WorldWideScience

Sample records for allelic gene structure

  1. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi.

    Directory of Open Access Journals (Sweden)

    Yusuke Ohnishi

    -strand siRNA elements, which possibly increase the assembly of antisense-strand (guide siRNAs into RNA-induced silencing complexes (RISCs, may enhance ASP-RNAi in the case of inert siRNA duplexes. Therefore, the data presented here suggest that structural modification of functional portions of an siRNA duplex by base substitution could greatly influence allele discrimination and gene silencing, thereby contributing to enhancement of ASP-RNAi.

  2. Alleles of Ppd-D1 gene in the collection of Aegilops tauschii accessions and bread wheat varieties

    Directory of Open Access Journals (Sweden)

    Babenko D. O.

    2012-04-01

    Full Text Available Light period significantly influences on the growth and development of plants. One of the major genes of photoperiod sensitivity is Ppd-D1, located on the chromosome 2D. The aim of the work was to determine the alleles and molecular structure of Ppd-D1 gene in samples from the collection of Ae. tauschii accessions, which have different flowering periods, and in 29 Ukrainian wheat varieties. Methods. We used methods of allele-specific PCR with primers to the Ppd-D1 gene, sequencing and Blast-analysis. Results. The collection of Ae. tauschii accessions and several varieties of winter and spring wheat was studied. The molecular structure of the allelic variants (414, 429 and 453 b. p. of Ppd-D1b gene was determined in the collection of Aegilops. tauschii accessions. Conclusions. The Ppd-D1a allele was present in all studied varieties of winter wheat. 60 % of spring wheat is characterized by Ppd-D1b allele (size of amplification products 414 b. p.. Blast-analysis of the sequence data banks on the basis of the reference sequence of sample k-1322 from the collection of Ae. tauschii accessions has shown a high homology (80 to 100 % between the nucleotide sequences of PRR genes, that characterize the A and D genomes of representatives of the genera Triticum and Aegilops.

  3. Allele specific expression in worker reproduction genes in the bumblebee Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Harindra E. Amarasinghe

    2015-07-01

    Full Text Available Methylation has previously been associated with allele specific expression in ants. Recently, we found methylation is important in worker reproduction in the bumblebee Bombus terrestris. Here we searched for allele specific expression in twelve genes associated with worker reproduction in bees. We found allele specific expression in Ecdysone 20 monooxygenase and IMP-L2-like. Although we were unable to confirm a genetic or epigenetic cause for this allele specific expression, the expression patterns of the two genes match those predicted for imprinted genes.

  4. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.

    Science.gov (United States)

    Kofoed, Megan; Milbury, Karissa L; Chiang, Jennifer H; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C

    2015-07-14

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. Copyright © 2015 Kofoed et al.

  5. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: A cohort allelic sums test (CAST)

    International Nuclear Information System (INIS)

    Morgenthaler, Stephan; Thilly, William G.

    2007-01-01

    A method is described to discover if a gene carries one or more allelic mutations that confer risk for any specified common disease. The method does not depend upon genetic linkage of risk-conferring mutations to high frequency genetic markers such as single nucleotide polymorphisms. Instead, the sums of allelic mutation frequencies in case and control cohorts are determined and a statistical test is applied to discover if the difference in these sums is greater than would be expected by chance. A statistical model is presented that defines the ability of such tests to detect significant gene-disease relationships as a function of case and control cohort sizes and key confounding variables: zygosity and genicity, environmental risk factors, errors in diagnosis, limits to mutant detection, linkage of neutral and risk-conferring mutations, ethnic diversity in the general population and the expectation that among all exonic mutants in the human genome greater than 90% will be neutral with regard to any effect on disease risk. Means to test the null hypothesis for, and determine the statistical power of, each test are provided. For this 'cohort allelic sums test' or 'CAST', the statistical model and test are provided as an Excel (TM) program, CASTAT (C) at http://epidemiology.mit.edu. Based on genetics, technology and statistics, a strategy of enumerating the mutant alleles carried in the exons and splice sites of the estimated ∼25,000 human genes in case cohort samples of 10,000 persons for each of 100 common diseases is proposed and evaluated: A wide range of possible conditions of multi-allelic or mono-allelic and monogenic, multigenic or polygenic (including epistatic) risk are found to be detectable using the statistical criteria of 1 or 10 ''false positive'' gene associations per 25,000 gene-disease pair-wise trials and a statistical power of >0.8. Using estimates of the distribution of both neutral and gene-inactivating nondeleterious mutations in humans and

  6. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    Directory of Open Access Journals (Sweden)

    Clark Taane G

    2010-04-01

    Full Text Available Abstract Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%. Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes

  7. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    Science.gov (United States)

    Challa, Anil K; Boitet, Evan R; Turner, Ashley N; Johnson, Larry W; Kennedy, Daniel; Downs, Ethan R; Hymel, Katherine M; Gross, Alecia K; Kesterson, Robert A

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene.

  8. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    Directory of Open Access Journals (Sweden)

    Anil K Challa

    Full Text Available Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr cause oculocutaneous albinism (OCA1 in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray and chandana (Sanskrit for sandalwood. These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene.

  9. Mutation intolerant genes and targets of FMRP are enriched for nonsynonymous alleles in schizophrenia.

    Science.gov (United States)

    Leonenko, Ganna; Richards, Alexander L; Walters, James T; Pocklington, Andrew; Chambert, Kimberly; Al Eissa, Mariam M; Sharp, Sally I; O'Brien, Niamh L; Curtis, David; Bass, Nicholas J; McQuillin, Andrew; Hultman, Christina; Moran, Jennifer L; McCarroll, Steven A; Sklar, Pamela; Neale, Benjamin M; Holmans, Peter A; Owen, Michael J; Sullivan, Patrick F; O'Donovan, Michael C

    2017-10-01

    Risk of schizophrenia is conferred by alleles occurring across the full spectrum of frequencies from common SNPs of weak effect through to ultra rare alleles, some of which may be moderately to highly penetrant. Previous studies have suggested that some of the risk of schizophrenia is attributable to uncommon alleles represented on Illumina exome arrays. Here, we present the largest study of exomic variation in schizophrenia to date, using samples from the United Kingdom and Sweden (10,011 schizophrenia cases and 13,791 controls). Single variants, genes, and gene sets were analyzed for association with schizophrenia. No single variant or gene reached genome-wide significance. Among candidate gene sets, we found significant enrichment for rare alleles (minor allele frequency [MAF] schizophrenia by excluding a role for uncommon exomic variants (0.01 ≤ MAF ≥ 0.001) that confer a relatively large effect (odds ratio [OR] > 4). We also show risk alleles within this frequency range exist, but confer smaller effects and should be identified by larger studies. © 2017 Wiley Periodicals, Inc.

  10. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice.

    Science.gov (United States)

    Shen, Rongxin; Wang, Lan; Liu, Xupeng; Wu, Jiang; Jin, Weiwei; Zhao, Xiucai; Xie, Xianrong; Zhu, Qinlong; Tang, Huiwu; Li, Qing; Chen, Letian; Liu, Yao-Guang

    2017-11-03

    Hybrids between divergent populations commonly show hybrid sterility; this reproductive barrier hinders hybrid breeding of the japonica and indica rice (Oryza sativa L.) subspecies. Here we show that structural changes and copy number variation at the Sc locus confer japonica-indica hybrid male sterility. The japonica allele, Sc-j, contains a pollen-essential gene encoding a DUF1618-domain protein; the indica allele, Sc-i, contains two or three tandem-duplicated ~ 28-kb segments, each carrying an Sc-j-homolog with a distinct promoter. In Sc-j/Sc-i hybrids, the high-expression of Sc-i in sporophytic cells causes suppression of Sc-j expression in pollen and selective abortion of Sc-j-pollen, leading to transmission ratio distortion. Knocking out one or two of the three Sc-i copies by CRISPR/Cas9 rescues Sc-j expression and male fertility. Our results reveal the gene dosage-dependent allelic suppression as a mechanism of hybrid incompatibility, and provide an effective approach to overcome the reproductive barrier for hybrid breeding.

  11. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    Science.gov (United States)

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  12. Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand.

    Science.gov (United States)

    Sawaswong, Vorthon; Simpalipan, Phumin; Siripoon, Napaporn; Harnyuttanakorn, Pongchai; Pattaradilokrat, Sittiporn

    2015-04-01

    Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles coexisted, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines.

  13. Allele-specific gene expression in a wild nonhuman primate population

    Science.gov (United States)

    Tung, J.; Akinyi, M. Y.; Mutura, S.; Altmann, J.; Wray, G. A.; Alberts, S. C.

    2015-01-01

    Natural populations hold enormous potential for evolutionary genetic studies, especially when phenotypic, genetic and environmental data are all available on the same individuals. However, untangling the genotype-phenotype relationship in natural populations remains a major challenge. Here, we describe results of an investigation of one class of phenotype, allele-specific gene expression (ASGE), in the well-studied natural population of baboons of the Amboseli basin, Kenya. ASGE measurements identify cases in which one allele of a gene is overexpressed relative to the alternative allele of the same gene, within individuals, thus providing a control for background genetic and environmental effects. Here, we characterize the incidence of ASGE in the Amboseli baboon population, focusing on the genetic and environmental contributions to ASGE in a set of eleven genes involved in immunity and defence. Within this set, we identify evidence for common ASGE in four genes. We also present examples of two relationships between cis-regulatory genetic variants and the ASGE phenotype. Finally, we identify one case in which this relationship is influenced by a novel gene-environment interaction. Specifically, the dominance rank of an individual’s mother during its early life (an aspect of that individual’s social environment) influences the expression of the gene CCL5 via an interaction with cis-regulatory genetic variation. These results illustrate how environmental and ecological data can be integrated into evolutionary genetic studies of functional variation in natural populations. They also highlight the potential importance of early life environmental variation in shaping the genetic architecture of complex traits in wild mammals. PMID:21226779

  14. [Phenotypic effects of puroindoline gene alleles of bread wheat].

    Science.gov (United States)

    Chebotar, S V; Kurakina, K O; Khokhlov, O M; Chebotar, H O; Syvolap, Iu M

    2012-01-01

    85 winter bread wheat varieties and lines that have been developed mostly in Ukraine were analyzed with NIR for parameters of hardness and protein content. The hardness data were compared with the data of puroindoline gene alleles analysis done earlier and the published data. Significant variation of parameters of hardness was revealed when there was low polymorphism of puroindoline genes indicating the presence of additional genes that influence the hardness parameters.

  15. Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Gowda Cholenahalli LL

    2008-10-01

    Full Text Available Abstract Background Plant genetic resources (PGR are the basic raw materials for future genetic progress and an insurance against unforeseen threats to agricultural production. An extensive characterization of PGR provides an opportunity to dissect structure, mine allelic variations, and identify diverse accessions for crop improvement. The Generation Challenge Program http://www.generationcp.org conceptualized the development of "composite collections" and extraction of "reference sets" from these for more efficient tapping of global crop-related genetic resources. In this study, we report the genetic structure, diversity and allelic richness in a composite collection of chickpea using SSR markers, and formation of a reference set of 300 accessions. Results The 48 SSR markers detected 1683 alleles in 2915 accessions, of which, 935 were considered rare, 720 common and 28 most frequent. The alleles per locus ranged from 14 to 67, averaged 35, and the polymorphic information content was from 0.467 to 0.974, averaged 0.854. Marker polymorphism varied between groups of accessions in the composite collection and reference set. A number of group-specific alleles were detected: 104 in Kabuli, 297 in desi, and 69 in wild Cicer; 114 each in Mediterranean and West Asia (WA, 117 in South and South East Asia (SSEA, and 10 in African region accessions. Desi and kabuli shared 436 alleles, while wild Cicer shared 17 and 16 alleles with desi and kabuli, respectively. The accessions from SSEA and WA shared 74 alleles, while those from Mediterranean 38 and 33 alleles with WA and SSEA, respectively. Desi chickpea contained a higher proportion of rare alleles (53% than kabuli (46%, while wild Cicer accessions were devoid of rare alleles. A genotype-based reference set captured 1315 (78% of the 1683 composite collection alleles of which 463 were rare, 826 common, and 26 the most frequent alleles. The neighbour-joining tree diagram of this reference set represents

  16. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product.

    Science.gov (United States)

    Chen, H Deborah; Jewett, Mollie W; Groisman, Eduardo A

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.

  17. Nitric oxide synthase gene G298 allele

    International Nuclear Information System (INIS)

    Nagib El-Kilany, Galal E.; Nayel, Ehab; Hazzaa, Sahar

    2004-01-01

    Background: Nitric oxide (NO) has an important effect on blood pressure, arterial wall, and the basal release of endothelial NO in hypertension (HPN) may be reduced. Until now, there is no solid data revealing the potential role of the polymorphism of the nitric oxide synthase gene (NOS) in patients with HPN and microvascular angina. Aim: The aim of the present study is to investigate the gene of endothelial nitric oxide synthase (eNOS), as the polymorphism of this gene may be a putative candidate for HPN and initiate the process of atherosclerosis. Methods: Sixty participants were recruited for this study; 50 were hypertensive patients complaining of chest pain [30 of them have electrocardiogram (EKG) changes of ischemia], 20 had isolated HPN, and 10 healthy volunteers served as control. All patients underwent stress myocardial perfusion imaging (MPI) and coronary angiography. Genotyping of eNOS for all patients and controls was performed. The linkages between HPN, microvascular angina and eNOS gene polymorphism were investigated. Results: MPI and coronary angiography revealed that 15 patients had chest pain with true ischemia and reversible myocardial perfusion defects (multiple and mild) but normal epicardial coronary arteries (microvascular angina), while 15 patients had significant coronary artery disease (CAD), and 20 hypertensive patients showed normal perfusion scan and coronary angiography. The prevalence of the NOS G 298 allele was higher in the hypertensive group with microvascular angina (documented by MPI) than it was among the control participants (P<.005). The eNOS allele was significantly higher in the hypertensive group than in the control participants, but there was no significant difference in homozygote mutants among hypertensive participants, x-syndrome and patients with CAD. Conclusion: eNOS gene polymorphism is proved to be an important etiology in microvascular angina (x-syndrome) among hypertensive patients. In addition, the eNOS mutant

  18. Expression and loss of alleles in cultured mouse embryonic fibroblasts and stem cells carrying allelic fluorescent protein genes

    Directory of Open Access Journals (Sweden)

    Stringer Saundra L

    2006-10-01

    Full Text Available Abstract Background Loss of heterozygosity (LOH contributes to many cancers, but the rate at which these events occur in normal cells of the body is not clear. LOH would be detectable in diverse cell types in the body if this event were to confer an obvious cellular phenotype. Mice that carry two different fluorescent protein genes as alleles of a locus would seem to be a useful tool for addressing this issue because LOH would change a cell's phenotype from dichromatic to monochromatic. In addition, LOH caused by mitotic crossing over might be discernable in tissues because this event produces a pair of neighboring monochromatic cells that are different colors. Results As a step in assessing the utility of this approach, we derived primary embryonic fibroblast populations and embryonic stem cell lines from mice that carried two different fluorescent protein genes as alleles at the chromosome 6 locus, ROSA26. Fluorescence activated cell sorting (FACS showed that the vast majority of cells in each line expressed the two marker proteins at similar levels, and that populations exhibited expression noise similar to that seen in bacteria and yeast. Cells with a monochromatic phenotype were present at frequencies on the order of 10-4 and appeared to be produced at a rate of approximately 10-5 variant cells per mitosis. 45 of 45 stably monochromatic ES cell clones exhibited loss of the expected allele at the ROSA26 locus. More than half of these clones retained heterozygosity at a locus between ROSA26 and the centromere. Other clones exhibited LOH near the centromere, but were disomic for chromosome 6. Conclusion Allelic fluorescent markers allowed LOH at the ROSA26 locus to be detected by FACS. LOH at this locus was usually not accompanied by LOH near the centromere, suggesting that mitotic recombination was the major cause of ROSA26 LOH. Dichromatic mouse embryonic cells provide a novel system for studying genetic/karyotypic stability and factors

  19. Ankyrin-1 Gene Exhibits Allelic Heterogeneity in Conferring Protection Against Malaria

    Directory of Open Access Journals (Sweden)

    Hong Ming Huang

    2017-09-01

    Full Text Available Allelic heterogeneity is a common phenomenon where a gene exhibits a different phenotype depending on the nature of its genetic mutations. In the context of genes affecting malaria susceptibility, it allowed us to explore and understand the intricate host–parasite interactions during malaria infections. In this study, we described a gene encoding erythrocytic ankyrin-1 (Ank-1 which exhibits allelic-dependent heterogeneous phenotypes during malaria infections. We conducted an ENU mutagenesis screen on mice and identified two Ank-1 mutations, one resulting in an amino acid substitution (MRI95845, and the other a truncated Ank-1 protein (MRI96570. Both mutations caused hereditary spherocytosis-like phenotypes and confer differing protection against Plasmodium chabaudi infections. Upon further examination, the Ank-1(MRI96570 mutation was found to inhibit intraerythrocytic parasite maturation, whereas Ank-1(MRI95845 caused increased bystander erythrocyte clearance during infection. This is the first description of allelic heterogeneity in ankyrin-1 from the direct comparison between two Ank-1 mutations. Despite the lack of direct evidence from population studies, this data further supported the protective roles of ankyrin-1 mutations in conferring malaria protection. This study also emphasized the importance of such phenomena in achieving a better understanding of host–parasite interactions, which could be the basis of future studies.

  20. Functional conservation of the Drosophila gooseberry gene and its evolutionary alleles.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available The Drosophila Pax gene gooseberry (gsb is required for development of the larval cuticle and CNS, survival to adulthood, and male fertility. These functions can be rescued in gsb mutants by two gsb evolutionary alleles, gsb-Prd and gsb-Pax3, which express the Drosophila Paired and mouse Pax3 proteins under the control of gooseberry cis-regulatory region. Therefore, both Paired and Pax3 proteins have conserved all the Gsb functions that are required for survival of embryos to fertile adults, despite the divergent primary sequences in their C-terminal halves. As gsb-Prd and gsb-Pax3 uncover a gsb function involved in male fertility, construction of evolutionary alleles may provide a powerful strategy to dissect hitherto unknown gene functions. Our results provide further evidence for the essential role of cis-regulatory regions in the functional diversification of duplicated genes during evolution.

  1. Differential allelic expression of a fibrillin gene (FBNI) in patients with Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, D.; Lynch, J.; Sykes, B. [Univ. of Oxford (United Kingdom); Firth, H. [Churchill Hospital, Oxford (United Kingdom); Child, A. [St. George`s Hospital Medical School, London (United Kingdom)

    1994-09-01

    Marfan syndrome is a connective-tissue disorder affecting cardiovascular, skeletal, and ocular systems. The major Marfan locus has been identified as the FBN1 gene on chromosome 15; this codes for the extracellular-matrix protein fibrillin, a 350-kD constituent of the 8-10-nm elastin-associated microfibrils. The authors identified five MFS patients who were heterozygous for an RsaI restriction-site dimorphism in the 3{prime} UTR of the FBN1 gene. This expressed variation was used to distinguish the mRNA output from each of the two FBN1 alleles in fibroblast cultures from these five patients. Three of the patients were shown to produce <5% of the normal level of FBN1 transcripts from one of their alleles. This null-allele phenotype was not observed in 10 nonmarfanoid fibroblast cell lines. 26 refs., 4 figs.

  2. Haplotype block structure study of the CFTR gene. Most variants are associated with the M470 allele in several European populations.

    Science.gov (United States)

    Pompei, Fiorenza; Ciminelli, Bianca Maria; Bombieri, Cristina; Ciccacci, Cinzia; Koudova, Monika; Giorgi, Silvia; Belpinati, Francesca; Begnini, Angela; Cerny, Milos; Des Georges, Marie; Claustres, Mireille; Ferec, Claude; Macek, Milan; Modiano, Guido; Pignatti, Pier Franco

    2006-01-01

    An average of about 1700 CFTR (cystic fibrosis transmembrane conductance regulator) alleles from normal individuals from different European populations were extensively screened for DNA sequence variation. A total of 80 variants were observed: 61 coding SNSs (results already published), 13 noncoding SNSs, three STRs, two short deletions, and one nucleotide insertion. Eight DNA variants were classified as non-CF causing due to their high frequency of occurrence. Through this survey the CFTR has become the most exhaustively studied gene for its coding sequence variability and, though to a lesser extent, for its noncoding sequence variability as well. Interestingly, most variation was associated with the M470 allele, while the V470 allele showed an 'extended haplotype homozygosity' (EHH). These findings make us suggest a role for selection acting either on the M470V itself or through an hitchhiking mechanism involving a second site. The possible ancient origin of the V allele in an 'out of Africa' time frame is discussed.

  3. Allele and Genotype Distributions of DNA Repair Gene Polymorphisms in South Indian Healthy Population

    Directory of Open Access Journals (Sweden)

    Katiboina Srinivasa Rao

    2014-01-01

    Full Text Available Various DNA repair pathways protect the structural and chemical integrity of the human genome from environmental and endogenous threats. Polymorphisms of genes encoding the proteins involved in DNA repair have been found to be associated with cancer risk and chemotherapeutic response. In this study, we aim to establish the normative frequencies of DNA repair genes in South Indian healthy population and compare with HapMap populations. Genotyping was done on 128 healthy volunteers from South India, and the allele and genotype distributions were established. The minor allele frequency of Xeroderma pigmentosum group A ( XPA G23A, Excision repair cross-complementing 2 ( ERCC2 /Xeroderma pigmentosum group D ( XPD Lys751Gln, Xeroderma pigmentosum group G ( XPG His46His, XPG Asp1104His, and X-ray repair cross-complementing group 1 ( XRCC1 Arg399Gln polymorphisms were 49.2%, 36.3%, 48.0%, 23.0%, and 34.0% respectively. Ethnic variations were observed in the frequency distribution of these polymorphisms between the South Indians and other HapMap populations. The present work forms the groundwork for cancer association studies and biomarker identification for treatment response and prognosis.

  4. Genomic Features That Predict Allelic Imbalance in Humans Suggest Patterns of Constraint on Gene Expression Variation

    Science.gov (United States)

    Fédrigo, Olivier; Haygood, Ralph; Mukherjee, Sayan; Wray, Gregory A.

    2009-01-01

    Variation in gene expression is an important contributor to phenotypic diversity within and between species. Although this variation often has a genetic component, identification of the genetic variants driving this relationship remains challenging. In particular, measurements of gene expression usually do not reveal whether the genetic basis for any observed variation lies in cis or in trans to the gene, a distinction that has direct relevance to the physical location of the underlying genetic variant, and which may also impact its evolutionary trajectory. Allelic imbalance measurements identify cis-acting genetic effects by assaying the relative contribution of the two alleles of a cis-regulatory region to gene expression within individuals. Identification of patterns that predict commonly imbalanced genes could therefore serve as a useful tool and also shed light on the evolution of cis-regulatory variation itself. Here, we show that sequence motifs, polymorphism levels, and divergence levels around a gene can be used to predict commonly imbalanced genes in a human data set. Reduction of this feature set to four factors revealed that only one factor significantly differentiated between commonly imbalanced and nonimbalanced genes. We demonstrate that these results are consistent between the original data set and a second published data set in humans obtained using different technical and statistical methods. Finally, we show that variation in the single allelic imbalance-associated factor is partially explained by the density of genes in the region of a target gene (allelic imbalance is less probable for genes in gene-dense regions), and, to a lesser extent, the evenness of expression of the gene across tissues and the magnitude of negative selection on putative regulatory regions of the gene. These results suggest that the genomic distribution of functional cis-regulatory variants in the human genome is nonrandom, perhaps due to local differences in evolutionary

  5. Low frequency of the scrapile resistance-associated allele and presence of lysine-171 allele of the prion protein gene in Italian Biellese ovine breed

    NARCIS (Netherlands)

    Acutis, P.L.; Sbaiz, L.; Verburg, F.J.; Riina, M.V.; Ru, G.; Moda, G.; Caramelli, M.; Bossers, A.

    2004-01-01

    Frequencies of polymorphisms at codons 136, 154 and 171 of the prion protein (PrP) gene were studied in 1207 pure-bred and cross-bred Italian Biellese rams, a small ovine breed of about 65 000 head in Italy. Aside from the five most common alleles (VRQ, ARQ, ARR, AHQ and ARH), the rare ARK allele

  6. Novel deletion alleles carrying CYP21A1P/A2 chimeric genes in Brazilian patients with 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Guerra-Júnior Gil

    2010-06-01

    Full Text Available Abstract Background Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is caused by deletions, large gene conversions or mutations in CYP21A2 gene. The human gene is located at 6p21.3 within a locus containing the genes for putative serine/threonine Kinase RP, complement C4, steroid 21-hydroxylase CYP21 tenascin TNX, normally, in a duplicated cluster known as RCCX module. The CYP21 extra copy is a pseudogene (CYP21A1P. In Brazil, 30-kb deletion forming monomodular alleles that carry chimeric CYP21A1P/A2 genes corresponds to ~9% of disease-causing alleles. Such alleles are considered to result from unequal crossovers within the bimodular C4/CYP21 locus. Depending on the localization of recombination breakpoint, different alleles can be generated conferring the locus high degree of allelic variability. The purpose of the study was to investigate the variability of deleted alleles in patients with 21-hydroxylase deficiency. Methods We used different techniques to investigate the variability of 30-kb deletion alleles in patients with 21-hydroxylase deficiency. Alleles were first selected after Southern blotting. The composition of CYP21A1P/A2 chimeric genes was investigated by ASO-PCR and MLPA analyses followed by sequencing to refine the location of recombination breakpoints. Twenty patients carrying at least one allele with C4/CYP21 30-kb deletion were included in the study. Results An allele carrying a CYP21A1P/A2 chimeric gene was found unusually associated to a C4B/C4A Taq I 6.4-kb fragment, generally associated to C4B and CYP21A1P deletions. A novel haplotype bearing both p.P34L and p.H62L, novel and rare mutations, respectively, was identified in exon 1, however p.P30L, the most frequent pseudogene-derived mutation in this exon, was absent. Four unrelated patients showed this haplotype. Absence of p.P34L in CYP21A1P of normal controls indicated that it is not derived from pseudogene. In addition, the combination of different

  7. SEQUENCE OF THE STRUCTURAL GENE FOR GRANULE-BOUND STARCH SYNTHASE OF POTATO (SOLANUM-TUBEROSUM L) AND EVIDENCE FOR A SINGLE POINT DELETION IN THE AMF ALLELE

    NARCIS (Netherlands)

    van der Leij, Feike R.; VISSER, RGF; Ponstein, Anne S.; Jacobsen, Evert; Feenstra, Willem

    The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; "waxy protein") has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type

  8. Allele-specific gene expression patterns in primary leukemic cells reveal regulation of gene expression by CpG site methylation

    DEFF Research Database (Denmark)

    Milani, Lili; Lundmark, Anders; Nordlund, Jessica

    2008-01-01

    To identify genes that are regulated by cis-acting functional elements in acute lymphoblastic leukemia (ALL) we determined the allele-specific expression (ASE) levels of 2, 529 genes by genotyping a genome-wide panel of single nucleotide polymorphisms in RNA and DNA from bone marrow and blood...

  9. Ploidy mosaicism and allele-specific gene expression differences in the allopolyploid Squalius alburnoides

    Directory of Open Access Journals (Sweden)

    Matos Isa

    2011-12-01

    Full Text Available Abstract Background Squalius alburnoides is an Iberian cyprinid fish resulting from an interspecific hybridisation between Squalius pyrenaicus females (P genome and males of an unknown Anaecypris hispanica-like species (A genome. S. alburnoides is an allopolyploid hybridogenetic complex, which makes it a likely candidate for ploidy mosaicism occurrence, and is also an interesting model to address questions about gene expression regulation and genomic interactions. Indeed, it was previously suggested that in S. alburnoides triploids (PAA composition silencing of one of the three alleles (mainly of the P allele occurs. However, not a whole haplome is inactivated but a more or less random inactivation of alleles varying between individuals and even between organs of the same fish was seen. In this work we intended to correlate expression differences between individuals and/or between organs to the occurrence of mosaicism, evaluating if mosaics could explain previous observations and its impact on the assessment of gene expression patterns. Results To achieve our goal, we developed flow cytometry and cell sorting protocols for this system generating more homogenous cellular and transcriptional samples. With this set-up we detected 10% ploidy mosaicism within the S. alburnoides complex, and determined the allelic expression profiles of ubiquitously expressed genes (rpl8; gapdh and β-actin in cells from liver and kidney of mosaic and non-mosaic individuals coming from different rivers over a wide geographic range. Conclusions Ploidy mosaicism occurs sporadically within the S. alburnoides complex, but in a frequency significantly higher than reported for other organisms. Moreover, we could exclude the influence of this phenomenon on the detection of variable allelic expression profiles of ubiquitously expressed genes (rpl8; gapdh and β-actin in cells from liver and kidney of triploid individuals. Finally, we determined that the expression patterns

  10. Algorithms for MDC-based multi-locus phylogeny inference: beyond rooted binary gene trees on single alleles.

    Science.gov (United States)

    Yu, Yun; Warnow, Tandy; Nakhleh, Luay

    2011-11-01

    One of the criteria for inferring a species tree from a collection of gene trees, when gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is Minimize Deep Coalescence (MDC). Exact algorithms for inferring the species tree from rooted, binary trees under MDC were recently introduced. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene trees may differ from true gene trees, be incompletely resolved, and not necessarily rooted. In this article, we propose new MDC formulations for the cases where the gene trees are unrooted/binary, rooted/non-binary, and unrooted/non-binary. Further, we prove structural theorems that allow us to extend the algorithms for the rooted/binary gene tree case to these cases in a straightforward manner. In addition, we devise MDC-based algorithms for cases when multiple alleles per species may be sampled. We study the performance of these methods in coalescent-based computer simulations.

  11. Genes of the unfolded protein response pathway harbor risk alleles for primary open angle glaucoma.

    Directory of Open Access Journals (Sweden)

    Mary Anna Carbone

    Full Text Available The statistical power of genome-wide association (GWA studies to detect risk alleles for human diseases is limited by the unfavorable ratio of SNPs to study subjects. This multiple testing problem can be surmounted with very large population sizes when common alleles of large effects give rise to disease status. However, GWA approaches fall short when many rare alleles may give rise to a common disease, or when the number of subjects that can be recruited is limited. Here, we demonstrate that this multiple testing problem can be overcome by a comparative genomics approach in which an initial genome-wide screen in a genetically amenable model organism is used to identify human orthologues that may harbor risk alleles for adult-onset primary open angle glaucoma (POAG. Glaucoma is a major cause of blindness, which affects over 60 million people worldwide. Several genes have been associated with juvenile onset glaucoma, but genetic factors that predispose to adult onset primary open angle glaucoma (POAG remain largely unknown. Previous genome-wide analysis in a Drosophila ocular hypertension model identified transcripts with altered regulation and showed induction of the unfolded protein response (UPR upon overexpression of transgenic human glaucoma-associated myocilin (MYOC. We selected 16 orthologous genes with 62 polymorphic markers and identified in two independent human populations two genes of the UPR that harbor POAG risk alleles, BIRC6 and PDIA5. Thus, effectiveness of the UPR in response to accumulation of misfolded or aggregated proteins may contribute to the pathogenesis of POAG and provide targets for early therapeutic intervention.

  12. A rare FANCA gene variation as a breast cancer susceptibility allele in an Iranian population.

    Science.gov (United States)

    Abbasi, Sakineh; Rasouli, Mina

    2017-06-01

    Fanconi Anemia (FA) is an autosomal recessive syndrome characterized by congenital abnormalities, progressive bone marrow failure and Fanconi anemia complementation group A (FANCA) is also a potential breast and ovarian cancer susceptibility gene. A novel allele with tandem duplication of 13 base pair sequence in promoter region was identified. To investigate whether the 13 base pair sequence of tandem duplication in promoter region of the FANCA gene is of high penetrance in patients with breast cancer and to determine if the presence of the duplicated allele was associated with an altered risk of breast cancer, the present study screened DNA in blood samples from 304 breast cancer patients and 295 normal individuals as controls. The duplication allele had a frequency of 35.4 and 21.2% in patients with breast cancer and normal controls, respectively. There was a significant increase in the frequency of the duplication allele in patients with familial breast cancer compared with controls (45.1%, P=0.001). Furthermore, the estimated risk of breast cancer in individuals with a homozygote [odds ratio (OR), 4.093; 95% confidence intervals (CI), 1.957‑8.561] or heterozygote duplicated genotype (OR, 3.315; 95% CI, 1.996‑5.506) was higher compared with the corresponding normal homozygote genotype. In conclusion, the present study indicated that the higher the frequency of the duplicated allele, the higher the risk of breast cancer. To the best of our knowledge, the present study is the first to report FANCA gene duplication in patients with breast cancer.

  13. Genes of the unfolded protein response pathway harbor risk alleles for primary open angle glaucoma.

    Science.gov (United States)

    Carbone, Mary Anna; Chen, Yuhong; Hughes, Guy A; Weinreb, Robert N; Zabriskie, Norman A; Zhang, Kang; Anholt, Robert R H

    2011-01-01

    The statistical power of genome-wide association (GWA) studies to detect risk alleles for human diseases is limited by the unfavorable ratio of SNPs to study subjects. This multiple testing problem can be surmounted with very large population sizes when common alleles of large effects give rise to disease status. However, GWA approaches fall short when many rare alleles may give rise to a common disease, or when the number of subjects that can be recruited is limited. Here, we demonstrate that this multiple testing problem can be overcome by a comparative genomics approach in which an initial genome-wide screen in a genetically amenable model organism is used to identify human orthologues that may harbor risk alleles for adult-onset primary open angle glaucoma (POAG). Glaucoma is a major cause of blindness, which affects over 60 million people worldwide. Several genes have been associated with juvenile onset glaucoma, but genetic factors that predispose to adult onset primary open angle glaucoma (POAG) remain largely unknown. Previous genome-wide analysis in a Drosophila ocular hypertension model identified transcripts with altered regulation and showed induction of the unfolded protein response (UPR) upon overexpression of transgenic human glaucoma-associated myocilin (MYOC). We selected 16 orthologous genes with 62 polymorphic markers and identified in two independent human populations two genes of the UPR that harbor POAG risk alleles, BIRC6 and PDIA5. Thus, effectiveness of the UPR in response to accumulation of misfolded or aggregated proteins may contribute to the pathogenesis of POAG and provide targets for early therapeutic intervention.

  14. Allele-dependent differences in quorum-sensing dynamics result in variant expression of virulence genes in Staphylococcus aureus.

    Science.gov (United States)

    Geisinger, Edward; Chen, John; Novick, Richard P

    2012-06-01

    Agr is an autoinducing, quorum-sensing system that functions in many Gram-positive species and is best characterized in the pathogen Staphylococcus aureus, in which it is a global regulator of virulence gene expression. Allelic variations in the agr genes have resulted in the emergence of four quorum-sensing specificity groups in S. aureus, which correlate with different strain pathotypes. The basis for these predilections is unclear but is hypothesized to involve the phenomenon of quorum-sensing interference between strains of different agr groups, which may drive S. aureus strain isolation and divergence. Whether properties intrinsic to each agr allele directly influence virulence phenotypes within S. aureus is unknown. In this study, we examined group-specific differences in agr autoinduction and virulence gene regulation by utilizing congenic strains, each harboring a unique S. aureus agr allele, enabling a dissection of agr locus-dependent versus genotype-dependent effects on quorum-sensing dynamics and virulence factor production. Employing a reporter fusion to the principal agr promoter, P3, we observed allele-dependent differences in the timing and magnitude of agr activation. These differences were mediated by polymorphisms within the agrBDCA genes and translated to significant variations in the expression of a key transcriptional regulator, Rot, and of several important exoproteins and surface factors involved in pathogenesis. This work uncovers the contribution of divergent quorum-sensing alleles to variant expression of virulence determinants within a bacterial species.

  15. Assessment of the myostatin Q204X allele using an allelic discrimination assay

    OpenAIRE

    Sifuentes-Rincón,Ana M.; Puentes-Montiel,Herlinda E.; Moreno-Medina,Víctor R.; Rosa-Reyna,Xóchitl F. de la

    2006-01-01

    An allelic discrimination assay was designed and used to determine the genotypic and allelic frequencies of the myostatin (MSTN) gene Q204X allele from two Mexican Full-French herds. The assay is a simple high throughput genotyping method that could be applied to investigate the effect of the Q204X allele on the Charolais breed.

  16. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    International Nuclear Information System (INIS)

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J.

    1991-01-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd [binding affinity] and Bmax [number of binding sites]) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism

  17. Prevalence of Huntington's disease gene CAG trinucleotide repeat alleles in patients with bipolar disorder.

    Science.gov (United States)

    Ramos, Eliana Marisa; Gillis, Tammy; Mysore, Jayalakshmi S; Lee, Jong-Min; Alonso, Isabel; Gusella, James F; Smoller, Jordan W; Sklar, Pamela; MacDonald, Marcy E; Perlis, Roy H

    2015-06-01

    Huntington's disease is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms that are caused by huntingtin gene (HTT) CAG trinucleotide repeat alleles of 36 or more units. A greater than expected prevalence of incompletely penetrant HTT CAG repeat alleles observed among individuals diagnosed with major depressive disorder raises the possibility that another mood disorder, bipolar disorder, could likewise be associated with Huntington's disease. We assessed the distribution of HTT CAG repeat alleles in a cohort of individuals with bipolar disorder. HTT CAG allele sizes from 2,229 Caucasian individuals diagnosed with DSM-IV bipolar disorder were compared to allele sizes in 1,828 control individuals from multiple cohorts. We found that HTT CAG repeat alleles > 35 units were observed in only one of 4,458 chromosomes from individuals with bipolar disorder, compared to three of 3,656 chromosomes from control subjects. These findings do not support an association between bipolar disorder and Huntington's disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. [Cloning and sequencing of KIR2DL1 framework gene cDNA and identification of a novel allele].

    Science.gov (United States)

    Sun, Ge; Wang, Chang; Zhen, Jianxin; Zhang, Guobin; Xu, Yunping; Deng, Zhihui

    2016-10-01

    To develop an assay for cDNA cloning and haplotype sequencing of KIR2DL1 framework gene and determine the genotype of an ethnic Han from southern China. Total RNA was isolated from peripheral blood sample, and complementary DNA (cDNA) transcript was synthesized by RT-PCR. The entire coding sequence of the KIR2DL1 framework gene was amplified with a pair of KIR2DL1-specific PCR primers. The PCR products with a length of approximately 1.2 kb were then subjected to cloning and haplotype sequencing. A specific target fragment of the KIR2DL1 framework gene was obtained. Following allele separation, a wild-type KIR2DL1*00302 allele and a novel variant allele, KIR2DL1*031, were identified. Sequence alignment with KIR2DL1 alleles from the IPD-KIR Database showed that the novel allele KIR2DL1*031 has differed from the closest allele KIR2DL1*00302 by a non-synonymous mutation at CDS nt 188A>G (codon 42 GAG>GGG) in exon 4, which has caused an amino acid change Glu42Gly. The sequence of the novel allele KIR2DL1*031 was submitted to GenBank under the accession number KP025960 and to the IPD-KIR Database under the submission number IWS40001982. A name KIR2DL1*031 has been officially assigned by the World Health Organization (WHO) Nomenclature Committee. An assay for cDNA cloning and haplotype sequencing of KIR2DL1 has been established, which has a broad applications in KIR studies at allelic level.

  19. Identification of Alleles of Puroindoline Genes and Their Effect on Wheat (Triticum aestivum L. Grain Texture

    Directory of Open Access Journals (Sweden)

    Klára Štiasna

    2016-01-01

    Full Text Available Grain hardness is one of the most important quality characteristics of wheat (Triticum aestivum L.. It is a significant property of wheat grains and relates to milling quality and end product quality. Grain hardness is caused by the presence of puroindoline genes (Pina and Pinb. A collection of 25 genotypes of wheat with unusual grain colour (blue aleurone, purple and white pericarp, yellow endosperm was studied by polymerase chain reaction (PCR for the diversity within Pina and Pinb (alleles: Pina-D1a, Pina-D1b, Pinb-D1a, Pinb- -D1b, Pinb-D1c and Pinb-D1d. The endosperm structure was determined by a non-destructive method using light transfl ectance meter and grain hardness by a texture analyser. Genotype Novosibirskaya 67 and isogenic ANK lines revealed hitherto unknown alleles at the locus for the annealing of primers of Pinb-D1. Allele Pinb-D1c was found to be absent from each genotype. The mealy endosperm ranged from 0 to 100 % and grain hardness from 15.10 to 26.87 N per sample.

  20. 8q24 allelic imbalance and MYC gene copy number in primary prostate cancer.

    Science.gov (United States)

    Chen, H; Liu, W; Roberts, W; Hooker, S; Fedor, H; DeMarzo, A; Isaacs, W; Kittles, R A

    2010-09-01

    Four independent regions within 8q24 near the MYC gene are associated with risk for prostate cancer (Pca). Here, we investigated allelic imbalance (AI) at 8q24 risk variants and MYC gene DNA copy number (CN) in 27 primary Pcas. Heterozygotes were observed in 24 of 27 patients at one or more 8q24 markers and 27% of the loci exhibited AI in tumor DNA. The 8q24 risk alleles were preferentially favored in the tumors. Increased MYC gene CN was observed in 33% of tumors, and the co-existence of increased MYC gene CN with AI at risk loci was observed in 86% (P<0.004 exact binomial test) of the informative tumors. No AI was observed in tumors, which did not reveal increased MYC gene CN. Higher Gleason score was associated with tumors exhibiting AI (P=0.04) and also with increased MYC gene CN (P=0.02). Our results suggest that AI at 8q24 and increased MYC gene CN may both be related to high Gleason score in Pca. Our findings also suggest that these two somatic alterations may be due to the same preferential chromosomal duplication event during prostate tumorigenesis.

  1. Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels.

    LENUS (Irish Health Repository)

    Fang, Fang

    2009-09-01

    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host.

  2. Genotype distribution and allele frequencies of the genes associated with body composition and locomotion traits in Myanmar native horses.

    Science.gov (United States)

    Okuda, Yu; Moe, Hla Hla; Moe, Kyaw Kyaw; Shimizu, Yuki; Nishioka, Kenji; Shimogiri, Takeshi; Mannen, Hideyuki; Kanemaki, Misao; Kunieda, Tetsuo

    2017-08-01

    Myanmar native horses are small horses used mainly for drafting carts or carriages in rural areas and packing loads in mountainy areas. In the present study, we investigated genotype distributions and allele frequencies of the LCORL/NCAPG, MSTN and DMRT3 genes, which are associated with body composition and locomotion traits of horses, in seven local populations of Myanmar native horses. The genotyping result of LCORL/NCAPG showed that allele frequencies of C allele associated with higher withers height ranged from 0.08 to 0.27, and 0.13 in average. For MSTN, allele frequencies of C allele associated with higher proportion of Type 2B muscular fiber ranged from 0.05 to 0.23, and 0.09 in average. For DMRT3, allele frequencies of A allele associated with ambling gait ranged from 0 to 0.04, and 0.01 in average. The presences of the minor alleles of these genes at low frequencies suggest a possibility that these horse populations have not been under strong selection pressure for particular locomotion traits and body composition. Our findings of the presence of these minor alleles in Southeast Asian native horses are also informative for considering the origins of these minor alleles associated with body composition and locomotion traits in horse populations. © 2016 Japanese Society of Animal Science.

  3. Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation.

    Science.gov (United States)

    Zhao, Yan; Huang, Jin; Wang, Zhizheng; Jing, Shengli; Wang, Yang; Ouyang, Yidan; Cai, Baodong; Xin, Xiu-Fang; Liu, Xin; Zhang, Chunxiao; Pan, Yufang; Ma, Rui; Li, Qiaofeng; Jiang, Weihua; Zeng, Ya; Shangguan, Xinxin; Wang, Huiying; Du, Bo; Zhu, Lili; Xu, Xun; Feng, Yu-Qi; He, Sheng Yang; Chen, Rongzhi; Zhang, Qifa; He, Guangcun

    2016-10-24

    Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most devastating insect pests of rice (Oryza sativa L.). Currently, 30 BPH-resistance genes have been genetically defined, most of which are clustered on specific chromosome regions. Here, we describe molecular cloning and characterization of a BPH-resistance gene, BPH9, mapped on the long arm of rice chromosome 12 (12L). BPH9 encodes a rare type of nucleotide-binding and leucine-rich repeat (NLR)-containing protein that localizes to the endomembrane system and causes a cell death phenotype. BPH9 activates salicylic acid- and jasmonic acid-signaling pathways in rice plants and confers both antixenosis and antibiosis to BPH. We further demonstrated that the eight BPH-resistance genes that are clustered on chromosome 12L, including the widely used BPH1, are allelic with each other. To honor the priority in the literature, we thus designated this locus as BPH1/9 These eight genes can be classified into four allelotypes, BPH1/9-1, -2, -7, and -9 These allelotypes confer varying levels of resistance to different biotypes of BPH. The coding region of BPH1/9 shows a high level of diversity in rice germplasm. Homologous fragments of the nucleotide-binding (NB) and leucine-rich repeat (LRR) domains exist, which might have served as a repository for generating allele diversity. Our findings reveal a rice plant strategy for modifying the genetic information to gain the upper hand in the struggle against insect herbivores. Further exploration of natural allelic variation and artificial shuffling within this gene may allow breeding to be tailored to control emerging biotypes of BPH.

  4. No evidence for allelic association between bipolar disorder and monoamine oxidase A gene polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Craddock, N.; Daniels, J.; Roberts, E. [Univ. of Wales, College of Medicine, Cardiff (United Kingdom)] [and others

    1995-08-14

    We have tested the hypothesis that DNA markers in the MAOA gene show allelic association with bipolar affective disorder. Eighty-four unrelated Caucasian patients with DSM III-R bipolar disorder and 84 Caucasian controls were typed for three markers in MAOA: a dinucleotide repeat in intron 2, a VNTR in intron 1, and an Fnu4HI RFLP in exon 8. No evidence for allelic association was observed between any of the markers and bipolar disorder. 9 refs., 1 tab.

  5. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    Directory of Open Access Journals (Sweden)

    Carol A Soderlund

    Full Text Available Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor, where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense, and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available

  6. Allelic frequencies and association with carcass traits of six genes in local subpopulations of Japanese Black cattle.

    Science.gov (United States)

    Nishimaki, Takahiro; Ibi, Takayuki; Siqintuya; Kobayashi, Naohiko; Matsuhashi, Tamako; Akiyama, Takayuki; Yoshida, Emi; Imai, Kazumi; Matsui, Mayu; Uemura, Keiichi; Eto, Hisayoshi; Watanabe, Naoto; Fujita, Tatsuo; Saito, Yosuke; Komatsu, Tomohiko; Hoshiba, Hiroshi; Mannen, Hideyuki; Sasazaki, Shinji; Kunieda, Tetsuo

    2016-04-01

    Marker-assisted selection (MAS) is expected to accelerate the genetic improvement of Japanese Black cattle. However, verification of the effects of the genes for MAS in different subpopulations is required prior to the application of MAS. In this study, we investigated the allelic frequencies and genotypic effects for carcass traits of six genes, which can be used in MAS, in eight local subpopulations. These genes are SCD, FASN and SREBP1, which are associated with the fatty acid composition of meat, and NCAPG, MC1R and F11, which are associated with carcass weight, coat color and blood coagulation abnormality, respectively. The frequencies of desirable alleles of SCD and FASN were relatively high and that of NCAPG was relatively low, and NCAPG was significantly associated with several carcass traits, including carcass weight. The proportions of genotypic variance explained by NCAPG to phenotypic variance were 4.83 for carcass weight. We thus confirmed that NCAPG is a useful marker for selection of carcass traits in these subpopulations. In addition, we found that the desirable alleles of six genes showed no negative effects on carcass traits. Therefore, selection using these genes to improve target traits should not have negative impacts on carcass traits. © 2015 Japanese Society of Animal Science.

  7. Haptoglobin genotyping of Vietnamese: global distribution of HP del, complete deletion allele of the HP gene.

    Science.gov (United States)

    Soejima, Mikiko; Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Lan, Vi Thi Mai; Minh, Tu Binh; Takahashi, Shin; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke; Koda, Yoshiro

    2015-01-01

    The haptoglobin (HP) gene deletion allele (HP(del)) is responsible for anhaptoglobinemia and a genetic risk factor for anaphylaxis reaction after transfusion due to production of the anti-HP antibody. The distribution of this allele has been explored by several groups including ours. Here, we studied the frequency of HP(del) in addition to the distribution of common HP genotypes in 293 Vietnamese. The HP(del) was encountered with the frequency of 0.020. The present result suggested that this deletion allele is restricted to East and Southeast Asians. Thus, this allele seems to be a potential ancestry informative marker for these populations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Allelic Variation of Bile Salt Hydrolase Genes in Lactobacillus salivarius Does Not Determine Bile Resistance Levels▿ †

    Science.gov (United States)

    Fang, Fang; Li, Yin; Bumann, Mario; Raftis, Emma J.; Casey, Pat G.; Cooney, Jakki C.; Walsh, Martin A.; O'Toole, Paul W.

    2009-01-01

    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host. PMID:19592587

  9. An allele of the crm gene blocks cyanobacterial circadian rhythms.

    Science.gov (United States)

    Boyd, Joseph S; Bordowitz, Juliana R; Bree, Anna C; Golden, Susan S

    2013-08-20

    The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.

  10. Pyramiding genes and alleles for improving energy cane biomass yield

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Ray [University of Illinois at Urbana-Champaign; Nagai, Chifumi [Hawaii Agriculture Research Center; Yu, Qingyi [Texas A & M AgriLife Research

    2018-03-23

    could potentially regulate biomass yield. Differentially expressed genes, PIF3 and EIL5, involved in gibberellin and ethylene pathway could play an important role in biomass accumulation. Differential gene expression analysis was also carried out on the LU population. High-biomass yield was mainly determined by assimilation of carbon in source tissues. The high-level expression of fermentative genes in the low-biomass group was likely induced by their low-energy status. The haploid (tetraploid) genome of S. spontanium AP85-441 was sequenced with chromosome level assembly and allele defined annotation. This reference genome along with the upcoming S. officinarum genome will allow us to identify genes and alleles contributed to biomass yield.

  11. Allelic Tests and Sequence Analysis of Three Genes for Resistance to Xanthomonas perforans Race T3 in Tomato

    Institute of Scientific and Technical Information of China (English)

    ZHAO Baimei; CAO Haipeng; DUAN Junjie; YANG Wencai

    2015-01-01

    Three crosses,Hawaii7981×PI128216,Hawaii7981×LA1589,and PI128216×LA1589,were made to develop F2 populations for testing allelism among three genes Xv3,Rx4,and RxLA1589 conferring resistance to bacterial spot caused by Xanthomonas perforans race T3 in tomato. Each population consisted of 535–1 655 individuals. An infiltration method was used to inoculate the leaves of the parental and F2 plants as well as the susceptible control OH88119 for detecting hypersensitive resistance(HR). The results showed that all the tomato plants except OH88119 had HR to race T3,indicating that Xv3,Rx4,and RxLA1589 were allelic genes. Genomic DNA fragments of the Rx4 alleles from Hawaii7981,PI128216,and LA1589 were amplified using gene-specific primers and sequenced. No sequence variation was observed in the coding region of Rx4 in the three resistant lines. Based on the published map positions of these loci as well as the allelic tests and sequence data obtained in this study,we speculated that Xv3,Rx4,and RxLA1589 were the same gene. The results will provide useful information for understanding the mechanism of resistance to race T3 and developing resistant tomato varieties.

  12. Towards allele mining of bacterial wilt disease resistance gene in tomato

    International Nuclear Information System (INIS)

    Galvez, H.F.; Narciso, J.O.; Opina, N.L.; Canama, A.O.; Colle, M.G.; Latiza, M.A.; Caspillo, C.L.; Bituin, J.L.; Frankie, R.B.; Hautea, D.M.

    2005-01-01

    Tomato (Lycopersicon esculentum Mill.) is the most important vegetable commodity of the Philippines. Bacterial wilt caused by Ralstonia solanacearum is one serious constraint in tomato production particularly during off-season planting. A major locus derived from H7996 that confers resistance to bacterial wilt has been mapped in the tomato genome. To validate the biological function of the resistance locus and generate multiple allele -mimics-, targeted mutation was induced in tomato using gamma ray and ethyl methane sulfonate (EMS) mutagens. Suitable mutagen treatment was established by evaluating a wide range of mutagen doses/concentrations for a) percent seed germination, b) reduction in plant height, and c) loss of resistance. Six hundred Gy and 1.0% EMS were identified to generate large M1 families of H7996. From 10,000 initial seeds treated with either gamma ray or EMS, a total of 3,663 M1 plants were generated. M2 seeds were harvested from all surviving M1 plants. Several DNA markers have been resourced and are being developed specific to the bacterial wilt resistant gene. In the large M2 population, of H7996, both the phenotypic manifestation of bacterial wilt susceptibility and nucleotide changes in the resistance locus will be evaluated. Large M3 families for the different allele series of the bacterial wilt resistance gene will be established for future high throughput TILLING (Targeting Induced Local Lesions in Genomes) analysis in the gene region

  13. Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions.

