fe-Mn-Si alloy, which is owing to the influence of addition V and C on strengthening austenitic matrix. Addition of V and C in Fe-Mn-Si alloy is evidently effective to reduce the degree of low-temperature stress relaxation, for the dispersed VC particles 50-180 nm in size precipitated during annealing restrain the stress induced martensitic transformation

  18. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    Science.gov (United States)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-04-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  19. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    Science.gov (United States)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-06-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  20. Deposition of highly oriented (K,Na)NbO3 films on flexible metal substrates

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Thydén, Karl; Bowen, Jacob R.

    2018-01-01

    In view of developing flexible, highly textured Pb-free piezoelectric thin films, (K,Na)NbO3 was deposited by chemical solution deposition on cube-textured Ni-W alloy substrates. After heat treatment, a strong (001)pc out-of-plane preferential orientation is created in the (K,Na)NbO3 layer, which...

  1. Corrosion behavior of Ni-based structural materials for electrolytic reduction in lithium molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Haeng, E-mail: nshcho1@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Sung Bin [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Jong Hyeon, E-mail: jonglee@cnu.ac.kr [Graduate School of Green Energy Technology, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Hur, Jin Mok; Lee, Han Soo [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2011-05-01

    In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li{sub 2}O molten salt at 650 deg. C for 24-216 h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700 deg. C under an inert atmosphere. The melt was poured into a preheated metallic mold to prepare an as-cast alloy. The corrosion products and fine structures of the corroded specimens were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS), and X-ray diffraction (XRD). The corrosion products of as cast and heat treated low Si/high Ti alloys were Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4}, Ni, NiO, and (Al,Nb,Ti)O{sub 2}; those of as cast and heat treated high Si/low Ti alloys were Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4}, Ni, and NiO. The corrosion layers of as cast and heat treated low Si/high Ti alloys were continuous and dense. However, those of as cast and heat treated high Si/low Ti alloys were discontinuous and cracked. Heat treated low Si/high Ti alloy showed the highest corrosion resistance among the examined alloys. The superior corrosion resistance of the heat treated low Si/high Ti alloy was attributed to the addition of an appropriate amount of Si, and the metallurgical evaluations were performed systematically.

  2. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    OpenAIRE

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-01-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3) O-3-0.25PbZrO(3)-0.35PbTiO(3) (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 degrees C) and Curie temperature (T-C of 234 degrees C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol.% BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling f...

  3. Fabrication characteristics and hydrogenation behavior of hydrogen storage alloys for sealed Ni-MH batteries

    Science.gov (United States)

    Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon

    2008-08-01

    Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.

  4. Glass forming ability and magnetic properties of Co(40.2−x)Fe(20.1+x)Ni6.7B22.7Si5.3Nb5 (x=0–10) bulk metallic glasses produced by suction casting

    International Nuclear Information System (INIS)

    Sarlar, Kagan; Kucuk, Ilker

    2015-01-01

    The effect of Fe concentration on the glass forming ability (GFA) and magnetic properties in Co (40.2−x) Fe (20.1+x) Ni 6.7 B 22.7 Si 5.3 Nb 5 (x=0–10) bulk metallic glasses were investigated. By suction casting method, the bulk metallic glasses with diameters up to 2 mm were produced. We try to find out which Fe concentration makes an influence on Co based system's magnetic properties and glass forming ability. The curves of thermal analysis, obtained using differential scanning calorimetry (DSC), show that the Co (40.2−x) Fe (20.1+x) Ni 6.7 B 22.7 Si 5.3 Nb 5 (x=0–10) have a supercooled liquid region (∆T x ) of about 44 K. The saturation magnetizations (J s ) for as-cast BMG alloys were in the range of 0.62 T−0.81 T. - Highlights: • The effect of Fe concentration on the glass forming ability. • The substitution of an appropriate amount of Fe can enhance the GFA. • The substitution of Fe for Co also improves soft magnetic properties of the BMGs. • The high of J s 0.62−0.81 T with a low H c of 2−289 A/m of the alloys

  5. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.; Schwingenschlö gl, Udo

    2016-01-01

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns

  6. Oxidation properties of laser clad Nb-Al alloys

    International Nuclear Information System (INIS)

    Tewari, S.K.; Mazumder, J.

    1992-01-01

    This paper reports on laser cladding parameters for non-equilibrium synthesis for several ternary and complex Nb-Al base alloys containing Ti, Cr, Si, Ni, B and C that have been established. Phase transformations occurring below 1500 degrees C have been determined using differential thermal analysis. Ductility of the clads is qualitatively evaluated from the extent of cracking around the microhardness indentations. Oxidation resistance of the clads in flowing air is measured at 800 degrees C, 1200 degrees C and 1400 degrees C and parabolic rate constants are calculated. Microstructure of the clads is studied using optical and scanning electron microscopes. X-ray diffraction and EDX techniques are used for identification of the oxides formed and the phases formed in as clad material. Oxide morphology is studied using SEM. Effect of alloying additions on the ductility and oxidation resistance of the laser clad Nb-Al alloys is discussed. The results are compared with those reported in literature for similar alloys produced by conventional processing methods

