WorldWideScience

Sample records for alloy nuclear fuels

  1. Nuclear fuel element containing strips of an alloyed Zr, Ti, and Ni getter material

    International Nuclear Information System (INIS)

    Grossman, L.N.; Packard, D.R.

    1975-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. The nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of strips and preferably the strips are positioned inside a helical member in the plenum. The position of the alloy strips permits gases and liquids entering the plenum to contact and react with the alloy strips. (U.S.)

  2. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    Science.gov (United States)

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  3. Nuclear fuel element containing particles of an alloyed Zr, Ti, and Ni getter material

    International Nuclear Information System (INIS)

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. The nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles of alloy. The container is preferably held in the spring in the plenum of the fuel element. (Official Gazette)

  4. Surface coating Zr or Zr alloy nuclear fuel elements

    International Nuclear Information System (INIS)

    Donaghy, R.E.; Sherman, A.H.

    1980-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. (author)

  5. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes, E-mail: mdurazzo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  6. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes

    2011-01-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  7. Technology readiness level (TRL) assessment of cladding alloys for advanced nuclear fuels

    International Nuclear Information System (INIS)

    Shepherd, Daniel

    2015-01-01

    Reliable fuel claddings are essential for the safe, sustainable and economic operation of nuclear stations. This paper presents a worldwide TRL assessment of advanced claddings for Gen III and IV reactors following an extensive literature review. Claddings include austenitic, ferritic/martensitic (F/M), reduced activation (RA) and oxide dispersion strengthened (ODS) steels as well as advanced iron-based alloys (Kanthal alloys). Also assessed are alloys of zirconium, nickel (including Hastelloy R ), titanium, chromium, vanadium and refractory metals (Nb, Mo, Ta and W). Comparison is made with Cf/C and SiCf/SiC composites, MAX phase ceramics, cermets and TRISO fuel particle coatings. The results show in general that the higher the maximum operating temperature of the cladding, the lower the TRL. Advanced claddings were found to have lower TRLs than the corresponding fuel materials, and therefore may be the limiting factor in the deployment of advanced fuels and even possibly the entire reactor in the case of Gen IV. (authors)

  8. Nuclear fuel element

    International Nuclear Information System (INIS)

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smallr than the size of the particles. The container is preferably held in the spring in the plenum of the fuel element. (E.C.B.)

  9. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  10. Nuclear fuel element

    International Nuclear Information System (INIS)

    Thompson, J.R.; Rowland, T.C.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting, fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  11. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    Directory of Open Access Journals (Sweden)

    Bo Cheng

    2016-02-01

    Full Text Available In severe loss of coolant accidents (LOCA, similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in 1,200–1,500°C steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstrated corrosion resistance. As these composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Mo alloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are

  12. Nuclear fuel element

    International Nuclear Information System (INIS)

    Mogard, J.H.

    1977-01-01

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  13. A Path Forward to Advanced Nuclear Fuels: Spectroscopic Calorimetry of Nuclear Fuel Materials

    International Nuclear Information System (INIS)

    Tobin, J.G.

    2009-01-01

    The goal is to relieve the shortage of thermodynamic and kinetic information concerning the stability of nuclear fuel alloys. Past studies of the ternary nuclear fuel UPuZr have demonstrated constituent redistribution when irradiated or with thermal treatment. Thermodynamic data is key to predicting the possibilities of effects such as constituent redistribution within the fuel rods and interaction with cladding materials

  14. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    International Nuclear Information System (INIS)

    Travelli, A.

    1988-01-01

    A nuclear fuel-containing plate structure for a nuclear reactor is described; such structure comprising a pair of malleable metallic non-fissionable matrix plates having confronting surfaces which are pressure bonded together and fully united to form a bonded surface, and elongated malleable wire-like fissionable fuel members separately confined and fully enclosed between the matrix plates along the interface to afford a high fuel density as well as structural integrity and effective retention of fission products. The plates have separate recesses formed in the confronting surfaces for closely receiving the wire-like fissionable fuel members. The wire-like fissionable fuel members are made of a maleable uranium alloy capable of being formed into elongated wire-like members and capable of withstanding pressure bonding. The wire-like fissionable fuel members are completely separated and isolated by fully united portions of the interface

  15. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a metal liner disposed between the cladding and the nuclear fuel material and a high lubricity material in the form of a coating disposed between the liner and the cladding. The liner preferably has a thickness greater than the longest fission product recoil distance and is composed of a low neutron capture cross-section material. The liner is preferably composed of zirconium, an alloy of zirconium, niobium or an alloy of niobium. The liner serves as a preferential reaction site for volatile impurities and fission products and protects the cladding from contact and reaction with such impurities and fission products. The high lubricity material acts as an interface between the liner and the cladding and reduces localized stresses on the cladding due to fuel expansion and cracking of the fuel

  16. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  17. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    OpenAIRE

    Bo Cheng; Young-Jin Kim; Peter Chou

    2016-01-01

    In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident managem...

  18. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications. Part II, nickel base alloys

    International Nuclear Information System (INIS)

    Mizia, Ronald E.; Michael, Joseph Richard; Williams, David Brian; Dupont, John Neuman; Robino, Charles Victor

    2004-01-01

    The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was ∼2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid γ + Ni 5 Gd eutectic-type reaction at ∼1270 C. The solidification temperature ranges of the alloys varied from ∼100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at ∼1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques

  19. Development of Amorphous Filler Alloys for the Joining of Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Young; Kim, Dong Myong; Kang, Yoon Sun; Jung, Jae Han; Yu, Ji Sang; Kim, Hae Yeol; Lee, Ho [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-08-01

    In the case of advanced CANDU fuel being useful in future, the fabrication processes for soundness insurance of a improved nuclear fuel bundle must be developed at the same time because it have three times combustibility as existing fuel. In particular, as the improved nuclear fuel bundle in which a coated layer thickness is thinner than existing that, firmity of a joint part is very important. Therefore, we need to develop a joint technique using new solder which can settle a potential problem in current joining method. As the Zr-Be alloy system is composed with the elements having high neutron permeability, they are suitable for joint of nuclear fuel pack. The various compositions Zr-Be binary metallic glass alloys were applicable to the joining the nuclear fuel bundles. The thickness of joint layer using the Zr{sub 1}-{sub x}Be{sub x} amorphous ribbon as a solder is thinner than that using physical vapor deposited Be. Among the Zr{sub 1}-{sub x}Be{sub x} amorphous binary alloys, Zr{sub 0}.7Be-0.3 binary alloy is the most appropriate for joint of nuclear fuel bundle because its joint layer is smooth and thin due to low degree of Be diffusion. In the case of the Zr{sub (}0.7-y)Ti{sub y}Be{sub 0}.3 and Zr{sub (}0.7-y)Nb{sub y}Be{sub 0}3 ternary amorphous alloys, the crystallization temperature(T{sub x}) and activation energy(E{sub x}) increase as the contents of Nb and Ti increase respectively. In the aspect of thermal stability, the ternary amorphous alloys are superior than Zr-Be binary amorphous alloys and Zr-Ti-Be amorphous alloy is superior than Zr-Nb-Be amorphous alloy. 12 refs., 5 tabs., 25 figs. (author)

  20. U-Zr-RE Fuel Alloy with Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jong Hwan; Ko, Young Mo; Kim, Ki Hwan; Park, Jeong Yong; Lee, Chan Bock [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Metallic fuels, such as the U-Pu-Zr alloys, have been considered as a nuclear fuel for a sodium-cooled fast reactor (SFR) related to the closed fuel cycle for managing minor actinides and reducing the amount of highly radioactive spent nuclear fuels since the 1980s. Metallic fuels fit well with such a concept owing to their high thermal conductivity, high thermal expansion, compatibility with a pyro-metallurgical reprocessing scheme, and their demonstrated fabrication at engineering scale in a remote hot cell environment. To increase the productivity and efficiency of the fuel fabrication process waste streams must be minimized and fuel losses quantified and reduced to lower levels. In this study, U-Zr alloy system fuel slugs were fabricated by an injection casting method. After casting a considerable number of fuel slugs in the casting furnaces, the fuel loss in the melting chamber, the crucible, and the molds have been evaluated quantitatively.

  1. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  2. Nuclear fuel element

    International Nuclear Information System (INIS)

    Penrose, R.T.; Thompson, J.R.

    1976-01-01

    A method of protecting the cladding of a nuclear fuel element from internal attack and a nuclear fuel element for use in the core of a nuclear reactor are disclosed. The nuclear fuel element has disposed therein an additive of a barium-containing material and the barium-containing material collects reactive gases through chemical reaction or adsorption at temperatures ranging from room temperature up to fuel element plenum temperatures. The additive is located in the plenum of the fuel element and preferably in the form of particles in a hollow container having a multiplicity of gas permeable openings in one portion of the container with the openings being of a size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles. The additive is comprised of elemental barium or a barium alloy containing one or more metals in addition to barium such as aluminum, zirconium, nickel, titanium and combinations thereof. 6 claims, 3 drawing figures

  3. Low content uranium alloys for nuclear fuels

    International Nuclear Information System (INIS)

    Aubert, H.; Laniesse, J.

    1964-01-01

    A description is given of the structure and the properties of low content alloys containing from 0.1 to 0.5 per cent by weight of Al, Fe, Cr, Si, Mo or a combination of these elements. A study of the kinetics and of the mode of transformation has made it possible to choose the most satisfactory thermal treatment. An attempt has been made to prepare alloys suitable for an economical industrial development having a small α grain structure without marked preferential orientation, with very fine and stable precipitates as well as a high creep-resistance. The physical properties and the mechanical strength of these alloys are given for temperatures of 20 to 600 deg C. These alloys proved very satisfactory when irradiated in the form of normal size fuel elements. (authors) [fr

  4. High-resolution characterization of oxidation mechanism of zirconium nuclear fuel cladding alloys

    International Nuclear Information System (INIS)

    Hu, J.; Lozano-Perez, S.; Grovenor, C.

    2015-01-01

    Full text of publication follows. Zirconium alloys are used extensively as cladding materials in modern light water reactors to separate the uranium dioxide (UO 2 ) fuel rods and the coolant water in order to prevent the escape of radioactive fission products whilst maintaining heat transfer to the coolant. With increasing demand for high burn-up in modern nuclear reactors, environmental degradation of these alloys is now the life limiting factor for fuel assemblies. As part of the MUZIC-2 collaboration studying oxidation and hydrogen pickup in Zr alloys, several high resolution analysis techniques have been used to study the microstructure of a range of commercial and developmental Zr alloys. The sample used for this investigation was prepared from a Westinghouse TM developmental alloy with composition of Zr-0.9Nb-0.01Sn-0.08Fe (wt %) in the recrystallized condition. The sample was oxidised in an autoclave at EDF Energy under simulated PWR water conditions at 360 C. degrees for 360 days. Using Transmission Electron Microscope (TEM), we have studied the development of the equiaxed-columnar-equiaxed grain structure, and observe that the columnar grains are both longer and show a stronger preferred texture in more corrosion-resistant alloys. Fresnel imaging revealed the existence of both parallel interconnected pores and some vertically interconnected pores along the columnar oxide grain boundaries, which become more disconnected near the metal-oxide interface. Electron Energy Loss Spectroscopy (EELS) provided accurate quantitative analysis of the oxygen concentration across the interface, identifying the existence of local regions of stoichiometric ZrO and Zr 3 O 2 with varying thickness. These observations will be discussed in the context of current models for oxidation in zirconium alloys. (authors)

  5. Nuclear fuel element and container

    International Nuclear Information System (INIS)

    Grubb, W.T.; King, L.H.

    1981-01-01

    The invention is based on the discovery that a substantial reduction in metal embrittlement or stress corrosion cracking from fuel pellet-cladding interaction can be achieved by the use of a copper layer or liner in proximity to the nuclear fuel, and an intermediate zirconium oxide barrier layer between the copper layer and the zirconium cladding substrate. The intermediate zirconia layer is a good copper diffusion barrier; also, if the zirconium cladding surface is modified prior to oxidation, copper can be deposited by electroless plating. A nuclear fuel element is described which comprises a central core of fuel material and an elongated container using the system outlined above. The method for making the container is again described. It comprises roughening or etching the surface of the zirconium or zirconium alloy container, oxidizing the resulting container, activating the oxidized surface to allow for the metallic coating of such surfaces by electroless deposition and further coating the activated-oxidized surface of the zirconium or zirconium alloy container with copper, iron or nickel or an alloy thereof. (U.K.)

  6. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1980-01-01

    The invention is of a nuclear fuel element which comprises a central core of a body of nuclear fuel material selected from the group consisting of compounds of uranium, plutonium, thorium and mixtures thereof, and an elongated composite cladding container comprising a zirconium alloy tube containing constituents other than zirconium in an amount greater than about 5000 parts per million by weight and an undeformed metal barrier of moderate purity zirconium bonded to the inside surface of the alloy tube. The container encloses the core so as to leave a gap between the container and the core during use in a nuclear reactor. The metal barrier is of moderate purity zirconium with an impurity level on a weight basis of at least 1000ppm and less than 5000ppm. Impurity levels of specific elements are given. Variations of the invention are also specified. The composite cladding reduces chemical interaction, minimizes localized stress and strain corrosion and reduces the likelihood of a splitting failure in the zirconium alloy tube. Other benefits are claimed. (U.K.)

  7. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    International Nuclear Information System (INIS)

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

    2014-01-01

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  8. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean [Texas A & M Univ., College Station, TX (United States); Shao, Lin [Texas A & M Univ., College Station, TX (United States); Tsvetkov, Pavel [Texas A & M Univ., College Station, TX (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  9. Review of oxidation rates of DOE spent nuclear fuel : Part 1 : nuclear fuel

    International Nuclear Information System (INIS)

    Hilton, B.A.

    2000-01-01

    The long-term performance of Department of Energy (DOE) spent nuclear fuel (SNF) in a mined geologic disposal system depends highly on fuel oxidation and subsequent radionuclide release. The oxidation rates of nuclear fuels are reviewed in this two-volume report to provide a baseline for comparison with release rate data and technical rationale for predicting general corrosion behavior of DOE SNF. The oxidation rates of nuclear fuels in the DOE SNF inventory were organized according to metallic, Part 1, and non-metallic, Part 2, spent nuclear fuels. This Part 1 of the report reviews the oxidation behavior of three fuel types prototypic of metallic fuel in the DOE SNF inventory: uranium metal, uranium alloys and aluminum-based dispersion fuels. The oxidation rates of these fuels were evaluated in oxygen, water vapor, and water. The water data were limited to pure water corrosion as this represents baseline corrosion kinetics. Since the oxidation processes and kinetics discussed in this report are limited to pure water, they are not directly applicable to corrosion rates of SNF in water chemistry that is significantly different (such as may occur in the repository). Linear kinetics adequately described the oxidation rates of metallic fuels in long-term corrosion. Temperature dependent oxidation rates were determined by linear regression analysis of the literature data. As expected the reaction rates of metallic fuels dramatically increase with temperature. The uranium metal and metal alloys have stronger temperature dependence than the aluminum dispersion fuels. The uranium metal/water reaction exhibited the highest oxidation rate of the metallic fuel types and environments that were reviewed. Consequently, the corrosion properties of all DOE SNF may be conservatively modeled as uranium metal, which is representative of spent N-Reactor fuel. The reaction rate in anoxic, saturated water vapor was essentially the same as the water reaction rate. The long-term intrinsic

  10. METMET fuel with Zirconium matrix alloys

    International Nuclear Information System (INIS)

    Savchenko, A.; Konovalov, I.; Totev, T.

    2008-01-01

    The novel type of WWER-1000 fuel has been designed at A.A. Bochvar Institute. Instead of WWER-1000 UO 2 pelletized fuel rod we apply dispersion type fuel element with uniformly distributed high uranium content granules of U9Mo, U5Nb5Zr, U3Si alloys metallurgically bonded between themselves and to cladding by a specially developed Zr-base matrix alloy. The fuel meat retains a controllable porosity to accommodate fuel swelling. The optimal volume ratios between the components are: 64% fuel, 18% matrix, 18% pores. Properties of novel materials as well as fuel compositions on their base have been investigated. Method of fuel elements fabrication by capillary impregnation has been developed. The primary advantages of novel fuel are high uranium content (more than 15% in comparison with the standard UO 2 pelletized fuel rod), low temperature of fuel ( * d/tU) and serviceability under transient conditions. The use of the novel fuel might lead to natural uranium saving and reduced amounts of spent fuel as well as to optimization of Nuclear Plant operation conditions and improvements of their operation reliability and safety. As a result the economic efficiency shall increase and the cost of electric power shall decrease. (authors)

  11. Study of phase transformation of U-2,5Zr-7,5Nb e U-3Zr-9Nb alloys for application in advanced nuclear fuel

    International Nuclear Information System (INIS)

    Pais, Rafael Witter Dias

    2015-01-01

    Metal fuels are relevant in the nuclear area due to the versatility of its use in the nuclear fuel cycle. Among the alloys of uranium investigated with high potential for use in nuclear power reactors, U-Zr-Nb alloys appear as an important alternative because of their superior physico-chemical and metallurgical properties. These alloys have also potential for use in nuclear testing, research and production radioisotopes of high performance nuclear reactors. Therefore, the development of these alloys is strategic since they are planned to be used in national reactors as RMB (Brazilian Multipurpose Reactor) and LABGENE (Electrical Generation Core Laboratory), currently under development in Brazil. In this work it was realized a extensive study in the scope of the manufacturing, heat treatment and phase transformations of U-2,5Zr-7,5Nb (m/m%) and U-3ZR-9NB (m/m%) fuel alloys. Ingots of both alloys were produced employing a specific methodology developed in this study. This methodology comprised the melting process in a vacuum induction furnace at high temperatures (1500 °C) and thermal-mechanical processing to break the as-cast structure. Samples with typical dimensions (17 x 7 x 2.5 mm) free from macrostructural defects were homogenized at 1000 °C in vacuum of 10 -5 torr for 17.5 hours with a 10°C/min cooling rate until to 820 °C and, subsequently, quenched in water. The samples, randomly selected, were subjected to isothermal treatment tests under different conditions of time and temperature. Isothermal treatments for transformation and retention phases were carried out in a special assembly designed for this work. After the tests, the samples were characterized by the usual phase characterization techniques with particular emphasis for the X-ray diffraction technique. In this way, the Rietveld refinement method was applied. In the case of uranium based alloys it is quite challenging due to the lack of data in the literature. In this work a strategy for the

  12. Nuclear fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  13. MODELLING OF NUCLEAR FUEL CLADDING TUBES CORROSION

    Directory of Open Access Journals (Sweden)

    Miroslav Cech

    2016-12-01

    Full Text Available This paper describes materials made of zirconium-based alloys used for nuclear fuel cladding fabrication. It is focused on corrosion problems their theoretical description and modeling in nuclear engineering.

  14. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  15. Alloy 33: A new material for the handling of HNO3/HF media in reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.; Eichenhofer, K.W.; Renner, M.

    1997-01-01

    Alloy 33, an austenitic 33Cr-32Fe-31Ni-1.6Mo-0.6Cu-0.4N material shows excellent resistance to corrosion when exposed to highly oxidizing media as e.g. HNO 3 and HNO 3 /HF mixtures which are encountered in reprocessing of nuclear fuel. According to the test results available so far, resistance to corrosion in boiling azeotropic (67%) HNO 3 is about 6 and 2 times superior to AISI 304 L and 310 L. In higher concentrated nitric acid it can be considered corrosion resistant up to 95% HNO 3 at 25 C, up to 90% HNO 3 at 50 C and up to somewhat less than 85% HNO 3 at 75 C. In 20% HNO 3 /7% HF at 50 C its resistance to corrosion is superior to AISI 316 Ti and Alloy 28 by factors of about 200 and 2.4. Other media tested with different results include 12% HNO 3 with up to 3.5% HF and 0.4% HF with 32 to 67.5% HNO 3 at 90 C. Alloy 33 is easily fabricated into all product forms required for chemical plants (e.g. plate, sheet, strip, wire, tube and flanges). Components such as dished ends and tube to tube sheet weldments have been successfully fabricated facilitating the use of Alloy 33 for reprocessing of nuclear fuel

  16. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    , Bubbles and precipitates, Modeling fuel behavior); Modeling defects and fission products in UO 2 ceramic by ab initio computation (Ab initio computation, Point defects in uranium dioxide, Fission products in uranium dioxide, The indispensable coupling of modeling and experiment); Cladding and assembly materials (What is the purpose of cladding?, Zirconium alloys, Claddings: required to exhibit good mechanical strength, Mechanical behavior of irradiated Zr alloys, Claddings: required to prove corrosion resistant); Pellet-cladding interaction (The phenomena involved in pellet-cladding interaction (PCI), Experimental simulation of PCI and the lessons to be drawn from it, The requirement for an experimental basis, Numerical simulation of PCI, Towards a lifting of PCI-related operating constraints); Advanced UO 2 and MOX ceramics (Chromium oxide-doped UO 2 fuel, Novel MOX microstructures); Mechanical behavior of fuel assemblies (Assembly mechanical behavior in normal operating conditions, Assembly mechanical behavior in accident situations, Fuel in a loss of primary coolant accident (LOCA)); Introduction to LOCA-type accident transients (Overview of thermal-hydraulic and fuel-related aspects, Incidence of LOCA transients on the thermal-metallurgical-mechanical behavior of zirconium-base alloy cladding); Fuel in a reactivity insertion accident (RIA) (Safety criteria); Fuel in a severe accident (The VERCORS analytical program, The Phebus-FP global tests, Control of severe accidents in the EPR reactor); In-core fuel management (Relationships between cycle length, maximum burnup, and batch fraction Enrichment and burnable poisons, The impact of the nature of the fuel used, and its evolution, on the major parameters of core physics, and management Prospects for future trends in core management); Fuel cycle material balances (In-core evolution of materials, Decay heat and potential radiotoxicity, Plutonium management); Long-term behavior of spent fuel (The nature of spent nuclear

  17. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  18. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    International Nuclear Information System (INIS)

    Rebak, Raul B.

    2014-01-01

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  19. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, Raul B. [General Electric Global Research, Schnectady, NY (United States)

    2014-09-30

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  20. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Robert, E-mail: robert.montgomery@pnnl.gov [Pacific Northwest National Laboratory (United States); Tomé, Carlos, E-mail: tome@lanl.gov [Los Alamos National Laboratory (United States); Liu, Wenfeng, E-mail: wenfeng.liu@anatech.com [ANATECH Corporation (United States); Alankar, Alankar, E-mail: alankar.alankar@iitb.ac.in [Indian Institute of Technology Bombay (India); Subramanian, Gopinath, E-mail: gopinath.subramanian@usm.edu [University of Southern Mississippi (United States); Stanek, Christopher, E-mail: stanek@lanl.gov [Los Alamos National Laboratory (United States)

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.

  1. Electron microscopy of nuclear zirconium alloys

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, Miguel

    1986-01-01

    Transmission electron microscopy observations of the microstructure of zirconium alloys used in fuel sheaths of nuclear power reactors are reported. Specimens were observed after different thermal and mechanical treatment, similar to those actually used during fabrication of the sheaths. Electron micrographs and electron diffraction patterns of second phase particles present in zircaloy-2 and zircaloy-4 were also obtained, as well as some characteristic parameters. Images of oxides and hydrides most commonly present in zirconium alloys are also shown. Finally, the structure of a Zr-2,5Nb alloy used in CANDU reactors pressure tubes, is observed by electron microscopy. (Author) [es

  2. Properties of low content uranium-molybdenum alloys which may be used as nuclear fuels

    International Nuclear Information System (INIS)

    Lehmann, J.; Decours, J.

    1964-01-01

    Metallurgical properties are given in this report of uranium-molybdenum alloys containing 0,5 to 3 per cent of molybdenum. Since some of these alloys are used in EDF power reactors are given: briefly the operating conditions imposed on nuclear fuels: maximum temperature, temperature gradient and external pressure. In the first part are considered the structural properties of the alloys correlation with the phase transformation kinetics; a description is given of the effects of certain physico-metallurgical factors on the morphology and the crystalline structure of the materials: - solidification conditions and the heredity of the γ structure, - cooling rate at the transformation points, - whether or not the intermediate γ → β transformation is suppressed In the second part we show how a knowledge of the phase transformation processes has made it possible to define the optimum preparation conditions for these materials in the form of fuel tubes intended for the EDF reactors: casting conditions, controlled cooling treatments, weldability. In the third part we study the thermal, stability during the long duration high temperature treatments and the cycles in the two zones of the diagram α + γ; β + γ the effects of the morphology (in particular the two types of α pseudo-grains observed) and of the cooling rate during the transformation point transitions are described. In the fourth part are discussed the mechanical properties: resistance to a tractive force, resistance to creep, resilience. These properties can also be affected by the γ structure heredity and by the cooling rate to which the alloy has been subjected. In conclusion we discuss the reasons which led to the choice of some of these alloys for the first EDF reactors in particular the advantages of their high creep resistance between 450 and 600 deg C for use in the form of tubes subjected to an external pressure. (authors) [fr

  3. Refractory alloy technology for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys

  4. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    Science.gov (United States)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-03-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  5. Fundamental Study of Electron Beam Welding of AA6061-T6 Aluminum Alloy for Nuclear Fuel Plate Assembly (II)

    International Nuclear Information System (INIS)

    Kim, Soosung; Lee, Haein; Lee, Donbae; Park, Jongman; Lee, Yoonsang

    2013-01-01

    Certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes posses the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using a electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. In this experiment, a feasibility test was carried out by tensile tester, bead-on-plate welding and metallographic examination to comply with the aluminum welding procedure. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the mechanical testing and microstructure examinations. This study was carried out to determine the suitable welding process and to investigate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory EBW of the square butt weld specimens was developed. In comparison with the rolling directions of test specimens, the tensile strengths were no difference between the longitudinal and transverse welds. Based on this fundamental study, fabrication and assembly of the nuclear fuel plates will be provided for the future Kijang research reactor project

  6. Micrographic study on distribution of fission products in high burn-up metallic alloy fuel

    International Nuclear Information System (INIS)

    Kolay, S.; Basu, M.; Das, D.

    2012-01-01

    One of the important mandates in the three-stage nuclear power generation programme of India is to utilize uranium-plutonium based alloy fuels in enabling shorter doubling time for breeding of the fissile isotopes ( 239 Pu and 233 U ) to be used in thorium based driver fuel in the third stage. Reported information shows the successful performance of alloy fuel with somewhat porous matrix in achieving 10-15 atom% burnup. The porosity and microstructure of these alloys are strongly dependent on their composition and phases present. Porosity also influences the extent of fuel swelling and gas release. So to assess fuel performance and fuel integrity under high burn-up condition it is essential to have knowledge about the new phases formed and their redistribution that occurs as a result of inter-diffusion and temperature gradient. This study addresses these issues taking the base alloy U-10 wt %Zr

  7. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  8. Waterside corrosion of zirconium alloys in nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    Technically the study of corrosion of zirconium alloys in nuclear power reactors is a very active field and both experimental work and understanding of the mechanisms involved are going through rapid changes. As a result, the lifetime of any publication in this area is short. Because of this it has been decided to revise IAEA-TECDOC-684 - Corrosion of Zirconium Alloys in Nuclear Power Plants - published in 1993. This updated, revised and enlarged version includes major changes to incorporate some of the comments received about the first version. Since this review deals exclusively with the corrosion of zirconium and zirconium based alloys in water, and another separate publication is planned to deal with the fuel-side corrosion of zirconium based fuel cladding alloys, i.e. stress corrosion cracking, it was decided to change the original title to Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. The rapid changes in the field have again necessitated a cut-off date for incorporating new data. This edition incorporates data up to the end of 1995; including results presented at the 11 International Symposium on Zirconium in the Nuclear Industry held in Garmisch-Partenkirchen, Germany, in September 1995. The revised format of the review now includes: Introductory chapters on basic zirconium metallurgy and oxidation theory; A revised chapter discussing the present extent of our knowledge of the corrosion mechanism based on laboratory experiments; a separate and revised chapter discussing hydrogen uptake; a completely reorganized chapter summarizing the phenomenological observations of zirconium alloy corrosion in reactors; a new chapter on modelling in-reactor corrosion; a revised chapter devoted exclusively to the manner in which irradiation might influence the corrosion process; finally, a summary of our present understanding of the corrosion mechanisms operating in reactor

  9. Plutonium, nuclear fuel; Le plutonium, combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Grison, E [Commissariat a l' Energie Atomique, Fontenay aux Roses (France). Centre d' Etudes Nucleaires, Saclay

    1960-07-01

    A review of the physical properties of metallic plutonium, its preparation, and the alloys which it forms with the main nuclear metals. Appreciation of its future as a nuclear fuel. (author) [French] Apercu sur les proprietes physiques du plutonium metallique, sa preparation, ses alliages avec les principaux metaux nucleaires. Consideration sur son avenir en tant que combustible nucleaire. (auteur)

  10. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Hirukawa, Koji; Sakurada, Koichi.

    1994-01-01

    A bundle of fuel rods is divided into four fuel rod group regions of small fuel rod bundles by a cross-shaped partitioning structure consisting of paired plate-like structures which connect two opposing surfaces of a channel box. A water removing material with less neutron absorption (for example, Zr or a Zr alloy) or a solid moderator is inserted and secured to a portion of a non-boiling water region interposed between the paired plate-like structure. It has a structure that light water flows to the region in the plate-like structure. The volume, density or composition of the water removing material is controlled depending on the composition of the fuels, to change the moderating characteristics of neutrons in the non-boiling water region. This can easily moderate the difference of nuclear characteristics between each of fuel assemblies using fuel materials of different fuel compositions. Further, the reactivity control effect of the burnable poisons can be enhanced without worsening fuel economy or linear power density. (I.N.)

  11. Advances in nuclear fuel cycle materials and concepts. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, A A [Materials Division, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    This presentation gives an overview of the new trends in the materials used in various steps of the nuclear fuel cycle. This will cover fuels for various types of reactors (PWRs, HTRs, ... etc.) cladding materials, control rod materials, reactor structural materials, as well as materials used in the back end of the fuel cycle. Problems associated with corrosion of fuel cladding materials as well as those in control rod materials (B{sub 4} C swelling...etc.), and approaches for combating these influences are reviewed. For the case of reactor pressure vessel materials issues related to the influences of alloy composition, design approaches including the use of more forged parts and minimizing, as for as possible, longitudinal welds especially in the central region, are discussed. Furthermore the application of techniques for recovery of pre-irradiation mechanical properties of PVS components is also covered. New candidate materials for the construction of high level waste containers including modified types of stainless steel (high Ni and high MO), nickel-base alloys and titanium alloys are also detailed. Finally, nuclear fuel cycle concepts involving plutonium and actinides recycling shall be reviewed. 28 figs., 6 tabs.

  12. Advances in nuclear fuel cycle materials and concepts. Vol. 1

    International Nuclear Information System (INIS)

    El-Sayed, A.A.

    1996-01-01

    This presentation gives an overview of the new trends in the materials used in various steps of the nuclear fuel cycle. This will cover fuels for various types of reactors (PWRs, HTRs, ... etc.) cladding materials, control rod materials, reactor structural materials, as well as materials used in the back end of the fuel cycle. Problems associated with corrosion of fuel cladding materials as well as those in control rod materials (B 4 C swelling...etc.), and approaches for combating these influences are reviewed. For the case of reactor pressure vessel materials issues related to the influences of alloy composition, design approaches including the use of more forged parts and minimizing, as for as possible, longitudinal welds especially in the central region, are discussed. Furthermore the application of techniques for recovery of pre-irradiation mechanical properties of PVS components is also covered. New candidate materials for the construction of high level waste containers including modified types of stainless steel (high Ni and high MO), nickel-base alloys and titanium alloys are also detailed. Finally, nuclear fuel cycle concepts involving plutonium and actinides recycling shall be reviewed. 28 figs., 6 tabs

  13. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, V.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: vedsinha@barc.gov.in; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-04-03

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and {gamma}-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes.

  14. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    International Nuclear Information System (INIS)

    Sinha, V.P.; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P.

    2009-01-01

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and γ-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes

  15. Dissolution of nuclear fuel samples for analytical purposes. I

    International Nuclear Information System (INIS)

    Krtil, J.

    1983-01-01

    Main attention is devoted to procedures for dissolving fuels based on uranium metal and its alloys, uranium oxides and carbides, plutonium metal, plutonium dioxide, plutonium carbides, mixed PuC-UC carbides and mixed oxides (PuU)O 2 . Data from the literature and experience gained with the dissolution of nuclear fuel samples at the Central Control Laboratory of the Nuclear Research Institute at Rez are given. (B.S.)

  16. Corrosion Behaviour of Mg Alloys in Various Basic Media: Application of Waste Encapsulation of Fuel Decanning from UNGG Nuclear Reactor

    Science.gov (United States)

    Lambertin, David; Frizon, Fabien; Blachere, Adrien; Bart, Florence

    The dismantling of UNGG nuclear reactor generates a large volume of fuel decanning. These materials are based on Mg-Zr alloy. The dismantling strategy could be to encapsulate these wastes into an ordinary Portland cement (OPC) or geopolymer (aluminosilicate material) in a form suitable for storage. Studies have been performed on Mg or Mg-Al alloy in basic media but no data are available on Mg-Zr behaviour. The influence of representative pore solution of both OPC and geopolymer with Mg-Zr alloy has been studied on corrosion behaviour. Electrochemical methods have been used to determine the corrosion densities at room temperature. Results show that the corrosion densities of Mg-Zr alloy in OPC solution is one order of magnitude more important than in a geopolymer solution environment and the effect of an inhibiting agent has been undertaken with Mg-Zr alloy. Evaluation of corrosion hydrogen production during the encapsulation of Mg-Zr alloy in both OPC and geopolymer has also been done.

  17. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E. D.

    1984-01-01

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value

  18. Nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E. D.

    1984-10-16

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value.

  19. Method for forming nuclear fuel containers of a composite construction and the product thereof

    International Nuclear Information System (INIS)

    Cheng, B.-C.; Rosenbaum, H.S.; Armijo, J.S.

    1981-01-01

    An improved method of producing a composite nuclear fuel container is described which comprises a casing or fuel sheath of zirconium or its alloy with a lining cladding of deposited copper superimposed over the inside surface of the zirconium or alloy and a layer of oxide of the zirconium or alloy formed on the inside surface of the casing or sheath. (U.K.)

  20. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    International Nuclear Information System (INIS)

    McDeavitt, Sean M.

    2011-01-01

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500 C to 600 C) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: (1) Hot working fabrication using mechanical alloying and extrusion - Design, fabricate, and assemble extrusion equipment - Extrusion database on DU metal - Extrusion database on U-10Zr alloys - Extrusion database on U-20xx-10Zr alloys - Evaluation and testing of tube sheath metals (2) Low-temperature sintering of U alloys - Design, fabricate, and assemble equipment - Sintering database on DU metal - Sintering database on U-10Zr alloys - Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research and Development (FCR and D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the

  1. Materials for innovative lead alloy cooled nuclear systems: Overview

    International Nuclear Information System (INIS)

    Mueller, Georg; Weisenburger, Alfons; Fetzer, Renate; Heinzel, Annette; Jianu, Adrian

    2015-01-01

    One of the most challenging issues for all future innovative nuclear systems including Gen IV reactors are materials. The selection of the structural materials determines the design which has to consider the properties and the availability of the materials. Beside general requirements for material properties that are common for all fast reactor types specific issues arise from coolant compatibility. The high solubility of steel alloying elements in liquid Pb-alloys at reactor relevant temperatures is clearly detrimental. Therefore, all steels that are considered as structural materials have to be protected by dissolution barriers. The most common barriers for steels under consideration are oxide scales that form in situ during operation. However, increasing the temperature above 500 deg. C will result either in dissolution attack or in enhanced oxidation. For higher temperatures additional barriers like alumina forming surface alloys are discussed and investigated. Mechanical loads like creep stress and fretting will act on the steels. These mechanical loads will interact with the coolant and can increase the negative effects. For a LFR (Lead Fast Reactor) Demonstrator and MYHRRA (ADS) austenitic steels (316L) are selected for most in core components. The 15-15Ti is the choice for the fuel cladding of MYHRRA and a Pb cooled demonstrator. For an industrial LFR (Lead Fast Reactor) the ferritic martensitic steel T91 was selected as fuel clad material due to its improved irradiation resistance. T91 is in both designs the material to be used for the heat exchanger. Surface alloying with alumina forming alloys is considered to assure material functionality at higher temperatures and is therefore selected for fuel cladding of the ELFR and the heat exchanger tubes. This presentation will give an overview on the selected materials for innovative Pb alloy cooled nuclear systems considering, beside pure compatibility, the influence of mechanical interaction like creep and

  2. Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong Austin [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-28

    The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.

  3. New zirconium alloys for nuclear application; Novas ligas de zirconio para aplicacao nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, R.M.; Andrade, A.H.P., E-mail: rmlobo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Zirconium alloys are widely used in the nuclear industry, mainly in fuel cladding tubes and structural components for PWR plants. The service life of these components, which operate under high temperatures conditions ({approx} 300 deg C), has led to developing new alloys with the aim to improve the mechanical properties, corrosion resistance and irradiation damage. The variation in the composition of the alloy produces second phase particles which alter the materials properties according to their size and distribution, is essential therefore, knowledge their characteristics. Analysis of second phase particles in zirconium alloys are carried out by scanning electron microscopy, transmission electron microscopy and image analysis. This study used the zircaloy-4 to illustrate the characterization of these alloys through the study of second phase particles. (author)

  4. Nuclear design of APSARA reload-2 fuel

    International Nuclear Information System (INIS)

    Nath, M.; Veeraraghavan, N.

    1978-01-01

    In view of the satisfactory operating performance of initial and reload-1 fuel designs of Apsara reactor, it was felt desirable to adopt a basically similar design for reload-2 fuel, i.e. the fuel assembly should consist of equally spaced parallel fuel plates in which highly enriched uranium, alloyed with aluminium, is employed as fuel. However, because of fabricational constraints, certain modifications were necessary and were incorporated in the proposed reload design to cater to the multiple needs of operational requirements, improved fuel utilization and inherent reactor safety. The salient features of the nuclear design of reload-2 fuel for the Apsara reactor are discussed. (author)

  5. Nuclear fuel element

    International Nuclear Information System (INIS)

    Iwano, Yoshihiko.

    1993-01-01

    Microfine cracks having a depth of less than 10% of a pipe thickness are disposed radially from a central axis each at an interval of less than 100 micron over the entire inner circumferential surface of a zirconium alloy fuel cladding tube. For manufacturing such a nuclear fuel element, the inside of the cladding tube is at first filled with an electrolyte solution of potassium chloride. Then, electrolysis is conducted using the cladding tube as an anode and the electrolyte solution as a cathode, and the inner surface of the cladding tube with a zirconium dioxide layer having a predetermined thickness. Subsequently, the cladding tube is laid on a smooth steel plate and lightly compressed by other smooth steel plate to form microfine cracks in the zirconium dioxide layer on the inner surface of the cladding tube. Such a compressing operation is continuously applied to the cladding tube while rotating the cladding tube. This can inhibit progress of cracks on the inner surface of the cladding tube, thereby enabling to prevent failure of the cladding tube even if a pellet/cladding tube mechanical interaction is applied. Accordingly, reliability of the nuclear fuel elements is improved. (I.N.)