    Science.gov (United States)

    Biedrzycka, Aleksandra; O'Connor, Emily; Sebastian, Alvaro; Migalska, Magdalena; Radwan, Jacek; Zając, Tadeusz; Bielański, Wojciech; Solarz, Wojciech; Ćmiel, Adam; Westerdahl, Helena

    2017-07-05

    Recent work suggests that gene duplications may play an important role in the evolution of immunity genes. Passerine birds, and in particular Sylvioidea warblers, have highly duplicated major histocompatibility complex (MHC) genes, which are key in immunity, compared to other vertebrates. However, reasons for this high MHC gene copy number are yet unclear. High-throughput sequencing (HTS) allows MHC genotyping even in individuals with extremely duplicated genes. This HTS data can reveal evidence of selection, which may help to unravel the putative functions of different gene copies, i.e. neofunctionalization. We performed exhaustive genotyping of MHC class I in a Sylvioidea warbler, the sedge warbler, Acrocephalus schoenobaenus, using the Illumina MiSeq technique on individuals from a wild study population. The MHC diversity in 863 genotyped individuals by far exceeds that of any other bird species described to date. A single individual could carry up to 65 different alleles, a large proportion of which are expressed (transcribed). The MHC alleles were of three different lengths differing in evidence of selection, diversity and divergence within our study population. Alleles without any deletions and alleles containing a 6 bp deletion showed characteristics of classical MHC genes, with evidence of multiple sites subject to positive selection and high sequence divergence. In contrast, alleles containing a 3 bp deletion had no sites subject to positive selection and had low divergence. Our results suggest that sedge warbler MHC alleles that either have no deletion, or contain a 6 bp deletion, encode classical antigen presenting MHC molecules. In contrast, MHC alleles containing a 3 bp deletion may encode molecules with a different function. This study demonstrates that highly duplicated MHC genes can be characterised with HTS and that selection patterns can be useful for revealing neofunctionalization. Importantly, our results highlight the need to consider the

  14. Characterization of class II alpha genes and DLA-D region allelic associations in the dog.

    Science.gov (United States)

    Sarmiento, U M; Storb, R F

    1988-10-01

    Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the alpha genes of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D homozygous dogs representing nine DLA-D types (defined by mixed leucocyte reaction) was digested with restriction enzymes (BamHI, EcoRI, Hind III, Pvu II, Taq I, Rsa I, Msp I, Pst I and Bgl II), separated by agarose gel electrophoresis and transferred onto Biotrace membrane. The Southern blots were successively hybridized with radiolabelled HLA cDNA probes corresponding to DQ, DP, DZ and DR alpha genes. Clear evidence was obtained for the canine homologues of DQ and DR alpha genes with simple bi- or tri-allelic polymorphism respectively. Evidence for a single, nonpolymorphic DP alpha gene was also obtained. However, the presence of a DZ alpha gene could not be clearly demonstrated in canine genomic DNA. This report extends our previous RFLP analysis documenting polymorphism of DLA class II beta genes in the same panel of homozygous typing cell dogs, and provides the basis for DLA-D genotyping at a population level. This study also characterizes the RFLP-defined preferential allelic associations across the DLA-D region in nine different homozygous typing cell specificities.

  15. RNA-Seq using two populations reveals genes and alleles controlling wood traits and growth in Eucalyptus nitens.

    Directory of Open Access Journals (Sweden)

    Saravanan Thavamanikumar

    Full Text Available Eucalyptus nitens is a perennial forest tree species grown mainly for kraft pulp production in many parts of the world. Kraft pulp yield (KPY is a key determinant of plantation profitability and increasing the KPY of trees grown in plantations is a major breeding objective. To speed up the breeding process, molecular markers that can predict KPY are desirable. To achieve this goal, we carried out RNA-Seq studies on trees at extremes of KPY in two different trials to identify genes and alleles whose expression correlated with KPY. KPY is positively correlated with growth measured as diameter at breast height (DBH in both trials. In total, six RNA bulks from two treatments were sequenced on an Illumina HiSeq platform. At 5% false discovery rate level, 3953 transcripts showed differential expression in the same direction in both trials; 2551 (65% were down-regulated and 1402 (35% were up-regulated in low KPY samples. The genes up-regulated in low KPY trees were largely involved in biotic and abiotic stress response reflecting the low growth among low KPY trees. Genes down-regulated in low KPY trees mainly belonged to gene categories involved in wood formation and growth. Differential allelic expression was observed in 2103 SNPs (in 1068 genes and of these 640 SNPs (30% occurred in 313 unique genes that were also differentially expressed. These SNPs may represent the cis-acting regulatory variants that influence total gene expression. In addition we also identified 196 genes which had Ka/Ks ratios greater than 1.5, suggesting that these genes are under positive selection. Candidate genes and alleles identified in this study will provide a valuable resource for future association studies aimed at identifying molecular markers for KPY and growth.

  16. Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice.

    Science.gov (United States)

    Sharma, Niharika; Dang, Trang Minh; Singh, Namrata; Ruzicic, Slobodan; Mueller-Roeber, Bernd; Baumann, Ute; Heuer, Sigrid

    2018-01-08

    Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which

  17. Genetic mapping, marker assisted selection and allelic relationships for the Pu 6 gene conferring rust resistance in sunflower.

    Science.gov (United States)

    Bulos, Mariano; Vergani, Pablo Nicolas; Altieri, Emiliano

    2014-09-01

    Rust resistance in the sunflower line P386 is controlled by Pu 6 , a gene which was reported to segregate independently from other rust resistant genes, such as R 4 . The objectives of this work were to map Pu 6 , to provide and validate molecular tools for its identification, and to determine the linkage relationship of Pu 6 and R 4 . Genetic mapping of Pu 6 with six markers covered 24.8 cM of genetic distance on the lower end of linkage Group 13 of the sunflower consensus map. The marker most closely linked to Pu 6 was ORS316 at 2.5 cM in the distal position. ORS316 presented five alleles when was assayed with a representative set of resistant and susceptible lines. Allelism test between Pu 6 and R 4 indicated that both genes are linked at a genetic distance of 6.25 cM. This is the first confirmation based on an allelism test that at least two members of the R adv /R 4 /R 11 / R 13a /R 13b /Pu 6 cluster of genes are at different loci. A fine elucidation of the architecture of this complex locus will allow designing and constructing completely new genomic regions combining genes from different resistant sources and the elimination of the linkage drag around each resistant gene.

  18. Allele-specific expression in the germline of patients with familial pancreatic cancer: An unbiased approach to cancer gene discovery

    OpenAIRE

    Tan, Aik Choon; Fan, Jian-Bing; Karikari, Collins; Bibikova, Marina; Garcia, Eliza Wickham; Zhou, Lixin; Barker, David; Serre, David; Feldmann, Georg; Hruban, Ralph H.; Klein, Alison P.; Goggins, Michael; Couch, Fergus J.; Hudson, Thomas J.; Winslow, Raimond L.

    2007-01-01

    Physiologic allele-specific expression (ASE) in germline tissues occurs during random X-chromosome inactivation1 and in genomic imprinting,2 wherein the two alleles of a gene in a heterozygous individual are not expressed equally. Recent studies have confirmed the existence of ASE in apparently non-imprinted autosomal genes;3–14 however, the extent of ASE in the human genome is unknown. We explored ASE in lymphoblastoid cell lines of 145 individuals using an oligonucleotide array based assay....

  19. Construction and application of a Korean reference panel for imputing classical alleles and amino acids of human leukocyte antigen genes.

    Science.gov (United States)

    Kim, Kwangwoo; Bang, So-Young; Lee, Hye-Soon; Bae, Sang-Cheol

    2014-01-01

    Genetic variations of human leukocyte antigen (HLA) genes within the major histocompatibility complex (MHC) locus are strongly associated with disease susceptibility and prognosis for many diseases, including many autoimmune diseases. In this study, we developed a Korean HLA reference panel for imputing classical alleles and amino acid residues of several HLA genes. An HLA reference panel has potential for use in identifying and fine-mapping disease associations with the MHC locus in East Asian populations, including Koreans. A total of 413 unrelated Korean subjects were analyzed for single nucleotide polymorphisms (SNPs) at the MHC locus and six HLA genes, including HLA-A, -B, -C, -DRB1, -DPB1, and -DQB1. The HLA reference panel was constructed by phasing the 5,858 MHC SNPs, 233 classical HLA alleles, and 1,387 amino acid residue markers from 1,025 amino acid positions as binary variables. The imputation accuracy of the HLA reference panel was assessed by measuring concordance rates between imputed and genotyped alleles of the HLA genes from a subset of the study subjects and East Asian HapMap individuals. Average concordance rates were 95.6% and 91.1% at 2-digit and 4-digit allele resolutions, respectively. The imputation accuracy was minimally affected by SNP density of a test dataset for imputation. In conclusion, the Korean HLA reference panel we developed was highly suitable for imputing HLA alleles and amino acids from MHC SNPs in East Asians, including Koreans.

  20. Construction and application of a Korean reference panel for imputing classical alleles and amino acids of human leukocyte antigen genes.

    Directory of Open Access Journals (Sweden)

    Kwangwoo Kim

    Full Text Available Genetic variations of human leukocyte antigen (HLA genes within the major histocompatibility complex (MHC locus are strongly associated with disease susceptibility and prognosis for many diseases, including many autoimmune diseases. In this study, we developed a Korean HLA reference panel for imputing classical alleles and amino acid residues of several HLA genes. An HLA reference panel has potential for use in identifying and fine-mapping disease associations with the MHC locus in East Asian populations, including Koreans. A total of 413 unrelated Korean subjects were analyzed for single nucleotide polymorphisms (SNPs at the MHC locus and six HLA genes, including HLA-A, -B, -C, -DRB1, -DPB1, and -DQB1. The HLA reference panel was constructed by phasing the 5,858 MHC SNPs, 233 classical HLA alleles, and 1,387 amino acid residue markers from 1,025 amino acid positions as binary variables. The imputation accuracy of the HLA reference panel was assessed by measuring concordance rates between imputed and genotyped alleles of the HLA genes from a subset of the study subjects and East Asian HapMap individuals. Average concordance rates were 95.6% and 91.1% at 2-digit and 4-digit allele resolutions, respectively. The imputation accuracy was minimally affected by SNP density of a test dataset for imputation. In conclusion, the Korean HLA reference panel we developed was highly suitable for imputing HLA alleles and amino acids from MHC SNPs in East Asians, including Koreans.

  1. Transposable elements generate population-specific insertional patterns and allelic variation in genes of wild emmer wheat (Triticum turgidum ssp. dicoccoides).

    Science.gov (United States)

    Domb, Katherine; Keidar, Danielle; Yaakov, Beery; Khasdan, Vadim; Kashkush, Khalil

    2017-10-27

    Natural populations of the tetraploid wild emmer wheat (genome AABB) were previously shown to demonstrate eco-geographically structured genetic and epigenetic diversity. Transposable elements (TEs) might make up a significant part of the genetic and epigenetic variation between individuals and populations because they comprise over 80% of the wild emmer wheat genome. In this study, we performed detailed analyses to assess the dynamics of transposable elements in 50 accessions of wild emmer wheat collected from 5 geographically isolated sites. The analyses included: the copy number variation of TEs among accessions in the five populations, population-unique insertional patterns, and the impact of population-unique/specific TE insertions on structure and expression of genes. We assessed the copy numbers of 12 TE families using real-time quantitative PCR, and found significant copy number variation (CNV) in the 50 wild emmer wheat accessions, in a population-specific manner. In some cases, the CNV difference reached up to 6-fold. However, the CNV was TE-specific, namely some TE families showed higher copy numbers in one or more populations, and other TE families showed lower copy numbers in the same population(s). Furthermore, we assessed the insertional patterns of 6 TE families using transposon display (TD), and observed significant population-specific insertional patterns. The polymorphism levels of TE-insertional patterns reached 92% among all wild emmer wheat accessions, in some cases. In addition, we observed population-specific/unique TE insertions, some of which were located within or close to protein-coding genes, creating allelic variations in a population-specific manner. We also showed that those genes are differentially expressed in wild emmer wheat. For the first time, this study shows that TEs proliferate in wild emmer wheat in a population-specific manner, creating new alleles of genes, which contribute to the divergent evolution of homeologous genes

  2. Allelic Dropout in the ENG Gene, Affecting the Results of Genetic Testing in Hereditary Hemorrhagic Telangiectasia

    DEFF Research Database (Denmark)

    Tørring, Pernille M; Kjeldsen, A.D.; Ousager, L.B.

    2012-01-01

    Background: Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant vascular disorder with three disease-causing genes identified to date: ENG, ACVRL1, and SMAD4. We report an HHT patient with allelic dropout that on routine sequence analysis for a known mutation in the family (c.817......-3T>G in ENG) initially seemed to be homozygous for the mutation. Aim: To explore the possibility of allelic dropout causing a false result in this patient. Methods: Mutation analysis of additional family members was performed and haplotype analysis carried out. New primers were designed to reveal...... the presence of a possible sequence variant, which could explain the presumed allelic dropout. Results: Allelic dropout caused by a six-nucleotide duplication close to the standard reverse primer was the assumed cause of a false homozygous diagnosis. Conclusion: Sequence variants outside of the primer regions...

  3. Influence of the fragile X mental retardation (FMR1) gene on the brain and working memory in men with normal FMR1 alleles

    OpenAIRE

    Wang, Jun Yi; Hessl, David; Iwahashi, Christine; Cheung, Katherine; Schneider, Andrea; Hagerman, Randi J.; Hagerman, Paul J.; Rivera, Susan M.

    2012-01-01

    The fragile X mental retardation 1 (FMR1) gene plays an important role in the development and maintenance of neuronal circuits that are essential for cognitive functioning. We explored the functional linkage(s) among lymphocytic FMR1 gene expression, brain structure, and working memory in healthy adult males. We acquired T1-weighted and diffusion tensor imaging from 34 males (18–80 years, mean ± SD = 43.6 ± 18.4 years) with normal FMR1 alleles and performed genetic and working memory assessme...

  4. TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat.

    Science.gov (United States)

    Geng, Juan; Li, Liqun; Lv, Qian; Zhao, Yi; Liu, Yan; Zhang, Li; Li, Xuejun

    2017-12-01

    Functional allelic variants of TaGW2 - 6A produce large grains, possibly via changes in endosperm cells and dry matter by regulating the expression of cytokinins and starch-related genes via the ubiquitin-proteasome system. In wheat, TaGW2-6A coding region allelic variants are closely related to the grain width and weight, but how this region affects grain development has not been fully elucidated; thus, we explored its influence on grain development based mainly on histological and grain filling analyses. We found that the insertion type (NIL31) TaGW2-6A allelic variants exhibited increases in cell numbers and cell size, thereby resulting in a larger (wider) grain size with an accelerated grain milk filling rate, and increases in grain width and weight. We also found that cytokinin (CK) synthesis genes and key starch biosynthesis enzyme AGPase genes were significantly upregulated in the TaGW2-6A allelic variants, while CK degradation genes and starch biosynthesis-negative regulators were downregulated in the TaGW2-6A allelic variants, which was consistent with the changes in cells and grain filling. Thus, we speculate that TaGW2-6A allelic variants are linked with CK signaling, but they also influence the accumulation of starch by regulating the expression of related genes via the ubiquitin-proteasome system to control the grain size and grain weight.

  5. Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles.

    Science.gov (United States)

    Gadala-Maria, Daniel; Yaari, Gur; Uduman, Mohamed; Kleinstein, Steven H

    2015-02-24

    Individual variation in germline and expressed B-cell immunoglobulin (Ig) repertoires has been associated with aging, disease susceptibility, and differential response to infection and vaccination. Repertoire properties can now be studied at large-scale through next-generation sequencing of rearranged Ig genes. Accurate analysis of these repertoire-sequencing (Rep-Seq) data requires identifying the germline variable (V), diversity (D), and joining (J) gene segments used by each Ig sequence. Current V(D)J assignment methods work by aligning sequences to a database of known germline V(D)J segment alleles. However, existing databases are likely to be incomplete and novel polymorphisms are hard to differentiate from the frequent occurrence of somatic hypermutations in Ig sequences. Here we develop a Tool for Ig Genotype Elucidation via Rep-Seq (TIgGER). TIgGER analyzes mutation patterns in Rep-Seq data to identify novel V segment alleles, and also constructs a personalized germline database containing the specific set of alleles carried by a subject. This information is then used to improve the initial V segment assignments from existing tools, like IMGT/HighV-QUEST. The application of TIgGER to Rep-Seq data from seven subjects identified 11 novel V segment alleles, including at least one in every subject examined. These novel alleles constituted 13% of the total number of unique alleles in these subjects, and impacted 3% of V(D)J segment assignments. These results reinforce the highly polymorphic nature of human Ig V genes, and suggest that many novel alleles remain to be discovered. The integration of TIgGER into Rep-Seq processing pipelines will increase the accuracy of V segment assignments, thus improving B-cell repertoire analyses.

  6. Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.).

    Science.gov (United States)

    Kiss, Tibor; Balla, Krisztina; Veisz, Ottó; Láng, László; Bedő, Zoltán; Griffiths, Simon; Isaac, Peter; Karsai, Ildikó

    2014-01-01

    Heading of cereals is determined by complex genetic and environmental factors in which genes responsible for vernalization and photoperiod sensitivity play a decisive role. Our aim was to use diagnostic molecular markers to determine the main allele types in VRN - A1 , VRN - B1 , VRN - D1 , PPD - B1 and PPD - D1 in a worldwide wheat collection of 683 genotypes and to investigate the effect of these alleles on heading in the field. The dominant VRN - A1 , VRN - B1 and VRN - D1 alleles were present at a low frequency. The PPD - D1a photoperiod-insensitive allele was carried by 57 % of the cultivars and was most frequent in Asian and European cultivars. The PPD - B1 photoperiod-insensitive allele was carried by 22 % of the genotypes from Asia, America and Europe. Nine versions of the PPD - B1 -insensitive allele were identified based on gene copy number and intercopy structure. The allele compositions in PPD - D1 , PPD - B1 and VRN - D1 significantly influenced heading and together explained 37.5 % of the phenotypic variance. The role of gene model increased to 39.1 % when PPD - B1 intercopy structure was taken into account instead of overall PPD - B1 type (sensitive vs. insensitive). As a single component, PPD - D1 had the most important role (28.0 % of the phenotypic variance), followed by PPD - B1 (12.3 % for PPD - B1 _overall, and 15.1 % for PPD - B1 _intercopy) and VRN - D1 (2.2 %). Significant gene interactions were identified between the marker alleles within PPD - B1 and between VRN - D1 and the two PPD1 genes. The earliest heading genotypes were those with the photoperiod-insensitive allele in PPD - D1 and PPD - B1 , and with the spring allele for VRN - D1 and the winter alleles for VRN - A1 and VRN - B1 . This combination could only be detected in genotypes from Southern Europe and Asia. Late-heading genotypes had the sensitivity alleles for both PPD1 genes, regardless of the allelic composition of the VRN1 genes. There was a 10-day difference in

  7. Sensory Gating and Alpha-7 Nicotinic Receptor Gene Allelic Variants in Schizoaffective Disorder, Bipolar Type

    Science.gov (United States)

    Martin, Laura F.; Leonard, Sherry; Hall, Mei-Hua; Tregellas, Jason R.; Freedman, Robert; Olincy, Ann

    2011-01-01

    Objectives Single nucleotide allelic variants in the promoter region of the chromosome 15 alpha-7 acetylcholine nicotinic receptor gene (CHRNA7) are associated with both schizophrenia and the P50 auditory evoked potential sensory gating deficit. The purpose of this study was to determine if CHRNA7 promoter allelic variants are also associated with abnormal P50 ratios in persons with schizoaffective disorder, bipolar type. Methods P50 auditory evoked potentials were recorded in a paired stimulus paradigm in 17 subjects with schizoaffective disorder, bipolar type. The P50 test to conditioning ratio was used as the measure of sensory gating. Mutation screening of the CHRNA7 promoter region was performed on the subjects’ DNA samples. Comparisons to previously obtained data from persons with schizophrenia and controls were made. Results Subjects with schizophrenia, regardless of allele status, had an abnormal mean P50 ratio. Subjects with schizoaffective disorder, bipolar type and a variant allele had an abnormal mean P50 ratio, whereas those schizoaffective subjects with the common alleles had a normal mean P50 ratio. Normal control subjects had a normal mean ratio, but controls with variant alleles had higher P50 ratios. Conclusions In persons with bipolar type schizoaffective disorder, CHRNA7 promoter region allelic variants are linked to the capacity to inhibit the P50 auditory evoked potential and thus are associated with a type of illness genetically and biologically more similar to schizophrenia. PMID:17192894

  8. Identification and characterization of pin and thrum alleles of two genes that co-segregate with the Primula S locus.

    Science.gov (United States)

    Li, Jinhong; Webster, Margaret; Furuya, Masaki; Gilmartin, Philip M

    2007-07-01

    The study of heteromorphy in Primula over the past 140 years has established the reproductive significance of this breeding system. Plants produce either thrum or pin flowers that demonstrate reciprocal herkogamy. Thrums have short styles and produce large pollen from anthers at the mouth of the flower; pins have long styles and produce small pollen from anthers located within the corolla tube. The control of heteromorphy is orchestrated by the S locus with dominant (S) and recessive (s) alleles that comprise a co-adapted linkage group of genes. Thrum plants are heterozygous (Ss) and pin plants are homozygous (ss). Reciprocal crosses between the two forms are required for fertilization; within-morph crosses are impeded by a sporophytic self-incompatibility system. Rare recombination events within the S locus produce self-fertile homostyles. As a first step towards identifying genes located at the S locus, we used fluorescent differential display to screen for differential gene expression in pin and thrum flowers. Rather than only detecting differentially regulated genes, we identified two S locus linked genes by virtue of allelic variation between pin and thrum transcripts. Analysis of pin and thrum plants together with homostyle recombinant reveals that one gene flanks the locus, whereas the other shows complete linkage. One gene is related to Arabidopsis flower-timing genes Col9 and Col10; the other encodes a small predicted membrane protein of unknown function. Notwithstanding the diallelic behaviour of the Primula S locus, analysis of pin and thrum plants reveal three alleles for each gene: two pin and one thrum.

  9. The structure of the human interferon alpha/beta receptor gene.

    Science.gov (United States)

    Lutfalla, G; Gardiner, K; Proudhon, D; Vielh, E; Uzé, G

    1992-02-05

    Using the cDNA coding for the human interferon alpha/beta receptor (IFNAR), the IFNAR gene has been physically mapped relative to the other loci of the chromosome 21q22.1 region. 32,906 base pairs covering the IFNAR gene have been cloned and sequenced. Primer extension and solution hybridization-ribonuclease protection have been used to determine that the transcription of the gene is initiated in a broad region of 20 base pairs. Some aspects of the polymorphism of the gene, including noncoding sequences, have been analyzed; some are allelic differences in the coding sequence that induce amino acid variations in the resulting protein. The exon structure of the IFNAR gene and of that of the available genes for the receptors of the cytokine/growth hormone/prolactin/interferon receptor family have been compared with the predictions for the secondary structure of those receptors. From this analysis, we postulate a common origin and propose an hypothesis for the divergence from the immunoglobulin superfamily.

  10. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations.

    Directory of Open Access Journals (Sweden)

    Jackson Champer

    2017-07-01

    Full Text Available A functioning gene drive system could fundamentally change our strategies for the control of vector-borne diseases by facilitating rapid dissemination of transgenes that prevent pathogen transmission or reduce vector capacity. CRISPR/Cas9 gene drive promises such a mechanism, which works by converting cells that are heterozygous for the drive construct into homozygotes, thereby enabling super-Mendelian inheritance. Although CRISPR gene drive activity has already been demonstrated, a key obstacle for current systems is their propensity to generate resistance alleles, which cannot be converted to drive alleles. In this study, we developed two CRISPR gene drive constructs based on the nanos and vasa promoters that allowed us to illuminate the different mechanisms by which resistance alleles are formed in the model organism Drosophila melanogaster. We observed resistance allele formation at high rates both prior to fertilization in the germline and post-fertilization in the embryo due to maternally deposited Cas9. Assessment of drive activity in genetically diverse backgrounds further revealed substantial differences in conversion efficiency and resistance rates. Our results demonstrate that the evolution of resistance will likely impose a severe limitation to the effectiveness of current CRISPR gene drive approaches, especially when applied to diverse natural populations.

  11. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes.

    Science.gov (United States)

    Long, Yunming; Zhao, Lifeng; Niu, Baixiao; Su, Jing; Wu, Hao; Chen, Yuanling; Zhang, Qunyu; Guo, Jingxin; Zhuang, Chuxiong; Mei, Mantong; Xia, Jixing; Wang, Lan; Wu, Haibin; Liu, Yao-Guang

    2008-12-02

    Sterility is common in hybrids between divergent populations, such as the indica and japonica subspecies of Asian cultivated rice (Oryza sativa). Although multiple loci for plant hybrid sterility have been identified, it remains unknown how alleles of the loci interact at the molecular level. Here we show that a locus for indica-japonica hybrid male sterility, Sa, comprises two adjacent genes, SaM and SaF, encoding a small ubiquitin-like modifier E3 ligase-like protein and an F-box protein, respectively. Most indica cultivars contain a haplotype SaM(+)SaF(+), whereas all japonica cultivars have SaM(-)SaF(-) that diverged by nucleotide variations in wild rice. Male semi-sterility in this heterozygous complex locus is caused by abortion of pollen carrying SaM(-). This allele-specific gamete elimination results from a selective interaction of SaF(+) with SaM(-), a truncated protein, but not with SaM(+) because of the presence of an inhibitory domain, although SaM(+) is required for this male sterility. Lack of any one of the three alleles in recombinant plants does not produce male sterility. We propose a two-gene/three-component interaction model for this hybrid male sterility system. The findings have implications for overcoming male sterility in inter-subspecific hybrid rice breeding.

  12. Size Polymorphism in Alleles of the Myoglobin Gene from Biomphalaria Mollusks

    Directory of Open Access Journals (Sweden)

    Marcelo M. Santoro

    2010-10-01

    Full Text Available Introns are common among all eukaryotes, while only a limited number of introns are found in prokaryotes. Globin and globin-like proteins are widely distributed in nature, being found even in prokaryotes and a wide range of patterns of intron-exon have been reported in several eukaryotic globin genes. Globin genes in invertebrates show considerable variation in the positions of introns; globins can be found without introns, with only one intron or with three introns in different positions. In this work we analyzed the introns in the myoglobin gene from Biomphalaria glabrata, B. straminea and B. tenagophila. In the Biomphalaria genus, the myoglobin gene has three introns; these were amplified by PCR and analyzed by PCR-RFLP. Results showed that the size (number or nucleotides and the nucleotide sequence of the coding gene of the myoglobin are variable in the three species. We observed the presence of size polymorphisms in intron 2 and 3; this characterizes a homozygous/heterozygous profile and it indicates the existence of two alleles which are different in size in each species of Biomphalaria. This polymorphism could be explored for specific identification of Biomphalaria individuals.

  13. Allele-Specific DNA Methylation and Its Interplay with Repressive Histone Marks at Promoter-Mutant TERT Genes

    Directory of Open Access Journals (Sweden)

    Josh Lewis Stern

    2017-12-01

    Full Text Available A mutation in the promoter of the Telomerase Reverse Transcriptase (TERT gene is the most frequent noncoding mutation in cancer. The mutation drives unusual monoallelic expression of TERT, allowing immortalization. Here, we find that DNA methylation of the TERT CpG island (CGI is also allele-specific in multiple cancers. The expressed allele is hypomethylated, which is opposite to cancers without TERT promoter mutations. The continued presence of Polycomb repressive complex 2 (PRC2 on the inactive allele suggests that histone marks of repressed chromatin may be causally linked to high DNA methylation. Consistent with this hypothesis, TERT promoter DNA containing 5-methyl-CpG has much increased affinity for PRC2 in vitro. Thus, CpG methylation and histone marks appear to collaborate to maintain the two TERT alleles in different epigenetic states in TERT promoter mutant cancers. Finally, in several cancers, DNA methylation levels at the TERT CGI correlate with altered patient survival.

  14. Allele specific expression and methylation in the bumblebee, Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Zoë Lonsdale

    2017-09-01

    Full Text Available The social hymenoptera are emerging as models for epigenetics. DNA methylation, the addition of a methyl group, is a common epigenetic marker. In mammals and flowering plants methylation affects allele specific expression. There is contradictory evidence for the role of methylation on allele specific expression in social insects. The aim of this paper is to investigate allele specific expression and monoallelic methylation in the bumblebee, Bombus terrestris. We found nineteen genes that were both monoallelically methylated and monoallelically expressed in a single bee. Fourteen of these genes express the hypermethylated allele, while the other five express the hypomethylated allele. We also searched for allele specific expression in twenty-nine published RNA-seq libraries. We found 555 loci with allele-specific expression. We discuss our results with reference to the functional role of methylation in gene expression in insects and in the as yet unquantified role of genetic cis effects in insect allele specific methylation and expression.

  15. Combination of interleukin-10 gene promoter polymorphisms with HLA-DRB1*15 allele is associated with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Majid Shahbazi

    2017-01-01

    Interpretation & conclusions: The IL-10 and HLA-DRB1*15 polymorphisms were associated with the susceptibility to MS in Iranian patients. Our results suggest that gene-gene interaction of IL-10 polymorphisms and HLA-DRB1*15 alleles may be important factors in the development of MS.

  16. Assessment of allelic diversity in intron-containing Mal d 1 genes and their association to apple allergenicity

    Directory of Open Access Journals (Sweden)

    Bolhaar Suzanne THP

    2008-11-01

    Full Text Available Abstract Background Mal d 1 is a major apple allergen causing food allergic symptoms of the oral allergy syndrome (OAS in birch-pollen sensitised patients. The Mal d 1 gene family is known to have at least 7 intron-containing and 11 intronless members that have been mapped in clusters on three linkage groups. In this study, the allelic diversity of the seven intron-containing Mal d 1 genes was assessed among a set of apple cultivars by sequencing or indirectly through pedigree genotyping. Protein variant constitutions were subsequently compared with Skin Prick Test (SPT responses to study the association of deduced protein variants with allergenicity in a set of 14 cultivars. Results From the seven intron-containing Mal d 1 genes investigated, Mal d 1.01 and Mal d 1.02 were highly conserved, as nine out of ten cultivars coded for the same protein variant, while only one cultivar coded for a second variant. Mal d 1.04, Mal d 1.05 and Mal d 1.06 A, B and C were more variable, coding for three to six different protein variants. Comparison of Mal d 1 allelic composition between the high-allergenic cultivar Golden Delicious and the low-allergenic cultivars Santana and Priscilla, which are linked in pedigree, showed an association between the protein variants coded by the Mal d 1.04 and -1.06A genes (both located on linkage group 16 with allergenicity. This association was confirmed in 10 other cultivars. In addition, Mal d 1.06A allele dosage effects associated with the degree of allergenicity based on prick to prick testing. Conversely, no associations were observed for the protein variants coded by the Mal d 1.01 (on linkage group 13, -1.02, -1.06B, -1.06C genes (all on linkage group 16, nor by the Mal d 1.05 gene (on linkage group 6. Conclusion Protein variant compositions of Mal d 1.04 and -1.06A and, in case of Mal d 1.06A, allele doses are associated with the differences in allergenicity among fourteen apple cultivars. This information

  17. Associations between gastric dilatation-volvulus in Great Danes and specific alleles of the canine immune-system genes DLA88, DRB1, and TLR5.

    Science.gov (United States)

    Harkey, Michael A; Villagran, Alexandra M; Venkataraman, Gopalakrishnan M; Leisenring, Wendy M; Hullar, Meredith A J; Torok-Storb, Beverly J

    2017-08-01

    OBJECTIVE To determine whether specific alleles of candidate genes of the major histocompatibility complex (MHC) and innate immune system were associated with gastric dilatation-volvulus (GDV) in Great Danes. ANIMALS 42 healthy Great Danes (control group) and 39 Great Danes with ≥ 1 GDV episode. PROCEDURES Variable regions of the 2 most polymorphic MHC genes (DLA88 and DRB1) were amplified and sequenced from the dogs in each group. Similarly, regions of 3 genes associated with the innate immune system (TLR5, NOD2, and ATG16L1), which have been linked to inflammatory bowel disease, were amplified and sequenced. Alleles were evaluated for associations with GDV, controlling for age and dog family. RESULTS Specific alleles of genes DLA88, DRB1, and TLR5 were significantly associated with GDV. One allele of each gene had an OR > 2 in the unadjusted univariate analyses and retained a hazard ratio > 2 after controlling for temperament, age, and familial association in the multivariate analysis. CONCLUSIONS AND CLINICAL RELEVANCE The 3 GDV-associated alleles identified in this study may serve as diagnostic markers for identification of Great Danes at risk for GDV. Additional research is needed to determine whether other dog breeds have the same genetic associations. These findings also provided a new target for research into the etiology of, and potential treatments for, GDV in dogs.

  18. Identification, genealogical structure and population genetics of S-alleles in Malus sieversii, the wild ancestor of domesticated apple.

    Science.gov (United States)

    Ma, X; Cai, Z; Liu, W; Ge, S; Tang, L

    2017-09-01

    The self-incompatibility (SI) gene that is specifically expressed in pistils encodes the SI-associated ribonuclease (S-RNase), functioning as the female-specificity determinant of a gametophytic SI system. Despite extensive surveys in Malus domestica, the S-alleles have not been fully investigated for Malus sieversii, the primary wild ancestor of the domesticated apple. Here we screened the M. sieversii S-alleles via PCR amplification and sequencing, and identified 14 distinct alleles in this species. By contrast, nearly 40 are present in its close wild relative, Malus sylvestris. We further sequenced 8 nuclear genes to provide a neutral reference, and investigated the evolution of S-alleles via genealogical and population genetic analyses. Both shared ancestral polymorphism and an excess of non-synonymous substitution were detected in the S-RNases of the tribe Maleae in Rosaceae, indicating the action of long-term balancing selection. Approximate Bayesian Computations based on the reference neutral loci revealed a severe bottleneck in four of the six studied M. sieversii populations, suggesting that the low number of S-alleles found in this species is mainly the result of diversity loss due to a drastic population contraction. Such a bottleneck may lead to ambiguous footprints of ongoing balancing selection detected at the S-locus. This study not only elucidates the constituents and number of S-alleles in M. sieversii but also illustrates the potential utility of S-allele number shifts in demographic inference for self-incompatible plant species.

  19. Allelic lineages of the ficolin genes (FCNs are passed from ancestral to descendant primates.

    Directory of Open Access Journals (Sweden)

    Tina Hummelshøj

    Full Text Available The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, respectively. Rodents have only two ficolins designated ficolin-A and ficolin-B that are closely related to human ficolin-1, while the rodent FCN3 orthologue is a pseudogene. Ficolin-2 and ficolin-3 have so far only been observed in humans. Thus, we performed a systematic investigation of the FCN genes in non-human primates. The exons and intron-exon boundaries of the FCN1-3 genes were sequenced in the following primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. We found that the exon organisation of the FCN genes was very similar between all the non-human primates and the human FCN genes. Several variations in the FCN genes were found in more than one primate specie suggesting that they were carried from one species to another including humans. The amino acid diversity of the ficolins among human and non-human primate species was estimated by calculating the Shannon entropy revealing that all three proteins are generally highly conserved. Ficolin-1 and ficolin-2 showed the highest diversity, whereas ficolin-3 was more conserved. Ficolin-2 and ficolin-3 were present in non-human primate sera with the same characteristic oligomeric structures as seen in human serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species.

  20. Allele-Specific DNA Methylation and Its Interplay with Repressive Histone Marks at Promoter-Mutant TERT Genes.

    Science.gov (United States)

    Stern, Josh Lewis; Paucek, Richard D; Huang, Franklin W; Ghandi, Mahmoud; Nwumeh, Ronald; Costello, James C; Cech, Thomas R

    2017-12-26

    A mutation in the promoter of the Telomerase Reverse Transcriptase (TERT) gene is the most frequent noncoding mutation in cancer. The mutation drives unusual monoallelic expression of TERT, allowing immortalization. Here, we find that DNA methylation of the TERT CpG island (CGI) is also allele-specific in multiple cancers. The expressed allele is hypomethylated, which is opposite to cancers without TERT promoter mutations. The continued presence of Polycomb repressive complex 2 (PRC2) on the inactive allele suggests that histone marks of repressed chromatin may be causally linked to high DNA methylation. Consistent with this hypothesis, TERT promoter DNA containing 5-methyl-CpG has much increased affinity for PRC2 in vitro. Thus, CpG methylation and histone marks appear to collaborate to maintain the two TERT alleles in different epigenetic states in TERT promoter mutant cancers. Finally, in several cancers, DNA methylation levels at the TERT CGI correlate with altered patient survival. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Molecular analyses of the agouti allele in the Japanese house mouse identify a novel variant of the agouti gene.

    Science.gov (United States)

    Iwasa, Masahiro A; Kawamura, Sayaka; Myoshu, Hikari; Suzuki, Taichi A

    2018-03-01

    It has been thought that the Japanese house mouse carries the A w allele at the agouti locus causing light-colored bellies, but they do not always show this coloration. Thus, the presence of the A w allele seems to be doubtful in them. To ascertain whether the A w allele is present, a two-pronged approach was used. First, we compared lengths of DNA fragments obtained from three PCRs conducted on them to the known fragment sizes generated from mouse strains exhibiting homozygosities of either a/a, A/A, or A w /A w . PCR I, PCR II, and PCR III amplify only in the A and A w alleles, the a and A w alleles, and the a allele, respectively, and we detected amplifications in strains with A/A and A w /A w by PCR I, in those with a/a and the Japanese house mouse by PCR II, and in those with a/a by PCR III. Second, we sequenced the exon 1A region of the agouti gene and obtained sequences corresponding to the above strains and the Japanese house mouse, but their sequences were similar to those of the a allele. We concluded that their agouti allele is not identical to the A w allele and seems to be a novel type similar to the a allele.

  2. The impact of the CACNA1C risk allele on limbic structures and facial emotions recognition in bipolar disorder subjects and healthy controls.

    Science.gov (United States)

    Soeiro-de-Souza, Márcio Gerhardt; Otaduy, Maria Concepción Garcia; Dias, Carolina Zadres; Bio, Danielle S; Machado-Vieira, Rodrigo; Moreno, Ricardo Alberto

    2012-12-01

    Impairments in facial emotion recognition (FER) have been reported in bipolar disorder (BD) during all mood states. FER has been the focus of functional magnetic resonance imaging studies evaluating differential activation of limbic regions. Recently, the α1-C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene has been described as a risk gene for BD and its Met allele found to increase CACNA1C mRNA expression. In healthy controls, the CACNA1C risk (Met) allele has been reported to increase limbic system activation during emotional stimuli and also to impact on cognitive function. The aim of this study was to investigate the impact of CACNA1C genotype on FER scores and limbic system morphology in subjects with BD and healthy controls. Thirty-nine euthymic BD I subjects and 40 healthy controls were submitted to a FER recognition test battery and genotyped for CACNA1C. Subjects were also examined with a 3D 3-Tesla structural imaging protocol. The CACNA1C risk allele for BD was associated to FER impairment in BD, while in controls nothing was observed. The CACNA1C genotype did not impact on amygdala or hippocampus volume neither in BD nor controls. Sample size. The present findings suggest that a polymorphism in calcium channels interferes FER phenotype exclusively in BD and doesn't interfere on limbic structures morphology. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Targeted In Situ Gene Correction of Dysfunctional APOE Alleles to Produce Atheroprotective Plasma ApoE3 Protein

    Directory of Open Access Journals (Sweden)

    Ioannis Papaioannou

    2012-01-01

    Full Text Available Cardiovascular disease is the leading worldwide cause of death. Apolipoprotein E (ApoE is a 34-kDa circulating glycoprotein, secreted by the liver and macrophages with pleiotropic antiatherogenic functions and hence a candidate to treat hypercholesterolaemia and atherosclerosis. Here, we describe atheroprotective properties of ApoE, though also potential proatherogenic actions, and the prevalence of dysfunctional isoforms, outline conventional gene transfer strategies, and then focus on gene correction therapeutics that can repair defective APOE alleles. In particular, we discuss the possibility and potential benefit of applying in combination two technical advances to repair aberrant APOE genes: (i an engineered endonuclease to introduce a double-strand break (DSB in exon 4, which contains the common, but dysfunctional, ε2 and ε4 alleles; (ii an efficient and selectable template for homologous recombination (HR repair, namely, an adeno-associated viral (AAV vector, which harbours wild-type APOE sequence. This technology is applicable ex vivo, for example to target haematopoietic or induced pluripotent stem cells, and also for in vivo hepatic gene targeting. It is to be hoped that such emerging technology will eventually translate to patient therapy to reduce CVD risk.

  4. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen.

    Science.gov (United States)

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-10-18

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVR a gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVR a genes and identified AVR a1 and AVR a13 , encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVR a1 and AVR a13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVR A1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVR A1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVR A1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.

  5. Allelic Variations at Four Major Maturity E Genes and Transcriptional Abundance of the E1 Gene Are Associated with Flowering Time and Maturity of Soybean Cultivars

    Science.gov (United States)

    Wang, Yueqiang; Chen, Xin; Ren, Haixiang; Yang, Jiayin; Cheng, Wen; Zong, Chunmei; Gu, Heping; Qiu, Hongmei; Wu, Hongyan; Zhang, Xingzheng; Cui, Tingting; Xia, Zhengjun

    2014-01-01

    The time to flowering and maturity are ecologically and agronomically important traits for soybean landrace and cultivar adaptation. As a typical short-day crop, long day conditions in the high-latitude regions require soybean cultivars with photoperiod insensitivity that can mature before frost. Although the molecular basis of four major E loci (E1 to E4) have been deciphered, it is not quite clear whether, or to what degree, genetic variation and the expression level of the four E genes are associated with the time to flowering and maturity of soybean cultivars. In this study, we genotyped 180 cultivars at E1 to E4 genes, meanwhile, the time to flowering and maturity of those cultivars were investigated at six geographic locations in China from 2011 to 2012 and further confirmed in 2013. The percentages of recessive alleles at E1, E2, E3 and E4 loci were 38.34%, 84.45%, 36.33%, and 7.20%, respectively. Statistical analysis showed that allelic variations at each of four loci had a significant effect on flowering time as well as maturity. We classified the 180 cultivars into eight genotypic groups based on allelic variations of the four major E loci. The genetic group of e1-nf representing dysfunctional alleles at the E1 locus flowered earliest in all the geographic locations. In contrast, cultivars in the E1E2E3E4 group originated from the southern areas flowered very late or did not flower before frost at high latitude locations. The transcriptional abundance of functional E1 gene was significantly associated with flowering time. However, the ranges of time to flowering and maturity were quite large within some genotypic groups, implying the presence of some other unknown genetic factors that are involved in control of flowering time or maturity. Known genes (e.g. E3 and E4) and other unknown factors may function, at least partially, through regulation of the expression of the E1 gene. PMID:24830458

  6. Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome.

    Science.gov (United States)

    Ahmed, Zubair M; Riazuddin, Saima; Aye, Sandar; Ali, Rana A; Venselaar, Hanka; Anwar, Saima; Belyantseva, Polina P; Qasim, Muhammad; Riazuddin, Sheikh; Friedman, Thomas B

    2008-10-01

    Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be composed of 35 exons and encodes a variety of isoforms with 3-11 ectodomains (ECs), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations, we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1, we identified homozygous mutant alleles (one missense, one splice site, three nonsense and two deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date, in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1.

  7. Analysis of nucleotide diversity among alleles of the major bacterial blight resistance gene Xa27 in cultivars of rice (Oryza sativa) and its wild relatives.

    Science.gov (United States)

    Bimolata, Waikhom; Kumar, Anirudh; Sundaram, Raman Meenakshi; Laha, Gouri Shankar; Qureshi, Insaf Ahmed; Reddy, Gajjala Ashok; Ghazi, Irfan Ahmad

    2013-08-01

    Xa27 is one of the important R-genes, effective against bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Using natural population of Oryza, we analyzed the sequence variation in the functionally important domains of Xa27 across the Oryza species. DNA sequences of Xa27 alleles from 27 rice accessions revealed higher nucleotide diversity among the reported R-genes of rice. Sequence polymorphism analysis revealed synonymous and non-synonymous mutations in addition to a number of InDels in non-coding regions of the gene. High sequence variation was observed in the promoter region including the 5'UTR with 'π' value 0.00916 and 'θ w ' = 0.01785. Comparative analysis of the identified Xa27 alleles with that of IRBB27 and IR24 indicated the operation of both positive selection (Ka/Ks > 1) and neutral selection (Ka/Ks ≈ 0). The genetic distances of alleles of the gene from Oryza nivara were nearer to IRBB27 as compared to IR24. We also found the presence of conserved and null UPT (upregulated by transcriptional activator) box in the isolated alleles. Considerable amino acid polymorphism was localized in the trans-membrane domain for which the functional significance is yet to be elucidated. However, the absence of functional UPT box in all the alleles except IRBB27 suggests the maintenance of single resistant allele throughout the natural population.

  8. [The differences of the effects of Vrd1 and Ppd-D1 gene alleles on winterhardiness, frost resistance, and yield in winter wheat].

    Science.gov (United States)

    Mokanu, N V; Faĭt, V I

    2008-01-01

    The influence of allelic differences of Vrd1 and Ppd-D1 genes on winterhardiness, frost resistance, yield and its components was studied in recombinant-inbred F5 lines of Odesskaya 16/Bezostaya 1. From 9 to 15% differences in the resistance of recombinant-inbred lines were determined by alternative alleles of Vrd1 gene and 10-16% of Ppd-D1 gene. Interaction of vrd1 and Ppd-D1a alleles led to the higher winterhardiness and frost resistance of tillered plants during the winter. At the same time the significant increase of the period to heading, plant height and the tendency of yield reduction were revealed for vrd1 vrd1 Ppd-D1a Ppd-D1a lines when compared to the lines of Vrd1 Vrd1 Ppd-D1a Ppd-D1a genotype.

  9. Two alleles of the AtCesA3 gene in Arabidopsis thaliana display intragenic complementation.

    Science.gov (United States)

    Pysh, Leonard D

    2015-09-01

    Cellulose is the most abundant biomolecule on the planet, yet the mechanism by which it is synthesized by higher plants remains largely unknown. In Arabidopsis thaliana (L.) Heynh, synthesis of cellulose in the primary cell wall requires three different cellulose synthase genes (AtCesA1, AtCesA3, and AtCesA6-related genes [AtCesA2, AtCesA5, and AtCesA6]). The multiple response expansion1 (mre1) mutant contains a hypomorphic AtCesA3 allele that results in significantly shorter, expanded roots. Crosses between mre1 and another allele of AtCesA3 (constitutive expression of VSP1, cev1) yielded an F1 with roots considerably longer and thinner than either parent, suggesting intragenic complementation. The F2 generation resulting from self-crossing these F1 showed three different root phenotypes: roots like mre1, roots like cev1, and roots like the F1. The segregation patterns of the three root phenotypes in multiple F2 and F3 generations were determined. Multiple characteristics of the roots and shoots were analyzed both qualitatively and quantitatively at different developmental stages, both on plates and on soil. The trans-heterozygous plants differed significantly from the parental mre1 and cev1 lines. The two alleles display intragenic complementation. A classic genetic interpretation of these results would suggest that cellulose synthesis requires homo-multimerization of cellulose synthase monomers. © 2015 Botanical Society of America.

  10. Lack of association between TaqI A1 Allele of dopamine D2 receptor gene and alcohol-use disorders in Atayal natives of Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chia-Hsiang Chen [Cheng Hsin Rehabilitation and Medical Center, Taipei (Taiwan, Province of China); Shih-Hsiang Chien; Hai-Gwo Hwu [National Taiwan Univ., Taipei (Taiwan, Province of China)

    1996-09-20

    Association studies between the A1 allele of the dopamine D2 receptor (DRD2) gene TaqI A polymorphism and alcoholism remain controversial. A recent study from Japan demonstrated that the A1 allele is associated with severe alcoholism in the Japanese population. We were interested in knowing if this association also exists in the Atayals of Taiwan, who were found to have a higher prevalence of alcohol-use disorders than the Han Chinese in Taiwan. Genotype and allele frequencies were determined in alcohol-abusing, alcohol-dependent, and nonalcoholic control Atayal natives in Taiwan. A1 allele frequencies in alcohol-dependent, alcohol-abusing, and normal control Atayals were 0.39, 0.42, and 0.39, respectively. No difference in A1 allele frequency was found among these three groups. Our data do not support the hypothesis that the A1 allele of the TaqI A polymorphism of the DRD2 gene increases susceptibility to alcohol-use disorders in the Atayals of Taiwan. 18 refs., 1 tab.

  11. Genetic variation of the angiotensin-converting enzyme gene: increased frequency of the insertion allele in Koreans.

    Science.gov (United States)

    Hong, S H; Kang, B Y; Park, W H; Kim, J Q; Lee, C C

    1997-01-01

    In view of the clinical importance of angiotensin-converting enzyme (ACE) as a major marker for cardiovascular diseases, we investigated insertion/deletion (I/D) polymorphism of the ACE gene in Koreans. Genotype frequencies were examined by polymerase chain reaction in 171 patients with coronary artery disease (CAD) and 120 healthy subjects. Allele frequencies of ACE polymorphism in Koreans were not significantly different between patient and control groups. In addition, association between ACE genotypes and the number of stenosed coronary arteries was not detected. ACE genotypes in the CAD group were not associated with body mass index and plasma lipid levels. Thus, our results suggest that, at least in Koreans, I/D polymorphism of the gene is unlikely to be a useful marker for CAD subjects. However, the I allele frequency of Koreans (0.58) was higher than that of Caucasian populations (0.47) but lower than that of Samoan (0.91) and Yanomami (0.85) populations. Here, we discuss the clinical and ethnic importance of ACE polymorphism.

  12. Allele and genotype frequencies of -β lactoglobulin gene in Iranian ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... Blood samples were supplied from 80 Najdi cattle and 80 buffalo from different cities of Khouzestan province. ... The allele B of β-Lactoglobulin occurred at a higher frequency than the allele A in both. Najdi cattle and buffalo. .... that of the B allele in both groups of animals studied. Expected heterozygosity ...

  13. The allele frequency of two single nucleotide polymorphisms in the von Hippel-Lindau (VHL) tumor suppressor gene in the Taiwanese population.

    Science.gov (United States)

    Wang, Wen-Chung; Chen, Hui-Ju; Shu, Wei-Pang; Tsai, Yi-Chang; Lai, Yen-Chein

    2011-10-01

    The von Hippel-Lindau (VHL) tumor suppressor gene located on chromosome 3p25-26 is implicated in VHL disease. Two informative single nucleotide polymorphisms are at positions 19 and 1149 on the nucleotide sequence from Gene Bank NM_000551. In this study we examined the allele frequencies at these two loci in the Taiwanese population and compared the results to those from European ethnic populations. The allele frequency was examined in 616 healthy individuals including 301 university students and 315 neonates. Both A/G polymorphisms were investigated using restriction fragment length polymorphism analysis created by restriction enzymes, BsaJ I and Acc I. Among these subjects, the allele frequencies at 19 SNP and 1149 SNP for variant G were 0.130 and 0.133, respectively. And these results were significant differences from those of the Caucasian populations. In addition, 90% of the tested subjects had identical genotypes at these two loci suggesting the existence of nonrandom association of alleles. We found that the G allele frequency at these two loci in the Taiwanese population is much lower than that in people from Western countries. This phenomenon may be attributed to ethnic effects. Copyright © 2011. Published by Elsevier B.V.

  14. Association of the insertion allele of the common ACE gene polymorphism with type 2 diabetes mellitus among Kuwaiti cardiovascular disease patients.

    Science.gov (United States)

    Al-Serri, Ahmad; Ismael, Fatma G; Al-Bustan, Suzanne A; Al-Rashdan, Ibrahim

    2015-12-01

    The D allele of the common angiotensin-converting enzyme (ACE) I/D gene polymorphism (rs4646994) predisposes to type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). However, results on which allele predisposes to disease susceptibility remain controversial in Asian populations. This study was performed to evaluate the association of the common ACE I/D gene polymorphism with both T2DM and CVD susceptibility in an Arab population. We genotyped the ACE I/D polymorphisms by direct allele-specific PCR in 183 healthy controls and 400 CVD patients with diabetes (n=204) and without (n=196). Statistical analysis comparing between the different groups were conducted using R statistic package "SNPassoc". Two genetic models were used: the additive and co-dominant models. The I allele was found to be associated with T2DM (OR=1.84, p=0.00009) after adjusting for age, sex and body mass index. However, there was no association with CVD susceptibility (p>0.05). The ACE I allele is found to be associated with T2DM; however, no association was observed with CVD. The inconsistency between studies is suggested to be attributed to genetic diversity due to the existence of sub-populations found in Asian populations. © The Author(s) 2015.

  15. Implication of HLA-DMA Alleles in Corsican IDDM

    Directory of Open Access Journals (Sweden)

    P. Cucchi-Mouillot

    1998-01-01

    Full Text Available The HLA-DM molecule catalyses the CLIP/antigen peptide exchange in the classical class II peptide-binding groove. As such, DM is an antigen presentation regulator and may be linked to autoimmune diseases. Using PCR derived methods, a relationship was revealed between DM gene polymorphism and IDDM, in a Corsican population. The DMA*0101 allele was observed to confer a significant predisposition to this autoimmune disease while the DMA*0102 allele protected significantly. Experiments examining polymorphism of the HLA-DRB1 gene established that these relationships are not a consequence of linkage disequilibrium with HLA-DRB1 alleles implicated in this pathology. The study of the DMA gene could therefore be an additional tool for early IDDM diagnosis in the Corsican population.

  16. Erasure and reestablishment of random allelic expression imbalance after epigenetic reprogramming.

    Science.gov (United States)

    Jeffries, Aaron Richard; Uwanogho, Dafe Aghogho; Cocks, Graham; Perfect, Leo William; Dempster, Emma; Mill, Jonathan; Price, Jack

    2016-10-01

    Clonal level random allelic expression imbalance and random monoallelic expression provides cellular heterogeneity within tissues by modulating allelic dosage. Although such expression patterns have been observed in multiple cell types, little is known about when in development these stochastic allelic choices are made. We examine allelic expression patterns in human neural progenitor cells before and after epigenetic reprogramming to induced pluripotency, observing that loci previously characterized by random allelic expression imbalance (0.63% of expressed genes) are generally reset to a biallelic state in induced pluripotent stem cells (iPSCs). We subsequently neuralized the iPSCs and profiled isolated clonal neural stem cells, observing that significant random allelic expression imbalance is reestablished at 0.65% of expressed genes, including novel loci not found to show allelic expression imbalance in the original parental neural progenitor cells. Allelic expression imbalance was associated with altered DNA methylation across promoter regulatory regions, with clones characterized by skewed allelic expression being hypermethylated compared to their biallelic sister clones. Our results suggest that random allelic expression imbalance is established during lineage commitment and is associated with increased DNA methylation at the gene promoter. © 2016 Jeffries et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Delimiting Allelic Imbalance of TYMS by Allele-Specific Analysis.