  7. Microstructure and tribologic behaviour of metastable austenitic FeMn alloys as a function of chromium content; Gefuegeausbildung und Triboverhalten metastabiler austenitischer FeMn-Legierungen in Abhaengigkeit vom Chromgehalt

    Energy Technology Data Exchange (ETDEWEB)

    Roethig, J. [Magdeburg Univ. (Germany). Inst. fuer Stroemungstechnik und Thermodynamik; Veit, P.; Strassburger, G.; Blaesing, J. [Magdeburg Univ. (Germany). Inst. fuer Experimentelle Physik; Heyse, H. [Magdeburg Univ. (Germany). Inst. fuer Werkstofftechnik und Werkstoffpruefung

    1997-12-31

    In FeMn20Cr alloys with chromium contents of up to 20%, the solidification process is primarily an eutectic process. The {delta}-ferrite becomes increasingly instable below a temperature of 900 C and gradually disintegrates during slow cooling into austenite and a sigma phase. Tempering of these microstructures at T=450 C (6hours) leads to formation of {epsilon}-martensite in the austenite. Fast quenching starting above 900 C freezes the {delta}-ferrite, so that in the case of chromium contents between 13 and 18%, austenitic-hexagonal-ferritic microstructures form and above 18%, austenitic-ferritic microstructures. Tempering does not remove the {delta}-ferrite, but induces formation of {epsilon}-martensite in the austenite. Trobologic examinations with solutionized and water-quenched alloys showed, as compared to an FeMn20Cr18 alloy, for various types of wear, a very good tribologic performance (except for the alloy FeMn20Cr18 and cavitation). As to abrasion or hot wear, the formation of a sigma-phase or intercalation of metalloid hard phases should be considered. (orig./CB) [Deutsch] FeMn20Cr-Legierungen mit Chromgehalten bis zu 20% erstarren primaer ferritisch. Der {delta}-Ferrit ist unterhalb 900 C nicht mehr stabil und zerfaellt bei langsamer Abkuehlung in Austenit und Sigmaphase. Ein Anlassen dieser Gefuege T=450 C (6 Stunden) fuehrt zur {epsilon}-Martensitbildung im Austenit. Schnelles Abschrecken von oberhalb 900 C friert den {delta}-Ferrit ein, so dass bei Chromgehalten zwischen 13 und 18% austenitisch-hexagonal-ferritische und >18% austenitisch-ferritische Gefuege entstehen. Durch Anlassen kann der {delta}-Ferrit nicht beseitigt werden. Im Austenit kommt es aber zur {epsilon}-Martensitbildung. Tribologische Untersuchungen mit loesungsgegluehten und in Wasser abgeschreckten Legierungen zeigten im Vergleich zu einer FeCrNi-Legierung bei verschiedenen Verschleissarten (mit Ausnahme FeMn20Cr18 bei Kavitation) ein sehr gutes Triboverhalten. Gegenueber Abrasion

  8. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  9. High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, J.Y.; Wang, H.; Wu, Y.; Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Nieh, T.G. [Department of Materials Science and Engineering, the University of Tennessee, Knoxville, TN 37996 (United States); Lu, Z.P., E-mail: luzhaoping@163.com [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-02-16

    In this work, we systematically investigated flow behavior of a high entropy alloy (HEA) strengthened by coherent γ′ precipitates in the temperature range of 1023–1173 K. In contrast to the single-phase FeCoNiCrMn HEA, this precipitate-hardened alloy, i.e., (FeCoNiCr){sub 94}Ti{sub 2}Al{sub 4}, exhibited large reduction of the steady-state strain rate (by ~2 orders of magnitude) or drastic enhancement in flow stress, indicating significant improvement in high-temperature properties. Our results showed that the deformation could be divided into two regimes. At temperatures below 1123 K, coherent γ′ precipitates effectively blocked the dislocation motion, thus resulted in a threshold stress effect. Above 1123 K, however, γ′ particles dissolved and the deformation was controlled by the ordinary dislocation climb mechanism. In addition, we conducted transmission electron microscopy to characterize dislocation-precipitate interaction to provide microstructural evidences to support our conclusion of the specific deformation mechanisms in the two temperature regimes.

  10. Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der Waals heterostructures

    Science.gov (United States)

    Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo

    2018-05-01

    As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe3/CrSiTe3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe3/CrSiTe3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe3/CrSiTe3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe3/CrSiTe3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.