  6. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  7. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-07-01

    The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a 238 PuO 2 -powered pacemaker could be transformed into a terrorism weapon

  8. Role of analytical chemistry in the development of nuclear fuels

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2012-01-01

    Analytical chemistry is indispensable and plays a pivotal role in the entire gamut of nuclear fuel cycle activities starting from ore refining, conversion, nuclear fuel fabrication, reactor operation, nuclear fuel reprocessing to waste management. As the fuel is the most critical component of the reactor where the fissions take place to produce power, extreme care should be taken to qualify the fuel. For example, in nuclear fuel fabrication, depending upon the reactor system, selection of nuclear fuel has to be made. The fuel for thermal reactors is normally uranium oxide either natural or slightly enriched. For research reactors it can be uranium metal or alloy. The fuel for FBR can be metal, alloy, oxide, carbide or nitride. India is planning an advanced heavy water reactor for utilization of vast resources of thorium in the country. Also research is going on to identify suitable metallic/alloy fuels for our future fast reactors and possible use in fast breeder test reactor. Other advanced fuel materials are also being investigated for thermal reactors for realizing increased performance levels. For example, advanced fuels made from UO 2 doped with Cr 2 O 3 and Al 2 O 3 are being suggested in LWR applications. These have shown to facilitate pellet densification during sintering and enlarge the pellet grain size. The chemistry of these materials has to be understood during the preparation to the stringent specification. A number of analytical parameters need to be determined as a part of chemical quality control of nuclear materials. Myriad of analytical techniques starting from the classical to sophisticated instrumentation techniques are available for this purpose. Insatiable urge of the analytical chemist enables to devise and adopt new superior methodologies in terms of reduction in the time of analysis, improvement in the measurement precision and accuracy, simplicity of the technique itself etc. Chemical quality control provides a means to ensure that the

  9. Zirconium alloy fuel cladding resistant to PCI crack propagation

    International Nuclear Information System (INIS)

    Boyle, R.F.; Foster, J.P.

    1987-01-01

    A nuclear fuel element is described cladding tube comprising: concentric tubular layers of zirconium base alloys; the concentric tubular layers including an inner layer and outer layer; the outer layer metallurgically bonded to the inner layer; the outer layer composed of a first zirconium base alloy characterized by excellent resistance to corrosion caused by exposure to high temperature and pressure aqueous environments; the inner layer composed of a second zirconium base alloy consisting of: about 0.2 to 0.6 wt.% tin, about 0.03 to 0.11 wt.% iron, less than about 0.02 wt.% chromium, up to about 350 ppm oxygen and the remainder being zirconium and incidental impurities, and the inner layer characterized by improved resistance to crack propagation under reactor operating conditions compared to the first zirconium alloy

  10. Study of corrosion of aluminium alloys of nuclear purity in ordinary water, пart one

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2004-01-01

    Full Text Available Effects of corrosion of aluminum alloys of nuclear purity in ordinary water of the spent fuel storage pool of the RA research reactor at VINČA Institute of Nuclear Sciences has been examined in the frame work of the International Atomic Energy Agency Coordinated Research Project "Corrosion of Research Reactor Aluminum-Clad Spent Fuel in Water" since 2002. The study presented in this paper comprises activities on determination and monitoring of chemical parameters and radio activity of water and sludge in the RA spent fuel storage pool and results of the initial study of corrosion effects obtained by visual examinations of surfaces of various coupons made of aluminum alloys of nuclear purity of the test racks exposed to the pool water for a period from six months to six years.

  11. Metal waste forms from the electrometallurgical treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Park, J.

    1996-01-01

    Stainless steel-zirconium alloys are being developed for the disposal of radioactive metal isotopes isolated using an electrometallurgical treatment technique to treat spent nuclear fuel. The nominal waste forms are stainless steel-15 wt% zirconium alloy and zirconium-8 wt% stainless steel alloy. These alloys are generated in yttria crucibles by melting the starting materials at 1,600 C under an argon atmosphere. This paper discusses the microstructures, corrosion and mechanical test results, and thermophysical properties of the metal waste form alloys

  12. FUNDAMENTAL MECHANISMS OF CORROSION OF ADVANCED LIGHT WATER REACTOR FUEL CLADDING ALLOYS AT HIGH BURNUP

    International Nuclear Information System (INIS)

    Lott, Randy G.

    2003-01-01

    OAK (B204) The corrosion behavior of nuclear fuel cladding is a key factor limiting the performance of nuclear fuel elements, improved cladding alloys, which resist corrosion and radiation damage, will facilitate higher burnup core designs. The objective of this project is to understand the mechanisms by which alloy composition, heat treatment and microstructure affect corrosion rate. This knowledge can be used to predict the behavior of existing alloys outside the current experience base (for example, at high burn-up) and predict the effects of changes in operation conditions on zirconium alloy behavior. Zirconium alloys corrode by the formation f a highly adherent protective oxide layer. The working hypothesis of this project is that alloy composition, microstructure and heat treatment affect corrosion rates through their effect on the protective oxide structure and ion transport properties. The experimental task in this project is to identify these differences and understand how they affect corrosion behavior. To do this, several microstructural examination techniques including transmission electron microscope (TEM), electrochemical impedance spectroscopy (EIS) and a selection of fluorescence and diffraction techniques using synchrotron radiation at the Advanced Photon Source (APS) were employed

  13. Nuclear fuel element and a method of manufacture thereof

    International Nuclear Information System (INIS)

    Wood, J.C.

    1975-01-01

    A nuclear fuel element having a sheath of zirconium or a zirconium alloy and a cross-linked siloxane lacquer coating on the inner surface of the sheath and separating the nuclear fuel material from the sheath is described. The siloxane lacquer coating retards cracking of the sheath by iodine vapor emitted by the fuel during burn-up, and acts as a lubricant for the fuel to prevent rupture of the sheath by thermal ratchetting of the fuel against the sheath and caused by differential thermal expansion between the fuel and the sheath. A silicone grease is applied as a thin layer in the sheath and then baked so that oxidative cleavage of the side chains of the grease occurs to form a cross-linked siloxane lacquer coating bonded to the sheath

  14. Environmental management at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Choudhary, S.; Kalidas, R.

    2005-01-01

    Nuclear Fuel Complex (NFC) a unit of Department of Atomic Energy (DAE) is manufacturing and supplying fuel assemblies and structurals for Atomic Power Reactors, Seamless Stainless Steel/ Special Alloy Tubes and high purity/special materials for various industries including Atomic Energy, Space and Electronics. NFC is spread over about 200 acres area. It consists of various chemical, metallurgical, fabrication and assembly plants engaged in processing uranium from concentrate to final fuel assembly, processing zirconium from ore to metallic products and processing various special high purity materials from ore or intermediate level to the final product. The plants were commissioned in the early seventies and capacities of these plants have been periodically enhanced to cater to the growing demands of the Indian Nuclear Industry. In the two streams of plants processing Uranium and zirconium, various types and categories including low level radioactive wastes are generated. These require proper handling and disposal. The overall management of radioactive and other waste aims at minimizing the generation and release to the environment. In this presentation, the environment management methodologies as practiced in Nuclear Fuel Complex are discussed. (author)

  15. Environmental management in Framatome nuclear fuel

    International Nuclear Information System (INIS)

    Thiebaut, B.; Ferre, A.

    1999-01-01

    Environmental preservation is both a national regulatory requirement and a condition for economic and social development. The various industrial sites belonging to the Framatome Nuclear Fuel Organisation, whose activities range from the processing and transformation of Zirconium alloy products to the fabrication of fuel assemblies, have always demonstrated that protection of the environment was their prime concern by implementing low pollution level processes and reducing and/or recycling industrial waste and effluents. As early as January 1996, a directive issued by the Framatome Group defined its environmental policy and responsibilities in the matter. Within the Framatome Nuclear Fuel Organization, this directive has been applied by implementation of: low level pollution processes; better performance of recycling of effluents, by-products and waste; environmental information policy. In all its plants, the Framatome Nuclear Fuel Organization has decided to pursue and to step up its environmental protection policy by: officializing its action through compliance with ISO standard 14001 and certification of all its industrial sites by 2001 at the latest; launching new actions and extra investment programs. In this context, FBFC has applied for a modification of the decrees concerning the dumping of liquid and gas effluents at the Romans factory. (authors)

  16. Flop casting of nuclear materials for advanced fuel cycle research - 5247

    International Nuclear Information System (INIS)

    Swift, A.J.; Koury, D.J.; Czerwinski, K.R.; Vollmer, J.M.

    2015-01-01

    Full text of publication follows. Next generation fast reactor designs of nuclear reactors utilizing metallic fuel are being developed as an alternative fuel cycle option in an effort to reduce carbon emissions. Metallic fuel systems are attractive because of their high thermal conductivity, fissile atom density, and inherent safety. Metallic fuel systems are also being investigated because of their potential to reach high burnups. The increased targeted burnups for metallic fuels lead to higher concentrations of actinides, lanthanides, and other fission products, which alter the fuel properties and impact the performance of the fuel. Before designs can be implemented, the fission product concentrations must be studied at variable fuel geometries and stages of fuel burnup. Arc flop casting serves as a viable option for casting alloys as the molds can be tailored to fit design specific requirements while cutting costs in time-consuming machining. Arc casting is done as the final preparation step in a small arc furnace with an argon or 5% hydrogen-argon atmosphere after the sample has been subsequently melted, overturned, and re-melted. The flop casting mold is then fitted to the chamber as needed and the previously prepared sample is quickly hit with a high current arc causing the molten metal to fill the copper mold. The U-Zr-Pu system will serve as the basis for this research as it has been extensively studied since the 1950 years, although flop casting can be adapted to any metallic fuel system. Multiple U-Zr-Pu with varying fission product concentrations alloys, Technetium metal, and Plutonium alloys have been flop cast based on burnup calculations. Prepared samples were cast using different molds and dimensions, then characterized by Scanning Electron Microscopy, X-ray diffraction, and Thermogravimetric Analysis. The goal of this research is to test and develop flop casting techniques for the production of metallic fuel alloys applicable for various stages and

  17. Some recent trends in the use of zirconium alloys for nuclear service

    International Nuclear Information System (INIS)

    Balaramamoorthy, K.

    1992-01-01

    Without any exception nuclear power reactors particularly the water cooled ones, operating in the World use natural or slightly enriched uranium oxide fuel pellets with zirconium alloy cladding. While the zirconium alloys have proven to be successful in their designed usage, a desire for longer lifetimes of core components and increased duty cycle puts more demand on materials performance. This demand has led to more in depth studies of phenomena associated with zirconium alloy corrosion mechanism, fine tuning of the zirconium alloy composition, development of fabrication techniques and to the evaluation of newer zirconium alloys for critical applications. (author). 5 refs., 32 figs

  18. Selection of materials in nuclear fuel: present and future

    International Nuclear Information System (INIS)

    Munoz-Reja, C.; Fuentes, L.; Garcia de la Infanta, J. M.; Munoz Sicilia, A.

    2013-01-01

    One of the main aspects of the nuclear fuel is the selection of materials for the components. The operating conditions of the fuel elements impose a major challenge to materials: high temperature, corrosive aqueous environment, high mechanical properties, long periods of time under these extreme conditions and what is the differentiating factor; the effect of irradiation. The materials are selected to fulfill these severe requirements and also to be able to control and to predict its behavior in the working conditions. Their development, in terms of composition and processing, is based on the continuous follow-up of the operation behavior. Many of these materials are specific of the nuclear industry, such as the uranium dioxide and the zirconium alloys. This article presents the selection and development of the nuclear fuel materials as a function of the services requirements. It also includes a view of the new nuclear fuels materials that are being raised after Fukushima accident. (Author)

  19. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  20. Nuclear criticality safety parameter evaluation for uranium metallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Andrea; Abe, Alfredo, E-mail: andreasdpz@hotmail.com, E-mail: abye@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Energia Nuclear

    2013-07-01

    Nuclear criticality safety during fuel fabrication process, transport and storage of fissile and fissionable materials requires criticality safety analysis. Normally the analysis involves computer calculations and safety parameters determination. There are many different Criticality Safety Handbooks where such safety parameters for several different fissile mixtures are presented. The handbooks have been published to provide data and safety principles for the design, safety evaluation and licensing of operations, transport and storage of fissile and fissionable materials. The data often comprise not only critical values, but also subcritical limits and safe parameters obtained for specific conditions using criticality safety calculation codes such as SCALE system. Although many data are available for different fissile and fissionable materials, compounds, mixtures, different enrichment level, there are a lack of information regarding a uranium metal alloy, specifically UMo and UNbZr. Nowadays uranium metal alloy as fuel have been investigated under RERTR program as possible candidate to became a new fuel for research reactor due to high density. This work aim to evaluate a set of criticality safety parameters for uranium metal alloy using SCALE system and MCNP Monte Carlo code. (author)

  1. Chemical compatibility between cladding alloys and advanced fuels

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1975-05-01

    The National Advanced Fuels Program requires chemical, mechanical, and thermophysical properties data for cladding alloys. The compatibility behavior of cladding alloys with advanced fuels is critically reviewed. in carbide fuel pins, the principal compatibility problem is cladding carburization, diffusion of carbon into the cladding matrix accompanied by carbide precipitation. Carburization changes the mechanical properties of the cladding alloy. The extent of carburization increases in sodium (versus gas) bonded fuels. The depth of carburization increases with increasing sesquicarbide (M 2 C 3 ) content of the fuel. In nitride fuel pins, the principal compatibility problem is cladding nitriding, diffusion of nitrogen into the cladding matrix accompanied by nitride precipitation. Nitriding changes the mechanical properties of the cladding alloy. In both carbide and nitride fuel pins, fission products do not migrate appreciably to the cladding and do not appear to contribute to cladding attack. 77 references. (U.S.)

  2. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  3. Corrosion of aluminum-clad alloys in wet spent fuel storage

    International Nuclear Information System (INIS)

    Howell, J.P.

    1995-09-01

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980's and these fuels are caught in the pipeline awaiting processing or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced significant pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1995, but the ultimate solution is to remove the fuel from the basins and to process it to a more stable form using existing and proven technology. This report presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as other fuel storage basins within the Department of Energy production sites

  4. Tube in zirconium base alloy for nuclear fuel assembly and manufacturing process of such a tube

    International Nuclear Information System (INIS)

    Mardon, J.P.; Senevat, J.; Charquet, D.

    1996-01-01

    This patent concerns the description and manufacturing guidelines of a zirconium alloy tube for fuel cladding or fuel assembly guiding. The alloy contains (in weight) 0.4 to 0.6% of tin, 0.5 to 0.8% of iron, 0.35 to 0.50% of vanadium and 0.1 to 0.18% of oxygen. The carbon and silicon tenors range from 100 to 180 ppm and from 80 to 120 ppm, respectively. The alloy contains only zirconium, plus inevitable impurities, and is completely recrystallized. Corrosion resistance tests were performed on tubes made of this alloy and compared to corrosion tests performed on zircaloy 4 tubes. These tests show a better corrosion resistance and a lower corrosion kinetics for the new alloy, even in presence of lithium and iodine, and a lower hydridation rate. The mechanical resistance of this alloy is slightly lower than the one of zircaloy 4 but becomes equivalent or slightly better after two irradiation cycles. The ductility remains always equal or better than for zircaloy 4. (J.S.)

  5. DUCTILE URANIUM FUEL FOR NUCLEAR REACTORS AND METHOD OF MAKING

    Science.gov (United States)

    Zegler, S.T.

    1963-11-01

    The fabrication process for a ductile nuclear fuel alloy consisting of uranium, fissium, and from 0.25 to 1.0 wt% of silicon or aluminum or from 0.25 to 2 wt% of titanium or yttrium is presented. (AEC)

  6. Study of phase transformation of U-2,5Zr-7,5Nb e U-3Zr-9Nb alloys for application in advanced nuclear fuel; Estudo das transformacoes de fases nas ligas U-2,5Zr-7,5Nb e U-3Zr-9Nb para aplicacao em combustivel nuclear avancado

    Energy Technology Data Exchange (ETDEWEB)

    Pais, Rafael Witter Dias

    2015-07-01

    Metal fuels are relevant in the nuclear area due to the versatility of its use in the nuclear fuel cycle. Among the alloys of uranium investigated with high potential for use in nuclear power reactors, U-Zr-Nb alloys appear as an important alternative because of their superior physico-chemical and metallurgical properties. These alloys have also potential for use in nuclear testing, research and production radioisotopes of high performance nuclear reactors. Therefore, the development of these alloys is strategic since they are planned to be used in national reactors as RMB (Brazilian Multipurpose Reactor) and LABGENE (Electrical Generation Core Laboratory), currently under development in Brazil. In this work it was realized a extensive study in the scope of the manufacturing, heat treatment and phase transformations of U-2,5Zr-7,5Nb (m/m%) and U-3ZR-9NB (m/m%) fuel alloys. Ingots of both alloys were produced employing a specific methodology developed in this study. This methodology comprised the melting process in a vacuum induction furnace at high temperatures (1500 °C) and thermal-mechanical processing to break the as-cast structure. Samples with typical dimensions (17 x 7 x 2.5 mm) free from macrostructural defects were homogenized at 1000 °C in vacuum of 10{sup -5} torr for 17.5 hours with a 10°C/min cooling rate until to 820 °C and, subsequently, quenched in water. The samples, randomly selected, were subjected to isothermal treatment tests under different conditions of time and temperature. Isothermal treatments for transformation and retention phases were carried out in a special assembly designed for this work. After the tests, the samples were characterized by the usual phase characterization techniques with particular emphasis for the X-ray diffraction technique. In this way, the Rietveld refinement method was applied. In the case of uranium based alloys it is quite challenging due to the lack of data in the literature. In this work a strategy for the

  7. Long-time corrosion and high-temperature oxidation of zirconium alloys applied on NPP like fuel elements cover

    International Nuclear Information System (INIS)

    Vrtilkova, V.; Novotny, L.; Lingart, S.; Doukha, R.; Yarosh, Ya.; Kolenchik, Ya.

    2007-01-01

    Zirconium is applying in nuclear energy since 50-th of last century in capacity of material for cover production for fuel elements, reactor fuel and structural parts, and mainly due to both corrosion stability and low effective cross section for thermal neutrons capture. Impurities in doping elements form and alloy production technology has influence on mechanical and corrosion properties of finite alloy. Long-time corrosion tests for several zirconium alloys in forcing autoclave under different reaction conditions were carried out. After that process kinetics was studied, mass increase, hydrogen formation, zirconium hydride forming morphology, zirconium oxide layer thickness have been determined as well

  8. Corrosion of titanium and titanium alloys in spent fuel repository conditions - literature review

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Haenninen, H.; Aaltonen, P.; Taehtinen, S.

    1985-03-01

    The spent nuclear fuel is planned to be disposed in Finnish bedrock. The canister of spent fuel in waste repository is one barrier to the release of radionuclides. It is possible to choose a canister material with a known, measurable corrosion rate and to make it with thickness allowing corrosion to occur. The other possibility is to use a material which is nearly immune to general corrosion. In this second category there are titanium and titanium alloys which exhibit a very high degree of resistance to general corrosion. In this literature study the corrosion properties of unalloyed titanium, titanium alloyed with palladium and titanium alloyed with molybdenum and nickel are reviewed. The two titanium alloys own in addition to the excellent general corrosion properties outstanding properties against localized corrosion like pitting or crevice corrosion. Stress corrosion cracking and corrosion fatique of titanium seem not to be a problem in the repository conditions, but the possibilities of delayed cracking caused by hydrogen should be carefully appreciated. (author)

  9. Review of the IAEA Nuclear Fuel Cycle Materials Section activities related to WWER fuel

    International Nuclear Information System (INIS)

    Killeen, J.

    2003-01-01

    The IAEA Nuclear Fuel Cycle Programme, designated as Programme B, has the main objective of supporting Member States in policy making, strategic planning, developing technology and addressing issues with respect to safe, reliable, economically efficient, proliferation resistant and environmentally sound nuclear fuel cycle. This paper is concentrated on describing the work within Sub-programme B.2 'Fuel Performance and Technology'. Two Technical Working Groups assist in the preparation of the IAEA programme in the nuclear fuel cycle area - Technical Working Group on Water Reactor Fuel Performance and Technology and Technical Working Group on Nuclear Fuel Cycle Options. The activities of the Unit within the Nuclear Fuel Cycle and Materials Section working on Fuel Performance and Technology are given, based on the sub-programme structure of the Agency programme and budget for 2002-2003. Within the framework of Co-ordinated Research Projects a study of the delayed hydride cracking (DHC) of the zirconium alloys used in pressurised heavy water reactors (PHWR) involving 10 countries has been completed. It achieved very effective transfer of know-how at the laboratory level in three technologically important areas: 1) Controlled hydriding of samples to predetermined levels; 2) Accurate measurement of hydrogen concentrations at the relatively low levels found in pressure tubes and RBMK channel tubes; and 3) In the determination of DHC rates under various conditions of temperature and stress. A new project has been started on the 'Improvement of Models used for Fuel Behaviour Simulation' (FUMEX II) to assist Member States in improving the predictive capabilities of computer codes used in modelling fuel behaviour for extended burnup. The IAEA also collaborates with organisations in the Member States to support activities and meetings on nuclear fuel cycle related topics

  10. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Massey, Caleb P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y2O3 (+ ZrO2 or TiO2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ball milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.

  11. Nuclear safety of the ten-well insert for the SRP fuel element dissolver

    International Nuclear Information System (INIS)

    Perkins, W.C.; Forstner, J.L.

    1977-06-01

    Mass limits are developed and presented for safe dissolution of fissile materials in the Ten-Well Insert, an improved device for limiting the configuration of fuel in SRP dissolvers. This insert permits high-capacity dissolution of SRP fuels, offsite fuels, and scrap fissile materials with adequate margins of nuclear safety. Limits were developed by calculating the safe (subcritical) mass per well as a function of the concentration of fissile material in the dissolver solution. Safe mass values were then selected for use as well-loading limits so as to ensure subcriticality throughout the dissolution. Well-loading limits are presented for uranium metal, uranium-aluminum alloy, U 3 O 8 -aluminum cermet, plutonium-aluminum alloy, and uranium-plutonium-aluminum alloy. With these limits, the maximum k/sub eff/ is 0.95. Nuclear safety is maintained in process operations by conforming to well-loading limits calculated from the safe mass values, conforming to dissolver-loading limits, and maintaining the concentration of fissile material in solution below 4.0 g/l. 9 figures, 14 tables

  12. Pyrochemical head-end treatment for spent nuclear fuels

    International Nuclear Information System (INIS)

    Bowersox, D.F.

    1977-01-01

    A program based upon thermodynamic values and scouting experiments at Argonne National Laboratory is proposed for development of a pyrochemical head-end treatment of spent nuclear fuels to replace the proposed chopping and leaching operation in the Purex process. The treatment consists of separation of the cladding from the oxide fuel by dissolution into liquid zinc; oxide reduction of uranium and plutonium and dissolution into a zinc--magnesium alloy; separation of alkali, alkaline earth, and rare earth fission products into a molten salt; and, finally, separation and recovery of the plutonium and uranium in the alloy. Uranium and plutonium would be separated from the fuel cladding and selected fission products in a form readily dissolvable in nitric acid. The head-end process could be developed eventually into an optimum method for recovering uranium, plutonium, and selected fission products and for minimizing wastes as compact, stable solids. Developmental expenses are not known clearly, but the potential advantages of the process are impressive

  13. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Obara, Hiroshi.

    1981-01-01

    Purpose: To suppress iodine release thereby prevent stress corrosion cracks in fuel cans by dispersing ferrous oxide at the outer periphery of sintered uranium dioxide pellets filled and sealed within zirconium alloy fuel cans of fuel elements. Constitution: Sintered uranium dioxide pellets to be filled and sealed within a zirconium alloy fuel can are prepared either by mixing ferric oxide powder in uranium dioxide powder, sintering and then reducing at low temperature or by mixing iron powder in uranium dioxide powder, sintering and then oxidizing at low temperature. In this way, ferrous oxide is dispersed on the outer periphery of the sintered uranium dioxide pellets to convert corrosive fission products iodine into iron iodide, whereby the iodine release is suppressed and the stress corrosion cracks can be prevented in the fuel can. (Moriyama, K.)

  14. Fuel powder production from ductile uranium alloys

    International Nuclear Information System (INIS)

    Clark, C.R.; Meyer, M.K.

    1998-01-01

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. (author)

  15. Gel structure of the corrosion layer on cladding pipes of nuclear fuels

    Czech Academy of Sciences Publication Activity Database

    Medek, Jiří; Weishauptová, Zuzana

    2009-01-01

    Roč. 393, č. 2 (2009), s. 306-310 ISSN 0022-3115 R&D Projects: GA ČR GA106/04/0043 Institutional research plan: CEZ:AV0Z30460519 Keywords : cladding pipes of nuclear fuels * corrosion layer * zirconium alloys Subject RIV: JF - Nuclear Energetics Impact factor: 1.933, year: 2009

  16. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  17. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  18. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    FeCrAl alloys are a class of alloys that have seen increased interest for nuclear power applications including as accident tolerant fuel cladding, structural components for fast fission reactors, and as first wall and blanket structures for fusion reactors. FeCrAl alloys are under consideration for these applications due to their inherent corrosion resistance, stress corrosion cracking resistance, radiation-induced swelling resistance, and high temperature oxidation resistance. A substantial amount of research effort has been completed to design, develop, and begin commercial scaling of FeCrAl alloys for nuclear power applications over the past half a century. These efforts have led to the development of an extensive database on material properties and process knowledge for FeCrAl alloys but not within a consolidated format. The following report is the first edition of a materials handbook to consolidate the state-of-the-art on FeCrAl alloys for nuclear power applications. This centralized database focuses solely on wrought FeCrAl alloys, oxide dispersion strengthened alloys, although discussed in brief, are not covered. Where appropriate, recommendations for applications of the data is provided and current knowledge gaps are identified.

  19. Electromagnetic Acoustic Test of the Artificial Defects for a Plate-type Nuclear Fuel

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Kim, Dong Min; Lee, Yoon Sang; Cheong, Yong Moo

    2011-01-01

    Most research and test reactors use the nuclear fuel plates which are consisted of a fuel meat in aluminum alloy. Last year, KAERI signed a deal with the Jordan Atomic Energy Commission to build the research reactor and have to supply the plate-type nuclear fuels. For the demands of world market, KAERI started the research and development of the plate-type fuel elements and endeavored to achieve a localization of the plate-type fuel fabrication. For the inspection of plate-type fuel elements to be used in Research Reactors, an immersion pulse-echo ultrasonic technique was applied. This inspection was done under immersion condition, so a nuclear fuel was immersed to be prone to corrosion and needed to have time and cost due to an additional process. The sample that will be examined is a non-ferromagnetic material such as aluminum with a good acousto-elastic property, which requires an effective inspection of a bond quality for a nuclear fuel under a manufacturing environment. The purpose of this study is to investigate the feasibility of an Electromagnetic Acoustic Transducer (EMAT) technology for an automated inspection of a nuclear fuel without water

  20. Thermal bonding of light water reactor fuel using nonalkaline liquid-metal alloy

    International Nuclear Information System (INIS)

    Wright, R.F.; Tulenko, J.S.; Schoessow, G.J.; Connell, R.G. Jr.; Dubecky, M.A.; Adams, T.

    1996-01-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. A technique is explored that extends fuel performance by thermally bonding LWR fuel with a nonalkaline liquid-metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Because of the low thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high-conductivity liquid metal thermally bonds the fuel to the cladding and eliminates the large temperature change across the gap while preserving the expansion and pellet-loading capabilities. The application of liquid-bonding techniques to LWR fuel is explored to increase LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) is developed to analyze the in-reactor performance of the liquid-metal-bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of liquid-bonded LWR fuel. The results show that liquid-bonded boiling water reactor peak fuel temperatures are 400 F lower at beginning of life and 200 F lower at end of life compared with conventional fuel

  1. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  2. Experiments for evaluation of corrosion to develop storage criteria for interim dry storage of aluminum-alloy clad spent nuclear fuel

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.; Murphy, T.H.

    1994-01-01

    The technical bases for specification of limits to environmental exposure conditions to avoid excessive degradation are being developed for storage criteria for dry storage of highly-enriched, aluminum-clad spent nuclear fuels owned by the US Department of Energy. Corrosion of the aluminum cladding is a limiting degradation mechanism (occurs at lowest temperature) for aluminum exposed to an environment containing water vapor. Attendant radiation fields of the fuels can lead to production of nitric acid in the presence of air and water vapor and would exacerbate the corrosion of aluminum by lowering the pH of the water solution. Laboratory-scale specimens are being exposed to various conditions inside an autoclave facility to measure the corrosion of the fuel matrix and cladding materials through weight change measurements and metallurgical analysis. In addition, electrochemical corrosion tests are being performed to supplement the autoclave testing by measuring differences in the general corrosion and pitting corrosion behavior of the aluminum cladding alloys and the aluminum-uranium fuel materials in water solutions

  3. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  4. Feasibility of Electromagnetic Acoustic Evaluation for Quality Test of a Plate-type Nuclear Fuel

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Lee, Yoon Sang; Cheong, Yong Moo

    2010-01-01

    Most research and test reactors use the nuclear fuel plates which are consisted of a fuel core in aluminum alloy. Recently KAERI signed a deal with the Jordan Atomic Energy Commission to build the research reactor and have to supply the plate-type nuclear fuels. For the demands of world market, KAERI started the research and development of the plate-type fuel elements and endeavored to achieve a localization of fuel fabrication. For the inspection of plate-type fuel elements to be used in Research Reactors, an immersion pulse-echo ultrasonic technique was applied. This inspection was done with water, so a nuclear fuel was immersed to be prone to corrosion and needed to have time and cost due to an additional process. The sample that will be examined within this paper is a non-ferromagnetic material such as aluminum which has a good acousto-elastic property, for an effective inspection of a bond quality for a nuclear fuel under a manufacturing environment. The purpose of this study is to investigate the feasibility of an EMAT technology for an automated inspection of a nuclear fuel without water

  5. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  6. Homogeneous forming technology of composite materials and its application to dispersion nuclear fuel

    International Nuclear Information System (INIS)

    Hong, Soon Hyun; Ryu, Ho Jin; Sohn, Woong Hee; Kim, Chang Kyu

    1997-01-01

    Powder metallurgy processing technique of metal matrix composites is reviewed and its application to process homogeneous dispersion nuclear fuel is considered. The homogeneous mixing of reinforcement with matrix powders is very important step to process metal matrix composites. The reinforcement with matrix powders is very important step to process metal matrix composites. The reinforcement can be ceramic particles, whiskers or chopped fibers having high strength and high modulus. The blended powders are consolidated into billets and followed by various deformation processing, such as extrusion, forging, rolling or spinning into final usable shapes. Dispersion nuclear fuel is a class of metal matrix composite consisted of dispersed U-compound fuel particles and metallic matrix. Dispersion nuclear fuel is fabricated by powder metallurgy process such as hot pressing followed by hot extrusion, which is similar to that of SiC/Al metal matrix composite. The fabrication of homogeneous dispersion nuclear fuel is very difficult mainly due to the inhomogeneous mixing characteristics of the powders from quite different densities between uranium alloy powders and aluminum powders. In order to develop homogeneous dispersion nuclear fuel, it is important to investigate the effect of powder characteristics and mixing techniques on homogeneity of dispersion nuclear fuel. An new quantitative analysis technique of homogeneity is needed to be developed for more accurate analysis of homogeneity in dispersion nuclear fuel. (author). 28 refs., 7 figs., 1tab

  7. Vapor corrosion of aluminum cladding alloys and aluminum-uranium fuel materials in storage environments

    International Nuclear Information System (INIS)

    Lam, P.; Sindelar, R.L.; Peacock, H.B. Jr.

    1997-04-01

    An experimental investigation of the effects of vapor environments on the corrosion of aluminum spent nuclear fuel (A1 SNF) has been performed. Aluminum cladding alloys and aluminum-uranium fuel alloys have been exposed to environments of air/water vapor/ionizing radiation and characterized for applications to degradation mode analysis for interim dry and repository storage systems. Models have been developed to allow predictions of the corrosion response under conditions of unlimited corrodant species. Threshold levels of water vapor under which corrosion does not occur have been identified through tests under conditions of limited corrodant species. Coupons of aluminum 1100, 5052, and 6061, the US equivalent of cladding alloys used to manufacture foreign research reactor fuels, and several aluminum-uranium alloys (aluminum-10, 18, and 33 wt% uranium) were exposed to various controlled vapor environments in air within the following ranges of conditions: Temperature -- 80 to 200 C; Relative Humidity -- 0 to 100% using atmospheric condensate water and using added nitric acid to simulate radiolysis effects; and Gamma Radiation -- none and 1.8 x 10 6 R/hr. The results of this work are part of the body of information needed for understanding the degradation of the A1 SNF waste form in a direct disposal system in the federal repository. It will provide the basis for data input to the ongoing performance assessment and criticality safety analyses. Additional testing of uranium-aluminum fuel materials at uranium contents typical of high enriched and low enriched fuels is being initiated to provide the data needed for the development of empirical models

  8. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  9. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  10. Origin and development of the new U-Mo nuclear fuel

    International Nuclear Information System (INIS)

    Boyard, M.; Languille, A.; Thomasson, J.; Hamy, J.M.

    2002-01-01

    Historically most research reactors have used highly enriched nuclear fuels (enrichment > 90 %). Since 1977 the non-proliferation policy has imposed to convert these reactors to far less enriched fuels (< 20 %). An international consensus has evolved towards a nuclear fuel with an enrichment factor of 19,75 %, this fuel is made of a powdered U-Mo alloy scattered in an aluminium die. The external dimensions and the cladding materials of the fuel plate are unchanged in order to minimize development and qualification costs. The U-Mo fuel is expected to maintain or even to increase the performance of reactors and to allow the processing of spent fuels in the same installations as those used for fuels issuing from power plants. Cea, Cogema, Cerca, Framatome, and Technicatome have shared their technical means, their know-how and their financial resources to develop this new nuclear fuel. 2006 is the contract date by which American authorities will stop repatriating the ancient spent fuel (uranium silicide) from research reactors so it is imperative to make available by this date a new nuclear fuel with a satisfactory end of cycle. This article also presents the French program of qualification of the U-Mo fuel. 2 series of irradiation have already been performed, one (Isis-1) in Osiris reactor (Saclay, France) and the second (Umus) in HFR (Petten, Netherlands). A clad failure has led to stop the Umus experiment. 2 new series of irradiation are scheduled to start in 2002. In a parallel way, in the framework of the design of the RJH (Jules Horowitz reactor) Cea will soon perform irradiation of U-Mo fuel plates in BR2 (Mol, Belgium). (A.C.)

  11. Mechanical behaviour and failure of fuel cladding zirconium alloys in nuclear power plants under accidental RIA-type situation

    International Nuclear Information System (INIS)

    Doan, D.T.

    2009-01-01

    In French Nuclear Pressurized Water Reactors (PWRs), most of structural parts of the fuel assembly consist of zirconium alloy tubes and plates. Optimizing the management of fuel in nuclear power plants led to the increase in the duration of fuel cycles and power. The use of high fuel burnups requires drastic changes in the rules for reactor design in the nuclear safety. The evaluation of nuclear reactors in accident situations is based on reference accident scenarios. One of these hypothetical accidents, examined in this study, is the 'Reactivity Initiated Accident'. In order to assess the structural integrity of these parts it is necessary to characterize both the plastic flow and fracture behaviour of the materials at various stages of the life cycle, (i.e. at increasing levels of hydriding, irradiation, oxidation or thermal mechanical loading). The purpose of this work is to provide experimental data and to develop a model of the thermo-mechanical behaviour and to propose a design analysis method in the case of non-irradiated clads, in RIA-type situations. Mechanical tests were conducted on Cold-Worked-Stress-Relieved and on Recrystallized Zircaloy-4 sheets using various kinds of samples including smooth and notched tensile specimens and small punch tests. Temperature was set to 25, 250 and 600 C with hydrogen contents between 0 and 1000 ppm. The model is based on a simplified description of a Zircaloy polycrystal in which scalar isotropic ductile damage including void nucleation and growth is added. The model is also physically based to easily transfer parameters determined for one material state to another (e.g. transfer between sheet and tube or between different levels of irradiation). The model was implemented in the Finite Element software Zebulon using either an explicit or an implicit time integration scheme. Uniaxial tension tests were used to tune the model parameters for both materials, considering various values of temperature and hydrogen levels

  12. Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems. Phase I: Isothermal forced convection case

    International Nuclear Information System (INIS)

    2012-06-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flowsheets, development and performance of fuel and materials and accelerators and spallation targets. The WPFC has different expert groups to cover a wide range of scientific issues in the field of nuclear fuel cycle. The Task Force on Lead-Alloy-Cooled Advanced Nuclear Energy Systems (LACANES) was created in 2006 to study thermal-hydraulic characteristics of heavy liquid metal coolant loop. The objectives of the task force are to (1) validate thermal-hydraulic loop models for application to LACANES design analysis in participating organisations, by benchmarking with a set of well-characterised lead-alloy coolant loop test data, (2) establish guidelines for quantifying thermal-hydraulic modelling parameters related to friction and heat transfer by lead-alloy coolant and (3) identify specific issues, either in modelling and/or in loop testing, which need to be addressed via possible future work. Nine participants from seven different institutes participated in the first phase of the benchmark. This report provides details of the benchmark specifications, method and code characteristics and results of the preliminary study: pressure loss coefficient and Phase-I. A comparison and analysis of the results will be performed together with Phase-II

  13. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  14. Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels

    International Nuclear Information System (INIS)

    Zhang, Hui; Singh, Raman P.

    2008-01-01

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

  15. Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hui Zhang; Raman P. Singh

    2008-11-30

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor componets is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

  16. Incorporation of Integral Fuel Burnable Absorbers Boron and Gadolinium into Zirconium-Alloy Fuel Clad Material

    International Nuclear Information System (INIS)

    Sridharan, K.; Renk, T.J.; Lahoda, E.J.; Corradini, M.L

    2004-01-01

    Long-lived fuels require the use of higher enrichments of 235U or other fissile materials. Such high levels of fissile material lead to excessive fuel activity at the beginning of life. To counteract this excessive activity, integral fuel burnable absorbers (IFBA) are added to some rods in the fuel assembly. The two commonly used IFBA elements are gadolinium, which is added as gadolinium-oxide to the UO2 powder, and boron, which is applied as a zirconium-diboride coating on the UO2 pellets using plasma spraying or chemical vapor deposition techniques. The incorporation of IFBA into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be very costly because of their small volume and can add from 20 to 30% to the manufacturing cost of the fuel. Other manufacturing issues that impact cost and performance are maintaining the correct levels of dosing, the reduction in fuel melting point due to gadolinium-oxide additions, and parasitic neutron absorption at fuel's end-of-life. The goal of the proposed research is to develop an alternative approach that involves incorporation of boron or gadolinium into the outer surface of the fuel cladding material rather than as an additive to the fuel pellets. This paradigm shift will allow for the introduction of the IFBA in a non-nuclear regulated environment and will obviate the necessity of additional handling and processing of the fuel pellets. This could represent significant cost savings and potentially lead to greater reproducibility and control of the burnable fuel in the early stages of the reactor operation. The surface alloying is being performed using the IBEST (Ion Beam Surface Treatment) process developed at Sandia National Laboratories. IBEST involves the delivery of energetic ion beam pulses onto the surface of a material, near-surface melting, and rapid solidification. The non-equilibrium nature of such processing allows f or surface

  17. Preliminary neutronic assessment for ATF (Accident Tolerant Fuel) based on iron alloy

    International Nuclear Information System (INIS)

    Abe, Alfredo; Carluccio, Thiago; Piovezan, Pamela; Giovedi, Claudia; Martins, Marcelo R.