    Science.gov (United States)

    Balboa-Beltrán, Emilia; Cruz, Raquel; Carracedo, Angel; Barros, Francisco

    2015-07-01

    Allelic imbalance of thymidylate synthase (TYMS) is attributed to polymorphisms in the 5'- and 3'-untranslated region (UTR). These polymorphisms have been related to the risk of suffering different cancers, for example leukemia, breast or gastric cancer, and response to different drugs, among which are methotrexate glutamates, stavudine, and specifically 5-fluorouracil (5-FU), as TYMS is its direct target. A vast literature has been published in relation to 5-FU, even suggesting the sole use of these polymorphisms to effectively manage 5-FU dosage. Estimates of the extent to which these polymorphisms influence in TYMS expression have in the past been based on functional analysis by luciferase assays and quantification of TYMS mRNA, but both these studies, as the association studies with cancer risk or with toxicity or response to 5-FU, are very contradictory. Regarding functional assays, the artificial genetic environment created in luciferase assay and the problems derived from quantitative polymerase chain reactions (qPCRs), for example the use of a reference gene, may have distorted the results. To avoid these sources of interference, we have analyzed the allelic imbalance of TYMS by allelic-specific analysis in peripheral blood mononuclear cells (PBMCs) from patients.Allelic imbalance in PBMCs, taken from 40 patients with suspected myeloproliferative haematological diseases, was determined by fluorescent fragment analysis (for the 3'-UTR polymorphism), Sanger sequencing and allelic-specific qPCR in multiplex (for the 5'-UTR polymorphisms).For neither the 3'- nor the 5'-UTR polymorphisms did the observed allelic imbalance exceed 1.5 fold. None of the TYMS polymorphisms is statistically associated with allelic imbalance.The results acquired allow us to deny the previously established assertion of an influence of 2 to 4 fold of the rs45445694 and rs2853542 polymorphisms in the expression of TYMS and narrow its allelic imbalance to 1.5 fold, in our population

  18. Allele-specific DNA methylation of disease susceptibility genes in Japanese patients with inflammatory bowel disease.

    Science.gov (United States)

    Chiba, Hirofumi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Kawai, Yosuke; Watanabe, Kazuhiro; Nagao, Munenori; Naito, Takeo; Onodera, Motoyuki; Moroi, Rintaro; Kuroha, Masatake; Kanazawa, Yoshitake; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Negoro, Kenichi; Nagasaki, Masao; Unno, Michiaki; Shimosegawa, Tooru

    2018-01-01

    Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score ([Formula: see text]) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing [Formula: see text] >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of [Formula: see text] (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 ([Formula: see text] = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). We confirmed the existence of cis-regulated ASM around

  19. Allele-specific DNA methylation of disease susceptibility genes in Japanese patients with inflammatory bowel disease

    Science.gov (United States)

    Chiba, Hirofumi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Kawai, Yosuke; Watanabe, Kazuhiro; Nagao, Munenori; Naito, Takeo; Onodera, Motoyuki; Moroi, Rintaro; Kuroha, Masatake; Kanazawa, Yoshitake; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Negoro, Kenichi; Nagasaki, Masao; Unno, Michiaki; Shimosegawa, Tooru

    2018-01-01

    Background Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. Methods CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score (ΔRAS¯) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing ΔRAS¯ >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. Results We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of ΔRAS¯ (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 (ΔRAS¯ = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). Conclusions We confirmed the existence of cis-regulated ASM around IBD

  20. A Δ11 desaturase gene genealogy reveals two divergent allelic classes within the European corn borer (Ostrinia nubilalis

    Directory of Open Access Journals (Sweden)

    Harrison Richard G

    2010-04-01

    Full Text Available Abstract Background Moth pheromone mating systems have been characterized at the molecular level, allowing evolutionary biologists to study how changes in protein sequence or gene expression affect pheromone phenotype, patterns of mating, and ultimately, the formation of barriers to gene exchange. Recent studies of Ostrinia pheromones have focused on the diversity of sex pheromone desaturases and their role in the specificity of pheromone production. Here we produce a Δ11 desaturase genealogy within Ostrinia nubilalis. We ask what has been the history of this gene, and whether this history suggests that changes in Δ11 desaturase have been involved in the divergence of the E and Z O. nubilalis pheromone strains. Results The Δ11 desaturase gene genealogy does not differentiate O. nubilalis pheromone strains. However, we find two distinct clades, separated by 2.9% sequence divergence, that do not sort with pheromone strain, geographic origin, or emergence time. We demonstrate that these clades do not represent gene duplicates, but rather allelic variation at a single gene locus. Conclusions Analyses of patterns of variation at the Δ11 desaturase gene in ECB suggest that this enzyme does not contribute to reproductive isolation between pheromone strains (E and Z. However, our genealogy reveals two deeply divergent allelic classes. Standing variation at loci that contribute to mate choice phenotypes may permit novel pheromone mating systems to arise in the presence of strong stabilizing selection.

  1. Allelic variants of melanocortin 3 receptor gene (MC3R) and weight loss in obesity

    DEFF Research Database (Denmark)

    L. Santos, José; De la Cruz, Rolando; Holst, Claus

    2011-01-01

    receptor gene (MC3R) have been associated with childhood obesity, higher BMI Z-score and elevated body fat percentage compared to non-carriers. The aim of this study is to assess the association in adults between allelic variants of MC3R with weight loss induced by energy-restricted diets.......The melanocortin system plays an important role in energy homeostasis. Mice genetically deficient in the melanocortin-3 receptor gene have a normal body weight with increased body fat, mild hypophagia compared to wild-type mice. In humans, Thr6Lys and Val81Ile variants of the melanocortin-3...

  2. Impact of population structure, effective bottleneck time, and allele frequency on linkage disequilibrium maps.

    Science.gov (United States)

    Zhang, Weihua; Collins, Andrew; Gibson, Jane; Tapper, William J; Hunt, Sarah; Deloukas, Panos; Bentley, David R; Morton, Newton E

    2004-12-28

    Genetic maps in linkage disequilibrium (LD) units play the same role for association mapping as maps in centimorgans provide at much lower resolution for linkage mapping. Association mapping of genes determining disease susceptibility and other phenotypes is based on the theory of LD, here applied to relations with three phenomena. To test the theory, markers at high density along a 10-Mb continuous segment of chromosome 20q were studied in African-American, Asian, and Caucasian samples. Population structure, whether created by pooling samples from divergent populations or by the mating pattern in a mixed population, is accurately bioassayed from genotype frequencies. The effective bottleneck time for Eurasians is substantially less than for migration out of Africa, reflecting later bottlenecks. The classical dependence of allele frequency on mutation age does not hold for the generally shorter time span of inbreeding and LD. Limitation of the classical theory to mutation age justifies the assumption of constant time in a LD map, except for alleles that were rare at the effective bottleneck time or have arisen since. This assumption is derived from the Malecot model and verified in all samples. Tested measures of relative efficiency, support intervals, and localization error determine the operating characteristics of LD maps that are applicable to every sexually reproducing species, with implications for association mapping, high-resolution linkage maps, evolutionary inference, and identification of recombinogenic sequences.

  3. [Features of allele polymorphism of genes involved in homocysteine and folate metabolism in patients with atherosclerosis of the lower extremity arteries].

    Science.gov (United States)

    Klenkova, N A; Kapustin, S I; Saltykova, N B; Shmeleva, V M; Blinov, M N

    2009-01-01

    Under study were features of allele polymorphism of genes of methylenetetrahydrofolate reductase (MTHFR C677T and A1298C), methionine synthase (MS A 2756G), methionine synthase reductase (MTRR A66G) and methylenetetrahydrofolate dehydrogenase (MTHFD G1958A) in patients with atherosclerosis of the lower extremity arteries (ALEA). Patients with hyperhomocysteinemia (HHcy) had statistically significant increase of allele MTHFR 677T and MTRR 66GG as compared both with the control group and with the group of patients without HHcy. It suggests that polymorphism of genes involved in homocystein and folate metabolism might affect the risk of HHcy in patients with ALEA.

  4. Allelic Dropout During Polymerase Chain Reaction due to G-Quadruplex Structures and DNA Methylation Is Widespread at Imprinted Human Loci

    Directory of Open Access Journals (Sweden)

    Aaron J. Stevens

    2017-03-01

    Full Text Available Loss of one allele during polymerase chain reaction (PCR amplification of DNA, known as allelic dropout, can be caused by a variety of mechanisms. Allelic dropout during PCR may have profound implications for molecular diagnostic and research procedures that depend on PCR and assume biallelic amplification has occurred. Complete allelic dropout due to the combined effects of cytosine methylation and G-quadruplex formation was previously described for a differentially methylated region of the human imprinted gene, MEST. We now demonstrate that this parent-of-origin specific allelic dropout can potentially occur at several other genomic regions that display genomic imprinting and have propensity for G-quadruplex formation, including AIM1, BLCAP, DNMT1, PLAGL1, KCNQ1, and GRB10. These findings demonstrate that systematic allelic dropout during PCR is a general phenomenon for regions of the genome where differential allelic methylation and G-quadruplex motifs coincide, and suggest that great care must be taken to ensure biallelic amplification is occurring in such situations.

  5. A modified screening system for loss-of-function and dominant negative alleles of essential MCMV genes.

    Directory of Open Access Journals (Sweden)

    Madlen Pogoda

    Full Text Available Inactivation of gene products by dominant negative mutants is a valuable tool to assign functions to yet uncharacterized proteins, to map protein-protein interactions or to dissect physiological pathways. Detailed functional and structural knowledge about the target protein would allow the construction of inhibitory mutants by targeted mutagenesis. Yet, such data are limited for the majority of viral proteins, so that the target gene needs to be subjected to random mutagenesis to identify suitable mutants. However, for cytomegaloviruses this requires a two-step screening approach, which is time-consuming and labor-intensive. Here, we report the establishment of a high-throughput suitable screening system for the identification of inhibitory alleles of essential genes of the murine cytomegalovirus (MCMV. In this screen, the site-specific recombination of a specifically modified MCMV genome was transferred from the bacterial background to permissive host cells, thereby combining the genetic engineering and the rescue test in one step. Using a reference set of characterized pM53 mutants it was shown that the novel system is applicable to identify non-complementing as well as inhibitory mutants in a high-throughput suitable setup. The new cis-complementation assay was also applied to a basic genetic characterization of pM99, which was identified as essential for MCMV growth. We believe that the here described novel genetic screening approach can be adapted for the genetic characterization of essential genes of any large DNA viruses.

  6. Low Penetrance Alleles in Colorectal Cancer: the arachidonic acid pathway

    NARCIS (Netherlands)

    C.L.E. Siezen

    2006-01-01

    textabstractIn summary, we can conclude that we have successfully identified low penetrance alleles in the PPAR., PLA2G2A and ALOX15 genes, conferring differential colorectal adenoma risk, and two such alleles in the PTGS2 gene, one of which is also involved in colorectal cancer risk. These

  7. Allelic structure and distribution of 103 STR loci in a Southern ...

    Indian Academy of Sciences (India)

    Unknown

    compared with a standard t test at 5% level of significance. The allele frequency .... 72 50. 70 28. 0.150. 0.223. 0.100. 0.142. 0.147. 0.360. 0.168. 13. D13S171. D13S170 ..... structure of LD within this region in BEH population, more markers ...

  8. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity.

    Science.gov (United States)

    Sata, F; Sapone, A; Elizondo, G; Stocker, P; Miller, V P; Zheng, W; Raunio, H; Crespi, C L; Gonzalez, F J

    2000-01-01

    To determine the existence of mutant and variant CgammaP3A4 alleles in three racial groups and to assess functions of the variant alleles by complementary deoxyribonucleic acid (cDNA) expression. A bacterial artificial chromosome that contains the complete CgammaP3A4 gene was isolated and the exons and surrounding introns were directly sequenced to develop primers to polymerase chain reaction (PCR) amplify and sequence the gene from lymphocyte DNA. DNA samples from Chinese, black, and white subjects were screened. Mutating the affected amino acid in the wild-type cDNA and expressing the variant enzyme with use of the baculovirus system was used to functionally evaluate the variant allele having a missense mutation. To investigate the existence of mutant and variant CgammaP3A4 alleles in humans, all 13 exons and the 5'-flanking region of the human CgammaP3A4 gene in three racial groups were sequenced and four alleles were identified. An A-->G point mutation in the 5'-flanking region of the human CgammaP3A4 gene, designated CgammaP3A4*1B, was found in the three different racial groups. The frequency of this allele in a white population was 4.2%, whereas it was 66.7% in black subjects. The CgammaP3A4*1B allele was not found in Chinese subjects. A second variant allele, designated CgammaP3A4*2, having a Ser222Pro change, was found at a frequency of 2.7% in the white population and was absent in the black subjects and Chinese subjects analyzed. Baculovirus-directed cDNA expression revealed that the CYP3A4*2 P450 had a lower intrinsic clearance for the CYP3A4 substrate nifedipine compared with the wild-type enzyme but was not significantly different from the wild-type enzyme for testosterone 6beta-hydroxylation. Another rare allele, designated CgammaP3A4*3, was found in a single Chinese subject who had a Met445Thr change in the conserved heme-binding region of the P450. These are the first examples of potential function polymorphisms resulting from missense mutations in

  9. Allele-specific expression at the androgen receptor alpha gene in a hybrid unisexual fish, the Amazon molly (Poecilia formosa.

    Directory of Open Access Journals (Sweden)

    Fangjun Zhu

    Full Text Available The all-female Amazon molly (Poecilia formosa is the result of a hybridization of the Atlantic molly (P. mexicana and the sailfin molly (P. latipinna approximately 120,000 years ago. As a gynogenetic species, P. formosa needs to copulate with heterospecific males including males from one of its bisexual ancestral species. However, the sperm only triggers embryogenesis of the diploid eggs. The genetic information of the sperm donor typically will not contribute to the next generation of P. formosa. Hence, P. formosa possesses generally one allele from each of its ancestral species at any genetic locus. This raises the question whether both ancestral alleles are equally expressed in P. formosa. Allele-specific expression (ASE has been previously assessed in various organisms, e.g., human and fish, and ASE was found to be important in the context of phenotypic variability and disease. In this study, we utilized Real-Time PCR techniques to estimate ASE of the androgen receptor alpha (arα gene in several distinct tissues of Amazon mollies. We found an allelic bias favoring the maternal ancestor (P. mexicana allele in ovarian tissue. This allelic bias was not observed in the gill or the brain tissue. Sequencing of the promoter regions of both alleles revealed an association between an Indel in a known CpG island and differential expression. Future studies may reveal whether our observed cis-regulatory divergence is caused by an ovary-specific trans-regulatory element, preferentially activating the allele of the maternal ancestor.

  10. Short rare hTERT-VNTR2-2nd alleles are associated with prostate cancer susceptibility and influence gene expression

    International Nuclear Information System (INIS)

    Yoon, Se-Lyun; Cheon, Sang-Hyeon; Leem, Sun-Hee; Jung, Se-Il; Do, Eun-Ju; Lee, Se-Ra; Lee, Sang-Yeop; Chu, In-Sun; Kim, Wun-Jae; Jung, Jaeil; Kim, Choung Soo

    2010-01-01

    The hTERT (human telomerase reverse transcriptase) gene contains five variable number tandem repeats (VNTR) and previous studies have described polymorphisms for hTERT-VNTR2-2 nd . We investigated how allelic variation in hTERT-VNTR2-2 nd may affect susceptibility to prostate cancer. A case-control study was performed using DNA from 421 cancer-free male controls and 329 patients with prostate cancer. In addition, to determine whether the VNTR polymorphisms have a functional consequence, we examined the transcriptional levels of a reporter gene linked to these VNTRs and driven by the hTERT promoter in cell lines. Three new rare alleles were detected from this study, two of which were identified only in cancer subjects. A statistically significant association between rare hTERT-VNTR2-2 nd alleles and risk of prostate cancer was observed [OR, 5.17; 95% confidence interval (CI), 1.09-24.43; P = 0.021]. Furthermore, the results indicated that these VNTRs inserted in the enhancer region could influence the expression of hTERT in prostate cancer cell lines. This is the first study to report that rare hTERT VNTRs are associated with prostate cancer predisposition and that the VNTRs can induce enhanced levels of hTERT promoter activity in prostate cancer cell lines. Thus, the hTERT-VNTR2-2 nd locus may function as a modifier of prostate cancer risk by affecting gene expression

  11. BRAF Gene Copy Number and Mutant Allele Frequency Correlate with Time to Progression in Metastatic Melanoma Patients Treated with MAPK Inhibitors.

    Science.gov (United States)

    Stagni, Camilla; Zamuner, Carolina; Elefanti, Lisa; Zanin, Tiziana; Bianco, Paola Del; Sommariva, Antonio; Fabozzi, Alessio; Pigozzo, Jacopo; Mocellin, Simone; Montesco, Maria Cristina; Chiarion-Sileni, Vanna; De Nicolo, Arcangela; Menin, Chiara

    2018-06-01

    Metastatic melanoma is characterized by complex genomic alterations, including a high rate of mutations in driver genes and widespread deletions and amplifications encompassing various chromosome regions. Among them, chromosome 7 is frequently gained in BRAF -mutant melanoma, inducing a mutant allele-specific imbalance. Although BRAF amplification is a known mechanism of acquired resistance to therapy with MAPK inhibitors, it is still unclear if BRAF copy-number variation and BRAF mutant allele imbalance at baseline can be associated with response to treatment. In this study, we used a multimodal approach to assess BRAF copy number and mutant allele frequency in pretreatment melanoma samples from 46 patients who received MAPK inhibitor-based therapy, and we analyzed the association with progression-free survival. We found that 65% patients displayed BRAF gains, often supported by chromosome 7 polysomy. In addition, we observed that 64% patients had a balanced BRAF -mutant/wild-type allele ratio, whereas 14% and 23% patients had low and high BRAF mutant allele frequency, respectively. Notably, a significantly higher risk of progression was observed in patients with a diploid BRAF status versus those with BRAF gains [HR, 2.86; 95% confidence interval (CI), 1.29-6.35; P = 0.01] and in patients with low percentage versus those with a balanced BRAF mutant allele percentage (HR, 4.54; 95% CI, 1.33-15.53; P = 0.016). Our data suggest that quantitative analysis of the BRAF gene could be useful to select the melanoma patients who are most likely to benefit from therapy with MAPK inhibitors. Mol Cancer Ther; 17(6); 1332-40. ©2018 AACR . ©2018 American Association for Cancer Research.

  12. Allelic Dropout During Polymerase Chain Reaction due to G-Quadruplex Structures and DNA Methylation Is Widespread at Imprinted Human Loci.

    Science.gov (United States)

    Stevens, Aaron J; Taylor, Millie G; Pearce, Frederick Grant; Kennedy, Martin A

    2017-03-10

    Loss of one allele during polymerase chain reaction (PCR) amplification of DNA, known as allelic dropout, can be caused by a variety of mechanisms. Allelic dropout during PCR may have profound implications for molecular diagnostic and research procedures that depend on PCR and assume biallelic amplification has occurred. Complete allelic dropout due to the combined effects of cytosine methylation and G-quadruplex formation was previously described for a differentially methylated region of the human imprinted gene, MEST We now demonstrate that this parent-of-origin specific allelic dropout can potentially occur at several other genomic regions that display genomic imprinting and have propensity for G-quadruplex formation, including AIM1 , BLCAP , DNMT1 , PLAGL1 , KCNQ1 , and GRB10 These findings demonstrate that systematic allelic dropout during PCR is a general phenomenon for regions of the genome where differential allelic methylation and G-quadruplex motifs coincide, and suggest that great care must be taken to ensure biallelic amplification is occurring in such situations. Copyright © 2017 Stevens et al.

  13. Analysis of HFE gene mutations and HLA-A alleles in Brazilian patients with iron overload

    Directory of Open Access Journals (Sweden)

    Rodolfo Delfini Cançado

    Full Text Available CONTEXT AND OBJECTIVE: Hemochromatosis is a common inherited disorder of iron metabolism and one of the most important causes of iron overload. The objective was to analyze the presence of C282Y, H63D and S65C mutations in the HFE gene and HLA-A alleles for a group of Brazilian patients with iron overload, and to correlate genotype with clinical and laboratory variables. DESIGN AND SETTING: Prospective study, in Discipline of Hematology and Oncology, Faculdade de Ciências Médicas da Santa Casa de Misericórdia de São Paulo. METHODS: We studied 35 patients with iron overload seen at our outpatient unit between January 2001 and December 2003. Fasting levels of serum iron and ferritin, and total iron-binding capacity, were assayed using standard techniques. Determinations of C282Y, H63D and S65C mutations in the HFE gene and of HLA-A alleles were performed by polymerase chain reaction (PCR. RESULTS: Twenty-six out of 35 patients (74% presented at least one of the HFE gene mutations analyzed. Among these, five (14% were C282Y/C282Y, four (11% C282Y/H63D, one (3% H63D/H63D, six (17% C282Y/WT and ten (29% H63D/WT. No patients had the S65C mutation and nine (25% did not present any of the three HFE mutations. Four out of five patients with C282Y/C282Y genotype (80% and three out of four patients with C282Y/H63D genotype (75% were HLA A*03. CONCLUSION: Analysis of HFE gene mutations constitutes an important procedure in identifying patients with hereditary hemochromatosis, particularly for patients with iron overload.

  14. Neural correlate of autistic-like traits and a common allele in the oxytocin receptor gene.

    Science.gov (United States)

    Saito, Yuki; Suga, Motomu; Tochigi, Mamoru; Abe, Osamu; Yahata, Noriaki; Kawakubo, Yuki; Liu, Xiaoxi; Kawamura, Yoshiya; Sasaki, Tsukasa; Kasai, Kiyoto; Yamasue, Hidenori

    2014-10-01

    Sub-clinical autistic-like traits (ALTs) are continuously distributed in the general population and genetically linked to autism. Although identifying the neurogenetic backgrounds of ALTs might enhance our ability to identify those of autism, they are largely unstudied. Here, we have examined the neuroanatomical basis of ALTs and their association with the oxytocin receptor gene (OXTR) rs2254298A, a known risk allele for autism in Asian populations which has also been implicated in limbic-paralimbic brain structures. First, we extracted a four-factor structure of ALTs, as measured using the Autism-Spectrum Quotient, including 'prosociality', 'communication', 'details/patterns' and 'imagination' in 135 neurotypical adults (79 men, 56 women) to reduce the genetic heterogeneity of ALTs. Then, in the same population, voxel-based morphometry revealed that lower 'prosociality', which indicates strong ALTs, was significantly correlated to smaller regional grey matter volume in the right insula in males. Males with lower 'prosociality' also had less interregional structural coupling between the right insula and the ventral anterior cingulate cortex. Furthermore, males with OXTR rs2254298A had significantly smaller grey matter volume in the right insula. These results show that decreased volume of the insula is a neuroanatomical correlate of ALTs and a potential intermediate phenotype linking ALTs with OXTR in male subjects. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Comparison of bovine lymphocyte antigen DRB3.2 allele ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... The bovine lymphocyte antigen (BoLA-DRB3) gene encodes cell ... alleles were more resistant to clinical mastitis. ... DRB3.2 allele pattern in two Iranian Holstein cow .... observed and the number of immune parameters with.

  16. Presentation of Complex Homozygous Allele in ABCA4 Gene in a Patient with Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Māreta Audere

    2015-01-01

    Full Text Available Retinitis pigmentosa is a degenerative retinal disease characterized by progressive photoreceptor damage, which causes loss of peripheral and night vision and the development of tunnel vision and may result in loss of central vision. This study describes a patient with retinitis pigmentosa caused by a mutation in the ABCA4 gene with complex allele c.1622T>C, p.L541P; c.3113C>T, p.A1038V in homozygous state.

  17. SU94. Allele-Specific and Trauma-Related Epigenetic Changes in the FKBP5 Gene: Differences Between Psychotic Patients and Healthy Controls

    Science.gov (United States)

    Mihaljevic, Marina; Franic, Dusica; Soldatovic, Ivan; Andric, Sanja; Mirjanic, Tijana; Novakovic, Ivana; Adzic, Miroslav; Maric, Nadja

    2017-01-01

    Abstract Background: Hypothalamic-pituitary-adrenal (HPA) axis dysregulation is a proposed etiological mechanism of psychosis. Recent studies highlighted impact of the FKBP5 gene and its functional variant rs1360780, which risk (T) allele affects the activity of HPA axis following stress exposure, on psychotic patients exposed to early trauma (1). Additionally, risk allele and trauma dependent FKBP5 demethylation in intron 7 was observed in traumatized individuals (2). Thus, the purpose of this pilot study was to investigate influence of the risk allele and trauma on FKBP5 DNA methylation levels at intron 7 in psychotic patients and to compare it with healthy individuals. Methods: The sample consisted of 24 psychosis spectrum patients and 24 controls matched by age and gender. All participants were genotyped for rs1360780 and divided into 2 groups depending on the presence of the risk allele (risk and nonrisk group). DNA methylation levels at 3 CpG sites (CpG1, CpG2, and CpG3) in intron 7 were analyzed by Sanger sequencing. Early-life adversities were measured by Childhood Trauma Questionnaire. Pearson correlation and t test were performed as appropriate. Results: Analyses revealed decreased FKBP5 methylation at targeted CpG sites and averaged methylation level (AML) at intron 7 in patients compared to controls (P = .026, P = .017, P = .027, and P = .003, respectively). Decreased AML and methylation at CpG3 were observed comparing risk and nonrisk patients’ groups (P = .018 and P = .016, respectively). Additionally, decreased methylation was found in risk patients’ group compared to risk controls’ group. No differences were found comparing nonrisk groups. Furthermore, strong negative associations between trauma and methylation at CpG3 and AML were observed only in risk controls’ group (r = −0.707, P = .007; r = −0.741, P = .004, respectively). Conclusion: Our preliminary results revealed allele-specific epigenetic changes of the FKBP

  18. Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs

    Science.gov (United States)

    Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.

    2010-01-01

    Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.

  19. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations.

    Directory of Open Access Journals (Sweden)

    Brian B Tuch

    Full Text Available Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor.

  20. Intrinsic MYH7 expression regulation contributes to tissue level allelic imbalance in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Montag, Judith; Syring, Mandy; Rose, Julia; Weber, Anna-Lena; Ernstberger, Pia; Mayer, Anne-Kathrin; Becker, Edgar; Keyser, Britta; Dos Remedios, Cristobal; Perrot, Andreas; van der Velden, Jolanda; Francino, Antonio; Navarro-Lopez, Francesco; Ho, Carolyn Yung; Brenner, Bernhard; Kraft, Theresia

    2017-08-01

    HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the β-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient.

  1. Allelic diversity of the MHC class II DRB genes in brown bears (Ursus arctos) and a comparison of DRB sequences within the family Ursidae.

    Science.gov (United States)

    Goda, N; Mano, T; Kosintsev, P; Vorobiev, A; Masuda, R

    2010-11-01

    The allelic diversity of the DRB locus in major histocompatibility complex (MHC) genes was analyzed in the brown bear (Ursus arctos) from the Hokkaido Island of Japan, Siberia, and Kodiak of Alaska. Nineteen alleles of the DRB exon 2 were identified from a total of 38 individuals of U. arctos and were highly polymorphic. Comparisons of non-synonymous and synonymous substitutions in the antigen-binding sites of deduced amino acid sequences indicated evidence for balancing selection on the bear DRB locus. The phylogenetic analysis of the DRB alleles among three genera (Ursus, Tremarctos, and Ailuropoda) in the family Ursidae revealed that DRB allelic lineages were not separated according to species. This strongly shows trans-species persistence of DRB alleles within the Ursidae. © 2010 John Wiley & Sons A/S.

  2. Consequences of Marfan mutations to expression of fibrillin gene and to the structure of microfibrils

    Energy Technology Data Exchange (ETDEWEB)

    Peltonen, L.; Karttunen, L.; Rantamaeki, T. [NPHI, Helsinki (Finland)] [and others

    1994-09-01

    Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder which is caused by mutations in the fibrillin-1 gene (FBN1). Over 40 family-specific FBN1 mutations have been identified. We have characterized 18 different heterozygous mutations including amino acid substitutions, premature stop, and splicing defects leading to deletions or one insertion, and one compound heterozygote with two differently mutated FBN1 alleles inherited from his affected parents. To unravel the consequences of FBN1 mutations to the transcription of FBN1 gene, we have measured the steady state levels of mRNA transcribed from the normal and mutated alleles. The missense mutations do not affect the transcription of the allele while the nonsense mutation leads to lower steady state amount of mutated allele. For the dissection of molecular pathogenesis of FBN1 mutations we have performed rotary shadowing of the microfibrils produced by the cell cultures from MFS patients. The cells from the neonatal patients with established mutations produced only disorganized fibrillin aggregates but no clearly defined microfibrils could be detected, suggesting a major role of this gene region coding for exons 24-26 in stabilization and organization of the bead structure of microfibrils. From the cells of a rare compound heterozygote case carrying two different mutations, no detectable microfibrils could be detected whereas the cells of his parents with heterozygous mutations were able to form identifiable but disorganized microfibrils. In the cells of an MFS case caused by a premature stop removing the C-terminus of fibrillin, the microfibril assembly takes place but the appropriate packing of the microfibrils is disturbed suggesting that C-terminae are actually located within the interbead domain of the microfibrils.

  3. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat

    Directory of Open Access Journals (Sweden)

    Zhang Xiaofei

    2012-12-01

    Full Text Available Abstract Background Low-molecular-weight glutenin subunits (LMW-GS strongly influence the bread-making quality of bread wheat. These proteins are encoded by a multi-gene family located at the Glu-A3, Glu-B3 and Glu-D3 loci on the short arms of homoeologous group 1 chromosomes, and show high allelic variation. To characterize the genetic and protein compositions of LMW-GS alleles, we investigated 16 Aroona near-isogenic lines (NILs using SDS-PAGE, 2D-PAGE and the LMW-GS gene marker system. Moreover, the composition of glutenin macro-polymers, dough properties and pan bread quality parameters were determined for functional analysis of LMW-GS alleles in the NILs. Results Using the LMW-GS gene marker system, 14–20 LMW-GS genes were identified in individual NILs. At the Glu-A3 locus, two m-type and 2–4 i-type genes were identified and their allelic variants showed high polymorphisms in length and nucleotide sequences. The Glu-A3d allele possessed three active genes, the highest number among Glu-A3 alleles. At the Glu-B3 locus, 2–3 m-type and 1–3 s-type genes were identified from individual NILs. Based on the different compositions of s-type genes, Glu-B3 alleles were divided into two groups, one containing Glu-B3a, B3b, B3f and B3g, and the other comprising Glu-B3c, B3d, B3h and B3i. Eight conserved genes were identified among Glu-D3 alleles, except for Glu-D3f. The protein products of the unique active genes in each NIL were detected using protein electrophoresis. Among Glu-3 alleles, the Glu-A3e genotype without i-type LMW-GS performed worst in almost all quality properties. Glu-B3b, B3g and B3i showed better quality parameters than the other Glu-B3 alleles, whereas the Glu-B3c allele containing s-type genes with low expression levels had an inferior effect on bread-making quality. Due to the conserved genes at Glu-D3 locus, Glu-D3 alleles showed no significant differences in effects on all quality parameters. Conclusions This work

  4. Analysis of the population structure of Uruguayan Creole cattle as inferred from milk major gene polymorphisms

    Directory of Open Access Journals (Sweden)

    Gonzalo Rincón

    2006-01-01

    Full Text Available The ancestors of Uruguayan Creole cattle were introduced by the Spanish conquerors in the XVII century, following which the population grew extensively and became semi-feral before the introduction of selected breeds. Today the Uruguayan Creole cattle genetic reserve consists of 575 animals. We used the tetra primer amplification refractory mutation system polymerase chain reaction (ARMS-PCR to analyze the kappa-casein, beta-casein, alphaS1-casein and alpha-lactoalbumin gene polymorphisms and restriction fragment length polymorphism PCR (RFLP-PCR for the beta-lactoglobulin and the acylCoA:diacyl glycerol acyltransferase 1 (DGAT1 genes. The kappa-casein and beta-lactoglobulin genes presented very similar A and B allele frequencies, while the alphas1-casein and alpha-lactoalbumin gene B alleles showed much higher frequencies than the corresponding A alleles. The beta-casein B allele was not found in the population sampled. There was a very high frequency of the DGAT1 gene A allele which is associated with low milk fat content and high milk yield. All loci were in Hardy-Weinberg equilibrium and the level of heterozygosity agreed with the high genetic diversity observed in a previous analysis of this population. Preservation of the allelic richness observed in the Uruguayan Creole cattle should be considered for future dairy management and livestock genetic improvement. The results also emphasize the value of the tetra primers ARMS-PCR technique as a rapid, easy and economical way of genotyping cattle breeds for milk gene single nucleotide polymorphisms.

  5. Origin of allelic diversity in antirrhinum S locus RNases.

    Science.gov (United States)

    Xue, Y; Carpenter, R; Dickinson, H G; Coen, E S

    1996-01-01

    In many plant species, self-incompatibility (SI) is genetically controlled by a single multiallelic S locus. Previous analysis of S alleles in the Solanaceae, in which S locus ribonucleases (S RNases) are responsible for stylar expression of SI, has demonstrated that allelic diversity predated speciation within this family. To understand how allelic diversity has evolved, we investigated the molecular basis of gametophytic SI in Antirrhinum, a member of the Scrophulariaceae, which is closely related to the Solanaceae. We have characterized three Antirrhinum cDNAs encoding polypeptides homologous to S RNases and shown that they are encoded by genes at the S locus. RNA in situ hybridization revealed that the Antirrhinum S RNase are primarily expressed in the stylar transmitting tissue. This expression is consistent with their proposed role in arresting the growth of self-pollen tubes. S alleles from the Scrophulariaceae form a separate group from those of the Solanaceae, indicating that new S alleles have been generated since these families separated (approximately 40 million years). We propose that the recruitment of an ancestral RNase gene into SI occurred during an early stage of angiosperm evolution and that, since that time, new alleles subsequently have arisen at a low rate. PMID:8672882

  6. Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by artemether-lumefantrine in Nigerian children with uncomplicated falciparum malaria.

    Science.gov (United States)

    Happi, C T; Gbotosho, G O; Folarin, O A; Sowunmi, A; Hudson, T; O'Neil, M; Milhous, W; Wirth, D F; Oduola, A M J

    2009-03-01

    We assessed Plasmodium falciparum mdr1 (Pfmdr1) gene polymorphisms and copy numbers as well as P. falciparum Ca(2+) ATPase (PfATPase6) gene polymorphisms in 90 Nigerian children presenting with uncomplicated falciparum malaria and enrolled in a study of the efficacy of artemether-lumefantrine (AL). The nested PCR-restriction fragment length polymorphism and the quantitative real-time PCR methodologies were used to determine the alleles of the Pfmdr1 and PfATPase6 genes and the Pfmdr1 copy number variation, respectively, in patients samples collected prior to treatment and at the reoccurrence of parasites during a 42-day follow-up. The Pfmdr1 haplotype 86N-184F-1246D was significantly associated (P copy of the Pfmdr1 gene and the wild-type allele (L89) at codon 89 of the PfATPase6 gene. These findings suggest that polymorphisms in the Pfmdr1 gene are under AL selection pressure. Pfmdr1 polymorphisms may result in reduction in the therapeutic efficacy of this newly adopted combination treatment for uncomplicated falciparum malaria in Saharan countries of Africa.

  7. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants.

    Science.gov (United States)

    Robson, F; Costa, M M; Hepworth, S R; Vizir, I; Piñeiro, M; Reeves, P H; Putterill, J; Coupland, G

    2001-12-01

    CONSTANS promotes flowering of Arabidopsis in response to long-day conditions. We show that CONSTANS is a member of an Arabidopsis gene family that comprises 16 other members. The CO-Like proteins encoded by these genes contain two segments of homology: a zinc finger containing region near their amino terminus and a CCT (CO, CO-Like, TOC1) domain near their carboxy terminus. Analysis of seven classical co mutant alleles demonstrated that the mutations all occur within either the zinc finger region or the CCT domain, confirming that the two regions of homology are important for CO function. The zinc fingers are most similar to those of B-boxes, which act as protein-protein interaction domains in several transcription factors described in animals. Segments of CO protein containing the CCT domain localize GFP to the nucleus, but one mutation that affects the CCT domain delays flowering without affecting the nuclear localization function, suggesting that this domain has additional functions. All eight co alleles, including one recovered by pollen irradiation in which DNA encoding both B-boxes is deleted, are shown to be semidominant. This dominance appears to be largely due to a reduction in CO dosage in the heterozygous plants. However, some alleles may also actively delay flowering, because overexpression from the CaMV 35S promoter of the co-3 allele, that has a mutation in the second B-box, delayed flowering of wild-type plants. The significance of these observations for the role of CO in the control of flowering time is discussed.

  8. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    Directory of Open Access Journals (Sweden)

    Pim van Hooft

    Full Text Available Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations, we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has

  9. Genetic structure of Quechua-speakers of the Central Andes and geographic patterns of gene frequencies in South Amerindian populations.

    Science.gov (United States)

    Luiselli, D; Simoni, L; Tarazona-Santos, E; Pastor, S; Pettener, D

    2000-09-01

    A sample of 141 Quechua-speaking individuals of the population of Tayacaja, in the Peruvian Central Andes, was typed for the following 16 genetic systems: ABO, Rh, MNSs, P, Duffy, AcP1, EsD, GLOI, PGM1, AK, 6-PGD, Hp, Gc, Pi, C3, and Bf. The genetic structure of the population was analyzed in relation to the allele frequencies available for other South Amerindian populations, using a combination of multivariate and multivariable techniques. Spatial autocorrelation analysis was performed independently for 13 alleles to identify patterns of gene flow in South America as a whole and in more specific geographic regions. We found a longitudinal cline for the AcP1*a and EsD*1 alleles which we interpreted as the result of an ancient longitudinal expansion of a putative ancestral population of modern Amerindians. Monmonnier's algorithm, used to identify areas of sharp genetic discontinuity, suggested a clear east-west differentiation of native South American populations, which was confirmed by analysis of the distribution of genetic distances. We suggest that this pattern of genetic structures is the consequence of the independent peopling of western and eastern South America or to low levels of gene flow between these regions, related to different environmental and demographic histories. Copyright 2000 Wiley-Liss, Inc.

  10. Genome-wide identification and quantification of cis- and trans-regulated genes responding to Marek’s disease virus infection via analysis of allele-specific expression

    Directory of Open Access Journals (Sweden)

    Sean eMaceachern

    2012-01-01

    Full Text Available Marek’s disease (MD is a commercially important neoplastic disease of chickens caused by Marek’s disease virus (MDV, an oncogenic alphaherpesvirus. Selecting for increased genetic resistance to MD is a control strategy that can augment vaccinal control measures. To identify high-confidence candidate MD resistance genes, we conducted a genome-wide screen for allele-specific expression (ASE amongst F1 progeny of two inbred chicken lines that differ in MD resistance. High throughput sequencing was used to profile transcriptomes from pools of uninfected and infected individuals at 4 days post-infection to identify any genes showing ASE in response to MDV infection. RNA sequencing identified 22,655 single nucleotide polymorphisms (SNPs of which 5,360 in 3,773 genes exhibited significant allelic imbalance. Illumina GoldenGate assays were subsequently used to quantify regulatory variation controlled at the gene (cis and elsewhere in the genome (trans by examining differences in expression between F1 individuals and artificial F1 RNA pools over 6 time periods in 1,536 of the most significant SNPs identified by RNA sequencing. Allelic imbalance as a result of cis-regulatory changes was confirmed in 861 of the 1,233 GoldenGate assays successfully examined. Furthermore we have identified 7 genes that display trans-regulation only in infected animals and approximately 500 SNP that show a complex interaction between cis- and trans-regulatory changes. Our results indicate ASE analyses are a powerful approach to identify regulatory variation responsible for differences in transcript abundance in genes underlying complex traits. And the genes with SNPs exhibiting ASE provide a strong foundation to further investigate the causative polymorphisms and genetic mechanisms for MD resistance. Finally, the methods used here for identifying specific genes and SNPs may have practical implications for applying marker-assisted selection to complex traits that are

  11. Allelic variation of the FRMD7 gene in congenital idiopathic nystagmus.

    Science.gov (United States)

    Self, James E; Shawkat, Fatima; Malpas, Crispin T; Thomas, N Simon; Harris, Christopher M; Hodgkins, Peter R; Chen, Xiaoli; Trump, Dorothy; Lotery, Andrew J

    2007-09-01

    To perform a genotype-phenotype correlation study in an X-linked congenital idiopathic nystagmus pedigree (pedigree 1) and to assess the allelic variance of the FRMD7 gene in congenital idiopathic nystagmus. Subjects from pedigree 1 underwent detailed clinical examination including nystagmology. Screening of FRMD7 was undertaken in pedigree 1 and in 37 other congenital idiopathic nystagmus probands and controls. Direct sequencing confirmed sequence changes. X-inactivation studies were performed in pedigree 1. The nystagmus phenotype was extremely variable in pedigree 1. We identified 2 FRMD7 mutations. However, 80% of X-linked families and 96% of simplex cases showed no mutations. X-inactivation studies demonstrated no clear causal link between skewing and variable penetrance. We confirm profound phenotypic variation in X-linked congenital idiopathic nystagmus pedigrees. We demonstrate that other congenital nystagmus genes exist besides FRMD7. We show that the role of X inactivation in variable penetrance is unclear in congenital idiopathic nystagmus. Clinical Relevance We demonstrate that phenotypic variation of nystagmus occurs in families with FRMD7 mutations. While FRMD7 mutations may be found in some cases of X-linked congenital idiopathic nystagmus, the diagnostic yield is low. X-inactivation assays are unhelpful as a test for carrier status for this disease.

  12. Allelic variation of the Waxy gene in foxtail millet [Setaria italica (L.) P. Beauv.] by single nucleotide polymorphisms.

    Science.gov (United States)

    Van, K; Onoda, S; Kim, M Y; Kim, K D; Lee, S-H

    2008-03-01

    The Waxy (Wx) gene product controls the formation of a straight chain polymer of amylose in the starch pathway. Dominance/recessiveness of the Wx allele is associated with amylose content, leading to non-waxy/waxy phenotypes. For a total of 113 foxtail millet accessions, agronomic traits and the molecular differences of the Wx gene were surveyed to evaluate genetic diversities. Molecular types were associated with phenotypes determined by four specific primer sets (non-waxy, Type I; low amylose, Type VI; waxy, Type IV or V). Additionally, the insertion of transposable element in waxy was confirmed by ex1/TSI2R, TSI2F/ex2, ex2int2/TSI7R and TSI7F/ex4r. Seventeen single nucleotide polymorphims (SNPs) were observed from non-coding regions, while three SNPs from coding regions were non-synonymous. Interestingly, the phenotype of No. 88 was still non-waxy, although seven nucleotides (AATTGGT) insertion at 2,993 bp led to 78 amino acids shorter. The rapid decline of r (2) in the sequenced region (exon 1-intron 1-exon 2) suggested a low level of linkage disequilibrium and limited haplotype structure. K (s) values and estimation of evolutionary events indicate early divergence of S. italica among cereal crops. This study suggested the Wx gene was one of the targets in the selection process during domestication.

  13. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Science.gov (United States)

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  14. A common polymorphism in the promoter region of the TNFSF4 gene is associated with lower allele-specific expression and risk of myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Massimiliano Ria

    Full Text Available BACKGROUND: The TNFSF4/TNFRSF4 system, along with several other receptor-ligand pairs, is involved in the recruitment and activation of T-cells and is therefore tentatively implicated in atherosclerosis and acute coronary syndromes. We have previously shown that genetic variants in TNFSF4 are associated with myocardial infarction (MI in women. This prompted functional studies of TNFSF4 expression. METHODS AND RESULTS: Based on a screening of the TNFSF4 genomic region, a promoter polymorphism (rs45454293 and a haplotype were identified, conceivably involved in gene regulation. The rs45454293T-allele, in agreement with the linked rs3850641G-allele, proved to be associated with increased risk of MI in women. Haplotype-specific chromatin immunoprecipitation of activated polymerase II, as a measure of transcriptional activity in vivo, suggested that the haplotype including the rs45454293 and rs3850641 polymorphisms is functionally important, the rs45454293T- and rs3850641G-alleles being associated with lower transcriptional activity in cells heterozygous for both polymorphisms. The functional role of rs45454293 on transcriptional levels of TNFSF4 was clarified by luciferase reporter assays, where the rs45454293T-allele decreased gene expression when compared with the rs45454293C-allele, while the rs3850641 SNP did not have any effect on TNFSF4 promoter activity. Electromobility shift assay showed that the rs45454293 polymorphism, but not rs3850641, affects the binding of nuclear factors, thus suggesting that the lower transcriptional activity is attributed to binding of one or more transcriptional repressor(s to the T-allele. CONCLUSIONS: Our data indicate that the TNFSF4 rs45454293T-allele is associated with lower TNFSF4 expression and increased risk of MI.

  15. HindIII identifies a two allele DNA polymorphism of the human cannabinoid receptor gene (CNR)

    Energy Technology Data Exchange (ETDEWEB)

    Caenazzo, L.; Hoehe, M.R.; Hsieh, W.T.; Berrettini, W.H.; Bonner, T.I.; Gershon, E.S. (National Inst. of Health, Bethesda, MD (United States))

    1991-09-11

    HCNR p5, a 0.9 kb BamHI/EcoRI fragment from the human cannabinoid receptor gene inserted into pUC19, was used as probe. The fragment is located in an intron approximately 14 kb 5{prime} of the initiation codon. This fragment is a clean single copy sequence by genomic blotting. Hybridization of human genomic DNA digested with HindIII identified a two allele RFLP with bands at 5.5 (A1) and 3.3 kb (A2). The human cannabinoid receptor gene has been genetically mapped in CEPH reference pedigrees to the centromeric/q region of chromosome 6. In situ hybridization localizes it to 6q14-q15. Codominant segregation has been observed in 26 informative two- and three-generation CEPH pedigrees and in 14 medium-sized disease families.

  16. Killer Immunoglobulin-Like Receptor Allele Determination Using Next-Generation Sequencing Technology

    Directory of Open Access Journals (Sweden)

    Bercelin Maniangou

    2017-05-01

    Full Text Available The impact of natural killer (NK cell alloreactivity on hematopoietic stem cell transplantation (HSCT outcome is still debated due to the complexity of graft parameters, HLA class I environment, the nature of killer cell immunoglobulin-like receptor (KIR/KIR ligand genetic combinations studied, and KIR+ NK cell repertoire size. KIR genes are known to be polymorphic in terms of gene content, copy number variation, and number of alleles. These allelic polymorphisms may impact both the phenotype and function of KIR+ NK cells. We, therefore, speculate that polymorphisms may alter donor KIR+ NK cell phenotype/function thus modulating post-HSCT KIR+ NK cell alloreactivity. To investigate KIR allele polymorphisms of all KIR genes, we developed a next-generation sequencing (NGS technology on a MiSeq platform. To ensure the reliability and specificity of our method, genomic DNA from well-characterized cell lines were used; high-resolution KIR typing results obtained were then compared to those previously reported. Two different bioinformatic pipelines were used allowing the attribution of sequencing reads to specific KIR genes and the assignment of KIR alleles for each KIR gene. Our results demonstrated successful long-range KIR gene amplifications of all reference samples using intergenic KIR primers. The alignment of reads to the human genome reference (hg19 using BiRD pipeline or visualization of data using Profiler software demonstrated that all KIR genes were completely sequenced with a sufficient read depth (mean 317× for all loci and a high percentage of mapping (mean 93% for all loci. Comparison of high-resolution KIR typing obtained to those published data using exome capture resulted in a reported concordance rate of 95% for centromeric and telomeric KIR genes. Overall, our results suggest that NGS can be used to investigate the broad KIR allelic polymorphism. Hence, these data improve our knowledge, not only on KIR+ NK cell alloreactivity in

  17. Genetic diversity and population structure of Lantana camara in India indicates multiple introductions and gene flow.

    Science.gov (United States)

    Ray, A; Quader, S

    2014-05-01

    Lantana camara is a highly invasive plant, which has spread over 60 countries and island groups of Asia, Africa and Australia. In India, it was introduced in the early nineteenth century, since when it has expanded and gradually established itself in almost every available ecosystem. We investigated the genetic diversity and population structure of this plant in India in order to understand its introduction, subsequent range expansion and gene flow. A total of 179 individuals were sequenced at three chloroplast loci and 218 individuals were genotyped for six nuclear microsatellites. Both chloroplasts (nine haplotypes) and microsatellites (83 alleles) showed high genetic diversity. Besides, each type of marker confirmed the presence of private polymorphism. We uncovered low to medium population structure in both markers, and found a faint signal of isolation by distance with microsatellites. Bayesian clustering analyses revealed multiple divergent genetic clusters. Taken together, these findings (i.e. high genetic diversity with private alleles and multiple genetic clusters) suggest that Lantana was introduced multiple times and gradually underwent spatial expansion with recurrent gene flow. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Selection of Plasmodium falciparum Multidrug Resistance Gene 1 Alleles in Asexual Stages and Gametocytes by Artemether-Lumefantrine in Nigerian Children with Uncomplicated Falciparum Malaria ▿

    Science.gov (United States)

    Happi, C. T.; Gbotosho, G. O.; Folarin, O. A.; Sowunmi, A.; Hudson, T.; O'Neil, M.; Milhous, W.; Wirth, D. F.; Oduola, A. M. J.

    2009-01-01

    We assessed Plasmodium falciparum mdr1 (Pfmdr1) gene polymorphisms and copy numbers as well as P. falciparum Ca2+ ATPase (PfATPase6) gene polymorphisms in 90 Nigerian children presenting with uncomplicated falciparum malaria and enrolled in a study of the efficacy of artemether-lumefantrine (AL). The nested PCR-restriction fragment length polymorphism and the quantitative real-time PCR methodologies were used to determine the alleles of the Pfmdr1 and PfATPase6 genes and the Pfmdr1 copy number variation, respectively, in patients samples collected prior to treatment and at the reoccurrence of parasites during a 42-day follow-up. The Pfmdr1 haplotype 86N-184F-1246D was significantly associated (P copy of the Pfmdr1 gene and the wild-type allele (L89) at codon 89 of the PfATPase6 gene. These findings suggest that polymorphisms in the Pfmdr1 gene are under AL selection pressure. Pfmdr1 polymorphisms may result in reduction in the therapeutic efficacy of this newly adopted combination treatment for uncomplicated falciparum malaria in Saharan countries of Africa. PMID:19075074

  19. The restriction-modification genes of Escherichia coli K-12 may not be selfish: they do not resist loss and are readily replaced by alleles conferring different specificities.

    Science.gov (United States)

    O'Neill, M; Chen, A; Murray, N E

    1997-12-23

    Type II restriction and modification (R-M) genes have been described as selfish because they have been shown to impose selection for the maintenance of the plasmid that encodes them. In our experiments, the type I R-M system EcoKI does not behave in the same way. The genes specifying EcoKI are, however, normally residents of the chromosome and therefore our analyses were extended to monitor the deletion of chromosomal genes rather than loss of plasmid vector. If EcoKI were to behave in the same way as the plasmid-encoded type II R-M systems, the loss of the relevant chromosomal genes by mutation or recombination should lead to cell death because the cell would become deficient in modification enzyme and the bacterial chromosome would be vulnerable to the restriction endonuclease. Our data contradict this prediction; they reveal that functional type I R-M genes in the chromosome are readily replaced by mutant alleles and by alleles encoding a type I R-M system of different specificity. The acquisition of allelic genes conferring a new sequence specificity, but not the loss of the resident genes, is dependent on the product of an unlinked gene, one predicted [Prakash-Cheng, A., Chung, S. S. & Ryu, J. (1993) Mol. Gen. Genet. 241, 491-496] to be relevant to control of expression of the genes that encode EcoKI. Our evidence suggests that not all R-M systems are evolving as "selfish" units; rather, the diversity and distribution of the family of type I enzymes we have investigated require an alternative selective pressure.

  20. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana.

    Science.gov (United States)

    Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E

    2016-05-01

    The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.

  1. Structural Analysis of Insulin Minisatellite Alleles Reveals Unusually Large Differences in Diversity between Africans and Non-Africans

    Science.gov (United States)

    Stead, John D. H.; Jeffreys, Alec J.