  11. Comparative analysis of Nb and Ti addition in the Cu-11,8%wt.Al-0,5%wt.Be e Cu-11,8%wt.Al-3,0%wt.Ni shape memory alloy

    International Nuclear Information System (INIS)

    Silva Junior, M.Q. da; Oliveira, G.D. de

    2014-01-01

    The system of the Cu-Al alloys shape memory alloy have been the subject of many studies due to a wide range of possible applications and relatively low cost, and the chemical composition of the main factors that determine the properties of these properties. This work analyzed the influence of Nb and Ti elements in Cu-11,8Al-0,5Be and Cu-11,8Al-3,0Ni alloy. The alloys are obtained by melting and passed through homogenizing heat treatment followed by water quenching at 30°C. The samples were characterized by Microscopy Optical, X-ray Diffraction and Microhardness testing. The alloys showed fine precipitates of second phase homogeneously distributed in the matrix that provides improvement in the properties of these alloys. (author)

  12. The Effect of Si and Mn on Microstructure and Selected Properties of Cr-Ni Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2017-03-01

    Full Text Available Cast stainless steel of the Cr-Ni duplex type is used, among others, for the cast parts of pumps and valves handling various chemically aggressive media. Therefore, the main problem discussed in this article is the problem of abrasion wear resistance in a mixture of SiC and water and resistance to electrochemical corrosion in a 3% NaCl-H2O solution of selected cast steel grades, i.e. typical duplex cast steel, high silicon and manganese duplex cast steel, and Cr-Ni austenitic cast steel (type AISI 316L. The study shows that the best abrasion wear resistance comparable to Ni-Hart cast iron was obtained in the cast duplex steel, where Ni was partially replaced with Mn and N. This cast steel was also characterized by the highest hardness and matrix microhardness among all the tested cast steel grades. The best resistance to electrochemical corrosion in 3% NaCl-H2O solution showed the cast duplex steel with high content of Cr, Mo and N. The addition of Ni plays rather insignificant role in the improvement of corrosion resistance of the materials tested.

  13. Trace element control in binary Ni-25Cr and ternary Ni-30Co-30Cr master alloy castings

    Energy Technology Data Exchange (ETDEWEB)

    Detrois, Martin [National Energy Technology Lab. (NETL), Albany, OR (United States); Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Jablonski, Paul D. [National Energy Technology Lab. (NETL), Albany, OR (United States);

    2017-10-23

    Electro-slag remelting (ESR) is used for control of unwanted elements in commercial alloys. This study focuses on master alloys of Ni-25Cr and Ni-30Co-30Cr, processed through a combination of vacuum induction melting (VIM) and electro-slag remelting (ESR). Minor additions were made to control tramp element levels and modify the melting characteristics. Nitrogen and sulfur levels below 10 ppm and oxygen levels below 100 ppm were obtained in the final products. The role of the alloy additions in lowering the tramp element content, the resulting residual inclusions and the melting characteristics were determined computationally and confirmed experimentally. Additions of titanium were beneficial to the control of oxygen levels during VIM and nitrogen levels during ESR. Aluminum additions helped to control oxygen levels during remelting, however, aluminum pickup occurred when excess titanium was present during ESR. The usefulness of these master alloys for use as experimental remelt stock will also be discussed.

  14. Nonequilibrium synthesis of Nb-Al alloys by laser processing

    International Nuclear Information System (INIS)

    Tewari, S.K.; Mazumder, J.

    1993-01-01

    The technique of laser surface modification provides a unique means of synthesizing novel nonequilibrium materials in near net shape. Claddings of several NbAl 3 alloys with Ti, B and Hf as a ternary alloy addition were prepared using a CW CO 2 laser. Isothermal oxidation behavior of the clads were examined in air. Oxidation tests at 800, 1,200 and 1,400 C. Alternating layers of alumina and NbAlO 4 were not observed in any of the samples as reported in literature for conventionally processed NbAl 3 oxidized under similar conditions. The parabolic rate constants for all the alloys, except 0 B, were comparable to that for isothermal oxidation of β-NiAl, at 1,200 and 1,400 C in 0.1 atm oxygen, which is a known alumina former. Ternary alloying additions for improved oxidation resistance at 1,400 C accompanied with improved ductility were identified

  15. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries.

    Science.gov (United States)

    He, Li-Po; Sun, Shu-Ying; Song, Xing-Fu; Yu, Jian-Guo

    2017-06-01

    In view of the importance of environmental protection and resource recovery, recycling of spent lithium-ion batteries (LIBs) and electrode scraps generated during manufacturing processes is quite necessary. An environmentally sound leaching process for the recovery of Li, Ni, Co, and Mn from spent LiNi 1/3 Co 1/3 Mn 1/3 O 2 -based LIBs and cathode scraps was investigated in this study. Eh-pH diagrams were used to determine suitable leaching conditions. Operating variables affecting the leaching efficiencies for Li, Ni, Co, and Mn from LiNi 1/3 Co 1/3 Mn 1/3 O 2 , such as the H 2 SO 4 concentration, temperature, H 2 O 2 concentration, stirring speed, and pulp density, were investigated to determine the most efficient conditions for leaching. The leaching efficiencies for Li, Ni, Co, and Mn reached 99.7% under the optimized conditions of 1M H 2 SO 4 , 1vol% H 2 O 2 , 400rpm stirring speed, 40g/L pulp density, and 60min leaching time at 40°C. The leaching kinetics of LiNi 1/3 Co 1/3 Mn 1/3 O 2 were found to be significantly faster than those of LiCoO 2 . Based on the variation in the weight fraction of the metal in the residue, the "cubic rate law" was revised as follows: θ(1-f) 1/3 =(1-kt/r 0 ρ), which could characterize the leaching kinetics optimally. The activation energies were determined to be 64.98, 65.16, 66.12, and 66.04kJ/mol for Li, Ni, Co, and Mn, respectively, indicating that the leaching process was controlled by the rate of surface chemical reactions. Finally, a simple process was proposed for the recovery of valuable metals from spent LiNi 1/3 Co 1/3 Mn 1/3 O 2 -based LIBs and cathode scraps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    Science.gov (United States)