    2015-01-01

    After Fukushima Daiichi nuclear accident in 2011, the nuclear fuel performance under accident condition became a very important issue and currently different research and development program are in progress toward to reliability and withstand under accident condition. These initiatives are known as ATF (Accident Tolerant Fuel) R and D program, which many countries with different research institutes, fuel vendors and others are nowadays involved. Accident Tolerant Fuel (ATF) can be defined as enhanced fuel which can tolerate loss of active cooling system capability for a considerably longer time period and the fuel/cladding system can be maintained without significant degradation and can also improve the fuel performance during normal operations and transients, as well as design-basis accident (DBA) and beyond design-basis (BDBA) accident. Different materials have being proposed as fuel cladding candidates considering thermo-mechanical properties and lower reaction kinetic with steam and slower hydrogen production. The aim of this work is to perform a neutronic assessment for several cladding candidates based on iron alloy considering a standard PWR fuel rod (fuel pellet and dimension). The purpose of the assessment is to address different parameters that might contribute for possible neutronic reactivity gain in order to overcome the penalty due to increase of neutron absorption in the cladding materials. All the neutronic assessment is performed using MCNP, Monte Carlo code. (author)

  18. Nuclear fuel for WWER reactors. Current status and prospects

    International Nuclear Information System (INIS)

    Molchanov, V.

    2006-01-01

    In this paper the following results from the JSC TVEL post-irradiation studies of full-scale fuel assemblies are discussed: 1) Oxide layer on fuel rod (FR) cladding does not exceed 15 μm; 2) Fission Gas Release does not exceed 3%; 3) Satisfactory condition of cladding. Concerning the operating experience it is noticed that: 1) Design criteria are fulfilled; 2) 5 TVSA are stayed at Kalinin-1 for 6 years up to burnup of 59 MWxdays/kgU; 3) 12 working assemblies (WA) are operated at Kola-3 for 6 years up to burnup of 57 MWxdays/kgU. At the end the following conclusions are made: 1) The main task of further development of nuclear fuel for WWER-1000 reactors is the increasing fuel rod burnup up to 72 MWxdays/kgU and operating life up to 6 years through the increase in uranium load in FA and maximum use of potential built-in in the designs of TVSA and TVS-2; 2) In the nearest future R and D in the field of nuclear fuel for WWER will be directed at justification of maneuvering fuel characteristics as well as at introducing of optimized zirconium alloys

  19. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  20. Pyrochemical processing of DOE spent nuclear fuel

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1995-01-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or open-quotes pyroprocessing,close quotes provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory

  1. A study on the corrosion rate for metal nuclear fuel by the soxhlet

    International Nuclear Information System (INIS)

    Oh, S. J.; Lee, Y. R.; Lee, D. B.; Park, J. M.; Kim, K. H.; Lee, Y. S.; Park, H. D.; Kim, C. K.

    2002-01-01

    In order to compare in-pile performance of nuclear fuel candidates for HANARO, corrosion test with the Soxhlet apparatus for rare-earth-oxide added U-Mo alloy fuels has been carried out by measuring a leaching rate. It appeared from the result that the leaching rate of the U-Mo fuel specimen became decreased as a rare-earth-oxide added, and there was a little difference in the leaching rate depending on the kind of the rare-earth-oxide

  2. Nuclear fuels with high burnup: safety requirements

    International Nuclear Information System (INIS)

    Phuc Tran Dai

    2016-01-01

    Vietnam authorities foresees to build 3 reactors from Russian design (VVER AES 2006) by 2030. In order to prepare the preliminary report on safety analysis the Vietnamese Agency for Radioprotection and Safety has launched an investigation on the behaviour of nuclear fuels at high burnups (up to 60 GWj/tU) that will be those of the new plants. This study deals mainly with the behaviour of the fuel assemblies in case of loss of coolant (LOCA). It appears that for an average burnup of 50 GWj/tU and for the advanced design of the fuel assembly (cladding and materials) safety requirements are fulfilled. For an average burnup of 60 GWj/tU, a list of issues remains to be assessed, among which the impact of clad bursting or the hydrogen embrittlement of the advanced zirconium alloys. (A.C.)

  3. Advanced waste forms from spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.P.; McPheeters, C.C.

    1995-01-01

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed

  4. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamamoto, Seigoro.

    1994-01-01

    Ultrafine particles of a thermal neutron absorber showing ultraplasticity is dispersed in oxide ceramic fuels by more than 1% to 10% or lower. The ultrafine particles of the thermal neutron absorber showing ultrafine plasticity is selected from any one of ZrGd, HfEu, HfY, HfGd, ZrEu, and ZrY. The thermal neutron absorber is converted into ultrafine particles and solid-solubilized in a nuclear fuel pellet, so that the dispersion thereof into nuclear fuels is made uniform and an absorbing performance of the thermal neutrons is also made uniform. Moreover, the characteristics thereof, for example, physical properties such as expansion coefficient and thermal conductivity of the nuclear fuels are also improved. The neutron absorber, such as ZrGd or the like, can provide plasticity of nuclear fuels, if it is mixed into the nuclear fuels for showing the plasticity. The nuclear fuel pellets are deformed like an hour glass as burning, but, since the end portion thereof is deformed plastically within a range of a repulsive force of the cladding tube, there is no worry of damaging a portion of the cladding tube. (N.H.)

  5. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  6. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  7. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  8. Synthesis and characterization of metallic nuclear fuels; Sintese e caracterizacao de combustiveis nucleares metalicos

    Energy Technology Data Exchange (ETDEWEB)

    Longen, F.R., E-mail: frlongen@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil); Barco, R.; Paesano Junior, A. [Universidade Estadual de Maringa (UEM), PR (Brazil); Pagano Junior, L. [Centro Tecnologico da Marinha (CETEM), Sao Paulo, SP (Brazil)

    2014-07-01

    U-Zr-Mo and U-Zr-Gd ternary alloys, potentially useful as metallic nuclear fuel, were prepared at different concentrations by arc-melting and characterized by X-ray diffraction. Those alloys containing molybdenum were submitted to thermal annealing in inert atmosphere, followed by quenching in water. These samples were measured before and after the thermal treatment. The diffractometric results evidenced that the as-cast alloys solidified mostly with a body centered cubic structure (γphase) and that for the uranium richest samples a second phase formed, with an orthorhombic structure (α phase). For the U-Zr-Gd alloys the X-ray diffractometry revealed the retention of a hexagonal structure (δ phase) and gadolinium traces in the poorest uranium samples. The U{sub 57}(Zr{sub 92}Gd{sub 8}){sub 43} sample resulted monophasic becoming, according to literature, the first time that a solid solution combining uranium and gadolinium is identified. (author)

  9. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1980-01-01

    A bimetallic spacer means is cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The bimetallic spacer means in one embodiment of the invention includes a space grid formed, at least principally, of zircaloy to the external surface of which are attached a plurality of stainless steel strips. In another embodiment the strips are attached to fuel pins. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. (author)

  10. Potential refractory alloy requirements for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.

    1984-01-01

    In reviewing design requirements for refractory alloys for space nuclear applications, several key points are identified. First, the successful utilization of refractory alloys is considered an enabling requirement for the successful deployment of high efficiency, lightweight, and small space nuclear systems. Second, the recapture of refractory alloy nuclear technology developed in the 1960s and early 1970s appears to be a pacing activity in the successful utilization of refractory alloys. Third, the successful application of refractory alloys for space nuclear applications will present a significant challenge to both the materials and the systems design communities

  11. Quantification of the distribution of hydrogen by nuclear microprobe at the Laboratory Pierre Sue in the width of zirconium alloy fuel clad of PWR reactors

    International Nuclear Information System (INIS)

    Raepsaet, C.; Bossis, Ph.; Hamon, D.; Bechade, J.L.; Brachet, J.C.

    2007-01-01

    Among the analysis techniques by ions beams, the micro ERDA (Elastic Detection Analysis) is an interesting technique which allows the quantitative distribution of the hydrogen in materials. In particular, this analysis has been used for hydride zirconium alloys, with the nuclear microprobe of the Laboratory Pierre Sue. This probe allows the characterization of radioactive materials. The technique principles are recalled and then two examples are provided to illustrate the fuel clad behavior in PWR reactors. (A.L.B.)

  12. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  13. Corrosion resistance of metallic materials for use in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Legry, J.P.; Pelras, M.; Turluer, G.

    1989-01-01

    This paper reviews the corrosion resistance properties required from metallic materials to be used in the various developments of the PUREX process for nuclear fuel reprocessing. Stainless steels, zirconium or titanium base alloys are considered for the various plant components, where nitric acid is the main electrolyte with differing acid and nitrate concentrations, temperature and oxidizing species. (author)

  14. Zirconium alloy barrier having improved corrosion resistance

    International Nuclear Information System (INIS)

    Adamson, R.B.; Rosenbaum, H.S.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor has a composite cladding container having a substrate and a dilute zirconium alloy liner bonded to the inside surface of the substrate. The dilute zirconium alloy liner forms about 1 to about 20 percent of the thickness of the cladding and is comprised of zirconium and a metal selected from the group consisting of iron, chromium, iron plus chromium, and copper. The dilute zirconium alloy liner shields the substrate from impurities or fission products from the nuclear fuel material and protects the substrate from stress corrosion and stress cracking. The dilute zirconium alloy liner displays greater corrosion resistance, especially to oxidation by hot water or steam than unalloyed zirconium. The substrate material is selected from conventional cladding materials, and preferably is a zirconium alloy. (author)

  15. Fuel rods

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1984-01-01

    Purpose: To reduce the size of the reactor core upper mechanisms and the reactor container, as well as decrease the nuclear power plant construction costs in reactors using liquid metals as the coolants. Constitution: Isotope capturing devices comprising a plurality of pipes are disposed to the gas plenum portion of a nuclear fuel rod main body at the most downstream end in the flowing direction of the coolants. Each of the capturing devices is made of nickel, nickel alloys, stainless steel applied with nickel plating on the surface, nickel alloys applied with nickel plating on the surface or the like. Thus, radioactive nuclides incorporated in the coolants are surely captured by the capturing devices disposed at the most downstream end of the nuclear fuel main body as the coolants flow along the nuclear fuel main body. Accordingly, since discharging of radioactive nuclides to the intermediate fuel exchange system can be prevented, the maintenance or reparing work for the system can be facilitated. (Moriyama, K.)

  16. Nuclear power generation and nuclear fuel

    International Nuclear Information System (INIS)

    Okajima, Yasujiro

    1985-01-01

    As of June 30, 1984, in 25 countries, 311 nuclear power plants of about 209 million kW were in operation. In Japan, 27 plants of about 19 million kW were in operation, and Japan ranks fourth in the world. The present state of nuclear power generation and nuclear fuel cycle is explained. The total uranium resources in the free world which can be mined at the cost below $130/kgU are about 3.67 million t, and it was estimated that the demand up to about 2015 would be able to be met. But it is considered also that the demand and supply of uranium in the world may become tight at the end of 1980s. The supply of uranium to Japan is ensured up to about 1995, and the yearly supply of 3000 st U 3 O 8 is expected in the latter half of 1990s. The refining, conversion and enrichment of uranium are described. In Japan, a pilot enrichment plant consisting of 7000 centrifuges has the capacity of about 50 t SWU/year. UO 2 fuel assemblies for LWRs, the working of Zircaloy, the fabrication of fuel assemblies, the quality assurance of nuclear fuel, the behavior of UO 2 fuel, the grading-up of LWRs and nuclear fuel, and the nuclear fuel business in Japan are reported. The reprocessing of spent fuel and plutonium fuel are described. (Kako, I.)

  17. Experiences and Trends of Manufacturing Technology of Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    2012-08-01

    The 'Atoms for Peace' mission initiated in the mid-1950s paved the way for the development and deployment of nuclear fission reactors as a source of heat energy for electricity generation in nuclear power reactors and as a source of neutrons in non-power reactors for research, materials irradiation, and testing and production of radioisotopes. The fuels for nuclear reactors are manufactured from natural uranium (∼99.3% 238 U + ∼0.7% 235 U) and natural thorium (∼100% 232 Th) resources. Currently, most power and research reactors use 235 U, the only fissile isotope found in nature, as fuel. The fertile isotopes 238 U and 232 Th are transmuted in the reactor to human-made 239 Pu and 233 U fissile isotopes, respectively. Likewise, minor actinides (MA) (Np, Am and Cm) and other plutonium isotopes are also formed by a series of neutron capture reactions with 238 U and 235 U. Long term sustainability of nuclear power will depend to a great extent on the efficient, safe and secure utilization of fissile and fertile materials. Light water reactors (LWRs) account for more than 82% of the operating reactors, followed by pressurized heavy water reactors (PHWRs), which constitute ∼10% of reactors. LWRs will continue to dominate the nuclear power market for several decades, as long as economically viable natural uranium resources are available. Currently, the plutonium obtained from spent nuclear fuel is subjected to mono recycling in LWRs as uranium-plutonium mixed oxide (MOX), containing up to 12% PuO 2 , in a very limited way. The reprocessed uranium (RepU) is also re-enriched and recycled in LWRs in a few countries. Unfortunately, the utilization of natural uranium resources in thermal neutron reactors is 2 and MOX fuel technology has matured during the past five decades. These fuels are now being manufactured, used and reprocessed on an industrial scale. Mixed uranium- plutonium monocarbide (MC), mononitride (MN) and U-Pu-Zr alloys are recognized as advanced fuels

  18. An assessment of materials for nuclear fuel immobilization containers

    International Nuclear Information System (INIS)

    Nuttall, K.; Urbanic, V.F.

    1981-09-01

    A wide range of engineering metals and alloys was assessed for their suitability as container materials for irradiated nuclear fuel intended for permanent disposal in a deep, underground hard-rock vault. The container must last at least 500 years without being breached. Materials were assessed for their physical and mechanical metallurgy, weldability, potential embrittlement mechanisms, and economics. A study of the possible mechanisms of metallic corrosion for the various engineering alloys and the expected range of environmental conditons in the vault showed that localized corrosion and delayed fracture processes are the most likely to limit container lifetime. Thus such processes either must be absent or proceed at an insignificant rate. Three groups of alloys are recommended for further study: AISI 300 series austenitic stainless steels, high nickel-base alloys and very dilute titanium-base alloys. Specific alloys from each group are indicated as having the optimum combination of required properties, including cost. For container designs where the outer container shell does not independently support the service loads, copper should also be considered. The final material selection will depend primarily on the environmental conditions in the vault

  19. Role of ion chromatograph in nuclear fuel fabrication process at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Prasada Rao, G.; Prahlad, B.; Saibaba, N.

    2012-01-01

    The present paper discusses the different applications of ion chromatography followed in nuclear fuel fabrication process at Nuclear Fuel Complex. Some more applications of IC for characterization of nuclear materials and which are at different stages of method development at Control Laboratory, Nuclear Fuel Complex are also highlighted

  20. Nuclear fuel cycle head-end enriched uranium purification and conversion into metal

    International Nuclear Information System (INIS)

    Bonini, A.; Cabrejas, J.; Lio, L. de; Dell'Occhio, L.; Devida, C.; Dupetit, G.; Falcon, M.; Gauna, A.; Gil, D.; Guzman, G.; Neuringer, P.; Pascale, A.; Stankevicius, A.

    1998-01-01

    The CNEA (Comision Nacional de Energia Atomica - Argentina) operated two facilities at the Ezeiza Atomic Center which supply purified enriched uranium employed in the production of nuclear fuels. At one of those facilities, the Triple Height Laboratory scraps from the production of MTR type fuel elements (mainly out of specification U 3 O 8 plates or powder) are purified to nuclear grade. The purification is accomplished by a solvent extraction process. The other facility, the Enriched Uranium Laboratory produces 90% enriched uranium metal to be used in Mo 99 production (originally the uranium was used for the manufacture of MTR fuel elements made of aluminium-uranium alloy). This laboratory also provided metallic uranium with a lower enrichment (20%) for a first uranium-silicon testing fuel element, and in the near future it is going to recommence 20% enriched uranium related activities in order to provide the metal for the silicon-based fuel elements production (according to the policy of enrichment reduction for MTR reactors). (author)

  1. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  2. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    Danielson, A.H.

    1986-01-01

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  3. Boosting nuclear fuels

    International Nuclear Information System (INIS)

    Demarthon, F.; Donnars, O.; Dupuy-Maury, F.

    2002-01-01

    This dossier gives a broad overview of the present day status of the nuclear fuel cycle in France: 1 - the revival of nuclear power as a solution to the global warming and to the increase of worldwide energy needs; 2 - the security of uranium supplies thanks to the reuse of weapon grade highly enriched uranium; 3 - the fabrication of nuclear fuels from the mining extraction to the enrichment processes, the fabrication of fuel pellets and the assembly of fuel rods; 4 - the new composition of present day fuels (UO x and chromium-doped pellets); 5 - the consumption of plutonium stocks and the Corail and Apa fuel assemblies for the reduction of plutonium stocks and the preservation of uranium resources. (J.S.)

  4. Nuclear fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    Gerkey, K.S.

    1979-01-01

    An automatic apparatus for loading a predetermined amount of nuclear fuel pellets into a nuclear fuel element to be used in a nuclear reactor is described. The apparatus consists of a vibratory bed capable of supporting corrugated trays containing rows of nuclear fuel pellets and arranged in alignment with the open ends of several nuclear fuel elements. A sweep mechanism is arranged above the trays and serves to sweep the rows of fuel pellets onto the vibratory bed and into the fuel element. A length detecting system, in conjunction with a pellet stopping mechanism, is also provided to assure that a predetermined amount of nuclear fuel pellets are loaded into each fuel element

  5. Conditioning of spent nuclear fuel for permanent disposal

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1994-01-01

    A compact, efficient method for conditioning spent nuclear fuel is under development This method, known as pyrochemical processing, or open-quotes pyroprocessing,close quotes provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (99.9%) separation of transuranics. The resultant waste forms from the pyroprocess are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and preclude the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory

  6. Conditioning of spent nuclear fuel for permanent disposal

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1994-01-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or pyroprocessing, provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the US Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (> 99.9%) separation of transuranics. The resultant waste forms from the pyroprocess are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and that avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory

  7. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  8. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  9. The evaluation of the use of metal alloy fuels in pressurized water reactors

    International Nuclear Information System (INIS)

    Lancaster, D.

    1992-01-01

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ''advanced reactors,'' it became clear that reactor design optimization has been under emphasized. Current ''advanced reactors'' are severely constrained. The AP-600 required the use of a fuel design from the 1970's. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing

  10. Corrosion issues in the long term storage of aluminum-clad spent nuclear fuels

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Peacock, H.B. Jr.; Sindelar, R.L.; Iyer, N.C.

    1996-01-01

    Approximately 8% of the spent nuclear fuel owned by the US Department of Energy is clad with aluminum alloys. The spent fuel must be either reprocessed or temporarily stored in wet or dry storage systems until a decision is made on final disposition in a repository. There are corrosion issues associated with the aluminum cladding regardless of the disposition pathway selected. This paper discusses those issues and provides data and analysis to demonstrate that control of corrosion induced degradation in aluminum clad spent fuels can be achieved through relatively simple engineering practices

  11. Nuclear fuel accounting

    International Nuclear Information System (INIS)

    Aisch, D.E.

    1977-01-01

    After a nuclear power plant has started commercial operation the actual nuclear fuel costs have to be demonstrated in the rate making procedure. For this purpose an accounting system has to be developed which comprises the following features: 1) All costs associated with nuclear fuel shall be correctly recorded; 2) it shall be sufficiently flexible to cover also deviations from proposed core loading patterns; 3) it shall be applicable to different fuel cycle schemes. (orig./RW) [de

  12. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  13. Current status of materials development of nuclear fuel cladding tubes for light water reactors

    International Nuclear Information System (INIS)

    Duan, Zhengang; Yang, Huilong; Satoh, Yuhki; Murakami, Kenta; Kano, Sho; Zhao, Zishou; Shen, Jingjie; Abe, Hiroaki

    2017-01-01

    Zirconium-based (Zr-based) alloys have been widely used as materials for the key components in light water reactors (LWRs), such as fuel claddings which suffer from waterside corrosion, hydrogen uptakes and strength loss at elevated temperature, especially during accident scenarios like the lost-of-coolant accident (LOCA). For the purpose of providing a safer, nuclear leakage resistant and economically viable LWRs, three general approaches have been proposed so far to develop the accident tolerant fuel (ATF) claddings: optimization of metallurgical composition and processing of Zr-based alloys, coatings on existing Zr-based alloys and replacement of current Zr-based alloys. In this manuscript, an attempt has been made to systematically present the historic development of Zr-based cladding, including the impacts of alloying elements on the material properties. Subsequently, the research investigations on coating layer on the surface of Zr-based claddings, mainly referring coating materials and fabrication methods, have been broadly reviewed. The last section of this review provides the introduction to alternative materials (Non-Zr) to Zr-based alloys for LWRs, such as advanced steels, Mo-based, and SiC-based materials.

  14. Current status of materials development of nuclear fuel cladding tubes for light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhengang, E-mail: duan_zg@imr.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Yang, Huilong [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Satoh, Yuhki [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Murakami, Kenta; Kano, Sho; Zhao, Zishou; Shen, Jingjie [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Abe, Hiroaki, E-mail: abe.hiroaki@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan)

    2017-05-15

    Zirconium-based (Zr-based) alloys have been widely used as materials for the key components in light water reactors (LWRs), such as fuel claddings which suffer from waterside corrosion, hydrogen uptakes and strength loss at elevated temperature, especially during accident scenarios like the lost-of-coolant accident (LOCA). For the purpose of providing a safer, nuclear leakage resistant and economically viable LWRs, three general approaches have been proposed so far to develop the accident tolerant fuel (ATF) claddings: optimization of metallurgical composition and processing of Zr-based alloys, coatings on existing Zr-based alloys and replacement of current Zr-based alloys. In this manuscript, an attempt has been made to systematically present the historic development of Zr-based cladding, including the impacts of alloying elements on the material properties. Subsequently, the research investigations on coating layer on the surface of Zr-based claddings, mainly referring coating materials and fabrication methods, have been broadly reviewed. The last section of this review provides the introduction to alternative materials (Non-Zr) to Zr-based alloys for LWRs, such as advanced steels, Mo-based, and SiC-based materials.

  15. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    Science.gov (United States)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: line. Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along the cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and the interaction layer between the U-Mo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.

  16. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  17. The corrosion of aluminum-clad spent nuclear fuel in wet basin storage

    International Nuclear Information System (INIS)

    Howell, J.P.; Burke, S.D.

    1996-01-01

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980's and these fuels are caught in the pipeline awaiting stabilization or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced visible pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1996. This paper presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as discussions of fuel storage basins at other production sites of the Department of Energy

  18. The corrosion of aluminum-clad spent nuclear fuel in wet basin storage

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.P.; Burke, S.D.

    1996-02-20

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980`s and these fuels are caught in the pipeline awaiting stabilization or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced visible pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1996. This paper presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as discussions of fuel storage basins at other production sites of the Department of Energy.

  19. Application of vacuum technology during nuclear fuel fabrication, inspection and characterization

    International Nuclear Information System (INIS)

    Majumdar, S.

    2003-01-01

    Full text: Vacuum technology plays very important role during various stages of fabrication, inspection and characterization of U, Pu based nuclear fuels. Controlled vacuum is needed for melting and casting of U, Pu based alloys, picture framing of the fuel meat for plate type fuel fabrication, carbothermic reduction for synthesis of (U-Pu) mixed carbide powder, dewaxing of green ceramic fuel pellets, degassing of sintered pellets and encapsulation of fuel pellets inside clad tube. Application of vacuum technology is also important during inspection and characterization of fuel materials and fuel pins by way of XRF and XRD analysis, Mass spectrometer Helium leak detection etc. A novel method of low temperature sintering of UO 2 developed at BARC using controlled vacuum as sintering atmosphere has undergone successful irradiation testing in Cirus. The paper will describe various fuel fabrication flow sheets highlighting the stages where vacuum applications are needed

  20. Device for separating, purifying and recovering nuclear fuel material, impurities and materials from impurity-containing nuclear fuel materials or nuclear fuel containing material

    International Nuclear Information System (INIS)

    Sato, Ryuichi; Kamei, Yoshinobu; Watanabe, Tsuneo; Tanaka, Shigeru.

    1988-01-01

    Purpose: To separate, purify and recover nuclear fuel materials, impurities and materials with no formation of liquid wastes. Constitution: Oxidizing atmosphere gases are introduced from both ends of a heating furnace. Vessels containing impurity-containing nuclear fuel substances or nuclear fuel substance-containing material are continuously disposed movably from one end to the other of the heating furnace. Then, impurity oxides or material oxides selectively evaporated from the impurity-containing nuclear fuel substances or nuclear fuel substance-containing materials are entrained in the oxidizing atmosphere gas and the gases are led out externally from a discharge port opened at the intermediate portion of the heating furnace, filters are disposed to the exit to solidify and capture the nuclear fuel substances and traps are disposed behind the filters to solidify and capture the oxides by spontaneous air cooling or water cooling. (Sekiya, K.)

  1. Thermal Expansion Property of U-Zr Alloys and U-Zr-Ce Alloys as a Surrogate Metallic Fuel for SFR

    International Nuclear Information System (INIS)

    Kim, Sun Ki; Lee, Jong Tak; Oh, Seok Jin; Ko, Young Mo; Kim, Ki Hwan; Woo, Youn Myung; Lee, Chan Bock

    2010-01-01

    Metal fuels was selected for fueling many of the first reactors in the US, including the Experimental Breeder Reactor-I (EBR-I) and the Experimental Breeder Reactor-II (EBR-II) in Idaho, the FERMI-I reactor, and the Dounreay Fast Reactor (DFR) in the UK. Metallic U.Pu.Zr alloys were the reference fuel for the US Integral Fast Reactor (IFR) program. An extensive database on the performance of advanced metal fuels was generated as a result of the operation of these reactors and the IFR program. In this study, the U-Zr binary alloys and U-Zr-Ce ternary alloys as surrogate metallic fuel were fabricated in lower pressure Ar environment by gravity casting. The melt temperature was approximately 1,500 .deg. C. Thermal expansion of the fuel during normal operation is related with fuel performance in a reactor. Therefore, it is necessary to investigate the thermal expansion of the fuel in order to warrant a good prediction the fuel performance

  2. Platinum and Palladium Alloys Suitable as Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt, Pd and mixtures thereof alloyed with a further element selected from Sc, Y and La as well as any mixtures thereof, wherein said alloy is supported on a conductive...

  3. Nuclear fuel cladding material

    International Nuclear Information System (INIS)

    Nakahigashi, Shigeo.

    1982-01-01

    Purpose: To largely improve the durability and the safety of fuel cladding material. Constitution: Diffusion preventive layers, e.g., aluminum or the like are covered on both sides of a zirconium alloy base layer of thin material, and corrosion resistant layers, e.g., copper or the like are covered thereon. This thin plate material is intimately wound in a circularly tubular shape in a plurality of layers to form a fuel cladding tube. With such construction, corrosion of the tube due to fuel and impurity can be prevented by the corrosion resistant layers, and the diffusion of the corrosion resistant material to the zirconium alloy can be prevented by the diffusion preventive layers. Since a plurality of layers are cladded, even if the corrosion resistant layers are damaged or cracked due to stress corrosion, only one layer is damaged or cracked, but the other layers are not affected. (Sekiya, K.)

  4. 25 years of NDE in fabrication of zirconium alloy mill products and nuclear fuel in the Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Mistry, R.K.; Laxminarayana, B.; Srivastava, R.K.

    1996-01-01

    Failure of nuclear fuel is highly undesirable from both economic and operational aspects. Hence all the components require rigorous QC and inspection checks. NDT plays a major role in assuring the quality of the products both at final and intermediate stages. This paper gives an overall review of NDT methods employed in achieving the integrity of nuclear products. The NDE procedures followed in NFC are visual inspection, radiography, penetrant testing, eddy current testing, ultrasonic testing and helium leak testing. NFC's quality assurance programme is organised to achieve the desired objectives by carrying out in process and final inspection at all critical steps of fabrication. (author)

  5. Unirradiated characteristics of U-Si alloys as dispersed-phase fuels

    International Nuclear Information System (INIS)

    Domagala, R.F.; Wiencek, T.C.

    1987-06-01

    To satisfy the power demands of many research reactors, a new LEU fuel with a high density and U content was needed. Any fuel must be compatible with Al and its alloys so that it may be fabricable as a dispersed-phase in Al alloy and Al matrix plate-type elements following, as nearly as possible, established commercial manufacturing techniques. U-Si and U-Si-Al alloys at or near the composition of U 3 Si were immediately attractive because of work documented by the Canadians. 8 refs., 2 figs

  6. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-01

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  7. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbing [Univ. of Texas, Austin, TX (United States); Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  8. Use of Friction Stir Welding and Friction Stir Processing for Advanced Nuclear Fuels and Materials Joining Applications

    International Nuclear Information System (INIS)

    J. I. Cole; J. F. Jue

    2006-01-01

    Application of the latest developments in materials technology may greatly aid in the successful pursuit of next generation reactor and transmutation technologies. One such area where significant progress is needed is joining of advanced fuels and materials. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for joining traditionally difficult to join materials such as aluminum alloys. This relatively new technology, first developed in 1991, has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. An overview of the FSW technology is provided and two specific nuclear fuels and materials applications where the technique may be used to overcome limitations of conventional joining technologies are highlighted

  9. World nuclear fuel cycle requirements 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  10. World nuclear fuel cycle requirements 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, ''burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs

  11. Characterization of dispersed type fuel miniplates based in alloy UMo by evaluation of changes volumetrics and thermal conductivity

    International Nuclear Information System (INIS)

    Salinas Valero, Pablo Ignacio

    2016-01-01

    The development of new technologies in the nuclear area is extremely important to achieve greater efficiency and security in the production of electrical energy in the case of power reactors and for the production of radioisotopes and neutrons in research reactors. Throughout history, uranium-based nuclear fuels evolved in parallel with the requirements of nuclear reactors, this emphasis was increased when the RERTR program was created, which restricts the use of fuels with a maximum enrichment of 20% of the isotope U 235 (fissile isotope), which makes it necessary to increase the mass of uranium to compensate the amount of fissile material to maintain a neutron flux necessary for the reactors to operate with the same power. The search for new nuclear fuels has reached the UMo alloy with which densities of 18 gU/cm 3 are achieved in type fuels and 8 gU/cm 3 in dispersed type fuels, properties under irradiation due to their cubic crystalline structure. This type of fuel, when used dispersed in an aluminum matrix, becomes thermodynamically unstable by increasing the fission temperature of the U 235 isotope, due to this, compounds of lower density are formed, which causes an increase in volume (swelling). ). This swelling is studied throughout the present work, to relate the changes of UMo-Al / 4% volume of thermally induced miniecography in thermal treatments, with the purpose of evaluating changes in the thermal conductivity of the material. In this study it was detected that the swelling in miniplates is related in some way to the reduction of thermal conductivity, it was also recorded that the volume of change is irregular increasing and decreasing its volume according to the hours of induced swelling. The purpose of this work is to contribute to the development of dispersed fuels based on the UMo alloy in order to control the variables and reduce the probability of faults and possible accidents, such as fission products, or an increase in temperature in the core

  12. The status of uranium-silicon alloy fuel development for the RERTR program

    International Nuclear Information System (INIS)

    Domagala, R.F.; Wiencek, T.C.; Thresh, H.R.; Stahl, D.

    1983-01-01

    As part of the national Reduced Enrichment Research and Test Reactor (RERTR) Program, Argonne National Laboratory (ANL) is engaged in a fuel-alloy development project. The fuel alloys are dispersed in an aluminum matrix and metallurgically roll-bonded within 6061 Al alloy. To date, 'miniplates' with up to 40 vol. fuel alloy have been successfully fabricated. Thirty-one of these plates have been or are being irradiated in the Oak Ridge Reactor (ORR). Three different fuels have been used in the ANL miniplates: U 3 Si (U + 4 wt.% Si), U 3 Si 2 (U + 7.4 wt.% Si), or ''U 3 SiAl'' (U + 3.5 wt.% Si + 1.5 wt.% Al). All three are candidates for permitting higher fuel loadings and thus lower enrichments of 235 U than would be possible with either UAl x or U 3 O 8 , the current fuels for plate-type elements. The enrichment level employed at ANL is ∼19.8%. Continuing effort involves the production of miniplates with up to ∼60 vol. % fuel, the development of a technology for full-size plate fabrication, and post-irradiation examination of miniplates already removed from the ORR. (author)

  13. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  14. Design of high density gamma-phase uranium alloys for LEU dispersion fuel applications

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.; Ray, Allison E.

    1998-01-01

    Uranium alloys are candidates for the fuel phase in aluminium matrix dispersion fuels requiring high uranium loading. Certain uranium alloys have been shown to have good irradiation performance at intermediate burnup. previous studies have shown that acceptable fission gas swelling behavior and fuel-aluminium interaction is possible only if the fuel alloy can be maintained in the high temperature body-centered-cubic γ-phase during fabrication and irradiation, at temperatures at which αU is the equilibrium phase. transition metals in Groups V through VIII are known to allow metastable retention of the gamma phase below the equilibrium isotherm. These metals have varying degrees of effectiveness in stabilizing the gamma phase. Certain alloys are metastable for very long times at the relatively low fuel temperatures seen in research operation. In this paper, the existing data on the gamma stability of binary and ternary uranium alloys is analysed. The mechanism and kinetics of decomposition of the gamma phase are assessed with the help of metal alloy theory. Alloys with the highest possible uranium content, good gamma-phase stability, and good neutronic performance are identified for further metallurgical studies and irradiation tests. Results from theory will be compared with experimentally generated data. (author)

  15. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  16. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hayashi, Hiroshi; Watari, Yoshio; Hizahara, Hiroshi; Masuoka, Ryuzo.

    1970-01-01

    When exchanging nuclear fuel assemblies during the operation of a nuclear reactor, melting of fuel bodies, and severence of tubular claddings is halted at the time of insertion by furnishing a neutron absorbing material such as B 10 , Cd, Gd or the like at the forward end of the fuel assembly to thereby lower the power peak at the forward ends of the fuel elements to within tolerable levels and thus prevent both fuel liquification and excessive expansion. The neutron absorbing material may be attached in the form of a plate to the fuel assembly forward tie plate, or may be inserted as a pellet into the front end of the tubular cladding. (Owens, K.J.)

  17. Phase distribution studies in metallic alloy SIMFUEL

    International Nuclear Information System (INIS)

    Kolay, S.; Basu, M.; Kaity, S.; Das, D.

    2014-01-01

    Utilization of U-Pu based alloy fuel in the three stage nuclear power generation program in India is one of the important mandate due to shorter doubling time for breeding of the fissile isotopes ( 239 Pu and 233 U) to be used in Th based driver fuel in the 3rd stage. Reported information shows successful performance of fuel with porous alloy matrix in achieving 10-15 atom % burn-up. The porosity and microstructure of this alloy are strongly dependent on the composition and phases of the fission products incorporated in the matrix. The porosity influences the extent of fuel swelling and fission gas release, which affects the performance and integrity of the fuel. This study addresses to these issues taking the base alloy U-10wt% Zr

  18. Regulation at nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the role of the UJD in regulation at nuclear fuel cycle is presented. The Nuclear Fuel Cycle (NFC) is a complex of activities linked with production of nuclear fuel for nuclear reactors as a source of energy used for production of electricity and heat, and of activities linked with spent nuclear fuel handling. Activities linked with nuclear fuel (NF) production, known as the Front-End of Nuclear Fuel Cycle, include (production of nuclear fuel from uranium as the most frequently used element). After discharging spent nuclear fuel (SNF) from nuclear reactor the activities follow linked with its storage, reprocessing and disposal known as the Back-End of Nuclear Fuel Cycle. Individual activity, which penetrates throughout the NFC, is transport of nuclear materials various forms during NF production and transport of NF and SNF. Nuclear reactors are installed in the Slovak Republic only in commercial nuclear power plants and the NFC is of the open type is imported from abroad and SNF is long-term supposed without reprocessing. The main mission of the area of NFC is supervision over: - assurance of nuclear safety throughout all NFC activities; - observance of provisions of the Treaty on Non-Proliferation of Nuclear Weapons during nuclear material handling; with an aim to prevent leakage of radioactive substances into environment (including deliberated danage of NFC sensitive facilities and misuse of nuclear materials to production of nuclear weapons. The UJD carries out this mission through: - assessment of safety documentation submitted by operators of nuclear installations at which nuclear material, NF and SNF is handled; - inspections concentrated on assurance of compliance of real conditions in NFC, i.e. storage and transport of NF and SNF; storage, transport and disposal of wastes from processing of SNF; with assumptions of the safety

  19. Fission Product Release from Spent Nuclear Fuel During Melting

    International Nuclear Information System (INIS)

    Howell, J.P.; Zino, J.F.

    1998-09-01

    The Melt-Dilute process consolidates aluminum-clad spent nuclear fuel by melting the fuel assemblies and diluting the 235U content with depleted uranium to lower the enrichment. During the process, radioactive fission products whose boiling points are near the proposed 850 degrees C melting temperature can be released. This paper presents a review of fission product release data from uranium-aluminum alloy fuel developed from Severe Accident studies. In addition, scoping calculations using the ORIGEN-S computer code were made to estimate the radioactive inventories in typical research reactor fuel as a function of burnup, initial enrichment, and reactor operating history and shutdown time.Ten elements were identified from the inventory with boiling points below or near the 850 degrees C reference melting temperature. The isotopes 137Cs and 85Kr were considered most important. This review serves as basic data to the design and development of a furnace off-gas system for containment of the volatile species

  20. Fuel element clusters for nuclear reactors

    International Nuclear Information System (INIS)

    Anthony, A.J.; Hutchinson, J.J.

    1975-01-01

    In the fuel element assembly for nuclear reactors the influence of temperature cycles upon the stability of the joints between the individual components, especially between the control rod guide tubes and the connecting rods and end plates, respectively, is reduced. For this purpose, the connection is designed as a bolted connection connecting, on the one hand, the guide tubes and guide bolts and, on the other hand, these two components and the end plates. Moreover, the materials of the guide tubes, bolts and end plates are selected so that their respective thermal expansion coefficients differ. The material which can be used for the end plates and the guide bolts is stainless steel and stainless steel plus inconel (nickel-chrome-iron alloy), respectively; for the guide tubes it is a zirconium alloy (zircaloy). In addition to some technical designs of the bolted connections the materials and lengths of the components are selected in such a way that the expansion path of the components held by a bolted connection is equal to that of the stressing part. (DG/RF) [de

  1. Influence of a doping by Al stainless steel on kinetics and character of interaction with the metallic nuclear fuel

    Science.gov (United States)

    Nikitin, S. N.; Shornikov, D. P.; Tarasov, B. A.; Baranov, V. G.

    2016-04-01

    Metallic nuclear fuel is a perspective kind of fuel for fast reactors. In this paper we conducted a study of the interaction between uranium-molybdenum alloy and ferritic- martensitic steels with additions of aluminum at a temperature of 700 ° C for 25 hours. The rate constants of the interaction layer growth at 700 °C is about 2.8.10-14 m2/s. It is established that doping Al stainless steel leads to decrease in interaction with uranium-molybdenum alloys. The phase composition of the interaction layer is determined.

  2. Assessment of materials for nuclear fuel immobilization containers

    Energy Technology Data Exchange (ETDEWEB)

    Nuttall, K; Urbanic, V F

    1981-09-01

    A wide range of engineering metals and alloys has been assessed for their suitability as container materials for irradiated nuclear fuel intended for permanent disposal in a deep, underground hard-rock vault. The expected range of service conditions in the disposal vault are discussed, as well as the material properties required for this application. An important requirement is that the container last at least 500 years without being breached. The assessment is treated in two parts. Part I concentrates on the physical and mechanical metallurgy, with special reference to strength, weldability, potential embrittlement mechanisms and some economic aspects. Part II discusses possible mechanisms of metallic corrosion for the various engineering alloys and the expected range of environmental conditions in the vault. Localized corrosion and delayed fracture processes are identified as being most likely to limit container lifetime. Hence an essential requirement is that such processes either be absent or proceed at an insignificant rate. Three groups of alloys are recommended for further consideration as possible container materials: AISI 300 series austenitic stainless steels, high nickel-base alloys and very dilute titanium-base alloys. Specific alloys from each group are indicated as having the optimum combination of required properties, including cost. For container designs where the outer container shell does not independently support the service loads, copper should also be considered. The final material selection will depend primarily on the enviromental conditions in the vault. 42 figures, 31 tables.