    2002-01-01

    The insulin minisatellite (INS VNTR) associates with susceptibility to a variety of diseases. We have developed a high-resolution system for analyzing variant repeat distributions applicable to all known minisatellite alleles, irrespective of size, which allows lineages of related alleles to be identified. This system has previously revealed extremely low structural diversity in the minisatellite among northern Europeans from the United Kingdom, with all alleles belonging to one of only three highly diverged lineages called “I,” “IIIA,” and “IIIB.” To explore the origins of this remarkably limited lineage diversity, we have characterized an additional 780 alleles from three non-African and three African populations. In total, 22 highly diverged lineages were identified, with structural intermediates absent from extant populations, suggesting a bottleneck within the ancestry of all humans. The difference between levels of diversity in Africans and non-Africans is unusually large, with all 22 lineages identified in Africa compared with only three lineages seen not only in the United Kingdom but also in the other non-African populations. We also find evidence for overrepresentation of lineage I chromosomes in non-Africans. These data are consistent with a common out-of-Africa origin and an unusually tight bottleneck within the ancestry of all non-African populations, possibly combined with differential and positive selection for lineage I alleles in non-Africans. The important implications of these data for future disease-association studies are discussed. PMID:12404181

  2. Deregulation of apoptosis-related genes is associated with PRV1 overexpression and JAK2 V617F allele burden in Essential Thrombocythemia and Myelofibrosis

    Directory of Open Access Journals (Sweden)

    Tognon Raquel

    2012-02-01

    Full Text Available Abstract Background Essential Thrombocythemia (ET and Primary Myelofibrosis (PMF are Chronic Myeloproliferative Neoplasms (MPN characterized by clonal myeloproliferation/myeloaccumulation without cell maturation impairment. The JAK2 V617F mutation and PRV1 gene overexpression may contribute to MPN physiopathology. We hypothesized that deregulation of the apoptotic machinery may also play a role in the pathogenesis of ET and PMF. In this study we evaluated the apoptosis-related gene and protein expression of BCL2 family members in bone marrow CD34+ hematopoietic stem cells (HSC and peripheral blood leukocytes from ET and PMF patients. We also tested whether the gene expression results were correlated with JAK2 V617F allele burden percentage, PRV1 overexpression, and clinical and laboratory parameters. Results By real time PCR assay, we observed that A1, MCL1, BIK and BID, as well as A1, BCLW and BAK gene expression were increased in ET and PMF CD34+ cells respectively, while pro-apoptotic BAX and anti-apoptotic BCL2 mRNA levels were found to be lower in ET and PMF CD34+ cells respectively, in relation to controls. In patients' leukocytes, we detected an upregulation of anti-apoptotic genes A1, BCL2, BCL-XL and BCLW. In contrast, pro-apoptotic BID and BIMEL expression were downregulated in ET leukocytes. Increased BCL-XL protein expression in PMF leukocytes and decreased BID protein expression in ET leukocytes were observed by Western Blot. In ET leukocytes, we found a correlation between JAK2 V617F allele burden and BAX, BIK and BAD gene expression and between A1, BAX and BIK and PRV1 gene expression. A negative correlation between PRV1 gene expression and platelet count was observed, as well as a positive correlation between PRV1 gene expression and splenomegaly. Conclusions Our results suggest the participation of intrinsic apoptosis pathway in the MPN physiopathology. In addition, PRV1 and JAK2 V617F allele burden were linked to deregulation

  3. Selection on alleles affecting human longevity and late-life disease: the example of apolipoprotein E.

    Directory of Open Access Journals (Sweden)

    Fotios Drenos

    2010-04-01

    Full Text Available It is often claimed that genes affecting health in old age, such as cardiovascular and Alzheimer diseases, are beyond the reach of natural selection. We show in a simulation study based on known genetic (apolipoprotein E and non-genetic risk factors (gender, diet, smoking, alcohol, exercise that, because there is a statistical distribution of ages at which these genes exert their influence on morbidity and mortality, the effects of selection are in fact non-negligible. A gradual increase with each generation of the epsilon2 and epsilon3 alleles of the gene at the expense of the epsilon4 allele was predicted from the model. The epsilon2 allele frequency was found to increase slightly more rapidly than that for epsilon3, although there was no statistically significant difference between the two. Our result may explain the recent evolutionary history of the epsilon 2, 3 and 4 alleles of the apolipoprotein E gene and has wider relevance for genes affecting human longevity.

  4. The loss-of-allele assay for ES cell screening and mouse genotyping.

    Science.gov (United States)

    Frendewey, David; Chernomorsky, Rostislav; Esau, Lakeisha; Om, Jinsop; Xue, Yingzi; Murphy, Andrew J; Yancopoulos, George D; Valenzuela, David M

    2010-01-01

    Targeting vectors used to create directed mutations in mouse embryonic stem (ES) cells consist, in their simplest form, of a gene for drug selection flanked by mouse genomic sequences, the so-called homology arms that promote site-directed homologous recombination between the vector and the target gene. The VelociGene method for the creation of targeted mutations in ES cells employs targeting vectors, called BACVecs, that are based on bacterial artificial chromosomes. Compared with conventional short targeting vectors, BacVecs provide two major advantages: (1) their much larger homology arms promote high targeting efficiencies without the need for isogenicity or negative selection strategies; and (2) they enable deletions and insertions of up to 100kb in a single targeting event, making possible gene-ablating definitive null alleles and other large-scale genomic modifications. Because of their large arm sizes, however, BACVecs do not permit screening by conventional assays, such as long-range PCR or Southern blotting, that link the inserted targeting vector to the targeted locus. To exploit the advantages of BACVecs for gene targeting, we inverted the conventional screening logic in developing the loss-of-allele (LOA) assay, which quantifies the number of copies of the native locus to which the mutation was directed. In a correctly targeted ES cell clone, the LOA assay detects one of the two native alleles (for genes not on the X or Y chromosome), the other allele being disrupted by the targeted modification. We apply the same principle in reverse as a gain-of-allele assay to quantify the copy number of the inserted targeting vector. The LOA assay reveals a correctly targeted clone as having lost one copy of the native target gene and gained one copy of the drug resistance gene or other inserted marker. The combination of these quantitative assays makes LOA genotyping unequivocal and amenable to automated scoring. We use the quantitative polymerase chain reaction

  5. Plasminogen Activator Inhibitor-1 (PAI-1) gene 4G/5G alleles frequency distribution in the Lebanese population.

    Science.gov (United States)

    Shammaa, Dina M R; Sabbagh, Amira S; Taher, Ali T; Zaatari, Ghazi S; Mahfouz, Rami A R

    2008-09-01

    Plasminogen activator inhibitor-1 (PAI-1) is an inhibitor of fibrinolysis. Increased plasma PAI-1 levels play an essential role in the pathogenesis of cardiovascular risk and other diseases associated with thrombosis. The 4G/5G polymorphism of the PAI-1 promoter region has been extensively studied in different populations. We studied 160 healthy unrelated Lebanese individuals using a reverse hybridization PCR assay to detect the 5G/5G, 4G/5G and, 4G/4G genotypes of the PAI-1 gene and the frequencies of the 4G and 5G alleles. We found that 4G/5G genotype was the most prevalent (45.6%) followed by 5G/5G (36.9%) and 4G/4G (17.5%). The frequencies of the 4G and 5G alleles were calculated to be 0.403 and 0.597, respectively. Compared to other ethnic communities, the Lebanese population was found to harbour a relatively high prevalence of the rare 4G allele. This, in turn, may predispose this population to develop cardiovascular diseases and other thrombotic clinical conditions. This study aids to enhance our understanding of the genetic features of the Lebanese population.

  6. Detecting imbalanced expression of SNP alleles by minisequencing on microarrays

    Directory of Open Access Journals (Sweden)

    Dahlgren Andreas

    2004-10-01

    Full Text Available Abstract Background Each of the human genes or transcriptional units is likely to contain single nucleotide polymorphisms that may give rise to sequence variation between individuals and tissues on the level of RNA. Based on recent studies, differential expression of the two alleles of heterozygous coding single nucleotide polymorphisms (SNPs may be frequent for human genes. Methods with high accuracy to be used in a high throughput setting are needed for systematic surveys of expressed sequence variation. In this study we evaluated two formats of multiplexed, microarray based minisequencing for quantitative detection of imbalanced expression of SNP alleles. We used a panel of ten SNPs located in five genes known to be expressed in two endothelial cell lines as our model system. Results The accuracy and sensitivity of quantitative detection of allelic imbalance was assessed for each SNP by constructing regression lines using a dilution series of mixed samples from individuals of different genotype. Accurate quantification of SNP alleles by both assay formats was evidenced for by R2 values > 0.95 for the majority of the regression lines. According to a two sample t-test, we were able to distinguish 1–9% of a minority SNP allele from a homozygous genotype, with larger variation between SNPs than between assay formats. Six of the SNPs, heterozygous in either of the two cell lines, were genotyped in RNA extracted from the endothelial cells. The coefficient of variation between the fluorescent signals from five parallel reactions was similar for cDNA and genomic DNA. The fluorescence signal intensity ratios measured in the cDNA samples were compared to those in genomic DNA to determine the relative expression levels of the two alleles of each SNP. Four of the six SNPs tested displayed a higher than 1.4-fold difference in allelic ratios between cDNA and genomic DNA. The results were verified by allele-specific oligonucleotide hybridisation and

  7. Detecting differential allelic expression using high-resolution melting curve analysis: application to the breast cancer susceptibility gene CHEK2

    Directory of Open Access Journals (Sweden)

    Sinilnikova Olga

    2011-05-01

    Full Text Available Abstract Background The gene CHEK2 encodes a checkpoint kinase playing a key role in the DNA damage pathway. Though CHEK2 has been identified as an intermediate breast cancer susceptibility gene, only a small proportion of high-risk families have been explained by genetic variants located in its coding region. Alteration in gene expression regulation provides a potential mechanism for generating disease susceptibility. The detection of differential allelic expression (DAE represents a sensitive assay to direct the search for a functional sequence variant within the transcriptional regulatory elements of a candidate gene. We aimed to assess whether CHEK2 was subject to DAE in lymphoblastoid cell lines (LCLs from high-risk breast cancer patients for whom no mutation in BRCA1 or BRCA2 had been identified. Methods We implemented an assay based on high-resolution melting (HRM curve analysis and developed an analysis tool for DAE assessment. Results We observed allelic expression imbalance in 4 of the 41 LCLs examined. All four were carriers of the truncating mutation 1100delC. We confirmed previous findings that this mutation induces non-sense mediated mRNA decay. In our series, we ruled out the possibility of a functional sequence variant located in the promoter region or in a regulatory element of CHEK2 that would lead to DAE in the transcriptional regulatory milieu of freely proliferating LCLs. Conclusions Our results support that HRM is a sensitive and accurate method for DAE assessment. This approach would be of great interest for high-throughput mutation screening projects aiming to identify genes carrying functional regulatory polymorphisms.

  8. Microangiopathic complications related to different alleles of ...

    African Journals Online (AJOL)

    Egyptian Journal of Biochemistry and Molecular Biology. Journal Home ... Microangiopathic complications related to different alleles of manganese superoxide dismutase gene in diabetes mellitus type 1. TM EL Masry ... 23(2) 2005: 155-167 ...

  9. Polymorphisms in the glucocerebrosidase gene and pseudogene urge caution in clinical analysis of Gaucher disease allele c.1448T>C (L444P

    Directory of Open Access Journals (Sweden)

    Lahey Cora

    2006-08-01

    Full Text Available Abstract Background Gaucher disease is a potentially severe lysosomal storage disorder caused by mutations in the human glucocerebrosidase gene (GBA. We have developed a multiplexed genetic assay for eight diseases prevalent in the Ashkenazi population: Tay-Sachs, Gaucher type I, Niemann-Pick types A and B, mucolipidosis type IV, familial dysautonomia, Canavan, Bloom syndrome, and Fanconi anemia type C. This assay includes an allelic determination for GBA allele c.1448T>C (L444P. The goal of this study was to clinically evaluate this assay. Methods Biotinylated, multiplex PCR products were directly hybridized to capture probes immobilized on fluorescently addressed microspheres. After incubation with streptavidin-conjugated fluorophore, the reactions were analyzed by Luminex IS100. Clinical evaluations were conducted using de-identified patient DNA samples. Results We evaluated a multiplexed suspension array assay that includes wild-type and mutant genetic determinations for Gaucher disease allele c.1448T>C. Two percent of samples reported to be wild-type by conventional methods were observed to be c.1448T>C heterozygous using our assay. Sequence analysis suggested that this phenomenon was due to co-amplification of the functional gene and a paralogous pseudogene (ΨGBA due to a polymorphism in the primer-binding site of the latter. Primers for the amplification of this allele were then repositioned to span an upstream deletion in the pseudogene, yielding a much longer amplicon. Although it is widely reported that long amplicons negatively impact amplification or detection efficiency in recently adopted multiplex techniques, this assay design functioned properly and resolved the occurrence of false heterozygosity. Conclusion Although previously available sequence information suggested GBA gene/pseudogene discrimination capabilities with a short amplified product, we identified common single-nucleotide polymorphisms in the pseudogene that

  10. Linkage disequilibrium in the insulin gene region: Size variation at the 5{prime} flanking polymorphism and bimodality among {open_quotes}Class I{close_quotes} alleles

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, R.E.; Spielman, R.S. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    1994-09-01

    The 5{prime} flanking polymorphism (5{prime}FP), a hypervariable region at the 5{prime} end of the insulin gene, has {open_quotes}class 1{close_quotes} alleles (650-900 bp long) that are in positive linkage disequilibrium with insulin-dependent diabetes mellitus (IDDM). The authors report that precise sizing of the 5{prime}FP yields a bimodal frequency distribution of class 1 allele lengths. Class 1 alleles belonging to the lower component (650-750 bp) of the bimodal distribution were somewhat more highly associated with IDDM than were alleles from the upper component (760-900 bp), but the difference was not statistically significant. They also examined 5{prime}FP length variation in relation to allelic variation at nearby polymorphisms. At biallelic RFLPs on both sides of the 5{prime}FP, they found that one allele exhibits near-total association with the upper component of the 5FP class 1 distribution. Such associations represent a little-known but potentially wide-spread form of linkage disequilibrium. In this type of disequilibrium, a flanking allele has near-complete association with a single mode of VNTR alleles whose lengths represent consecutive numbers of tandem repeats (CNTR). Such extreme disequilibrium between a CNTR mode and flanking alleles may originate and persist because length mutations at some VNTR loci usually add or delete only one or two repeat units. 22 refs., 5 figs., 6 tabs.

  11. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes.

    Science.gov (United States)

    Köllner, Tobias G; Schnee, Christiane; Gershenzon, Jonathan; Degenhardt, Jörg

    2004-05-01

    The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes.

  12. Allele-specific deletions in mouse tumors identify Fbxw7 as germline modifier of tumor susceptibility.

    Directory of Open Access Journals (Sweden)

    Jesus Perez-Losada

    Full Text Available Genome-wide association studies (GWAS have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5-10%. There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (p = 0.001, but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility.

  13. Maternal and paternal genomes function independently in mouse ova in establishing expression of the imprinted genes Snrpn and Igf2r: no evidence for allelic trans-sensing and counting mechanisms.

    OpenAIRE

    Szabó, P E; Mann, J R

    1996-01-01

    It has often been suggested that the parental-specific expression of mammalian imprinted genes might be dependent on maternal-paternal intergenomic or interallelic interactions. Using quantitative allele-specific RT-PCR single nucleotide primer extension assays developed for two imprinted genes, Snrpn and Igf2r, we demonstrate: (i) No role for maternal-paternal allelic interactions: the modes of parental-specific expression of Snrpn and Igf2r in normal ova were unchanged in gynogenetic and an...

  14. Allelic association, DNA resequencing and copy number variation at the metabotropic glutamate receptor GRM7 gene locus in bipolar disorder.

    Science.gov (United States)

    Kandaswamy, Radhika; McQuillin, Andrew; Curtis, David; Gurling, Hugh

    2014-06-01

    Genetic markers at the GRM7 gene have shown allelic association with bipolar disorder (BP) in several case-control samples including our own sample. In this report, we present results of resequencing the GRM7 gene in 32 bipolar samples and 32 random controls selected from 553 bipolar cases and 547 control samples (UCL1). Novel and potential etiological base pair changes discovered by resequencing were genotyped in the entire UCL case-control sample. We also report on the association between GRM7 and BP in a second sample of 593 patients and 642 controls (UCL2). The three most significantly associated SNPs in the original UCL1 BP GWAS sample were genotyped in the UCL2 sample, of which none were associated. After combining the genotype data for the two samples only two (rs1508724 and rs6769814) of the original three SNP markers remained significantly associated with BP. DNA sequencing revealed mutations in three cases which were absent in control subjects. A 3'-UTR SNP rs56173829 was found to be significantly associated with BP in the whole UCL sample (P = 0.035; OR = 0.482), the rare allele being less common in cases compared to controls. Bioinformatic analyses predicted a change in the centroid secondary structure of RNA and alterations in the miRNA binding sites for the mutated base of rs56173829. We also validated two deletions and a duplication within GRM7 using quantitative-PCR which provides further support for the pre-existing evidence that copy number variants at GRM7 may have a role in the etiology of BP. © 2014 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Published by Wiley Periodicals, Inc.

  15. Efficacy of DNA double-strand breaks repair in breast cancer is decreased in carriers of the variant allele of the UBC9 gene c.73G>A polymorphism

    International Nuclear Information System (INIS)

    Synowiec, Ewelina; Krupa, Renata; Morawiec, Zbigniew; Wasylecka, Maja; Dziki, Lukasz; Morawiec, Jan; Blasiak, Janusz; Wozniak, Katarzyna

    2010-01-01

    UBC9 (E2) SUMO conjugating enzyme plays an important role in the maintenance of genome stability and integrity. In the present work we examined the association between the c.73G>A (Val25Met) polymorphism of the UBC9 gene (rs11553473) and efficacy of DNA double-strand breaks (DSBs) repair (DRE) in breast cancer patients. We determined the level of endogenous (basal) and exogenous (induced by γ-irradiation) DSBs and efficacy of their repair in peripheral blood lymphocytes of 57 breast cancer patients and 70 healthy individuals. DNA damage and repair were studied by neutral comet assay. Genotypes were determined in DNA from peripheral blood lymphocytes by allele-specific PCR (ASO-PCR). We also correlated genotypes with the clinical characteristics of breast cancer patients. We observed a strong association between breast cancer occurrence and the variant allele carried genotypes in patients with elevated level of basal as well as induced DNA damage (OR 6.74, 95% CI 2.27-20.0 and OR 5.33, 95% CI 1.81-15.7, respectively). We also found statistically significant (p A polymorphism of the UBC9 gene in breast cancer patients. Carriers of variant allele have decreased DNA DRE as compared to wild type genotype carriers. We did not find any association with the UBC9 gene polymorphism and estrogen and progesterone receptor status. The variant allele of the UBC9 gene polymorphism was strongly inversely related to HER negative breast cancer patients (OR 0.03, 95% CI 0.00-0.23). Our results suggest that the c.73G>A polymorphism of the UBC9 gene may affect DNA DSBs repair efficacy in breast cancer patients.

  16. Allelic deletions of cell growth regulators during progression of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, H; von der Maase, H; Christensen, M

    2000-01-01

    Cell growth regulators include proteins of the p53 pathway encoded by the genes CDKN2A (p16, p14arf), MDM2, TP53, and CDKN1A (p21) as well as proteins encoded by genes like RB1, E2F, and MYCL. In the present study we investigated allelic deletions of all these genes in each recurrent bladder tumor...... difference in the numbers of gene loci hit by deletions muscle-invasive versus noninvasive tumors (P = 0.0000002), with the genes most often hit by deletions in muscle-invasive tumors being TP53, RB1, and MYCL. A number of novel findings were made. Losses of MYCL and RB1 alleles were more pronounced...... that a characteristic difference between recurrent noninvasive and recurrent progressing bladder tumors is loss of cell cycle-regulatory genes in the latter group....

  17. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution.

    Science.gov (United States)

    Marez, D; Legrand, M; Sabbagh, N; Lo Guidice, J M; Spire, C; Lafitte, J J; Meyer, U A; Broly, F

    1997-06-01

    The polymorphic cytochrome P450 CYP2D6 is involved in the metabolism of various drugs of wide therapeutic use and is a presumed susceptibility factor for certain environmentally-induced diseases. Our aim was to define the mutations and alleles of the CYP2D6 gene and to evaluate their frequencies in the European population. Using polymerase chain reaction-single strand conformation polymorphism analysis, 672 unrelated subjects were screened for mutations in the 9 exons of the gene and their exon-intron boundaries. A total of 48 point mutations were identified, of which 29 were novel. Mutations 1749 G-->C, 2938 C-->T and 4268 G-->C represented 52.6%, 34.3% and 52.9% of the mutations in the total population, respectively. Of the eight detrimental mutations detected, the 1934 G-->A, the 1795 Tdel and the 2637 Adel accounted for 65.8%, 6.2% and 4.8% respectively, within the poor metabolizer subgroup. Fifty-three different alleles were characterized from the mutation pattern and by allele-specific sequencing. They are derived from three major alleles, namely the wild-type CYP2D6*1A, the functional CYP2D6*2 and the null CYP2D6*4A. Five allelic variants (CYP2D6*1A, *2, *2B, *4A and *5) account for about 87% of all alleles, while the remaining alleles occur with a frequency of 0.1%-2.7%. These data provide a solid basis for future epidemiological, clinical as well as interethnic studies of the CYP2D6 polymorphism and highlight that the described single strand conformation polymorphism method can be successfully used in designing such studies.

  18. Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2.

    Science.gov (United States)

    Chan, Elizabeth A W; Teng, Grace; Corbett, Elizabeth; Choudhury, Kingshuk Roy; Bassing, Craig H; Schatz, David G; Krangel, Michael S

    2013-11-26

    Allelic exclusion requires that the two alleles at antigen-receptor loci attempt to recombine variable (V), diversity (D), and joining (J) gene segments [V(D)J recombination] asynchronously in nuclei of developing lymphocytes. It previously was shown that T-cell receptor β (Tcrb) alleles frequently and stochastically associate with the nuclear lamina and pericentromeric heterochromatin in CD4(-)CD8(-) thymocytes. Moreover, rearranged alleles were underrepresented at these locations. Here we used 3D immunofluorescence in situ hybridization to identify recently rearranged Tcrb alleles based on the accumulation of the DNA-repair protein 53BP1. We found that Tcrb alleles recombine asynchronously in double-negative thymocytes and that V(D)J recombination is suppressed on peripheral as compared with central Tcrb alleles. Moreover, the recombination events that did take place at the nuclear periphery preferentially occurred on Tcrb alleles that were partially dissociated from the nuclear lamina. To understand better the mechanism by which V(D)J recombination is suppressed at the nuclear periphery, we evaluated the subnuclear distribution of recombination-activating gene 2 (RAG2) protein. We found that RAG2 abundance was reduced at the nuclear periphery. Moreover, RAG2 was distributed differently from RNA polymerase II and histone H3K4 trimethylation. Our data suggest that the nuclear periphery suppresses V(D)J recombination, at least in part, by segregating Tcrb alleles from RAG proteins.

  19. Allele-specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts

    Directory of Open Access Journals (Sweden)

    Satoru Noguchi

    2014-01-01

    Full Text Available Ullrich congenital muscular dystrophy (UCMD is an inherited muscle disorder characterized clinically by muscle weakness, distal joint hyperlaxity, and proximal joint contractures. Sporadic and recessive mutations in the three collagen VI genes, COL6A1, COL6A2, and COL6A3, are reported to be causative. In the sporadic forms, a heterozygous point mutation causing glycine substitution in the triple helical domain has been identified in higher rate. In this study, we examined the efficacy of siRNAs, which target point mutation site, on specific knockdown toward transcripts from mutant allele and evaluated consequent cellular phenotype of UCMD fibroblasts. We evaluated the effect of siRNAs targeted to silence-specific COL6A1 alleles in UCMD fibroblasts, where simultaneous expression of both wild-type and mutant collagen VI resulted in defective collagen localization. Addition of mutant-specific siRNAs allowed normal extracellular localization of collagen VI surrounding fibroblasts, suggesting selective inhibition of mutant collagen VI. Targeting the single-nucleotide COL6A1 c.850G>A (p.G284R mutation responsible a sporadic autosomal dominant form of UCMD can potently and selectively block expression of mutant collagen VI. These results suggest that allele-specific knockdown of the mutant mRNA can potentially be considered as a therapeutic procedure in UCMD due to COL6A1 point mutations.

  20. Association between allelic variants of the human glucocorticoid receptor gene and autoimmune diseases: A systematic review and meta-analysis.

    Science.gov (United States)

    Herrera, Cristian; Marcos, Miguel; Carbonell, Cristina; Mirón-Canelo, José Antonio; Espinosa, Gerard; Cervera, Ricard; Chamorro, Antonio-Javier

    2018-05-01

    The human glucocorticoid receptor gene (NR3C1) is considered to play a role in the differences and sensitivities of the glucocorticoid response in individuals with autoimmune diseases. The objective of this study was to examine by means of a systematic review previous findings regarding allelic variants of NR3C1 in relation to the risk of developing systemic autoimmune diseases. Studies that analysed the genotype distribution of NR3C1 allelic variants among patients with systemic autoimmune diseases were retrieved. A meta-analysis was conducted with a random effects model. Odds ratios (ORs) and their confidence intervals (CIs) were calculated. In addition, sub-analysis by ethnicity, sensitivity analysis and tests for heterogeneity of the results were performed. Eleven studies met the inclusion criteria for meta-analysis. We found no evidence that the analysed NR3C1 polymorphisms, rs6198, rs56149945, and rs6189/rs6190, modulate the risk of developing a systemic autoimmune disease. Nonetheless, a protective role for the minor allele of rs41423247 was found among Caucasians (OR=0.78; 95% CI: 0.65, 0.92; P=0.004). A subgroup analysis according to underlying diseases revealed no significant association either for Behçet's disease or rheumatoid arthritis, while correlations between NR3C1 polymorphisms and disease activity or response to glucocorticoids could not be evaluated due to insufficient data. There is no clear evidence that the analysed NR3C1 allelic variants confer a risk for developing systemic autoimmune diseases although the minor G allele of rs41423247 may be protective among Caucasians. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Efficacy of DNA double-strand breaks repair in breast cancer is decreased in carriers of the variant allele of the UBC9 gene c.73G>A polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Synowiec, Ewelina [Department of Molecular Genetics, University of Lodz, Lodz (Poland); Krupa, Renata [Laboratory of DNA Repair, Department of Molecular Genetics, University of Lodz, Banacha 12/16, Lodz (Poland); Morawiec, Zbigniew; Wasylecka, Maja [Department of Surgical Oncology, N. Copernicus Hospital, Lodz (Poland); Dziki, Lukasz; Morawiec, Jan [Department of General and Colorectal Surgery, Medical University of Lodz, Lodz (Poland); Blasiak, Janusz [Department of Molecular Genetics, University of Lodz, Lodz (Poland); Wozniak, Katarzyna, E-mail: wozniak@biol.uni.lodz.pl [Laboratory of DNA Repair, Department of Molecular Genetics, University of Lodz, Banacha 12/16, Lodz (Poland)

    2010-12-10

    UBC9 (E2) SUMO conjugating enzyme plays an important role in the maintenance of genome stability and integrity. In the present work we examined the association between the c.73G>A (Val25Met) polymorphism of the UBC9 gene (rs11553473) and efficacy of DNA double-strand breaks (DSBs) repair (DRE) in breast cancer patients. We determined the level of endogenous (basal) and exogenous (induced by {gamma}-irradiation) DSBs and efficacy of their repair in peripheral blood lymphocytes of 57 breast cancer patients and 70 healthy individuals. DNA damage and repair were studied by neutral comet assay. Genotypes were determined in DNA from peripheral blood lymphocytes by allele-specific PCR (ASO-PCR). We also correlated genotypes with the clinical characteristics of breast cancer patients. We observed a strong association between breast cancer occurrence and the variant allele carried genotypes in patients with elevated level of basal as well as induced DNA damage (OR 6.74, 95% CI 2.27-20.0 and OR 5.33, 95% CI 1.81-15.7, respectively). We also found statistically significant (p < 0.05) difference in DRE related to the c.73G>A polymorphism of the UBC9 gene in breast cancer patients. Carriers of variant allele have decreased DNA DRE as compared to wild type genotype carriers. We did not find any association with the UBC9 gene polymorphism and estrogen and progesterone receptor status. The variant allele of the UBC9 gene polymorphism was strongly inversely related to HER negative breast cancer patients (OR 0.03, 95% CI 0.00-0.23). Our results suggest that the c.73G>A polymorphism of the UBC9 gene may affect DNA DSBs repair efficacy in breast cancer patients.

  2. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector.

    Science.gov (United States)

    Ibrahim, Sulaiman S; Riveron, Jacob M; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J I; Wondji, Charles S

    2015-10-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies.

  3. In-Frame and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System Compatible with Gateway Technology.

    Science.gov (United States)

    Fazli, Mustafa; Harrison, Joe J; Gambino, Michela; Givskov, Michael; Tolker-Nielsen, Tim

    2015-06-01

    Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generation of deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counterselectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counterselectable pheS gene and the I-SceI homing endonuclease. This system provides efficiency in cloning homology regions of target genes and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a cyclic di-GMP (c-di-GMP)-responsive regulator protein important for biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Microsatellite D21D210 (GT-12) allele frequencies in sporadic Alzheimer's disease

    International Nuclear Information System (INIS)

    Lannfelt, L.; Lilius, L.; Viitanen, M.; Winblad, B.; Basun, H.; Houlden, H.; Rossor, M.; Hardy, J.

    1995-01-01

    Four disease-causing mutations have so far been described in the amyloid precursor protein gene on chromosome 21 in familial early-onset Alzheimer's disease. Linkage analysis with a fourteen-allele microsatellite at D21S210 named GT-12 has proven useful in the elucidation of amyloid presursor protein gene involvement in Alzheimer's disease families, as it is closely linked to the gene. Most cases of Alzheimer's disease are thought to be sporadic and not familial. However, evidence from earlier studies suggests an important genetic contribution also in sporadic cases, where gene-environment interaction may contribute to the disease. We have determined frequencies of the GT-12 alleles in 78 Swedish and 49 British sporadic Alzheimer's disease cases and 104 healthy elderly control subjects, to investigate if the disease associates with a particular genotype in GT-12. However, no differences in allele frequencies were observed between any of the groups. (au) (26 refs.)

  5. Database for the ampC alleles in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Nabil Karah

    Full Text Available Acinetobacter baumannii is a troublesome opportunistic pathogen with a high capacity for clonal dissemination. We announce the establishment of a database for the ampC locus in A. baumannii, in which novel ampC alleles are differentiated based on the occurrence of ≥ 1 nucleotide change, regardless of whether it is silent or missense. The database is openly accessible at the pubmlst platform for A. baumannii (http://pubmlst.org/abaumannii/. Forty-eight distinctive alleles of the ampC locus have so far been identified and deposited in the database. Isolates from clonal complex 1 (CC1, according to the Pasteur multilocus sequence typing scheme, had a variety of the ampC locus alleles, including alleles 1, 3, 4, 5, 6, 7, 8, 13, 14, 17, and 18. On the other hand, isolates from CC2 had the ampC alleles 2, 3, 19, 20, 21, 22, 23, 24, 26, 27, 28, and 46. Allele 3 was characteristic for sequence types ST3 or ST32. The ampC alleles 10, 16, and 25 were characteristic for CC10, ST16, and CC25, respectively. Our study points out that novel gene databases, in which alleles are numbered based on differences in their nucleotide identities, should replace traditional records that use amino acid substitutions to define new alleles.

  6. Geographical gradient of the eIF4E alleles conferring resistance to potyviruses in pea (Pisum) germplasm.

    Science.gov (United States)

    Konečná, Eva; Šafářová, Dana; Navrátil, Milan; Hanáček, Pavel; Coyne, Clarice; Flavell, Andrew; Vishnyakova, Margarita; Ambrose, Mike; Redden, Robert; Smýkal, Petr

    2014-01-01

    The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the eIF4E gene to identify novel genetic diversity. Germplasm of 2803 pea accessions was screened for eIF4E intron 3 length polymorphism, resulting in the detection of four eIF4E(A-B-C-S) variants, whose distribution was geographically structured. The eIF4E(A) variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, eIF4E(B), was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The eIF4E(C) variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The eIF4E(S) variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (eIF4E(A-1-2-3-4-5-6-7), eIF4E(B-1), eIF4E(C-2)) conferred resistance to the P1 PSbMV pathotype. This work identified novel eIF4E alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible eIF4E(S1) allele. Despite high variation present in wild Pisum accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis to study the co-evolution of potyviruses and the

  7. Allele variants of HLA II genes DRB1 and DQB1 regarding risk for type 1 diabetes mellitus in population of Bashkortostan

    Directory of Open Access Journals (Sweden)

    Shamilevna Avzaletdinova

    2012-09-01

    Full Text Available Aims. To estimate significance of HLA II DRB1 and DRB2 allele variants for development of type 1 diabetes mellitus (T1DM in Bashkortostanpopulation (ethnical Russians, Tatar, Bashkir. Materials and methods. We analyzed DNA of 323 patients with T1DM and 683 healthy controls. DNA was derived from venous bloodsamples by phenol-chloroform extraction. DRB1 and DQB1 gene typing was performed by PCR method. Amplification products wereidentified with electrophoresis on a 1% agarose gel. Statistica for Windows v6.0 and MS Excel 98 software were applied for statisticalprocessing of acquired data. Results. Common markers of high risk for T1DM were found to be DRB1*04, DRB1*17, genotype DRB1*04/*17. On the contrary,lower risk was associated with DRB1*15 allele. In ethnical Russians lower risk of T1DM is also determined by DRB1*11 allele andDRB1*01 in Tatars. Predisposition by DQB1-alleles in Russians and Bashkir realizes only within DRB1*04/*17 genotype. However,in Tatar subpopulation DQB1*0302 is an independent risk marker of T1DM development. Conclusion. Common low risk markers for all three ethnic groups are DQB1*0301, DQB1*0602-08 alleles. Their presence negates riskof disease in all studied subpopulations even within DRB1*04/*17-genotype.

  8. Identification of Ppd-B1 alleles in common wheat cultivars by CAPS marker.

    Science.gov (United States)

    Okoń, S; Kowalczyk, K; Miazga, D

    2012-05-01

    Photoperiod response is a major determinant of the duration of growth stages in common wheat. In common wheat, many genes play a role in determining flowering time, but the Ppd genes located on the homoeologous group 2 play a major role. Of these Ppd-B1 is located on the short arm of 2B. In 107 common wheat cultivars grown in Poland and neighboring countries, the identification of Ppd-B1 alleles using in-del analysis by using a CAPS markers was investigated. 87 cultivars were shown to carry dominant Ppd-B1 alleles. This shows that Ppd-B1 alleles is have been widely used in common wheat breeding programme in these countries. Recessive ppd-B1 alleles were found only in 20 cultivars (12 Polish, 5 former Soviet Union, 2 German, 1 Swedish).

  9. QuASAR: quantitative allele-specific analysis of reads.

    Science.gov (United States)

    Harvey, Chris T; Moyerbrailean, Gregory A; Davis, Gordon O; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-04-15

    Expression quantitative trait loci (eQTL) studies have discovered thousands of genetic variants that regulate gene expression, enabling a better understanding of the functional role of non-coding sequences. However, eQTL studies are costly, requiring large sample sizes and genome-wide genotyping of each sample. In contrast, analysis of allele-specific expression (ASE) is becoming a popular approach to detect the effect of genetic variation on gene expression, even within a single individual. This is typically achieved by counting the number of RNA-seq reads matching each allele at heterozygous sites and testing the null hypothesis of a 1:1 allelic ratio. In principle, when genotype information is not readily available, it could be inferred from the RNA-seq reads directly. However, there are currently no existing methods that jointly infer genotypes and conduct ASE inference, while considering uncertainty in the genotype calls. We present QuASAR, quantitative allele-specific analysis of reads, a novel statistical learning method for jointly detecting heterozygous genotypes and inferring ASE. The proposed ASE inference step takes into consideration the uncertainty in the genotype calls, while including parameters that model base-call errors in sequencing and allelic over-dispersion. We validated our method with experimental data for which high-quality genotypes are available. Results for an additional dataset with multiple replicates at different sequencing depths demonstrate that QuASAR is a powerful tool for ASE analysis when genotypes are not available. http://github.com/piquelab/QuASAR. fluca@wayne.edu or rpique@wayne.edu Supplementary Material is available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Prevalence of high-risk alleles in the LOXL1 gene and its association with pseudoexfoliation syndrome and exfoliation glaucoma in a Latin American population.

    Science.gov (United States)

    Jaimes, Martha; Rivera-Parra, David; Miranda-Duarte, Antonio; Valdés, Gerardo; Zenteno, Juan Carlos

    2012-03-01

    Pseudoexfoliation syndrome (XFS) is a major risk factor for exfoliation glaucoma (XFG). A significant association exists between XFG and several SNPs in the lysyl oxidase-like 1 (LOXL1) gene. The purpose of this study was to report the results of the first association study between LOXL1 polymorphisms and XFS and/or XFG in a Latin American population. Genotypes of three high-risk SNPs of LOXL1 (rs1048661, rs3825942, and rs2165241) were analyzed by direct sequencing. A case-control study was conducted with 102 unrelated XFS/XFG Mexican patients (42 XFS/60 XFG) as well as 97 control subjects. Allele frequencies, Hardy-Weinberg equilibrium, and haplotype association analysis were assessed with the Haplo View software. The T allele of the intronic SNP rs2165241 was more frequent in XFS/XFG patients than in controls (OR [95% CI] = 2.41 [1.59-3.64]; p = 0.00001). The G allele of rs3825942 was found in a higher frequency in XFS/XFG than in controls (100% vs 95% respectively, p = 0.0019). No significant association between XFS and the rs1048661 (R141L) SNP was observed. The TGT haplotype was observed in a higher frequency in patients than in controls (p = 0.025), and produced the highest risk in our study (OR [95% CI] = 3.20 [1.09-9.39]; p = 0.025). This is the first study associating LOXL1 gene polymorphism and XFS/XFG in Latin America. LOXL1 variants are associated with an elevated risk for XFS/XFG in the Mexican population. A higher risk was conferred by the T allele of the intronic rs2165241 SNP rather than by the worldwide "high-risk" G allele of rs3825942.

  11. Mutant power: using mutant allele collections for yeast functional genomics.

    Science.gov (United States)

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. QuASAR-MPRA: accurate allele-specific analysis for massively parallel reporter assays.

    Science.gov (United States)

    Kalita, Cynthia A; Moyerbrailean, Gregory A; Brown, Christopher; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2018-03-01

    The majority of the human genome is composed of non-coding regions containing regulatory elements such as enhancers, which are crucial for controlling gene expression. Many variants associated with complex traits are in these regions, and may disrupt gene regulatory sequences. Consequently, it is important to not only identify true enhancers but also to test if a variant within an enhancer affects gene regulation. Recently, allele-specific analysis in high-throughput reporter assays, such as massively parallel reporter assays (MPRAs), have been used to functionally validate non-coding variants. However, we are still missing high-quality and robust data analysis tools for these datasets. We have further developed our method for allele-specific analysis QuASAR (quantitative allele-specific analysis of reads) to analyze allele-specific signals in barcoded read counts data from MPRA. Using this approach, we can take into account the uncertainty on the original plasmid proportions, over-dispersion, and sequencing errors. The provided allelic skew estimate and its standard error also simplifies meta-analysis of replicate experiments. Additionally, we show that a beta-binomial distribution better models the variability present in the allelic imbalance of these synthetic reporters and results in a test that is statistically well calibrated under the null. Applying this approach to the MPRA data, we found 602 SNPs with significant (false discovery rate 10%) allele-specific regulatory function in LCLs. We also show that we can combine MPRA with QuASAR estimates to validate existing experimental and computational annotations of regulatory variants. Our study shows that with appropriate data analysis tools, we can improve the power to detect allelic effects in high-throughput reporter assays. http://github.com/piquelab/QuASAR/tree/master/mpra. fluca@wayne.edu or rpique@wayne.edu. Supplementary data are available online at Bioinformatics. © The Author (2017). Published by

  13. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets

    KAUST Repository

    Zhang, ShouDong; Zhan, Xiangqiang; Xu, Xiaoming; Cui, Peng; Zhu, Jian-Kang; Xia, Yiji; Xiong, Liming

    2015-01-01

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1–1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1–1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.

  14. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets

    KAUST Repository

    Zhang, ShouDong

    2015-12-15

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1–1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1–1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.

  15. XKR4 Gene Effects on Cerebellar Development Are Not Specific to ADHD

    Directory of Open Access Journals (Sweden)

    Devon Shook

    2017-12-01

    Full Text Available A single-nucleotide polymorphism (SNP of the XKR4 gene has been linked to Attention-Deficit/Hyperactivity Disorder (ADHD. This gene is preferentially expressed in cerebellum, a brain structure implicated in this disorder. This study investigated the effects of this SNP on cerebellar development in children with and without ADHD. We collected 279 longitudinal T1-weighted structural images and DNA from 58 children with ADHD and 64 typically developing (TD children matched for age, IQ, and gender. Groups were divided by the XKR4 rs2939678 SNP into A-allele carriers versus subjects homozygous for the G-allele. Cerebellar lobular volumes were segmented into 35 regions of interest using MAGeTBrain, an automated multi-atlas segmentation pipeline for anatomical MRI, and statistically analyzed using linear mixed models. We found decreased gray matter (GM volumes in ADHD compared to TD children in bilateral lobules VIIIA, left VIIIB, right VIIB, and vermis VI. Furthermore, we found a linear age by gene interaction in left lobule VIIB where subjects homozygous for the G-allele showed a decrease in volume over time compared to A-allele carriers. We further found quadratic age × gene and age × diagnosis interactions in left lobule IV. Subjects homozygous for the G-allele (the genotype overtransmitted in ADHD showed more suppressed, almost flat quadratic growth curves compared to A-allele carriers, similar to individuals with ADHD compared to controls. However, there was no interaction between genotype and diagnosis, suggesting that any effects of this SNP on cerebellar development are not specific to the disorder.

  16. XKR4 Gene Effects on Cerebellar Development Are Not Specific to ADHD.

    Science.gov (United States)

    Shook, Devon; Brouwer, Rachel; de Zeeuw, Patrick; Oranje, Bob; Durston, Sarah

    2017-01-01

    A single-nucleotide polymorphism (SNP) of the XKR4 gene has been linked to Attention-Deficit/Hyperactivity Disorder (ADHD). This gene is preferentially expressed in cerebellum, a brain structure implicated in this disorder. This study investigated the effects of this SNP on cerebellar development in children with and without ADHD. We collected 279 longitudinal T1-weighted structural images and DNA from 58 children with ADHD and 64 typically developing (TD) children matched for age, IQ, and gender. Groups were divided by the XKR4 rs2939678 SNP into A-allele carriers versus subjects homozygous for the G-allele. Cerebellar lobular volumes were segmented into 35 regions of interest using MAGeTBrain, an automated multi-atlas segmentation pipeline for anatomical MRI, and statistically analyzed using linear mixed models. We found decreased gray matter (GM) volumes in ADHD compared to TD children in bilateral lobules VIIIA, left VIIIB, right VIIB, and vermis VI. Furthermore, we found a linear age by gene interaction in left lobule VIIB where subjects homozygous for the G-allele showed a decrease in volume over time compared to A-allele carriers. We further found quadratic age × gene and age × diagnosis interactions in left lobule IV. Subjects homozygous for the G-allele (the genotype overtransmitted in ADHD) showed more suppressed, almost flat quadratic growth curves compared to A-allele carriers, similar to individuals with ADHD compared to controls. However, there was no interaction between genotype and diagnosis, suggesting that any effects of this SNP on cerebellar development are not specific to the disorder.

  17. Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew[OPEN

    Science.gov (United States)

    Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas

    2015-01-01

    In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600

  18. Genome-wide survey of allele-specific splicing in humans

    Directory of Open Access Journals (Sweden)

    Scheffler Konrad

    2008-06-01

    Full Text Available Abstract Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a mutation on the efficiency of mRNA splicing is often difficult to predict, many mutations that cause disease through an effect on splicing are likely to remain undiscovered. Results We have combined a genome-wide scan for sequence polymorphisms likely to affect mRNA splicing with analysis of publicly available Expressed Sequence Tag (EST and exon array data. The genome-wide scan uses published tools and identified 30,977 SNPs located within donor and acceptor splice sites, branch points and exonic splicing enhancer elements. For 1,185 candidate splicing polymorphisms the difference in splicing between alternative alleles was corroborated by publicly available exon array data from 166 lymphoblastoid cell lines. We developed a novel probabilistic method to infer allele-specific splicing from EST data. The method uses SNPs and alternative mRNA isoforms mapped to EST sequences and models both regulated alternative splicing as well as allele-specific splicing. We have also estimated heritability of splicing and report that a greater proportion of genes show evidence of splicing heritability than show heritability of overall gene expression level. Our results provide an extensive resource that can be used to assess the possible effect on splicing of human polymorphisms in putative splice-regulatory sites. Conclusion We report a set of genes showing evidence of allele-specific splicing from an integrated analysis of genomic polymorphisms, EST data and exon array

  19. Allele frequencies of AVPR1A and MAOA in the Afrikaner population

    Directory of Open Access Journals (Sweden)

    J. Christoff Erasmus

    2015-07-01

    Full Text Available The Afrikaner population was founded mainly by European immigrants that arrived in South Africa from 1652. However, female slaves from Asia and Africa and local KhoeSan women may have contributed as much as 7% to this population’s genes. We quantified variation at two tandem repeats to see if this historical founder effect and/or admixture could be detected. The two loci were chosen because they are in the promoters of genes of neurotransmitters that are known to be correlated with social behaviour. Specifically, arginine vasopressin receptor 1A’s (AVPR1A RS3 locus has been shown to correlate with age of sexual onset and happiness in monogamous relationships while the tandem repeat in the promoter of the monoamine oxidase A (MAOA gene correlates with reactive aggression. The Afrikaner population contained more AVPR1A RS3 alleles than other Caucasoid populations, potentially reflecting a history of admixture. Even though Afrikaners have one of the lowest recorded non-paternity rates in the world, the population did not differ at AVPR1A RS3 locus form other European populations, suggesting a non-genetic explanation, presumably religion, for the low non-paternity rate. By comparing population allele-frequency spectra it was found that different studies have confused AVPR1A RS3 alleles and we make some suggestions to rectify these mistakes in future studies. While MAOA allele frequencies differed between racial groups, the Afrikaner population showed no evidence of admixture. In fact, Afrikaners had more 4-repeat alleles than other populations of European origin, not fewer. The 4-repeat allele may have been selected for during colonisation.

  20. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange

    DEFF Research Database (Denmark)

    Hmelo, Laura R; Borlee, Bradley R; Almblad, Henrik

    2015-01-01

    Allelic exchange is an efficient method of bacterial genome engineering. This protocol describes the use of this technique to make gene knockouts and knock-ins, as well as single-nucleotide insertions, deletions and substitutions, in Pseudomonas aeruginosa. Unlike other approaches to allelic exch...

  1. Population differentiation in allele frequencies of obesity-associated SNPs.

    Science.gov (United States)

    Mao, Linyong; Fang, Yayin; Campbell, Michael; Southerland, William M

    2017-11-10

    Obesity is emerging as a global health problem, with more than one-third of the world's adult population being overweight or obese. In this study, we investigated worldwide population differentiation in allele frequencies of obesity-associated SNPs (single nucleotide polymorphisms). We collected a total of 225 obesity-associated SNPs from a public database. Their population-level allele frequencies were derived based on the genotype data from 1000 Genomes Project (phase 3). We used hypergeometric model to assess whether the effect allele at a given SNP is significantly enriched or depleted in each of the 26 populations surveyed in the 1000 Genomes Project with respect to the overall pooled population. Our results indicate that 195 out of 225 SNPs (86.7%) possess effect alleles significantly enriched or depleted in at least one of the 26 populations. Populations within the same continental group exhibit similar allele enrichment/depletion patterns whereas inter-continental populations show distinct patterns. Among the 225 SNPs, 15 SNPs cluster in the first intron region of the FTO gene, which is a major gene associated with body-mass index (BMI) and fat mass. African populations exhibit much smaller blocks of LD (linkage disequilibrium) among these15 SNPs while European and Asian populations have larger blocks. To estimate the cumulative effect of all variants associated with obesity, we developed the personal composite genetic risk score for obesity. Our results indicate that the East Asian populations have the lowest averages of the composite risk scores, whereas three European populations have the highest averages. In addition, the population-level average of composite genetic risk scores is significantly correlated (R 2 = 0.35, P = 0.0060) with obesity prevalence. We have detected substantial population differentiation in allele frequencies of obesity-associated SNPs. The results will help elucidate the genetic basis which may contribute to population

  2. A common mutation associated with the Duarte galactosemia allele

    Energy Technology Data Exchange (ETDEWEB)

    Elsas, L.J.; Dembure, P.P.; Langley, S.; Paulk, E.M.; Hjelm, L.N.; Fridovich-Keil, J. (Emory Univ. School of Medicine, Atlanta, GA (United States))

    1994-06-01

    The human cDNA and gene for galactose-1-phosphate uridyl transferase (GALT) have been cloned and sequenced. A prevalant mutation (Q188R) is known to cause classic galactosemia (G/G). G/G galactosemia has an incidence of 1/38,886 in 1,396,766 Georgia live-born infants, but a more common variant of galactosemia, Duarte, has an unknown incidence. The proposed Duarte biochemical phenotypes of GALT are as follows: D/N, D/D, and D/G, which have [approximately]75%, 50%, and 25% of normal GALT activity, respectively. In addition, the D allele has isoforms of its enzyme that have more acidic pI than normal. Here the authors systematically determine (a) the prevalence of an A-to-G transition at base pair 2744 of exon 10 in the GALT gene, a transition that produces a codon change converting asparagine to aspartic acid at position 314 (N314D), and (b) the association of this mutation with the Duarte biochemical phenotype. The 2744G nucleotide change adds an AvaII (SinI) cut site, which was identified in PCR-amplified DNA. In 111 biochemically unphenotyped controls with no history of galactosemia, 13 N314D alleles were identified (prevalence 5.9%). In a prospective study, 40 D alleles were biochemically phenotyped, and 40 N314D alleles were found. By contrast, in 36 individuals known not to have the Duarte biochemical phenotype, no N314D alleles were found. The authors conclude that the N314D mutation is a common allele that probably causes the Duarte GALT biochemical phenotype and occurs in a predominantly Caucasian, nongalactosemic population, with a prevalence of 5.9%. 36 refs., 3 figs., 2 tabs.

  3. Plasminogen alleles influence susceptibility to invasive aspergillosis.

    Directory of Open Access Journals (Sweden)

    Aimee K Zaas

    2008-06-01

    Full Text Available Invasive aspergillosis (IA is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855 correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn was also identified in the human homolog (PLG; Gene ID 5340. An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection.

  4. Microsatellite D21D210 (GT-12) allele frequencies in sporadic Alzheimer`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Lannfelt, L; Lilius, L; Viitanen, M; Winblad, B; Basun, H [Huddinge Hospital, Karolinska Institute, Dept. of Geriatric Medicine, (Sweden); Houlden, H; Rossor, M [St. Mary` s Hospital, Dept. of Neurology, Medical School, London (United Kingdom); Hardy, J [University of South Florida, Suncoast Alzheimer` s Disease Research Labs, Department of Psychiatry, Tampa (United States)

    1995-02-01

    Four disease-causing mutations have so far been described in the amyloid precursor protein gene on chromosome 21 in familial early-onset Alzheimer`s disease. Linkage analysis with a fourteen-allele microsatellite at D21S210 named GT-12 has proven useful in the elucidation of amyloid presursor protein gene involvement in Alzheimer`s disease families, as it is closely linked to the gene. Most cases of Alzheimer`s disease are thought to be sporadic and not familial. However, evidence from earlier studies suggests an important genetic contribution also in sporadic cases, where gene-environment interaction may contribute to the disease. We have determined frequencies of the GT-12 alleles in 78 Swedish and 49 British sporadic Alzheimer`s disease cases and 104 healthy elderly control subjects, to investigate if the disease associates with a particular genotype in GT-12. However, no differences in allele frequencies were observed between any of the groups. (au) (26 refs.).

  5. Dominant hemimelia and En-1 on mouse chromosome 1 are not allelic.

    Science.gov (United States)

    Higgins, M; Hill, R E; West, J D

    1992-08-01

    Previous studies have shown that En-1, a homeobox-containing gene, maps close to or at the Dh locus in the mouse. Since homeobox-containing genes are key genes in the control of development the close proximity of En-1 to the developmentally significant gene Dh raised the possibility that the Dh mutation represented a mutant allele of En-1. A genetic analysis involving En-1, Dh, and other chromosome 1 markers (Emv-17, ln and Pep-3) shows that although Dh and En-1 are closely linked they are separable by recombination (4/563). The likely gene order and recombination frequencies of these loci are: ln (5.2 +/- 0.9) Emv-17 (1.1 +/- 0.4) Dh (0.7 +/- 0.4) En-1 (3.0 +/- 0.7) Pep-3. This shows that Dh is not a mutant allele of En-1.

  6. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model.

    Directory of Open Access Journals (Sweden)

    Gilberto Bento

    2017-02-01

    Full Text Available Negative frequency-dependent selection (NFDS is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR- locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into

  7. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model.

    Science.gov (United States)

    Bento, Gilberto; Routtu, Jarkko; Fields, Peter D; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-02-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis.

  8. Selection of Plasmodium falciparum Multidrug Resistance Gene 1 Alleles in Asexual Stages and Gametocytes by Artemether-Lumefantrine in Nigerian Children with Uncomplicated Falciparum Malaria ▿

    OpenAIRE

    Happi, C. T.; Gbotosho, G. O.; Folarin, O. A.; Sowunmi, A.; Hudson, T.; O'Neil, M.; Milhous, W.; Wirth, D. F.; Oduola, A. M. J.

    2008-01-01

    We assessed Plasmodium falciparum mdr1 (Pfmdr1) gene polymorphisms and copy numbers as well as P. falciparum Ca2+ ATPase (PfATPase6) gene polymorphisms in 90 Nigerian children presenting with uncomplicated falciparum malaria and enrolled in a study of the efficacy of artemether-lumefantrine (AL). The nested PCR-restriction fragment length polymorphism and the quantitative real-time PCR methodologies were used to determine the alleles of the Pfmdr1 and PfATPase6 genes and the Pfmdr1 copy numbe...

  9. Alleles versus genotypes: Genetic interactions and the dynamics of selection in sexual populations

    Science.gov (United States)

    Neher, Richard

    2010-03-01

    Physical interactions between amino-acids are essential for protein structure and activity, while protein-protein interactions and regulatory interactions are central to cellular function. As a consequence of these interactions, the combined effect of two mutations can differ from the sum of the individual effects of the mutations. This phenomenon of genetic interaction is known as epistasis. However, the importance of epistasis and its effects on evolutionary dynamics are poorly understood, especially in sexual populations where recombination breaks up existing combinations of alleles to produce new ones. Here, we present a computational model of selection dynamics involving many epistatic loci in a recombining population. We demonstrate that a large number of polymorphic interacting loci can, despite frequent recombination, exhibit cooperative behavior that locks alleles into favorable genotypes leading to a population consisting of a set of competing clones. As the recombination rate exceeds a certain critical value this ``genotype selection'' phase disappears in an abrupt transition giving way to ``allele selection'' - the phase where different loci are only weakly correlated as expected in sexually reproducing populations. Clustering of interacting sets of genes on a chromosome leads to the emergence of an intermediate regime, where localized blocks of cooperating alleles lock into genetic modules. Large populations attain highest fitness at a recombination rate just below critical, suggesting that natural selection might tune recombination rates to balance the beneficial aspect of exploration of genotype space with the breaking up of synergistic allele combinations.