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  17. Giant magnetoresistance in CrFeMn alloys

    International Nuclear Information System (INIS)

    Xu, W.M.; Zheng, P.; Chen, Z.J.

    1997-01-01

    The electrical resistance and longitudinal magnetoresistance of Cr 75 (Fe x Mn 1-x ) 25 alloys, x=0.64, 0.72, are studied in the temperature range 1.5-270 K in applied field up to 7.5 T. The magnetoresistance is negative and strongly correlated with the spin reorientation. In the temperature range where the antiferromagnetic and ferromagnetic domains coexist, the samples display giant magnetoresistance which follows a H n -law at high field. (orig.)

  18. Densities of molten Ni-(Cr, Co, W) superalloys

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; YANG Ren-hui; FANG Liang; LIU Lan-xiao; ZHAO Hong-kai

    2008-01-01

    In order to obtain more accurate density for molten Ni-(Cr, Co, W) binary alloy, the densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys were measured with a sessile drop method. It is found that the measured densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys decrease with increasing temperature in the experimental temperature range. The density of alloys increases with increasing W and Co concentrations while it decreases with increasing Cr concentration in the alloy at 1 773-1 873 K. The molar volume of Ni-based alloys increases with increasing W concentration while it decreases with increasing Co concentration. The effect of Cr concentration on the molar volume of the alloy is little in the studied concentration range. The accommodation among atomic species was analyzed. The deviation of molar volume from ideal mixing shows an ideal mixing of Ni-(Cr, Co, W) binary alloys.

  19. Layered oxides-LiNi1/3Co1/3Mn1/3O2 as anode electrode for symmetric rechargeable lithium-ion batteries

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Yang, Shi-Ze; Gagnon, Catherine; Gariépy, Vincent; Laul, Dharminder; Zhu, Wen; Veillette, René; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-02-01

    High-performance and long-cycling rechargeable lithium-ion batteries have been in steadily increasing demand for the past decades. Nevertheless, the two dominant anodes at the moment, graphite and L4T5O12, suffer from a safety issue of lithium plating (operating voltage at ∼ 0.1 V vs. Li+/Li) and low capacity (175 mAh/g), respectively. Here, we report LiNi1/3Co1/3Mn1/3O2 as an alternative anode material which has a working voltage of ∼1.1 V and a capacity as high as 330 mAh/g at the current rate of C/15. Symmetric cells with both electrodes containing LiNi1/3Co1/3Mn1/3O2 can deliver average discharge voltage of 2.2 V. In-situ XRD, HRTEM and first principles calculations indicate that the reaction mechanism of a LiNi1/3Co1/3Mn1/3O2 anode is comprised mainly of conversion. Both the fundamental understanding and practical demonstrations suggest that LiNi1/3Co1/3Mn1/3O2 is a promising negative electrode material for lithium-ion batteries.

  20. Niobium alloys production with elements of high steam pressure and high ductilidate Nb46,5%Ti, Nb 1%Zr, Nb 1%Ti and Nb20% Ta

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Baldan, C.A.; Dainesi, C.R.; Sandim, H.R.Z.

    1988-01-01

    The melting technology of niobium alloys with high ductilidade and high steam pressure, having the Ti, Zr and Ta as alloying elements is described. The electron beam technique for production of Nb 46,5%Ti, Nb 1%Zr and Nb 20%Ta alloys is analysed, aiming a product with high grade and low cost. (C.G.C.) [pt

  1. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings

    International Nuclear Information System (INIS)

    Qiu, X.W.; Zhang, Y.P.; Liu, C.G.

    2014-01-01

    Highlights: • Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. • Al 2 CrFeNiCoCuTi x coatings show excellent corrosion resistance and wear resistance. • Al 2 CrFeNiCoCuTi x coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al 2 CrFeNiCoCuTi x high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings enhanced in 0.5 mol/L HNO 3 solution. Compared with Q235 steel, the relative wear resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti 0.0 high-entropy alloy is a kind of soft magnetic materials

  2. Optical microscope study of the γ(FCC)ε(HC) martensitic transformation of a Fe-16%Mn-9%Cr-5%Si-4%Ni shape memory alloy

    International Nuclear Information System (INIS)

    Bergeon, N.; Guenin, G.