  3. Method of manufacturing nuclear fuel pellet

    International Nuclear Information System (INIS)

    Oguma, Masaomi; Masuda, Hiroshi; Hirai, Mutsumi; Tanabe, Isami; Yuda, Ryoichi.

    1989-01-01

    In a method of manufacturing nuclear fuel pellets by compression molding an oxide powder of nuclear fuel material followed by sintering, a metal nuclear material is mixed with an oxide powder of the nuclear fuel material. As the metal nuclear fuel material, whisker or wire-like fine wire or granules of metal uranium can be used effectively. As a result, a fuel pellet in which the metal nuclear fuel is disposed in a network-like manner can be obtained. The pellet shows a great effect of preventing thermal stress destruction of pellets upon increase of fuel rod power as compared with conventional pellets. Further, the metal nuclear fuel material acts as an oxygen getter to suppress the increase of O/M ratio of the pellets. Further, it is possible to reduce the swelling of pellet at high burn-up degree. (T.M.)

  4. Nuclear fuel banks

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In december 2010 IAEA gave its agreement for the creation of a nuclear fuel bank. This bank will allow IAEA to help member countries that renounce to their own uranium enrichment capacities. This bank located on one or several member countries will belong to IAEA and will be managed by IAEA and its reserve of low enriched uranium will be sufficient to fabricate the fuel for the first load of a 1000 MW PWR. Fund raising has been successful and the running of the bank will have no financial impact on the regular budget of the IAEA. Russia has announced the creation of the first nuclear fuel bank. This bank will be located on the Angarsk site (Siberia) and will be managed by IAEA and will own 120 tonnes of low-enriched uranium fuel (between 2 and 4.95%), this kind of fuel is used in most Russian nuclear power plants. (A.C.)

  5. South Korea's nuclear fuel industry

    International Nuclear Information System (INIS)

    Clark, R.G.

    1990-01-01

    March 1990 marked a major milestone for South Korea's nuclear power program, as the country became self-sufficient in nuclear fuel fabrication. The reconversion line (UF 6 to UO 2 ) came into full operation at the Korea Nuclear Fuel Company's fabrication plant, as the last step in South Korea's program, initiated in the mid-1970s, to localize fuel fabrication. Thus, South Korea now has the capability to produce both CANDU and pressurized water reactor (PWR) fuel assemblies. This article covers the nuclear fuel industry in South Korea-how it is structures, its current capabilities, and its outlook for the future

  6. Investigating mechanical behavior and radiation resistant of fuel rods clad in nuclear power plant

    International Nuclear Information System (INIS)

    Sedgh Kerdar, A.

    1999-01-01

    The important factors for selection of material for use in nuclear reactors is similar to those for other engineering applications. There are however other parameters which are of importance when materials are going to be used in high radiation environments. These parameters are compatibility in intense nuclear radiation field, high resistance against corrosion and other characteristics such as thermal conductivity, machinability and suitable welding properties. This factors discussed in chapter one. In additions to the materials used as fuel, moderator, controls, etc., which have clear and stringent nuclear requirements, other materials may be necessary in a reactor to provide structural strength and other desired properties. For a materials used in a reactor core, the single most important property is its capacity for neutron absorption. Other properties, such as temperature and radiation stability, mechanical strength, corrosion resistance, etc., also receive much attention in selecting material for a specific application. Obviously, far more can be said about each of the potential metals than is possible in chapter two. We shall limit our attention to those metals of current nuclear interest, i.e., aluminium, beryllium magnesium, zirconium, austenitic stainless steels, nickel base alloys, and in factory metals (Nb and Mo). Interactions between matter and different radiations like Neutrons, protons, Gamma , Beta and Alpha rays in nuclear reactors induced important changes in properties of materials.There are five mechanism responsible for radiation induced changes in solids: ionization, vacancy formation, interstitial formation, creation of impurities caused by nuclear reactions and displacements spikes under the local thermal environment. Due to presence of many electrons in metals ionization does not play a major role in metals only the other four mechanisms are relevant to metals and their alloys. Generally speaking formation of many vacancies and

  7. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  8. Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy Working Group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Policy Paper recommends the actions deemed necessary to assure that future U.S. and non-Communist countries' nuclear fuels supply will be adequate, considering the following: estimates of modest growth in overall energy demand, electrical energy demand, and nuclear electrical energy demand in the U.S. and abroad, predicated upon the continuing trends involving conservation of energy, increased use of electricity, and moderate economic growth (Chap. I); possibilities for the development and use of all domestic resources providing energy alternatives to imported oil and gas, consonant with current environmental, health, and safety concerns (Chap. II); assessment of the traditional energy sources which provide current alternatives to nuclear energy (Chap. II); evaluation of realistic expectations for additional future energy supplies from prospective technologies: enhanced recovery from traditional sources and development and use of oil shales and synthetic fuels from coal, fusion and solar energy (Chap. II); an accounting of established nuclear technology in use today, in particular the light water reactor, used for generating electricity (Chap. III); an estimate of future nuclear technology, in particular the prospective fast breeder (Chap. IV); current and projected nuclear fuel demand and supply in the U.S. and abroad (Chaps. V and VI); the constraints encountered today in meeting nuclear fuels demand (Chap. VII); and the major unresolved issues and options in nuclear fuels supply and use (Chap. VIII). The principal conclusions and recommendations (Chap. IX) are that the U.S. and other industrialized countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends on the secure supply of energy resources and the ability to substitute one form of fuel for another

  9. Quality management of nuclear fuel

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide presents the quality management requirements to be complied with in the procurement, design, manufacture, transport, receipt, storage, handling and operation of nuclear fuel. The Guide also applies to control rods and shield elements to be placed in the reactor. The Guide is mainly aimed for the licensee responsible for the procurement and operation of fuel, for the fuel designer and manufacturer and for other organisations, whose activities affect fuel quality and the safety of fuel transport, storage and operation. General requirements for nuclear fuel are presented in Section 114 of the Finnish Nuclear Energy Decree and in Section 15 of the Government Decision (395/1991). Regulatory control of the safety of fuel is described in Guides YVL6.1, YVL6.2 and YVL6.3. An overview of the regulatory control of nuclear power plants carried out by STUK (Radiation and Nuclear Safety Authority, Finland) is clarified in Guide YVL1.1

  10. Modeling of Some Physical Properties of Zirconium Alloys for Nuclear Applications in Support of UFD Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Michael V. Glazoff

    2013-08-01

    Zirconium-based alloys Zircaloy-2 and Zircaloy-4 are widely used in the nuclear industry as cladding materials for light water reactor (LWR) fuels. These materials display a very good combination of properties such as low neutron absorption, creep behavior, stress-corrosion cracking resistance, reduced hydrogen uptake, corrosion and/or oxidation, especially in the case of Zircaloy-4. However, over the last couple of years, in the post-Fukushima Daiichi world, energetic efforts have been undertaken to improve fuel clad oxidation resistance during off-normal temperature excursions. Efforts have also been made to improve upon the already achieved levels of mechanical behavior and reduce hydrogen uptake. In order to facilitate the development of such novel materials, it is very important to achieve not only engineering control, but also a scientific understanding of the underlying material degradation mechanisms, both in working conditions and in storage of used nuclear fuel. This report strives to contribute to these efforts by constructing the thermodynamic models of both alloys; constructing of the respective phase diagrams, and oxidation mechanisms. A special emphasis was placed upon the role of zirconium suboxides in hydrogen uptake reduction and the atomic mechanisms of oxidation. To that end, computational thermodynamics calculations were conducted concurrently with first-principles atomistic modeling.

  11. Spent nuclear fuel storage device and spent nuclear fuel storage method using the device

    International Nuclear Information System (INIS)

    Tani, Yutaro

    1998-01-01

    Storage cells attachably/detachably support nuclear fuel containing vessels while keeping the vertical posture of them. A ventilation pipe which forms air channels for ventilating air to the outer circumference of the nuclear fuel containing vessel is disposed at the outer circumference of the nuclear fuel containing vessel contained in the storage cell. A shielding port for keeping the support openings gas tightly is moved, and a communication port thereof can be aligned with the upper portion of the support opening. The lower end of the transporting and containing vessel is placed on the shielding port, and an opening/closing shutter is opened. The gas tightness is kept by the shielding port, the nuclear fuel containing vessel filled with spent nuclear fuels is inserted to the support opening and supported. Then, the support opening is closed by a sealing lid. (I.N.)

  12. A High Integrity Can Design for Degraded Nuclear Fuel

    International Nuclear Information System (INIS)

    Holmes, P.A.

    1999-01-01

    A high integrity can (HIC), designed to meet the ASME Boiler and Pressure Vessel Code (Section III, Div. 3, static conditions) is proposed for the interim storage and repository disposal of Department of Energy (DOE) spent nuclear fuel. The HIC will be approximately 5 3/8 inches (134.38mm) in outside diameter with 1/4 inch (6.35mm) thick walls, and have a removable lid with a metallic seal that is capable of being welded shut. The opening of the can is approximately 4 3/8 inches (111.13mm). The HIC is primarily designed to contain items in the DOE SNF inventory that do not meet acceptance standards for direct disposal in a geologic repository. This includes fuel in the form of particulate dusts, sectioned pieces of fuel, core rubble, melted or degraded (non-intact) fuel elements, unclad uranium alloys, metallurgical specimens, and chemically reactive fuel components. The HIC is intended to act as a substitute cladding for the spent nuclear fuel, further isolate problematic materials, provide a long-term corrosion barrier, and add an extra internal pressure barrier to the waste package. The HIC will also delay potential fission product release and maintain geometry control for extended periods of time. For the entire disposal package to be licensed by the Nuclear Regulatory Commission, a HIC must effectively eliminate the disposal problems associated with problem SNF including the release of radioactive and/or reactive material and over pressurization of the HIC due to chemical reactions within the can. Two HICs were analyzed to envelop a range of can lengths between 42 and 101 inches. Using Abacus software, the HIC's were analyzed for end, side, and corner drops. Hastelloy C-22 was chosen based upon structural integrity, corrosion resistance, and neutron adsorption properties

  13. Results from the characterisation of the Futurix-FTA metal alloy transmutation fuels

    International Nuclear Information System (INIS)

    Rory Kennedy, J.; O'Holleran, Th.; Keiser, D.

    2007-01-01

    Full text of publication follows. Idaho National Laboratory has been developing and irradiation testing a number of fuels and fuel types for actinide transmutation as part of the Advanced Fuel Cycle Initiative (AFCI). Fuel types under consideration include both fertile (fast reactor systems) and fertile-free (accelerator-driven systems) metallic alloys. Most recently, fuel fabrication was completed and the fuel pins shipped to the fast flux Phenix reactor in Marcoule, France for irradiation testing as part of the FUTURIX-FTA experiment: an international experiment involving the USA, France, the European Commission and Japan. The metal alloy fuels for this experiment are the low-fertile U-29Pu-4Am-2Np-30Zr and the non-fertile Pu-12Am-40Zr. The fresh fuels have been fully characterised for chemical composition, phase, microstructure, thermal behaviour and fuel-cladding-chemical-interaction (FCCI). Preliminary FCCI results raised some safety concerns with respect to the formation of low melting phases and cladding degradation, which could preclude a fuel from consideration. Results from diffusion couple experiments between the non-fertile fuel Pu-12Am-40Zr and the ferritic HT9 and 422 stainless steels (SS) used in the AFC experiments in the ATR reactor (USA) compared to the austenitic AIM1 SS used in the FUTURIX-FTA experiments in the Phenix reactor (France) indicate significant inter-diffusion with the AIM1 SS. Up to about a 30-fold increase in the diffusion of iron (and accompanying Ni and Cr) into the fuel at 650 C was observed compared to the 422 SS studies. Comparable studies between the low-fertile U-29Pu-4Am-2Np-30Zr fuel alloy and the AIM1 SS show virtually no inter-diffusion. The Fe (along with small amounts of Ni and Cr) appears as small precipitates in the fuel alloy with only minor concentrations identified in the fuel alloy matrix. These results will be discussed in terms of mechanisms of the inter-diffusion and the difference in behaviour between the

  14. Nuclear fuels accounting interface: River Bend experience

    International Nuclear Information System (INIS)

    Barry, J.E.

    1986-01-01

    This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation

  15. Obtention of uranium-molybdenum alloy ingots technique to avoid carbon contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Tercio A.; Paula, Joao Bosco de; Reis, Sergio C.; Brina, Jose Giovanni M.; Faeda, Kelly Cristina M.; Ferraz, Wilmar B., E-mail: tap@cdtn.b, E-mail: jbp@cdtn.b, E-mail: jgmb@cdtn.b, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The replacement of high enriched uranium (U{sup 235} > 85 wt%) by low enriched uranium (U{sup 235} < 20wt%) nuclear fuels in research and test reactors is being implemented as an initiative of the Reduced Enrichment for Research and Test Reactors (RERTR) program, conceived in the USA since mid-70s, in order to avoid nuclear weapons proliferation. Such replacement implies in the use of compounds or alloys with higher uranium densities. Among the several uranium alloys investigated since then, U-Mo presents great application potential due to its physical properties and good behavior during irradiation, which makes it an important option as a nuclear fuel material for the Brazilian Multipurpose Reactor - RMB. The development of the plate-type nuclear fuel based on U-Mo alloy is being performed at the Nuclear Technology Development Centre (CDTN) and also at IPEN. The carbon contamination of the alloy is one of the great concerns during the melting process. It was observed that U-Mo alloy is more critical considering carbon contamination when using graphite crucibles. Alternative melting technique was implemented at CDTN in order to avoid carbon contamination from graphite crucible using Yttria stabilized ZrO{sub 2} crucibles. Ingots with low carbon content and good internal quality were obtained. (author)

  16. The evaluation of the use of metal alloy fuels in pressurized water reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, D.

    1992-10-26

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ``advanced reactors,`` it became clear that reactor design optimization has been under emphasized. Current ``advanced reactors`` are severely constrained. The AP-600 required the use of a fuel design from the 1970`s. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing.

  17. Advances in nuclear fuel technology. 3. Development of advanced nuclear fuel recycle systems

    International Nuclear Information System (INIS)

    Arie, Kazuo; Abe, Tomoyuki; Arai, Yasuo

    2002-01-01

    Fast breeder reactor (FBR) cycle technology has a technical characteristics flexibly easy to apply to diverse fuel compositions such as plutonium, minor actinides, and so on and fuel configurations. By using this characteristics, various feasibilities on effective application of uranium resources based on breeding of uranium of plutonium for original mission of FBR, contribution to radioactive wastes problems based on amounts reduction of transuranium elements (TRU) in high level radioactive wastes, upgrading of nuclear diffusion resistance, extremely upgrading of economical efficiency, and so on. In this paper, were introduced from these viewpoints, on practice strategy survey study on FBR cycle performed by cooperation of the Japan Nuclear Cycle Development Institute (JNC) with electric business companies and so on, and on technical development on advanced nuclear fuel recycle systems carried out at the Central Research Institute of Electric Power Industry, Japan Atomic Energy Research Institute, and so on. Here were explained under a vision on new type of fuels such as nitride fuels, metal fuels, and so on as well as oxide fuels, a new recycle system making possible to use actinides except uranium and plutonium, an 'advanced nuclear fuel cycle technology', containing improvement of conventional wet Purex method reprocessing technology, fuel manufacturing technology, and so on. (G.K.)

  18. The use of hardfacing alloys in nuclear power plants

    International Nuclear Information System (INIS)

    Saarinen, K.; Aaltonen, P.

    1987-08-01

    In this report the structure and applications of cobalt-, nickel- and iron-based hardfacing alloys are reviewed. Cobalt-based hardfacing alloys are widely used in nuclear power plant components due to their good wear and corrosion resistance. However, the wear and corrosion products of the cobalt-containing alloys are released into the primary cooling water and transported to the reactor core where cobalt (Co-59) is transmuted to the radioactive isotope Co-60. It has been estimated that cobalt-based hardfacing alloys are responsible for up to 90% of the total cobalt released to the primary water circuit. The cobalt based hardfacing alloys are used in such components as valves, control blade pins and pumps, etc. In the Finnish nuclear power plants they are not used in in-core components. The replacement of cobalt-containing alloys in primary cooling system components is studied in many laboratories, but substitutes for the cobalt-based alloys in the complete range of nuclear hardfacing applications have so far not been found. However, the modified austenitic stainless steels have showed good resistance to galling wear and are therefore considered substitutes for cobalt-based alloys

  19. Nuclear fuel strategies

    International Nuclear Information System (INIS)

    Rippon, S.

    1989-01-01

    The paper reports on two international meetings on nuclear fuel strategies, one organised by the World Nuclear Fuel Market in Seville (Spain) October 1988, and the other organised by the American and European nuclear societies in Washington (U.S.A.) November 1988. At the Washington meeting a description was given of the uranium supply and demand market, whereas free trade in uranium was considered in Seville. Considerable concern was expressed at both meetings on the effect on the uranium and enrichment services market of very low prices for spot deals being offered by China and the Soviet Union. Excess enrichment capacity, the procurement policies of the USA and other countries, and fuel cycle strategies, were also discussed. (U.K.)

  20. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  1. Fission product induced swelling of U–Mo alloy fuel

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Hofman, G.L.

    2011-01-01

    Highlights: ► We measured fuel swelling of U–Mo alloy by fission products at temperatures below 250 °C. ► We quantified the swelling portion of U–Mo by fission gas bubbles. ► We developed an empirical model as a function of fission density. - Abstract: Fuel swelling of U–Mo alloy was modeled using the measured data from samples irradiated up to a fission density of ∼7 × 10 27 fissions/m 3 at temperatures below ∼250 °C. The overall fuel swelling was measured from U–Mo foils with as-fabricated thickness of 250 μm. Volume fractions occupied by fission gas bubbles were measured and fuel swelling caused by the fission gas bubbles was quantified. The portion of fuel swelling by solid fission products including solid and liquid fission products as well as fission gas atoms not enclosed in the fission gas bubbles is estimated by subtracting the portion of fuel swelling by gas bubbles from the overall fuel swelling. Empirical correlations for overall fuel swelling, swelling by gas bubbles, and swelling by solid fission products were obtained in terms of fission density.

  2. Design study of fuel circulating system using Pd alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Aizawa, T.; Kasahara, T.; Yamanaka, T.

    1981-01-01

    It is expected that the method of permeating through Pd-alloy membrances is effective for isotope separation and the refining of fuel gas. In this paper, the design study of the Fuel Circulating System (FCS) using Pb-alloy membranes is described. The study is mainly focused on the main vacuum, fuel gas refining, isotope separating, and tritium containment systems. In the fuel gas refining system, impurities are effectively removed by using Pd-alloy membranes. For the isotope separation system, the diffusion method through Pd-alloy membranes was adopted. From the standpoint of the safety and economy, a three-stage tritium containment system was adopted to control tritium release to the environment as low as possible. The principal conclusion drawn from the design study was as follows. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane method is attractive for isotope separation and the refining of fuel gas. For a large amount of tritium inventory, handling and control technologies should be completed by the experimental evaluation and development of the components and materials used for the FCS. A three-stage containment system was adopted to control tritium release to environment as low as possible. Consideration to prevent tritium escape will be necessary for fuel gas refiners and isotope separators. (Kato, T.)

  3. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  4. Romanian nuclear fuel fabrication and in-reactor fuel operational experience

    International Nuclear Information System (INIS)

    Budan, O.

    2003-01-01

    A review of the Romanian nuclear program since mid 60's is made. After 1990, the new Romanian nuclear power authority, RENEL-GEN, elaborated a realistic Nuclear Fuel Program. This program went through the Romanian nuclear fuel plant qualification with the Canadian (AECL and ZPI) support, restarting in January 1995 of the industrial nuclear fuel production, quality evaluation of the fuel produced before 1990 and the recovery of this fuel. This new policy produced good results. FCN is since 1995 the only CANDU fuel supplier from outside Canada recognised by AECL as an authorised CANDU fuel manufacturer. The in-reactor performances and behaviour of the fuel manufactured by FCN after its qualification have been excellent. Very low - more then five times lesser than the design value - fuel defect rate has been recorded up to now and the average discharge of this fuel was with about 9% greater than the design value. Since mid 1998 when SNN took charge of the production of nuclear generated electricity, FCN made significant progresses in development and procurement of new and more efficient equipment and is now very close to double its fuel production capacity. After the completion of the recovery of the fuel produced before June 1990, FCN is already prepared to shift its fuel production to the so-called 'heavy' bundle containing about 19.3 kg of Uranium per bundle

  5. Development of advanced low alloy steel for nuclear RPV

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. C.; Shin, K. S.; Lee, S. H.; Lee, B. J. [Seoul National Univ., Seoul (Korea)

    2000-04-01

    Low carbon low alloy steels are used in nuclear power plants as pressure vessel, steam generator, etc. Nuclear pressure vessel material requires good combination of strength/ toughness, good weldability and high resistance to neutron irradiation and corrosion fatigue. For SA508III steels, most widely used in the production of nuclear power plant, attaining toughness is more difficult than strength. When taking into account the loss of toughness due to neutron irradiation, attaining as low transition temperature as possible prior to operation is a critical task in the production of nuclear pressure vessels. In the present study, we investigated detrimental microstructural features of SA508III steels to toughness, then alloy design directions to achieve improved mechanical properties were devised. The next step of alloy design was determined based on phase equilibrium thermodynamics and obtained results. Low carbon low alloy steels having low transition temperatures with enough strength and hardenability were developed. Microstructure and mechanical properties of HAZ of SA508III steels and alloy designed steels were investigated. 22 refs., 147 figs., 38 tabs. (Author)

  6. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  7. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  8. Nuclear Fuel Cycle Objectives

    International Nuclear Information System (INIS)

    2013-01-01

    . The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of the nuclear fuel cycle to ensure that the Nuclear Energy Basic Principles are satisfied. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The five topics included in this publication are: resources; fuel engineering and performance; spent fuel management and reprocessing; fuel cycles; and the research reactor nuclear fuel cycle

  9. Financing the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Stephany, M.

    1975-01-01

    While conventional power stations usually have fossil fuel reserves for only a few weeks, nuclear power stations, because of the relatively long time required for uranium processing from ore extraction to the delivery of the fuel elements and their prolonged in-pile time, require fuel reserves for a period of several years. Although the specific fuel costs of nuclear power stations are much lower than those of conventional power stations, this results in consistently higher financial requirements. But the problems involved in financing the nuclear fuel do not only include the aspect of financing the requirements of reactor operators, but also of financing the facilities of the nuclear fuel cycle. As far as the fuel supply is concerned, the true financial requirements greatly exceed the mere purchasing costs because the costs of financing are rather high as a consequence of the long lead times. (orig./UA) [de

  10. Improved moulding material for addition to nuclear fuel particles to produce nuclear fuel elements

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1976-01-01

    A suggestion is made to improve the moulding materials used to produce carbon-contained nuclear fuel particles by a coke-reducing added substance. The nuclear fuel particles are meant for the formation of fuel elements for gas-cooled high-temperature nuclear reactors. The moulding materials are above all for the formation of coated particles which are burnt in situ in nuclear fuel element chambers out of 'green' nuclear fuel bodies. The added substance improves the shape stability of the particles forming and prevents a stiding or bridge formation between the particles or with the surrounding walls. The following are named as added substances: 1) Polystyrene and styrene-butadiene-Co polymers (mol. wt. between 5oo and 1,000,000), 2) aromatic compounds (mol. wt. 75 to 300), 3) saturated hydrocarbon polymers (mol. wt. 5,000 to 1,000,000). Additional release agents further improve the properties in the same direction (e.g. alcohols, fatty acids, amines). (orig.) [de

  11. Fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1976-01-01

    A fuel element for nuclear reactors is proposed which has a higher corrosion resisting quality in reactor operations. The zirconium alloy coating around the fuel element (uranium or plutonium compound) has on its inside a protection layer of metal which is metallurgically bound to the substance of the coating. As materials are namned: Alluminium, copper, niobium, stainless steel, and iron. This protective metallic layer has another inner layer, also metallurgically bound to its surface, which consists usually of a zirconium alloy. (UWI) [de

  12. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo.

    1974-01-01

    Object: To improve a circulating flow passage of coolant so as to be able to accurately detect the temperature of coolant, rare gases contained, and the like. Structure: A fuel assembly comprising a flow regulating lattice provided with a plurality of communication holes in an axial direction, said lattice being positioned at the upper end of an outer tube in which nuclear fuel elements are received, and a neutron shielding body having a plurality of spiral coolant flow passages disposed between the lattice and the nuclear fuel elements, whereby a coolant comprised of liquid sodium or the like, which moves up passing through the coolant flow passages and the flow regulating passage, is regulated and passed through a detector mounted at the upper part of the flow regulating lattice to detect coolant temperature, flow rate, and rare gases or the like as the origin of nuclear fission contained in the coolant due to breakage of fuel elements. (Kamimura, M.)

  13. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  14. Modification of fuel performance code to evaluate iron-based alloy behavior under LOCA scenario

    Energy Technology Data Exchange (ETDEWEB)

    Giovedi, Claudia; Martins, Marcelo Ramos, E-mail: claudia.giovedi@labrisco.usp.br, E-mail: mrmartin@usp.br [Laboratorio de Analise, Avaliacao e Gerenciamento de Risco (LabRisco/POLI/USP), São Paulo, SP (Brazil); Abe, Alfredo; Muniz, Rafael O.R.; Gomes, Daniel de Souza; Silva, Antonio Teixeira e, E-mail: ayabe@ipen.br, E-mail: dsgomes@ipen.br, E-mail: teixiera@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Accident tolerant fuels (ATF) has been studied since the Fukushima Daiichi accident in the research efforts to develop new materials which under accident scenarios could maintain the fuel rod integrity for a longer period compared to the cladding and fuel system usually utilized in Pressurized Water Reactors (PWR). The efforts have been focused on new materials applied as cladding, then iron-base alloys appear as a possible candidate. The aim of this paper is to implement modifications in a fuel performance code to evaluate the behavior of iron based alloys under Loss-of-Coolant Accident (LOCA) scenario. For this, initially the properties related to the thermal and mechanical behavior of iron-based alloys were obtained from the literature, appropriately adapted and introduced in the fuel performance code subroutines. The adopted approach was step by step modifications, where different versions of the code were created. The assessment of the implemented modification was carried out simulating an experiment available in the open literature (IFA-650.5) related to zirconium-based alloy fuel rods submitted to LOCA conditions. The obtained results for the iron-based alloy were compared to those obtained using the regular version of the fuel performance code for zircaloy-4. The obtained results have shown that the most important properties to be changed are those from the subroutines related to the mechanical properties of the cladding. The results obtained have shown that the burst is observed at a longer time for fuel rods with iron-based alloy, indicating the potentiality of this material to be used as cladding with ATF purposes. (author)

  15. Modification of fuel performance code to evaluate iron-based alloy behavior under LOCA scenario

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Martins, Marcelo Ramos; Abe, Alfredo; Muniz, Rafael O.R.; Gomes, Daniel de Souza; Silva, Antonio Teixeira e

    2017-01-01

    Accident tolerant fuels (ATF) has been studied since the Fukushima Daiichi accident in the research efforts to develop new materials which under accident scenarios could maintain the fuel rod integrity for a longer period compared to the cladding and fuel system usually utilized in Pressurized Water Reactors (PWR). The efforts have been focused on new materials applied as cladding, then iron-base alloys appear as a possible candidate. The aim of this paper is to implement modifications in a fuel performance code to evaluate the behavior of iron based alloys under Loss-of-Coolant Accident (LOCA) scenario. For this, initially the properties related to the thermal and mechanical behavior of iron-based alloys were obtained from the literature, appropriately adapted and introduced in the fuel performance code subroutines. The adopted approach was step by step modifications, where different versions of the code were created. The assessment of the implemented modification was carried out simulating an experiment available in the open literature (IFA-650.5) related to zirconium-based alloy fuel rods submitted to LOCA conditions. The obtained results for the iron-based alloy were compared to those obtained using the regular version of the fuel performance code for zircaloy-4. The obtained results have shown that the most important properties to be changed are those from the subroutines related to the mechanical properties of the cladding. The results obtained have shown that the burst is observed at a longer time for fuel rods with iron-based alloy, indicating the potentiality of this material to be used as cladding with ATF purposes. (author)

  16. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  17. Nuclear fuel pellet charging device

    International Nuclear Information System (INIS)

    Komuro, Kojiro.

    1990-01-01

    The present invention concerns a nuclear fuel pellet loading device, in which nuclear fuel pellets are successively charged from an open end of a fuel can while rotating the can. That is, a fuel can sealed at one end with an end plug and opened at the other end is rotated around its pipe axis as the center on a rotationally diriving table. During rotation of the fuel can, nuclear fuel pellets are successively charged by means of a feed rod of a feeding device to the inside of the fuel can. The fuel can is rotated while being supported horizontally and the fuel pellets are charged from the open end thereof. Alternatively, the fuel can is rotated while being supported obliquely and the fuel pellets are charged gravitationally into the fuel can. In this way, the damages to the barrier of the fuel can can be reduce. Further, since the fuel pellets can be charged gravitationally by rotating the fuel can while being supported obliquely, the damages to the barrier can be reduced remarkably. (I.S.)

  18. Elaboration and characterisation of Pd-Cr alloys for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Souleymane, B.; Fouda-Onana, F.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    Palladium (Pd) alloys have been considered as alternative catalyst cathodes for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, particularly in liquid fuel cells. The purpose of this study was to investigate the ORR on various Pd-Cr alloys. Pd-Cr alloys were deposited on glassy carbon support and the electrocatalytic parameters for the ORR were determined in acid medium. The effect of the Pd-Cr alloy deposition parameters on its composition and electrocatalytic behaviour were determined. The study showed that there is a relationship between the composition of the alloy and the power of the Pd and Cr cathode. The parameters of the ORR were correlated to the alloy chemical and physical properties. EDS and XPS analysis revealed a segregation of Cr in the alloy.The variation of the work function (W) of the alloy with the alloy composition has shown a minimum value of W of 0.287 for a composition of the alloy of 70 per cent of Pd and 30 per cent of Cr. The electrochemically active surface area and the exchange current density of the ORR indicated that the mechanism of the ORR on Pd-Cr is similar to that on platinum. 9 refs., 2 figs.

  19. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  20. Nuclear reactor fuel element splitter

    International Nuclear Information System (INIS)

    Yeo, D.

    1976-01-01

    A method and apparatus are disclosed for removing nuclear fuel from a clad fuel element. The fuel element is power driven past laser beams which simultaneously cut the cladding lengthwise into at least two longitudinal pieces. The axially cut lengths of cladding are then separated, causing the nuclear fuel contained therein to drop into a receptacle for later disposition. The cut lengths of cladding comprise nuclear waste which is disposed of in a suitable manner. 6 claims, 10 drawing figures

  1. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Ainsworth, K.F.

    1979-01-01

    A nuclear fuel element is described having a cluster of nuclear fuel pins supported in parallel, spaced apart relationship by transverse cellular braces within coaxial, inner and outer sleeves, the inner sleeve being in at least two separate axial lengths, each of the transverse braces having a peripheral portion which is clamped peripherally between the ends of the axial lengths of the inner sleeve. (author)

  2. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F.

    2015-01-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW e and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k eff = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  3. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  4. Spent nuclear fuel disposal liability insurance

    International Nuclear Information System (INIS)

    Martin, D.W.

    1984-01-01

    This thesis examines the social efficiency of nuclear power when the risks of accidental releases of spent fuel radionuclides from a spent fuel disposal facility are considered. The analysis consists of two major parts. First, a theoretical economic model of the use of nuclear power including the risks associated with releases of radionuclides from a disposal facility is developed. Second, the costs of nuclear power, including the risks associated with a radionuclide release, are empirically compared to the costs of fossil fuel-fired generation of electricity. Under the provisions of the Nuclear Waste Policy Act of 1982, the federally owned and operated spent nuclear fuel disposal facility is not required to maintain a reserve fund to cover damages from an accidental radionuclide release. Thus, the risks of a harmful radionuclide release are not included in the spent nuclear fuel disposal fee charged to the electric utilities. Since the electric utilities do not pay the full, social costs of spent fuel disposal, they use nuclear fuel in excess of the social optimum. An insurance mechanism is proposed to internalize the risks associated with spent fueled disposal. Under this proposal, the Federal government is required to insure the disposal facility against any liabilities arising from accidental releases of spent fuel radionuclides

  5. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  6. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  7. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  8. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.

    1981-01-01

    A nuclear fuel loading apparatus, incorporating a microprocessor control unit, is described which automatically loads nuclear fuel pellets into dual fuel rods with a minimum of manual involvement and in a manner and sequence to ensure quality control and accuracy. (U.K.)

  9. Experience with nuclear fuel utilization in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Harizanov, Y [Committee on the Use of Atomic Energy for Peaceful Purposes, Sofia (Bulgaria)

    1997-12-01

    The presentation on experience with nuclear fuel utilization in Bulgaria briefly reviews the situation with nuclear energy in Bulgaria and then discusses nuclear fuel performance (amount of fuel loaded, type of fuel, burnup, fuel failures, assemblies deformation). 2 tabs.

  10. Nuclear fuel cycle information workshop

    International Nuclear Information System (INIS)

    1983-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US

  11. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.; Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.

    2015-01-01

    Recent modifications to fast reactor metallic fuels have been directed toward improving the melting and phase behaviors of the fuel alloy, for the purpose of ultra-high burnup and transuranic (TRU) burning. Improved melting temperatures increase the safety margin for uranium-based fast reactor fuel alloys, which is especially important for transuranic burning because the introduction of plutonium and neptunium acts to lower the alloy melting temperature. Improved phase behavior—single-phase, body-centered cubic—is desired because the phase is isotropic and the alloy properties are more predictable. An optimal alloy with both improvements was therefore sought through a comprehensive literature survey and theoretical analyses, and the creation and testing of some alloys selected by the analyses. Summarized here are those analyses, the impact of alloy modifications, and recent experimental results for selected pseudo-binary alloy systems that are hoped to accomplish the goals in a short timeframe. (author)

  12. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Klepfer, H.H.

    1974-01-01

    A nuclear fuel element is described which comprises: 1) an elongated clad container, 2) a layer of high lubricity material being disposed in and adjacent to the clad container, 3) a low neutron capture cross section metal liner being disposed in the clad container and adjacent to the layer, 4) a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, 5) an enclosure integrally secured and sealed at each end of the container, and a nuclear fuel material retaining means positioned in the cavity. (author)

  13. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  14. Future trends in nuclear fuels

    International Nuclear Information System (INIS)

    Guitierrez, J.E.

    2006-01-01

    This series of transparencies presents: the fuel management cycle and key areas (security of supplies, strategies and core management, reliability, spent fuel management), the world nuclear generating capacity, concentrate capacity, enrichment capacity, and manufacturing capacity forecasts, the fuel cycle strategies and core management (longer cycles, higher burnups, power up-rates, higher enrichments), the Spanish nuclear generation cost, the fuel reliability (no defects, robust designs, operational margins, integrated fuel and core design), spent fuel storage (design and safety criteria, fuel performance and integrity). (J.S.)

  15. Characteristics of Pilger Die Materials for Nuclear Zirconium Alloy Tubes

    International Nuclear Information System (INIS)

    Park, Ki Bum; Kim, In Kyu; Park, Min Young; Kahng, Jong Yeol; Kim, Sun Doo

    2011-01-01

    KEPCO Nuclear Fuel Company's (KEPCO NF) tube manufacturing facility, Techno Special Alloy (TSA) Plant, has started cold pilgering operation since 2008. It is obvious that the cold pilgering process is one of the key processes controlling the quality and the characteristics of the tubes manufactured, i.e. nuclear zirconium alloy tube in KEPCO NF. Cold pilgering is a rolling process for forming metal tubes in which diameter and wall thickness are reduced in a number of forming steps, using ring dies at outside of the tube and a curved mandrel at inside to reduce tube cross sections by up to 90 percent. The OD size of tube is reduced by a pair of dies, and ID size and wall thickness is controlled simultaneously by mandrel. During the cold pilgering process, both tools are the critical components for providing qualified tube. Development of pilger die and mandrel has been a significant importance in the zirconium tube manufacturing and a major goal of KEPCO NF. The objective of this study is to evaluate the life time of pilger die during pilgering. Therefore, a comparison of the heat treatment and mechanical properties of between AISI 52100 and AISI H13 materials was made in this study

  16. Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad Abir; Fahima Islam; Hyoung Koo Lee; Daniel Wachs

    2014-11-01

    The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the High Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.

  17. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  18. Nuclear fuel cycle scenarios at CGNPC

    International Nuclear Information System (INIS)

    Xiao, Min; Zhou, Zhou; Nie, Li Hong; Mao, Guo Ping; Hao, Si Xiong; Shen, Kang

    2008-01-01

    Established in 1994, China Guangdong Nuclear Power Holding Co. (CGNPC) now owns two power stations GNPS and LNPS Phase I, with approximate 4000 MWe of installed capacity. With plant upgrades, advanced fuel management has been introduced into the two plants to improve the plant economical behavior with the high burnup fuel implemented. For the purpose of sustainable development, some preliminary studies on nuclear fuel cycle, especially on the back-end, have been carried out at CGNPC. According to the nuclear power development plan of China, the timing for operation and the capacity of the reprocessing facility are studied based on the amount of the spent fuel forecast in the future. Furthermore, scenarios of the fuel cycles in the future in China with the next generation of nuclear power were considered. Based on the international experiences on the spent fuel management, several options of spent fuel reprocessing strategies are investigated in detail, for example, MOX fuel recycling in light water reactor, especially in the current reactors of CGNPC, spent fuel intermediated storage, etc. All the investigations help us to draw an overall scheme of the nuclear fuel cycle, and to find a suitable road-map to achieve the sustainable development of nuclear power. (authors)

  19. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  20. The outcome of the working visits by the experts to the fuel provider enterprises

    International Nuclear Information System (INIS)

    Mironov, Y.; Molchanov, V.

    2015-01-01

    The working visits by the international experts to the fabrication plants of nuclear fuels and the zirconium alloy component facility took part in the framework of the „Zero failure level“ project. The purpose of these working visits was to determine whether there are any cause-effect relationships between the production of nuclear fuel and the fuel failures as well as to identify the trends and reasons for such failures. As an outcome of the analysis of the production processes at the fabrication plants of the nuclear fuel and the zirconium alloys component facility, the system root causes affecting the failures of the nuclear fuel were not identified

  1. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  2. Advances in zirconium technology for nuclear reactor application

    International Nuclear Information System (INIS)

    Ganguly, C.