  10. Characterization of a New Pm2 Allele Conferring Powdery Mildew Resistance in the Wheat Germplasm Line FG-1

    Science.gov (United States)

    Ma, Pengtao; Xu, Hongxng; Li, Lihui; Zhang, Hongxia; Han, Guohao; Xu, Yunfeng; Fu, Xiaoyi; Zhang, Xiaotian; An, Diaoguo

    2016-01-01

    Powdery mildew has a negative impact on wheat production. Novel host resistance increases the diversity of resistance genes and helps to control the disease. In this study, wheat line FG-1 imported from France showed a high level of powdery mildew resistance at both the seedling and adult stages. An F2 population and F2:3 families from the cross FG-1 × Mingxian 169 both fit Mendelian ratios for a single dominant resistance gene when tested against multiple avirulent Blumeria tritici f. sp. tritici (Bgt) races. This gene was temporarily designated PmFG. PmFG was mapped on the multi-allelic Pm2 locus of chromosome 5DS using seven SSR, 10 single nucleotide polymorphism (SNP)-derived and two SCAR markers with the flanking markers Xbwm21/Xcfd81/Xscar112 (distal) and Xbwm25 (proximal) at 0.3 and 0.5 cM being the closest. Marker SCAR203 co-segregated with PmFG. Allelism tests between PmFG and documented Pm2 alleles confirmed that PmFG was allelic with Pm2. Line FG-1 produced a significantly different reaction pattern compared to other lines with genes at or near Pm2 when tested against 49 Bgt isolates. The PmFG-linked marker alleles detected by the SNP-derived markers revealed significant variation between FG-1 and other lines with genes at or near Pm2. It was concluded that PmFG is a new allele at the Pm2 locus. Data from seven closely linked markers tested on 31 wheat cultivars indicated opportunities for marker-assisted pyramiding of this gene with other genes for powdery mildew resistance and additional traits. PMID:27200022

  11. The acylphosphatase (Acyp) alleles associate with male hybrid sterility in Drosophila.

    Science.gov (United States)

    Michalak, Pawel; Ma, Daina

    2008-06-15

    Hybrid defects are believed to result from genetic incompatibilities between genes that have evolved in separate parental lineages. These genetic dysfunctions on the hybrid genomic background, also known as Dobzhansky-Muller incompatibilities, can be an incipient signature of speciation, and as such - a subject of active research. Here we present evidence that Acyp locus (CG16870) that encodes acylphosphatase, a small enzyme that catalyzes the hydrolysis of acylphosphates and participates in ion transport across biological membranes, is involved in genetic incompatibilities leading to male sterility in hybrids between Drosophila simulans and D. mauritiana. There is a strong association between Acyp alleles (genotype) and the sterility/fertility pattern (phenotype), as well as between the phenotype, the genotype and its transcriptional activity. Allele-specific expression in hybrids heterozygous for Acyp suggests a cis-type regulation of this gene, where an allele from one of the parental species (D. simulans) is consistently overexpressed.

  12. The Pleiotropic Phenotype of Apc Mutations in the Mouse: Allele Specificity and Effects of the Genetic Background

    Science.gov (United States)

    Halberg, Richard B.; Chen, Xiaodi; Amos-Landgraf, James M.; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C.; Dove, William F.

    2008-01-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes. PMID:18723878

  13. Autosomal dominant polycystic kidney disease in a family with mosaicism and hypomorphic allele.

    Science.gov (United States)

    Reiterová, Jana; Štekrová, Jitka; Merta, Miroslav; Kotlas, Jaroslav; Elišáková, Veronika; Lněnička, Petr; Korabečná, Marie; Kohoutová, Milada; Tesař, Vladimír

    2013-03-15

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of inherited kidney disease that results in renal failure. ADPKD is a systemic disorder with cysts and connective tissue abnormalities involving many organs. ADPKD caused by mutations in PKD1 gene is significantly more severe than the cases caused by PKD2 gene mutations. The large intra-familial variability of ADPKD highlights a role for genetic background. Here we report a case of ADPKD family initially appearing unlinked to the PKD1 or PKD2 loci and the influence of mosaicism and hypomorphic allele on the variability of the clinical course of the disease. A grandmother with the PKD1 gene mutation in mosaicism (p.Val1105ArgfsX4) and with mild clinical course of ADPKD (end stage renal failure at the age of 77) seemed to have ADPKD because of PKD2 gene mutation. On the other hand, her grandson had a severe clinical course (end stage renal disease at the age of 45) in spite of the early treatment of mild hypertension. There was found by mutational analysis of PKD genes that the severe clinical course was caused by PKD1 gene frameshifting mutation inherited from his father and mildly affected grandmother in combination with inherited hypomorphic PKD1 allele with described missense mutation (p.Thr2250Met) from his clinically healthy mother. The sister with two cysts and with PKD1 hypomorphic allele became the kidney donor to her severely affected brother. We present the first case of ADPKD with the influence of mosaicism and hypomorphic allele of the PKD1 gene on clinical course of ADPKD in one family. Moreover, this report illustrates the role of molecular genetic testing in assessing young related kidney donors for patients with ADPKD.

  14. Predominance of N-acetyl transferase 2 slow acetylator alleles in ...

    African Journals Online (AJOL)

    Student

    The human N-acetyltransferase II (NAT2) gene may vary between individuals resulting in variability in the incidence of adverse drug reactions. We set out in this adhoc analysis to determine the distribution of allele frequencies of NAT2 gene variants among children less than ten years treated with artemisinin-based.

  15. Specific Silencing of L392V PSEN1 Mutant Allele by RNA Interference

    Directory of Open Access Journals (Sweden)

    Malgorzata Sierant

    2011-01-01

    Full Text Available RNA interference (RNAi technology provides a powerful molecular tool to reduce an expression of selected genes in eukaryotic cells. Short interfering RNAs (siRNAs are the effector molecules that trigger RNAi. Here, we describe siRNAs that discriminate between the wild type and mutant (1174 C→G alleles of human Presenilin1 gene (PSEN1. This mutation, resulting in L392V PSEN1 variant, contributes to early onset familial Alzheimer's disease. Using the dual fluorescence assay, flow cytometry and fluorescent microscopy we identified positions 8th–11th, within the central part of the antisense strand, as the most sensitive to mismatches. 2-Thiouridine chemical modification introduced at the 3′-end of the antisense strand improved the allele discrimination, but wobble base pairing adjacent to the mutation site abolished the siRNA activity. Our data indicate that siRNAs can be designed to discriminate between the wild type and mutant alleles of genes that differ by just a single nucleotide.

  16. Genetic diversity of the msp-1, msp-2, and glurp genes of Plasmodium falciparum isolates along the Thai-Myanmar borders.

    Science.gov (United States)

    Congpuong, Kanungnit; Sukaram, Rungniran; Prompan, Yuparat; Dornae, Aibteesam

    2014-08-01

    To study the genetic diversity at the msp-1, msp-2, and glurp genes of Plasmodium falciparum (P. falciparum) isolates from 3 endemic areas in Thailand: Tak, Kanchanaburi and Ranong provinces. A total of 144 P. falciparum isolates collected prior to treatment during January, 2012 to June, 2013 were genotyped. DNA was extracted; allele frequency and diversity of msp-1, msp-2, and glurp genes were investigated by nested polymerase chain reaction. P. falciparum isolates in this study had high rate of multiple genotypes infection (96.5%) with an overall mean multiplicity of infection of 3.21. The distribution of allelic families of msp-1 was significantly different among isolates from Tak, Kanchanaburi, and Ranong but not for the msp-2. K1 and MAD20 were the predominant allelic families at the msp-1 gene, whereas alleles belonging to 3D7 were more frequent at the msp-2 gene. The glurp gene had the least diverse alleles. Population structure of P. falciparum isolates from Tak and Ranong was quite similar as revealed by the presence of similar proportions of MAD20 and K1 alleles at msp-1 loci, 3D7 and FC27 alleles at msp-2 loci as well as comparable mean MOI. Isolates from Kanchanaburi had different structures; the most prevalent alleles were K1 and RO33. The present study shows that P. falciparum isolates from Tak and Ranong provinces had similar allelic pattern of msp-1 and msp-2 and diversity but different from Kanchanaburi isolates. These allelic variant profiles are valuable baseline data for future epidemiological study of malaria transmission and for continued monitoring of polymorphisms associated with antimalarial drug resistance in these areas.

  17. Hybrid sterility and evolution in Hawaiian Drosophila: differential gene and allele-specific expression analysis of backcross males.

    Science.gov (United States)

    Brill, E; Kang, L; Michalak, K; Michalak, P; Price, D K

    2016-08-01

    The Hawaiian Drosophila are an iconic example of sequential colonization, adaptive radiation and speciation on islands. Genetic and phenotypic analysis of closely related species pairs that exhibit incomplete reproductive isolation can provide insights into the mechanisms of speciation. Drosophila silvestris from Hawai'i Island and Drosophila planitibia from Maui are two closely related allopatric Hawaiian picture-winged Drosophila that produce sterile F1 males but fertile F1 females, a pattern consistent with Haldane's rule. Backcrossing F1 hybrid females between these two species to parental species gives rise to recombinant males with three distinct sperm phenotypes despite a similar genomic background: motile sperm, no sperm (sterile), and immotile sperm. We found that these three reproductive morphologies of backcross hybrid males produce divergent gene expression profiles in testes, as measured with RNA sequencing. There were a total of 71 genes significantly differentially expressed between backcross males with no sperm compared with those backcross males with motile sperm and immotile sperm, but no significant differential gene expression between backcross males with motile sperm and backcross males with immotile sperm. All of these genes were underexpressed in males with no sperm, including a number of genes with previously known activities in adult testis. An allele-specific expression analysis showed overwhelmingly more cis-divergent than trans-divergent genes, with no significant difference in the ratio of cis- and trans-divergent genes among the sperm phenotypes. Overall, the results indicate that the regulation of gene expression involved in sperm production likely diverged relatively rapidly between these two closely related species.

  18. Allelic inhibition of displacement activity: a simplified one tube allele-specific PCR for evaluation of ITPA polymorphisms.

    Science.gov (United States)

    Galmozzi, E; Facchetti, F; Degasperi, E; Aghemo, A; Lampertico, P

    2013-02-01

    Recently, genome-wide association studies (GWAS) in patients with chronic hepatitis C virus (HCV) infection have identified two functional single nucleotide polymorphisms (SNPs) in the inosine triphosphatase (ITPA) gene, that are associated strongly and independently with hemolytic anemia in patients exposed to pegylated-interferon (Peg-IFN) plus ribavirin (RBV) combined therapy. Here has been developed a simplified allele discrimination polymerase chain reaction (PCR) assay named allelic inhibition of displacement activity (AIDA) for evaluation of ITPA polymorphisms. AIDA system relies on three unlabeled primers only, two outer common primers and one inner primer with allele-specific 3' terminus mismatch. DNA samples from 192 patients with chronic HCV infection were used to validate the AIDA system and results were compared with the gold standard TaqMan(®) SNP genotyping assay. Concordant data were obtained for all samples, granting for high specificity of the method. In conclusion, AIDA is a practical one-tube method to reproducibly and to assess accurately rs7270101 and rs1127354 ITPA SNPs. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Allelic asymmetry of the Lethal hybrid rescue (Lhr) gene expression in the hybrid between Drosophila melanogaster and D. simulans: confirmation by using genetic variations of D. melanogaster.

    Science.gov (United States)

    Shirata, Mika; Araye, Quenta; Maehara, Kazunori; Enya, Sora; Takano-Shimizu, Toshiyuki; Sawamura, Kyoichi

    2014-02-01

    In the cross between Drosophila melanogaster females and D. simulans males, hybrid males die at the late larval stage, and the sibling females also die at later stages at high temperatures. Removing the D. simulans allele of the Lethal hybrid rescue gene (Lhr (sim) ) improves the hybrid incompatibility phenotypes. However, the loss-of-function mutation of Lhr (sim) (Lhr (sim0) ) does not rescue the hybrid males in crosses with several D. melanogaster strains. We first describe the genetic factor possessed by the D. melanogaster strains. It has been suggested that removing the D. melanogaster allele of Lhr (Lhr (mel) ), that is Lhr (mel0) , does not have the hybrid male rescue effect, contrasting to Lhr (sim0) . Because the expression level of the Lhr gene is known to be Lhr (sim) > Lhr (mel) in the hybrid, Lhr (mel0) may not lead to enough of a reduction in total Lhr expression. Then, there is a possibility that the D. melanogaster factor changes the expression level to Lhr (sim) Lhr (mel) in the hybrid irrespectively of the presence of the factor. At last, we showed that Lhr (mel0) slightly improves the viability of hybrid females, which was not realized previously. All of the present results are consistent with the allelic asymmetry model of the Lhr gene expression in the hybrid.

  20. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Xiangfen eZhang

    2015-07-01

    Full Text Available A total of 205 wheat cultivars from the Yellow and Huai valley of China were used to identify allelic variations of vernalization and photoperiod response genes, as well as the copy number variations (CNVs of Ppd-B1 and Vrn-A1 genes. A novel Vrn-D1 allele with 174-bp insertion in the promoter region of the recessive allele vrn-D1 was discovered in three Chinese wheat cultivars and designated as Vrn-D1c. Quantitative real-time polymerase chain reaction showed that cultivars with the Vrn-D1c allele exhibited significantly higher expression of the Vrn-D1 gene than that in cultivars with the recessive allele vrn-D1, indicating that the 174-bp insertion of Vrn-D1c contributed to the increase in Vrn-D1 gene expression and caused early heading and flowering. The five new cis-elements (Box II-like, 3-AF1 binding site, TC-rich repeats, Box-W1 and CAT-box in the 174-bp insertion possibly promoted the basal activity level of Vrn-D1 gene. Two new polymorphism combinations of photoperiod genes were identified and designated as Ppd-D1_Hapl-IX and Ppd-D1_Hapl-X. Association of the CNV of Ppd-B1 gene with the heading and flowering days showed that the cultivars with Ppd-B1_Hapl-VI demonstrated the earliest heading and flowering times, and those with Ppd-B1_Hapl-IV presented the latest heading and flowering times in three cropping seasons. Distribution of the vernalization and photoperiod response genes indicated that all recessive alleles at the four vernalization response loci, Ppd-B1_Hapl-I at Ppd-B1 locus, and Ppd-D1_Hapl-I at the Ppd-D1 locus were predominant in Chinese winter wheat cultivars. This study can provide useful information for wheat breeding programs to screen wheat cultivars with relatively superior adaptability and maturity.

  1. Novel polymorphisms within the Dlk1-Dio3 imprinted locus in rat: a putative genetic basis for strain-specific allelic gene expression

    Directory of Open Access Journals (Sweden)

    Laura J Sittig

    2012-12-01

    Full Text Available The imprinted iodothyronine deiodinase-III (Dio3 thyroid hormone metabolizing gene exhibits paternal expression in most fetal tissues, yet exhibits aberrant, maternal expression in the hippocampus in F1 offspring of Sprague Dawley (SD x Brown Norway (BN rats. The maternal hippocampal expression is associated with lower Dio3 mRNA levels specifically in the hippocampus. Here, we tested the hypothesis that genetic polymorphisms between the SD and BN parent strains cause this aberrant allelic Dio3 expression and contribute to behavioral sequelae of higher thyroid hormone levels locally in the hippocampus, including anxiety-related behavior. We mapped and sequenced the Dio3 gene and several previously unmapped regions in the Dlk1-Dio3 locus that could regulate imprinting of the Dio3 gene. In the Dio3 promoter we identified four novel polymorphisms between the BN and SD strains. Next we took advantage of the fact that the Long Evans (LE strain exhibits identical polymorphisms as the SD strain in the region 5’ and including the Dio3 gene. By reciprocally crossing LE and BN strains we tested the relationship among Dio3 promoter region polymorphisms and Dio3 mRNA expression in the hippocampus. Aberrant strain-specific hippocampal Dio3 allelic expression replicated in the LE-BN reciprocal crosses, suggesting that hippocampal-specific imprinting of the Dio3 gene is not the result of a unique genetic or epigenetic characteristic of the SD rat strain, or a unique epistatic interaction between SD and BN. To our knowledge no other studies have reported a genetic x epigenetic interaction of genetic origin in the brain.

  2. Spectrum of Phenylalanine Hydroxylase Gene Mutations in Hamadan and Lorestan Provinces of Iran and Their Associations with Variable Number of Tandem Repeat Alleles.

    Science.gov (United States)

    Alibakhshi, Reza; Moradi, Keivan; Biglari, Mostafa; Shafieenia, Samaneh

    2018-05-01

    Phenylketonuria (PKU) is one of the most common known inherited metabolic diseases. The present study aimed to investigate the status of molecular defects in phenylalanine hydroxylase ( PAH ) gene in western Iranian PKU patients (predominantly from Kermanshah, Hamadan, and Lorestan provinces) during 2014-2016. Additionally, the results were compared with similar studies in Iran. Nucleotide sequence analysis of all 13 exons and their flanking intronic regions of the PAH gene was performed in 18 western Iranian PKU patients. Moreover, a variable number of tandem repeat (VNTR) located in the PAH gene was studied. The results revealed a mutational spectrum encompassing 11 distinct mutations distributed along the PAH gene sequence on 34 of the 36 mutant alleles (diagnostic efficiency of 94.4%). Also, four PAH VNTR alleles (with repeats of 3, 7, 8 and 9) were detected. The three most frequent mutations were IVS9+5G>A, IVS7-5T>C, and p.P281L with the frequency of 27.8%, 11%, and 11%, respectively. The results showed that there is not only a consanguineous relation, but also a difference in PAH characters of mutations between Kermanshah and the other two parts of western Iran (Hamadan and Lorestan). Also, it seems that the spectrum of mutations in western Iran is relatively distinct from other parts of the country, suggesting that this region might be a special PAH gene distribution region. Moreover, our findings can be useful in the identification of genotype to phenotype relationship in patients, and provide future abilities for confirmatory diagnostic testing, prognosis, and predict the severity of PKU patients.

  3. Functionally Complete Excision of Conditional Alleles in the Mouse Suprachiasmatic Nucleus by Vgat-ires-Cre.

    Science.gov (United States)

    Weaver, David R; van der Vinne, Vincent; Giannaris, E Lela; Vajtay, Thomas J; Holloway, Kristopher L; Anaclet, Christelle

    2018-04-01

    Mice with targeted gene disruption have provided important information about the molecular mechanisms of circadian clock function. A full understanding of the roles of circadian-relevant genes requires manipulation of their expression in a tissue-specific manner, ideally including manipulation with high efficiency within the suprachiasmatic nuclei (SCN). To date, conditional manipulation of genes within the SCN has been difficult. In a previously developed mouse line, Cre recombinase was inserted into the vesicular GABA transporter (Vgat) locus. Since virtually all SCN neurons are GABAergic, this Vgat-Cre line seemed likely to have high efficiency at disrupting conditional alleles in SCN. To test this premise, the efficacy of Vgat-Cre in excising conditional (fl, for flanked by LoxP) alleles in the SCN was examined. Vgat-Cre-mediated excision of conditional alleles of Clock or Bmal1 led to loss of immunostaining for products of the targeted genes in the SCN. Vgat-Cre + ; Clock fl/fl ; Npas2 m/m mice and Vgat-Cre + ; Bmal1 fl/fl mice became arrhythmic immediately upon exposure to constant darkness, as expected based on the phenotype of mice in which these genes are disrupted throughout the body. The phenotype of mice with other combinations of Vgat-Cre + , conditional Clock, and mutant Npas2 alleles also resembled the corresponding whole-body knockout mice. These data indicate that the Vgat-Cre line is useful for Cre-mediated recombination within the SCN, making it useful for Cre-enabled technologies including gene disruption, gene replacement, and opto- and chemogenetic manipulation of the SCN circadian clock.

  4. Allele-specific physical interactions regulate the heterotic traits in hybrids of Arabidopsis thaliana ecotypes

    Directory of Open Access Journals (Sweden)

    Babita Singh

    2017-10-01

    Full Text Available Heterosis is an important phenomenon for the breeding in agricultural crops as it influences yield related traits such as biomass yield, seed number and weight, adaptive and reproductive traits. However, the level of heterosis greatly varies for different traits and different genotypes. The present study focuses on identification of physical interactions between alleles and their role in transcriptional regulation in heterotic plants. Here, we used two Arabidopsis ecotypes; Col-0 and C24 as parent for crosses. We performed crossing between these ecotypes and screened the F1 hybrids on the basis of different SSR markers. Further, we used Hi-C to capture intra- and inter-chromosomal physical interactions between alleles on genome-wide level. Then, we identified allele-specific chromatin interactions and constructed genome-wide allele-specific contact maps at different resolutions for the entire chromosome. We also performed RNA-seq of hybrids and their parents. RNA-seq analysis identified several differentially expressed genes and non-additively expressed genes in hybrids with respect to their parents. Further, to understand the biological significance of these chromatin interactions, we annotated these interactions and correlated with the transcriptome data. Thus, our study provides alleles-specific chromatin interactions in genome-wide fashion which play a crucial role in regulation of different genes that may be important for heterosis.

  5. Association of breast cancer risk with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Adoue, Véronique

    2016-01-01

    There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional...

  6. Severe hypertriglyceridemia in a patient heterozygous for a lipoprotein lipase gene allele with two novel missense variants.

    Science.gov (United States)

    Kassner, Ursula; Salewsky, Bastian; Wühle-Demuth, Marion; Szijarto, Istvan Andras; Grenkowitz, Thomas; Binner, Priska; März, Winfried; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja

    2015-09-01

    Rare monogenic hyperchylomicronemia is caused by loss-of-function mutations in genes involved in the catabolism of triglyceride-rich lipoproteins, including the lipoprotein lipase gene, LPL. Clinical hallmarks of this condition are eruptive xanthomas, recurrent pancreatitis and abdominal pain. Patients with LPL deficiency and severe or recurrent pancreatitis are eligible for the first gene therapy treatment approved by the European Union. Therefore the precise molecular diagnosis of familial hyperchylomicronemia may affect treatment decisions. We present a 57-year-old male patient with excessive hypertriglyceridemia despite intensive lipid-lowering therapy. Abdominal sonography showed signs of chronic pancreatitis. Direct DNA sequencing and cloning revealed two novel missense variants, c.1302A>T and c.1306G>A, in exon 8 of the LPL gene coexisting on the same allele. The variants result in the amino-acid exchanges p.(Lys434Asn) and p.(Gly436Arg). They are located in the carboxy-terminal domain of lipoprotein lipase that interacts with the glycosylphosphatidylinositol-anchored HDL-binding protein (GPIHBP1) and are likely of functional relevance. No further relevant mutations were found by direct sequencing of the genes for APOA5, APOC2, LMF1 and GPIHBP1. We conclude that heterozygosity for damaging mutations of LPL may be sufficient to produce severe hypertriglyceridemia and that chylomicronemia may be transmitted in a dominant manner, at least in some families.

  7. Diversity of Lactase Persistence Alleles in Ethiopia

    DEFF Research Database (Denmark)

    Jones, BL; Raga, TO; Liebert, Anke

    2013-01-01

    The persistent expression of lactase into adulthood in humans is a recent genetic adaptation that allows the consumption of milk from other mammals after weaning. In Europe, a single allele (−13910∗T, rs4988235) in an upstream region that acts as an enhancer to the expression of the lactase gene ...

  8. Three-dimensional structure discrepancy between HLA alleles for effective prediction of aGVHD severity and optimal selection of recipient-donor pairs: a proof-of-concept study.

    Science.gov (United States)

    Han, Hongxing; Yuan, Fang; Sun, Yuying; Liu, Jinfeng; Liu, Shuguang; Luo, Yuan; Liang, Fei; Liu, Nan; Long, Juan; Zhao, Xiao; Kong, Fanhua; Xi, Yongzhi

    2015-11-24

    The optimal selection of recipient-donor pair and accurate prediction of acute graft-versus-host disease (aGVHD) severity are always the two most crucial works in allogeneic hematopoietic stem cell transplantation (allo-HSCT), which currently rests mostly with HLA compatibility, the most polymorphic loci in the human genome, in clinic. Thus, there is an urgent need for a rapid and reliable quantitative system for optimal recipient-donor pairs selection and accurate prediction of aGVHD severity prior to allo-HSCT. For these reasons, we have developed a new selection/prediction system for optimal recipient-donor selection and effective prediction of aGVHD severity based on HLA three-dimensional (3D) structure modeling (HLA-TDSM) discrepancy, and applied this system in a pilot randomized clinical allo-HSCT study. The 37 patient-donor pairs in the study were typed at low- and high-resolution levels for HLA-A/-B/-DRB1/-DQB1 loci. HLA-TDSM system covering the 10000 alleles in HLA class I and II consists of the revised local and coordinate root-mean-square deviation (RMSD) values for each locus. Its accuracy and reliability were confirmed using stably transfected Hmy2.CIR-HLA-B cells, TCR Vβ gene scan, and antigen-specific alloreactive cytotoxic lymphocytes. Based on the preliminary results, we theoretically defined all HLA acceptable versus unacceptable mismatched alleles. More importantly, HLA-TDSM enabled a successful retrospective verification and prospective prediction for aGVHD severity in a pilot randomized clinical allo-HSCT study of 32 recipient-donor transplant pairs. There was a strong direct correlation between single/total revised RMSD and aGVHD severity (92% in retrospective group vs 95% in prospective group). These results seem to be closely related to the 3D structure discrepancy of mismatched HLA-alleles, but not the number or loci of mismatched HLA-alleles. Our data first provide the proof-of-concept that HLA-TDSM is essential for optimal selection of

  9. [Allelic state of the molecular marker for the golden nematode (Globodera rostochiensis) resistance gene H1 among Ukrainian and world cultivars of potato (Solanum tuberosum ssp. tuberosum)].

    Science.gov (United States)

    Karelov, A V; Pilipenko, L A; Kozub, N A; Bondus, R A; Borzykh, A U; Sozinov, I A; Blium, Ia B; Sozinov, A A

    2013-01-01

    The purpose of our investigation was determination of allelic state of the H1 resistance gene against the pathotypes Ro1 and Ro4 of golden potato cyst nematode (Globodera rostochiensis) among Ukrainian and world potato (Solanum tuberosum ssp. tuberosum) cultivars. The allelic condition of the TG689 marker was determined by PCR with DNA samples isolated from tubers of potato and primers, one pair of which flanks the allele-specific region and the other one was used for the control of DNA quality. Among analyzed 77 potato cultivars the allele of marker associated with the H1-type resistance was found in 74% of Ukrainian and 90% foreign ones although some of those cultivars proved to be susceptible to the golden potato nematode in field. The obtained data confirm the presence of H1-resistance against golden nematode pathotypes Ro1 and Ro4 among the Ukrainian potato cultivars and efficiency of the used marker within the accuracy that has been declared by its authors.

  10. Human minisatellite alleles detectable only after PCR amplification.

    Science.gov (United States)

    Armour, J A; Crosier, M; Jeffreys, A J

    1992-01-01

    We present evidence that a proportion of alleles at two human minisatellite loci is undetected by standard Southern blot hybridization. In each case the missing allele(s) can be identified after PCR amplification and correspond to tandem arrays too short to detect by hybridization. At one locus, there is only one undetected allele (population frequency 0.3), which contains just three repeat units. At the second locus, there are at least five undetected alleles (total population frequency 0.9) containing 60-120 repeats; they are not detected because these tandem repeats give very poor signals when used as a probe in standard Southern blot hybridization, and also cross-hybridize with other sequences in the genome. Under these circumstances only signals from the longest tandemly repeated alleles are detectable above the nonspecific background. The structures of these loci have been compared in human and primate DNA, and at one locus the short human allele containing three repeat units is shown to be an intermediate state in the expansion of a monomeric precursor allele in primates to high copy number in the longer human arrays. We discuss the implications of such loci for studies of human populations, minisatellite isolation by cloning, and the evolution of highly variable tandem arrays.

  11. Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Øhlenschlaeger, Tommy; Garred, Peter; Madsen, Hans O

    2004-01-01

    Cardiovascular disease is an important complication in patients with systemic lupus erythematosus (SLE). Variant alleles of the mannose-binding lectin gene are associated with SLE as well as with severe atherosclerosis. We determined whether mannose-binding lectin variant alleles were associated...

  12. Positive Association of D Allele of ACE Gene With High Altitude Pulmonary Edema in Indian Population.

    Science.gov (United States)

    Bhagi, Shuchi; Srivastava, Swati; Tomar, Arvind; Bala Singh, Shashi; Sarkar, Soma

    2015-06-01

    High altitude pulmonary edema (HAPE) is a potentially fatal high altitude illness occurring as a result of hypobaric hypoxia with an unknown underlying genetic mechanism. Recent studies have shown a possible association between HAPE and polymorphisms in genes of the renin-angiotensin-aldosterone system (RAAS), which play a key role in sensitivity of an individual toward HAPE. For the present investigation, study groups consisted of HAPE patients (HAPE) and acclimatized control subjects (rCON). Four single-nucleotide polymorphisms (SNPs) were genotyped using restriction fragment length polymorphism (RFLP) analysis in genes of the RAAS pathway, specifically, renin (REN) C(-4063)T (rs41317140) and RENi8-83 (rs2368564), angiotensin (AGT) M(235)T (rs699), and angiotensin-converting enzyme (ACE) insertion/deletion (I/D) (rs1799752). Only the I/D polymorphism of the ACE gene showed a significant difference between the HAPE and rCON groups. The frequency of the D allele was found to be significantly higher in the HAPE group. Arterial oxygen saturation levels were significantly lower in the HAPE group compared with the rCON group and also decreased in the I/D and D/D genotypes compared with the I/I genotype in these groups. The other polymorphisms occurring in the REN and AGT genes were not significantly different between the 2 groups. These findings demonstrate a possible association of the I/D polymorphism of the ACE gene with the development of HAPE, with D/D being the at-risk genotype. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  13. Functional Gene Discovery and Characterization of Genes and Alleles Affecting Wood Biomass Yield and Quality in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Busov, Victor [Michigan Technological Univ., Houghton, MI (United States)

    2017-02-12

    recapitulation for a fascilin-like gene that when overexpressed increase many biomass-yield associated traits. Genes discovered through activation tagging showed polymorphisms in P. trichocarpa association mapping population linked to the traits modified by the activation tagging. This suggests that putative alleles that are associated with improvement of the trait o interest can be discovered and used in marker associated selection. This will significantly simplify and accelerate the breeding efforts.

  14. Segregation of male-sterility alleles across a species boundary.

    Science.gov (United States)

    Weller, S G; Sakai, A K; Culley, T M; Duong, L; Danielson, R E

    2014-02-01

    Hybrid zones may serve as bridges permitting gene flow between species, including alleles influencing the evolution of breeding systems. Using greenhouse crosses, we assessed the likelihood that a hybrid zone could serve as a conduit for transfer of nuclear male-sterility alleles between a gynodioecious species and a hermaphroditic species with very rare females in some populations. Segregation patterns in progeny of crosses between rare females of hermaphroditic Schiedea menziesii and hermaphroditic plants of gynodioecious Schiedea salicaria heterozygous at the male-sterility locus, and between female S. salicaria and hermaphroditic plants from the hybrid zone, were used to determine whether male-sterility was controlled at the same locus in the parental species and the hybrid zone. Segregations of females and hermaphrodites in approximately equal ratios from many of the crosses indicate that the same nuclear male-sterility allele occurs in the parent species and the hybrid zone. These rare male-sterility alleles in S. menziesii may result from gene flow from S. salicaria through the hybrid zone, presumably facilitated by wind pollination in S. salicaria. Alternatively, rare male-sterility alleles might result from a reversal from gynodioecy to hermaphroditism in S. menziesii, or possibly de novo evolution of male sterility. Phylogenetic analysis indicates that some species of Schiedea have probably evolved separate sexes independently, but not in the lineage containing S. salicaria and S. menziesii. High levels of selfing and expression of strong inbreeding depression in S. menziesii, which together should favour females in populations, argue against a reversal from gynodioecy to hermaphroditism in S. menziesii. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  15. TRPV6 alleles do not influence prostate cancer progression

    International Nuclear Information System (INIS)

    Kessler, Thorsten; Wissenbach, Ulrich; Grobholz, Rainer; Flockerzi, Veit

    2009-01-01

    The transient receptor potential, subfamily V, member 6 (TRPV6) is a Ca 2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Our results show that the frequencies of trpv6 alleles in healthy control individuals and prostate cancer patients

  16. TRPV6 alleles do not influence prostate cancer progression.

    Science.gov (United States)

    Kessler, Thorsten; Wissenbach, Ulrich; Grobholz, Rainer; Flockerzi, Veit

    2009-10-26

    The transient receptor potential, subfamily V, member 6 (TRPV6) is a Ca(2+) selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Our results show that the frequencies of trpv6 alleles in healthy control individuals and prostate cancer patients

  17. TRPV6 alleles do not influence prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Flockerzi Veit

    2009-10-01

    Full Text Available Abstract Background The transient receptor potential, subfamily V, member 6 (TRPV6 is a Ca2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Methods Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. Results We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Conclusion Our results show that the frequencies of trpv6

  18. Human hypervariable sequences in risk assessment: rare Ha-ras alleles in cancer patients

    International Nuclear Information System (INIS)

    Krontiris, T.G.; DiMartino, N.A.; Mitcheson, H.D.; Lonergan, J.A.; Begg, C.; Parkinson, D.R.

    1987-01-01

    A variable tandem repeat (VTR) is responsible for the hyperallelism one kilobase 3' to the human c-Ha-ras-1 (Ha-ras) gene. Thirty-two distinct restriction fragments, comprising 3 allelic classes by frequency of occurrence, have thus far been detected in a sample size of approximately 800 caucasians. Rare Ha-ras alleles, 21 in all, are almost exclusively confined to the genomes of cancer patients. From their data the authors have computed the relative cancer risk associated with possession of a rare Ha-ras allele to be 27. To understand the molecular basis for this phenomenon, they have begun to clone Ha-ras fragments from nontumor DNA of cancer patients. They report here the weak activation, as detected by transfection and transformation of NIH 3T3 mouse cells, of two Ha-ras genes which were obtained from lymphocyte DNA of a melanoma patient. They have mapped the regions that confer this transforming activity to the fragment containing the VTR in one Ha-ras clone and the fragment containing gene coding sequences in the other

  19. Next-generation sequencing technology a new tool for killer cell immunoglobulin-like receptor allele typing in hematopoietic stem cell transplantation.

    Science.gov (United States)

    Maniangou, B; Retière, C; Gagne, K

    2018-02-01

    Killer cell Immunoglobulin-like Receptor (KIR) genes are a family of genes located together within the leukocyte receptor cluster on human chromosome 19q13.4. To date, 17 KIR genes have been identified including nine inhibitory genes (2DL1/L2/L3/L4/L5A/L5B, 3DL1/L2/L3), six activating genes (2DS1/S2/S3/S4/S5, 3DS1) and two pseudogenes (2DP1, 3DP1) classified into group A (KIR A) and group B (KIR B) haplotypes. The number and the nature of KIR genes vary between the individuals. In addition, these KIR genes are known to be polymorphic at allelic level (907 alleles described in July 2017). KIR genes encode for receptors which are predominantly expressed by Natural Killer (NK) cells. KIR receptors recognize HLA class I molecules and are able to kill residual recipient leukemia cells, and thus reduce the likelihood of relapse. KIR alleles of Hematopoietic Stem Cell (HSC) donor would require to be known (Alicata et al. Eur J Immunol 2016) because the KIR allele polymorphism may affect both the KIR + NK cell phenotype and function (Gagne et al. Eur J Immunol 2013; Bari R, et al. Sci Rep 2016) as well as HSCT outcome (Boudreau et al. JCO 2017). The introduction of the Next Generation Sequencing (NGS) has overcome current conventional DNA sequencing method limitations, known to be time consuming. Recently, a novel NGS KIR allele typing approach of all KIR genes was developed by our team in Nantes from 30 reference DNAs (Maniangou et al. Front in Immunol 2017). This NGS KIR allele typing approach is simple, fast, reliable, specific and showed a concordance rate of 95% for centromeric and telomeric KIR genes in comparison with high-resolution KIR typing obtained to those published data using exome capture (Norman PJ et al. Am J Hum Genet 2016). This NGS KIR allele typing approach may also be used in reproduction and to better study KIR + NK cell implication in the control of viral infections. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Spectrum of Phenylalanine Hydroxylase Gene Mutations in Hamadan and Lorestan Provinces of Iran and Their Associations with Variable Number of Tandem Repeat Alleles

    Directory of Open Access Journals (Sweden)

    Reza Alibakhshi

    2018-05-01

    Full Text Available Phenylketonuria (PKU is one of the most common known inherited metabolic diseases. The present study aimed to investigate the status of molecular defects in phenylalanine hydroxylase (PAH gene in western Iranian PKU patients (predominantly from Kermanshah, Hamadan, and Lorestan provinces during 2014-2016. Additionally, the results were compared with similar studies in Iran. Nucleotide sequence analysis of all 13 exons and their flanking intronic regions of the PAH gene was performed in 18 western Iranian PKU patients. Moreover, a variable number of tandem repeat (VNTR located in the PAH gene was studied. The results revealed a mutational spectrum encompassing 11 distinct mutations distributed along the PAH gene sequence on 34 of the 36 mutant alleles (diagnostic efficiency of 94.4%. Also, four PAH VNTR alleles (with repeats of 3, 7, 8 and 9 were detected. The three most frequent mutations were IVS9+5G>A, IVS7-5T>C, and p.P281L with the frequency of 27.8%, 11%, and 11%, respectively. The results showed that there is not only a consanguineous relation, but also a difference in PAH characters of mutations between Kermanshah and the other two parts of western Iran (Hamadan and Lorestan. Also, it seems that the spectrum of mutations in western Iran is relatively distinct from other parts of the country, suggesting that this region might be a special PAH gene distribution region. Moreover, our findings can be useful in the identification of genotype to phenotype relationship in patients, and provide future abilities for confirmatory diagnostic testing, prognosis, and predict the severity of PKU patients.

  1. Identification of Novel Alleles Conferring Superior Production of Rose Flavor Phenylethyl Acetate Using Polygenic Analysis in Yeast

    Directory of Open Access Journals (Sweden)

    Bruna Trindade de Carvalho

    2017-11-01

    Full Text Available Flavor compound metabolism is one of the last areas in metabolism where multiple genes encoding biosynthetic enzymes are still unknown. A major challenge is the involvement of side activities of enzymes having their main function in other areas of metabolism. We have applied pooled-segregant whole-genome sequence analysis to identify novel Saccharomyces cerevisiae genes affecting production of phenylethyl acetate (2-PEAc. This is a desirable flavor compound of major importance in alcoholic beverages imparting rose- and honey-like aromas, with production of high 2-PEAc levels considered a superior trait. Four quantitative trait loci (QTLs responsible for high 2-PEAc production were identified, with two loci each showing linkage to the genomes of the BTC.1D and ER18 parents. The first two loci were investigated further. The causative genes were identified by reciprocal allele swapping into both parents using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9. The superior allele of the first major causative gene, FAS2, was dominant and contained two unique single nucleotide polymorphisms (SNPs responsible for high 2-PEAc production that were not present in other sequenced yeast strains. FAS2 encodes the alpha subunit of the fatty acid synthetase complex. Surprisingly, the second causative gene was a mutant allele of TOR1, a gene involved in nitrogen regulation. Exchange of both superior alleles in the ER18 parent strain increased 2-PEAc production 70%, nearly to the same level as in the best superior segregant. Our results show that polygenic analysis combined with CRISPR/Cas9-mediated allele exchange is a powerful tool for identification of genes encoding missing metabolic enzymes and for development of industrial yeast strains generating novel flavor profiles in alcoholic beverages.

  2. Distribution of coat-color-associated alleles in the domestic horse population and Przewalski's horse.

    Science.gov (United States)

    Reissmann, Monika; Musa, Lutfi; Zakizadeh, Sonia; Ludwig, Arne

    2016-11-01

    Considering the hidden mode of inheritance of some coat-color-associated alleles, we investigated the presence/absence of coat-color-associated alleles in 1093 domestic horses of 55 breeds and 20 specimens of Przewalski's horse. For coat-color genotyping, allele specific PCR, pyrosequencing and Li-Cor analyses were conducted on 12 coat-color-associated alleles of five genes. Our data provide deep insight into the distribution of coat-color-associated alleles within breeds. We found that the alleles for the basic colorations (bay, black, and chestnut) are widely distributed and occur in nearly all breeds. Alleles leading to dilutions or patterns are rare in domestic breeds and were not found in Przewalski's horse. Higher frequencies of these alleles are only found in breeds that are selected for their expressed phenotypes (e.g., Kinsky horse, Lewitzer, Tinker). Nevertheless, our study produced strong evidence that molecular testing of the coat color is necessary for well-defined phenotyping to avoid unexpected colorations of offspring that can result in legal action.

  3. RHD alleles in the Tunisian population

    Science.gov (United States)

    Ouchari, Mouna; Jemni-Yaacoub, Saloua; Chakroun, Taher; Abdelkefi, Saida; Houissa, Batoul; Hmida, Slama

    2013-01-01

    Background: A comprehensive survey of RHD alleles in Tunisia population was lacking. The aim of this study was to use a multiplex RHD typing assay for simultaneous detection of partial D especially with RHD/RHCE deoxyribonucleic acid (DNA) sequence exchange mechanism and some weak D alleles. Materials and Methods: Six RHD specific primer sets were designed to amplify RHD exons 3, 4, 5, 6, 7 and 9. DNA from 2000 blood donors (1777 D+ and 223 D-) from several regions was selected for RHD genotyping using a PCR multiplex assay. Further molecular investigations were done to characterize the RHD variants that were identified by the PCR multiplex assay. Results: In the 1777 D+ samples, only 10 individuals showed the absence of amplification of exons 4 and 5 that were subsequently identified by PCR-SSP as weak D type 4 variants. No hybrid allele was detected. In the 223 D-, RHD amplification of some exons was observed only in 5 samples: 4 individuals expressed only RHD exon 9, and one subject lacking exons 4 and 5. These samples were then screened by PCR-SSPs on d(C) ces and weak D type 4, respectively. Conclusion: The weak D type 4 appears to be the most common D variant allele. We have not found any partial D variant. Findings also indicated that RHD gene deletion is the most prevalent cause of the D- phenotype in the Tunisian population. PMID:24014941

  4. Allelic Imbalance Is a Prevalent and Tissue-Specific Feature of the Mouse Transcriptome

    Science.gov (United States)

    Pinter, Stefan F.; Colognori, David; Beliveau, Brian J.; Sadreyev, Ruslan I.; Payer, Bernhard; Yildirim, Eda; Wu, Chao-ting; Lee, Jeannie T.

    2015-01-01

    In mammals, several classes of monoallelic genes have been identified, including those subject to X-chromosome inactivation (XCI), genomic imprinting, and random monoallelic expression (RMAE). However, the extent to which these epigenetic phenomena are influenced by underlying genetic variation is unknown. Here we perform a systematic classification of allelic imbalance in mouse hybrids derived from reciprocal crosses of divergent strains. We observe that deviation from balanced biallelic expression is common, occurring in ∼20% of the mouse transcriptome in a given tissue. Allelic imbalance attributed to genotypic variation is by far the most prevalent class and typically is tissue-specific. However, some genotype-based imbalance is maintained across tissues and is associated with greater genetic variation, especially in 5′ and 3′ termini of transcripts. We further identify novel random monoallelic and imprinted genes and find that genotype can modify penetrance of parental origin even in the setting of large imprinted regions. Examination of nascent transcripts in single cells from inbred parental strains reveals that genes showing genotype-based imbalance in hybrids can also exhibit monoallelic expression in isogenic backgrounds. This surprising observation may suggest a competition between alleles and/or reflect the combined impact of cis- and trans-acting variation on expression of a given gene. Our findings provide novel insights into gene regulation and may be relevant to human genetic variation and disease. PMID:25858912

  5. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl [I Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Kopcinskiego 22, 90-153 Łódź (Poland); Krześlak, Anna; Forma, Ewa [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland); Olszewski, Jurek [II Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Żeromskiego 113, 90-549 Łódź (Poland); Morawiec-Sztandera, Alina [Department of Head and Neck Surgery, Medical University of Łódź, Paderewskiego 4, 93-509 Łódź (Poland); Aleksandrowicz, Paweł [Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin (Poland); Lewy-Trenda, Iwona [Department of Pathology, Medical University of Łódź, Pomorska 251, 92-213 Łódź (Poland); and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  6. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    International Nuclear Information System (INIS)

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Olszewski, Jurek; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona

    2014-01-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels

  7. Sequence analysis of two alleles reveals that intra-and intergenic recombination played a role in the evolution of the radish fertility restorer (Rfo

    Directory of Open Access Journals (Sweden)

    Budar Françoise

    2010-02-01

    Full Text Available Abstract Background Land plant genomes contain multiple members of a eukaryote-specific gene family encoding proteins with pentatricopeptide repeat (PPR motifs. Some PPR proteins were shown to participate in post-transcriptional events involved in organellar gene expression, and this type of function is now thought to be their main biological role. Among PPR genes, restorers of fertility (Rf of cytoplasmic male sterility systems constitute a peculiar subgroup that is thought to evolve in response to the presence of mitochondrial sterility-inducing genes. Rf genes encoding PPR proteins are associated with very close relatives on complex loci. Results We sequenced a non-restoring allele (L7rfo of the Rfo radish locus whose restoring allele (D81Rfo was previously described, and compared the two alleles and their PPR genes. We identified a ca 13 kb long fragment, likely originating from another part of the radish genome, inserted into the L7rfo sequence. The L7rfo allele carries two genes (PPR-1 and PPR-2 closely related to the three previously described PPR genes of the restorer D81Rfo allele (PPR-A, PPR-B, and PPR-C. Our results indicate that alleles of the Rfo locus have experienced complex evolutionary events, including recombination and insertion of extra-locus sequences, since they diverged. Our analyses strongly suggest that present coding sequences of Rfo PPR genes result from intragenic recombination. We found that the 10 C-terminal PPR repeats in Rfo PPR gene encoded proteins result from the tandem duplication of a 5 PPR repeat block. Conclusions The Rfo locus appears to experience more complex evolution than its flanking sequences. The Rfo locus and PPR genes therein are likely to evolve as a result of intergenic and intragenic recombination. It is therefore not possible to determine which genes on the two alleles are direct orthologs. Our observations recall some previously reported data on pathogen resistance complex loci.

  8. The human pregnane X receptor: genomic structure and identification and functional characterization of natural allelic variants.

    Science.gov (United States)

    Zhang, J; Kuehl, P; Green, E D; Touchman, J W; Watkins, P B; Daly, A; Hall, S D; Maurel, P; Relling, M; Brimer, C; Yasuda, K; Wrighton, S A; Hancock, M; Kim, R B; Strom, S; Thummel, K; Russell, C G; Hudson, J R; Schuetz, E G; Boguski, M S

    2001-10-01

    The pregnane X receptor (PXR)/steroid and xenobiotic receptor (SXR) transcriptionally activates cytochrome P4503A4 (CYP3A4) when ligand activated by endobiotics and xenobiotics. We cloned the human PXR gene and analysed the sequence in DNAs of individuals whose CYP3A phenotype was known. The PXR gene spans 35 kb, contains nine exons, and mapped to chromosome 13q11-13. Thirty-eight single nucleotide polymorphisms (SNPs) were identified including six SNPs in the coding region. Three of the coding SNPs are non-synonymous creating new PXR alleles [PXR*2, P27S (79C to T); PXR*3, G36R (106G to A); and PXR*4, R122Q (4321G to A)]. The frequency of PXR*2 was 0.20 in African Americans and was never found in Caucasians. Hepatic expression of CYP3A4 protein was not significantly different between African Americans homozygous for PXR*1 compared to those with one PXR*2 allele. PXR*4 was a rare variant found in only one Caucasian person. Homology modelling suggested that R122Q, (PXR*4) is a direct DNA contact site variation in the third alpha-helix in the DNA binding domain. Compared with PXR*1, and variants PXR*2 and PXR*3, only the variant PXR*4 protein had significantly decreased affinity for the PXR binding sequence in electromobility shift assays and attenuated ligand activation of the CYP3A4 reporter plasmids in transient transfection assays. However, the person heterozygous for PXR*4 is normal for CYP3A4 metabolism phenotype. The relevance of each of the 38 PXR SNPs identified in DNA of individuals whose CYP3A basal and rifampin-inducible CYP3A4 expression was determined in vivo and/or in vitro was demonstrated by univariate statistical analysis. Because ligand activation of PXR and upregulation of a system of drug detoxification genes are major determinants of drug interactions, it will now be useful to extend this work to determine the association of these common PXR SNPs to human variation in induction of other drug detoxification gene targets.

  9. Preliminary evidence that allelic variation in the LMX1A gene influences training-related working memory improvement.

    Science.gov (United States)

    Bellander, Martin; Brehmer, Yvonne; Westerberg, Helena; Karlsson, Sari; Fürth, Daniel; Bergman, Olle; Eriksson, Elias; Bäckman, Lars

    2011-06-01

    LMX1A is a transcription factor involved in the development of dopamine (DA)-producing neurons in midbrain. Previous research has shown that allelic variations in three LMX1A single nucleotide polymorphisms (SNPs) were related to risk of Parkinson's disease (PD), suggesting that these SNPs may influence the number of mesencephalic DA neurons. Prompted by the established link between striatal DA functions and working memory (WM) performance, we examined two of these SNPs in relation to the ability to benefit from 4 weeks of WM training. One SNP (rs4657412) was strongly associated with the magnitude of training-related gains in verbal WM. The allele linked to larger gains has previously been suggested to be associated with higher dopaminergic nerve cell density. No differential gains of either SNP were observed for spatial WM, and the genotype groups were also indistinguishable in tests of attention, interference control, episodic memory, perceptual speed, and reasoning for both SNPs. This pattern of data is in agreement with previous findings from our group, suggesting that cognitive effects of DA-related genes may be more easily detected in a training context than for single-assessment performance scores. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Association of primary biliary cirrhosis with the allele HLA-DPB1*0301 in a German population.

    Science.gov (United States)

    Mella, J G; Roschmann, E; Maier, K P; Volk, B A

    1995-02-01

    The major histocompatibility complex class II alleles at the HLA-DPB1 locus were investigated in 32 German Caucasoid patients with primary biliary cirrhosis (PBC) and compared with those from 47 normal control patients using molecular genotyping techniques. The second exon of the HLA-DPB1 gene was amplified by polymerase chain reaction (PCR) and hybridized with 25 sequence-specific oligonucleotides (SSOs) to assign the HLA-DPB1 alleles on the basis of known sequence variations, according to the protocols of the Eleventh International Histocompatibility Workshop. A strong association of PBC was found with the allele HLA-DPB1*0301. The allele HLA DPB1*0301 was present in 50% (16 of 32) of the patients with PBC compared with 13% (6 of 47) of normal controls (P corrected < .015), whereas the other HLA-DPB1 alleles showed no significant differences in both groups. The relative risk (RR) estimate for the allele HLA-DPB1*0301 was 6.8 (95% confidence limits: 2.27 to 20.57). In summary, this study clearly demonstrates an association of PBC with the HLA-DPB1*0301 allele in German Caucasoids and may add new data to the immunogenetic background of PBC, suggesting a contribution of the HLA-DPB1 gene to the genetic susceptibility of the disease.

  11. Procedures for identifying S-allele genotypes of Brassica.

    Science.gov (United States)

    Wallace, D H

    1979-11-01

    the I1 generation facilitates, during subsequent inbred generations, strong selection for or against modifier genes that influence the intensity of self- and sib-incompatibility. Selection for strong self and sib incompatibility can be effective for both homozygous inbreds and also for the S-allele heterozygote, thus facilitating production of single-cross F1 hybrids and also of 3-and 4-way hybrids.

  12. FEATURES OF THE CLINICAL SIGNIFICANCE OF POLYMORPHIC VARIANTS OF ENOS AND AGTR2 GENES IN PATIENTS WITH CAD

    Directory of Open Access Journals (Sweden)

    A. L. Khokhlov

    2016-01-01

    Full Text Available Coronary heart disease (CHD is a major cause of mortality. Morphological substrate of CHD in most cases is atherosclerosis, which is based on structural genes polymorphism eNOS and AGTR2. The aim of the study was to study the prevalence of eNOS and AGTR2 genes in patients with coronary artery disease and the association of these genes with coronary heart disease. The study involved 187 patients aged 36 to 86 years (62,2±11,2 with different forms of CHD: stable and unstable angina, myocardial infarction and 45 people without CHD. Determination of gene polymorphisms was performed by real-time PCR analyzer of nucleic acids IQ 5 Bio-Rad. Statistical analysis was performed using Statistica 10.0. The study revealed a significant difference between the incidence of homozygous AA allelic variant gene AGTR2 group of patients with myocardial infarction and the comparison group; polymorphic variant AA AGTR2 gene is associated with earlier onset of coronary artery disease; It found that carriers of the polymorphic variant gene GA AGTR2 beginning statistically CHD occurred significantly later than in carriers of alleles GG and AA; age CHD debut TT allele carriers of the eNOS gene is associated with an earlier onset of the disease and statistically significantly different from the age of first CHD in carriers of alleles of polymorphic variants of GG and GT; revealed a positive correlation between the polymorphic allele AGTR2 gene with the presence of arterial hypertension in patients with coronary artery disease; It determined that the T allele carriers of the polymorphic gene eNOS is associated more early onset of hypertension, found the association of the polymorphic allele gene AGTR2 the need to use higher doses of ACE inhibitor — perindopril.