    1995-01-01

    The γ(FCC) ε(HC) transformation is studied by light optical microscopy and scanning electron microscopy in a polycrystalline Fe-Mn-Si-Cr-Ni shape memory alloy. Thermal and stress-induced martensites are both studied to point out differences. A color etching method permitted to clearly observe morphological evolutions during the transformation and its reversion. Deformations of a golden microgrid deposed on austenitic samples are observed by SEM during the transformation. This technic has led to point out microscopic differences concerning the two kinds of martensite. SEM results are used to explain light optical microscopy observations. (orig.)

  3. Secondary recrystallisation in 20 w/o Cr-25 w/o Ni-Nb stabilised stainless steel

    International Nuclear Information System (INIS)

    Healey, T.; Brown, A.F.; Speight, M.V.

    1976-11-01

    The fuel cladding material for the Commercial Advanced Gas Reactor is a fine grain 20 w/o Cr-25 w/o Ni niobium stabilised stainless steel. The grain structure stability of this alloy has been investigated as a function of carbon content over the temperature range 930 - 990 0 C. It is demonstrated that the primary grain structure is susceptible to abnormal growth due to secondary recrystallisation of the initial fine grain structure after a composition and temperature dependent incubation period. The magnitude of the incubation period is analysed on the basis that secondary recrystallisation commences when randomly dispersed niobium carbide particles have coarsened to a critical size. The validity of the analysis is tested by comparing the predictions with experimental observation. The model is subsequently used to evaluate the incubation period for conditions of temperature, composition and microstructure which differ from those defined in the experimental studies. (author)

  4. Electronic structures and relevant physical properties of Ni2MnGa alloy films

    International Nuclear Information System (INIS)

    Kim, K. W.; Kim, J. B.; Huang, M. D.; Lee, N. N.; Lee, Y. P.; Kudryavtsev, Y. V.; Rhee, J. Y.

    2004-01-01

    The electronic structures and physical properties of the ordered and disordered Ni 2 MnGa alloy films were investigated in this study. Ordered and disordered Ni 2 MnGa alloy films were prepared by flash evaporation onto substrates maintained at 720 K and 150 K, respectively. The results show that the ordered films behave in nearly the same way as the bulk Ni 2 MnGa ferromagnetic shape-memory alloy, including the martensitic transformation at 200 K. It was also revealed that the film deposition onto substrates cooled by liquid nitrogen leads to the formation of a substantially-disordered or an amorphous phase which is not ferromagnetically ordered at room temperature. An annealing of such an amorphous film restores its crystallinity and also recovers the ferromagnetic order. It was also clarified how the structural disordering in the films influences the physical properties, including the loss of ferromagnetism in the disordered films, by performing electronic-structure calculations and a photoemission study.

  5. Synthesis and characterization of composites HoMn_1_-_x(Ni,Co)_xO_3

    International Nuclear Information System (INIS)

    Santos, Cassio Morilla dos

    2011-01-01

    In this work was accomplished the synthesis process and structural and magnetic characterization of HoMn_1_-_X(Ni,Co)_XO_3 compounds of perovskite structure. The samples synthesis were performed through modified polymeric precursor method. After synthesis and solvent removal, the polymer resin formed was treated at 350 deg C/4h for organic constituents removal, followed by heating treatment at 500 deg C/4h and 900 deg C/20h to obtain the crystalline phase. For structural characterization, it was used D10B-XPD beam line of Laboratorio Nacional de Luz Sincrotron (LNLS), where X-rays wavelengths below cobalt, manganese and nickel absorption edge, were used. The formation of HoNi_0_._5_0Mn_0_._5_0O_3, HoCo_0_._5_0Mn_0_._5_0O_3 and HoNi_0_._2_5Co_0_._2_5Mn_0_._5_0O_3 phases were observed by X-ray diffraction technique. By Rietveld refinement method for sample HoNi_0_._2_5Co_0_._2_5Mn_0_._5_0O_3, it was determined that cobalt and nickel had similar occupations at the top and bottom of unit cell, while the manganese preferentially occupied plan 002. The magnetic response of samples was studied through magnetization curves according to the temperature function and the applied magnetic field. The ZFC curves showed a paramagnetic response associated to holmium magnetic moment, and ferromagnetism, antiferromagnetism and ferrimagnetism coexistence, due to sublattices formed by transition metals. The FC curves evidenced the spin reversal phenomenon, associated to the interaction between the sublattice formed by transition metals with sublattices formed by rare-earth, considering a mechanism of antiferromagnetic exchange interaction. (author)

  6. Spin glass and ferromagnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys: Multicritical points in the magnetic phase diagram

    International Nuclear Information System (INIS)

    Synoradzki, K.; Toliński, T.