    2002-01-01

    Zirconium alloys are extensively used as a material for cladding nuclear fuels and for making core structurals of water-cooled nuclear power reactors all over the world for generation of nearly 16 percent of the worlds electricity. Only four countries in the world, namely France, USA, Russia and India, have large zirconium industry and capability to manufacture reactor grade zirconium sponge, a number of zirconium alloys and a wide variety of structural components for water cooled nuclear reactor. The present paper summarises the status of zirconium technology and highlights the achievement of Nuclear Fuel Complex during the last ten years in developing a wide variety of zirconium alloys and components for water-cooled nuclear power programme

  3. Social awareness on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2006-01-01

    In the present we surveyed public opinion regarding the nuclear fuel cycle to find out about the social awareness about nuclear fuel cycle and nuclear facilities. The study revealed that people's image of nuclear power is more familiar than the image of the nuclear fuel cycle. People tend to display more recognition and concern towards nuclear power and reprocessing plants than towards other facilities. Comparatively speaking, they tend to perceive radioactive waste disposal facilities and nuclear power plants as being highly more dangerous than reprocessing plants. It is found also that with the exception of nuclear power plants don't know very much whether nuclear fuel cycle facilities are in operation in Japan or not. The results suggests that 1) the relatively mild image of the nuclear fuel cycle is the result of the interactive effect of the highly dangerous image of nuclear power plants and the less dangerous image of reprocessing plants; and 2) that the image of a given plant (nuclear power plant, reprocessing plant, radioactive waste disposal facility) is influenced by the fact of whether the name of the plant suggests the presence of danger or not. (author)

  4. International issue: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    In this special issue a serie of short articles of informations are presented on the following topics: the EEC's medium term policy regarding the reprocessing and storage of spent fuel, France's natural uranium supply, the Pechiney Group in the nuclear field, zircaloy cladding for nuclear fuel elements, USSI: a major French nuclear engineering firm, gaseous diffusion: the only commercial enrichment process, the transport of nuclear materials in the fuel cycle, Cogema and spent fuel reprocessing, SGN: a leader in the fuel cycle, quality control of mechanical, thermal and termodynamic design in nuclear engineering, Sulzer's new pump testing station in Mantes, the new look of the Ateliers et Chantiers de Bretagne, tubes and piping in nuclear power plants, piping in pressurized water reactor. All these articles are written in English and in French [fr

  5. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  6. Performance of candu-6 fuel bundles manufactured in romania nuclear fuel plant

    International Nuclear Information System (INIS)

    Bailescu, A.; Barbu, A.; Din, F.; Dinuta, G.; Dumitru, I.; Musetoiu, A.; Serban, G.; Tomescu, A.

    2013-01-01

    The purpose of this article is to present the performance of nuclear fuel produced by Nuclear Fuel Plant (N.F.P.) - Pitesti during 1995 - 2012 and irradiated in units U1 and U2 from Nuclear Power Plant (N.P.P.) Cernavoda and also present the Nuclear Fuel Plant (N.F.P.) - Pitesti concern for providing technology to prevent the failure causes of fuel bundles in the reactor. This article presents Nuclear Fuel Plant (N.F.P.) - Pitesti experience on tracking performance of nuclear fuel in reactor and strategy investigation of fuel bundles notified as suspicious and / or defectives both as fuel element and fuel bundle, it analyzes the possible defects that can occur at fuel bundle or fuel element and can lead to their failure in the reactor. Implementation of modern technologies has enabled optimization of manufacturing processes and hence better quality stability of achieving components (end caps, chamfered sheath), better verification of end cap - sheath welding. These technologies were qualified by Nuclear Fuel Plant (N.F.P.) - Pitesti on automatic and Computer Numerical Control (C.N.C.) programming machines. A post-irradiation conclusive analysis which will take place later this year (2013) in Institute for Nuclear Research Pitesti (the action was initiated earlier this year by bringing a fuel bundle which has been reported defective by pool visual inspection) will provide additional information concerning potential damage causes of fuel bundles due to manufacturing processes. (authors)

  7. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  8. Study Of Thorium As A Nuclear Fuel.

    Directory of Open Access Journals (Sweden)

    Prakash Humane

    2017-10-01

    Full Text Available Conventional fuel sources for power generation are to be replacing by nuclear power sources like nuclear fuel Uranium. But Uranium-235 is the only fissile fuel which is in 0.72 found in nature as an isotope of Uranium-238. U-238 is abundant in nature which is not fissile while U-239 by alpha decay naturally converted to Uranium- 235. For accompanying this nuclear fuel there is another nuclear fuel Thorium is present in nature is abundant can be used as nuclear fuel and is as much as safe and portable like U-235.

  9. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    Matausek, M.

    1984-01-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  10. Nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    A series of viewgraphs describes the nuclear fuel cycle and nuclear power, covering reactor types, sources of uranium, enrichment of uranium, fuel fabrication, transportation, fuel reprocessing, and radioactive wastes

  11. Design study of fuel circulating system using Pd-alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Yamanaka, T.; Aizawa, T.; Kasahara, T.; Nishikawa, M.; Asami, N.

    1980-01-01

    Design study on the fuel circulating system (FCS) for a tokamak experimental fusion reactor (JXFR) has been carried out to establish the system concept, to plan the development program, and to evaluate the feasibility of diffusion system. The FCS consists of main vacuum system, fuel gas refiners, isotope separators, fuel feeders, and auxiliary systems. In the system design, Pd-alloy membrane permeation method is adopted for fuel refining and isotope separating. All impurities are effectively removed and hydrogen isotopes are sufficiently separated by Pd-alloy membrane. The isotope separation system consists of 1st (47 separators) and 2nd (46 separators) cascades for removing protium and separating deuterium, respectively. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane diffusion method is attractive for isotope separation and refining of fuel gas. The choice will have to be based on reliability, economic, and safety analyses

  12. Nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    1976-01-01

    Full text: Quality assurance is used extensively in the design, construction and operation of nuclear power plants. This methodology is applied to all activities affecting the quality of a nuclear power plant in order to obtain confidence that an item or a facility will perform satisfactorily in service. Although the achievement of quality is the responsibility of all parties participating in a nuclear power project, establishment and implementation of the quality assurance programme for the whole plant is a main responsibility of the plant owner. For the plant owner, the main concern is to achieve control over the quality of purchased products or services through contractual arrangements with the vendors. In the case of purchase of nuclear fuel, the application of quality assurance might be faced with several difficulties because of the lack of standardization in nuclear fuel and the proprietary information of the fuel manufacturers on fuel design specifications and fuel manufacturing procedures. The problems of quality assurance for purchase of nuclear fuel were discussed in detail during the seminar. Due to the lack of generally acceptable standards, the successful application of the quality assurance concept to the procurement of fuel depends on how much information can be provided by the fuel manufacturer to the utility which is purchasing fuel, and in what form and how early this information can be provided. The extent of information transfer is basically set out in the individual vendor-utility contracts, with some indirect influence from the requirements of regulatory bodies. Any conflict that exists appears to come from utilities which desire more extensive control over the product they are buying. There is a reluctance on the part of vendors to permit close insight of the purchasers into their design and manufacturing procedures, but there nevertheless seems to be an increasing trend towards release of more information to the purchasers. It appears that

  13. Vibratory-compacted (vipac/sphere-pac) nuclear fuels - a comparison with pelletized nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, K.; Rubin, J. [Los Alamos National Lab., NM (United States); Thompson, M

    2001-07-01

    In order to achieve the packing densities required for nuclear fuel stability, economy and performance, the fuel material must be densified. This has traditionally been performed by high-temperature sintering. (At one time, fuel densification was investigated using cold/hot swaging. However, this fabrication method has become uncommon.) Alternatively, fuel can be densified by vibratory compaction (VIPAC). During the late 1950's and into the 1970's, in the U.S., vibratory compaction fuel was fabricated and test irradiated to evaluate its applicability compared to the more traditional pelletized fuel for nuclear reactors. These activities were primarily focused on light water reactors (LWR) but some work was performed for fast reactors. This paper attempts to summarize these evaluations and proposes to reconsider VIPAC fuel for future use. (author)

  14. Vibratory-compacted (vipac/sphere-pac) nuclear fuels - a comparison with pelletized nuclear fuels

    International Nuclear Information System (INIS)

    Chidester, K.; Rubin, J.; Thompson, M.

    2001-01-01

    In order to achieve the packing densities required for nuclear fuel stability, economy and performance, the fuel material must be densified. This has traditionally been performed by high-temperature sintering. (At one time, fuel densification was investigated using cold/hot swaging. However, this fabrication method has become uncommon.) Alternatively, fuel can be densified by vibratory compaction (VIPAC). During the late 1950's and into the 1970's, in the U.S., vibratory compaction fuel was fabricated and test irradiated to evaluate its applicability compared to the more traditional pelletized fuel for nuclear reactors. These activities were primarily focused on light water reactors (LWR) but some work was performed for fast reactors. This paper attempts to summarize these evaluations and proposes to reconsider VIPAC fuel for future use. (author)

  15. Nuclear fuel element

    International Nuclear Information System (INIS)

    Knowles, A.N.

    1979-01-01

    A nuclear fuel-containing body for a high temperature gas cooled nuclear reactor is described which comprises a flat plate in which the nuclear fuel is contained as a dispersion of fission product-retaining coated fuel particles in a flat sheet of graphitic or carbonaceous matrix material. The flat sheet is clad with a relatively thin layer of unfuelled graphite bonded to the sheet by being formed initially from a number of separate preformed graphitic artefacts and then platen-pressed on to the exterior surfaces of the flat sheet, both the matrix material and the artefacts being in a green state, to enclose the sheet. A number of such flat plates are supported edge-on to the coolant flow in the bore of a tube made of neutron moderating material. Where a number of tiers of plates are superimposed on one another, the abutting edges are chamfered to reduce vibration. (author)

  16. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  17. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  18. International Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  19. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  20. Material input of nuclear fuel

    International Nuclear Information System (INIS)

    Rissanen, S.; Tarjanne, R.

    2001-01-01

    The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value

  1. Thermal aspects of mixed oxide fuel in application to supercritical water-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grande, L.; Peiman, W.; Rodriguez-Prado, A.; Villamere, B.; Mikhael, S.; Allison, L.; Pioro, I., E-mail: lisa.grande@mycampus.uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada)

    2010-07-01

    SuperCritical Water-cooled nuclear Reactors (SCWRs) are a renewed technology being developed as one of the Generation IV reactor concepts. This reactor type uses a light water coolant at temperatures and pressures above its critical point. These elevated operating conditions will improve Nuclear Power Plant (NPP) thermal efficiencies by 10 - 15% compared to those of current NPPs. Also, SCWRs will have the ability to utilize a direct cycle, thus decreasing NPP capital and operational costs. The SCWR core has 2 configurations: 1) Pressure Vessel (PV) -type enclosing a fuel assembly and 2) Pressure Tube (PT) -type consisting of individual pressurized channels containing fuel bundles. Canada and Russia are developing PT-type SCWRs. In particular, the Canadian SCWR reactor has an output of 1200 MW{sub el} and will operate at a pressure of 25 MPa with inlet and outlet fuel-channel temperatures of 350 and 625°C, respectively. These extreme operating conditions require alternative fuels and materials to be investigated. Current CANadian Deuterium Uranium (CANDU) nuclear reactor fuel-channel design is based on the use of uranium dioxide (UO{sub 2}) fuel; zirconium alloy sheath (clad) bundle, pressure and calandria tubes. Alternative fuels should be considered to supplement depleting world uranium reserves. This paper studies general thermal aspects of using Mixed OXide (MOX) fuel in an Inconel-600 sheath in a generic PT-type SCWR. The bulk fluid, sheath and fuel centerline temperatures along with the Heat Transfer Coefficient (HTC) profiles were calculated at uniform and non-uniform Axial Heat Flux Profiles (AHFPs). (author)

  2. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  3. Fabrication of uranium alloy fuel slug for sodium-cooled fast reactor by injection casting

    International Nuclear Information System (INIS)

    Jong Hwan Kim; Hoon Song; Ki Hwan Kim; Chan Bock Lee

    2014-01-01

    Metal fuel slugs of U-Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U-10 wt% Zr and U-10 wt% Zr-5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions. (author)

  4. World nuclear fuel cycle requirements 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under two nuclear supply scenarios. These two scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries in the World Outside Centrally Planned Economic Areas (WOCA). A No New Orders scenarios is also presented for the Unites States. This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the WOCA projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel; discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2020 for the Lower and Upper Reference cases and through 2036, the last year in which spent fuel is discharged, for the No New Orders case

  5. Commercialization of nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Yakabe, Hideo

    1998-01-01

    Japan depends on foreign countries almost for establishing nuclear fuel cycle. Accordingly, uranium enrichment, spent fuel reprocessing and the safe treatment and disposal of radioactive waste in Japan is important for securing energy. By these means, the stable supply of enriched uranium, the rise of utilization efficiency of uranium and making nuclear power into home-produced energy can be realized. Also this contributes to the protection of earth resources and the preservation of environment. Japan Nuclear Fuel Co., Ltd. operates four business commercially in Rokkasho, Aomori Prefecture, aiming at the completion of nuclear fuel cycle by the technologies developed by Power Reactor and Nuclear Fuel Development Corporation and the introduction of technologies from foreign countries. The conditions of location of nuclear fuel cycle facilities and the course of the location in Rokkasho are described. In the site of about 740 hectares area, uranium enrichment, burying of low level radioactive waste, fuel reprocessing and high level waste control have been carried out, and three businesses except reprocessing already began the operation. The state of operation of these businesses is reported. Hereafter, efforts will be exerted to the securing of safety through trouble-free operation and cost reduction. (K.I.)

  6. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  7. The impact of the multilateral approach to the nuclear fuel cycle in Malaysia's nuclear fuel cycle policy

    International Nuclear Information System (INIS)

    Baharuddin, B.; Ferdinand, P.

    2014-01-01

    Since the Pakistan-India nuclear weapon race, the North Korean nuclear test and the September 11 attack revealed Abdul Qadeer Khan's clandestine nuclear black market and the fear that Iran's nuclear program may be used for nuclear weapon development, scrutiny of activities related to nuclear technologies, especially technology transfer has become more stringent. The nuclear supplier group has initiated a multilateral nuclear fuel cycle regime with the purpose of guaranteeing nuclear fuel supply and at the same time preventing the spread of nuclear proliferation. Malaysia wants to develop a programme for the peaceful use of nuclear energy and it needs to accommodate itself to this policy. When considering developing a nuclear fuel cycle policy, the key elements that Malaysia needs to consider are the extent of the fuel cycle technologies that it intends to acquire and the costs (financial and political) of acquiring them. Therefore, this paper will examine how the multilateral approach to the nuclear fuel cycle may influence Malaysia's nuclear fuel cycle policy, without jeopardising the country's rights and sovereignty as stipulated under the NPT. (authors)

  8. Alternatives for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L.

    2010-10-01

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  9. Corrosion-Resistant Ti- xNb- xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

    Science.gov (United States)

    Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev

    2011-09-01

    This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

  10. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  11. Spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    Peev, P.; Kalimanov, N.

    1999-01-01

    The development of the nuclear energy sector in Bulgaria is characterized by two major stages. The first stage consisted of providing a scientific basis for the programme for development of the nuclear energy sector in the country and was completed with the construction of an experimental water-water reactor. At present, spent nuclear fuel from this reactor is placed in a water filled storage facility and will be transported back to Russia. The second stage consisted of the construction of the 6 NPP units at the Kozloduy site. The spent nuclear fuel from the six units is stored in at reactor pools and in an additional on-site storage facility which is nearly full. In order to engage the government of the country with the on-site storage problems, the new management of the National Electric Company elaborated a policy on nuclear fuel cycle and radioactive waste management. The underlying policy is de facto the selection of the 'deferred decision' option for its spent fuel management. (author)

  12. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-01-01

    The composite of metals and alloys used in the fabrication of 238 Pu cardiac pacemaker fuel capsules resists the effects of high temperatures, high mechanical forces, and chemical corrosives and provides more than adequate protection to the fuel pellet even from deliberate attempts to dissolve the cladding in inorganic acids. This does not imply that opening a pacemaker fuel capsule by inorganic acids is impossible but that it would not be a wise choice

  13. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  14. World nuclear fuel cycle requirements 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  15. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium

    International Nuclear Information System (INIS)

    Suripto, A.; Sastratenaya, A.S.; Sutarno, D.

    2000-01-01

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  16. Romanian nuclear fuel program: past, present and future

    International Nuclear Information System (INIS)

    Budan, O.; Rotaru, I.; Galeriu, C.A.

    1997-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. In this paper the word 'past' refers to the period before 1990 and 'present' to the 1990-1997 period. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. - ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified

  17. Dilatometric studies on uranium-zirconium-fissium alloy

    International Nuclear Information System (INIS)

    Banerjee, Aparna; Kulkarni, S.G.; Kulkarni, R.V.; Kaity, Santu

    2012-01-01

    The knowledge of thermophysical properties of U-Zr alloys are important for modelling fuel behaviour in nuclear reactor. Fissium is an alloy that approximates the equilibrium concentration of the metallic fission product elements left by metallurgical reprocessing. Coefficient of thermal expansion (CTE) data is needed to calculate stresses occurring in fuel and cladding with change in temperature. Coefficient of thermal expansion can be utilized to determine the change of alloy density as a function of temperature. In the present investigation, thermophysical properties like coefficient of thermal expansion and density were determined using dilatometer for U-20wt.%Zr-5wt.%Fs alloy prepared by arc melting process. The microstructural investigation was carried out using scanning electron microscope

  18. International guidelines for fire protection at nuclear installations including nuclear fuel plants, nuclear fuel stores, teaching reactors, research establishments

    International Nuclear Information System (INIS)

    The guidelines are recommended to designers, constructors, operators and insurers of nuclear fuel plants and other facilities using significant quantities of radioactive materials including research and teaching reactor installations where the reactors generally operate at less than approximately 10 MW(th). Recommendations for elementary precautions against fire risk at nuclear installations are followed by appendices on more specific topics. These cover: fire protection management and organization; precautions against loss during construction alterations and maintenance; basic fire protection for nuclear fuel plants; storage and nuclear fuel; and basic fire protection for research and training establishments. There are numerous illustrations of facilities referred to in the text. (U.K.)

  19. Use of molybdenum as a structural material of fuel elements for improving nuclear reactors safety

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, Anatoly N.; Kulikov, Gennady G.; Kozhahmet, Bauyrzhan K.; Kulikov, Evgeny G.; Apse, Vladimir A. [National Research Nuclear Univ., Moscow (Russian Federation). Moscow Engineering Physics Institute (MEPhI)

    2016-12-15

    Main purpose of the study is justifying the use of molybdenum as a structural material of fuel elements for improving the safety of nuclear reactors. Particularity of the used molybdenum is that its isotopic composition corresponds to molybdenum, which is obtained as tailing during operation of the separation cascade for producing a material for medical diagnostics of cancer. The following results were obtained: A method for reducing the thermal constant of fuel elements for light water and fast reactors by using dispersion fuel in cylindrical fuel rods containing, for example, granules of metallic U-Mo-alloy into Mo-matrix was proposed; the necessity of molybdenum enrichment by weakly absorbing isotopes was shown; total use of isotopic molybdenum will be more than 50 %.

  20. Nuclear fuel element leak detection system

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  1. Spent nuclear fuel storage - Basic concept

    International Nuclear Information System (INIS)

    Krempel, Ascanio; Santos, Cicero D. Pacifici dos; Sato, Heitor Hitoshi; Magalhaes, Leonardo de

    2009-01-01

    According to the procedures adopted in others countries in the world, the spent nuclear fuel elements burned to produce electrical energy in the Brazilian Nuclear Power Plant of Angra do Reis, Central Nuclear Almirante Alvaro Alberto - CNAAA will be stored for a long time. Such procedure will allow the next generation to decide how they will handle those materials. In the future, the reprocessing of the nuclear fuel assemblies could be a good solution in order to have additional energy resource and also to decrease the volume of discarded materials. This decision will be done in the future according to the new studies and investigations that are being studied around the world. The present proposal to handle the nuclear spent fuel is to storage it for a long period of time, under institutional control. Therefore, the aim of this paper is to introduce a proposal of a basic concept of spent fuel storage, which involves the construction of a new storage building at site, in order to increase the present storage capacity of spent fuel assemblies in CNAAA installation; the concept of the spent fuel transportation casks that will transfer the spent fuel assemblies from the power plants to the Spent Fuel Complementary Storage Building and later on from this building to the Long Term Intermediate Storage of Spent Fuel; the concept of the spent fuel canister and finally the basic concept of the spent fuel long term storage. (author)

  2. Chemical characterization of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2011-01-01

    India is fabricating nuclear fuels for various types of reactors, for example, (U-Pu) MOX fuel of varying Pu content for boiling water reactors (BWRs), pressurized heavy water reactors (PHWRs), prototype fast breeder reactors (PFBRs), (U-Pu) carbide fuel fast breeder test reactor (FBTR), and U-based fuels for research reactors. Nuclear fuel being the heart of the reactor, its chemical and physical characterisation is an important component of this design. Both the fuel materials and finished fuel products are to be characterised for this purpose. Quality control (both chemical and physical) provides a means to ensure that the quality of the fabricated fuel conforms to the specifications for the fuel laid down by the fuel designer. Chemical specifications are worked out for the major and minor constituents which affect the fuel properties and hence its performance under conditions prevailing in an operating reactor. Each fuel batch has to be subjected to comprehensive chemical quality control for trace constituents, stoichiometry and isotopic composition. A number of advanced process and quality control steps are required to ensure the quality of the fuels. Further more, in the case of Pu-based fuels, it is necessary to extract maximum quality data by employing different evaluation techniques which would result in minimum scrap/waste generation of valuable plutonium. The task of quality control during fabrication of nuclear fuels of various types is both challenging and difficult. The underlying philosophy is total quality control of the fuel by proper mix of process and quality control steps at various stages of fuel manufacture starting from the feed materials. It is also desirable to adapt more than one analytical technique to increase the confidence and reliability of the quality data generated. This is all the most required when certified reference materials are not available. In addition, the adaptation of non-destructive techniques in the chemical quality

  3. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  4. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with an alkaline earth metal....

  5. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic5 efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with a lanthanide metal....

  6. AN ANALYTICAL FRAMEWORK FOR ASSESSING RELIABLE NUCLEAR FUEL SERVICE APPROACHES: ECONOMIC AND NON-PROLIFERATION MERITS OF NUCLEAR FUEL LEASING

    International Nuclear Information System (INIS)

    Kreyling, Sean J.; Brothers, Alan J.; Short, Steven M.; Phillips, Jon R.; Weimar, Mark R.

    2010-01-01

    The goal of international nuclear policy since the dawn of nuclear power has been the peaceful expansion of nuclear energy while controlling the spread of enrichment and reprocessing technology. Numerous initiatives undertaken in the intervening decades to develop international agreements on providing nuclear fuel supply assurances, or reliable nuclear fuel services (RNFS) attempted to control the spread of sensitive nuclear materials and technology. In order to inform the international debate and the development of government policy, PNNL has been developing an analytical framework to holistically evaluate the economics and non-proliferation merits of alternative approaches to managing the nuclear fuel cycle (i.e., cradle-to-grave). This paper provides an overview of the analytical framework and discusses preliminary results of an economic assessment of one RNFS approach: full-service nuclear fuel leasing. The specific focus of this paper is the metrics under development to systematically evaluate the non-proliferation merits of fuel-cycle management alternatives. Also discussed is the utility of an integrated assessment of the economics and non-proliferation merits of nuclear fuel leasing.

  7. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirama, H.

    1978-01-01

    A nuclear fuel element comprises an elongated tube having upper and lower end plugs fixed to both ends thereof and nuclear fuel pellets contained within the tube. The fuel pellets are held against the lower end plug by a spring which is supported by a setting structure. The setting structure is maintained at a proper position at the middle of the tube by a wedge effect caused by spring force exerted by the spring against a set of balls coacting with a tapered member of the setting structure thereby wedging the balls against the inner wall of the tube, and the setting structure is moved free by pushing with a push bar against the spring force so as to release the wedge effect

  8. Nuclear fuel tax in court

    International Nuclear Information System (INIS)

    Leidinger, Tobias

    2014-01-01

    Besides the 'Nuclear Energy Moratorium' (temporary shutdown of eight nuclear power plants after the Fukushima incident) and the legally decreed 'Nuclear Energy Phase-Out' (by the 13th AtG-amendment), also the legality of the nuclear fuel tax is being challenged in court. After receiving urgent legal proposals from 5 nuclear power plant operators, the Hamburg fiscal court (4V 154/13) temporarily obliged on 14 April 2014 respective main customs offices through 27 decisions to reimburse 2.2 b. Euro nuclear fuel tax to the operating companies. In all respects a remarkable process. It is not in favour of cleverness to impose a political target even accepting immense constitutional and union law risks. Taxation 'at any price' is neither a statement of state sovereignty nor one for a sound fiscal policy. Early and serious warnings of constitutional experts and specialists in the field of tax law with regard to the nuclear fuel tax were not lacking. (orig.)

  9. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  10. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Costello, J.M.

    1980-09-01

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  11. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    Niedrig, T.

    1987-01-01

    Nuclear fuel supply is viewed as a buyer's market of assured medium-term stability. Even on a long-term basis, no shortage is envisaged for all conceivable expansion schedules. The conversion and enrichment facilities developed since the mid-seventies have done much to stabilize the market, owing to the fact that one-sided political decisions by the USA can be counteracted efficiently. In view of the uncertainties concerning realistic nuclear waste management strategies, thermal recycling and mixed oxide fuel elements might increase their market share in the future. Capacities are being planned accordingly. (orig.) [de

  12. Fuel rods

    International Nuclear Information System (INIS)

    Adachi, Hajime; Ueda, Makoto

    1985-01-01

    Purpose: To provide a structure capable of measuring, in a non-destructive manner, the releasing amount of nuclear gaseous fission products from spent fuels easily and at a high accuracy. Constitution: In order to confirm the integrity and the design feasibility of a nuclear fuel rod, it is important to accurately determine the amount of gaseous nuclear fission products released from nuclear pellets. In a structure where a plurality of fuel pellets are charged in a fuel cladding tube and retained by an inconel spring, a hollow and no-sealed type spacer tube made of zirconium or the alloy thereof, for example, not containing iron, cobalt, nickel or manganese is formed between the spring and the upper end plug. In the fuel rod of such a structure, by disposing a gamma ray collimator and a gamma ray detector on the extension of the spacer pipe, the gamma rays from the gaseous nuclear fission products accumulated in the spacer pipe can be detected while avoiding the interference with the induction radioactivity from inconel. (Kamimura, M.)

  13. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  14. Nuclear fuel cycle and legal regulations

    International Nuclear Information System (INIS)

    Shimoyama, Shunji; Kaneko, Koji.

    1980-01-01

    Nuclear fuel cycle is regulated as a whole in Japan by the law concerning regulation of nuclear raw materials, nuclear fuel materials and reactors (hereafter referred to as ''the law concerning regulation of reactors''), which was published in 1957, and has been amended 13 times. The law seeks to limit the use of atomic energy to peaceful objects, and nuclear fuel materials are controlled centering on the regulation of enterprises which employ nuclear fuel materials, namely regulating each enterprise. While the permission and report of uses are necessary for the employment of nuclear materials under Article 52 and 61 of the law concerning regulation of reactors, the permission provisions are not applied to three kinds of enterprises of refining, processing and reprocessing and the persons who install reactors as the exceptions in Article 52, when nuclear materials are used for the objects of the enterprises themselves. The enterprises of refining, processing and reprocessing and the persons who install reactors are stipulated respectively in the law. Accordingly the nuclear material regulations are applied only to the users of small quantity of such materials, namely universities, research institutes and hospitals. The nuclear fuel materials used in Japan which are imported under international contracts including the nuclear energy agreements between two countries are mostly covered by the security measures of IAEA as internationally controlled substances. (Okada, K.)

  15. The quest for safe and reliable fuel cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Eddy S.; Abe, Alfredo Y., E-mail: eddypino132@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    The tragic Fukushima Daiichi Nuclear Plant accident of March, 2011, has brought great unrest and challenge to the nuclear industry, which, in collaboration with universities and nuclear research institutes, is making great efforts to improve the safety in nuclear reactors developing accident tolerant fuels (ATF). This involves the study of different materials to be applied as cladding and, also, the improvement in the fuel properties in order to enhance the fuel performance and safety, specifically under accident conditions. Related to the cladding, iron based alloys and silicon carbide (SiC) materials have been studied as a good alternative. In the case of austenitic stainless steel, there is the advantage that the austenitic stainless steel 304 was used as cladding material in the first PWR (Pressurized Water Reactor) registering a good performance. Then, alternated cladding materials such as iron based alloys (304, 310, 316, 347) should be used to replace the zirconium-based alloys in order to improve safety. In this paper, these cladding materials are evaluated in terms of their physical and chemical properties; among them, strength and creep resistance, thermal conductivity, thermal stability and corrosion resistance. Additionally, these properties are compared with those of conventional zirconium-based alloys, the most used material in actual PWR, to assess the advantages and disadvantages of each material concerning to fuel performance and safety contribution. (author)

  16. The quest for safe and reliable fuel cladding materials

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Abe, Alfredo Y.; Giovedi, Claudia

    2015-01-01

    The tragic Fukushima Daiichi Nuclear Plant accident of March, 2011, has brought great unrest and challenge to the nuclear industry, which, in collaboration with universities and nuclear research institutes, is making great efforts to improve the safety in nuclear reactors developing accident tolerant fuels (ATF). This involves the study of different materials to be applied as cladding and, also, the improvement in the fuel properties in order to enhance the fuel performance and safety, specifically under accident conditions. Related to the cladding, iron based alloys and silicon carbide (SiC) materials have been studied as a good alternative. In the case of austenitic stainless steel, there is the advantage that the austenitic stainless steel 304 was used as cladding material in the first PWR (Pressurized Water Reactor) registering a good performance. Then, alternated cladding materials such as iron based alloys (304, 310, 316, 347) should be used to replace the zirconium-based alloys in order to improve safety. In this paper, these cladding materials are evaluated in terms of their physical and chemical properties; among them, strength and creep resistance, thermal conductivity, thermal stability and corrosion resistance. Additionally, these properties are compared with those of conventional zirconium-based alloys, the most used material in actual PWR, to assess the advantages and disadvantages of each material concerning to fuel performance and safety contribution. (author)

  17. Technical ability of new MTR high-density fuel alloys regarding the whole fuel cycle

    International Nuclear Information System (INIS)

    Durand, J.P.; Maugard, B.; Gay, A.

    1998-01-01

    The development of new fuel alloys could provide a good opportunity to improve drastically the fuel cycle on the neutronic performances and the reprocessing point of view. Nevertheless, those parameters can only be considered if the fuel manufacture feasibility has been previously demonstrated. As a matter of fact, a MTR work group involving French partners (CEA, CERCA, COGEMA) has been set up in order to evaluate the technical ability of new fuels considering the whole fuel cycle. In this paper CERCA is presenting the preliminary results of UMo and UNbZr fuel plate manufacture, CEA is comparing to U 3 Si 2 the neutronic performances of fuels such as UMo, UN, UNbZr, while COGEMA is dealing with the reprocessing feasibility. (author)

  18. Nuclear fuel activities in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D S [Fuel Development Branch, Chalk River Labs., AECL (Canada)

    1997-12-01

    Nuclear fuel activities in Canada are considered in the presentation on the following directions: Canadian utility fuel performance; CANDU owner`s group fuel programs; AECL advanced fuel program (high burnup fuel behaviour and development); Pu dispositioning (MOX) activities. 1 tab.

  19. Determination of plutonium in nuclear fuel materials by controlled potential coulometry

    International Nuclear Information System (INIS)

    Ambolikar, A.S.; Pillai, Jisha S.; Sharma, M.K.; Kamat, J.V.; Aggarwal, S.K.

    2011-01-01

    Accurate knowledge of Pu content in nuclear fuel materials is an important requirement for the purpose of chemical quality control, nuclear material accounting and process control. Biamperometry and potentiometry techniques are widely employed for the determination of Pu. These redox electroanalytical based methods are capable of meeting the requirements of high accuracy and precision using milligram amounts of the analyte. However, use of chemical reagents to carry out redox reactions in these methodologies generates radioactive liquid waste which needs to be processed to recover plutonium. In coulometric technique, change in the oxidation state of an electro active species is carried out by charge transfer on an electrode surface, hence chemical reagents as well as chemical standards required for the redox titration based methods are eliminated and analytical waste generated is free from metallic impurities. Therefore the determination of Pu in nuclear fuel materials by coulometry is an attractive option. In view of this, controlled potential coulometric methods have been developed in our laboratory for variety of applications at different stages of nuclear fuel cycle. In the early stage of coulometry developments in our laboratory, coulometers procured from EG and G Princeton Applied Research Corporation were employed. After prolong use, these instruments were showing ageing and hence indigenously built controlled potential coulometer was procured. Performance evaluation studies of these coulometers were reported from our laboratory for the determination of uranium and plutonium in working chemical assay standards. In this paper, we present studies carried out on the determination of plutonium in Pu-alloy and (U, Pu) C samples employing the same indigenous coulometer

  20. Research and development of thorium fuel cycle

    International Nuclear Information System (INIS)

    Oishi, Jun.

    1994-01-01

    Nuclear properties of thorium are summarized and present status of research and development of the use of thorium as nuclear fuel is reviewed. Thorium may be used for nuclear fuel in forms of metal, oxide, carbide and nitride independently, alloy with uranium or plutonium or mixture of the compound. Their use in reactors is described. The reprocessing of the spent oxide fuel in thorium fuel cycle is called the thorex process and similar to the purex process. A concept of a molten salt fuel reactor and chemical processing of the molten salt fuel are explained. The required future research on thorium fuel cycle is commented briefly. (T.H.)

  1. Development and characterization of monolithic fuel miniplate alloy U-2.5Zr-7.5Nb, coated in zircaloy

    International Nuclear Information System (INIS)

    Machado, Geraldo Correa

    2014-01-01

    The autocthonal production of nuclear fuel in Brazil for test and research reactors is restricted to MTR (Material Test Reactor) fuel type dispersion plate, using U3Si2 alloy, coated and dispersed in aluminum, developed by IPEN-SP for use in IEA-R1 reactor. Moreover, the UO 2 fuel rod type for power reactors is manufactured by Rezende (RJ) with a German technology by INB under license. Currently, Brazil is performing two programs of developing reactors. Currently, Brazil is developing two reactors. One of them is the development, by CNEN, the Brazilian Multipurpose Reactor (RMB), for testing, research and radioisotope production. The other one is the development a power reactor for naval propulsion, conducted by the Brazilian Navy. This dissertation presents the development and characterization of monolithic fuel miniplate alloy U-2.5Zr-7.5Nb, coated in zircaloy (ZRY), on a laboratory scale. Due to its innovative features and properties, this fuel can be used as fuel in both test reactors, research and producing radioisotopes for power reactors as small and medium sizes. Thus, this high potential fuel can be used in domestic reactors currently under development. The development of monolithic fuel plate type is made using the technique called 'picture-frame' where a sandwich composed of a monolith alloy U-2.5Zr- 7.5Nb coupled to a frame and coated sheets of Zry is obtained. The alloy U-2.5Zr-7.5Nb was obtained by melting in an induction furnace and then was cast into rectangular ingots of graphite, thus achieving an ingot with approximate dimensions of 170 x 50 x 60 mm. The obtained ingot was hot rolled at 850 ºC, with a 50 % reduction in thickness, in order to refine the raw structure of fusion. Samples cut from the alloy U-2.5Zr-7.5Nb, with dimensions 20 x 20 x 6 mm were placed in frames and plates Zry and joined by TIG (Tungsten Inert Gas) under an atmosphere of argon, obtaining a set of 10 mm thick, 45 mm wide and 100 mm long. The sandwiches were hot rolled to

  2. Fuel performance of DOE fuels in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-01-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. In April of 1992, the U.S. Department of Energy (DOE) decided to end the fuel reprocessing mission at ICPP. Fuel performance in storage received increased emphasis as the fuel now needs to be stored until final dispositioning is defined and implemented. Fuels are stored in four main areas: an original underwater storage facility, a modern underwater storage facility, and two dry fuel storage facilities. As a result of the reactor research mission of the DOE and predecessor agencies, the Energy Research and Development Administration and the Atomic Energy Commission, many types of nuclear fuel have been developed, used, and assigned to storage at the ICPP. Fuel clad with stainless steel, zirconium, aluminum, and graphite are represented. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels, resulting in 55 different fuel types in storage. Also included in the fuel storage inventory is canned scrap material

  3. Lead and lead-based alloys as waste matrix materials

    International Nuclear Information System (INIS)

    Arustamov, A.E.; Ojovan, M.I.; Kachalov, M.B.

    1999-01-01

    Metals and alloys with relatively low melting temperatures such as lead and lead-based alloys are considered in Russia as prospective matrices for encapsulation of spent nuclear fuel in containers in preparation for final disposal in underground repositories. Now lead and lead-based alloys are being used for conditioning spent sealed radioactive sources at radioactive waste disposal facilities

  4. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    International Nuclear Information System (INIS)

    Solonin, M.I.; Polyakov, A.S.; Zakharkin, B.S.; Smelov, V.S.; Nenarokomov, E.A.; Mukhin, I.V.

    2000-01-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  5. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Solonin, M I; Polyakov, A S; Zakharkin, B S; Smelov, V S; Nenarokomov, E A; Mukhin, I V [SSC, RF, A.A. Bochvar ALL-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2000-07-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  6. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  7. Device for reprocessing nuclear fuels

    International Nuclear Information System (INIS)

    Hatano, Mamoru.

    1981-01-01

    Purpose: To readily discharge a nuclear fuel by burning the nuclear fuel as it is without a pulverizing step and removing the graphite and other coated fuel particles. Constitution: An oxygen supply pipe is connected to the lower portion of a discharge chamber having an inlet for the fuel, and an exhaust pipe is connected to the upper portion of the chamber. The fuel mounted on a metallic gripping member made of metallic material is inserted from the inlet, the gripping member is connected through a conductor to a voltage supply unit, oxygen is then supplied through the oxygen supply tube to the discharge chamber, the voltage supply unit is subsequently operated, and discharge takes place among the fuels. Thus, high heat is generated by the discharge, the graphite carbon of the fuel is burnt, silicon carbide is destroyed and decomposed, the isolated nuclear fuel particles are discharged from the exhaust port, and the combustion gas and small embers are exhausted from the exhaust tube. Accordingly, radioactive dusts are not so much generated as when using a mechanical pulverizing means, and prescribed objective can be achieved. (Yoshino, Y.)

  8. Obtention of uranium-molybdenum alloy ingots microstructure and phase characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Tercio A.; Braga, Daniel M.; Paula, Joao Bosco de; Brina, Jose Giovanni M.; Ferraz, Wilmar B., E-mail: tap@cdtn.b, E-mail: bragadm@cdtn.b, E-mail: jbp@cdtn.b, E-mail: jgmb@cdtn.b, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The replacement of high enriched uranium (U-{sup 235} > 85 wt%) by low enriched uranium (U-{sup 235} < 20 wt%) nuclear fuels in research and test reactors is being implemented as an initiative of the Reduced Enrichment for Research and Test Reactors (RERTR) program, conceived in the USA since mid-70s, in order to avoid nuclear weapons proliferation. Such replacement implies in the use of compounds or alloys with higher uranium densities. Several uranium alloys that fill this requirement has been investigated since then. Among these alloys, U-Mo presents great application potential due to its physical properties and good behavior during irradiation, which makes it an important option as a nuclear fuel material for the Brazilian Multipurpose Reactor - RMB. The development of the plate-type nuclear fuel based on U-Mo alloys is being performed at the Nuclear Technology Development Centre (CDTN) and also at the Institute of Energetic and Nuclear Research - IPEN. U-{sup 10}Mo ingots were melted in an induction furnace with protective argon atmosphere. The microstructure of the ingots were characterized through optical and scanning electronic microscopy in the as cast and heat treated conditions. Energy Dispersive Spectrometry and X-Ray Diffraction were used as characterization techniques for elemental analysis and phases determination. It was confirmed the presence of metastable gamma-phase in the as cast condition, surrounded by hypereutectoid alpha-phase (uranium-rich phase), as well as a pearlite-like constituent, composed by alternated lamellas of U{sub 2}Mo compound and alpha-phase, in the heat treated condition. (author)

  9. Qualification of uranium-molybdenum alloy fuel - conclusions of an international workshop

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Languille, A.