  13. Pathways to age of onset of heroin use: a structural model approach exploring the relationship of the COMT gene, impulsivity and childhood trauma.

    Science.gov (United States)

    Li, Ting; Du, Jiang; Yu, Shunying; Jiang, Haifeng; Fu, Yingmei; Wang, Dongxiang; Sun, Haiming; Chen, Hanhui; Zhao, Min

    2012-01-01

    The interaction of the association of dopamine genes, impulsivity and childhood trauma with substance abuse remains unclear. To clarify the impacts and the interactions of the Catechol -O-methyltransferase (COMT) gene, impulsivity and childhood trauma on the age of onset of heroin use among heroin dependent patients in China. 202 male and 248 female inpatients who meet DSM-IV criteria of heroin dependence were enrolled. Impulsivity and childhood trauma were measured using BIS-11 (Barratt Impulsiveness Scale-11) and ETISR-SF (Early Trauma Inventory Self Report-Short Form). The single nucleotide polymorphism (SNP) rs737866 on the COMT gene-which has previously been associated with heroin abuse, was genotyped using a DNA sequence detection system. Structural equations model was used to assess the interaction paths between these factors and the age of onset of heroin use. Chi-square test indicated the individuals with TT allele have earlier age of onset of heroin use than those with CT or CC allele. In the correlation analysis, the severity of childhood trauma was positively correlated to impulsive score, but both of them were negatively related to the age of onset of heroin use. In structure equation model, both the COMT gene and childhood trauma had impacts on the age of onset of heroin use directly or via impulsive personality. Our findings indicated that the COMT gene, impulsive personality traits and childhood trauma experience were interacted to impact the age of onset of heroin use, which play a critical role in the development of heroin dependence. The impact of environmental factor was greater than the COMT gene in the development of heroin dependence.

  14. Identification of the Rare, Four Repeat Allele of IL-4 Intron-3 VNTR Polymorphism in Indian Populations.

    Science.gov (United States)

    Verma, Henu Kumar; Jha, Aditya Nath; Khodiar, Prafulla Kumar; Patra, Pradeep Kumar; Bhaskar, Lakkakula Venkata Kameswara Subrahmanya

    2016-06-01

    Cytokines are cell signaling molecules which upon release by cells facilitate the recruitment of immune-modulatory cells towards the sites of inflammation. Genetic variations in cytokine genes are shown to regulate their production and affect the risk of infectious as well as autoimmune diseases. Intron-3 of interleukin-4 gene (IL-4) harbors 70-bp variable number of tandem repeats (VNTR) that may alter the expression level of IL-4 gene. To determine the distribution of IL-4 70-bp VNTR polymorphism in seven genetically heterogeneous populations of Chhattisgarh, India and their comparison with the finding of other Indian and world populations. A total of 371 healthy unrelated individuals from 5 caste and 2 tribal populations were included in the present study. The IL-4 70-bp VNTR genotyping was carried out using PCR and electrophoresis. Overall, 3 alleles of IL-4 70-bp VNTR (a2, a3 and a4) were detected. The results demonstrated the variability of the IL-4 70-bp VNTR polymorphism in Chhattisgarh populations. Allele a3 was the most common allele at the 70-bp VNTR locus in all populations followed by a2 allele. This study reports the presence four repeat allele a4 at a low frequency in the majority of the Chhattisgarh populations studied. Further, the frequency of the minor allele (a2) in Chhattisgarh populations showed similarity with the frequencies of European populations but not with the East Asian populations where the a2 allele is a major allele. Our study provides a baseline for future research into the role of the IL-4 locus in diseases linked to inflammation in Indian populations.

  15. Structural defects and variations in the HIV-1 nef gene from rapid, slow and non-progressor children.

    Science.gov (United States)

    Casartelli, Nicoletta; Di Matteo, Gigliola; Argentini, Claudio; Cancrini, Caterina; Bernardi, Stefania; Castelli, Guido; Scarlatti, Gabriella; Plebani, Anna; Rossi, Paolo; Doria, Margherita

    2003-06-13

    Evaluation of sequence evolution as well as structural defects and mutations of the human immunodeficiency virus-type 1 (HIV-1) nef gene in relation to disease progression in infected children. We examined a large number of nef alleles sequentially derived from perinatally HIV-1-infected children with different rates of disease progression: six non-progressors (NPs), four rapid progressors (RPs), and three slow progressors (SPs). Nef alleles (182 total) were isolated from patients' peripheral blood mononuclear cells (PBMCs), sequenced and analysed for their evolutionary pattern, frequency of mutations and occurrence of amino acid variations associated with different stages of disease. The evolution rate of the nef gene apparently correlated with CD4+ decline in all progression groups. Evidence for rapid viral turnover and positive selection for changes were found only in two SPs and two RPs respectively. In NPs, a higher proportion of disrupted sequences and mutations at various functional motifs were observed. Furthermore, NP-derived Nef proteins were often changed at residues localized in the folded core domain at cytotoxic T lymphocytes (CTL) epitopes (E(105), K(106), E(110), Y(132), K(164), and R(200)), while other residues outside the core domain are more often changed in RPs (A(43)) and SPs (N(173) and Y(214)). Our results suggest a link between nef gene functions and the progression rate in HIV-1-infected children. Moreover, non-progressor-associated variations in the core domain of Nef, together with the genetic analysis, suggest that nef gene evolution is shaped by an effective immune system in these patients.

  16. Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene.

    Directory of Open Access Journals (Sweden)

    John H Ludes-Meyers

    2009-11-01

    Full Text Available WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoiesis, leukopenia, and splenic atrophy. Impaired hematopoiesis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues.

  17. Suspension Array for Multiplex Detection of Eight Fungicide-Resistance Related Alleles in Botrytis cinerea

    OpenAIRE

    Zhang, Xin; Xie, Fei; Lv, Baobei; Zhao, Pengxiang; Ma, Xuemei

    2016-01-01

    A simple and high-throughput assay to detect fungicide resistance is required for large-scale monitoring of the emergence of resistant strains of Botrytis cinerea. Using suspension array technology performed on a Bio-Plex 200 System, we developed a single-tube allele-specific primer extension (ASPE) assay that can simultaneously detect eight alleles in one reaction. These eight alleles include E198 and 198A of the β-Tubulin gene (BenA), H272 and 272Y of the Succinate dehydrogenase iron–sulfur...

  18. Evolution and diversity of secretome genes in the apicomplexan parasite Theileria annulata

    Directory of Open Access Journals (Sweden)

    Shiels Brian R

    2010-01-01

    Full Text Available Abstract Background Little is known about how apicomplexan parasites have evolved to infect different host species and cell types. Theileria annulata and Theileria parva invade and transform bovine leukocytes but each species favours a different host cell lineage. Parasite-encoded proteins secreted from the intracellular macroschizont stage within the leukocyte represent a critical interface between host and pathogen systems. Genome sequencing has revealed that several Theileria-specific gene families encoding secreted proteins are positively selected at the inter-species level, indicating diversification between the species. We extend this analysis to the intra-species level, focusing on allelic diversity of two major secretome families. These families represent a well-characterised group of genes implicated in control of the host cell phenotype and a gene family of unknown function. To gain further insight into their evolution and function, this study investigates whether representative genes of these two families are diversifying or constrained within the T. annulata population. Results Strong evidence is provided that the sub-telomerically encoded SVSP family and the host-nucleus targeted TashAT family have evolved under contrasting pressures within natural T. annulata populations. SVSP genes were found to possess atypical codon usage and be evolving neutrally, with high levels of nucleotide substitutions and multiple indels. No evidence of geographical sub-structuring of allelic sequences was found. In contrast, TashAT family genes, implicated in control of host cell gene expression, are strongly conserved at the protein level and geographically sub-structured allelic sequences were identified among Tunisian and Turkish isolates. Although different copy numbers of DNA binding motifs were identified in alleles of TashAT proteins, motif periodicity was strongly maintained, implying conserved functional activity of these sites. Conclusions

  19. Rapid genotyping assays for the 4-base pair deletion of canine MDR1/ABCB1 gene and low frequency of the mutant allele in Border Collie dogs.

    Science.gov (United States)

    Mizukami, Keijiro; Chang, Hye-Sook; Yabuki, Akira; Kawamichi, Takuji; Hossain, Mohammad A; Rahman, Mohammad M; Uddin, Mohammad M; Yamato, Osamu

    2012-01-01

    P-glycoprotein, encoded by the MDR1 or ABCB1 gene, is an integral component of the blood-brain barrier as an efflux pump for xenobiotics crucial in limiting drug uptake into the central nervous system. Dogs homozygous for a 4-base pair deletion of the canine MDR1 gene show altered expression or function of P-glycoprotein, resulting in neurotoxicosis after administration of the substrate drugs. In the present study, the usefulness of microchip electrophoresis for genotyping assays detecting this deletion mutation was evaluated. Mutagenically separated polymerase chain reaction (MS-PCR) and real-time PCR assays were newly developed and evaluated. Furthermore, a genotyping survey was carried out in a population of Border Collies dogs in Japan to determine the allele frequency in this breed. Microchip electrophoresis showed advantages in detection sensitivity and time saving over other modes of electrophoresis. The MS-PCR assay clearly discriminated all genotypes. Real-time PCR assay was most suitable for a large-scale survey due to its high throughput and rapidity. The genotyping survey demonstrated that the carrier and mutant allele frequencies were 0.49% and 0.25%, respectively, suggesting that the mutant allele frequency in Border Collies is markedly low compared to that in the susceptible dog breeds such as rough and smooth Collies.

  20. Genetic Variation and Population Structure in Jamunapari Goats Using Microsatellites, Mitochondrial DNA, and Milk Protein Genes

    Science.gov (United States)

    Rout, P. K.; Thangraj, K.; Mandal, A.; Roy, R.

    2012-01-01

    Jamunapari, a dairy goat breed of India, has been gradually declining in numbers in its home tract over the years. We have analysed genetic variation and population history in Jamunapari goats based on 17 microsatellite loci, 2 milk protein loci, mitochondrial hypervariable region I (HVRI) sequencing, and three Y-chromosomal gene sequencing. We used the mitochondrial DNA (mtDNA) mismatch distribution, microsatellite data, and bottleneck tests to infer the population history and demography. The mean number of alleles per locus was 9.0 indicating that the allelic variation was high in all the loci and the mean heterozygosity was 0.769 at nuclear loci. Although the population size is smaller than 8,000 individuals, the amount of variability both in terms of allelic richness and gene diversity was high in all the microsatellite loci except ILST 005. The gene diversity and effective number of alleles at milk protein loci were higher than the 10 other Indian goat breeds that they were compared to. Mismatch analysis was carried out and the analysis revealed that the population curve was unimodal indicating the expansion of population. The genetic diversity of Y-chromosome genes was low in the present study. The observed mean M ratio in the population was above the critical significance value (Mc) and close to one indicating that it has maintained a slowly changing population size. The mode-shift test did not detect any distortion of allele frequency and the heterozygosity excess method showed that there was no significant departure from mutation-drift equilibrium detected in the population. However, the effects of genetic bottlenecks were observed in some loci due to decreased heterozygosity and lower level of M ratio. There were two observed genetic subdivisions in the population supporting the observations of farmers in different areas. This base line information on genetic diversity, bottleneck analysis, and mismatch analysis was obtained to assist the conservation

  1. Mutational analysis of the HLA-DQ3.2 insulin-dependent diabetes mellitus susceptibility gene

    International Nuclear Information System (INIS)

    Kwok, W.W.; Lotshaw, C.; Milner, E.C.B.; Knitter-Jack, N.; Nepom, G.T.

    1989-01-01

    The human major histocompatibility complex includes approximately 14 class II HLA genes within the HLA-D region, most of which exist in multiple allelic forms. One of these genes, the DQ3.2β gene, accounts for the well-documented association of HLA-DR4 with insulin-dependent diabetes mellitus and is the single allele most highly correlated with this disease. The authors analyzed the amino acid substitutions that lead to the structural differences distinguishing DQ3.2β from its nondiabetogenic, but closely related allele, DQ3.1β. Site-directed mutagenesis of the DQ3.2β gene was used to convert key nucleotides into DQ3.2β codons. Subsequent expression studies of these mutated DQ3.2β clones using retroviral vectors defined amino acid 45 as critical for generating serologic epitopes characterizing the DQw3.1β and DQw3.2β molecules

  2. Aberrant allele-specific replication, independent of parental origin, in blood cells of cancer patients

    International Nuclear Information System (INIS)

    Dotan, Zohar A; Dotan, Aviva; Ramon, Jacob; Avivi, Lydia

    2008-01-01

    Allelic counterparts of biallelically expressed genes display an epigenetic symmetry normally manifested by synchronous replication, different from genes subjected to monoallelic expression, which normally are characterized by an asynchronous mode of replication (well exemplified by the SNRPN imprinted locus). Malignancy was documented to be associated with gross modifications in the inherent replication-timing coordination between allelic counterparts of imprinted genes as well as of biallelically expressed loci. The cancer-related allelic replication timing aberrations are non-disease specific and appear in peripheral blood cells of cancer patients, including those with solid tumors. As such they offer potential blood markers for non-invasive cancer test. The present study was aimed to gain some insight into the mechanism leading to the replication timing alterations of genes in blood lymphocytes of cancer patients. Peripheral blood samples derived from patients with prostate cancer were chosen to represent the cancerous status, and samples taken from patients with no cancer but with benign prostate hyperplasia were used to portray the normal status. Fluorescence In Situ Hybridization (FISH) replication assay, applied to phytohemagglutinin (PHA)-stimulated blood lymphocytes, was used to evaluate the temporal order (either synchronous or asynchronous) of genes in the patients' cells. We demonstrated that: (i) the aberrant epigenetic profile, as delineated by the cancer status, is a reversible modification, evidenced by our ability to restore the normal patterns of replication in three unrelated loci (CEN15, SNRPN and RB1) by introducing an archetypical demethylating agent, 5-azacytidine; (ii) following the rehabilitating effect of demethylation, an imprinted gene (SNRPN) retains its original parental imprint; and (iii) the choice of an allele between early or late replication in the aberrant asynchronous replication, delineated by the cancer status, is not

  3. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity.

    Science.gov (United States)

    Ursini, Gianluca; Bollati, Valentina; Fazio, Leonardo; Porcelli, Annamaria; Iacovelli, Luisa; Catalani, Assia; Sinibaldi, Lorenzo; Gelao, Barbara; Romano, Raffaella; Rampino, Antonio; Taurisano, Paolo; Mancini, Marina; Di Giorgio, Annabella; Popolizio, Teresa; Baccarelli, Andrea; De Blasi, Antonio; Blasi, Giuseppe; Bertolino, Alessandro

    2011-05-04

    DNA methylation at CpG dinucleotides is associated with gene silencing, stress, and memory. The catechol-O-methyltransferase (COMT) Val(158) allele in rs4680 is associated with differential enzyme activity, stress responsivity, and prefrontal activity during working memory (WM), and it creates a CpG dinucleotide. We report that methylation of the Val(158) allele measured from peripheral blood mononuclear cells (PBMCs) of Val/Val humans is associated negatively with lifetime stress and positively with WM performance; it interacts with stress to modulate prefrontal activity during WM, such that greater stress and lower methylation are related to reduced cortical efficiency; and it is inversely related to mRNA expression and protein levels, potentially explaining the in vivo effects. Finally, methylation of COMT in prefrontal cortex and that in PBMCs of rats are correlated. The relationship of methylation of the COMT Val(158) allele with stress, gene expression, WM performance, and related brain activity suggests that stress-related methylation is associated with silencing of the gene, which partially compensates the physiological role of the high-activity Val allele in prefrontal cognition and activity. Moreover, these results demonstrate how stress-related DNA methylation of specific functional alleles impacts directly on human brain physiology beyond sequence variation.

  4. Population structure of the malaria vector Anopheles sinensis (Diptera: Culicidae in China: two gene pools inferred by microsatellites.

    Directory of Open Access Journals (Sweden)

    Yajun Ma

    Full Text Available BACKGROUND: Anopheles sinensis is a competent malaria vector in China. An understanding of vector population structure is important to the vector-based malaria control programs. However, there is no adequate data of A. sinensis population genetics available yet. METHODOLOGY/PRINCIPAL FINDINGS: This study used 5 microsatellite loci to estimate population genetic diversity, genetic differentiation and demographic history of A. sinensis from 14 representative localities in China. All 5 microsatellite loci were highly polymorphic across populations, with high allelic richness and heterozygosity. Hardy-Weinberg disequilibrium was found in 12 populations associated with heterozygote deficits, which was likely caused by the presence of null allele and the Wahlund effect. Bayesian clustering analysis revealed two gene pools, grouping samples into two population clusters; one includes six and the other includes eight populations. Out of 14 samples, six samples were mixed with individuals from both gene pools, indicating the coexistence of two genetic units in the areas sampled. The overall differentiation between two genetic pools was moderate (F(ST = 0.156. Pairwise differentiation between populations were lower within clusters (F(ST = 0.008-0.028 in cluster I and F(ST = 0.004-0.048 in cluster II than between clusters (F(ST = 0.120-0.201. A reduced gene flow (Nm = 1-1.7 was detected between clusters. No evidence of isolation by distance was detected among populations neither within nor between the two clusters. There are differences in effective population size (Ne = 14.3-infinite across sampled populations. CONCLUSIONS/SIGNIFICANCE: Two genetic pools with moderate genetic differentiation were identified in the A. sinensis populations in China. The population divergence was not correlated with geographic distance or barrier in the range. Variable effective population size and other demographic effects of historical population

  5. MicroRNAs differentially regulate carbonyl reductase 1 (CBR1 gene expression dependent on the allele status of the common polymorphic variant rs9024.

    Directory of Open Access Journals (Sweden)

    James L Kalabus

    Full Text Available MicroRNAs (miRNAs are small RNAs responsible for the post-transcriptional regulation of a variety of human genes. To date, their involvement in the regulation of CBR1 is unknown. This study reports for the first time the identification of microRNA-574-5p (hsa-miR-574-5p and microRNA-921 (hsa-miR-921 as two miRNAs capable of interacting with the 3'-untranslated region (3'-UTR of the CBR1 gene and downregulating CBR1 expression. Furthermore, we demonstrate that a common single-nucleotide polymorphism (SNP in the CBR1 3'-UTR (rs9024, CBR1 1096G>A differentially impacts the regulation of CBR1 by hsa-miR-574-5p and hsa-miR-921 dependent on genotype. First, four candidate miRNAs were selected based on bioinformatic analyses, and were tested in Chinese hamster ovary (CHO cells transfected with CBR1 3'-UTR constructs harboring either the G or A allele for rs9024. We found that hsa-miR-574-5p and hsa-miR-921 significantly decreased luciferase activity in CHO cells transfected with the CBR1 3'-UTR construct carrying the major rs9024 G allele by 35% and 46%, respectively. The influence of these miRNAs was different in cells transfected with a CBR1 3'-UTR construct containing the minor rs9024 A allele in that only hsa-miR-574-5p had a demonstrable effect (i.e., 52% decrease in lucifersase activity. To further determine the functional effects of miRNA-mediated regulation of polymorphic CBR1, we assessed CBR1 protein expression and CBR1 enzymatic activity for the prototypical substrate menadione in human lymphoblastoid cell lines with distinct rs9024 genotypes. We found that hsa-miR-574-5p and hsa-miR-921 significantly decreased CBR1 protein (48% and 40%, respectively and CBR1 menadione activity (54% and 18%, respectively in lymphoblastoid cells homozygous for the major rs9024 G allele. In contrast, only hsa-miR-574-5p decreased CBR1 protein and CBR1 activity in cells homozygous for the minor rs9024 A allele, and did so by 49% and 56%, respectively. These

  6. Balancing selection and recombination as evolutionary forces caused population genetic variations in golden pheasant MHC class I genes.

    Science.gov (United States)

    Zeng, Qian-Qian; He, Ke; Sun, Dan-Dan; Ma, Mei-Ying; Ge, Yun-Fa; Fang, Sheng-Guo; Wan, Qiu-Hong

    2016-02-18

    The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic

  7. The BTNL2 A allele variant is frequent in Danish patients with sarcoidosis

    DEFF Research Database (Denmark)

    Milman, Nils; Svendsen, Claus Bo; Nielsen, Finn Cilius

    2011-01-01

    The butyrophilin-like 2 (BTNL2) gene is located on chromosome 6p21.3 close to the HLA-class II genes. An association has been reported between sarcoidosis and a single nucleotide polymorphism in BTNL2, rs2076530, also termed the A allele....

  8. Culture–gene coevolution of individualism–collectivism and the serotonin transporter gene

    Science.gov (United States)

    Chiao, Joan Y.; Blizinsky, Katherine D.

    2010-01-01

    Culture–gene coevolutionary theory posits that cultural values have evolved, are adaptive and influence the social and physical environments under which genetic selection operates. Here, we examined the association between cultural values of individualism–collectivism and allelic frequency of the serotonin transporter functional polymorphism (5-HTTLPR) as well as the role this culture–gene association may play in explaining global variability in prevalence of pathogens and affective disorders. We found evidence that collectivistic cultures were significantly more likely to comprise individuals carrying the short (S) allele of the 5-HTTLPR across 29 nations. Results further show that historical pathogen prevalence predicts cultural variability in individualism–collectivism owing to genetic selection of the S allele. Additionally, cultural values and frequency of S allele carriers negatively predict global prevalence of anxiety and mood disorder. Finally, mediation analyses further indicate that increased frequency of S allele carriers predicted decreased anxiety and mood disorder prevalence owing to increased collectivistic cultural values. Taken together, our findings suggest culture–gene coevolution between allelic frequency of 5-HTTLPR and cultural values of individualism–collectivism and support the notion that cultural values buffer genetically susceptible populations from increased prevalence of affective disorders. Implications of the current findings for understanding culture–gene coevolution of human brain and behaviour as well as how this coevolutionary process may contribute to global variation in pathogen prevalence and epidemiology of affective disorders, such as anxiety and depression, are discussed. PMID:19864286

  9. Culture-gene coevolution of individualism-collectivism and the serotonin transporter gene.

    Science.gov (United States)

    Chiao, Joan Y; Blizinsky, Katherine D

    2010-02-22

    Culture-gene coevolutionary theory posits that cultural values have evolved, are adaptive and influence the social and physical environments under which genetic selection operates. Here, we examined the association between cultural values of individualism-collectivism and allelic frequency of the serotonin transporter functional polymorphism (5-HTTLPR) as well as the role this culture-gene association may play in explaining global variability in prevalence of pathogens and affective disorders. We found evidence that collectivistic cultures were significantly more likely to comprise individuals carrying the short (S) allele of the 5-HTTLPR across 29 nations. Results further show that historical pathogen prevalence predicts cultural variability in individualism-collectivism owing to genetic selection of the S allele. Additionally, cultural values and frequency of S allele carriers negatively predict global prevalence of anxiety and mood disorder. Finally, mediation analyses further indicate that increased frequency of S allele carriers predicted decreased anxiety and mood disorder prevalence owing to increased collectivistic cultural values. Taken together, our findings suggest culture-gene coevolution between allelic frequency of 5-HTTLPR and cultural values of individualism-collectivism and support the notion that cultural values buffer genetically susceptible populations from increased prevalence of affective disorders. Implications of the current findings for understanding culture-gene coevolution of human brain and behaviour as well as how this coevolutionary process may contribute to global variation in pathogen prevalence and epidemiology of affective disorders, such as anxiety and depression, are discussed.

  10. Natural Selection in Virulence Genes of Francisella tularensis.

    Science.gov (United States)

    Gunnell, Mark K; Robison, Richard A; Adams, Byron J

    2016-06-01

    A fundamental tenet of evolution is that alleles that are under negative selection are often deleterious and confer no evolutionary advantage. Negatively selected alleles are removed from the gene pool and are eventually extinguished from the population. Conversely, alleles under positive selection do confer an evolutionary advantage and lead to an increase in the overall fitness of the organism. These alleles increase in frequency until they eventually become fixed in the population. Francisella tularensis is a zoonotic pathogen and a potential biothreat agent. The most virulent type of F. tularensis, Type A, is distributed across North America with Type A.I occurring mainly in the east and Type A.II appearing mainly in the west. F. tularensis is thought to be a genome in decay (losing genes) because of the relatively large number of pseudogenes present in its genome. We hypothesized that the observed frequency of gene loss/pseudogenes may be an artifact of evolution in response to a changing environment, and that genes involved in virulence should be under strong positive selection. To test this hypothesis, we sequenced and compared whole genomes of Type A.I and A.II isolates. We analyzed a subset of virulence and housekeeping genes from several F. tularensis subspecies genomes to ascertain the presence and extent of positive selection. Eleven previously identified virulence genes were screened for positive selection along with 10 housekeeping genes. Analyses of selection yielded one housekeeping gene and 7 virulence genes which showed significant evidence of positive selection at loci implicated in cell surface structures and membrane proteins, metabolism and biosynthesis, transcription, translation and cell separation, and substrate binding and transport. Our results suggest that while the loss of functional genes through disuse could be accelerated by negative selection, the genome decay in Francisella could also be the byproduct of adaptive evolution

  11. Association of LEI0258 microsatellite alleles with antibody response ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... (MHC) B region on chicken Micro-chromosome 16 has been demonstrated by many workers to be ... promising DNA markers in characterizing MHC B genes. Identifying marker alleles (bands) ..... SAS/STAT Users' Guide,. Release 6.12 Edition, SAS Institute Inc, Cary, North Carolina. USA. Taylor RL (2004).

  12. A survey of new temperature-sensitive, embryonic-lethal mutations in C. elegans: 24 alleles of thirteen genes.

    Directory of Open Access Journals (Sweden)

    Sean M O'Rourke

    2011-03-01

    Full Text Available To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci.

  13. A WIDE DISTRIBUTION OF A NEW VRN-B1c ALLELE OF WHEAT TRITICUM AESTIVUM L. IN RUSSIA, UKRAINE AND ADJACENT REGIONS: A LINK WITH THE HEADING TIME AND ADAPTIVE POTENTIAL

    Directory of Open Access Journals (Sweden)

    Shcherban A.

    2012-08-01

    Full Text Available The adaptation of common wheat (T. aestivum L. to diverse environmental conditions is greatly under the control of genes involved in determination of vernalization response (Vrn-1 genes. It was found that the variation in common wheat heading time is affected not only by combination of Vrn-1 homoeoalleles but also by multiple alleles at a separate Vrn-1 locus. Previously, we described the Vrn-B1c allele from T.aestivum cv. 'Saratovskaya 29' and found significant differences in the structure of the first (1st intron of this allele when compared to another highly abundant Vrn-B1a allele, specifically, the deletion of 0.8 kb coupled with the duplication of 0.4 kb. We suggested that the changes in the intron 1 of Vrn-B1c allele caused earlier ear emergence in the near-isogenic line and cultivars, carrying this allele. In this study we investigate the distribution of the Vrn-B1c allele in a wide set of spring wheat cultivars from Russia, Ukraine and adjacent regions. The analysis revealed that 40% of Russian and 53% of Ukranian spring wheat cultivars contain the Vrn-B1c allele. The high distribution of the Vrn-B1c allele can be explained by a frequent using of 'Saratovskaya 29' in the breeding process inside the studied area. From the other hand, the predominance of the Vrn-B1c allele among cultivars cultivated in West Siberia and Kazakhstan may be due to the selective advantage of this allele for the region where there is a high risk of early fall frosts.

  14. Fibrillin levels in a severely affected Marfan syndrome patient with a null allele

    Energy Technology Data Exchange (ETDEWEB)

    Boxer, M.; Withers, A.P.; Al-Ghaban, Z. [Univ. of Wales, Cardiff (United Kingdom)]|[Ninewells Hospital and Medical School, Dundee (United Kingdom)] [and others

    1994-09-01

    Marfan syndrome is an autosomal dominantly inherited connective tissue disorder characterized by defects in the cardiovascular, skeletal and ocular systems. A patient was first examined in 1992 having survived an acute sortic dissection with subsequent composite repair and insertion of a prosthetic aortic valve. Clinical examination revealed arachnodactyly, narrow, high arched palate with dental crowding, an arm span exceeding her height by 10.5 cm, joint laxity and bilateral lens subluxation. Analysis of the family showed affected members in three generations and the fibrillin gene, FBN1, was shown to segregate with the disease when using polymorphic markers including an RsaI polymorphism in the 3{prime}-untranslated region of the gene. Analysis of patient mRNA for this RsaI polymorphism by RT-PCR (reverse transcriptase-PCR) amplification and restriction enzyme digestion of the PCR products showed that the copy of the gene segregating with the disease was not transcribed. No low level expression of this allele was observed despite RT-PCR amplification incorporating radioactively labelled dCTP, thus revealing a null allele phenotype. Western blotting analysis of fibrillin secreted by the patient`s dermal fibroblasts using fibrillin-specific antibodies showed only normal sized fibrillin protein. However, immunohistochemical studies of the patient`s tissue and fibroblasts showed markedly lowered levels in staining of microfibrillar structures compared with age-matched controls. This low level of expression of the protein affected in Marfan syndrome in a patient with such severe clinical manifestations is surprising since current understanding would suggest that this molecular phenotype should lead to a mild clinical disorder.

  15. Identification of KIF3A as a Novel Candidate Gene for Childhood Asthma Using RNA Expression and Population Allelic Frequencies Differences

    Science.gov (United States)

    Butsch Kovacic, Melinda; Biagini Myers, Jocelyn M.; Wang, Ning; Martin, Lisa J.; Lindsey, Mark; Ericksen, Mark B.; He, Hua; Patterson, Tia L.; Baye, Tesfaye M.; Torgerson, Dara; Roth, Lindsey A.; Gupta, Jayanta; Sivaprasad, Umasundari; Gibson, Aaron M.; Tsoras, Anna M.; Hu, Donglei; Eng, Celeste; Chapela, Rocío; Rodríguez-Santana, José R.; Rodríguez-Cintrón, William; Avila, Pedro C.; Beckman, Kenneth; Seibold, Max A.; Gignoux, Chris; Musaad, Salma M.; Chen, Weiguo; Burchard, Esteban González; Khurana Hershey, Gurjit K.

    2011-01-01

    Background Asthma is a chronic inflammatory disease with a strong genetic predisposition. A major challenge for candidate gene association studies in asthma is the selection of biologically relevant genes. Methodology/Principal Findings Using epithelial RNA expression arrays, HapMap allele frequency variation, and the literature, we identified six possible candidate susceptibility genes for childhood asthma including ADCY2, DNAH5, KIF3A, PDE4B, PLAU, SPRR2B. To evaluate these genes, we compared the genotypes of 194 predominantly tagging SNPs in 790 asthmatic, allergic and non-allergic children. We found that SNPs in all six genes were nominally associated with asthma (pasthma (OR = 2.3, pasthma population attributable risk of 18.5%. The association between KIF3A rs7737031 and asthma was validated in 3 independent populations, further substantiating the validity of our gene selection approach. Conclusions/Significance Our study demonstrates that KIF3A, a member of the kinesin superfamily of microtubule associated motors that are important in the transport of protein complexes within cilia, is a novel candidate gene for childhood asthma. Polymorphisms in KIF3A may in part be responsible for poor mucus and/or allergen clearance from the airways. Furthermore, our study provides a promising framework for the identification and evaluation of novel candidate susceptibility genes. PMID:21912604

  16. Ofd1, a human disease gene, regulates the length and distal structure of centrioles.

    Science.gov (United States)

    Singla, Veena; Romaguera-Ros, Miriam; Garcia-Verdugo, Jose Manuel; Reiter, Jeremy F

    2010-03-16

    Centrosomes and their component centrioles represent the principal microtubule organizing centers of animal cells. Here, we show that the gene underlying orofaciodigital syndrome 1, Ofd1, is a component of the distal centriole that controls centriole length. In the absence of Ofd1, distal regions of centrioles, but not procentrioles, elongate abnormally. These long centrioles are structurally similar to normal centrioles but contain destabilized microtubules with abnormal posttranslational modifications. Ofd1 is also important for centriole distal appendage formation and centriolar recruitment of the intraflagellar transport protein Ift88. To model OFD1 syndrome in embryonic stem cells, we replaced the Ofd1 gene with missense alleles from human OFD1 patients. Distinct disease-associated mutations cause different degrees of excessive or decreased centriole elongation, all of which are associated with diminished ciliogenesis. Our results indicate that Ofd1 acts at the distal centriole to build distal appendages, recruit Ift88, and stabilize centriolar microtubules at a defined length. Copyright 2010 Elsevier Inc. All rights reserved.

  17. [Double mutant alleles in the EXT1 gene not previously reported in a teenager with hereditary multiple exostoses].

    Science.gov (United States)

    Cammarata-Scalisi, Francisco; Cozar, Mónica; Grinberg, Daniel; Balcells, Susana; Asteggiano, Carla G; Martínez-Domenech, Gustavo; Bracho, Ana; Sánchez, Yanira; Stock, Frances; Delgado-Luengo, Wilmer; Zara-Chirinos, Carmen; Chacín, José Antonio

    2015-04-01

    Hereditary forms of multiple exostoses, now called EXT1/EXT2-CDG within Congenital Disorders of Glycosylation, are the most common benign bone tumors in humans and clinical description consists of the formation of several cartilage-capped bone tumors, usually benign and localized in the juxta-epiphyseal region of long bones, although wide body dissemination in severe cases is not uncommon. Onset of the disease is variable ranging from 2-3 years up to 13-15 years with an estimated incidence ranging from 1/18,000 to 1/50,000 cases in European countries. We present a double mutant alleles in the EXT1 gene not previously reported in a teenager and her family with hereditary multiple exostoses.

  18. Cytochrome P450 2D6 variants in a Caucasian population: Allele frequencies and phenotypic consequences

    Energy Technology Data Exchange (ETDEWEB)

    Sachse, C.; Brockmoeller, J.; Bauer, S.; Roots, I. [Humboldt Univ., Berlin (Germany)

    1997-02-01

    Cytochrome P450 2D6 (CYP2D6) metabolizes many important drugs. CYP2D6 activity ranges from complete deficiency to ultrafast metabolism, depending on at least 16 different known alleles. Their frequencies were determined in 589 unrelated German volunteers and correlated with enzyme activity measured by phenotyping with dextromethorphan or debrisoquine. For genotyping, nested PCR-RFLP tests from a PCR amplificate of the entire CYP2D6 gene were developed. The frequency of the CYP2D6*1 allele coding for extensive metabolizer (EM) phenotype was .364. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity (intermediate metabolizer phenotype [IM]) showed frequencies of .324, .018, and .015, respectively. By use of novel PCR tests for discrimination, CYP2D6 gene duplication alleles were found with frequencies of.005 (*1 x 2), .013 (* 2 x 2), and .001 (*4 x 2). Frequencies of alleles with complete deficiency (poor metabolizer phenotype [PM]) were .207 (*4), .020 (*3 and *5), .009 (*6), and .001 (*7, *15, and *16). The defective CYP2D6 alleles *8, *11, *12, *13, and *14 were not found. All 41 PMs (7.0%) in this sample were explained by five mutations detected by four PCR-RFLP tests, which may suffice, together with the gene duplication test, for clinical prediction of CYP2D6 capacity. Three novel variants of known CYP2D6 alleles were discovered: *1C (T{sub 1957}C), *2B (additional C{sub 2558}T), and *4E (additional C{sub 2938}T). Analysis of variance showed significant differences in enzymatic activity measured by the dextromethorphan metabolic ratio (MR) between carriers of EN/PM (mean MR = .006) and IM/PM (mean MR = .014) alleles and between carriers of one (mean MR = .009) and two (mean MR = .003) functional alleles. The results of this study provide a solid basis for prediction of CYP2D6 capacity, as required in drug research and routine drug treatment. 35 refs., 4 figs., 5 tabs.

  19. The derived allele of ASPM is associated with lexical tone perception.

    Directory of Open Access Journals (Sweden)

    Patrick C M Wong

    Full Text Available The ASPM and MCPH1 genes have been implicated in the adaptive evolution of the human brain [Mekel-Bobrov N. et al., 2005. Ongoing adaptive evolution of ASPM, a brain size determinant in homo sapiens. Science 309; Evans P.D. et al., 2005. Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309]. Curiously, experimental attempts have failed to connect the implicated SNPs in these genes with higher-level brain functions. These results stand in contrast with a population-level study linking the population frequency of their alleles with the tendency to use lexical tones in a language [Dediu D., Ladd D.R., 2007. Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and microcephalin. Proc. Natl. Acad. Sci. U.S.A. 104]. In the present study, we found a significant correlation between the load of the derived alleles of ASPM and tone perception in a group of European Americans who did not speak a tone language. Moreover, preliminary results showed a significant correlation between ASPM load and hemodynamic responses to lexical tones in the auditory cortex, and such correlation remained after phonemic awareness, auditory working memory, and non-verbal IQ were controlled. As in previous studies, no significant correlation between ASPM and cognitive measures were found. MCPH1 did not correlate with any measures. These results suggest that the association between the recently derived allele of ASPM is likely to be specific and is tied to higher level brain functions in the temporal cortex related to human communication.

  20. Investigating the relationship between FMR1 allele length and cognitive ability in children: a subtle effect of the normal allele range on the normal ability range?

    Science.gov (United States)

    Loat, C S; Craig, G; Plomin, R; Craig, I W

    2006-09-01

    The FMR1 gene contains a trinucleotide repeat tract which can expand from a normal size of around 30 repeats to over 200 repeats, causing mental retardation (Fragile X Syndrome). Evidence suggests that premutation males (55-200 repeats) are susceptible to a late-onset tremor/ataxia syndrome and females to premature ovarian failure, and that intermediate alleles ( approximately 41-55 repeats) and premutations may be in excess in samples with special educational needs. We explored the relationship between FMR1 allele length and cognitive ability in 621 low ability and control children assessed at 4 and 7 years, as well as 122 students with high IQ. The low and high ability and control samples showed no between-group differences in incidence of longer alleles. In males there was a significant negative correlation between allele length and non-verbal ability at 4 years (p = 0.048), academic achievement in maths (p = 0.003) and English (p = 0.011) at 7 years, and IQ in the high ability group (p = 0.018). There was a significant negative correlation between allele length and a standardised score for IQ and general cognitive ability at age 7 in the entire male sample (p = 0.002). This suggests that, within the normal spectrum of allele length, increased repeat numbers may have a limiting influence on cognitive performance.

  1. Mutations in the maize zeta-carotene desaturase gene lead to viviparous kernel.

    Directory of Open Access Journals (Sweden)

    Yan Chen

    Full Text Available Preharvest sprouting reduces the maize quality and causes a significant yield loss in maize production. vp-wl2 is a Mutator (Mu-induced viviparous mutant in maize, causing white or pale yellow kernels, dramatically reduced carotenoid and ABA content, and a high level of zeta-carotene accumulation. Here, we reported the cloning of the vp-wl2 gene using a modified digestion-ligation-amplification method (DLA. The results showed that an insertion of Mu9 in the first intron of the zeta-carotene desaturase (ZDS gene results in the vp-wl2 mutation. Previous studies have suggested that ZDS is likely the structural gene of the viviparous9 (vp9 locus. Therefore, we performed an allelic test using vp-wl2 and three vp9 mutants. The results showed that vp-wl2 is a novel allele of the vp9 locus. In addition, the sequences of ZDS gene were identified in these three vp9 alleles. The vp-wl2 mutant gene was subsequently introgressed into four maize inbred lines, and a viviparous phenotype was observed with yield losses from 7.69% to 13.33%.

  2. Allelic state at the microsatellite locus Xgwm261 marking the dwarfing gene Rht8 in Egyptian bread wheat (Triticum aestivum L. genotypes released from 1947 to 2004

    Directory of Open Access Journals (Sweden)

    Salem Khaled F.M.

    2015-01-01

    Full Text Available Rht8 is widely used in dry environments such as Mediterranean regions where it increases plant adaptability. Variation at the Gatersleben wheat microsatellite Xgwm261 locus, whose 192-bp allele closely linked to the dwarfing gene Rht8, on chromosome 2D within 0.6 cM, was used to screen thirty Egyptian bread wheat genotypes released from (1947-2004 to assess the variation at this locus. There were three microsatellite allelic variants based on size. Screening of this wheat collection showed that the three alleles Xgwm261-165, Xgwm261-174 and Xgwm261-192 bp were the most frequent. The highest allele frequency was observed for a Xgwm261-165 bp fragment (65.52% followed by a Xgwm261-174 bp fragment (24.14%. However, the allele frequency of a Xgwm261-192 bp fragment among these wheat genotypes was 10.34%. The percentage distribution of dwarfing alleles for the microsatellite locus Xgwm261 in the Egyptian wheat breeding programs was 30, 20, 20 and 30% for the wheat breeding program Giza, Sakha, Gemmiza and Sids, respectively. PIC for Xgwm261 was 0.527. Genetic heritage of Egyptian genotypes at the microsatellite locus Xgwm261 is consequence of new parental components usage, carriers short plant and early maturity attributes and consequent selection progeny with these traits in breeding programs. The present study will be helpful in characterization Egyptian wheat genotypes, as well as in accurate selection of parents for wheat breeding program in Egypt.

  3. CARAT: A novel method for allelic detection of DNA copy number changes using high density oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Ishikawa Shumpei

    2006-02-01

    Full Text Available Abstract Background DNA copy number alterations are one of the main characteristics of the cancer cell karyotype and can contribute to the complex phenotype of these cells. These alterations can lead to gains in cellular oncogenes as well as losses in tumor suppressor genes and can span small intervals as well as involve entire chromosomes. The ability to accurately detect these changes is central to understanding how they impact the biology of the cell. Results We describe a novel algorithm called CARAT (Copy Number Analysis with Regression And Tree that uses probe intensity information to infer copy number in an allele-specific manner from high density DNA oligonuceotide arrays designed to genotype over 100, 000 SNPs. Total and allele-specific copy number estimations using CARAT are independently evaluated for a subset of SNPs using quantitative PCR and allelic TaqMan reactions with several human breast cancer cell lines. The sensitivity and specificity of the algorithm are characterized using DNA samples containing differing numbers of X chromosomes as well as a test set of normal individuals. Results from the algorithm show a high degree of agreement with results from independent verification methods. Conclusion Overall, CARAT automatically detects regions with copy number variations and assigns a significance score to each alteration as well as generating allele-specific output. When coupled with SNP genotype calls from the same array, CARAT provides additional detail into the structure of genome wide alterations that can contribute to allelic imbalance.

  4. DRD4 dopamine receptor allelic diversity in various primate species

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M.; Higley, D. [NIAAA, Rockville, MD (United States); O`Brien, S. [NCI, Frederick, MD (United States)] [and others

    1994-09-01

    The DRD4 dopamine receptor is uniquely characterized by a 48 bp repeating segment within the coding region, located in exon III. Different DRD4 alleles are produced by the presence of additional 48 bp repeats, each of which adds 16 amino acids to the length of the 3rd intracytoplasmic loop of the receptor. The DRD4 receptor is therefore an intriguing candidate gene for behaviors which are influenced by dopamine function. In several human populations, DRD4 alleles with 2-8 and 10 repeats have previously been identified, and the 4 and 7 repeat alleles are the most abundant. We have determined DRD4 genotypes in the following nonhuman primate species: chimpanzee N=2, pygmy chimpanzee N=2, gorilla N=4, siamang N=2, Gelada baboon N=1, gibbon N=1, orangutan (Bornean and Sumatran) N=62, spider monkey N=4, owl monkey N=1, Colobus monkey N=1, Patas monkey N=1, ruffed lemur N=1, rhesus macaque N=8, and vervet monkey N=28. The degree of DRD4 polymorphism and which DRD4 alleles were present both showed considerable variation across primate species. In contrast to the human, rhesus macaque monkeys were monomorphic. The 4 and 7 repeat allels, highly abundant in the human, may not be present in certain other primates. For example, the four spider monkeys we studied showed the 7, 8 and 9 repeat length alleles and the only gibbon we analyzed was homozygous for the 9 repeat allele (thus far not observed in the human). Genotyping of other primate species and sequencing of the individual DRD4 repeat alleles in different species may help us determine the ancestral DRD4 repeat length and identify connections between DRD4 genotype and phenotype.

  5. Cloning and Characterization of Low-Molecular-Weight Glutenin Subunit Alleles from Chinese Wheat Landraces (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Hongqi Si

    2014-01-01

    Full Text Available Low-molecular-weight glutenin subunits (LMW-GS are of great importance in processing quality and participate in the formation of polymers in wheat. In this study, eight new LMW-GS alleles were isolated from Chinese wheat landraces (Triticum aestivum L. and designated as Glu-A3-1a, Glu-A3-1b, Glu-B3-1a, Glu-B3-1b, Glu-B3-1c, Glu-D3-1a, Glu-D3-1b, and Glu-D3-1c, which were located at the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. Based on the proteins encoded, the number of deduced amino acids of Glu-B3 alleles was approximately 50 more than those of Glu-A3 and Glu-D3 alleles. The first cysteine of Glu-A3 and Glu-D3 alleles was located at the N-terminal domain, while that of Glu-B3 alleles was found in the repetitive domain, which may lead to the different functioning in forming disulfide bonds. All the eight genes were LMW-m types and the new allele of Glu-B3-1a which had nine cysteine residues may be the desirable LMW-GS gene for improving bread-making quality.

  6. Association between the seven-repeat allele of the dopamine-4 receptor gene (DRD4) and spontaneous food intake in pre-school children.

    Science.gov (United States)

    Silveira, Patrícia Pelufo; Portella, André Krumel; Kennedy, James L; Gaudreau, Hélène; Davis, Caroline; Steiner, Meir; Soares, Claudio N; Matthews, Stephen G; Sokolowski, Marla B; Dubé, Laurette; Loucks, Eric B; Hamilton, Jill; Meaney, Michael J; Levitan, Robert D

    2014-02-01

    Studies in adults show associations between the hypofunctional seven-repeat allele (7R) of the dopamine-4 receptor gene (DRD4), increased eating behaviour and/or obesity, particularly in females. We examined whether 7R is associated with total caloric intake and/or food choices in pre-schoolers. 150 four-year-old children taking part in a birth cohort study in Canada were administered a snack test meal in a laboratory setting. Mothers also filled out a food frequency questionnaire to address childrens' habitual food consumption. Total caloric and individual macronutrient intakes during the snack meal and specific types of foods as reported in the food diaries were compared across 7R allele carriers vs. non-carriers, using current BMI as a co-variate. We found significant sex by genotype interactions for fat and protein intake during the snack test. Post hoc testing revealed that in girls, but not boys, 7R carriers ate more fat and protein than did non-carriers. Based on the food diaries, across both sexes, 7R carriers consumed more portions of ice cream and less vegetables, eggs, nuts and whole bread, suggesting a less healthy pattern of habitual food consumption. The 7R allele of DRD4 influences macronutrient intakes and specific food choices as early as four years of age. The specific pattern of results further suggests that prior associations between the 7R allele and adult overeating/obesity may originate in food choices observable in the preschool years. Longitudinal follow-up of these children will help establish the relevance of these findings for obesity risk and prevention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Role of the B Allele of Influenza A Virus Segment 8 in Setting Mammalian Host Range and Pathogenicity.

    Science.gov (United States)

    Turnbull, Matthew L; Wise, Helen M; Nicol, Marlynne Q; Smith, Nikki; Dunfee, Rebecca L; Beard, Philippa M; Jagger, Brett W; Ligertwood, Yvonne; Hardisty, Gareth R; Xiao, Haixia; Benton, Donald J; Coburn, Alice M; Paulo, Joao A; Gygi, Steven P; McCauley, John W; Taubenberger, Jeffery K; Lycett, Samantha J; Weekes, Michael P; Dutia, Bernadette M; Digard, Paul

    2016-10-15

    Two alleles of segment 8 (NS) circulate in nonchiropteran influenza A viruses. The A allele is found in avian and mammalian viruses, but the B allele is viewed as being almost exclusively found in avian viruses. This might reflect the fact that one or both of its encoded proteins (NS1 and NEP) are maladapted for replication in mammalian hosts. To test this, a number of clade A and B avian virus-derived NS segments were introduced into human H1N1 and H3N2 viruses. In no case was the peak virus titer substantially reduced following infection of various mammalian cell types. Exemplar reassortant viruses also replicated to similar titers in mice, although mice infected with viruses with the avian virus-derived segment 8s had reduced weight loss compared to that achieved in mice infected with the A/Puerto Rico/8/1934 (H1N1) parent. In vitro, the viruses coped similarly with type I interferons. Temporal proteomics analysis of cellular responses to infection showed that the avian virus-derived NS segments provoked lower levels of expression of interferon-stimulated genes in cells than wild type-derived NS segments. Thus, neither the A nor the B allele of avian virus-derived NS segments necessarily attenuates virus replication in a mammalian host, although the alleles can attenuate disease. Phylogenetic analyses identified 32 independent incursions of an avian virus-derived A allele into mammals, whereas 6 introductions of a B allele were identified. However, A-allele isolates from birds outnumbered B-allele isolates, and the relative rates of Aves-to-Mammalia transmission were not significantly different. We conclude that while the introduction of an avian virus segment 8 into mammals is a relatively rare event, the dogma of the B allele being especially restricted is misleading, with implications in the assessment of the pandemic potential of avian influenza viruses. Influenza A virus (IAV) can adapt to poultry and mammalian species, inflicting a great socioeconomic

  8. High-resolution mapping of the S-locus in Turnera leads to the discovery of three genes tightly associated with the S-alleles.

    Science.gov (United States)

    Labonne, Jonathan J D; Goultiaeva, Alina; Shore, Joel S

    2009-06-01

    While the breeding system known as distyly has been used as a model system in genetics, and evolutionary biology for over a century, the genes determining this system remain unknown. To positionally clone genes determining distyly, a high-resolution map of the S-locus region of Turnera has been constructed using segregation data from 2,013 backcross progeny. We discovered three putative genes tightly linked with the S-locus. An N-acetyltransferase (TkNACE) flanks the S-locus at 0.35 cM while a sulfotransferase (TkST1) and a non-LTR retroelement (TsRETRO) show complete linkage to the S-locus. An assay of population samples of six species revealed that TsRETRO, initially discovered in diploid Turnera subulata, is also associated with the S-allele in tetraploid T. subulata and diploid Turnera scabra. The sulfotransferase gene shows some level of differential expression in long versus short styles, indicating it might be involved in some aspect of distyly. The complete linkage of TkST1 and TsRETRO to the S-locus suggests that both genes may reside within, or in the immediate vicinity of the S-locus. Chromosome walking has been initiated using one of the genes discovered in the present study to identify the genes determining distyly.

  9. Overdispersion in allelic counts and θ-correction in forensic genetics

    DEFF Research Database (Denmark)

    Tvedebrink, Torben

    2010-01-01

    We present a statistical model for incorporating the extra variability in allelic counts due to subpopulation structures. In forensic genetics, this effect is modelled by the identical-by-descent parameter θ, which measures the relationship between pairs of alleles within a population relative...... with computation of the profile log-likelihood, confidence intervals and hypothesis testing. In order to compare our method with existing methods, we reanalysed FBI data from Budowle and Moretti (1999) with allele counts in six US subpopulations. Furthermore, we investigate properties of our methodology from...

  10. Characterization of ROP18 alleles in human toxoplasmosis.

    Science.gov (United States)

    Sánchez, Víctor; de-la-Torre, Alejandra; Gómez-Marín, Jorge Enrique

    2014-04-01

    The role of the virulent gene ROP18 polymorphisms is not known in human toxoplasmosis. A total of 320 clinical samples were analyzed. In samples positive for ROP18 gene, we determined by an allele specific PCR, if patients got the upstream insertion positive ROP18 sequence Toxoplasma strain (mouse avirulent strain) or the upstream insertion negative ROP18 sequence Toxoplasma strain (mouse virulent strain). We designed an ELISA assay for antibodies against ROP18 derived peptides from the three major clonal lineages of Toxoplasma. 20 clinical samples were of quality for ROP18 allele analysis. In patients with ocular toxoplasmosis, a higher inflammatory reaction on eye was associated to a PCR negative result for the upstream region of ROP18. 23.3%, 33% and 16.6% of serums from individuals with ocular toxoplasmosis were positive for type I, type II and type III ROP18 derived peptides, respectively but this assay was affected by cross reaction. The absence of Toxoplasma ROP18 promoter insertion sequence in ocular toxoplasmosis was correlated with severe ocular inflammatory response. Determination of antibodies against ROP18 protein was not useful for serotyping in human toxoplasmosis. © 2013.

  11. Analysis of an "off-ladder" allele at the Penta D short tandem repeat locus.

    Science.gov (United States)

    Yang, Y L; Wang, J G; Wang, D X; Zhang, W Y; Liu, X J; Cao, J; Yang, S L

    2015-11-25

    Kinship testing of a father and his son from Guangxi, China, the location of the Zhuang minority people, was performed using the PowerPlex® 18D System with a short tandem repeat typing kit. The results indicated that both the father and his son had an off-ladder allele at the Penta D locus, with a genetic size larger than that of the maximal standard allelic ladder. To further identify this locus, monogenic amplification, gene cloning, and genetic sequencing were performed. Sequencing analysis demonstrated that the fragment size of the Penta D-OL locus was 469 bp and the core sequence was [AAAGA]21, also called Penta D-21. The rare Penta D-21 allele was found to be distributed among the Zhuang population from the Guangxi Zhuang Autonomous Region of China; therefore, this study improved the range of DNA data available for this locus and enhanced our ability for individual identification of gene loci.