    2016-01-01

    We report on the CeNi_4Mn (ferromagnet FM) - CeCu_4Mn (spin-glass SG) transformation leading to a complex magnetic phase diagram (MPD). It is verified that all the Ce(Cu_1_-_xNi_x)_4Mn alloys are isostructural and the transformation is governed only by the Cu-Ni substitution. MPD is built based on the magnetic dc/ac susceptibility measurements and reveals SG formation as well as the region of the coexistence of the FM and SG state in the middle range of the Ni concentration. The complex MPD is explained by clusters formation and a competition of interactions between various crystallographic sites of the hexagonal CaCu_5-type structure, mainly the 3g-3g and 3g-2c interactions. The predominance of the SG state is confirmed by the analysis of the frequency dependence of the ac magnetic susceptibility components and the relaxation of the remanent magnetization. Additionally, the presence of two multicritical points is observed. - Highlights: • We fully characterized the magnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys. • We show the presence of complex magnetic behaviour due to atomic-site disorder. • Magnetic phase diagram revels mixed-phase ground state. • Two multicritical points on magnetic phase diagram occurs.

  7. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.

    Science.gov (United States)

    Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek; Nakai, Izumi; Komaba, Shinichi

    2011-03-30

    Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface.

  8. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    2017-08-01

    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  9. Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries

    Science.gov (United States)

    Hua, Wei-Bo; Guo, Xiao-Dong; Zheng, Zhuo; Wang, Yan-Jie; Zhong, Ben-He; Fang, Baizeng; Wang, Jia-Zhao; Chou, Shu-Lei; Liu, Heng

    2015-02-01

    Developing advanced electrode materials that deliver high energy at ultra-fast charge and discharge rates are very crucial to meet an increasing large-scale market demand for high power lithium ion batteries (LIBs). A three-dimensional (3D) nanoflower structure is successfully developed in the large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 material for the first time. The fast co-precipitation is the key technique to prepare the nanoflower structure in our method. After heat treatment, the obtained LiNi1/3Co1/3Mn1/3O2 nanoflowers (NL333) pronouncedly present a pristine flower-like nano-architecture and provide fast pathways for the transport of Li-ions and electrons. As a cathode material in a LIB, the prepared NL333 electrode demonstrates an outstanding high-rate capability. Particularly, in a narrow voltage range of 2.7-4.3 V, the discharge capacity at an ultra-fast charge-discharge rate (20C) is up to 126 mAh g-1, which reaches 78% of that at 0.2C, and is much higher than that (i.e., 44.17%) of the traditional bulk LiNi1/3Co1/3Mn1/3O2.

  10. First principles study of structural stability and site preference in Co3 (W,X

    Directory of Open Access Journals (Sweden)

    Joshi Sri Raghunath

    2014-01-01

    Full Text Available Since the discovery [1] of γ′ precipitate (L12 – Co3(Al, W in the Co-Al-W ternary system, there has been an increased interest in Co-based superalloys. Since these alloys have two phase microstructures (γ + γ′ similar to Ni-based superalloys [2], they are viable candidates in high temperature applications, particularly in land-based turbines. The role of alloying on stability of the γ′ phase has been an active area of research. In this study, electronic structure calculations were done to probe the effect of alloying in Co3W with L12 structure. Compositions of type Co3(W,X, (where X/Y = Mn, Fe, Ni, Pt, Cr , Al, Si, V, W, Ta, Ti, Nb, Hf, Zr and Mo were studied. Effect of alloying on equilibrium lattice parameters and ground state energies was used to calculate Vegard's coefficients and site preference related data. The effect of alloying on the stability of the L12 structure vis a vis other geometrically close packed ordered structures was also studied for a range of Co3X compounds. Results suggest that the penchant of element for the W sublattice can be predicted by comparing heats of formation of Co3X in different structures.

  11. Application of newly developed heat resistant materials for USC boilers

    International Nuclear Information System (INIS)

    Sato, T.; Tamura, K.; Fukuda, Y.; Matsuda, J.

    2004-01-01

    This paper describes the research on the development and improvement of new high strength heat resistant steels such as SUPER304H (18Cr-9Ni-3Cu-Nb-N), NF709 (20Cr-25Ni-1.5Mo-Nb-Ti-N) and HR3C (25Cr-20Ni-Nb-N) as boiler tube, and NF616 (9Cr-0.5Mo-1.8W-Nb-V) and HCM12A (11Cr-0.4Mo-2W-Nb-V-Cu) as thick section pipe. The latest manufacturing techniques applied for these steels are introduced. In addition the high temperature strength of Alloy617 (52Ni-22Cr-13Co-9Mo-Ti-Al) that is one of the candidate materials for the next generation 700 □ USC boilers is described. (orig.)