    2000-01-01

    Thirty-one participants representing 21 reactors, fuel developers, fuel fabricators, and fuel reprocessors in 11 countries discussed the requirements for qualification of U-Mo alloy fuel at a workshop held at Argonne National Laboratory on January 17-18, 2000. Consensus was reached that the qualification plans of the U.S. RERTR program and the French U-Mo fuel development program are valid. The items to be addressed during qualification are summarized in the paper. (author)

  10. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Hatfield, G.W.

    1960-11-01

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  11. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ito, Arata; Wakamatsu, Mitsuo.

    1976-01-01

    Object: To permit the coolant in an FBR type reactor to enter from the entrance nozzle into a nuclear fuel assembly without causing cavitation. Structure: In a nuclear fuel assembly, which comprises a number of thin fuel pines bundled together at a uniform spacing and enclosed within an outer cylinder, with a handling head connected to an upper portion of the outer cylinder and an entrance nozzle connected to a lower portion of the cylinder, the inner surface of the entrance nozzle is provided with a buffer member and an orifice successively in the direction of flow of the coolant. The coolant entering from a low pressure coolant chamber into the entrance nozzle strikes the buffer member and is attenuated, and thereafter flows through an orifice into the outer cylinder. (Horiuchi, T.)

  12. Crushing method for nuclear fuel powder

    International Nuclear Information System (INIS)

    Hasegawa, Shin-ichi; Tsuchiya, Haruo.

    1997-01-01

    A crushing medium is contained in mill pots disposed at the circumferential periphery of a main axis. The diameter of each mill pot is determined such that powdery nuclear fuels containing aggregated powders and ground and mixed powders do not reach criticality. A plurality of mill pots are revolved in the direction of the main axis while each pots rotating on its axis. Powdery nuclear fuels containing aggregated powders are conveyed to a supply portion of the moll pot, and an inert gas is supplied to the supply portion. The powdery nuclear fuels are supplied from the supply portion to the inside of the mill pots, and the powdery nuclear fuels containing aggregated powders are crushed by centrifugal force caused by the rotation and the revolving of the mill pots by means of the crushing medium. UO 2 powder in uranium oxide fuels can be crushed continuously. PuO 2 powder and UO 2 powder in MOX fuels can be crushed and mixed continuously. (I.N.)

  13. The disposal of Canada's nuclear fuel waste: engineered barriers alternatives

    International Nuclear Information System (INIS)

    Johnson, L.H.; Tait, J.C.; Shoesmith, D.W.; Crosthwaite, J.L.; Gray, M.N.

    1994-01-01

    iron, carbon steel, stainless steels, nickel-based alloys, titanium alloys and copper is reviewed in detail, with reference to their potential performance in a disposal vault in the Canadian Shield. The strategy for sealing a disposal vault and the materials for this application are presented. Both clay-based and cement-based materials are discussed, and the method of designing these materials for their particular application is illustrated through examination of the method of selecting reference buffer, backfill and grouting materials. Designs are presented for shaft, tunnel and exploration borehole seals, and methodologies for emplacing them are described. The materials and designs presented give us confidence that disposal of nuclear fuel waste can be safely achieved using a number of approaches. Final selection of materials and design would be established on the basis of site specific investigations, vault engineering studies, and feedback from system performance assessment. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  14. World nuclear fuel cycle requirements, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the (WOCA) World Outside Centrally Planned Economic Areas projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix E includes aggregated domestic spent fuel projections through the year 2020 for the Lower and Upper References cases and through 2037, the last year in which spent fuel is discharged, for the No New Orders case. Annual projections of spent fuel discharges through the year 2037 for individual US reactors in the No New Orders cases are included for the first time in Appendix H. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  15. Nuclear fuel cycles : description, demand and supply estimates

    International Nuclear Information System (INIS)

    Gadallah, A.A.; Abou Zahra, A.A.; Hammad, F.H.

    1985-01-01

    This report deals with various nuclear fuel cycles description as well as the world demand and supply estimates of materials and services. Estimates of world nuclear fuel cycle requirements: nuclear fuel, heavy water and other fuel cycle services as well as the availability and production capabilities of these requirements, are discussed for several reactor fuel cycle strategies, different operating and under construction fuel cycle facilities in some industrialized and developed countries are surveyed. Various uncertainties and bottlenecks which are recently facing the development of some fuel cycle components are also discussed, as well as various proposals concerning fuel cycle back-end concepts. finally, the nuclear fuel cycles activities in some developing countries are reviewed with emphasis on the egyptian plans to introduce nuclear power in the country. 11 fig., 16 tab

  16. Fuel assembly

    International Nuclear Information System (INIS)

    Sakuyama, Tadashi; Mukai, Hideyuki.

    1988-01-01

    Purpose: To prevent the bending of a fuel rod caused by the difference in the elongation between a joined fuel rod and a standard fuel rod thereby maintain the fuel rod integrity. Constitution: A joined fuel rod is in a thread engagement at its lower end plug thereof with a lower plate, while passed through at its upper end plug into an upper tie plate and secured with a nut. Further, a standard fuel rod is engaged at its upper end plug and lower end plug with the upper tie plate and the lower tie plate respectively. Expansion springs are mounted to the upper end plugs of these bonded fuel rods and the standard fuel rods for preventing this lifting. Each of the fuel rods comprises a plurality of sintered pellets of nuclear fuel materials laminated in a zircaloy fuel can. The content of the alloy ingredient in the fuel can of the bonded fuel rod is made greater than that of the alloy ingredient of the standard fuel rod. this can increase the elongation for the bonded fuel rod, and the spring of the standard fuel rod is tightly bonded to prevent the bending. (Yoshino, Y.)

  17. Fuel assembly

    International Nuclear Information System (INIS)

    Kawai, Mitsuo.

    1988-01-01

    Purpose: To reduce the corrosion rate and suppress the increase of radioactive corrosion products in reactor water of nuclear fuel assemblies for use in BWR type reactors having spacer springs made of nickel based deposition reinforced type alloys. Constitution: Spacer rings made of nickel based deposition reinforced type alloy are incorporated and used as fuel assemblies after applying treatment of dipping and maintaining at high temperature water followed by heating in steams. Since this can remove the nickel leaching into reactor water at the initial stage, Co-58 as the radioactive corrosion products in the reactor water can be reduced, and the operation at in-service inspection or repairement can be facilitated to improve the working efficiency of the nuclear power plant. The dipping time is desirably more than 10 hours and more desirably more than 30 hours. (Horiuchi, T. )

  18. Development of various welding techniques for refractory and reactive metals and alloys

    International Nuclear Information System (INIS)

    Tonpe, Sunil; Saibaba, N.

    2016-01-01

    Nuclear Fuel Complex (NFC), Hyderabad, India with its excellent manufacturing facilities, produces nuclear fuel and structural components for nuclear reactors. NFC has taken up the challenging job of production of various critical components made out of refractory and reactive metals and alloys for nuclear and aerospace applications as an indigenization import substitute program. Refractory metals are prime candidates for many high temperature aerospace components because of refractory metal's high melting points and inherent creep resistance. The use of refractory metals is often limited because of their poor room temperature properties, inadequate oxidation resistance at elevated temperatures, difficulties associated with joining or welding etc. These advanced materials demand stringent requirement with respect to chemistry, dimensional tolerances, mechanical and metallurgical properties. This paper discusses in detail various welding techniques adopted in NFC for refractory and reactive metals and alloys such as Nb, Zr, Ti, Ta, Zircaloy, Titanium-half alloy etc. to manufacture various components and assemblies required for nuclear and aerospace applications

  19. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  20. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  1. Nuclear fuel activities in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Bairiot, H

    1997-12-01

    In his presentation on nuclear fuel activities in belgium the author considers the following directions of this work: fuel fabrication, NPP operation, fuel performance, research and development programmes.

  2. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  3. Inspection of nuclear fuel transport in Spain

    International Nuclear Information System (INIS)

    Lobo Mendez, J.

    1977-01-01

    The experience acquired in inspecting nuclear fuel shipments carried out in Spain will serve as a basis for establishing the regulations wich must be adhered to for future transports, as the transport of nuclear fuels in Spain will increase considerably within the next years as a result of the Spanish nuclear program. The experience acquired in nuclear fuel transport inspection is described. (author) [es

  4. High U-density nuclear fuel development with application of centrifugal atomization technology

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Kim, Ki Hwan; Lee, Don Bae

    1997-01-01

    In order to simplify the preparation process and improve the properties of uranium silicide fuels prepared by mechanical comminution, a fuel fabrication process applying rotating-disk centrifugal atomization technology was invented in KAERI in 1989. The major characteristic of atomized U 3 Si and U 3 Si 2 powders have been examined. The out-pile properties, including the thermal compatibility between atomized particle and aluminum matrix in uranium silicide dispersion fuels, have generally showed a superiority to the comminuted fuels. Moreover, the RERTR (reduced enrichment for research and test reactors) program, which recently begins to develop very-high-density uranium alloy fuels, including U-Mo fuels, requires the centrifugal atomization process to overcome the contaminations of impurities and the difficulties of the comminution process. In addition, a cooperation with ANL in the U.S. has been performed to develop high-density fuels with an application of atomization technology since December 1996. If the microplate and miniplate irradiation tests of atomized fuels, which have been performed with ANL, demonstrated the stability and improvement of in-reactor behaviors, nuclear fuel fabrication technology by centrifugal atomization could be most-promising to the production method of very-high-uranium-loading fuels. (author). 22 refs., 2 tabs., 12 figs

  5. Zr-alloys, the nuclear material for water reactor fuel. A survey and update with focus on fuel for pressurized water reactor systems

    International Nuclear Information System (INIS)

    Weidinger, H.

    2008-01-01

    This paper is intended to provide a solid overview on the development of the requirements and the respective answers found as far as water cooled fuel rods and assemblies are concerned. It shall be a help as well for designers and manufacturers as also for users of this fuel, because only a broad and consistent knowledge on all aspects of the application of this material in nuclear fuel can guarantee a successful operation under the still increasing requirements in water cooled reactor cores

  6. World Nuclear Association position statement: Safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, Sylvain

    2006-01-01

    This WNA Position Statement summarises the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The paper's conclusion is that the safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating

  7. Automated ultrasonic scanning of flat plate nuclear fuel

    International Nuclear Information System (INIS)

    Barna, B.A.

    1979-01-01

    One of the most challenging problems in Non-Destructive Testing lies in making the inspection as rapid, precise, cost effective and operator independent as possible. Only by optimizing these four factors can a technology take full advantage of the quality control possible with NDT. This paper describes a highly complex application of high frequency ultrasonics to image extremely small and difficult to detect flaws in a production line environment. The objects of interest are flat plate nuclear fuel used in the Advanced Test Reactor at the Idaho National Engineering Laboratory. The plates are fabricated by hot rolling a sandwich of alloyed uranium fuel and aluminum cladding. After rolling, the block is flattened to a long thin plate approximately 1.27 m (55 inches) long, 102 mm (4 inches) wide and 1.25 mm (0.050 inches) thick. The core, or fuel area is nominally 0.75 mm (0.030 inches) thick with 0.25 mm (0.010 inches) of aluminum bonded to both sides. As might be expected the fabrication is a sensitive process which can introduce several flaws detrimental to the reactor operation if they are undetected. Two of the characteristics that must be examined are the cladding thickness of the aluminum left over the fuel and the quality of bond between the cladding and the fuel. If either the cladding is too thin or the bonding inadequate thermal and/or corrosive activity can crack the protective cladding

  8. OECD - HRP Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  9. OECD - HRP Summer School on Nuclear Fuel

    International Nuclear Information System (INIS)

    2000-01-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures

  10. Track record of the AREVA NP Nuclear Fuel in the United States of America

    International Nuclear Information System (INIS)

    Robertson, Scott T.; Bordy, Michelaristide

    2006-01-01

    Having its American, German and French legacy, AREVA NP has been and is supplying nuclear fuel assemblies and associated core components to PWR and BWR reactors around the world. To develop its action on the world market, AREVA NP has organized its activities on its major locations in Europe (France, Germany and Belgium) and in the USA. Also AREVA NP is strongly represented in the other nuclear countries (Asia, Eastern Europe, South America, South Africa and remaining European countries). Today AREVA NP has supplied more than 110,000 PWR and 51,000 BWR fuel assemblies to the world market. In the USA, AREVA NP has produced about 28,000 PWR fuel assemblies. Representing almost a quarter of the PWR American fuel market, AREVA NP is currently supplying or starting to supply 22 reactors from its 2 manufacturing plants located at Lynchburg (VA) and Richland (WA). This supply is currently based on HTP and Mark-BW designs, which have been distributed to all types of the US reactors and satisfy the NRC requirements. Also they are prepared for the current development of reactors, including AREVA NP's EPR reactor. At the time being our US PWR fuel takes the advantage of the thorough review performed on all our products, in order to keep the most proven and best performance features and allow US to better respond to each customer need. We propose the AGORA products with enough flexibility and variants to offer customized products, well suited to each customer's needs. These products incorporate a set of common characteristics and associated features, which are: · the use of the M5R alloy, as cladding material and as structural material. · a welded structure comprising the HMP alloy 718 bottom end grid, the MONOBLOC guide thimbles and the ROBUST FUELGUARD as lower tie plate. AREVA NP's fuel activities are supported by their engineering, manufacturing and fuel services which enable AREVA NP to provide utilities with licensed fuel design, a complete fuel package and suitable

  11. Magnesium transport extraction of transuranium elements from LWR fuel

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.; Pierce, R.D.

    1992-01-01

    This patent describes a process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuel containing rare earth and noble metal fission products as well as fission products of alkali metals, alkaline earth metals and iodine. It comprises reducing the oxide fuel with Ca metal in the presence of Ca halide; separating the Ca halide with the CaO and the fission products contained therein from the U-Fe alloy and the metal values dissolved therein and electrolytically contacting the calcium salts with a carbon electrode; contacting the liquid U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel with liquid Mg metal, thereafter separating the liquid Mg and the metals dissolved therein from the U-Fe alloy and the metal dissolved therein, distilling the Mg from the transuranium actinide and rare earth metals, recontacting the U-Fe alloy with liquid Mg metal a sufficient number of times until not less than about 99% by weight of the transuranium actinide values have been removed from the U-Fe alloy

  12. Highlights of 50 years of nuclear fuels developments

    International Nuclear Information System (INIS)

    Simnad, M.T.

    1989-01-01

    The development of nuclear fuels since the discovery of nuclear fission is briefly surveyed in this paper. The fabrication of the uranium fuel for the first nuclear pile, CP-1, is described. The research and development studies and fabrication of the different types of nuclear fuels for the variety of research and power reactors are reviewed. The important factors involved to achieve low fuel cycle costs and reliable performance in the fuel elements are discussed in the historical context

  13. On recycling of nuclear fuel in Japan

    International Nuclear Information System (INIS)

    1992-01-01

    In Japan, atomic energy has become to accomplish the important role in energy supply. Recently the interest in the protection of global environment heightened, and the anxiety on oil supply has been felt due to the circumstances in Mideast. Therefore, the importance of atomic energy as an energy source for hereafter increased, and the future plan of nuclear fuel recycling in Japan must be promoted on such viewpoint. At present in Japan, the construction of nuclear fuel cycle facilities is in progress in Rokkasho, Aomori Prefecture. The prototype FBR 'Monju' started the general functional test in May, this year. The transport of the plutonium reprocessed in U.K. and France to Japan will be carried out in near future. This report presents the concrete measures of nuclear fuel recycling in Japan from the long term viewpoint up to 2010. The necessity and meaning of nuclear fuel recycling in Japan, the effort related to nuclear nonproliferation, the plan of nuclear fuel recycling for hereafter in Japan, the organization of MOX fuel fabrication in Japan and abroad, the method of utilizing recovered uranium and the reprocessing of spent MOX fuel are described. (K.I.)

  14. Electroless deposition process for zirconium and zirconium alloys

    Science.gov (United States)

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  15. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  16. Method for automatic filling of nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Bezold, H.

    1979-01-01

    Prior to welding the zirconium alloy cladding tubes with end caps, they are automatically filled with nuclear fuel tablets and ceramic insulating tablets. The tablets are introduced into magazine drums and led through a drying oven to a discharging station. The empty cladding tubes are removed from this discharging station and filled with tablets. A filling stamp pushes out the columns of tablets in the magazine tubes of the magazine drum into the cladding tube. Weight and measurement of length determine the filled state of the cladding tube. The cladding tubes are then led to the welding station via a conveyor belt. (DG) [de

  17. Fuel Cycle Services The Heart of Nuclear Energy

    International Nuclear Information System (INIS)

    Soedyartomo-Soentono

    2007-01-01

    Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO 2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services world wide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international cooperations are central for proceeding with the utilization of nuclear energy, while this advantagous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically. (author)

  18. Fuel Cycle Services the Heart of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    S. Soentono

    2007-01-01

    Full Text Available Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant, management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services worldwide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international co-operations are central for proceeding with the utilization of nuclear energy, while this advantageous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically.

  19. Highlights of 50 years of nuclear fuel development

    International Nuclear Information System (INIS)

    Simnad, M.T.

    1989-01-01

    The development of nuclear fuels since the discovery of nuclear fission is briefly surveyed in this paper. The fabrication of the uranium fuel for the first nuclear pile, CP-1, is described. The research and development studies and fabrication of the different types of nuclear fuels for the variety of research and power reactors are reviewed. The important factors involved to achieve low fuel-cycle costs and reliable performance in the fuel elements are discussed in the historical context. 10 refs

  20. Modification in fuel processing of Mitsubishi Nuclear Fuel's Tokai Works

    International Nuclear Information System (INIS)

    1976-01-01

    Results of the study by the Committee for Examination of Fuel Safety, reported to the AEC of Japan, are presented, concerning safety of the modifications of Tokai Works, Mitsubishi Nuclear Fuel Co., Ltd. Safety has been confirmed thereof. The modifications covered are the following: storage facility of nuclear fuel in increase, analytical facility in transfer, fuel assemblage equipment in addition, incineration facility of combustible solid wastes in installation, experimental facility of uranium recovery in installation, and warehouse in installation. (Mori, K.)

  1. Nuclear fuel production

    International Nuclear Information System (INIS)

    Randol, A.G.

    1985-01-01

    The production of new fuel for a power plant reactor and its disposition following discharge from the power plant is usually referred to as the ''nuclear fuel cycle.'' The processing of fuel is cyclic in nature since sometime during a power plant's operation old or ''depleted'' fuel must be removed and new fuel inserted. For light water reactors this step typically occurs once every 12-18 months. Since the time required for mining of the raw ore to recovery of reusable fuel materials from discharged materials can span up to 8 years, the management of fuel to assure continuous power plant operation requires simultaneous handling of various aspects of several fuel cycles, for example, material is being mined for fuel to be inserted in a power plant 2 years into the future at the same time fuel is being reprocessed from a discharge 5 years prior. Important aspects of each step in the fuel production process are discussed

  2. Actions for continued safe wet storage of spent nuclear fuel at VVR-S reactor in Bucharest-Magurele

    International Nuclear Information System (INIS)

    Isbasescu, M.; Zorliu, A.; Silviu-laurentiu, B.; Stefan, V. . E-mail address of corresponding author: mirifa@ifin.nipne.ro; Isbasescu, M.)

    2005-01-01

    The Romanian VVR-S research reactor is located 8 kilometers from Bucharest in the town of Magurele and was operated by the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH). The reactor first reached criticality in July 1957 and operated until December 1997 when it was permanently shutdown. The VVR - S reactor of IFIN has two repositories for spent fuel elements: (1) Cooling pool located in the reactor room; (2) Long-term repositories located outside the reactor building - SNFW (spent nuclear fuel warehouse). The major factors believed to influence the pitting of aluminium alloys are conductivity, pH, and bicarbonate, chloride, sulphate and oxygen content. Some of these parameters have been analyzed at SNFW-IFIN-HH. (author)

  3. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  4. Development of the advanced nuclear materials -Development of Inconel alloys-

    International Nuclear Information System (INIS)

    Kuk, Il Hyun; Chang, Jin Sung; Lee, Chang Kyu; Park, Soon Dong; Kim, Woo Kon; Jeong, Man Kyo; Woo, Yoon Myung; Han, Chang Hee

    1995-07-01

    The performance and the integrity of the steam generator U-tubes directly affects the efficiency and economics of nuclear power plant because they are closely interrelated with the maintenance and repair. Also the steam generator U-tubes have been one of world-wide hot issues in nuclear power plants for long time because of their continuing corrosion-related degradation. Right after stress corrosion cracking of Alloy 600 tubes are reported at primary side, in which the environment is believed to be tightly controlled all the time, in mid 80's, alloy 690 has started to replace alloy 600. Alloy 690 is basically same with alloy 600 except more Cr content. Firstly minor elements in alloy 690 (C, B, N, Y, Mo) were added or controlled to improve hot workability and corrosion resistance. It would be much more desirable if the mechanism or basic understanding of the degradation phenomena of steam generator U-tubes in operation conditions can be illuminated through the alloy modification research. Alloy 600 tubes which were preproduced in cooperation with Sammi Special Steel were evaluated, being compared with imported one. Also alloy 600 and alloy 690 tubes were produced from Inconel 600 and 690 INCO- forged bar. These will be closely evaluated with purely Korean-made alloy 600 and 690 tubes. 22 tabs., 93 figs., 14 refs. (Author)

  5. Performance of refractory alloy-clad fuel pins

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Millhollen, M.K.

    1984-12-01

    This paper discusses objectives and basic design of two fuel-cladding tests being conducted in support of SP-100 technology development. Two of the current space nuclear power concepts use conventional pin type designs, where a coolant removes the heat from the core and transports it to an out-of-core energy conversion system. An extensive irradiation testing program was conducted in the 1950's and 1960's to develop fuel pins for space nuclear reactors. The program emphasized refractory metal clad uranium nitride (UN), uranium carbide (UC), uranium oxide (UO 2 ), and metal matrix fuels (UCZr and BeO-UO 2 ). Based on this earlier work, studies presented here show that UN and UO 2 fuels in conjunction with several refractory metal cladding materials demonstrated high potential for meeting space reactor requirements and that UC could serve as an alternative but higher risk fuel

  6. National Policy on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Soedyartomo, S.

    1996-01-01

    National policy on nuclear fuel cycle is aimed at attaining the expected condition, i.e. being able to support optimality the national energy policy and other related Government policies taking into account current domestic nuclear fuel cycle condition and the trend of international nuclear fuel cycle development, the national strength, weakness, thread and opportunity in the field of energy. This policy has to be followed by the strategy to accomplish covering the optimization of domestic efforts, cooperation with other countries, and or purchasing licences. These policy and strategy have to be broken down into various nuclear fuel cycle programmes covering basically assesment of the whole cycle, performing research and development of the whole cycle without enrichment and reprocessing being able for weapon, as well as programmes for industrialization of the fuel cycle stepwisery commencing with the middle part of the cycle and ending with the edge of the back-end of the cycle

  7. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  8. Proceedings of the 2006 International Meeting on LWR fuel performance 'Nuclear Fuel: Addressing the future' - TopFuel 2006 Transactions

    International Nuclear Information System (INIS)

    2006-01-01

    From 22-26 October, 340 researchers, nuclear engineers and scientists from across Europe and beyond congregated in the ancient university city of Salamanca, Spain, to discuss the challenges facing the developers and manufacturers of new high-performance nuclear fuels-fuels that will help meet current and future energy demand and reduce man's over dependence upon CO 2 -emitting fossil fuels. TopFuel is an annual topical meeting organised by ENS, the American Nuclear Society and the Atomic Energy Society of Japan. This year it was co-sponsored by the IAEA, the OECD/NEA and the Spanish Nuclear Society (SNE). TopFuel's primary objective was to bring together leading specialists in the field from around the world to analyse advances in nuclear fuel management technology and to use the findings of the latest cutting-edge research to help manufacture the high performance nuclear fuels of today and tomorrow. The TopFuel 2006 agenda revolved around ten technical sessions dedicated to priority issues such as security of supply, new fuel and reactor core designs, fuel cycle strategies and spent fuel management. Among the many topics under discussion were new developments in fuel performance modelling, advanced fuel assembly design and the improved conditioning and processing of spent fuel. During the week, a poster exhibition also gave delegates the opportunity to display and discuss the results of their latest work and to network with fellow professionals. One important statement to emerge from TopFuel 2006 was that the world has enough reserves of uranium to support the large-scale and long-term production of nuclear energy. The OECD/NEA and the IAEA recently published a report entitled Uranium 2005: Resources, Production and Demand (the Red Book). The report, which makes a comprehensive assessment of uranium supplies and projected demand up until the year 2025, concludes by saying 'the uranium resource base is adequate to meet projected future requirements'. With the

  9. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  10. Critical review of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kuster, N.

    1996-01-01

    Transmutation of long-lived radionuclides is considered as an alternative to the in-depth disposal of spent nuclear fuel, in particular, on the final stage of the nuclear fuel cycle. The majority of conclusions is the result of the common work of the Karlsruhe FZK and the Commissariat on nuclear energy of France (CEA)

  11. Fuel particle coating data

    International Nuclear Information System (INIS)

    Hollabaugh, C.M.; Wagner, P.; Wahman, L.A.; White, R.W.

    1977-01-01

    Development of coating on nuclear fuel particles for the High-Temperature Fuels Technology program at the Los Alamos Scientific Laboratory included process studies for low-density porous and high-density isotropic carbon coats, and for ZrC and ''alloy'' C/ZrC coats. This report documents the data generated by these studies

  12. On the nuclear fuel and fossil fuel reserves

    International Nuclear Information System (INIS)

    Fettweis, G.

    1978-01-01

    A short discussion of the nuclear fuel and fossil fuel reserves and the connected problem of prices evolution is presented. The need to regard fuel production under an economic aspect is emphasized. Data about known and assessed fuel reserves, world-wide and with special consideration of Austria, are reviewed. It is concluded that in view of the fuel reserves situation an energy policy which allows for a maximum of options seems adequate. (G.G.)

  13. The nuclear fuel cycle: (2) fuel element manufacture

    International Nuclear Information System (INIS)

    Doran, J.

    1976-01-01

    Large-scale production of nuclear fuel in the United Kingdom is carried out at Springfields Works of British Nuclear Fuels Ltd., a company formed from the United Kingdom Atomic Energy Authority in 1971. The paper describes in some detail the Springfields Works processes for the conversion of uranium ore concentrate to uranium tetrafluoride, then conversion of the tetrafluoride to either uranium metal for cladding in Magnox to form fuel for the British Mk I gas-cooled reactors, or to uranium hexafluoride for enrichment of the fissile 235 U isotope content at the Capenhurst Works of BNFL. Details are given of the reconversion at Springfields Works of this enriched uranium hexafluoride to uranium dioxide, which is pelleted and then clad in either stainless steel or zircaloy containers to form the fuel assemblies for the British Mk II AGR or advanced gas-cooled reactors or for the water reactor fuels. (author)

  14. FERC perspectives on nuclear fuel accounting issues

    International Nuclear Information System (INIS)

    McDanal, M.W.

    1986-01-01

    The purpose of the presentation is to discuss the treatment of nuclear fuel and problems that have evolved in industry practices in accounting for fuel. For some time, revisions to the Uniform System of Accounts have been considered with regard to the nuclear fuel accounts. A number of controversial issues have been encountered on audits, including treatment of nuclear fuel enrichment charges, costs associated with delays in enrichment services, the treatment and recognition of fuel inventories in excess of current or projected needs, and investments in and advances to mining and milling companies for future deliveries of nuclear fuel materials. In an effort to remedy the problems and to adapt the Federal Energy Regulatory Commission's accounting to more easily provide for or point out classifications for each problem area, staff is reevaluating the need for contemplated amendments to the Uniform System of Accounts

  15. Some aspects of a technology of processing weapons grade plutonium to nuclear fuel

    International Nuclear Information System (INIS)

    Bibilashvili, Y.; Glagovsky, E.M.; Zakharkin, B.S.; Orlov, V.K.; Reshetnikov, F.G.; Rogozkin, B.G.; Soloni-N, M.I.

    2000-01-01

    The concept by Russia to use fissile weapons-grade materials, which are being recovered from nuclear pits in the process of disarmament, is based on an assessment of weapons-grade plutonium as an important energy source intended for use in nuclear power plants. However, in the path of involving plutonium excessive from the purposes of national safety into industrial power engineering there are a lot of problems, from which effectiveness and terms of its disposition are being dependent upon. Those problems have political, economical, financial and environmental character. This report outlines several technology problems of processing weapons-grade metallic plutonium into MOX-fuel for reactors based on thermal and fast neutrons, in particular, the issue of conversion of the metal into dioxide from the viewpoint of fabrication of pelletized MOX-fuel. The processing of metallic weapons-grade plutonium into nuclear fuel is a rather complicated and multi-stage process, every stage of which is its own production. Some of the stages are absent in production of MOX-fuel, for instance the stage of the conversion, i.e. transferring of metallic plutonium into dioxide of the ceramic quality. At this stage of plutonium utilization some tasks must be resolved as follows: I. As a result of the conversion, a material purified from ballast and radiogenic admixtures has to be obtained. This one will be applied to fabricate pelletized MOX-fuel going from morphological, physico-mechanical and technological properties. II. It is well known that metallic gallium, which is used as an alloying addition in weapons-grade plutonium, actively reacts with multiple metals. Therefore, an important issue is to study the effect of gallium on the technology of MOX-fuel production, quality of the pellets, as well as the interaction of gallium oxide with zirconium and steel shells of fuel elements depending upon the content of gallium in the fuel. The rate of the interaction of gallium oxide

  16. Study of the processes for of remelting zirconium alloys in an electric arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiz A.T.; Rossi, Jesualdo L.; Costa, Guilherme R.; Martinez, Luis G.; Sato, Ivone M., E-mail: luiz.atp@uol.com.br, E-mail: jelrossi@ipen.br, E-mail: guilhermeramoscosta@gmail.com, E-mail: lgallego@ipen.br, E-mail: imsato@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Zirconium alloy tubes are used as cladding for fuel elements of PWR nuclear reactors, which contains the UO{sub 2} pellets. In the manufacture of these fuel element parts, machining chips from the nuclear grade zirconium alloys are generated. Hence, these machining chips cannot be discarded, as ordinary metallic waste. Thus, the recycling of this material is a strategic aspect for the nuclear technology, both for economic and environmental issues. The main reason is that nuclear grade alloys have very high cost, are not commercially produced in Brazil and has to be imported for the manufacture of the nuclear fuels. This work discusses a method to melt and recycle Zircaloy chips, using an electric-arc furnace to obtain small laboratory ingots. The chemical composition of the ingots was determined using X-ray fluorescence spectroscopy and was compared to the specifications of nuclear grade Zircaloy and to the chemical composition of the received machining chips. The ingots were annealed in high vacuum, as well as were hot rolled in a mill. The microstructures were characterized by optical microscopy. The hardness was evaluated using the Rockwell B scale hardness. The results showed that the compositions of the recycled Zircaloy comply with the chemical specifications and a suitable microstructure has been obtained for nuclear use. (author)

  17. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  18. The economy of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, W [Alpha Chemie und Metallurgie G.m.b.H. (ALKEM), Hanau (Germany, F.R.)

    1989-07-01

    Heat extracted from nuclear fuel costs by a factor of 3 to 7 less than heat from conventional fossile fuel. So, nuclear fuel per se has an economical advantage, decreased however partly by higher nuclear plant investment costs. The standard LWR design does not allow all the fission energy stored in the fuel during on cycle to be used. It is therefore the most natural approach to separate fissionable species from fission products and consume them by fissioning. Whether this is economically justified as opposed by storing them indefinitely with spent fuel has widely been debated. The paper outlines the different approaches taken by nuclear communities worldwide and their perceived or proven rational arguments. It will balance economic and other factors for the near and distant future including advanced reactor concepts. The specific solution within the German nuclear programme will be explained, including foreseeable future trends. (orig.).

  19. In situ Investigation of Oxide Films on Zirconium Alloy in PWR Primary Water Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Zirconium alloys are used as fuel cladding materials in nuclear power reactors, because these materials have a very low thermal neutron capture cross section as well as desirable mechanical properties. However, the Fukushima accident shows that the oxidation behavior of zirconium alloy is an important issue because the zirconium alloy functions as a shield of nuclear material (i.e., uranium, fission gas), and the degradation on zirconium cladding directly causes severe accident on nuclear power plant. Therefore, to ensure the safety of nuclear power reactors, the performance and sustainability of nuclear fuel should be understood. Currently, the water-metal interface is regarded as the rate-controlling site governing the rapid oxidation transition in high-burn-up fuels. Zirconium oxide is formed at the water-metal interface, and its structure and phase play an important role in determining its mechanical properties. In the early stage of the oxidation process, zirconium oxide with both tetragonal and monoclinic phases is formed. With an increase in the oxidation time to 150 h, the unstable tetragonal phase disappears and the monoclinic phase is dominant and possibly because of the stress relaxation according to previous and present results.

  20. Nonproliferation norms in civilian nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kawata, Tomio

    2005-01-01

    For sustainable use of nuclear energy in large scale, it seems inevitable to choose a closed cycle option. One of the important questions is, then, whether we can really achieve the compatibility between civilian nuclear fuel cycle and nonproliferation norms. In this aspect, Japan is very unique because she is now only one country with full-scope nuclear fuel cycle program as a non-nuclear weapon state in NPT regime. In June 2004 in the midst of heightened proliferation concerns in NPT regime, the IAEA Board of Governors concluded that, for Japanese nuclear energy program, non-diversion of declared nuclear material and the absence of undeclared nuclear material and activities were verified through the inspections and examinations under Comprehensive Safeguards and the Additional Protocol. Based on this conclusion, the IAEA announced the implementation of Integrated Safeguards in Japan in September 2004. This paper reviews how Japan has succeeded in becoming the first country with full-scope nuclear fuel cycle program to qualify for integrated Safeguards, and identifies five key elements that have made this achievement happen: (1) Obvious need of nuclear fuel cycle program, (2) Country's clear intention for renunciation of nuclear armament, (3) Transparency of national nuclear energy program, (4) Record of excellent compliance with nonproliferation obligations for many decades, and (5) Numerous proactive efforts. These five key elements will constitute a kind of an acceptance model for civilian nuclear fuel cycle in NNWS, and may become the basis for building 'Nonproliferation Culture'. (author)

  1. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  2. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.; Macivergan, R.; Mckenzie, G.W.

    1980-01-01

    An apparatus incorporating a microprocessor control is provided for automatically loading nuclear fuel pellets into fuel rods commonly used in nuclear reactor cores. The apparatus comprises a split ''v'' trough for assembling segments of fuel pellets in rows and a shuttle to receive the fuel pellets from the split ''v'' trough when the two sides of the split ''v'' trough are opened. The pellets are weighed while in the shuttle, and the shuttle then moves the pellets into alignment with a fuel rod. A guide bushing is provided to assist the transfer of the pellets into the fuel rod. A rod carousel which holds a plurality of fuel rods presents the proper rod to the guide bushing at the appropriate stage in the loading sequence. The bushing advances to engage the fuel rod, and the shuttle advances to engage the guide bushing. The pellets are then loaded into the fuel rod by a motor operated push rod. The guide bushing includes a photocell utilized in conjunction with the push rod to measure the length of the row of fuel pellets inserted in the fuel rod

  3. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  4. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  5. Nuclear Fuels & Materials Spotlight Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  6. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance

    Science.gov (United States)

    Atwan, Mohammed H.; Macdonald, Charles L. B.; Northwood, Derek O.; Gyenge, Elod L.

    Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20 wt% metal load) were prepared by the Bönneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH 4 -, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH 4 - oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5 mg cm -2 colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47 V at 100 mA cm -2 and 333 K, while under identical conditions the cell voltage using colloidal Au was 0.17 V.

  7. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, Mohammed H.; Northwood, Derek O. [Department of Mechanical, Auto and Materials Engineering, University of Windsor, Windsor (Canada N9B 3P4); Macdonald, Charles L.B. [Department of Chemistry and Biochemistry, University of Windsor, Windsor (Canada N9B 3P4); Gyenge, Elod L. [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC (Canada V6T 1Z4)

    2006-07-14

    Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20wt% metal load) were prepared by the Bonneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH{sub 4}{sup -}, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH{sub 4}{sup -} oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5mgcm{sup -2} colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47V at 100mAcm{sup -2} and 333K, while under identical conditions the cell voltage using colloidal Au was 0.17V. (author)

  8. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  9. Spent-fuel-stabilizer screening studies

    International Nuclear Information System (INIS)

    Wynhoff, N.; Girault, S.E.; Fish, R.L.

    1980-11-01

    A broad range of potential stabilizer materials was identified and screened for packaging spent fuel assemblies for underground storage. The screening took into consideration the thermal gradient, stress, differential thermal expansion, nuclear criticality, radiation shielding, cost, and availability. Recommended stabilizer materials for further testing include silica, quartz, mullite, zircon, bentonite, graphite, gases, lead, Zn alloys, Cu alloys, etc

  10. Prospects for Australian involvement in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Chandra, S.; Hallenstein, C.

    1988-05-01

    A review of recent overseas developments in the nuclear industry by The Northern Territory Department of Mines and Energy suggests that there are market prospects in all stages of the fuel cycle. Australia could secure those markets through aggressive marketing and competitive prices. This report gives a profile of the nuclear fuel cycle and nuclear fuel cycle technologies, and describes the prospects of Australian involvement in the nuclear fuel cycle. It concludes that the nuclear fuel cycle industry has the potential to earn around $10 billion per year in export income. It recommend that the Federal Government: (1) re-examines its position on the Slayter recommendation (1984) that Australia should develop new uranium mines and further stages of the nuclear fuel cycle, and (2) gives it's in-principle agreement to the Northern Territory to seek expressions of interest from the nuclear industry for the establishment of an integrated nuclear fuel cycle industry in the Northern Territory

  11. Development of nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Kawahara, Akira; Sugimoto, Yoshikazu; Shibata, Satoshi; Ikeda, Takashi; Suzuki, Kazumichi; Miki, Atsushi.

    1990-01-01

    In order to establish the stable supply of nuclear fuel as an important energy source, Hitachi ltd. has advanced the technical development aiming at the heightening of reliability, the increase of capacity, upgrading and the heightening of performance of the facilities related to nuclear fuel cycle. As for fuel reprocessing, Japan Nuclear Fuel Service Ltd. is promoting the construction of a commercial fuel reprocessing plant which is the first in Japan. The verification of the process performance, the ensuring of high reliability accompanying large capacity and the technical development for recovering effective resources from spent fuel are advanced. Moreover, as for uranium enrichment, Laser Enrichment Technology Research Association was founded mainly by electric power companies, and the development of the next generation enrichment technology using laser is promoted. The development of spent fuel reprocessing technology, the development of the basic technology of atomic process laser enrichment and so on are reported. In addition to the above technologies recently developed by Hitachi Ltd., the technology of reducing harm and solidification of radioactive wastes, the molecular process laser enrichment and others are developed. (K.I.)