  12. Disparities in allele frequencies and population differentiation for 101 disease-associated single nucleotide polymorphisms between Puerto Ricans and non-Hispanic whites

    Directory of Open Access Journals (Sweden)

    Arnett Donna

    2009-08-01

    Full Text Available Abstract Background Variations in gene allele frequencies can contribute to differences in the prevalence of some common complex diseases among populations. Natural selection modulates the balance in allele frequencies across populations. Population differentiation (FST can evidence environmental selection pressures. Such genetic information is limited in Puerto Ricans, the second largest Hispanic ethnic group in the US, and a group with high prevalence of chronic disease. We determined allele frequencies and population differentiation for 101 single nucleotide polymorphisms (SNPs in 30 genes involved in major metabolic and disease-relevant pathways in Puerto Ricans (n = 969, ages 45–75 years and compared them to similarly aged non-Hispanic whites (NHW (n = 597. Results Minor allele frequency (MAF distributions for 45.5% of the SNPs assessed in Puerto Ricans were significantly different from those of NHW. Puerto Ricans carried risk alleles in higher frequency and protective alleles in lower frequency than NHW. Patterns of population differentiation showed that Puerto Ricans had SNPs with exceptional FST values in intronic, non-synonymous and promoter regions. NHW had exceptional FST values in intronic and promoter region SNPs only. Conclusion These observations may serve to explain and broaden studies on the impact of gene polymorphisms on chronic diseases affecting Puerto Ricans.

  13. SSR allelic variation in almond (Prunus dulcis Mill.).

    Science.gov (United States)

    Xie, Hua; Sui, Yi; Chang, Feng-Qi; Xu, Yong; Ma, Rong-Cai

    2006-01-01

    Sixteen SSR markers including eight EST-SSR and eight genomic SSRs were used for genetic diversity analysis of 23 Chinese and 15 international almond cultivars. EST- and genomic SSR markers previously reported in species of Prunus, mainly peach, proved to be useful for almond genetic analysis. DNA sequences of 117 alleles of six of the 16 SSR loci were analysed to reveal sequence variation among the 38 almond accessions. For the four SSR loci with AG/CT repeats, no insertions or deletions were observed in the flanking regions of the 98 alleles sequenced. Allelic size variation of these loci resulted exclusively from differences in the structures of repeat motifs, which involved interruptions or occurrences of new motif repeats in addition to varying number of AG/CT repeats. Some alleles had a high number of uninterrupted repeat motifs, indicating that SSR mutational patterns differ among alleles at a given SSR locus within the almond species. Allelic homoplasy was observed in the SSR loci because of base substitutions, interruptions or compound repeat motifs. Substitutions in the repeat regions were found at two SSR loci, suggesting that point mutations operate on SSRs and hinder the further SSR expansion by introducing repeat interruptions to stabilize SSR loci. Furthermore, it was shown that some potential point mutations in the flanking regions are linked with new SSR repeat motif variation in almond and peach.

  14. Allelic variations in the CYBA gene of NADPH oxidase and risk of kidney complications in patients with type 1 diabetes.

    Science.gov (United States)

    Patente, Thiago A; Mohammedi, Kamel; Bellili-Muñoz, Naïma; Driss, Fathi; Sanchez, Manuel; Fumeron, Frédéric; Roussel, Ronan; Hadjadj, Samy; Corrêa-Giannella, Maria Lúcia; Marre, Michel; Velho, Gilberto

    2015-09-01

    Oxidative stress plays a pivotal role in the pathophysiology of diabetic nephropathy, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system is an important source of reactive oxygen species in hyperglycemic conditions in the kidney. Plasma concentration of advanced oxidation protein products (AOPP), a marker of oxidative stress, is increased in patients with diabetic nephropathy. We investigated associations of variants in the CYBA gene, encoding the regulatory subunit p22(phox) of NADPH oxidase, with diabetic nephropathy and plasma AOPP and myeloperoxidase (MPO) concentrations in type 1 diabetic patients. Seven SNPs in the CYBA region were analyzed in 1357 Caucasian subjects with type 1 diabetes from the SURGENE (n=340), GENEDIAB (n=444), and GENESIS (n=573) cohorts. Duration of follow-up was 10, 9, and 6 years, respectively. Cox proportional hazards and logistic regression analyses were used to estimate hazard ratios (HR) or odds ratios (OR) for incidence and prevalence of diabetic nephropathy. The major G-allele of rs9932581 was associated with the incidence of renal events defined as new cases of microalbuminuria or the progression to a more severe stage of nephropathy during follow-up (HR 1.59, 95% CI 1.17-2.18, P=0.003) in SURGENE. The same allele was associated with established/advanced nephropathy (OR 1.52, 95% CI 1.22-1.92, P=0.0001) and with the incidence of end-stage renal disease (ESRD) (HR 2.01, 95% CI 1.30-3.24, P=0.001) in GENEDIAB/GENESIS pooled studies. The risk allele was also associated with higher plasma AOPP concentration in subsets of SURGENE and GENEDIAB, with higher plasma MPO concentration in a subset of GENEDIAB, and with lower estimated glomerular filtration rate (eGFR) in the three cohorts. In conclusion, a functional variant in the promoter of the CYBA gene was associated with lower eGFR and with prevalence and incidence of diabetic nephropathy and ESRD in type 1 diabetic patients. These results are consistent with

  15. Distortion of maternal-fetal angiotensin II type 1 receptor allele transmission in pre-eclampsia.

    Science.gov (United States)

    Morgan, L; Crawshaw, S; Baker, P N; Brookfield, J F; Broughton Pipkin, F; Kalsheker, N

    1998-01-01

    OBJECTIVE: To investigate the fetal angiotensin II type 1 receptor genotype in pre-eclampsia. DESIGN: Case-control study. POPULATION: Forty-one maternal-fetal pairs from pre-eclamptic pregnancies and 80 maternal-fetal pairs from normotensive pregnancies. METHODS: Maternal and fetal DNA was genotyped at three diallelic polymorphisms, at nucleotides 573, 1062, and 1166, in the coding exon of the angiotensin II type 1 receptor gene, and at a dinucleotide repeat polymorphism in its 3' flanking region. RESULTS: Allele and genotype frequencies at the four polymorphic regions investigated did not differ between pre-eclamptic and normotensive groups, in either fetal or maternal samples. Mothers heterozygous for the dinucleotide repeat allele designated A4 transmitted this allele to the fetus in 15 of 18 informative pre-eclamptic pregnancies and in eight of 26 normotensive pregnancies. This was greater than the expected probability in pre-eclamptic pregnancies (p=0.04) and less than expected in normotensive pregnancies (p<0.005). The 573T variant, which is in partial linkage disequilibrium with the A4 allele, showed a similar distortion of maternal-fetal transmission. CONCLUSION: Angiotensin II type 1 receptor gene expression in the fetus may contribute to the aetiology of pre-eclampsia. It is unclear whether susceptibility is conferred by the fetal genotype acting alone, or by allele sharing by mother and fetus. Possible mechanisms for the effect of the angiotensin II type 1 receptor gene are suggested by the association of the 573T variant with low levels of surface receptor expression on platelets. If receptor expression is similarly genetically determined in the placenta, responsiveness to angiotensin II may be affected, with the potential to influence placentation or placental prostaglandin secretion. PMID:9719367

  16. Novel procedure for genotyping of the human serotonin transporter gene-linked polymorphic region (5-HTTLPR)--a region with a high level of allele diversity

    DEFF Research Database (Denmark)

    Rasmussen, Henrik B; Werge, Thomas M

    2007-01-01

    determination. After having developed a 5-HTTLPR genotyping assay, we examined all samples of DNA in two separate rounds of analyses and found complete agreement between the results from these two rounds. CONCLUSION: On the basis of simultaneous analysis of tandem repeat size variation and variation of single......BACKGROUND: The serotonin transporter, the target of a group of antidepressant drugs, is involved in the regulation of the availability and reuptake of serotonin. A variable number of tandem repeats in the promoter region of the serotonin transporter gene, designated 5-HTTLPR, affects...... for detailed genotyping of 5-HTTLPR based upon simultaneous analysis of tandem repeat size variation and single nucleotide variations. METHODS: We elaborated a list of all known 5-HTTLPR alleles to provide an overview of the allele repertoire at this polymorphic locus. Fragments of 5-HTTLPR were PCR...

  17. Clonal Ordering of 17p and 5q Allelic Losses in Barrett Dysplasia and Adenocarcinoma

    Science.gov (United States)

    Blount, Patricia L.; Meltzer, Stephen J.; Yin, Jing; Huang, Ying; Krasna, Mark J.; Reid, Brian J.

    1993-04-01

    Both 17p and 5q allelic losses appear to be involved in the pathogenesis or progression of many human solid tumors. In colon carcinogenesis, there is strong evidence that the targets of the 17p and 5q allelic losses are TP53, the gene encoding p53, and APC, respectively. It is widely accepted that 5q allelic losses precede 17p allelic losses in the progression to colonic carcinoma. The data, however, supporting this proposed order are largely based on the prevalence of 17p and 5q allelic losses in adenomas and unrelated adenocarcinomas from different patients. We investigated the order in which 17p and 5q allelic losses developed during neoplastic progression in Barrett esophagus by evaluating multiple aneuploid cell populations from the same patient. Using DNA content flow cytometric cell sorting and polymerase chain reaction, 38 aneuploid cell populations from 14 patients with Barrett esophagus who had high grade dysplasia, cancer or both were evaluated for 17p and 5q allelic losses. 17p allelic losses preceded 5q allelic losses in 7 patients, both 17p and 5q allelic losses were present in all aneuploid populations of 4 patients, and only 17p (without 5q) allelic losses were present in the aneuploid populations of 3 patients. In no patient did we find that a 5q allelic loss preceded a 17p allelic loss. Our data suggest that 17p allelic losses typically occur before 5q allelic losses during neoplastic progression in Barrett esophagus.

  18. A common allele on chromosome 9 associated with coronary heartdisease

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Ruth; Pertsemlidis, Alexander; Kavaslar, Nihan; Stewart, Alexandre; Roberts, Robert; Cox, David R.; Hinds, David; Pennachio, Len; Tybjaerg-Hansen, Anne; Folsom, Aaron R.; Boerwinkle,Eric; Hobbs, Helen H.; Cohen, Jonathan C.

    2007-03-01

    Coronary heart disease (CHD) is a major cause of death in Western countries. Here we used genome-wide association scanning to identify a 58 kb interval on chromosome 9 that was consistently associated with CHD in six independent samples. The interval contains no annotated genes and is not associated with established CHD risk factors such as plasma lipoproteins, hypertension or diabetes. Homozygotes for the risk allele comprise 20-25% of Caucasians and have a {approx}30-40% increased risk of CHD. These data indicate that the susceptibility allele acts through a novel mechanism to increase CHD risk in a large fraction of the population.

  19. HFE gene polymorphism defined by sequence-based typing of the Brazilian population and a standardized nomenclature for HFE allele sequences.

    Science.gov (United States)

    Campos, W N; Massaro, J D; Martinelli, A L C; Halliwell, J A; Marsh, S G E; Mendes-Junior, C T; Donadi, E A

    2017-10-01

    The HFE molecule controls iron uptake from gut, and defects in the molecule have been associated with iron overload, particularly in hereditary hemochromatosis. The HFE gene including both coding and boundary intronic regions were sequenced in 304 Brazilian individuals, encompassing healthy individuals and patients exhibiting hereditary or acquired iron overload. Six sites of variation were detected: (1) H63D C>G in exon 2, (2) IVS2 (+4) T>C in intron 2, (3) a C>G transversion in intron 3, (4) C282Y G>A in exon 4, (5) IVS4 (-44) T>C in intron 4, and (6) a new guanine deletion (G>del) in intron 5, which were used for haplotype inference. Nine HFE alleles were detected and six of these were officially named on the basis of the HLA Nomenclature, defined by the World Health Organization (WHO) Nomenclature Committee for Factors of the HLA System, and published via the IPD-IMGT/HLA website. Four alleles, HFE*001, *002, *003, and *004 exhibited variation within their exon sequences. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Genetic dissection of the Drosophila melanogaster female head transcriptome reveals widespread allelic heterogeneity.

    Science.gov (United States)

    King, Elizabeth G; Sanderson, Brian J; McNeil, Casey L; Long, Anthony D; Macdonald, Stuart J

    2014-05-01

    Modern genetic mapping is plagued by the "missing heritability" problem, which refers to the discordance between the estimated heritabilities of quantitative traits and the variance accounted for by mapped causative variants. One major potential explanation for the missing heritability is allelic heterogeneity, in which there are multiple causative variants at each causative gene with only a fraction having been identified. The majority of genome-wide association studies (GWAS) implicitly assume that a single SNP can explain all the variance for a causative locus. However, if allelic heterogeneity is prevalent, a substantial amount of genetic variance will remain unexplained. In this paper, we take a haplotype-based mapping approach and quantify the number of alleles segregating at each locus using a large set of 7922 eQTL contributing to regulatory variation in the Drosophila melanogaster female head. Not only does this study provide a comprehensive eQTL map for a major community genetic resource, the Drosophila Synthetic Population Resource, but it also provides a direct test of the allelic heterogeneity hypothesis. We find that 95% of cis-eQTLs and 78% of trans-eQTLs are due to multiple alleles, demonstrating that allelic heterogeneity is widespread in Drosophila eQTL. Allelic heterogeneity likely contributes significantly to the missing heritability problem common in GWAS studies.

  1. Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification.

    Science.gov (United States)

    de Miguel, Marina; Cabezas, José-Antonio; de María, Nuria; Sánchez-Gómez, David; Guevara, María-Ángeles; Vélez, María-Dolores; Sáez-Laguna, Enrique; Díaz, Luis-Manuel; Mancha, Jose-Antonio; Barbero, María-Carmen; Collada, Carmen; Díaz-Sala, Carmen; Aranda, Ismael; Cervera, María-Teresa

    2014-06-12

    Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought. High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes. A total of 28 significant and 27 suggestive QTL were found. QTL detected for photochemical traits accounted for the higher percentage of phenotypic variance. Functional annotation of genes within the QTL suggested 58 candidate genes for the analyzed traits. Allele association analysis in selected candidate genes showed three SNPs located in a MYB transcription factor that were significantly associated with efficiency of energy capture by open PSII reaction centers and specific leaf area. The integration of QTL mapping of functional traits, genome annotation and allele association yielded several candidate genes involved with molecular control of photosynthesis and water use efficiency in response to drought in a conifer species. The results obtained highlight the importance of maintaining the integrity of the photochemical machinery in P. pinaster drought response.

  2. The allelic distribution of -308 Tumor Necrosis Factor-alpha gene polymorphism in South African women with cervical cancer and control women

    International Nuclear Information System (INIS)

    Govan, Vandana A; Constant, Debbie; Hoffman, Margaret; Williamson, Anna-Lise

    2006-01-01

    Cervical cancer is due to infection with specific high-risk types of human papillomavirus (HPV). Although the incidence of genital HPV infection in various population groups is high, most of these regress without intervention. Investigating genetic host factors and cellular immune responses, particularly cytokines, could help to understand the association between genital HPV infection and carcinogenesis. The tumor necrosis factor alpha (TNF-α) cytokine plays an important role in all stages of cervical cancer and has the ability to induce the regression of human tumors. Therefore the aim of the study was to investigate the allelic distribution of -308 TNF-α gene polymorphism in South African women with cervical cancer compared to control women. Included in our study were women with histologically proven cancer of the cervix (n = 244) and hospital-based controls (n = 228). All patients and controls were from mixed race and black population groups in South Africa. The detection of a bi-allelic -308 (A/G) polymorphism in the promoter region of TNF-α was investigated using the amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) technique. The distributions of the allelic frequencies were stratified in both patients and controls into two South African ethnic population groups. In this study we observed no association between the distribution of -308 TNF-α polymorphism and the risk of developing cervical cancer even after combining the data from the two ethnic populations (X 2 = 2.26). In addition, using the chi-squared test we found no significant association between the known risk factors for cervical cancer and the allele distribution of -308 TNF-α. However, the frequency of the rare high-producing allele -308A of TNF-α was significantly lower in the South African population when compared to Caucasians and Chinese population groups. We demonstrated no association between -308 TNF-α polymorphism and the risk of cervical cancer among two

  3. Genetic exchange of fimbrial alleles exemplifies the adaptive virulence strategy of Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Jennifer E Kerr

    Full Text Available Porphyromonas gingivalis is a gram-negative anaerobic bacterium, a member of the human oral microbiome, and a proposed "keystone" pathogen in the development of chronic periodontitis, an inflammatory disease of the gingiva. P. gingivalis is a genetically diverse species, and is able to exchange chromosomal DNA between strains by natural competence and conjugation. In this study, we investigate the role of horizontal DNA transfer as an adaptive process to modify behavior, using the major fimbriae as our model system, due to their critical role in mediating interactions with the host environment. We show that P. gingivalis is able to exchange fimbrial allele types I and IV into four distinct strain backgrounds via natural competence. In all recombinants, we detected a complete exchange of the entire fimA allele, and the rate of exchange varies between the different strain backgrounds. In addition, gene exchange within other regions of the fimbrial genetic locus was identified. To measure the biological implications of these allele swaps we compared three genotypes of fimA in an isogenic background, strain ATCC 33277. We demonstrate that exchange of fimbrial allele type results in profound phenotypic changes, including the quantity of fimbriae elaborated, membrane blebbing, auto-aggregation and other virulence-associated phenotypes. Replacement of the type I allele with either the type III or IV allele resulted in increased invasion of gingival fibroblast cells relative to the isogenic parent strain. While genetic variability is known to impact host-microbiome interactions, this is the first study to quantitatively assess the adaptive effect of exchanging genes within the pan genome cloud. This is significant as it presents a potential mechanism by which opportunistic pathogens may acquire the traits necessary to modify host-microbial interactions.

  4. Genetic exchange of fimbrial alleles exemplifies the adaptive virulence strategy of Porphyromonas gingivalis.

    Science.gov (United States)

    Kerr, Jennifer E; Abramian, Jared R; Dao, Doan-Hieu V; Rigney, Todd W; Fritz, Jamie; Pham, Tan; Gay, Isabel; Parthasarathy, Kavitha; Wang, Bing-yan; Zhang, Wenjian; Tribble, Gena D

    2014-01-01

    Porphyromonas gingivalis is a gram-negative anaerobic bacterium, a member of the human oral microbiome, and a proposed "keystone" pathogen in the development of chronic periodontitis, an inflammatory disease of the gingiva. P. gingivalis is a genetically diverse species, and is able to exchange chromosomal DNA between strains by natural competence and conjugation. In this study, we investigate the role of horizontal DNA transfer as an adaptive process to modify behavior, using the major fimbriae as our model system, due to their critical role in mediating interactions with the host environment. We show that P. gingivalis is able to exchange fimbrial allele types I and IV into four distinct strain backgrounds via natural competence. In all recombinants, we detected a complete exchange of the entire fimA allele, and the rate of exchange varies between the different strain backgrounds. In addition, gene exchange within other regions of the fimbrial genetic locus was identified. To measure the biological implications of these allele swaps we compared three genotypes of fimA in an isogenic background, strain ATCC 33277. We demonstrate that exchange of fimbrial allele type results in profound phenotypic changes, including the quantity of fimbriae elaborated, membrane blebbing, auto-aggregation and other virulence-associated phenotypes. Replacement of the type I allele with either the type III or IV allele resulted in increased invasion of gingival fibroblast cells relative to the isogenic parent strain. While genetic variability is known to impact host-microbiome interactions, this is the first study to quantitatively assess the adaptive effect of exchanging genes within the pan genome cloud. This is significant as it presents a potential mechanism by which opportunistic pathogens may acquire the traits necessary to modify host-microbial interactions.

  5. DISC1 gene and affective psychopathology: a combined structural and functional MRI study.

    Science.gov (United States)

    Opmeer, Esther M; van Tol, Marie-José; Kortekaas, Rudie; van der Wee, Nic J A; Woudstra, Saskia; van Buchem, Mark A; Penninx, Brenda W; Veltman, Dick J; Aleman, André

    2015-02-01

    The gene Disrupted-In-Schizophrenia-1 (DISC1) has been indicated as a determinant of psychopathology, including affective disorders, and shown to influence prefrontal cortex (PFC) and hippocampus functioning, regions of major interest for affective disorders. We aimed to investigate whether DISC1 differentially modulates brain function during executive and memory processing, and morphology in regions relevant for depression and anxiety disorders (affective disorders). 128 participants, with (n = 103) and without (controls; n = 25) affective disorders underwent genotyping for Ser704Cys (with Cys-allele considered as risk-allele) and structural and functional (f) Magnetic Resonance Imaging (MRI) during visuospatial planning and emotional episodic memory tasks. For both voxel-based morphometry and fMRI analyses, we investigated the effect of genotype in controls and explored genotypeXdiagnosis interactions. Results are reported at p < 0.05 FWE small volume corrected. In controls, Cys-carriers showed smaller bilateral (para)hippocampal volumes compared with Ser-homozygotes, and lower activation in the anterior cingulate cortex (ACC) and dorsolateral PFC during visuospatial planning. In anxiety patients, Cys-carriers showed larger (para)hippocampal volumes and more ACC activation during visuospatial planning. In depressive patients, no effect of genotype was observed and overall, no effect of genotype on episodic memory processing was detected. We demonstrated that Ser704Cys-genotype influences (para)hippocampal structure and functioning the dorsal PFC during executive planning, most prominently in unaffected controls. Results suggest that presence of psychopathology moderates Ser704Cys effects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Two mutant alleles of the human cytochrome P-450dbl gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs

    International Nuclear Information System (INIS)

    Skoda, R.C.; Gonzalez, F.L.; Demierre, A.; Meyer, R.A.

    1988-01-01

    The debrisoquine polymorphism is a clinically important genetic defect of drug metabolism affecting 5-10% of individuals in Caucasian populations. It is inherited as an autosomal recessive trait. A full-length cDNA for human cytochrome P-450db1, the deficient enzyme (also designated P450IID1 for P450 family II subfamily D isozyme 1), has recently been cloned. Leukocyte DNA from extensive metabolizers (EMs) or poor metabolizers (PMs) of debrisoquine was examined by Southern analysis. Two polymorphic restriction fragments were associated with the PM phenotype when DNAs from 24 unrelated PM and 29 unrelated EM individuals were probed with P-450db1 cDNA after digestion with Xba I restriction endonuclease and Southern blotting. Seventy-five percent of PMs had either the 44-kb or the 11.5-kb fragment or both. Segregation of these restriction fragment length polymorphisms in the families of six PM probands demonstrated that each of the two fragments is allelic with the 29-kb fragment present in all EM individuals and suggests that they identify two independent mutated alleles of the P-450db1 gene (designated P450C2D1). The Xba I 44-kb fragment and 11.5-kb fragment were in linkage disequilibrium with restriction fragment length polymorphisms generated by four and five additional restriction endonucleases, respectively, which can be used to identify the same mutant alleles for the P-450db1 gene

  7. Highly preferential association of NonF508del CF mutations with the M470 allele.

    Science.gov (United States)

    Ciminelli, B M; Bonizzato, A; Bombieri, C; Pompei, F; Gabaldo, M; Ciccacci, C; Begnini, A; Holubova, A; Zorzi, P; Piskackova, T; Macek, M; Castellani, C; Modiano, G; Pignatti, P F

    2007-01-01

    On the basis of previous findings on random individuals, we hypothesized a preferential association of CF causing mutations with the M allele of the M470V polymorphic site of the CFTR gene. We have determined the M/V-CF mutation haplotype in a series of 201 North East Italian and 73 Czech CF patients who were not F508del homozygotes, as F508del was already known to be fully associated with the M allele. Out of 358 not F508del CF genes, 84 carried the V allele and 274 the less common M allele. In the N-E Italian population, MM subjects have a risk of carrying a CF causing mutation 6.9x greater than VV subjects when F508del is excluded and 15.4x when F508del is included. In the Czech population a similar, although less pronounced, association is observed. Besides the possible biological significance of this association, the possibility of exploiting it for a pilot screening program has been explored in a local North East Italian population for which CF patients were characterized for their CF mutation. General M470V genotyping followed by common CF mutation screening limited to couples in which each partner carries at least one M allele would need testing only 39% of the couples, which contribute 89% of the total risk, with a cost benefit.

  8. Generation of New Hairless Alleles by Genomic Engineering at the Hairless Locus in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Heiko Praxenthaler

    Full Text Available Hairless (H is the major antagonist within the Notch signalling pathway of Drosophila melanogaster. By binding to Suppressor of Hairless [Su(H] and two co-repressors, H induces silencing of Notch target genes in the absence of Notch signals. We have applied genomic engineering to create several new H alleles. To this end the endogenous H locus was replaced with an attP site by homologous recombination, serving as a landing platform for subsequent site directed integration of different H constructs. This way we generated a complete H knock out allele HattP, reintroduced a wild type H genomic and a cDNA-construct (Hgwt, Hcwt as well as two constructs encoding H proteins defective of Su(H binding (HLD, HiD. Phenotypes regarding viability, bristle and wing development were recorded, and the expression of Notch target genes wingless and cut was analysed in mutant wing discs or in mutant cell clones. Moreover, genetic interactions with Notch (N5419 and Delta (DlB2 mutants were addressed. Overall, phenotypes were largely as expected: both HLD and HiD were similar to the HattP null allele, indicating that most of H activity requires the binding of Su(H. Both rescue constructs Hgwt and Hcwt were homozygous viable without phenotype. Unexpectedly, the hemizygous condition uncovered that they were not identical to the wild type allele: notably Hcwt showed a markedly reduced activity, suggesting the presence of as yet unidentified regulatory or stabilizing elements in untranslated regions of the H gene. Interestingly, Hgwt homozygous cells expressed higher levels of H protein, perhaps unravelling gene-by-environment interactions.

  9. Beyond mean allelic effects: A locus at the major color gene MC1R associates also with differing levels of phenotypic and genetic (co)variance for coloration in barn owls.

    Science.gov (United States)

    San-Jose, Luis M; Ducret, Valérie; Ducrest, Anne-Lyse; Simon, Céline; Roulin, Alexandre

    2017-10-01

    The mean phenotypic effects of a discovered variant help to predict major aspects of the evolution and inheritance of a phenotype. However, differences in the phenotypic variance associated to distinct genotypes are often overlooked despite being suggestive of processes that largely influence phenotypic evolution, such as interactions between the genotypes with the environment or the genetic background. We present empirical evidence for a mutation at the melanocortin-1-receptor gene, a major vertebrate coloration gene, affecting phenotypic variance in the barn owl, Tyto alba. The white MC1R allele, which associates with whiter plumage coloration, also associates with a pronounced phenotypic and additive genetic variance for distinct color traits. Contrarily, the rufous allele, associated with a rufous coloration, relates to a lower phenotypic and additive genetic variance, suggesting that this allele may be epistatic over other color loci. Variance differences between genotypes entailed differences in the strength of phenotypic and genetic associations between color traits, suggesting that differences in variance also alter the level of integration between traits. This study highlights that addressing variance differences of genotypes in wild populations provides interesting new insights into the evolutionary mechanisms and the genetic architecture underlying the phenotype. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  10. A candidate subspecies discrimination system involving a vomeronasal receptor gene with different alleles fixed in M. m. domesticus and M. m. musculus.

    Directory of Open Access Journals (Sweden)

    Robert C Karn

    2010-09-01

    Full Text Available Assortative mating, a potentially efficient prezygotic reproductive barrier, may prevent loss of genetic potential by avoiding the production of unfit hybrids (i.e., because of hybrid infertility or hybrid breakdown that occur at regions of secondary contact between incipient species. In the case of the mouse hybrid zone, where two subspecies of Mus musculus (M. m. domesticus and M. m. musculus meet and exchange genes to a limited extent, assortative mating requires a means of subspecies recognition. We based the work reported here on the hypothesis that, if there is a pheromone sufficiently diverged between M. m. domesticus and M. m. musculus to mediate subspecies recognition, then that process must also require a specific receptor(s, also sufficiently diverged between the subspecies, to receive the signal and elicit an assortative mating response. We studied the mouse V1R genes, which encode a large family of receptors in the vomeronasal organ (VNO, by screening Perlegen SNP data and identified one, Vmn1r67, with 24 fixed SNP differences most of which (15/24 are nonsynonymous nucleotide substitutions between M. m. domesticus and M. m. musculus. We observed substantial linkage disequilibrium (LD between Vmn1r67 and Abpa27, a mouse salivary androgen-binding protein gene that encodes a proteinaceous pheromone (ABP capable of mediating assortative mating, perhaps in conjunction with its bound small lipophilic ligand. The LD we observed is likely a case of association rather than residual physical linkage from a very recent selective sweep, because an intervening gene, Vmn1r71, shows significant intra(subspecific polymorphism but no inter(subspecific divergence in its nucleotide sequence. We discuss alternative explanations of these observations, for example that Abpa27 and Vmn1r67 are coevolving as signal and receptor to reinforce subspecies hybridization barriers or that the unusually divergent Vmn1r67 allele was not a product of fast positive

  11. Lost P1 allele in sh2 sweet corn: quantitative effects of p1 and a1 genes on concentrations of maysin, apimaysin, methoxymaysin, and chlorogenic acid in maize silk.

    Science.gov (United States)

    Guo, B Z; Zhang, Z J; Butrón, A; Widstrom, N W; Snook, M E; Lynch, R E; Plaisted, D

    2004-12-01

    In the United States, insecticide is used extensively in the production of sweet corn due to consumer demand for zero damage to ears and to a sweet corn genetic base with little or no resistance to ear-feeding insects. Growers in the southern United States depend on scheduled pesticide applications to control ear-feeding insects. In a study of quantitative genetic control over silk maysin, AM-maysin (apimaysin and methoxymaysin), and chlorogenic acid contents in an F2 population derived from GE37 (dent corn, P1A1) and 565 (sh2 sweet corn, p1a1), we demonstrate that the P1 allele from field corn, which was selected against in the development of sweet corn, has a strong epistatic interaction with the a1 allele in sh2 sweet corn. We detected that the p1 gene has significant effects (P silk maysin concentrations but also on AM-maysin, and chlorogenic acid concentrations. The a1 gene also has significant (P silk antibiotic chemicals. Successful selection from the fourth and fifth selfed backcrosses for high-maysin individuals of sweet corn homozygous for the recessive a1 allele (tightly linked to sh2) and the dominant P1 allele has been demonstrated. These selected lines have much higher (2 to 3 times) concentrations of silk maysin and other chemicals (AM-maysin and chlorogenic acid) than the donor parent GE37 and could enhance sweet corn resistance to corn earworm and reduce the number of applications of insecticide required to produce sweet corn.

  12. Determination of frequencies of alleles, associated with the pseudodeficiency of lysosomal hydrolases, in population of Ukraine

    Directory of Open Access Journals (Sweden)

    N. V. Olkhovych

    2016-10-01

    Full Text Available The pseudodeficiency of lysosomal hydrolases described as a significant reduction in enzyme activi­ty in vitro in clinically healthy individuals, can lead to diagnostic errors in the process of biochemical analysis of lysosomal storage disease in case of its combination with pathology of another origin. Pseudodeficiency is mostly caused by some non-pathogenic changes in the corresponding gene. These changes lead to the in vitro lability of the enzyme molecule, whereas in vivo the enzyme retains its functional activity. To assess the prevalence of the most common lysosomal hydrolases pseudodeficiency alleles in Ukraine, we have determined the frequency of alleles c.1055A>G and c.* 96A>G in the ARSA gene, substitutions c.739C>T (R247W and c.745C>T (R249W in the HEXA gene, c.1726G>A (G576S and c.2065G>A (E689K in the GAA gene, c.937G>T (D313Y in the GLA1 gene and c.898G>A (A300T in the IDUA gene in a group of 117 healthy individuals from different regions of the country and 14 heterozygous carriers of pathogenic mutations in the HEXA gene (parents of children with confirmed diagnosis of Tay-Sachs disease. The total frequency of haplotypes, associated with arylsulfatase A pseudodeficiency, in healthy people in Ukraine (c.1055G/c.*96G and c.1055G/c.*96A haplotypes was 10.3%. The frequency of c.739C>T (R247W allele, associated with hexo­saminidase A pseudodeficiency, among Tay-Sachs carriers from Ukraine was 7.1%. The total frequency of α-glucosidase pseudodeficiency haplotypes in healthy individuals in Ukraine (c.1726A/c.2065A and c.1726G/c.2065A haplotypes was 2.6%. No person among examined individuals with the substitution c.937G>T (D313Y in the GLA1 gene and c.898G>A (A300T in the IDUA gene was found. The differential diagnostics of lysosomal storage diseases requires obligatory determination of the presence of the pseudodeficiency alleles, particularly the ones with high incidence in the total population. Ignoring phenomenon of

  13. Determination of frequencies of alleles, associated with the pseudodeficiency of lysosomal hydrolases, in population of Ukraine.

    Science.gov (United States)

    Olkhovych, N V; Gorovenko, N G

    2016-01-01

    The pseudodeficiency of lysosomal hydrolases described as a significant reduction in enzyme activi­ty in vitro in clinically healthy individuals, can lead to diagnostic errors in the process of biochemical analysis of lysosomal storage disease in case of its combination with pathology of another origin. Pseudodeficiency is mostly caused by some non-pathogenic changes in the corresponding gene. These changes lead to the in vitro lability of the enzyme molecule, whereas in vivo the enzyme retains its functional activity. To assess the prevalence of the most common lysosomal hydrolases pseudodeficiency alleles in Ukraine, we have determined the frequency of alleles c.1055A>G and c.* 96A>G in the ARSA gene, substitutions c.739C>T (R247W) and c.745C>T (R249W) in the HEXA gene, c.1726G>A (G576S) and c.2065G>A (E689K) in the GAA gene, c.937G>T (D313Y) in the GLA1 gene and c.898G>A (A300T) in the IDUA gene in a group of 117 healthy individuals from different regions of the country and 14 heterozygous carriers of pathogenic mutations in the HEXA gene (parents of children with confirmed diagnosis of Tay-Sachs disease). The total frequency of haplotypes, associated with arylsulfatase A pseudodeficiency, in healthy people in Ukraine (c.1055G/c.*96G and c.1055G/c.*96A haplotypes) was 10.3%. The frequency of c.739C>T (R247W) allele, associated with hexo­saminidase A pseudodeficiency, among Tay-Sachs carriers from Ukraine was 7.1%. The total frequency of α-glucosidase pseudodeficiency haplotypes in healthy individuals in Ukraine (c.1726A/c.2065A and c.1726G/c.2065A haplotypes) was 2.6%. No person among examined individuals with the substitution c.937G>T (D313Y) in the GLA1 gene and c.898G>A (A300T) in the IDUA gene was found. The differential diagnostics of lysosomal storage diseases requires obligatory determination of the presence of the pseudodeficiency alleles, particularly the ones with high incidence in the total population. Ignoring phenomenon of pseudodeficiency may

  14. Specific β-turns precede PPIIL structures binding to allele-specific HLA-DRβ1* PBRs in fully-protective malaria vaccine components

    Science.gov (United States)

    Bermudez, Adriana; Alba, Martha P.; Vanegas, Magnolia; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2018-04-01

    The 3D structural analysis of 62 peptides derived from highly pathogenic Plasmodium falciparum malaria parasite proteins involved in host cell invasion led to finding a striking association between particular β-turn types located in the N-terminal peripheral flanking residue region (preceding the polyproline II left-handed structures fitting into the HLA-DRβ* allele family) and modified immune protection-inducing protein structure induced long-lasting protective immunity. This is the first time association between two different secondary structures associated with a specific immunological function has been described: full, long-lasting protective immunity.

  15. Allele coding in genomic evaluation

    Directory of Open Access Journals (Sweden)

    Christensen Ole F

    2011-06-01

    Full Text Available Abstract Background Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call this centered allele coding. This study considered effects of different allele coding methods on inference. Both marker-based and equivalent models were considered, and restricted maximum likelihood and Bayesian methods were used in inference. Results Theoretical derivations showed that parameter estimates and estimated marker effects in marker-based models are the same irrespective of the allele coding, provided that the model has a fixed general mean. For the equivalent models, the same results hold, even though different allele coding methods lead to different genomic relationship matrices. Calculated genomic breeding values are independent of allele coding when the estimate of the general mean is included into the values. Reliabilities of estimated genomic breeding values calculated using elements of the inverse of the coefficient matrix depend on the allele coding because different allele coding methods imply different models. Finally, allele coding affects the mixing of Markov chain Monte Carlo algorithms, with the centered coding being

  16. Differential ACE expression among tissues in allele-specific Wistar rat lines

    NARCIS (Netherlands)

    Kamilic, Jelena; Lely, A. Titia; van Goor, Harry; Buikema, Hendrik; Tent, Hilde; Navis, Gerjan J.; Korstanje, Ron

    In humans, the insertion/deletion polymorphism in the angiotensin converting enzyme (ACE) gene accounts for half of the variance in plasma ACE activity. The deletion allele is associated with high plasma ACE activity, cardiovascular disease, and renal disease. In rat, a similar association is found

  17. How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects.

    Directory of Open Access Journals (Sweden)

    Christopher H Chandler

    2017-11-01

    Full Text Available For a given gene, different mutations influence organismal phenotypes to varying degrees. However, the expressivity of these variants not only depends on the DNA lesion associated with the mutation, but also on factors including the genetic background and rearing environment. The degree to which these factors influence related alleles, genes, or pathways similarly, and whether similar developmental mechanisms underlie variation in the expressivity of a single allele across conditions and among alleles is poorly understood. Besides their fundamental biological significance, these questions have important implications for the interpretation of functional genetic analyses, for example, if these factors alter the ordering of allelic series or patterns of complementation. We examined the impact of genetic background and rearing environment for a series of mutations spanning the range of phenotypic effects for both the scalloped and vestigial genes, which influence wing development in Drosophila melanogaster. Genetic background and rearing environment influenced the phenotypic outcome of mutations, including intra-genic interactions, particularly for mutations of moderate expressivity. We examined whether cellular correlates (such as cell proliferation during development of these phenotypic effects matched the observed phenotypic outcome. While cell proliferation decreased with mutations of increasingly severe effects, surprisingly it did not co-vary strongly with the degree of background dependence. We discuss these findings and propose a phenomenological model to aid in understanding the biology of genes, and how this influences our interpretation of allelic effects in genetic analysis.

  18. Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development.

    Science.gov (United States)

    Mozer, B A

    2001-05-15

    Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins. Copyright 2001 Academic Press.

  19. New allelic variant of autosomal recessive hereditary motor and sensory neuropathy type 2S resulted from mutations in gene IGHMBP2

    Directory of Open Access Journals (Sweden)

    E. L. Dadali

    2016-01-01

    Full Text Available Hereditary motor and sensory neuropathy (HMSN, Charcot–Marie–Tooth disease is a group of genetically heterogeneous disorders with more than 80 genes linked to different phenotypes, including IGHMBP2 gene responsible for HMSN type 2S (OMIM 616155. Until recently, mutations in IGHMBP2 were exclusively associated with neonatal distal spinal muscular atrophy with respiratory distress (SMARD1, OMIM 604320. A case report presents a boy with infant onset decreased distal muscle tone and weakness, distal wasting and deformation in legs and hands, areflexia and decreased sensation without respiratory involvement; at age seven he had severe fixed kypho-scoliosis. EMG revealed signs distal axonal neuropathy. The exsome sequencing confirmed the allelic variant of two compound heterozygous mutations in gene IGHMBP2: known missens mutation с.1616С>Т (р.Ser539Leu in exone 11 and a novel deletion с.2601_2602delGA in exone 13. The diagnosis of infant HMSN type 2S was confirmed. The phenotype of HMSN type 2S and its diagnostics differences between SMARD1 are discussed.

  20. Swedish Spring Wheat Varieties with the Rare High Grain Protein Allele of NAM-B1 Differ in Leaf Senescence and Grain Mineral Content

    Science.gov (United States)

    Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W.; Westerbergh, Anna; Weih, Martin

    2013-01-01

    Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes. PMID:23555754

  1. Distribution of a pseudodeficiency allele among Tay-Sachs carriers

    Energy Technology Data Exchange (ETDEWEB)

    Tomczak, J.; Grebner, E.E. (Thomas Jefferson Univ., Philadelphia, PA (United States)); Boogen, C. (Univ. of Essen Medical School (Germany))

    1993-08-01

    Recently Triggs-Raine et al. (1992) identified a new mutation in the gene coding for the [alpha]-subunit of [beta]-hexosaminidase A (hex A), the enzyme whose deficiency causes Tay-Sachs disease. This mutation, a C[sub 739]-to-T transition in exon 7, results in an altered enzyme that is active (albeit at reduced levels) in cells but that has essentially no activity in serum. This so-called pseudodeficient allele was first detected in compound heterozygotes who also carried a Tay-Sachs disease allele and therefore had no detectable hex A in their serum but who were in good health. Carriers of this apparently benign mutation are generally indistinguishable from carriers of a lethal mutation by means of routine enzyme-based screening tests, because the product of the pseudodeficient allele is not detectable in serum and has decreased activity in cells. This suggests that some individuals who have been classified as Tay-Sachs carriers are actually carriers of the pseudodeficient allele and are not at risk to have a child affected with Tay-Sachs disease. The pseudodeficient allele may also be responsible for some inconclusive diagnoses, where leukocyte values fall below the normal range but are still above the carrier range. The fact that there are now two mutant alleles (the psuedodeficient and the adult) that are indistinguishable from the lethal infantile mutations by means of enzyme assay yet that are phenotypically very different and that together may account for as much as 12% of enzyme-defined carriers on the basis of the data here suggests that DNA analysis should be part of a comprehensive screening program. It will be particularly useful to identify the mutations in couples at risk, before they undergo prenatal diagnosis. DNA analysis will also resolve some inconclusive diagnoses.

  2. Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult.

    Directory of Open Access Journals (Sweden)

    Cristina Rodríguez-Suárez

    Full Text Available BACKGROUND: The wild barley Hordeum chilense Roem. et Schult. is a valuable source of genes for increasing carotenoid content in wheat. Tritordeums, the amphiploids derived from durum or common wheat and H. chilense, systematically show higher values of yellow pigment colour and carotenoid content than durum wheat. Phytoene synthase 1 gene (Psy1 is considered a key step limiting the carotenoid biosynthesis, and the correlation of Psy1 transcripts accumulation and endosperm carotenoid content has been demonstrated in the main grass species. METHODOLOGY/PRINCIPAL FINDINGS: We analyze the variability of Psy1 alleles in three lines of H. chilense (H1, H7 and H16 representing the three ecotypes described in this species. Moreover, we analyze Psy1 expression in leaves and in two seed developing stages of H1 and H7, showing mRNA accumulation patterns similar to those of wheat. Finally, we identify thirty-six different transcripts forms originated by alternative splicing of the 5' UTR and/or exons 1 to 5 of Psy1 gene. Transcripts function is tested in a heterologous complementation assay, revealing that from the sixteen different predicted proteins only four types (those of 432, 370, 364 and 271 amino acids, are functional in the bacterial system. CONCLUSIONS/SIGNIFICANCE: The large number of transcripts originated by alternative splicing of Psy1, and the coexistence of functional and non functional forms, suggest a fine regulation of PSY activity in H. chilense. This work is the first analysis of H. chilense Psy1 gene and the results reported here are the bases for its potential use in carotenoid enhancement in durum wheat.

  3. Somatic mutations, allele loss, and DNA methylation of the Cub and Sushi Multiple Domains 1 (CSMD1 gene reveals association with early age of diagnosis in colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Austin Y Shull

    Full Text Available The Cub and Sushi Multiple Domains 1 (CSMD1 gene, located on the short arm of chromosome 8, codes for a type I transmembrane protein whose function is currently unknown. CSMD1 expression is frequently lost in many epithelial cancers. Our goal was to characterize the relationships between CSMD1 somatic mutations, allele imbalance, DNA methylation, and the clinical characteristics in colorectal cancer patients.We sequenced the CSMD1 coding regions in 54 colorectal tumors using the 454FLX pyrosequencing platform to interrogate 72 amplicons covering the entire coding sequence. We used heterozygous SNP allele ratios at multiple CSMD1 loci to determine allelic balance and infer loss of heterozygosity. Finally, we performed methylation-specific PCR on 76 colorectal tumors to determine DNA methylation status for CSMD1 and known methylation targets ALX4, RUNX3, NEUROG1, and CDKN2A.Using 454FLX sequencing and confirming with Sanger sequencing, 16 CSMD1 somatic mutations were identified in 6 of the 54 colorectal tumors (11%. The nonsynonymous to synonymous mutation ratio of the 16 somatic mutations was 15:1, a ratio significantly higher than the expected 2:1 ratio (p = 0.014. This ratio indicates a presence of positive selection for mutations in the CSMD1 protein sequence. CSMD1 allelic imbalance was present in 19 of 37 informative cases (56%. Patients with allelic imbalance and CSMD1 mutations were significantly younger (average age, 41 years than those without somatic mutations (average age, 68 years. The majority of tumors were methylated at one or more CpG loci within the CSMD1 coding sequence, and CSMD1 methylation significantly correlated with two known methylation targets ALX4 and RUNX3. C:G>T:A substitutions were significantly overrepresented (47%, suggesting extensive cytosine methylation predisposing to somatic mutations.Deep amplicon sequencing and methylation-specific PCR reveal that CSMD1 alterations can correlate with earlier clinical

  4. Analysis of a lin-42/period Null Allele Implicates All Three Isoforms in Regulation of Caenorhabditis elegans Molting and Developmental Timing

    Directory of Open Access Journals (Sweden)

    Theresa L. B. Edelman

    2016-12-01

    Full Text Available The Caenorhabditis elegans heterochronic gene pathway regulates the relative timing of events during postembryonic development. lin-42, the worm homolog of the circadian clock gene, period, is a critical element of this pathway. lin-42 function has been defined by a set of hypomorphic alleles that cause precocious phenotypes, in which later developmental events, such as the terminal differentiation of hypodermal cells, occur too early. A subset of alleles also reveals a significant role for lin-42 in molting; larval stages are lengthened and ecdysis often fails in these mutant animals. lin-42 is a complex locus, encoding overlapping and nonoverlapping isoforms. Although existing alleles that affect subsets of isoforms have illuminated important and distinct roles for this gene in developmental timing, molting, and the decision to enter the alternative dauer state, it is essential to have a null allele to understand all of the roles of lin-42 and its individual isoforms. To remedy this problem and discover the null phenotype, we engineered an allele that deletes the entire lin-42 protein-coding region. lin-42 null mutants are homozygously viable, but have more severe phenotypes than observed in previously characterized hypomorphic alleles. We also provide additional evidence for this conclusion by using the null allele as a base for reintroducing different isoforms, showing that each isoform can provide heterochronic and molting pathway activities. Transcript levels of the nonoverlapping isoforms appear to be under coordinate temporal regulation, despite being driven by independent promoters. The lin-42 null allele will continue to be an important tool for dissecting the functions of lin-42 in molting and developmental timing.

  5. Angiotensin-converting enzyme (ACE) alleles in the Quechua, a high altitude South American native population.

    Science.gov (United States)

    Rupert, J L; Devine, D V; Monsalve, M V; Hochachka, P W

    1999-01-01

    Recently it was reported that an allelic variant of the gene encoding angiotensin-converting enzyme (ACE) was significantly over-represented in a cohort of elite British mountaineers. It was proposed that this may be evidence for a specific genetic factor influencing the human capacity for physical performance. The implication that this allele could enhance performance at high altitude prompted us to determine its frequency in Quechua speaking natives living at altitudes greater than 3000m on the Andean Altiplano in South America. We found that the frequency of the putative performance allele in the Quechuas, although significantly higher than in Caucasians, was not different from lowland Native American populations. This observation suggests that, although the higher frequency of the 'performance allele' may have facilitated the migration of the ancestral Quechua to the highlands, the ACE insertion allele has not been subsequently selected for in this high altitude population.

  6. Attenuated Expression of DFFB is a Hallmark of Oligodendrogliomas with 1p-Allelic Loss

    Directory of Open Access Journals (Sweden)

    Fuller Gregory N

    2005-09-01

    Full Text Available Abstract Allelic loss of chromosome 1p is frequently observed in oligodendroglioma. We screened 177 oligodendroglial tumors for 1p deletions and found 6 tumors with localized 1p36 deletions. Several apoptosis regulation genes have been mapped to this region, including Tumor Protein 73 (p73, DNA Fragmentation Factor subunits alpha (DFFA and beta (DFFB, and Tumor Necrosis Factor Receptor Superfamily Members 9 and 25 (TNFRSF9, TNFRSF25. We compared expression levels of these 5 genes in pairs of 1p-loss and 1p-intact tumors using quantitative reverse-transcriptase PCR (QRTPCR to test if 1p deletions had an effect on expression. Only the DFFB gene demonstrated decreased expression in all tumor pairs tested. Mutational analysis did not reveal DFFB mutations in 12 tested samples. However, it is possible that DFFB haploinsufficiency from 1p allelic loss is a contributing factor in oligodendroglioma development.

  7. Geostatistical analysis of allele presence patterns among American black bears in eastern North Carolina

    Science.gov (United States)

    Thompson, L.M.; Van Manen, F.T.; King, T.L.

    2005-01-01

    Highways are one of the leading causes of wildlife habitat fragmentation and may particularly affect wide-ranging species, such as American black bears (Ursus americanus). We initiated a research project in 2000 to determine potential effects of a 4-lane highway on black bear ecology in Washington County, North Carolina. The research design included a treatment area (highway construction) and a control area and a pre- and post-construction phase. We used data from the pre-construction phase to determine whether we could detect scale dependency or directionality among allele occurrence patterns using geostatistics. Detection of such patterns could provide a powerful tool to measure the effects of landscape fragmentation on gene flow. We sampled DNA from roots of black bear hair at 70 hair-sampling sites on each study area for 7 weeks during fall of 2000. We used microsatellite analysis based on 10 loci to determine unique multi-locus genotypes. We examined all alleles sampled at ???25 sites on each study area and mapped their presence or absence at each hair-sample site. We calculated semivariograms, which measure the strength of statistical correlation as a function of distance, and adjusted them for anisotropy to determine the maximum direction of spatial continuity. We then calculated the mean direction of spatial continuity for all examined alleles. The mean direction of allele frequency variation was 118.3?? (SE = 8.5) on the treatment area and 172.3?? (SE = 6.0) on the control area. Rayleigh's tests showed that these directions differed from random distributions (P = 0.028 and P < 0.001, respectively), indicating consistent directional patterns for the alleles we examined in each area. Despite the small spatial scale of our study (approximately 11,000 ha for each study area), we observed distinct and consistent patterns of allele occurrence, suggesting different directions of gene flow between the study areas. These directions seemed to coincide with the

  8. Inferring Allele Frequency Trajectories from Ancient DNA Indicates That Selection on a Chicken Gene Coincided with Changes in Medieval Husbandry Practices.

    Science.gov (United States)

    Loog, Liisa; Thomas, Mark G; Barnett, Ross; Allen, Richard; Sykes, Naomi; Paxinos, Ptolemaios D; Lebrasseur, Ophélie; Dobney, Keith; Peters, Joris; Manica, Andrea; Larson, Greger; Eriksson, Anders

    2017-08-01

    Ancient DNA provides an opportunity to infer the drivers of natural selection by linking allele frequency changes to temporal shifts in environment or cultural practices. However, analyses have often been hampered by uneven sampling and uncertainties in sample dating, as well as being confounded by demographic processes. Here, we present a Bayesian statistical framework for quantifying the timing and strength of selection using ancient DNA that explicitly addresses these challenges. We applied this method to time series data for two loci: TSHR and BCDO2, both hypothesised to have undergone strong and recent selection in domestic chickens. The derived variant in TSHR, associated with reduced aggression to conspecifics and faster onset of egg laying, shows strong selection beginning around 1,100 years ago, coincident with archaeological evidence for intensified chicken production and documented changes in egg and chicken consumption. To our knowledge, this is the first example of preindustrial domesticate trait selection in response to a historically attested cultural shift in food preference. For BCDO2, we find support for selection, but demonstrate that the recent rise in allele frequency could also have been driven by gene flow from imported Asian chickens during more recent breed formations. Our findings highlight that traits found ubiquitously in modern domestic species may not necessarily have originated during the early stages of domestication. In addition, our results demonstrate the importance of precise estimation of allele frequency trajectories through time for understanding the drivers of selection. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Generation of an allelic series of knock-in mice using recombinase-mediated cassette exchange (RMCE).

    Science.gov (United States)

    Roebroek, Anton J M; Van Gool, Bart

    2014-01-01

    Molecular genetic strategies applying embryonic stem cell (ES cell) technologies to study the function of a gene in mice or to generate a mouse model for a human disease are continuously under development. Next to (conditional) inactivation of genes the application and importance of approaches to generate knock-in mutations are increasing. In this chapter the principle and application of recombinase-mediated cassette exchange (RMCE) are discussed as being a new emerging knock-in strategy, which enables easy generation of a series of different knock-in mutations within one gene. An RMCE protocol, which was used to generate a series of different knock-in mutations in the Lrp1 gene of ES cells, is described in detail as an example of how RMCE can be used to generate highly efficiently an allelic series of differently modified ES cell clones from a parental modified ES cell clone. Subsequently the differently modified ES cell clones can be used to generate an allelic series of mutant knock-in mice.

  10. Genetic dissection of the Drosophila melanogaster female head transcriptome reveals widespread allelic heterogeneity.

    Directory of Open Access Journals (Sweden)

    Elizabeth G King

    2014-05-01

    Full Text Available Modern genetic mapping is plagued by the "missing heritability" problem, which refers to the discordance between the estimated heritabilities of quantitative traits and the variance accounted for by mapped causative variants. One major potential explanation for the missing heritability is allelic heterogeneity, in which there are multiple causative variants at each causative gene with only a fraction having been identified. The majority of genome-wide association studies (GWAS implicitly assume that a single SNP can explain all the variance for a causative locus. However, if allelic heterogeneity is prevalent, a substantial amount of genetic variance will remain unexplained. In this paper, we take a haplotype-based mapping approach and quantify the number of alleles segregating at each locus using a large set of 7922 eQTL contributing to regulatory variation in the Drosophila melanogaster female head. Not only does this study provide a comprehensive eQTL map for a major community genetic resource, the Drosophila Synthetic Population Resource, but it also provides a direct test of the allelic heterogeneity hypothesis. We find that 95% of cis-eQTLs and 78% of trans-eQTLs are due to multiple alleles, demonstrating that allelic heterogeneity is widespread in Drosophila eQTL. Allelic heterogeneity likely contributes significantly to the missing heritability problem common in GWAS studies.