  12. A study of oxidation resistant coating on TiAl alloys by Cr evaporation and pack cementation

    International Nuclear Information System (INIS)

    Jung, Dong Ju; Jung, Hwan Gyo; Kim, Kyoo Young

    2002-01-01

    A Cr+Al-type composite coating is applied to improve the properties of aluminide coating layers, AiAl 3 , formed on TiAl alloys. This method is performed by Cr evaporation on the TiAl-XNb(X= 1,6at%) substrate followed by pack aluminizing. The coating layer formed by the composite coating process consists of the outer layer of Al 4 Cr and the inner layer of TiAl 3 regardless of the Nb content. however, these coating layers are transformed to Ti(Al,Cr) 3 layers with Ll 2 structures during oxidation. In particular, as Nb content increases, the grain size of the inner TiAl 3 layer becomes smaller and the diffusion rate of Cr increases after oxidation. Faster formation of a Ti(Al,Cr) 3 layer with an Ll 2 structure through Nb addition is more effective to improve cracking resistance at the beginning of oxidation of TiAl alloys. However, growth of Ti(Al,Cr) 3 formed on the coating layer becomes slower as the Nb content in the coating layer is increased. As a result, the addition of a large amount of Nb to composite coating layer is not desirable due to poor ductility of the coating layer. A Ti(Al,Cr) 3 layer with an Ll 2 structure developed during oxidation showed much better ductility compared with other coating layers

  13. Improvement of the detection limits in radio-frequency-powered glow discharge optical emission spectrometry associated with bias-current conduction method; Jiko bias denryu donyuho ni yoru koshuha glow hoden hakko bunseki ni okeru kenshutsu genkai no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Wagatsuma, K. [Tohoku University, Sendai (Japan). Research Institute for Materials

    1999-01-01

    A d.c. bias current driven by the self-bias voltage which is conducted through the r.f.-powered glow discharge plasma varies the emission characteristics drastically, leading to improvement of the detection power in the optical emission spectrometry. By conducting the bias currents of 20-30 mA, the emission intensities of the atomic resonance lines were 10-20 times larger than those obtained with conventional r.t.- powered plasmas. The detection limits for determination of alloyed elements in the re-based binary alloy samples were estimated to be l.6 x 10{sup -3}% Cr for CrI 425.43nm, 7 x 10{sup -4}% Mn for MnI 403.10nm, 1.9>10{sup -3}% Cu for CuI 327.40nm, 1.1 x 10{sup -3}% Al for AlI 396.16nm, and 6.6 x 10{sup -3}% Ni for NiI 352.45 nm. (author)

  14. Magnetic, transport, and magnetocaloric properties of boron doped Ni-Mn-In alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, S.; Quetz, A.; Aryal, A.; Dubenko, I.; Ali, N. [Department of Physics, Southern Illinois University, Carbondale, Illinois 62902 (United States); Rodionov, I. D.; Blinov, M. I.; Titov, I. S.; Prudnikov, V. N.; Granovsky, A. B. [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Stadler, S. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2015-05-14

    The impact of B substitution in Ni{sub 50}Mn{sub 35}In{sub 15−x}B{sub x} Heusler alloys on the structural, magnetic, transport, and parameters of the magnetocaloric effect (MCE) has been studied by means of room-temperature X-ray diffraction and thermomagnetic measurements (in magnetic fields (H) up to 5 T, and in the temperature interval 5–400 K). Direct adiabatic temperature change (ΔT{sub AD}) measurements have been carried out for an applied magnetic field change of 1.8 T. The transition temperatures (T-x) phase diagram has been constructed for H = 0.005 T. The MCE parameters were found to be comparable to those observed in other MCE materials such as Ni{sub 50}Mn{sub 34.8}In{sub 14.2}B and Ni{sub 50}Mn{sub 35}In{sub 14}X (X=In, Al, and Ge) Heusler alloys. The maximum absolute value of ΔT{sub AD} = 2.5 K was observed at the magnetostructural transition for Ni{sub 50}Mn{sub 35}In{sub 14.5}B{sub 0.5}.

  15. Structural and thermal stabilities of layered Li(Ni 1/3Co 1/3Mn 1/3)O 2 materials in 18650 high power batteries

    Science.gov (United States)

    He, Yan-Bing; Ning, Feng; Yang, Quan-Hong; Song, Quan-Sheng; Li, Baohua; Su, Fangyuan; Du, Hongda; Tang, Zhi-Yuan; Kang, Feiyu

    The structural and thermal stabilities of the layered Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathode materials under high rate cycling and abusive conditions are investigated using the commercial 18650 Li(Ni 1/3Co 1/3Mn 1/3)O 2/graphite high power batteries. The Li(Ni 1/3Co 1/3Mn 1/3)O 2 materials maintain their layered structure even when the power batteries are subjected to 200 cycles with 10 C discharge rate at temperatures of 25 and 50 °C, whereas their microstructure undergoes obvious distortion, which leads to the relatively poor cycling performance of power batteries at high charge/discharge rates and working temperature. Under abusive conditions, the increase in the battery temperature during overcharge is attributed to both the reactions of electrolyte solvents with overcharged graphite anode and Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathode and the Joule heat that results from the great increase in the total resistance (R cell) of batteries. The reactions of fully charged Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathodes and graphite anodes with electrolyte cannot be activated during short current test in the fully charged batteries. However, these reactions occur at around 140 °C in the fully charged batteries during oven test, which is much lower than the temperature of about 240 °C required for the reactions outside batteries.