  12. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  13. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, Ronald O. [North Carolina State Univ., Raleigh, NC (United States)

    2016-04-26

    We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atoms and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not

  14. Supply and cost factors for metals in the Canadian nuclear fuel waste immobilization program

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1982-11-01

    Estimates have been made of the demand for immobilization containers to accommodate the irradiated fuel bundles arising from Canadian nuclear generating stations to the year 2020. The resulting estimates for container shells and container-filling alloys were compared to estimates for Canadian and Western World production of the candiate metals. The results indicate that, among the container shell metals, supply difficulties might arise only for Grade 7 titanium. Among the filling metals, only lead-antimony alloy might present supply problems. Current cost figures for plate made of each shell metal, and bulk quantities of filling metals, were compared. Materials costs would be least for a supported shell of stainless steel, followed by copper, titanium alloys Grades 2, 12 and 7, and Inconel 625. Aluminum-silicon is the lowest-cost filling matrix, followed by zinc, lead, and lead-antimony. Container durability, vault conditions, groundwater composition and other factors may play an overriding role in the final selection of materials for container construction

  15. Low content uranium alloys for nuclear fuels; Alliages d'uranium a faible teneur pour elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, H; Laniesse, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A description is given of the structure and the properties of low content alloys containing from 0.1 to 0.5 per cent by weight of Al, Fe, Cr, Si, Mo or a combination of these elements. A study of the kinetics and of the mode of transformation has made it possible to choose the most satisfactory thermal treatment. An attempt has been made to prepare alloys suitable for an economical industrial development having a small {alpha} grain structure without marked preferential orientation, with very fine and stable precipitates as well as a high creep-resistance. The physical properties and the mechanical strength of these alloys are given for temperatures of 20 to 600 deg C. These alloys proved very satisfactory when irradiated in the form of normal size fuel elements. (authors) [French] Sont decrits la structure et les proprietes d'alliages a faible teneur, contenant de 0,1 a 0,5 pour cent en poids de Al, Fe, Cr, Si, Mo ou une combinaison de ces elements. L'etude des cinetiques et du mode de transformation permet de choisir le traitement thermique le plus favorable. On a cherche a mettre, au point des alliages se pretant a une mise en oeuvre industrielle economique et presentant une structure a petits grains {alpha}, sans orientation preferentielle marquee, avec des precipites tres fins et stables ainsi qu'une bonne resistance au fluage. Les proprietes physiques et la resistance mecanique de ces alliages sont decrites entre la temperature ambiante et 600 deg C. Irradies sous forme d'elements combustibles de dimensions normales, ces alliages ont montre un bon comportement. (auteurs)

  16. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  17. Nuclear power generation and fuel cycle report 1996

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included

  18. Potential information requirements for spent nuclear fuel

    International Nuclear Information System (INIS)

    Disbrow, J.A.

    1991-01-01

    This paper reports that the Energy Information Administration (EIA) has performed analyses of the requirements for data and information for the management of commercial spent nuclear fuel (SNF) designated for disposal under the Nuclear Waste Policy Act (NWPA). Subsequently, the EIA collected data on the amounts and characteristics of SNF stored at commercial nuclear facilities. Most recently, the EIA performed an analysis of the international and domestic laws and regulations which have been established to ensure the safeguarding, accountability, and safe management of special nuclear materials (SNM). The SNM of interest are those designated for permanent disposal by the NWPA. This analysis was performed to determine what data and information may be needed to fulfill the specific accountability responsibilities of the Department of Energy (DOE) related to SNF handling, transportation, storage and disposal; to work toward achieving a consistency between nuclear fuel assembly identifiers and material weights as reported by the various responsible parties; and to assist in the revision of the Nuclear Fuel Data Form RW-859 used to obtain spent nuclear fuel characteristics data from the nuclear utilities

  19. Proceedings of a workshop on corrosion of Nuclear fuel waste containers

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1990-01-01

    The 23 papers presented at this conference review the technical merits, and particularly corrosion performance, of the three main materials used for nuclear fuel waste containers: titanium and its alloys, copper and its alloys, and iron and carbon steels. The specific questions posed to the Workshop were: 1) Can we predict the lifetime of container materials in a variety of vault environments? 2) Is there a limiting range of conditions beyond which a specific material cannot be used? 3) Do we have the necessary corrosion rate data and/or mechanistic models required to make predictions? 4) Can we justify the use of titanium on the basis of propagation rate measurements for crevice corrosion, or do we need to prove initiation cannot occur? 5) Will the pitting of copper be significant? 6) How thick a carbon steel container would be required, and can it be fabricated and stress-relieved? 7) Are radiation fields of any consequence at the dose rates expected?

  20. Transportation of nuclear fuel

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1979-01-01

    Shipment of used fuel from nuclear reactors to a central fuel management facility is discussed with particular emphasis on the assessment of the risk to the public due to these shipments. The methods of transporting used fuel in large shipping containers is reviewed. In terms of an accident scenario, it is demonstrated that the primary risk of transport of used fuel is due to injury and death in common road accidents. The radiological nature of the used fuel cargo is, for all practical purposes, an insignificant factor in the total risk to the public. (author)

  1. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  2. Nuclear fuel operation at Balakovo NPP

    International Nuclear Information System (INIS)

    Morozov, A.

    2015-01-01

    The presentation addressed the positive experience of the TVS-2M assemblies implementation at Balakovo NPP in 18 month fuel cycles, at uprated power (104%) and the usage of the axial profiled Gd-rods in order to minimize the power peaking factors and linear heat rate in the upper part in some of the fuel rods. The results of the test operation of fuel rods with different claddings, made by E110M, E125 and E635M alloys at Balakovo NPP were also provided. The recently observed problem with the “white crust” on the cladding surfaces was also discussed

  3. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  4. An introduction to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1986-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work;second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity;and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US. 34 figs., 10 tabs

  5. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  6. Method of making nuclear fuel bodies

    International Nuclear Information System (INIS)

    Davis, D.E.; Leary, D.F.

    1977-01-01

    A method of making nuclear fuel bodies is described comprising: providing particulate graphite having a particle size not greater than about 1500 microns; impregnating the graphite with a polymerizable organic resin in liquid form; treating the impregnated particles with a hot aqueous acid solution to pre-cure the impregnated resin and to remove excess resin from the surfaces of said graphite particles; heating the treated particles to polymerize the impregnant; blending the impregnated particles with particulate nuclear fuel; and forming a nuclear fuel body by joining the blend of particles into a cohesive mass using a carbonaceous binder

  7. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  8. Assessment of the feasibility of indefinite containment of canadian nuclear fuel wastes; Evaluation de la faisabilite du confinement illimite des dechets de combustible nucleaire canadiens

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W.; King, F.; Ikeda, B.M.

    1995-05-01

    This report presents an analysis of the expected corrosion behavior of nuclear fuel waste containers in a conceptual Canadian disposal vault. The container materials considered are dilute Ti alloys (Grades-2, -12 and -16) and oxygen-free copper.

  9. Determination of uranium traces in nuclear cans of nuclear reactors

    International Nuclear Information System (INIS)

    Acosta L, E.; Benavides M, A.M.; Sanchez P, L.

    1996-01-01

    To quantify the uranium content as impurity can be found in zirconium alloys and zircaloy, utilized to construct the sheaths containing fuels of the reactors of nuclear plants. The determination by fluorescence spectroscopy was employed as quality control measurement, at once the corrosion resistance, diminish with the increase of the uranium content in the alloys. (Author)

  10. Request from nuclear fuel cycle and criticality safety design

    International Nuclear Information System (INIS)

    Hamasaki, Manabu; Sakashita, Kiichiro; Natsume, Toshihiro

    2005-01-01

    The quality and reliability of criticality safety design of nuclear fuel cycle systems such as fuel fabrication facilities, fuel reprocessing facilities, storage systems of various forms of nuclear materials or transportation casks have been largely dependent on the quality of criticality safety analyses using qualified criticality calculation code systems and reliable nuclear data sets. In this report, we summarize the characteristics of the nuclear fuel cycle systems and the perspective of the requirements for the nuclear data, with brief comments on the recent issue about spent fuel disposal. (author)

  11. Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy working group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The purpose of the policy paper presented is to recommend the actions deemed necessary to assure that future US and other non-Communist countries' nuclear fuels supply will be adequate to meet future energy demand. Taken together, the recommended decisions and actions form a nuclear fuels supply policy for the United States Government and for the private sector, and new areas of responsibility for the appropriate international organizations in which the US participates. The principal conclusions and recommendations are that the US and the other industrialized non-Communist countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends upon the security of supply of energy resources and the ability to substitute one form of fuel for another. The substitutability and efficient use of energy resources are enhanced by accelerating the supply and use of electricity

  12. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Butterfield, R.S.; Garner, D.L.M.

    1977-01-01

    Reference is made to nuclear fuel assemblies designed for cooling on the 'tube-in-shell' principle in which the fuel is contained by a shell and is cooled by coolant passed through tubes extending through the shell. It has been proposed to employ coated particle fuel as a porous bed on the tube side and the bleed coolant from the tubes into direct contact with the fuel particles. In this way heat is extracted both by direct contact with the fuel and by heat transfer through the coolant tube walls. The system described aims to provide an improved structure of tube and shell for a fuel assembly of this kind and is particularly suitable for use in a gas cooled fast reactor, being able to withstand the neutron flux and high temperature conditions in these reactors. Constructional details are given. (U.K.)

  13. Proliferation Resistant Nuclear Reactor Fuel

    International Nuclear Information System (INIS)

    Gray, L.W.; Moody, K.J.; Bradley, K.S.; Lorenzana, H.E.

    2011-01-01

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  14. Innovative microstructures in nuclear fuels

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Kumar, Arun; Kamath, H.S.

    2009-01-01

    For cleaner and safe nuclear power, new processes are required to design better nuclear fuels and make more efficient reactors to generate nuclear power. Therefore, one must understand how the microstructure changes during reactor operation. Accordingly, the materials scientists and engineers can then design and fabricate fuels with higher reliability and performance. Microstructure and its evolution are big unknowns in nuclear fuel. The basic requirements for the high performance of a fuel are: a) Soft pellets - To reduce Pellet clad mechanical interaction (PCMI) b) Large grain size - To reduce fission gas release (FGR). The strength of the pellet at room temperature is related to grain size by the Hall-Petch relation. Accordingly, the lower grain sized pellets will have high strength. But at high temperature (above equicohesive temperature) the grain boundaries becomes weaker than grain matrix. Since the small grain sized pellets have more grain boundary areas, these pellet become softer than pellet that have large grain sizes. Also as grain size decreases, creep rate of the fuel increases. Therefore, pellets with small grain size have higher creep rate and better plasticity. Therefore, these pellets will be useful to reduce the PCMI. On the other hand, pellet with large grain size is beneficial to reduce the fission gas release. In developing thermal reactor fuels for high burn-up, this factor should be taken into consideration. The question being asked is whether the microstructure can be tailored for irradiation hardening, fracture resistance, fission-gas release. This paper deals with the role played by microstructure for better irradiation performance. (author)

  15. The IFR modern nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs

  16. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.

    1982-01-01

    A fuel assembly in a nuclear reactor comprises a locking mechanism that is capable of locking the fuel assembly to the core plate of a nuclear reactor to prevent inadvertent movement of the fuel assembly. The locking mechanism comprises a ratchet mechanism 108 that allows the fuel assembly to be easily locked to the core plate but prevents unlocking except when the ratchet is disengaged. The ratchet mechanism is coupled to the locking mechanism by a rotatable guide tube for a control rod or water displacer rod. (author)

  17. International co-operation in the supply of nuclear fuel and fuel cycle services

    International Nuclear Information System (INIS)

    Sievering, N.F. Jr.

    1977-01-01

    Recent changes in the United States' nuclear policy, in recognition of the increased proliferation risk, have raised questions of US intentions in international nuclear fuel and fuel-cycle service co-operation. This paper details those intentions in relation to the key elements of the new policy. In the past, the USA has been a world leader in peaceful nuclear co-operation with other nations and, mindful of the relationships between civilian nuclear technology and nuclear weapon proliferation, remains strongly committed to the Non-Proliferation Treaty, IAEA safeguards and other elements concerned with international nuclear affairs. Now, in implementing President Carter's nuclear initiatives, the USA will continue its leading role in nuclear fuel and fuel-cycle co-operation in two ways, (1) by increasing its enrichment capacity for providing international LWR fuel supplies and (2) by taking the lead in solving the problems of near and long-term spent fuel storage and disposal. Beyond these specific steps, the USA feels that the international community's past efforts in controlling the proliferation risks of nuclear power are necessary but inadequate for the future. Accordingly, the USA urges other similarly concerned nations to pause with present developments and to join in a programme of international co-operation and participation in a re-assessment of future plans which would include: (1) Mutual assessments of fuel cycles alternative to the current uranium/plutonium cycle for LWRs and breeders, seeking to lessen proliferation risks; (2) co-operative mechanisms for ensuring the ''front-end'' fuel supply including uranium resource exploration, adequate enrichment capacity, and institutional arrangements; (3) means of dealing with short-, medium- and long-term spent fuel storage needs by means of technical co-operation and assistance and possibly establishment of international storage or repository facilities; and (4) for reprocessing plants, and related fuel

  18. Model of cooling nuclear fuel rod in the nuclear reactor

    International Nuclear Information System (INIS)

    Lavicka, David; Polansky, Jiri

    2010-01-01

    The following topics are described: Some basic requirements for nuclear fuel rods; The VVER 1000 fuel rod; Classification of the two-phase flow in the vertical tube; Type of heat transfer crisis in the vertical tube; Experimental apparatus; Model of the nuclear fuel rod and spacers; Potential of the experimental apparatus (velocity profile measurement via PIV; thermal flow field measurement by the PLIF method; cooling graph in dependence on the fuel rod temperature; comparison of the hydrodynamic properties with respect to the design features of the spacers). (P.A.)

  19. Sintering method for nuclear fuel pellet

    International Nuclear Information System (INIS)

    Omuta, Hirofumi; Nakabayashi, Shigetoshi.

    1997-01-01

    When sintering a compressed nuclear fuel powder in an atmosphere of a mixed gas comprising hydrogen and nitrogen, steams are added to the mixed gas to suppress the nitrogen content in sintered nuclear fuel pellets. In addition, the content of nitrogen impurities in the nuclear fuel pellets can be controlled by controlling the amount of steams to be added to the mixed gas, namely, by controlling the dew point as an index thereof. If the addition amount of steams to the mixed gas is determined by controlling the dew point as an index, the content of nitrogen impurities in the sintered nuclear fuel pellets can be controlled reliably to a specified value of 0.0075% or less. If ammonolyzed gas is used as the mixed gas, a more economical mixed gas can be obtained than in the case of forming mixed gas by mixing the hydrogen gas and the nitrogen gas. (N.H.)

  20. Waterside corrosion of zirconium alloys in nuclear power plants

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Baek, B. J.; Park, S. Y. and others

    1999-08-01

    The overview of corrosion and hydriding behaviors of Zr-based alloy under the conditions of the in-reactor service and in the absence of irradiation is introduced in this report. The metallurgical characteristics of Zr-based alloys and the thermo-mechanical treatments on the microstructures and the textures in the manufacturing process for fuel cladding are also introduced. The factors affecting the corrosion of Zr alloy in reactor are summarized. And the corrosion mechanism and hydrogen up-take are discussed based on the laboratory and in-reactor results. The phenomenological observations of zirconium alloy corrosion in reactors are summarized and the models of in-reactor corrosion are exclusively discussed. Finally, the effects of irradiation on the corrosion process in Zr alloy were investigated mainly based on the literature data. (author). 538 refs., 26 tabs., 105 figs

  1. Nuclear fuel for VVER reactors. Actual state and trends

    International Nuclear Information System (INIS)

    Molchanov, V.

    2011-01-01

    The main tasks concerning development of FA design, development and modernization of structural materials, improvement of technology of structural materials manufacturing and FA fabrication and development of methods and codes are discussed in this paper. The main features and expected benefit of implementation of second generation and third generation fuel assembly for VVER-440 Nuclear Fuel are given. A brief review of VVER-440 and VVER-1000 Nuclear Fuel development before 1997 since 2010 is shown. A summary of VVER-440 and VVER-1000 Nuclear Fuel Today, including details about TVSA-PLUS, TVSA-ALFA, TVSA-12 and NPP-2006 Phase 2 tasks (2010-2012) is presented. In conclusion, as a result of large scope of R and D performed by leading enterprises of nuclear industry modern nuclear fuel for VVER reactors is developed, implemented and successfully operated. Fuel performance (burnup, lifetime, fuel cycles, operating reliability, etc.) meets the level of world's producers of nuclear fuel for commercial reactors

  2. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  3. The IFR modern nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs.

  4. Technical report: technical development on the silicide plate-type fuel experiment at nuclear safety research reactor

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Soyama, Kazuhiko; Ichikawa, Hiroki

    1991-08-01

    According to a reduction of fuel enrichment from 45 w/o 235 U to 20 w/o, an aluminide plate-type fuel used currently in the domestic research and material testing reactors will be replaced by a silicide plate-type one. One of the major concern arisen from this alternation is to understand the fuel behavior under simulated reactivity initiated accident (RIA) conditions, this is strongly necessary from the safety and licensing point of view. The in-core RIA experiments are, therefore, carried out at Nuclear Safety Research Reactor (NSRR) in Japan Atomic Energy Research Institute (JAERI). The silicide plate-type fuel consisted of the ternary alloy of U-Al-Si as a meat with uranium density up to 4.8 g/cm 3 having thickness by 0.51 mm and the binary alloy of Al-3%Mg as a cladding by thickness of 0.38 mm. Comparison of the physical properties of this metallic plate fuel with the UO 2 -zircaloy fuel rod used conventionally in commercial light water reactors shows that the heat conductivity of the former is of the order of about 13 times greater than the latter, however the melting temperature is only one-half (1570degC). Prior to in-core RIA experiments, there were some difficulties lay in our technical path. This report summarized the technical achievements obtained through our four years work. (J.P.N.)

  5. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Skutnik, Steven E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    2017-06-19

    The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared to a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output

  6. Manufacture of fuel and fuel channels and their performance in Indian PHWRs'

    International Nuclear Information System (INIS)

    Kalidas, R.

    2005-01-01

    Nuclear Fuel Complex (NFC) at Hyderabad is conglomeration of chemical, metallurgical and mechanical plants, processing uranium and zirconium in two separate streams and culminating in the fuel assembly plant. Apart from manufacturing fuel for Pressurised Heavy Water Reactors (PHWRs) and Boiling Water Reactors (BWRs), NFC is also engaged in the manufacture of reactor core structurals for these reactors. NFC has carried our several technological developments over the years and implemented them for the manufacture of fuel, calandria tubes and pressure tubes for PHWRs. Keeping in pace with the Nuclear Power Programme envisaged by the Department of Atomic Energy, NFC had augmented its production capacities in all these areas. The paper highlights several actions initiated in the areas of fuel design, fuel manufacturing, manufacturing of zirconium alloy core structurals, fuel clad tubes and components and their performance in Indian PHWRs. (author)

  7. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  8. Back-end nuclear fuel cycle strategy: The approaches in Ukraine

    International Nuclear Information System (INIS)

    Afnasyev, A.; Medun, V.; Trehub, Yu.

    2002-01-01

    Ukraine has 14 nuclear units in operation and 4 units more under construction. Now in Ukraine a share of installed nuclear capacity in total installed capacity is essential and it is planned to increase it further. In this connection a spent nuclear fuel management in Ukraine for the current period and future is becoming important in a nuclear fuel cycle. A current situation in relation to the spent nuclear fuel management in Ukraine is described in the paper. It is reviewed: legislative basis for a spent nuclear fuel management strategy; an assessment for a spent fuel growth; the national possibilities for the spent fuel management; an organization chart for a spent nuclear fuel management, etc. Some factors that can determine a long-term spent fuel management strategy in Ukraine are in the conclusion. (author)

  9. Nuclear fuel in a reactor accident.

    Science.gov (United States)

    Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra

    2012-03-09

    Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.

  10. Laves intermetallics in stainless steel-zirconium alloys

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-01-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni) 2+x , have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni) 23 Zr 6 during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy

  11. A Study on the Fabrication of Uranium-Cadmium Alloy and its Distillation Behavior

    International Nuclear Information System (INIS)

    Kim, Ji Yong; Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Kim, Si Hyung

    2010-01-01

    The pyrometallurgical nuclear fuel recycle process, called pyroprocessing, has been known as a promising nuclear fuel recycling technology. Pyroprocessing technology is crucial to advanced nuclear systems due to increased nuclear proliferation resistance and economic efficiency. The basic concept of pyroprocessing is group actinide recovery, which enhances the nuclear proliferation resistance significantly. One of the key steps in pyroprocessing is 'electrowinning' which recovers group actinides with lanthanide from the spent nuclear fuels. In this study, a vertical cadmium distiller was manufactured. The evaporation rate of pure cadmium in vertical cadmium distiller varied from 12.3 to 40.8 g/cm 2 /h within a temperature range of 773 ∼ 923 K and pressure below 0.01 torr. Uranium - cadmium alloy was fabricated by electrolysis using liquid cadmium cathode in a high purity argon atmosphere glove box. The distillation behavior of pure cadmium and cadmium in uranium - cadmium alloy was investigated. The distillation behavior of cadmium from this study could be used to develop an actinide recovery process from a liquid cadmium cathode in a cadmium distiller

  12. A Study on the Fabrication of Uranium-Cadmium Alloy and its Distillation Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Yong [University of Science and Technology, Daejeon (Korea, Republic of); Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Kim, Si Hyung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-12-15

    The pyrometallurgical nuclear fuel recycle process, called pyroprocessing, has been known as a promising nuclear fuel recycling technology. Pyroprocessing technology is crucial to advanced nuclear systems due to increased nuclear proliferation resistance and economic efficiency. The basic concept of pyroprocessing is group actinide recovery, which enhances the nuclear proliferation resistance significantly. One of the key steps in pyroprocessing is 'electrowinning' which recovers group actinides with lanthanide from the spent nuclear fuels. In this study, a vertical cadmium distiller was manufactured. The evaporation rate of pure cadmium in vertical cadmium distiller varied from 12.3 to 40.8 g/cm{sup 2}/h within a temperature range of 773 {approx} 923 K and pressure below 0.01 torr. Uranium - cadmium alloy was fabricated by electrolysis using liquid cadmium cathode in a high purity argon atmosphere glove box. The distillation behavior of pure cadmium and cadmium in uranium - cadmium alloy was investigated. The distillation behavior of cadmium from this study could be used to develop an actinide recovery process from a liquid cadmium cathode in a cadmium distiller.

  13. Nuclear fuel and energy policy

    International Nuclear Information System (INIS)

    Ahmed, S.B.

    1979-01-01

    This book examines the uranium resource situation in relation to the future needs of the nuclear economy. Currently the United States is the world's leading producer and consumer of nuclear fuels. In the future US nuclear choices will be highly interdependent with the rest of the world as other countries begin to develop their own nuclear programs. Therefore the world's uranium resource availability has also been examined in relation to the expected growth in the world nuclear industry. Based on resource evaluation, the study develops an economic framework for analyzing and describing the behavior of the US uranium mining and milling industry. An econometric model designed to reflect the underlying structure of the physical processes of the uranium mining and milling industry has been developed. The purpose of this model is to forecast uranium prices and outputs for the period 1977 to 2000. Because uncertainty has sometimes surrounded the economic future of the uranium markets, the results of the econometric modeling should be interpreted with great care and restrictive assumptions. Another aspect of this study is to provide much needed information on the operations of government-owned enrichment plants and the practices used by the government in the determination of fuel enrichment costs. This study discusses possible future developments in enrichment supply and technologies and their implications for future enrichment costs. A review of the operations involving the uranium concentrate conversion to uranium hexafluoride and fuel fabrication is also provided. An economic analysis of these costs provides a comprehensive view of the front-end costs of the nuclear fuel cycle

  14. Storing the world's spent nuclear fuel

    International Nuclear Information System (INIS)

    Barkenbus, J.N.; Weinberg, A.M.; Alonso, M.

    1985-01-01

    Given the world's prodigious future energy requirements and the inevitable depletion of oil and gas, it would be foolhardy consciously to seek limitations on the growth of nuclear power. Indeed, the authors continue to believe that the global nuclear power enterprise, as measured by installed reactor capacity, can become much larger in the future without increasing proliferation risks. To accomplish this objective will require renewed dedication to the non-proliferation regime, and it will require some new initiatives. Foremost among these would be the establishment of a spent fuel take-back service, in which one or a few states would retrieve spent nuclear fuel from nations generating it. The centralized retrieval of spent fuel would remove accessible plutonium from the control of national leaders in non-nuclear-weapons states, thereby eliminating the temptation to use this material for weapons. The Soviets already implement a retrieval policy with the spent fuel generated by East European allies. The authors believe that it is time for the US to reopen the issue of spent-fuel retrieval, and thus to strengthen its non-proliferation policies and the nonproliferation regime in general. 7 references

  15. Nuclear fuel fabrication in India

    International Nuclear Information System (INIS)

    Kondal Rao, N.

    1975-01-01

    The important role of a nuclear power programme in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned. (K.B.)

  16. Nuclear fuel fabrication in India

    Energy Technology Data Exchange (ETDEWEB)

    Kondal Rao, N

    1975-01-01

    The important role of a nuclear power program in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned.

  17. Method of processing spent fuel cladding tubes

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Ouchi, Atsuhiro; Imahashi, Hiromichi.

    1986-01-01

    Purpose: To decrease the residual activity of spent fuel cladding tubes in a short period of time and enable safety storage with simple storage equipments. Constitution: Spent fuel cladding tubes made of zirconium alloys discharged from a nuclear fuel reprocessing step are exposed to a grain boundary embrittling atmosphere to cause grain boundary destruction. This causes grain boundary fractures to the zirconium crystal grains as the matrix of nuclear fuels and then precipitation products precipitated to the grain boundary fractures are removed. The zirconium constituting the nuclear fuel cladding tube and other ingredient elements contained in the precipitation products are separated in this removing step and they are separately stored respectively. As a result, zirconium constituting most part of the composition of the spent nuclear fuel cladding tubes can be stored safely at a low activity level. (Takahashi, M.)

  18. Globalisation of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rougeau, J.-P.; Durret, L.-F.

    1995-01-01

    Three main features of the globalisation of the nuclear fuel cycle are identified and discussed. The first is an increase in the scale of the nuclear fuel cycle materials and services markets in the past 20 years. This has been accompanied by a growth in the sophistication of the fuel cycle. Secondly, the nuclear industry is now more vulnerable to outside pressures; it is no longer possible to make strategic decisions on the industry within a country solely on national considerations. Thirdly, there are changes in the decision-making process at the political, regulatory, operational and industrial level which are the consequence of global factors. (UK)

  19. The nuclear fuel cycle, an overview

    International Nuclear Information System (INIS)

    Ballery, J.L.; Cazalet, J.; Hagemann, R.

    1995-01-01

    Because uranium is widely distributed on the face of the Earth, nuclear energy has a very large potential as an energy source in view of future depletion of fossil fuel reserves. Also future energy requirements will be very sizeable as populations of developing countries are often growing and make the energy question one of the major challenges for the coming decades. Today, nuclear contributes some 340 GWe to the energy requirements of the world. Present and future nuclear programs require an adequate fuel cycle industry, from mining, refining, conversion, enrichment, fuel fabrication, fuel reprocessing and the storage of the resulting wastes. The commercial fuel cycle activities amount to an annual business in the 7-8 billions of US Dollars in the hands of a large number of industrial operators. This paper gives details about companies and countries involved in each step of the fuel cycle and about the national strategies and options chosen regarding the back end of the fuel cycle (waste storage and reprocessing). These options are illustrated by considering the policy adopted in three countries (France, United Kingdom, Japan) versed in reprocessing. (J.S.). 13 figs., 2 tabs

  20. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Linning, D.L.

    1977-01-01

    An improvement of the fuel element for a fast nuclear reactor described in patent 15 89 010 is proposed which should avoid possible damage due to swelling of the fuel. While the fuel element according to patent 15 89 010 is made in the form of a tube, here a further metal jacket is inserted in the centre of the fuel rod and the intermediate layer (ceramic uranium compound) is provided on both sides, so that the nuclear fuel is situated in the centre of the annular construction. Ceramic uranium or plutonium compounds (preferably carbide) form the fuel zone in the form of circular pellets, which are surrounded by annular gaps, so that gaseous fission products can escape. (UWI) [de

  1. Method of operating a water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Lysell, G.

    1975-01-01

    When operating a water-cooled nuclear reactor, in which the fuel rods consist of zirconium alloy tubes containing an oxidic nuclear fuel, stress corrosion in the tubes can be reduced or avoided if the power of the reactor is temporarily increased so much that the thermal expansion of the nuclear fuel produces a flow of the material in the tube. After that temporary power increase the power output is reduced to the normal power

  2. Physics and technology of nuclear materials

    International Nuclear Information System (INIS)

    Ursu, I.

    1985-01-01

    The subject is covered in chapters, entitled; elements of nuclear reactor physics; structure and properties of materials (including radiation effects); fuel materials (uranium, plutonium, thorium); structural materials (including - aluminium, zirconium, stainless steels, ferritic steels, magnesium alloys, neutron irradiation induced changes in the mechanical properties of structural materials); moderator materials (including - nuclear graphite, natural (light) water, heavy water, beryllium, metal hydrides); materials for reactor reactivity control; coolant materials; shielding materials; nuclear fuel elements; nuclear material recovery from irradiated fuel and recycling; quality control of nuclear materials; materials for fusion reactors (thermonuclear fusion reaction, physical processes in fusion reactors, fuel materials, materials for blanket and cooling system, structural materials, materials for magnetic devices, specific problems of material irradiation). (U.K.)

  3. Nuclear fuel assurance: origins, trends, and policy issues

    International Nuclear Information System (INIS)

    Neff, T.L.; Jacoby, H.D.

    1979-02-01

    The economic, technical and political issues which bear on the security of nuclear fuel supply internationally are addressed. The structure of international markets for nuclear fuel is delineated; this includes an analysis of the political constraints on fuel availability, especially the connection to supplier nonproliferation policies. The historical development of nuclear fuel assurance problems is explored and an assessment is made of future trends in supply and demand and in the political context in which fuel trade will take place in the future. Finally, key events and policies which will affect future assurance are identified

  4. Refining U-Zr-Nb alloys by remelting

    International Nuclear Information System (INIS)

    Aguiar, B.M.; Kniess, C.T.; Riella, H.G.; Ferraz, W.B.

    2011-01-01

    The high density U-Zr-Nb and U-Nb uranium-based alloys can be employed as nuclear fuel in a PWR reactor due to their high density and nuclear properties. These alloys can stabilize the gamma phase, however, according to TTT diagrams, at the working temperature of a PWR reactor, all gamma phase transforms to α'' phase in a few hours. To avoid this kind of transformation during the nuclear reactor operation, the U-Zr-Nb alloy and U-Nn are used in α'' phase. The stability of α'' phase depends on the alloy composition and cooling rate. The alloy homogenization has to be very effective to eliminate precipitates rich in Zr and Nb to avoid changes in the alloying elements contents in the matrix. The homogenization was obtained by remelting the alloy and keeping it in the liquid state for enough time to promote floating of the precipitates (usually carbides, less dense) and leaving the matrix free of precipitates. However, this floating by density difference may result in segregation between the alloying elements (Nb and Zr, at the top) and uranium (at the bottom). The homogenized alloys were characterized in terms of metallographic techniques, optical microscopy, scanning electronic microscopy, EDS and X-ray diffraction. In this paper, it is shown that the contents of Zr and Nb at the bottom and at the top of the matrix are constant. (author)

  5. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  6. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Phillpot, Simon; Tulenko, James

    2011-09-08

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  7. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    International Nuclear Information System (INIS)

    Phillpot, Simon; Tulenko, James

    2011-01-01

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  8. Nuclear fuel conversion and fabrication chemistry

    International Nuclear Information System (INIS)

    Lerch, R.E.; Norman, R.E.

    1984-01-01

    Following irradiation and reprocessing of nuclear fuel, two operations are performed to prepare the fuel for subsequent reuse as fuel: fuel conversion, and fuel fabrication. These operations complete the classical nuclear fuel cycle. Fuel conversion involves generating a solid form suitable for fabrication into nuclear fuel. For plutonium based fuels, either a pure PuO 2 material or a mixed PuO 2 -UO 2 fuel material is generated. Several methods are available for preparation of the pure PuO 2 including: oxalate or peroxide precipitation; or direct denitration. Once the pure PuO 2 is formed, it is fabricated into fuel by mechanically blending it with ceramic grade UO 2 . The UO 2 can be prepared by several methods which include direct denitration. ADU precipitation, AUC precipitation, and peroxide precipitation. Alternatively, UO 2 -PuO 2 can be generated directly using coprecipitation, direct co-denitration, or gel sphere processes. In coprecipitation, uranium and plutonium are either precipitated as ammonium diuranate and plutonium hydroxide or as a mixture of ammonium uranyl-plutonyl carbonate, filtered and dried. In direct thermal denitration, solutions of uranium and plutonium nitrates are heated causing concentration and, subsequently, direct denitration. In gel sphere conversion, solutions of uranium and plutonium nitrate containing additives are formed into spherical droplets, gelled, washed and dried. Refabrication of these UO 3 -PuO 2 starting materials is accomplished by calcination-reduction to UO 2 -PuO 2 followed by pellet fabrication. (orig.)

  9. The development of zirconium alloy and its manufacturing

    International Nuclear Information System (INIS)

    Yuan Gaihuan; Yue Qiang

    2015-01-01

    Nuclear power which acts as one of low-carbon energy resources is the most realistic in large-scale application. It is also the preferred choice for many countries to develop energy resources and optimize its structure. Zirconium alloy is a key structural material for nuclear power plant fuel assemblies and cladding tubes of zirconium alloy are often referred as the first safeguard to nuclear power safety. With the development of nuclear power, three kinds of zirconium alloys Zr-Sn, Zr-Nb, Zr-Sn-Nb and with the representative products of Zr-4, M5, Zirlo respectively are developed and widely applied. Because of its severe operating environment and influence to nuclear safety, the requirements to zirconium alloys for physical and chemical properties, nuclear capability, tolerance and surface quality are very strict. The in-depth research and its manufacture capability become one of the main barriers for many countries who are developing the nuclear energy. In recent years, a stated-owned company, State Nuclear Bao Ti Zirconium Industry Company ('SNZ' for short) as well as National R and D Center for Nuclear Grade Zirconium material, is founded to meet the requirement of the rapid development of China's nuclear power industry. SNZ is dedicated for the fabrication and the research of nuclear grade zirconium products. After the successful completion of technology transfer of manufacturing for production chain and fully grasped of the manufacturing technology for the nuclear grade zirconium sponge through zirconium alloy tube, rod and strip products. National R and D Center for Nuclear Grade Zirconium material is cooperating with universities, nuclear energy research and design institutes and the owners of nuclear power plant to develop new zirconium alloy of self-owned brand. Through the selection of components, in-process testing and product inspection, four kinds of new zirconium alloys owns better performance than currently commercialized M5, Zirlo etc

  10. Strategies of management of the nuclear fuel

    International Nuclear Information System (INIS)

    Leon, J.R.; Perez, A.; Filella, J.M.

    1996-01-01

    The management of nuclear fuel is depending on several factors: - Regulatory commission. The enterprises owner of the NPPs.The enterprise owner of the energy distribution. These factors are considered for the management of nuclear fuel. The design of fuel elements, the planning of cycles, the design of core reactors and the costs are analyzed. (Author)

  11. Transportation capabilities study of DOE-owned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  12. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Knief, R.A.

    1978-01-01

    The nuclear fuel cycle is substantially more complicated than the energy production cycles of conventional fuels because of the very low abundance of uranium 235, the presence of radioactivity, the potential for producing fissile nuclides from irradiation, and the risk that fissile materials will be used for nuclear weapons. These factors add enrichment, recycling, spent fuel storage, and safeguards to the cycle, besides making the conventional steps of exploration, mining, processing, use, waste disposal, and transportation more difficult

  13. Fission induced swelling and creep of U–Mo alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Cheon, J.S. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2013-06-15

    Tapering of U–Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U–Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical–mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels.

  14. Regulatory viewpoint on nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    Tripp, L.E.

    1976-01-01

    Considerations of the importance of fuel quality and performance to nuclear safety, ''as low reasonably achievable'' release of radioactive materials in reactor effluents, and past fuel performance problems demonstrate the need for strong regulatory input, review and inspection of nuclear fuel quality assurance programs at all levels. Such a regulatory program is being applied in the United States of America by the US Nuclear Regulatory Commission. Quality assurance requirements are contained within government regulations. Guidance on acceptable methods of implementing portions of the quality assurance program is contained within Regulatory Guides and other NRC documents. Fuel supplier quality assurance program descriptions are reviewed as a part of the reactor licensing process. Inspections of reactor licensee control of their fuel vendors as well as direct inspections of fuel vendor quality assurance programs are conducted on a regularly scheduled basis. (author)

  15. Economic evaluation of multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Kuno, Yusuke; Omoto, Akira; Tanaka, Satoru

    2011-01-01

    Recently previous works have shown that multilateral nuclear fuel cycle approach has benefits not only of non-proliferation but also of cost effectiveness. This is because for most facilities in nuclear fuel cycle, there exist economies of scale, which has a significant impact on the costs of nuclear fuel cycle. Therefore, the evaluation of economic rationality is required as one of the evaluation factors for the multilateral nuclear fuel cycle approach. In this study, we consider some options with respect to multilateral approaches to nuclear fuel cycle in Asian-Pacific region countries that are proposed by the University of Tokyo. In particular, the following factors are embedded into each type: A) no involvement of assurance of services, B) provision of assurance of services including construction of new facility, without transfer of ownership, and C) provision of assurance of service including construction of new joint facilities with ownership transfer of facilities to multilateral nuclear fuel cycle approach. We show the overnight costs taking into account install and operation of nuclear fuel cycle facilities for each option. The economic parameter values such as uranium price, scale factor, and market output expansion influences the total cost for each option. Thus, we show how these parameter values and economic risks affect the total overnight costs for each option. Additionally, the international facilities could increase the risk of transportation for nuclear material compared to national facilities. We discuss the potential effects of this transportation risk on the costs for each option. (author)

  16. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  17. Back-end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Choi, J.S.

    2002-01-01

    Current strategies of the back-end nuclear fuel cycles are: (1) direct-disposal of spent fuel (Open Cycle), and (2) reprocessing of the spent fuel and recycling of the recovered nuclear materials (Closed Cycle). The selection of these strategies is country-specific, and factors affecting selection of strategy are identified and discussed in this paper. (author)

  18. Nuclear fuel cycle under progressing preparation of its systemisation

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Trends of nuclear development in Japan show more remarkable advancements in 2000, such as new addition of nuclear power plant, nuclear fuel cycling business, and so on. Based on an instruction of the criticality accident in JCO formed on September, 1999, government made efforts on revision of the law on regulation of nuclear reactor and so forth and establishment of a law on protection of nuclear accident as sooner, to enforce nuclear safety management and nuclear accident protective countermeasure. On the other hand, the nuclear industry field develops some new actions such as establishment of Nuclear Safety Network (NSnet)', mutual evaluation of nuclear-relative works (pier review), and so forth. And, on the high level radioactive wastes disposal of the most important subject remained in nuclear development, the Nuclear Waste Management Organization of Japan' of its main business body was established on October, 1999 together with establishment of the new law, to begin a business for embodiment of the last disposal aiming at 2030s to 2040s. On the same October, the Japan Nuclear Fuel Limited. concluded a safety agreement on premise of full-dress transportation of the used fuels to the Rokkasho Reprocessing Plant in Aomori prefecture with local government, to begin their transportation from every electric company since its year end. Here were described on development of the nuclear fuel cycling business in Japan, establishment of nuclear fuel cycling, disposal on the high level radioactive wastes, R and D on geological disposal of the high level radioactive wastes, establishment on cycle back-end of nuclear fuels, and full-dressing of nuclear fuel cycling. (G.K.)

  19. Concerning permission of change in nuclear fuel processing business of Japan Nuclear Fuel Co. , Ltd

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    In response to an inquiry on the title issue received on Jun. 17, 1988, the Nuclear Safety Commission made a study and submitted the findings to the Prime Minister on Jul. 21, 1988. The study was intended to determine the conformity of the permission to the applicable criteria specified in laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The proposed modification plan included changes in the facilities in the No.1 processing building and changes in processing methods which were required to perform processing of blanket fuel assemblies for fast breeder reactor. It also included changes in the facilities in the No.2 building which were required to improve the processes. The safety study covered the anti-earthquake performance, fire/explosion prevention, criticality control, containment performance, radioactive waste disposal, and other major safety issues. Other investigations included exposure dose evaluation and accident analysis. Study results were examined on the basis of the Basic Guidelines for Nuclear Fuel Facilities Safety Review and the Uranium Processing Safety Review Guidelines. It was concluded that the modifications would not have adverse effect on the safety of the facilities. (Nogami, K.).

  20. Concerning permission of change in nuclear fuel processing business of Japan Nuclear Fuel Co., Ltd

    International Nuclear Information System (INIS)

    1988-01-01

    In response to an inquiry on the title issue received on Jun. 17, 1988, the Nuclear Safety Commission made a study and submitted the findings to the Prime Minister on Jul. 21, 1988. The study was intended to determine the conformity of the permission to the applicable criteria specified in laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The proposed modification plan included changes in the facilities in the No.1 processing building and changes in processing methods which were required to perform processing of blanket fuel assemblies for fast breeder reactor. It also included changes in the facilities in the No.2 building which were required to improve the processes. The safety study covered the anti-earthquake performance, fire/explosion prevention, criticality control, containment performance, radioactive waste disposal, and other major safety issues. Other investigations included exposure dose evaluation and accident analysis. Study results were examined on the basis of the Basic Guidelines for Nuclear Fuel Facilities Safety Review and the Uranium Processing Safety Review Guidelines. It was concluded that the modifications would not have adverse effect on the safety of the facilities. (Nogami, K.)

  1. Change of Composition in Metallic Fuel Slug of U-Zr Alloy from High-Temperature Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Young Sang; Lee, Jeong Mook; Kim, Jong Yun; Kim, Jong Hwan; Song, Hoon [KAERI, Daejeon (Korea, Republic of)

    2016-09-15

    The U–Zr alloy is a candidate for fuel to be used as metallic fuel in sodium-cooled fast reactors (SFRs). Its chemical composition before and after annealing at the operational temperature of SFRs (610 .deg. C) was investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The original alloy surface contained uranium oxides with the U(IV) and U(VI) oxidation states, Zr{sub 2}O{sub 3}, and a low amount of uranium metal. After annealing at 610 .deg. C, the alloy was composed of uranium metal, uranium carbide, uranium oxide with the U(V) valence state, zirconium metal, and amorphous carbon. Meanwhile, X-ray diffraction data indicate that the bulk composition of the alloy remained unchanged.

  2. Change of Composition in Metallic Fuel Slug of U-Zr Alloy from High-Temperature Annealing

    International Nuclear Information System (INIS)

    Youn, Young Sang; Lee, Jeong Mook; Kim, Jong Yun; Kim, Jong Hwan; Song, Hoon

    2016-01-01

    The U–Zr alloy is a candidate for fuel to be used as metallic fuel in sodium-cooled fast reactors (SFRs). Its chemical composition before and after annealing at the operational temperature of SFRs (610 .deg. C) was investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The original alloy surface contained uranium oxides with the U(IV) and U(VI) oxidation states, Zr 2 O 3 , and a low amount of uranium metal. After annealing at 610 .deg. C, the alloy was composed of uranium metal, uranium carbide, uranium oxide with the U(V) valence state, zirconium metal, and amorphous carbon. Meanwhile, X-ray diffraction data indicate that the bulk composition of the alloy remained unchanged

  3. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  4. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  5. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Kawada, Toshiyuki; Hirayama, Satoshi; Yoneya, Katsutoshi.

    1980-01-01

    Purpose: To enable load-depending operation as well as moderation for the restriction of operation conditions in the present nuclear reactors, by specifying the essential ingredients and the total weight of the additives to UO 2 fuel substances. Constitution: Two or more additives selected from Al 2 O 3 , B 2 O, CaO, MgO, SiO 2 , Na 2 O and P 2 O 5 are added by the total weight of 2 - 5% to fuel substances consisting of UO 2 or a mixture of UO 2 and PuO 2 . When the mixture is sintered, the strength of the fuel elements is decreased and the fuel-cladding interactions due to the difference in the heat expansion coefficients between the ceramic fuel elements and the metal claddings are decreased to a substantially harmless degree. (Horiuchi, T.)

  6. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    This Order provides provisions concerning nuclear fuel substances requiring notification (nuclear fuel substance, material contaminated with nuclear fuel substances, fissionable substances, etc.), procedure for notification (to prefectural public safety commission), certificate of transpot (issued via public safety commission), instructions (speed of vehicle for transporting nuclear fuel substances, parking of vehicle, place for loading and unloading of nuclear fuel substances, method for loading and unloading, report to police, measures for disaster prevention during transport, etc.), communication among members of public safety commission (for smooth transport), notification of alteration of data in transport certificate (application to be submitted to public safety commission), application of reissue of transport certificate, return of transport certificate, inspection concerning transport (to be performed by police), submission of report (to be submitted by refining facilities manager, processing facilities manager, nuclear reactor manager, master of foreign nuclear powered ship, reprocessing facilities manager, waste disposal facilities manager; concerning stolen or missing nuclear fuel substances, traffic accident, unusual leakage of nuclear fuel substances, etc.). (Nogami, K.)

  7. International cooperation in supply of nuclear fuel and fuel cycle services

    International Nuclear Information System (INIS)

    Sievering, N.F. Jr.

    1977-01-01

    In the face of costlier, decreasingly available oil and a desire to achieve a higher degree of self-sufficiency, nuclear power has become an increasingly important ingredient in the mix of energy options looked to by a growing number of industrialized and developing states. One of the central concerns of states that are placing greater reliance on nuclear energy is the assurance that adequate nuclear fuels will be available on a timely basis and on economically acceptable terms. Greater emphasis on nuclear energy and on self-sufficiency entails greater potential risks as sensitive facilities and technologies associated with the nuclear fuel cycle threaten to proliferate. This paper explores the juxtaposition of the spread of nuclear technology and facilities in support of legitimate desires to achieve greater energy self-sufficiency and economic and social progress, on the one hand, and the implications of widely disseminated nuclear fuel cycle capacity for the objective of non-proliferation, on the other hand. It examines the recent evolution of nuclear fuel cycle activities including the scope of cooperation both among nuclear supplier states and between supplier and non-supplier states; explores the arenas in which common efforts are, can and should be undertaken (e.g., in terms of the nuclear resource base, the provision of essential services such as enrichment, and the management of nuclear waste), and identifies means by which national aspirations and international security concerns can be effectively accommodated. Particular attention is given to the methods by which the dissemination of sensitive technologies at facilities can be controlled without sacrificing the legitimate interests of any state, as well as to methods by which controls over potentially dangerous materials such as plutonium can be strengthened. The paper concludes that there are significant opportunities to achieve a high degree of international cooperation in the arena of fuel cycle

  8. Development and characterization of monolithic fuel miniplate alloy U-2.5Zr-7.5Nb, coated in zircaloy; Desenvolvimento e caracterizacao do combustivel nuclear tipo placa monolitico da liga U-2,5Zr-7,5Nb revestido em zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Geraldo Correa

    2014-06-01

    The autocthonal production of nuclear fuel in Brazil for test and research reactors is restricted to MTR (Material Test Reactor) fuel type dispersion plate, using U3Si2 alloy, coated and dispersed in aluminum, developed by IPEN-SP for use in IEA-R1 reactor. Moreover, the UO{sub 2} fuel rod type for power reactors is manufactured by Rezende (RJ) with a German technology by INB under license. Currently, Brazil is performing two programs of developing reactors. Currently, Brazil is developing two reactors. One of them is the development, by CNEN, the Brazilian Multipurpose Reactor (RMB), for testing, research and radioisotope production. The other one is the development a power reactor for naval propulsion, conducted by the Brazilian Navy. This dissertation presents the development and characterization of monolithic fuel miniplate alloy U-2.5Zr-7.5Nb, coated in zircaloy (ZRY), on a laboratory scale. Due to its innovative features and properties, this fuel can be used as fuel in both test reactors, research and producing radioisotopes for power reactors as small and medium sizes. Thus, this high potential fuel can be used in domestic reactors currently under development. The development of monolithic fuel plate type is made using the technique called 'picture-frame' where a sandwich composed of a monolith alloy U-2.5Zr- 7.5Nb coupled to a frame and coated sheets of Zry is obtained. The alloy U-2.5Zr-7.5Nb was obtained by melting in an induction furnace and then was cast into rectangular ingots of graphite, thus achieving an ingot with approximate dimensions of 170 x 50 x 60 mm. The obtained ingot was hot rolled at 850 ºC, with a 50 % reduction in thickness, in order to refine the raw structure of fusion. Samples cut from the alloy U-2.5Zr-7.5Nb, with dimensions 20 x 20 x 6 mm were placed in frames and plates Zry and joined by TIG (Tungsten Inert Gas) under an atmosphere of argon, obtaining a set of 10 mm thick, 45 mm wide and 100 mm long. The sandwiches were

  9. Spent nuclear fuel transport problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.

    1977-01-01

    The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)

  10. The regulations concerning refining business of nuclear source material and nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    Regulations specified here cover application for designation of undertakings of refining (spallation and eaching filtration facilities, thickening facilities, refining facilities, nuclear material substances or nuclear fuel substances storage facilities, waste disposal facilities, etc.), application for permission for alteration (business management plan, procurement plan, fund raising plan, etc.), application for approval of merger (procedure, conditions, reason and date of merger, etc.), submission of report on alteration (location, structure, arrangements processes and construction plan for refining facilities, etc.), revocation of designation, rules for records, rules for safety (personnel, organization, safety training for employees, handling of important apparatus and tools, monitoring and removal of comtaminants, management of radioactivity measuring devices, inspection and testing, acceptance, transport and storage of nuclear material and fuel, etc.), measures for emergency, submission of report on abolition of an undertaking, submission of report on disorganization, measures required in the wake of revocation of designation, submission of information report (exposure to radioactive rays, stolen or missing nuclear material or nuclear fuel, unusual leak of nuclear fuel or material contaminated with nuclear fuel), etc. (Nogami, K.)

  11. Corrosion of aluminum alloys in simulated dry storage environments

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.; Sindelar, R.L.; Lam, P.S.

    1996-01-01

    The effect of temperature and relative humidity on the high temperature (up to 150 degrees C) corrosion of aluminum alloys was investigated for dry storage of spent nuclear fuels in a closed or sealed system. A dependency on alloy type, temperature and initial humidity was determined for 1100, 5052 and 6061 aluminum alloys. Results after 4500 hours of environmental testing show that for a closed system, corrosion tends to follow a power law with the rate decreasing with increasing exposure. As corrosion takes place, two phenomena occur: (1) a hydrated layer builds up to resist corrosion, and (2) moisture is depleted from the system and the humidity slowly decreases with time. At a critical level of relative humidity, corrosion reactions stop, and no additional corrosion occurs if the system remains closed. The results form the basis for the development of an acceptance criteria for the dry storage of aluminum clad spent nuclear fuels

  12. Standard guide for evaluation of materials used in extended service of interim spent nuclear fuel dry storage systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Part of the total inventory of commercial spent nuclear fuel (SNF) is stored in dry cask storage systems (DCSS) under licenses granted by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this guide is to provide information to assist in supporting the renewal of these licenses, safely and without removal of the SNF from its licensed confinement, for periods beyond those governed by the term of the original license. This guide provides information on materials behavior under conditions that may be important to safety evaluations for the extended service of the renewal period. This guide is written for DCSS containing light water reactor (LWR) fuel that is clad in zirconium alloy material and stored in accordance with the Code of Federal Regulations (CFR), at an independent spent-fuel storage installation (ISFSI). The components of an ISFSI, addressed in this document, include the commercial SNF, canister, cask, and all parts of the storage installation including the ISFSI pad. The language of t...

  13. Nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing.

  14. Nuclear fuel cycle, nuclear fuel makes the rounds: choosing a closed fuel cycle, nuclear fuel cycle processes, front-end of the fuel cycle: from crude ore to enriched uranium, back-end of the fuel cycle: the second life of nuclear fuel, and tomorrow: multiple recycling while generating increasingly less waste

    International Nuclear Information System (INIS)

    Philippon, Patrick

    2016-01-01

    France has opted for a policy of processing and recycling spent fuel. This option has already been deployed commercially since the 1990's, but will reach its full potential with the fourth generation. The CEA developed the processes in use today, and is pursuing research to improve, extend, and adapt these technologies to tomorrow's challenges. France has opted for a 'closed cycle' to recycle the reusable materials in spent fuel (uranium and plutonium) and optimise ultimate waste management. France has opted for a 'closed' nuclear fuel cycle. Spent fuel is processed to recover the reusable materials: uranium and plutonium. The remaining components (fission products and minor actinides) are the ultimate waste. This info-graphic shows the main steps in the fuel cycle currently implemented commercially in France. From the mine to the reactor, a vast industrial system ensures the conversion of uranium contained in the ore to obtain uranium oxide (UOX) fuel pellets. Selective extraction, purification, enrichment - key scientific and technical challenges for the teams in the Nuclear Energy Division (DEN). The back-end stages of the fuel cycle for recycling the reusable materials in spent fuel and conditioning the final waste-forms have reached maturity. CEA teams are pursuing their research in support of industry to optimise these processes. Multi-recycle plutonium, make even better use of uranium resources and, over the longer term, explore the possibility of transmuting the most highly radioactive waste: these are the challenges facing future nuclear systems. (authors)

  15. Fluid pressure method for recovering fuel pellets from nuclear fuel elements

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1979-01-01

    A method is described for removing fuel pellets from a nuclear fuel element without damaging the fuel pellets or fuel element sheath so that both may be reused. The method comprises holding the fuel element while a high pressure stream internally pressurizes the fuel element to expand the fuel element sheath away from the fuel pellets therein so that the fuel pellets may be easily removed

  16. Nuclear fuel transport and particularly spent fuel transport

    International Nuclear Information System (INIS)

    Lenail, B.

    1986-01-01

    Nuclear material transport is an essential activity for COGEMA linking the different steps of the fuel cycle transport systems have to be safe and reliable. Spent fuel transport is more particularly examined in this paper because the development of reprocessing plant. Industrial, techmical and economical aspects are reviewed [fr

  17. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  18. Overview of the US spent nuclear fuel program

    International Nuclear Information System (INIS)

    Hurt, W.L.

    1999-01-01

    This report, Overview of the United States Spent Nuclear Fuel Program, December, 1997, summarizes the U.S. strategy for interim management and ultimate disposition of spent nuclear fuel from research and test reactors. The key elements of this strategy include consolidation of this spent nuclear fuel at three sites, preparation of the fuel for geologic disposal in road-ready packages, and low-cost dry interim storage until the planned geologic repository is opened. The U.S. has a number of research programs in place that are intended to Provide data and technologies to support both characterization and disposition of the fuel. (author)

  19. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information

  20. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.; Mitchell, S.J.

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information

  1. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I W; Mitchell, S J

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  2. Annotated Bibliography for Drying Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  3. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  4. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2014-01-01

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests

  5. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests.

  6. The nuclear fuel cycle light and shadow

    International Nuclear Information System (INIS)

    Giraud, A.

    1977-01-01

    The nuclear fuel cycle industry has a far reaching effect on future world energy developments. The growth in turnover of this industry follows a known patterm; by 1985 this turnover will have reached a figure of 2 billion dollars. Furthermore, the fuel cycle plays a determining role in ensuring the physical continuity of energy supplies for countries already engaged in the nuclear domain. Finally, the development of this industry is subject to economic and political constraints which imply the availability of raw materials, technological know-how, and production facilities. Various factors which could have an adverse influence on the cycle: technical, economic, or financial difficulties, environmental impact, nuclear safety, theft or diversion of nuclear materials, nuclear weapon, proliferation risks, are described, and the interaction between the development of the cycle, energy independance, and the fulfillment of nuclear energy programs is emphasized. It is concluded that the nuclear fuel cycle industry is confronted with difficulties due to its extremely rapid growth rate (doubling every 5 years); it is a long time since such a growth rate has been experienced by any heavy industry. The task which lays before us is difficult, but the fruit is worth the toil, as it is the fuel cycle which will govern the growth of the nuclear industry [fr

  7. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix B, foreign research reactor spent nuclear fuel characteristics and transportation casks. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix B of a draft Environmental Impact Statement (EIS) on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. It discusses relevant characterization and other information of foreign research reactor spent nuclear fuel that could be managed under the proposed action. It also discusses regulations for the transport of radioactive materials and the design of spent fuel casks

  8. Evaluation of the use of metal alloy fuels in pressurized water reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The project concentrated on model development. Reactor physics modeling involved establishing accurate models with PC versions of COMBINE and VENTURE. Fuel performance analysis will start with METAL- LIFE. In order to justify the change of fuel to metal alloy, large benefits will have to be found; the cost benefit reported is not sufficient. The fuel pin will be annular and contact the clad; the clad thickness will force the fuel to grow toward the central hole. This report reports: design improvements, neutronic model development, COBRA modifications, reactor kinetics model development, RELAP code, and fuel performance

  9. Recent situation of the establishment of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hoshiba, Shizuo

    1982-01-01

    In Japan, the development of nuclear power as principal petroleum substitute is actively pursued. Nuclear power generation now accounts for about 17 % of the total power generation in Japan. The business related to nuclear fuel cycle should be established by private enterprises. The basic policy in the establishment of nuclear fuel cycle is the stabilized supply of natural uranium, raise in domestic production of enriched uranium, dFomestic fuel reprocessing in principle, positive plutonium utilization, and so on. After explaining this basic policy, the present situation and problems in the establishment of nuclear fuel cycle are described: securing of uranium resources, securing of enriched uranium, reprocessing of used fuel, utilization of plutonium, management of radioactive wastes. (Mori, K.)

  10. Multilateral controls of nuclear fuel-cycle in Asia

    International Nuclear Information System (INIS)

    Choi, Jor-Shan

    2010-01-01

    To meet increasing energy demand and climate change issues, nuclear energy is expected to expand during the next decades in both developed and developing countries. This expansion, most visibly in Asian countries would no doubt be accompanied with complex and intractable challenges to global peace and security, notably in the back-end of the nuclear fuel cycle. What to do with the growing stocks of spent fuel in existing nuclear programs? And how to reduce proliferation concerns when spent fuels are generated in less stable regions of the world? The answers to these questions may lie in the possibility of multilateral (or regional) control of nuclear materials and technologies in the back-end of nuclear fuel cycle. One of the areas of interest is technology, e.g., spent fuel treatment (reprocessing) for long term sustainability and environmental-friendly disposal of radioactive wastes, as an alternative to directly disposing spent fuel in geologic repository. The other is to seek for regional centers for centralized interim spent fuel storage which can eventually turn into disposal facilities. Such centers could help facilitate the possibilities of spent fuel take-back/take-away from countries located in less stable regions for fix-period storage. (author)

  11. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-01-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  12. Results of post-irradiation examination of WWER fuel assembly structural components made of E110 and E635 alloys

    International Nuclear Information System (INIS)

    Smirnov, A.; Markov, D.; Smirnov, V.; Polenok, V.; Ivashchenko, A.; Strozhuk, A.

    2006-01-01

    The paper presents the main examination results on the condition of fuel rods claddings, guide tubes and spacer grids of the WWER FA made of E110 and E635 alloys operated under standard operating conditions. The paper is based on the data obtained during the examination of 28 WWER-1000 FA and 12 WWER-400 FA. E110 alloy is shown to be suitable material for the WWER fuel rod claddings under the normal operating conditions. E635 alloy is attractive to manufacturing of the skeleton components. The currently used combination (E110 as a material of fuel rods claddings and E635 - as a material of the skeleton components) is the optimal solution for the WWER fuel assembly because the advantages of the both alloys are used. (authors)

  13. Logistics of nuclear fuel production for nuclear submarines

    International Nuclear Information System (INIS)

    Guimaraes, Leonam dos Santos

    2000-01-01

    The future acquisition of nuclear attack submarines by Brazilian Navy along next century will imply new requirements on Naval Logistic Support System. These needs will impact all the six logistic functions. Among them, fuel supply could be considered as the one which requires the most important capacitating effort, including not only technological development of processes but also the development of a national industrial basis for effective production of nuclear fuel. This paper presents the technical aspects of the processes involved and an annual production dimensioning for an squadron composed by four units. (author)

  14. International Nuclear Fuel Cycle Fact Book. Revision 5

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  15. International Nuclear Fuel Cycle Fact Book. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  16. International nuclear fuel cycle fact book. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  17. International nuclear fuel cycle fact book. Revision 4

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  18. Means for supporting nuclear fuel

    International Nuclear Information System (INIS)

    Cocker, P.; Price, M.A.

    1975-01-01

    Reference is made to means for supporting nuclear fuel pins in a reactor coolant channel and the problems that arise in this connection. For reasons of nuclear reactivity and neutron economy 'parasitic' material in a reactor core must be kept to a minimum, whilst for heat transfer reasons the use of fuel pins of large cross-sectional areas should be avoided. Fuel pins tend to be long thin objects having a can of minimum thickness and typically a pin may have a length/diameter ratio of about 500/1 and for fast reactor fuel pins, the outside diameter may be about 0.2 inch. The long slender pins must also be spaced very close together. A fast reactor fuel assembly may involve 200 to 300 fuel pins, each a few tenths of an inch in diameter, supported end on to coolant flowing up a channel of about 22 square inches in total area. The pins have a heavy metal oxide filling and require support. Details are given of a suitable method of support. Such support also allows withdrawal of pins from a fuel channel without the risk of breach of the can, after irradiation. (U.K.)

  19. Axially alignable nuclear fuel pellets

    International Nuclear Information System (INIS)

    Johansson, E.B.; Klahn, D.H.; Marlowe, M.O.

    1978-01-01

    An axially alignable nuclear fuel pellet of the type stacked in end-to-end relationship within a tubular cladding is described. Fuel cladding failures can occur at pellet interface locations due to mechanical interaction between misaligned fuel pellets and the cladding. Mechanical interaction between the cladding and the fuel pellets loads the cladding and causes increased cladding stresses. Nuclear fuel pellets are provided with an end structure that increases plastic deformation of the pellets at the interface between pellets so that lower alignment forces are required to straighten axially misaligned pellets. Plastic deformation of the pellet ends results in less interactions beween the cladding and the fuel pellets and significantly lowers cladding stresses. The geometry of pellets constructed according to the invention also reduces alignment forces required to straighten fuel pellets that are tilted within the cladding. Plastic deformation of the pellets at the pellet interfaces is increased by providing pellets with at least one end face having a centrally-disposed raised area of convex shape so that the mean temperature and shear stress of the contact area is higher than that of prior art pellets

  20. Sufficiency of the Nuclear Fuel

    International Nuclear Information System (INIS)

    Pevec, D.; Knapp, V.; Matijevic, M.

    2008-01-01

    Estimation of the nuclear fuel sufficiency is required for rational decision making on long-term energy strategy. In the past an argument often invoked against nuclear energy was that uranium resources are inadequate. At present, when climate change associated with CO 2 emission is a major concern, one novel strong argument for nuclear energy is that it can produce large amounts of energy without the CO 2 emission. Increased interest in nuclear energy is evident, and a new look into uranium resources is relevant. We examined three different scenarios of nuclear capacity growth. The low growth of 0.4 percent per year in nuclear capacity is assumed for the first scenario. The moderate growth of 1.5 percent per year in nuclear capacity preserving the present share in total energy production is assumed for the second scenario. We estimated draining out time periods for conventional resources of uranium using once through fuel cycle for the both scenarios. For the first and the second scenario we obtained the draining out time periods for conventional uranium resources of 154 years and 96 years, respectively. These results are, as expected, in agreement with usual evaluations. However, if nuclear energy is to make a major impact on CO 2 emission it should contribute much more in the total energy production than at present level of 6 percent. We therefore defined the third scenario which would increase nuclear share in the total energy production from 6 percent in year 2020 to 30 percent by year 2060 while the total world energy production would grow by 1.5 percent per year. We also looked into the uranium requirement for this scenario, determining the time window for introduction of uranium or thorium reprocessing and for better use of uranium than what is the case in the once through fuel cycle. The once through cycle would be in this scenario sustainable up to about year 2060 providing most of the expected but undiscovered conventional uranium resources were turned

  1. A Swedish nuclear fuel facility and public acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bengt A [ABB Atom (Sweden)

    1989-07-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations.

  2. A Swedish nuclear fuel facility and public acceptance

    International Nuclear Information System (INIS)

    Andersson, Bengt A.

    1989-01-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations

  3. Fuel performance of rod-type research reactor fuel using a centrifugally atomized U-Mo powder

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Lee, Yoon Sang; Kim, Chang Kyu

    2009-01-01

    A low enriched uranium nuclear fuel for research reactors has been developed in order to replace a highly enriched uranium fuel according to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program. In KAERI, a rod-type U 3 Si dispersion fuel has been developed for a localization of the HANARO fuel and a U 3 Si/Al dispersion fuel of 3.15 gU/cc has been used at HANARO as a driver fuel since 2005. Although uranium silicide dispersion fuels such as U 3 Si 2 /Al and U 3 Si/Al are being used widely, high uranium density dispersion fuels (8-9 g/cm 3 ) are required for some high performance research reactors. U-Mo alloys have been considered as one of the most promising uranium alloys for a dispersion fuel due to their good irradiation performance. An international qualification program on U-Mo fuel to replace a uranium silicide dispersion fuel with a U-Mo dispersion fuel has been carried out

  4. Self reliance in equipment building for PHWR fuel fabrication

    International Nuclear Information System (INIS)

    Sastry, V.S.; Hemantha Rao, G.V.S.; Jayaraj, R.N.

    2009-01-01

    Full text: Keeping in tune with the policy of self-reliance and indigenisation adopted from the very inception of nuclear power programme in India during the mid 1960, Nuclear Fuel Complex, established in the year 1971, developed its own processes, equipment and technologies based on both in-house experience and the expertise available in the indigenous industry. Starting from the basic raw materials, Nuclear Fuel Complex (NFC) manufactures and supplies finished fuel assemblies, apart from zircaloy core components, to all the nuclear power stations in India. Out of several products manufactured by NFC, 19 and 37 element fuel bundles for Pressurised Heavy Water Reactors (PHWRs) is vital for operation of several PHWRs being operated by Nuclear Power Corporation of India Limited (NPCIL). Starting from the manufacturing of half-charge for RAPS-1, more than 3.8 lakh fuel bundles were made till now. Several process improvements were taken up over the years for improving the quality of the fuel. PHWR fuel bundles manufactured by NFC has adopted an unique feature of joining appendages on zirconium alloy tubes by resistance welding before loading natural uranium dioxide pellets. Graphite coating on the inner surface of the zirconium alloy tube and vacuum baking, use of profiled end caps, use of bio-degradable cleaning agents are some of the processes adopted in the manufacturing of PHWR fuel bundles. With the recent opening up of international nuclear trade for India and the enhanced growth of nuclear power, exciting opportunities and challenges confront NFC. This paper presents salient features of some important special purpose equipment developed in-house at NFC for production of PHWR fuel bundles. It looks ahead to develop many more such special purpose equipment towards meeting the diverse demands now showing up to meet the indigenous as well as international requirements

  5. The effects of radiation on aluminium alloys in the core of energy nuclear reactors

    International Nuclear Information System (INIS)

    Petrossian, V.G.

    1995-01-01

    One of the attractive directions in the worldwide practice of nuclear installations is the replacement of expensive zirconium alloy with more cheap materials, particularly aluminium allo. For Heat Supply Nuclear Plants (HSNP) with approximately 473 K core temperatures, the use of heat-resistant aluminium alloys seems to be reasonable. The present work is concerned with the studies on radiation effects on aluminium alloy, and interaction between the alloy and coolant in the reactor core. (author). 2 refs., 3 figs., 1 tab

  6. Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network

    International Nuclear Information System (INIS)

    Susmikanti, Mike; Sulistyo, Jos

    2014-01-01

    Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to develop code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix

  7. Spent nuclear fuel discharges from US reactors 1993

    International Nuclear Information System (INIS)

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics

  8. Nitride Coating Effect on Oxidation Behavior of Centrifugally Atomized U-Mo Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Jin; Cho, Woo Hyoung; Park, Jong Man; Lee, Yoon Sang; Yang, Jae Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Uranium metal and uranium compounds are being used as nuclear fuel materials and generally known as pyrophoric materials. Nowadays the importance of nuclear fuel about safety is being emphasized due to the vigorous exchanges and co-operations among the international community. According to the reduced enrichment for research and test reactors (RERTR) program, the international research reactor community has decided to use low-enriched uranium instead of high-enriched uranium. As a part of the RERTR program, KAERI has developed centrifugally atomized U-Mo alloys as a promising candidate of research reactor fuel. Kang et al. studied the oxidation behavior of centrifugally atomized U-10wt% Mo alloy and it showed better oxidation resistance than uranium. In this study, the oxidation behavior of nitride coated U-7wt% Mo alloy is investigated to enhance the safety against pyrophoricity

  9. An assessment of the feasibility of indefinite containment of Canadian nuclear fuel wastes

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; King, F.; Ikeda, B.M.

    1995-05-01

    This report presents an analysis of the expected corrosion behaviour of nuclear fuel waste containers in a conceptual Canadian disposal vault. The container materials considered are dilute Ti alloys (Grades-2, -12 and -16) and oxygen-free copper. The corrosive conditions within the disposal vault change with time as the initially trapped oxygen is consumed and as the heat and γ-radiation produced by the waste decays. This evolution of the vault environment is broadly classified into an early, warm and oxidizing period followed by a period of long-term, stable, cool and non-oxidizing conditions. The corrosion behaviour of both types of material during these two periods is discussed, and various models that have been developed to predict the lifetimes of the containers are presented. The conclusion is that indefinite containment of the waste is feasible with both copper and titanium alloys under Canadian disposal conditions. (author). refs., tabs., figs

  10. Monitoring for fuel sheath defects in three shipments of irradiated CANDU nuclear fuel

    International Nuclear Information System (INIS)

    Johnson, H.M.

    1978-01-01

    Analyses of radioactive gases within the Pegase shipping flask were performed at the outset and at the completion of three shipments of irradiated nuclear fuel from the Douglas Point Generating Station to Whiteshell Nuclear Research Establishment. No increases in the concentration of active gases, volatiles or particulates were observed. The activity of the WR-1 bay water rose only marginally due to the storage of the fuel. Other tests indicated that minimal surface contamination was present. These data established that defects in fuel element sheaths did not arise during the transport or the handling of this irradiated fuel. The observation has significance for the prospect of irradiated nuclear fuel transfer and handling in preparation for storage or disposal. (author)

  11. Nuclear Fuels & Materials Spotlight Volume 5

    International Nuclear Information System (INIS)

    Petti, David Andrew

    2016-01-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  12. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Domoto, Noboru; Masuda, Hiroyuki

    1989-01-01

    In a nuclear fuel assembly loaded with a plurality of fuel rods, the inside of a fuel rod disposed at a high neutron flux region is divided into an inner region and an outer region, and more burnable poisons are mixed in the inner region than in the outer region. Alternatively, the central portion of a pellet disposed in a high neutron flux region is made hollow, in which burnable poisons are charged. This can prevent neutron infinite multiplication factor from decreasing extremely at the initial burning stage. Further, the burnable poisons are not rapidly burnt completely and local peaking coefficient can be controlled. Accordingly, in a case of suppressing a predetermined excess reactivity by using a fuel rod incorporated with the burnable poison, the fuel economy can be improved more and the reactor core controllability can also be improved as compared with the usual case. (T.M.)

  13. Low content uranium alloys for nuclear fuels; Alliages d'uranium a faible teneur pour elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, H.; Laniesse, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A description is given of the structure and the properties of low content alloys containing from 0.1 to 0.5 per cent by weight of Al, Fe, Cr, Si, Mo or a combination of these elements. A study of the kinetics and of the mode of transformation has made it possible to choose the most satisfactory thermal treatment. An attempt has been made to prepare alloys suitable for an economical industrial development having a small {alpha} grain structure without marked preferential orientation, with very fine and stable precipitates as well as a high creep-resistance. The physical properties and the mechanical strength of these alloys are given for temperatures of 20 to 600 deg C. These alloys proved very satisfactory when irradiated in the form of normal size fuel elements. (authors) [French] Sont decrits la structure et les proprietes d'alliages a faible teneur, contenant de 0,1 a 0,5 pour cent en poids de Al, Fe, Cr, Si, Mo ou une combinaison de ces elements. L'etude des cinetiques et du mode de transformation permet de choisir le traitement thermique le plus favorable. On a cherche a mettre, au point des alliages se pretant a une mise en oeuvre industrielle economique et presentant une structure a petits grains {alpha}, sans orientation preferentielle marquee, avec des precipites tres fins et stables ainsi qu'une bonne resistance au fluage. Les proprietes physiques et la resistance mecanique de ces alliages sont decrites entre la temperature ambiante et 600 deg C. Irradies sous forme d'elements combustibles de dimensions normales, ces alliages ont montre un bon comportement. (auteurs)

  14. Cosmic ray muons for spent nuclear fuel monitoring

    Science.gov (United States)

    Chatzidakis, Stylianos

    There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks

  15. DOE not planning to accept spent nuclear fuel

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Samuel K. Skinner, president of Commonwealth Edison Co. (ComEd), said open-quotes The federal government has a clear responsibility to begin accepting spent nuclear fuel in 1988,close quotes citing the Nuclear Waste Policy Act of 1982 before the Senate Energy and Natural Resources Committee. Based in Chicago, ComEd operates 12 nuclear units, making it the nation's largest nuclear utility. open-quotes Since 1983, the consumers who use electricity produced at all nuclear power plants have been paying to fund federal management of spent nuclear fuel. Consumer payments and obligations, with interest, now total more than $10 billion. Electricity consumers have held up their side of the deal. The federal government must do the same,close quotes Skinner added. Skinner represented the Nuclear Energy Institute (NEI) before the committee. NEI is the Washington-based trade association of the nuclear energy industries. For more than 12 years, utility customers have been paying one-tenth of a cent per kWhr to fund a federal spent fuel management program under the Nuclear Waste Policy Act of 1982. Under this act, the federal government assumed responsibility for management of spent fuel from the nation's nuclear power plants. The U.S. Department of Energy (DOE) was assigned to manage the storage and disposal program. DOE committed to begin accepting spent fuel from nuclear power plants by January 31, 1988. DOE has spent almost $5 million studying a site in Nevada, but is about 12 years behind schedule and does not plan to accept spent fuel beginning in 1998. DOE has said a permanent storage site will not be ready until 2010. This poses a major problem for many of the nation's nuclear power plants which supply about 20% of the electricity in the US

  16. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    1992-09-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R ampersand D programs and key personnel on 23 countries, including the US, four multi-national agencies, and 21 nuclear societies. The Fact Book is organized as follows: National summaries-a section for each country which summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies-a section for each of the international agencies which has significant fuel cycle involvement and a listing of nuclear societies. Glossary-a list of abbreviations/acronyms of organizations, facilities, technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter presented from the perspective of the Fact Book user in the United States

  17. Manufacture of fuel and fuel channels and their performance in Indian PHWRS - an overview

    International Nuclear Information System (INIS)

    Kalidas, R.

    2005-01-01

    Nuclear Fuel Complex (NFC) at Hyderabad is a conglomeration of chemical, metallurgical and mechanical plants, processing uranium and zirconium in two separate streams and culminating in the fuel assembly plant. Apart from manufacturing fuel for Pressurised Heavy Water Reactors (PHWRs) and Boiling Water Reactors (BWRs), NFC is also engaged in the manufacture of reactor core structurals for these reactors. NFC has carried out several technological developments over the years and implemented them for the manufacture of fuel, calandria tubes and pressure tubes for PHWRs. Keeping in pace with the Nuclear Power Programme envisaged by the Department of Atomic Energy, NFC had augmented its production capacities in all these areas. The paper highlights several actions initiated in the areas of fuel design, fuel manufacturing, manufacturing of zirconium alloy core structurals, fuel clad tubes and components and their performance in Indian PHWRs. (author)

  18. International light water nuclear fuel fabrication supply. Are fabrication services assured?

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey

    2010-01-01

    This paper examines the cost structure of fabricating light water reactor (LWR) fuel with low-enriched uranium (LEU, with less than 5% enrichment). The LWR-LEU fuel industry is decades old, and (except for the high entry cost of designing and licensing a fuel fabrication facility and its fuel), labor and additional fabrication lines can be added at Nth-of-a-Kind cost to the maximum capacity allowed by a site license. The industry appears to be competitive: nuclear fuel fabrication capacity is assured with many competitors and reasonable prices. However, nuclear fuel assurance has become an important issue for nations now to considering new nuclear power plants. To provide this assurance many proposals equate 'nuclear fuel banks' (which would require fuel for specific reactors) with 'LEU banks' (where LEU could be blended into nuclear fuel with the proper enrichment) with local fuel fabrication. The policy issues (which are presented, but not answered in this paper) become (1) whether the construction of new nuclear fuel fabrication facilities in new nuclear power nations could lead to the proliferation of nuclear weapons, and (2) whether nuclear fuel quality can be guaranteed under current industry arrangements, given that fuel failure at one reactor can lead to forced shutdowns at many others. (author)

  19. Establishment of technological basis for fabrication of U-Pu-Zr ternary alloy fuel pins for irradiation tests in Japan

    International Nuclear Information System (INIS)

    Kikuchi, Hironobu; Iwai, Takashi; Nakajima, Kunihisa; Arai, Yasuo; Nakamura, Kinya; Ogata, Takanari

    2011-01-01

    A high-purity Ar gas atmosphere glove box accommodating injection casting and sodium-bonding apparatuses was newly installed in the Plutonium Fuel Research Facility of Oarai Research and Development Center, Japan Atomic Energy Agency, in which several nitride and carbide fuel pins were fabricated for irradiation tests. The experiences led to the establishment of the technological basis of the fabrication of U-Pu-Zr alloy fuel pins for the first time in Japan. After the injection casting of the U-Pu-Zr alloy, the metallic fuel pins were fabricated by welding upper and lower end plugs with cladding tubes of ferritic-martensitic steel. Subsequent to the sodium bonding for filling the annular gap region between the U-Pu-Zr alloy and the cladding tube with the melted sodium, the fuel pins for irradiation tests are inspected. This paper shows the apparatuses and the technological basis for the fabrication of U-Pu-Zr alloy fuel pins for the irradiation test planned at the experimental fast test reactor Joyo. (author)

  20. Spent nuclear fuel storage vessel

    International Nuclear Information System (INIS)

    Watanabe, Yoshio; Kashiwagi, Eisuke; Sekikawa, Tsutomu.

    1997-01-01

    Containing tubes for containing spent nuclear fuels are arranged vertically in a chamber. Heat releasing fins are disposed horizontal to the outer circumference of the containing tubes for rectifying cooling air and promoting cooling of the containing tubes. Louvers and evaporation sides of heat pipes are disposed at a predetermined distance in the chamber. Cooling air flows from an air introduction port to the inside of the chamber and takes heat from the containing tubes incorporated with heat generating spent nuclear fuels, rising its temperature and flows off to an air exhaustion exit. The direction for the rectification plate of the louver is downward from a horizontal position while facing to the air exhaustion port. Since the evaporation sides of the heat pipes are disposed in the inside of the chamber and the condensation side of the heat pipes is disposed to the outside of the chamber, the thermal energy can be recovered from the containing tubes incorporated with spent nuclear fuels and utilized. (I.N.)