  16. Fabrication of metallic alloy powder (Ni{sub 3}Fe) from Fe–77Ni scrap

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Inseok [ES Materials Research Center, Research Institute of Industrial Science and Technology, Incheon 406-840 (Korea, Republic of); Shin, Shun-Myung [Extractive Metallurgy Department, Korea Institute of Geoscience and Mineral Resources, Deajeon 305-350 (Korea, Republic of); Ha, Sang-An [Department of Environmental Engineering, Silla University, Busan 46958 (Korea, Republic of); Wang, Jei-Pil, E-mail: jpwang@pknu.ac.kr [Department of Metallurgical Engineering, Pukyong National University, Busan 608-739 (Korea, Republic of)

    2016-06-15

    The oxidation behavior of Fe–77Ni alloy scrap was investigated at an oxygen partial pressure of 0.2 atm and temperatures ranging from 400 °C to 900 °C. The corresponding oxidation rate increased with increasing temperature and obeyed the parabolic rate law, as evidenced by its linear proportionality to the temperature. In addition, surface morphologies, cross-sectional views, compositions, structural properties were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Diffusion through either the spinel structure or the NiO layer, which were both present in the alloy during oxidation at elevated temperatures, was deemed the rate-limiting step of the reaction. The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap was obtained using ball-milling and sieving processes. In fact, 15 h of milling yielded a recovery ratio of 97%. Using hydrogen gas, the oxide powder was successfully reduced to an alloy powder of Ni{sub 3}Fe and reduction rates of ∼97% were achieved after 3 h at 1000 °C. - Highlights: • The oxidation behavior of Fe–77Ni alloy scrap was investigated. • The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap. • Using hydrogen gas, the oxide powder was successfully reclaimed. • Reduction rates of ∼97% were achieved after 3 h at 1000 °C.

  17. Structural Transformation in Fe73.5Nb3Cu1Si15.5B7 Amorphous Alloy Induced by Laser Heating

    Science.gov (United States)

    Nykyruy, Yu. S.; Mudry, S. I.; Kulyk, Yu. O.; Zhovneruk, S. V.

    2018-03-01

    The effect of continuous laser irradiation (λ = 1.06 μm) with laser power of 45 W on the structure of Fe73.5Nb3Cu1Si15.5B7 amorphous alloy has been studied using X-ray diffraction and SEM methods. The sample of the ribbon has been placed at a distance from the focal plane of the lens, so a laser beam has been defocused and the diameter of laser spot on the ribbon surface has been about 10 mm. An exposure time τ varied within interval 0.25-0.70 s. Under such conditions structural transformation processes, which depend on the exposure time, have occurred in an irradiated zone. Crystallization process has started at τ = 0.35 s with the formation of α-Fe(Si) nanocrystalline phase, while complete crystallization has occurred at τ = 0.55 s with formation of two nanocrystalline phases: α-Fe(Si) and a hexagonal H-phase.

  18. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  19. Corrosion resistance of stainless steels and high Ni-Cr alloys to acid fluoride wastes

    International Nuclear Information System (INIS)

    Smith, H.D.; Mackey, D.B.; Pool, K.H.; Schwenk, E.B.

    1992-04-01

    TRUEX processing of Hanford Site waste will utilize potentially corrosive acid fluoride processing solutions. Appropriate construction materials for such a processing facility need to be identified. Toward this objective, candidate stainless steels and high Ni-Cr alloys have been corrosion tested in simulated acid fluoride process solutions at 333K. The high Ni-Cr alloys exhibited corrosion rates as low as 0.14 mm/y in a solution with an HF activity of about 1.2 M, much lower than the 19 to 94 mm/y observed for austenitic stainless steels. At a lower HF activity (about 0.008 M), stainless steels display delayed passivation while high Ni-Cr alloys display essentially no reaction

  20. Corrosion resistance of Fe-based amorphous alloys

    International Nuclear Information System (INIS)

    Botta, W.J.; Berger, J.E.; Kiminami, C.S.; Roche, V.; Nogueira, R.P.; Bolfarini, C.

    2014-01-01

    Highlights: ► We report corrosion properties of Fe-based amorphous alloys in different media. ► The Cr-containing alloys had corrosion resistance close to that of Pt in all media. ► The wide range of electrochemical stability is relevant in many industrial domains. -- Abstract: Fe-based amorphous alloys can be designed to present an attractive combination of properties with high corrosion resistance and high mechanical strength. Such properties are clearly adequate for their technological use as coatings, for example, in steel pipes. In this work, we studied the corrosion properties of amorphous ribbons of the following Fe-based compositions: Fe 66 B 30 Nb 4 , [(Fe 0.6 Co 0.4 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , [(Fe 0.7 Co 0.3 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , Fe 56 Cr 23 Ni 5.7 B 16 , Fe 53 Cr 22 Ni 5.6 B 19 and Fe 50 Cr 22 Ni 5.4 B 23 . The ribbons were obtained by rapid solidification using the melt-spinning process, and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and optical (OM) and scanning electron microscopy (SEM). The corrosion properties were evaluated by corrosion potential survey and potentiodynamic polarization. The Cr containing alloys, that is the FeCrNiB type of alloys, showed the best corrosion resistance properties with the formation of a stable passive film that ensured a very large passivation plateau