  11. A risk allele for nicotine dependence in CHRNA5 is a protective allele for cocaine dependence.

    Science.gov (United States)

    Grucza, Richard A; Wang, Jen C; Stitzel, Jerry A; Hinrichs, Anthony L; Saccone, Scott F; Saccone, Nancy L; Bucholz, Kathleen K; Cloninger, C Robert; Neuman, Rosalind J; Budde, John P; Fox, Louis; Bertelsen, Sarah; Kramer, John; Hesselbrock, Victor; Tischfield, Jay; Nurnberger, John I; Almasy, Laura; Porjesz, Bernice; Kuperman, Samuel; Schuckit, Marc A; Edenberg, Howard J; Rice, John P; Goate, Alison M; Bierut, Laura J

    2008-12-01

    A nonsynonymous coding polymorphism, rs16969968, of the CHRNA5 gene that encodes the alpha-5 subunit of the nicotinic acetylcholine receptor (nAChR) has been found to be associated with nicotine dependence. The goal of this study was to examine the association of this variant with cocaine dependence. Genetic association analysis was performed in two independent samples of unrelated case and control subjects: 1) 504 European Americans participating in the Family Study on Cocaine Dependence (FSCD) and 2) 814 European Americans participating in the Collaborative Study on the Genetics of Alcoholism (COGA). In the FSCD, there was a significant association between the CHRNA5 variant and cocaine dependence (odds ratio = .67 per allele, p = .0045, assuming an additive genetic model), but in the reverse direction compared with that previously observed for nicotine dependence. In multivariate analyses that controlled for the effects of nicotine dependence, both the protective effect for cocaine dependence and the previously documented risk effect for nicotine dependence were statistically significant. The protective effect for cocaine dependence was replicated in the COGA sample. In COGA, effect sizes for habitual smoking, a proxy phenotype for nicotine dependence, were consistent with those observed in FSCD. The minor (A) allele of rs16969968, relative to the major G allele, appears to be both a risk factor for nicotine dependence and a protective factor for cocaine dependence. The biological plausibility of such a bidirectional association stems from the involvement of nAChRs with both excitatory and inhibitory modulation of dopamine-mediated reward pathways.

  12. Genotype-dependent participation of coat color gene loci in the behavioral traits of laboratory mice.

    Science.gov (United States)

    Yamamuro, Yutaka; Shiraishi, Aya

    2011-10-01

    To evaluate if loci responsible for coat color phenotypes contribute to behavioral characteristics, we specified novel gene loci associated with social exploratory behavior and examined the effects of the frequency of each allele at distinct loci on behavioral expression. We used the F2 generation, which arose from the mating of F1 mice obtained by interbreeding DBA/2 and ICR mice. Phenotypic analysis indicated that the agouti and albino loci affect behavioral traits. A genotype-based analysis revealed that novel exploratory activity was suppressed in a manner dependent on the frequency of the dominant wild-type allele at the agouti, but not albino, locus. The allele-dependent suppression was restricted to colored mice and was not seen in albino mice. The present results suggest that the agouti locus contributes to a particular behavioral trait in the presence of a wild-type allele at the albino locus, which encodes a structural gene for tyrosinase. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Fine mapping of dominant X-linked incompatibility alleles in Drosophila hybrids.

    Science.gov (United States)

    Matute, Daniel R; Gavin-Smyth, Jackie

    2014-04-01

    Sex chromosomes have a large effect on reproductive isolation and play an important role in hybrid inviability. In Drosophila hybrids, X-linked genes have pronounced deleterious effects on fitness in male hybrids, which have only one X chromosome. Several studies have succeeded at locating and identifying recessive X-linked alleles involved in hybrid inviability. Nonetheless, the density of dominant X-linked alleles involved in interspecific hybrid viability remains largely unknown. In this report, we study the effects of a panel of small fragments of the D. melanogaster X-chromosome carried on the D. melanogaster Y-chromosome in three kinds of hybrid males: D. melanogaster/D. santomea, D. melanogaster/D. simulans and D. melanogaster/D. mauritiana. D. santomea and D. melanogaster diverged over 10 million years ago, while D. simulans (and D. mauritiana) diverged from D. melanogaster over 3 million years ago. We find that the X-chromosome from D. melanogaster carries dominant alleles that are lethal in mel/san, mel/sim, and mel/mau hybrids, and more of these alleles are revealed in the most divergent cross. We then compare these effects on hybrid viability with two D. melanogaster intraspecific crosses. Unlike the interspecific crosses, we found no X-linked alleles that cause lethality in intraspecific crosses. Our results reveal the existence of dominant alleles on the X-chromosome of D. melanogaster which cause lethality in three different interspecific hybrids. These alleles only cause inviability in hybrid males, yet have little effect in hybrid females. This suggests that X-linked elements that cause hybrid inviability in males might not do so in hybrid females due to differing sex chromosome interactions.

  14. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  15. Expression and phylogenetic analyses reveal paralogous lineages of putatively classical and non-classical MHC-I genes in three sparrow species (Passer).

    Science.gov (United States)

    Drews, Anna; Strandh, Maria; Råberg, Lars; Westerdahl, Helena

    2017-06-26

    The Major Histocompatibility Complex (MHC) plays a central role in immunity and has been given considerable attention by evolutionary ecologists due to its associations with fitness-related traits. Songbirds have unusually high numbers of MHC class I (MHC-I) genes, but it is not known whether all are expressed and equally important for immune function. Classical MHC-I genes are highly expressed, polymorphic and present peptides to T-cells whereas non-classical MHC-I genes have lower expression, are more monomorphic and do not present peptides to T-cells. To get a better understanding of the highly duplicated MHC genes in songbirds, we studied gene expression in a phylogenetic framework in three species of sparrows (house sparrow, tree sparrow and Spanish sparrow), using high-throughput sequencing. We hypothesize that sparrows could have classical and non-classical genes, as previously indicated though never tested using gene expression. The phylogenetic analyses reveal two distinct types of MHC-I alleles among the three sparrow species, one with high and one with low level of polymorphism, thus resembling classical and non-classical genes, respectively. All individuals had both types of alleles, but there was copy number variation both within and among the sparrow species. However, the number of highly polymorphic alleles that were expressed did not vary between species, suggesting that the structural genomic variation is counterbalanced by conserved gene expression. Overall, 50% of the MHC-I alleles were expressed in sparrows. Expression of the highly polymorphic alleles was very variable, whereas the alleles with low polymorphism had uniformly low expression. Interestingly, within an individual only one or two alleles from the polymorphic genes were highly expressed, indicating that only a single copy of these is highly expressed. Taken together, the phylogenetic reconstruction and the analyses of expression suggest that sparrows have both classical and non

  16. Polymorphic genes of major effect: consequences for variation, selection and evolution in Arabidopsis thaliana.

    Science.gov (United States)

    Stinchcombe, John R; Weinig, Cynthia; Heath, Katy D; Brock, Marcus T; Schmitt, Johanna

    2009-07-01

    The importance of genes of major effect for evolutionary trajectories within and among natural populations has long been the subject of intense debate. For example, if allelic variation at a major-effect locus fundamentally alters the structure of quantitative trait variation, then fixation of a single locus can have rapid and profound effects on the rate or direction of subsequent evolutionary change. Using an Arabidopsis thaliana RIL mapping population, we compare G-matrix structure between lines possessing different alleles at ERECTA, a locus known to affect ecologically relevant variation in plant architecture. We find that the allele present at ERECTA significantly alters G-matrix structure-in particular the genetic correlations between branch number and flowering time traits-and may also modulate the strength of natural selection on these traits. Despite these differences, however, when we extend our analysis to determine how evolution might differ depending on the ERECTA allele, we find that predicted responses to selection are similar. To compare responses to selection between allele classes, we developed a resampling strategy that incorporates uncertainty in estimates of selection that can also be used for statistical comparisons of G matrices.

  17. Allele-Specific DNA Methylation Detection by Pyrosequencing®

    DEFF Research Database (Denmark)

    Kristensen, Lasse Sommer; Johansen, Jens Vilstrup; Grønbæk, Kirsten

    2015-01-01

    DNA methylation is an epigenetic modification that plays important roles in healthy as well as diseased cells, by influencing the transcription of genes. In spite the fact that human somatic cells are diploid, most of the currently available methods for the study of DNA methylation do not provide......-effective protocol for allele-specific DNA methylation detection based on Pyrosequencing(®) of methylation-specific PCR (MSP) products including a single nucleotide polymorphism (SNP) within the amplicon....

  18. The COMT Val158 allele is associated with impaired delayed-match-to-sample performance in ADHD

    Directory of Open Access Journals (Sweden)

    Matthews Natasha

    2012-05-01

    Full Text Available Abstract Background This study explored the association between three measures of working memory ability and genetic variation in a range of catecholamine genes in a sample of children with ADHD. Methods One hundred and eighteen children with ADHD performed three working memory measures taken from the CANTAB battery (Spatial Span, Delayed-match-to-sample, and Spatial Working Memory. Associations between performance on working memory measures and allelic variation in catecholamine genes (including those for the noradrenaline transporter [NET1], the dopamine D4 and D2 receptor genes [DRD4; DRD2], the gene encoding dopamine beta hydroxylase [DBH] and catechol-O-methyl transferase [COMT] were investigated using regression models that controlled for age, IQ, gender and medication status on the day of test. Results Significant associations were found between performance on the delayed-match-to-sample task and COMT genotype. More specifically, val/val homozygotes produced significantly more errors than did children who carried a least one met allele. There were no further associations between allelic variants and performance across the other working memory tasks. Conclusions The working memory measures employed in the present study differed in the degree to which accurate task performance depended upon either the dynamic updating and/or manipulation of items in working memory, as in the spatial span and spatial working memory tasks, or upon the stable maintenance of representations, as in the delay-match–to-sample task. The results are interpreted as evidence of a relationship between tonic dopamine levels associated with the met COMT allele and the maintenance of stable working memory representations required to perform the delayed-match-to-sample-task.

  19. Abnormalities in structure and expression of the retinoblastoma gene in small cell lung cancer cell lines and xenografts in nude mice

    DEFF Research Database (Denmark)

    Rygaard, K; Sorenson, G D; Pettengill, O S

    1990-01-01

    The putative retinoblastoma gene (Rb) is a tumor suppressor gene which is believed to cause retinoblastomas when both alleles are inactivated, leading to lack of the encoded Mr 110,000-116,000 phosphoprotein. Inactivation of the Rb gene has also been found in several other tumor types, including...

  20. Frequency of the allelic variant c.1150T > C in exon 10 of the fibroblast growth factor receptor 3 (FGFR3 gene is not increased in patients with pathogenic mutations and related chondrodysplasia phenotypes

    Directory of Open Access Journals (Sweden)

    Thatiane Yoshie Kanazawa

    2014-12-01

    Full Text Available Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch. The p.N540K mutation in the FGFR3 gene occurs in ~70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34. One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.

  1. Allelic variant in the anti-Müllerian hormone gene leads to autosomal and temperature-dependent sex reversal in a selected Nile tilapia line.

    Directory of Open Access Journals (Sweden)

    Stephan Wessels

    Full Text Available Owing to the demand for sustainable sex-control protocols in aquaculture, research in tilapia sex determination is gaining momentum. The mutual influence of environmental and genetic factors hampers disentangling the complex sex determination mechanism in Nile tilapia (Oreochromis niloticus. Previous linkage analyses have demonstrated quantitative trait loci for the phenotypic sex on linkage groups 1, 3, and 23. Quantitative trait loci for temperature-dependent sex reversal similarly reside on linkage group 23. The anti-Müllerian hormone gene (amh, located in this genomic region, is important for sexual fate in higher vertebrates, and shows sexually dimorphic expression in Nile tilapia. Therefore this study aimed at detecting allelic variants and marker-sex associations in the amh gene. Sequencing identified six allelic variants. A significant effect on the phenotypic sex for SNP ss831884014 (p<0.0017 was found by stepwise logistic regression. The remaining variants were not significantly associated. Functional annotation of SNP ss831884014 revealed a non-synonymous amino acid substitution in the amh protein. Consequently, a fluorescence resonance energy transfer (FRET based genotyping assay was developed and validated with a representative sample of fish. A logistic linear model confirmed a highly significant effect of the treatment and genotype on the phenotypic sex, but not for the interaction term (treatment: p<0.0001; genotype: p<0.0025. An additive genetic model proved a linear allele substitution effect of 12% in individuals from controls and groups treated at high temperature, respectively. Moreover, the effect of the genotype on the male proportion was significantly higher in groups treated at high temperature, giving 31% more males on average of the three genotypes. In addition, the groups treated at high temperature showed a positive dominance deviation (+11.4% males. In summary, marker-assisted selection for amh variant ss831884014

  2. Consequences for diversity when animals are prioritized for conservation of the whole genome or of one specific allele

    NARCIS (Netherlands)

    Engelsma, K.A.; Veerkamp, R.F.; Calus, M.P.L.; Windig, J.J.

    2014-01-01

    When animals are selected for one specific allele, for example for inclusion in a gene bank, this may result in the loss of diversity in other parts of the genome. The aim of this study was to quantify the risk of losing diversity across the genome when targeting a single allele for conservation

  3. Development of a High Resolution Virulence Allelic Profiling (HReVAP) Approach Based on the Accessory Genome of Escherichia coli to Characterize Shiga-Toxin Producing E. coli (STEC)

    Science.gov (United States)

    Michelacci, Valeria; Orsini, Massimiliano; Knijn, Arnold; Delannoy, Sabine; Fach, Patrick; Caprioli, Alfredo; Morabito, Stefano

    2016-01-01

    Shiga-toxin producing Escherichia coli (STEC) strains possess a large accessory genome composed of virulence genes existing in multiple allelic variants, which sometimes segregate with specific STEC subpopulations. We analyzed the allelic variability of 91 virulence genes of STEC by Real Time PCR followed by melting curves analysis in 713 E. coli strains including 358 STEC. The 91 genes investigated were located on the locus of enterocyte effacement (LEE), OI-57, and OI-122 pathogenicity islands and displayed a total of 476 alleles in the study population. The combinations of the 91 alleles of each strain were termed allelic signatures and used to perform cluster analyses. We termed such an approach High Resolution Virulence Allelic Profiling (HReVAP) and used it to investigate the phylogeny of STEC of multiple serogroups. The dendrograms obtained identified groups of STEC segregating approximately with the serogroups and allowed the identification of subpopulations within the single groups. The study of the allelic signatures provided further evidence of the coevolution of the LEE and OI-122, reflecting the occurrence of their acquisition through a single event. The HReVAP analysis represents a sensitive tool for studying the evolution of LEE-positive STEC. PMID:26941726

  4. Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine recepter D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention

    NARCIS (Netherlands)

    Swanson, J.; Oosterlaan, J.; Murias, M.; Schuck, S.; Flodman, P.; Spence, M.A.; Wasdell, M.; Ding, Y.; Chi, H-C.; Smith, M.; Mann, M.; Carlson, C.; Kennedy, J.L.; Sergeant, J.A.; Leung, P.; Zhang, Y-P.; Sadeh, A.; Chan, C.; Whalen, C.K.; Babb, K.; Moyzis, R.; Posner, M.I.

    2000-01-01

    An association of the dopamine receptor D4 (DRD4) gene located on chromosome 11p15.5 and attention deficit/hyperactivity disorder (ADHD) has been demonstrated and replicated by multiple investigators. A specific allele [the 7-repeat of a 48-bp variable number of tandem repeats (VNTR) in exon 3] has

  5. Gene conversion homogenizes the CMT1A paralogous repeats

    Directory of Open Access Journals (Sweden)

    Hurles Matthew E

    2001-12-01

    Full Text Available Abstract Background Non-allelic homologous recombination between paralogous repeats is increasingly being recognized as a major mechanism causing both pathogenic microdeletions and duplications, and structural polymorphism in the human genome. It has recently been shown empirically that gene conversion can homogenize such repeats, resulting in longer stretches of absolute identity that may increase the rate of non-allelic homologous recombination. Results Here, a statistical test to detect gene conversion between pairs of non-coding sequences is presented. It is shown that the 24 kb Charcot-Marie-Tooth type 1A paralogous repeats (CMT1A-REPs exhibit the imprint of gene conversion processes whilst control orthologous sequences do not. In addition, Monte Carlo simulations of the evolutionary divergence of the CMT1A-REPs, incorporating two alternative models for gene conversion, generate repeats that are statistically indistinguishable from the observed repeats. Bounds are placed on the rate of these conversion processes, with central values of 1.3 × 10-4 and 5.1 × 10-5 per generation for the alternative models. Conclusions This evidence presented here suggests that gene conversion may have played an important role in the evolution of the CMT1A-REP paralogous repeats. The rates of these processes are such that it is probable that homogenized CMT1A-REPs are polymorphic within modern populations. Gene conversion processes are similarly likely to play an important role in the evolution of other segmental duplications and may influence the rate of non-allelic homologous recombination between them.

  6. Gene Composer in a structural genomics environment

    International Nuclear Information System (INIS)

    Lorimer, Don; Raymond, Amy; Mixon, Mark; Burgin, Alex; Staker, Bart; Stewart, Lance

    2011-01-01

    For structural biology applications, protein-construct engineering is guided by comparative sequence analysis and structural information, which allow the researcher to better define domain boundaries for terminal deletions and nonconserved regions for surface mutants. A database software application called Gene Composer has been developed to facilitate construct design. The structural genomics effort at the Seattle Structural Genomics Center for Infectious Disease (SSGCID) requires the manipulation of large numbers of amino-acid sequences and the underlying DNA sequences which are to be cloned into expression vectors. To improve efficiency in high-throughput protein structure determination, a database software package, Gene Composer, has been developed which facilitates the information-rich design of protein constructs and their underlying gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bioinformatics steps used in modern structure-guided protein engineering and synthetic gene engineering. An example of the structure determination of H1N1 RNA-dependent RNA polymerase PB2 subunit is given

  7. A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure

    Directory of Open Access Journals (Sweden)

    Timothy M. Frayling

    2018-04-01

    Full Text Available Summary: Fibroblast growth factor 21 (FGF21 is a hormone that has insulin-sensitizing properties. Some trials of FGF21 analogs show weight loss and lipid-lowering effects. Recent studies have shown that a common allele in the FGF21 gene alters the balance of macronutrients consumed, but there was little evidence of an effect on metabolic traits. We studied a common FGF21 allele (A:rs838133 in 451,099 people from the UK Biobank study, aiming to use the human allele to inform potential adverse and beneficial effects of targeting FGF21. We replicated the association between the A allele and higher percentage carbohydrate intake. We then showed that this allele is more strongly associated with higher blood pressure and waist-hip ratio, despite an association with lower total body-fat percentage, than it is with BMI or type 2 diabetes. These human phenotypes of variation in the FGF21 gene will inform research into FGF21’s mechanisms and therapeutic potential. : Drugs targeting the hormone FGF21 may have beneficial health effects. Variations in human DNA in the FGF21 gene provide an indication of what those effects may be. Here, we show that variation in the FGF21 gene is associated with higher blood pressure and altered body shape, despite lower total body-fat percentage. Keywords: FGF21, BMI, waist-hip ratio, blood pressure, body fat, allele, genetic variant, UK Biobank

  8. Study on the IFNL4 gene ss469415590 variant in Ukrainian population

    Directory of Open Access Journals (Sweden)

    Kucherenko A. M.

    2014-09-01

    Full Text Available Aim. To determine genotype and allele disribution for the IFNL4 gene ss469415590 and examine it for linkage with the IL28B gene rs12979860 in Ukrainian population. Methods. The studied group consisted of 100 unrelated donors of Eastern European origin representing the population of Ukraine. Genotyping for the IFNL4 gene ss469415590 was performed using the amplification-refractory mutation system PCR. Genotyping for the IL28B gene rs12979860 was performed by the PCR-based restriction fragment length polymorphism assay. Results. Genotype frequencies for both studied variants showed no significant deviation from those expected according to Hardy-Weinberg equilibrium. Allelic distribution for ss469415590 was: TT – 0.665, G – 0.335. Allelic frequencies of rs12979860 were: C – 0.655, T – 0.345. The results of likelihood ratio test indicated a linkage disequilibrium between the studied variants (p > 0.0001, the major alleles ss469415590 TT and rs12979860 C were in phase. The genetic structure of Ukrainian population in terms of two studied polymorphic variants is similar to the European population presented in the «1000 genomes» project. Conclusions. Considering a tight linkage revealed in Ukrainian population between the ss469415590 variant and rs12979860, a crucial genetic marker of chronic hepatitis C treatment efficiency, this polymorphism might be a promising target for further investigation as a pharmacogenetic marker.

  9. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.

    Science.gov (United States)

    Wu, B; Georgopoulos, C; Ang, D

    1992-08-01

    The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of one of them, designated msgB. The msgB gene maps at approximately 53 min on the E. coli chromosome. The minimal gene possesses an open reading frame that encodes a protein with a predicted size of 41,269 M(r). This open reading frame was confirmed the correct one by direct amino-terminal sequence analysis of the overproduced msgB gene product. Genetic experiments demonstrated that msgB is essential for E. coli growth in the temperature range of 22 to 37 degrees C. Through a sequence homology search, MsgB was shown to be identical to N-succinyl-L-diaminopimelic acid desuccinylase (the dapE gene product), which participates in the diaminopimelic acid-lysine pathway involved in cell wall biosynthesis. Consistent with this finding, the msgB null allele mutant is viable only when the growth medium is supplemented with diaminopimelic acid. These results suggest that GrpE may have a previously unsuspected function(s) in cell wall biosynthesis in E. coli.

  10. HPV has left the building – the absence of detectable HPV DNA and the presence of r allele/s for the P72R polymorphism in the TP53 gene may call for more aggressive therapeutic approach in HPV-associated tumours

    International Nuclear Information System (INIS)

    Petkova, Rumena; Chelenkova, Pavlina; Yemendzhiev, Husein; Tsekov, Iliya; Kalvatchev, Zlatko; Chakarov, Stoyan

    2013-01-01

    HPV infection is a major pathogenetic factor in cervical carcinoma as well as in many of the squamous cancers of head and neck and other epithelial cancers. Persistence of HPV DNA detectable by routine methods is considered to be a risk factor for advanced CIN and, in patients treated by surgery or non-surgical treatment modalities (radiotherapy, chemotherapy), HPV persistence is believed to be associated with increased risk for local recurrence. In terms of survival, however, it has been repeatedly proven that patients with cervical cancer and other HPV-associated cancers with detectable HPV DNA tend to have better outcomes than patients with HPV-negative tumours. The P72R polymorphism in the human TP53 gene has been contemplated as an independent phenotype modifier in cancers, especially the R allele which has been shown to confer higher pro-apoptotic properties to the resultant p53 protein. It has been demonstrated, however, that RR homozygotes were much more common in study groups with HPV-associated tumours than the other two genotypes and that the P allele in P/R heterozygotes was preferentially lost while the R allele was preferentially retained and mutated. It is possible that HPV-dependent carcinogenesis strictly relies on the presence of HPV and the expression of the E6 and E7 onco proteins only in the initial phases of transformation of infected cells (e.g. CIN). It may be associated with activation of latent HPV that would create a background of decreased control over the integrity of the genome of the host cell. The process can develop further by mechanisms independent of the presence of HPV and if the virus clears at some later point, that would not halt the already ongoing neoplastic transformation. Absence of HPV DNA in cervical tumours, whether before or after treatment, is not a reason to decrease vigilant monitoring and rule out the need for further treatment, as it may be quite possible that the TP53 gene of the infected cells has already been

  11. Self-incompatibility of Prunus tenella and evidence that reproductively isolated species of Prunus have different SFB alleles coupled with an identical S-RNase allele.

    Science.gov (United States)

    Surbanovski, Nada; Tobutt, Kenneth R; Konstantinović, Miroslav; Maksimović, Vesna; Sargent, Daniel J; Stevanović, Vladimir; Bosković, Radovan I

    2007-05-01

    Many species of Prunus display an S-RNase-based gametophytic self-incompatibility (SI), controlled by a single highly polymorphic multigene complex termed the S-locus. This comprises tightly linked stylar- and pollen-expressed genes that determine the specificity of the SI response. We investigated SI of Prunus tenella, a wild species found in small, isolated populations on the Balkan peninsula, initially by pollination experiments and identifying stylar-expressed RNase alleles. Nine P. tenella S-RNase alleles (S(1)-S(9)) were cloned; their sequence analysis showed a very high ratio of non-synonymous to synonymous nucleotide substitutions (K(a)/K(s)) and revealed that S-RNase alleles of P. tenella, unlike those of Prunus dulcis, show positive selection in all regions except the conserved regions and that between C2 and RHV. Remarkably, S(8)-RNase, was found to be identical to S(1)-RNase from Prunus avium, a species that does not interbreed with P. tenella and, except for just one amino acid, to S(11) of P. dulcis. However, the corresponding introns and S-RNase-SFB intergenic regions showed considerable differences. Moreover, protein sequences of the pollen-expressed SFB alleles were not identical, harbouring 12 amino-acid replacements between those of P. tenella SFB(8) and P. avium SFB(1). Implications of this finding for hypotheses about the evolution of new S-specificities are discussed.

  12. A robust and powerful two-step testing procedure for local ancestry adjusted allelic association analysis in admixed populations.

    Science.gov (United States)

    Duan, Qing; Xu, Zheng; Raffield, Laura M; Chang, Suhua; Wu, Di; Lange, Ethan M; Reiner, Alex P; Li, Yun

    2018-04-01

    Genetic association studies in admixed populations allow us to gain deeper understanding of the genetic architecture of human diseases and traits. However, population stratification, complicated linkage disequilibrium (LD) patterns, and the complex interplay of allelic and ancestry effects on phenotypic traits pose challenges in such analyses. These issues may lead to detecting spurious associations and/or result in reduced statistical power. Fortunately, if handled appropriately, these same challenges provide unique opportunities for gene mapping. To address these challenges and to take these opportunities, we propose a robust and powerful two-step testing procedure Local Ancestry Adjusted Allelic (LAAA) association. In the first step, LAAA robustly captures associations due to allelic effect, ancestry effect, and interaction effect, allowing detection of effect heterogeneity across ancestral populations. In the second step, LAAA identifies the source of association, namely allelic, ancestry, or the combination. By jointly modeling allele, local ancestry, and ancestry-specific allelic effects, LAAA is highly powerful in capturing the presence of interaction between ancestry and allele effect. We evaluated the validity and statistical power of LAAA through simulations over a broad spectrum of scenarios. We further illustrated its usefulness by application to the Candidate Gene Association Resource (CARe) African American participants for association with hemoglobin levels. We were able to replicate independent groups' previously identified loci that would have been missed in CARe without joint testing. Moreover, the loci, for which LAAA detected potential effect heterogeneity, were replicated among African Americans from the Women's Health Initiative study. LAAA is freely available at https://yunliweb.its.unc.edu/LAAA. © 2017 WILEY PERIODICALS, INC.

  13. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Science.gov (United States)

    Takei, Hiraku; Morishita, Soji; Araki, Marito; Edahiro, Yoko; Sunami, Yoshitaka; Hironaka, Yumi; Noda, Naohiro; Sekiguchi, Yuji; Tsuneda, Satoshi; Ohsaka, Akimichi; Komatsu, Norio

    2014-01-01

    A gain-of-function mutation in the myeloproliferative leukemia virus (MPL) gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs). The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system)-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5%) of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  14. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Directory of Open Access Journals (Sweden)

    Hiraku Takei

    Full Text Available A gain-of-function mutation in the myeloproliferative leukemia virus (MPL gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs. The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5% of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  15. DRD2 A1 allele and P300 abnormalities in obesity

    Energy Technology Data Exchange (ETDEWEB)

    Blum, K. [Univ. of Texas Health Science Center, San Antonio, TX (United States)]|[PATH Foundation, Princeton, NJ (United States); Wood, R.; Sheridan, L.P.J. [Univ. of Texas Health Science Center, San Antonio, TX (United States)] [and others

    1994-09-01

    Obesity is a heterogeneous and prevalent disorder having both inheritable and environmental components. The role of the dopamine system in P300 has been implicated. We genotyped 193 neuropsychiatrically ill patients with and without comorbid drug and alcohol/abuse/dependence and obesity for the prevalence of the A1 allele of the DRD2 gene. We found a significant linear trend ({chi}{sup 2} = 40.4, df=1, p<0.00001) where the percent prevalence of the A1 increased with increasing polysubstance abuse. Where the A1 allele was found in 44% of 40 obese subjects, the A1 allele prevalence was found in as much as 91% of 11 obese subjects with comorbid polysubstance abuse. 53 obese subjects having a mean body weight (BMI) of 34.6{+-}8.2 were mapped for brain electrical activity and compared with 15 controls with a BMI of 22.3{+-}3.0 (P<.001). The P3 amplitude was significantly different (two tailed; t=3.24, df=16.2, P = 0.005), whereas P3 latency was not significant. Preliminarily, we found a significant decreased P3 amplitude correlated with parental polysubstance abuse (p=0.4) with prolongation of P3 latency correlated with the three risk factors of parental substance abuse, chemical dependency and carbohydrate bingeing (P<0.02). Finally, in a small sample, the A1 allele was present in 25% of probands having 0 risk compared to 66% in those obese subjects with any risk. This work represents the first electrophysiological data to implicate P3 abnormalities in a subset of obesity and further confirms an association of the DRD2 gene and a electrophysiological marker previously indicated to have predictive value in vulnerability to addictive behaviors.

  16. Non-coding RNAs and epigenome: de novo DNA methylation, allelic exclusion and X-inactivation

    Directory of Open Access Journals (Sweden)

    V. A. Halytskiy

    2013-12-01

    Full Text Available Non-coding RNAs are widespread class of cell RNAs. They participate in many important processes in cells – signaling, posttranscriptional silencing, protein biosynthesis, splicing, maintenance of genome stability, telomere lengthening, X-inactivation. Nevertheless, activity of these RNAs is not restricted to posttranscriptional sphere, but cover also processes that change or maintain the epigenetic information. Non-coding RNAs can directly bind to the DNA targets and cause their repression through recruitment of DNA methyltransferases as well as chromatin modifying enzymes. Such events constitute molecular mechanism of the RNA-dependent DNA methylation. It is possible, that the RNA-DNA interaction is universal mechanism triggering DNA methylation de novo. Allelic exclusion can be also based on described mechanism. This phenomenon takes place, when non-coding RNA, which precursor is transcribed from one allele, triggers DNA methylation in all other alleles present in the cell. Note, that miRNA-mediated transcriptional silencing resembles allelic exclusion, because both miRNA gene and genes, which can be targeted by this miRNA, contain elements with the same sequences. It can be assumed that RNA-dependent DNA methylation and allelic exclusion originated with the purpose of counteracting the activity of mobile genetic elements. Probably, thinning and deregulation of the cellular non-coding RNA pattern allows reactivation of silent mobile genetic elements resulting in genome instability that leads to ageing and carcinogenesis. In the course of X-inactivation, DNA methylation and subsequent hete­rochromatinization of X chromosome can be triggered by direct hybridization of 5′-end of large non-coding RNA Xist with DNA targets in remote regions of the X chromosome.

  17. Complementation of the amylose-free starch mutant of potato (Solanum tuberosum.) by the gene encoding granule-bound starch synthase

    NARCIS (Netherlands)

    van der Leij, E.R.; Visser, R.G.E.; OOSTERHAVEN, K; VANDERKOP, DAM; Jacobsen, E.; Feenstra, W.

    1991-01-01

    Agrobacterium rhizogenes-mediated introduction of the wild-type allele of the gene encoding granule-bound starch synthase (GBSS) into the amylose-free starch mutant amf of potato leads to restoration of GBSS activity and amylose synthesis, which demonstrates that Amf is the structural gene for GBSS.

  18. Allelic imbalance and fine mapping of the 17p13.3 subregion in sporadic breast carcinomas

    DEFF Research Database (Denmark)

    Hoff, C; Mollenhauer, J; Waldau, B

    2001-01-01

    Chromosome arm 17p is frequently altered in a variety of human cancers, especially in breast cancer, and allelic imbalances (AIs) in the region 17p13.1 do not always coincide with mutations in the TP53 gene. A second interval that frequently shows AIs at 17p is the chromosomal band 17p13.3. This ......Chromosome arm 17p is frequently altered in a variety of human cancers, especially in breast cancer, and allelic imbalances (AIs) in the region 17p13.1 do not always coincide with mutations in the TP53 gene. A second interval that frequently shows AIs at 17p is the chromosomal band 17p13...

  19. A PP2C-1 Allele Underlying a Quantitative Trait Locus Enhances Soybean 100-Seed Weight

    Institute of Scientific and Technical Information of China (English)

    Xiang Lu; Yong-Cai Lai; Wei-Guang Du; Wei-Qun Man; Shou-Yi Chen; Jin-Song Zhang; Qing Xiong; Tong Cheng; Qing-Tian Li; Xin-Lei Liu; Ying-Dong Bi; Wei Li; Wan-Ke Zhang; Biao Ma

    2017-01-01

    Cultivated soybeans may lose some useful genetic loci during domestication.Introgression of genes from wild soybeans could broaden the genetic background and improve soybean agronomic traits.In this study,through whole-genome sequencing of a recombinant inbred line population derived from a cross between a wild soybean ZYD7 and a cultivated soybean HN44,and mapping of quantitative trait loci for seed weight,we discovered that a phosphatase 2C-1 (PP2C-1) allele from wild soybean ZYD7 contributes to the increase in seed weight/size.PP2C-1 may achieve this function by enhancing cell size of integument and activating a subset of seed trait-related genes.We found that PP2C-1 is associated with GmBZR1,a soybean ortholog of Arabidopsis BZR1,one of key transcription factors in brassinosteroid (BR) signaling,and facilitate accumulation of dephosphorylated GmBZR1.In contrast,the PP2C-2 allele with variations of a few amino acids at the N-terminus did not exhibit this function.Moreover,we showed that GmBZR1 could promote seed weight/size in transgenic plants.Through analysis of cultivated soybean accessions,we found that 40% of the examined accessions do not have the PP2C-1 allele,suggesting that these accessions can be improved by introduction of this allele.Taken together,our study identifies an elite allele PP2C-1,which can enhance seed weight and/or size in soybean,and pinpoints that manipulation of this allele by molecular-assisted breeding may increase production in soybean and other legumes/crops.

  20. Mannose-binding lectin variant alleles and HLA-DR4 alleles are associated with giant cell arteritis

    DEFF Research Database (Denmark)

    Jacobsen, Soren; Baslund, Bo; Madsen, Hans O.

    2002-01-01

    /GCA, MBL variant alleles were associated with signs of increased inflammatory activity and clinical signs of arteritic manifestations. This was not found for HLA-DR4 alleles. These findings indicate that HLA-DR4 and MBL are contributing to the pathophysiology of GCA at different levels in the disease...... alleles in controls, patients with PMR only, and patients with GCA was 37, 32, and 53% (p = 0.01), respectively. HLA-DRB1*04 was found in 47% of patients with PMR only and in 54% of patients with GCA, which differed significantly from the 35% found in controls (p = 0.01). HLA-DR4 alleles were...... not associated with any clinical phenotypes of PMR/GCA, whereas MBL variant alleles were associated with cranial arteritis, high erythrocyte sedimentation rate, and low B-hemoglobin. CONCLUSION: We found MBL variant alleles and HLA-DR4 alleles to be weak susceptibility markers for GCA. In patients with PMR...

  1. Typing for HLA-DPB1*03 and HLA-DPB1*06 using allele-specific DNA in vitro amplification and allele-specific oligonucleotide probes. Detection of "new" DPB1*06 variants

    DEFF Research Database (Denmark)

    Fugger, L; Morling, N; Ryder, L P

    1989-01-01

    DP gene typing using in vitro DNA amplification combined with sequence-specific oligonucleotide probes has recently been reported. The resulting DNA amplification was specific for the HLA-DPB locus. Typing for the individual DPB alleles was exclusively dependent on the hybridizations of the probe...

  2. Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis.

    Science.gov (United States)

    Ciofi, C; Bruford, M W

    1999-12-01

    A general concern for the conservation of endangered species is the maintenance of genetic variation within populations, particularly when they become isolated and reduced in size. Estimates of gene flow and effective population size are therefore important for any conservation initiative directed to the long-term persistence of a species in its natural habitat. In the present study, 10 microsatellite loci were used to assess the level of genetic variability among populations of the Komodo dragon Varanus komodoensis. Effective population size was calculated and gene flow estimates were compared with palaeogeographic data in order to assess the degree of vulnerability of four island populations. Rinca and Flores, currently separated by an isthmus of about 200 m, retained a high level of genetic diversity and showed a high degree of genetic similarity, with gene flow values close to one migrant per generation. The island of Komodo showed by far the highest levels of genetic divergence, and its allelic distinctiveness was considered of great importance in the maintenance of genetic variability within the species. A lack of distinct alleles and low levels of gene flow and genetic variability were found for the small population of Gili Motang island, which was identified as vulnerable to stochastic threats. Our results are potentially important for both the short- and long-term management of the Komodo dragon, and are critical in view of future re-introduction or augmentation in areas where the species is now extinct or depleted.

  3. Systematic study of association of four GABAergic genes: glutamic acid decarboxylase 1 gene, glutamic acid decarboxylase 2 gene, GABA(B) receptor 1 gene and GABA(A) receptor subunit beta2 gene, with schizophrenia using a universal DNA microarray.

    Science.gov (United States)

    Zhao, Xu; Qin, Shengying; Shi, Yongyong; Zhang, Aiping; Zhang, Jing; Bian, Li; Wan, Chunling; Feng, Guoyin; Gu, Niufan; Zhang, Guangqi; He, Guang; He, Lin

    2007-07-01

    Several studies have suggested the dysfunction of the GABAergic system as a risk factor in the pathogenesis of schizophrenia. In the present study, case-control association analysis was conducted in four GABAergic genes: two glutamic acid decarboxylase genes (GAD1 and GAD2), a GABA(A) receptor subunit beta2 gene (GABRB2) and a GABA(B) receptor 1 gene (GABBR1). Using a universal DNA microarray procedure we genotyped a total of 20 SNPs on the above four genes in a study involving 292 patients and 286 controls of Chinese descent. Statistically significant differences were observed in the allelic frequencies of the rs187269C/T polymorphism in the GABRB2 gene (P=0.0450, chi(2)=12.40, OR=1.65) and the -292A/C polymorphism in the GAD1 gene (P=0.0450, chi(2)=14.64 OR=1.77). In addition, using an electrophoretic mobility shift assay (EMSA), we discovered differences in the U251 nuclear protein binding to oligonucleotides representing the -292 SNP on the GAD1 gene, which suggests that the -292C allele has reduced transcription factor binding efficiency compared with the 292A allele. Using the multifactor-dimensionality reduction method (MDR), we found that the interactions among the rs187269C/T polymorphism in the GABRB2 gene, the -243A/G polymorphism in the GAD2 gene and the 27379C/T and 661C/T polymorphisms in the GAD1 gene revealed a significant association with schizophrenia (Pschizophrenia in the Chinese population.

  4. Determination of leukemia-associated gene rearrangements and ultrastructural changes in Chernobyl accident liquidators blood leukocytes long term after radiation exposure

    International Nuclear Information System (INIS)

    Butenko, Z.A.; Smirnova, I.A.; Yanok, E.A.; Kishinskaya, E.G.; Zak, K.P.; Afanas'eva, V.V.; Mikhajlovskaya, Eh.V.

    1997-01-01

    The results of ultrastructural and molecular-genetic investigations of blood cells from 120 liquidators 7-10 years after Chernobyl accident with the total exposure radiation doses ranging from 5.1 to 75.0 cGy are presented. Electron microscopic studies revealed marked changes in ultrastructure of neutrophils nuclei - hyper segmentation, whimsical prominences, loops, swelling and destruction of cytoplasmic granules. There was an increase in the number of 'aberrant' forms of lymphocytes with disturbed structure of chromatin, additional nuclei and changed membrane contour. Structural polymorphism of the leukemia associated bcr and ribosomal RNA (rRNA) genes were studied using Southern blot hybridization. Allelic polymorphism of bcr gene with characteristic for chronic myeloid leukemia allele distribution and rearrangements of eRNA genes were detected in 11.5% of accident liquidators. This data point out to structure-functional leucocyte changes and possibility of arising leukemia associated gene rearrangements in blood cells of some liquidators many years after the exposure to radiation and serve for determination of group at risk of oncohematological diseases

  5. TypeLoader: A fast and efficient automated workflow for the annotation and submission of novel full-length HLA alleles.

    Science.gov (United States)

    Surendranath, V; Albrecht, V; Hayhurst, J D; Schöne, B; Robinson, J; Marsh, S G E; Schmidt, A H; Lange, V

    2017-07-01

    Recent years have seen a rapid increase in the discovery of novel allelic variants of the human leukocyte antigen (HLA) genes. Commonly, only the exons encoding the peptide binding domains of novel HLA alleles are submitted. As a result, the IPD-IMGT/HLA Database lacks sequence information outside those regions for the majority of known alleles. This has implications for the application of the new sequencing technologies, which deliver sequence data often covering the complete gene. As these technologies simplify the characterization of the complete gene regions, it is desirable for novel alleles to be submitted as full-length sequences to the database. However, the manual annotation of full-length alleles and the generation of specific formats required by the sequence repositories is prone to error and time consuming. We have developed TypeLoader to address both these facets. With only the full-length sequence as a starting point, Typeloader performs automatic sequence annotation and subsequently handles all steps involved in preparing the specific formats for submission with very little manual intervention. TypeLoader is routinely used at the DKMS Life Science Lab and has aided in the successful submission of more than 900 novel HLA alleles as full-length sequences to the European Nucleotide Archive repository and the IPD-IMGT/HLA Database with a 95% reduction in the time spent on annotation and submission when compared with handling these processes manually. TypeLoader is implemented as a web application and can be easily installed and used on a standalone Linux desktop system or within a Linux client/server architecture. TypeLoader is downloadable from http://www.github.com/DKMS-LSL/typeloader. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Molecular elucidation of a new allelic variation at the Sg-5 gene associated with the absence of group A saponins in wild soybean.

    Science.gov (United States)

    Sundaramoorthy, Jagadeesh; Park, Gyu Tae; Mukaiyama, Kyosuke; Tsukamoto, Chigen; Chang, Jeong Ho; Lee, Jeong-Dong; Kim, Jeong Hoe; Seo, Hak Soo; Song, Jong Tae

    2018-01-01

    In soybean, triterpenoid saponin is one of the major secondary metabolites and is further classified into group A and DDMP saponins. Although they have known health benefits for humans and animals, acetylation of group A saponins causes bitterness and gives an astringent taste to soy products. Therefore, several studies are being conducted to eliminate acetylated group A saponins. Previous studies have isolated and characterized the Sg-5 (Glyma.15g243300) gene, which encodes the cytochrome P450 72A69 enzyme and is responsible for soyasapogenol A biosynthesis. In this study, we elucidated the molecular identity of a novel mutant of Glycine soja, 'CWS5095'. Phenotypic analysis using TLC and LC-PDA/MS/MS showed that the mutant 'CWS5095' did not produce any group A saponins. Segregation analysis showed that the absence of group A saponins is controlled by a single recessive allele. The locus was mapped on chromosome 15 (4.3 Mb) between Affx-89193969 and Affx-89134397 where the previously identified Glyma.15g243300 gene is positioned. Sequence analysis of the coding region for the Glyma.15g243300 gene revealed the presence of four SNPs in 'CWS5095' compared to the control lines. One of these four SNPs (G1127A) leads to the amino acid change Arg376Lys in the EXXR motif, which is invariably conserved among the CYP450 superfamily proteins. Co-segregation analysis showed that the missense mutation (Arg376Lys) was tightly linked with the absence of group A saponins in 'CWS5095'. Even though Arg and Lys have similar chemical features, the 3D modelled protein structure indicates that the replacement of Arg with Lys may cause a loss-of-function of the Sg-5 protein by inhibiting the stable binding of a heme cofactor to the CYP72A69 apoenzyme.

  7. The impact of R1and R3a genes on tuber resistance to late blight of the potato breeding clones

    Directory of Open Access Journals (Sweden)

    Zoteyeva Nadezhda

    2016-04-01

    Full Text Available Potato breeding clones were evaluated for resistance to late blight (agent Phytophthora infestans using tuber inoculation tests and for presence of the resistance alleles of R1 and R3a genes in polymerase chain reaction tests. Among clones tested those expressing high, moderate and low resistance were identified. The data were analysed for the impact of R1 and R3a genes on tuber resistance to late blight in tested plant material. In previous evaluations performed on smaller amount of clones the tuber resistance levels significantly depended on presence/absence of the resistance allele of R3a gene and did not depend on presence of R1 gene allele. In the current study the statistical analyses did not prove the significant difference in resistance levels depending on presence of the resistance alleles, neither of R1 gene, nor of R3a gene. Tuber resistant clones bearing R3a gene resistance alleles still noticeably prevailed over the clones bearing the alleles of R1 gene as well as over the clones bearing the no resistance alleles of both genes. In several cases the resistance of clones with detected resistance allele of R1 gene was higher compared to those derived from the same crosses and showing amplification of the allele of R3a gene or those with no resistance alleles. Clones accumulating the resistance alleles of both (R1 and R3a genes expressed high tuber resistance accompanied by necrotic reaction.

  8. A PCR-based protocol to accurately size C9orf72 intermediate-length alleles.

    Science.gov (United States)

    Biasiotto, Giorgio; Archetti, Silvana; Di Lorenzo, Diego; Merola, Francesca; Paiardi, Giulia; Borroni, Barbara; Alberici, Antonella; Padovani, Alessandro; Filosto, Massimiliano; Bonvicini, Cristian; Caimi, Luigi; Zanella, Isabella

    2017-04-01

    Although large expansions of the non-coding GGGGCC repeat in C9orf72 gene are clearly defined as pathogenic for Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD), intermediate-length expansions have also been associated with those and other neurodegenerative diseases. Intermediate-length allele sizing is complicated by intrinsic properties of current PCR-based methodologies, in that somatic mosaicism could be suspected. We designed a protocol that allows the exact sizing of intermediate-length alleles, as well as the identification of large expansions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A pseudodeficiency allele common in non-Jewish Tay-Sachs carriers: Implications for carrier screening

    Energy Technology Data Exchange (ETDEWEB)

    Triggs-Raine, B.L.; Akerman, B.R.; Gravel, R.A. (McGill Univ.-Montreal Children' s Hospital Research Institute, Montreal, Quebec (Canada)); Mules, E.H.; Thomas, G.H.; Dowling, C.E. (Johns Hopkins School of Medicine, Baltimore, MD (United States)); Kaback, M.M.; Lim-Steele, J.S.T. (Univ. of California, San Diego, CA (United States)); Natowicz, M.R. (Eunice Kennedy Shriver Center for Mental Retardation, Waltham, MA (United States)); Grebner, E.E. (Thomas Jefferson Univ., Philadelphia, PA (United States)); Navon, R.R. (Tel-Aviv Univ., Kfar-Sava (Israel)); Welch, J.P. (Dalhousie Univ., Halifax, Nova, Scotia (Canada)); Greenberg, C.R. (Univ. of Manitoba, Winnipeg (Canada))

    1992-10-01

    Deficiency of [beta]-hexosaminidase A (Hex A) activity typically results in Tay-Sachs disease. However, healthy subjects found to be deficient in Hex A activity (i.e., pseudodeficient) by means of in vitro biochemical tests have been described. The authors analyzed the HEXA gene of one pseudodeficient subject and identified both a C[sub 739]-to-T substitution that changes Arg[sub 247][yields]Trp on one allele and a previously identified Tay-Sachs disease mutation of the second allele. Six additional pseudodeficient subjects were found to have the C[sub 739]-to-T but for none of 36 Jewish enzyme-defined carries who did not have one of three known mutations common to this group. The C[sub 739]-to-T allele, together with a [open quotes]true[close quotes] Tay-Sachs disease allele, causes Hex A pseudodeficiency. Given both the large proportion of non-Jewish carriers with this allele and that standard biochemical screening cannot differentiate between heterozygotes for the C[sub 739]-to-T mutations and Tay-Sachs disease carriers, DNA testing for this mutation in at-risk couples is essential. This could prevent unnecessary or incorrect prenatal diagnoses. 40 refs., 3 figs., 4 tabs.

  10. Beta2-adrenergic receptor allele frequencies in the Quechua, a high altitude native population.

    Science.gov (United States)

    Rupert, J L; Monsalve, M V; Devine, D V; Hochachka, P W

    2000-03-01

    The beta2-adrenergic receptor is involved in the control of numerous physiological processes and, as the primary catecholamine receptor in the lungs, is of particular importance in the regulation of pulmonary function. There are several polymorphic loci in the beta2-adrenergic receptor gene that have alleles that alter receptor function, including two (A/G46, G/C79) that increase agonist sensitivity. As such a phenotype may increase vaso and bronchial dilation, thereby facilitating air and blood flow through the lungs, we hypothesized that selection may have favoured these alleles in high altitude populations as part of an adaptive strategy to deal with the hypoxic conditions characteristic of such environments. We tested this hypothesis by determining the allele frequencies for these two polymorphisms, as well one additional missense mutation (C/T491) and two silent mutations (G/A252 and C/A523) in 63 Quechua speaking natives from communities located between 3200 and 4200 m on the Peruvian altiplano. These frequencies were compared with those of two lowland populations, one native American (Na-Dene from the west coast of Canada) and one Caucasian of Western European descent. The Quechua manifest many of the pulmonary characteristics of high altitude populations and differences in allele frequencies between the Quechua and lowlanders could be indicative of a selective advantage conferred by certain genotypes in high altitude environments. Allele frequencies varied between populations at some loci and patterns of linkage disequilibrium differed between the old-world and new-world samples; however, as these populations are not closely related, significant variation would be expected due to stochastic effects alone. Neither of the alleles associated with increased receptor sensitivity (A46, G79) was significantly over-represented in the Quechua compared with either lowland group. The Quechua were monomorphic for the C allele at base 79. This variant has been

  11. Haplotype analysis and a novel allele-sharing method refines a chromosome 4p locus linked to bipolar affective disorder.

    Science.gov (United States)

    Le Hellard, Stephanie; Lee, Andrew J; Underwood, Sarah; Thomson, Pippa A; Morris, Stewart W; Torrance, Helen S; Anderson, Susan M; Adams, Richard R; Navarro, Pau; Christoforou, Andrea; Houlihan, Lorna M; Detera-Wadleigh, Sevilla; Owen, Michael J; Asherson, Philip; Muir, Walter J; Blackwood, Douglas H R; Wray, Naomi R; Porteous, David J; Evans, Kathryn L

    2007-03-15

    Bipolar affective disorder (BPAD) and schizophrenia (SCZ) are common conditions. Their causes are unknown, but they include a substantial genetic component. Previously, we described significant linkage of BPAD to a chromosome 4p locus within a large pedigree (F22). Others subsequently have found evidence for linkage of BPAD and SCZ to this region. We constructed high-resolution haplotypes for four linked families, calculated logarithm of the odds (LOD) scores, and developed a novel method to assess the extent of allele sharing within genes between the families. We describe an increase in the F22 LOD score for this region. Definition and comparison of the linked haplotypes allowed us to prioritize two subregions of 3.8 and 4.4 Mb. Analysis of the extent of allele sharing within these subregions identified 200 kb that shows increased allele sharing between families. Linkage of BPAD to chromosome 4p has been strengthened. Haplotype analysis in the additional linked families refined the 20-Mb linkage region. Development of a novel allele-sharing method allowed us to bridge the gap between conventional linkage and association studies. Description of a 200-kb region of increased allele sharing prioritizes this region, which contains two functional candidate genes for BPAD, SLC2A9, and WDR1, for subsequent studies.

  12. A study of the association of childhood asthma with HLA alleles in the population of Siliguri, West Bengal, India.

    Science.gov (United States)

    Lama, M; Chatterjee, M; Chaudhuri, T K

    2014-09-01

    Asthma is a heterogeneous disease for which a strong genetic basis is firmly established. It is a complex disorder influenced by gene-environment interaction. Human leukocyte antigen (HLA) genes have been shown to be consistently associated with asthma and its related phenotypes in various populations. The aim of this study was to determine the frequency of the selected HLA classes I and II allelic groups in asthmatic and control groups. HLA typing was performed using polymerase chain reaction-sequence-specific typing (PCR-SSP) method. The allele frequency was estimated by direct counting. Frequency of each HLA allelic group was compared between asthmatic group and control group using χ(2) test. P-value was corrected by multiplying with the number of the allelic groups studied. Odds ratio (OR) and its corresponding 95% confidence interval (CI) for each allelic group were calculated using graphpad instat 3.10. The results of this study showed a significantly higher frequency of HLA-DRB1*03 in asthmatics than in controls (11.43% vs 3.64%, OR = 3.78, 95% CI = 1.61-8.85, P = 0.0025, Pcorr  population. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Alleles conferring improved fiber quality from EMS mutagenesis of elite cotton genotypes

    Science.gov (United States)

    The elite gene pool of cotton (Gossypium spp.) has less diversity than those of most other major crops, making identification of novel alleles important to ongoing crop improvement. A total of 3,164 M5 lines resulting from ethyl methanesulfonate mutagenesis of two G. hirsutum breeding lines, TAM 94L...

  14. Myotonic dystrophy type 1: role of CCG, CTC and CGG interruptions within DMPK alleles in the pathogenesis and molecular diagnosis.

    Science.gov (United States)

    Santoro, M; Masciullo, M; Silvestri, G; Novelli, G; Botta, A

    2017-10-01

    Myotonic dystrophy type 1 (DM1) is a multisystem neuromuscular disease caused by a CTG triplet expansion in the 3'-untranslated region (3'-UTR) of DMPK gene. This CTG array is usually uninterrupted in both healthy and DM1 patients, but recent studies identified pathological variant expansions containing unstable CCG, CTC and CGG interruptions with a prevalence of 3-5% of cases. In this review, we will describe the clinical, molecular and genetic issues related to the occurrence of variant expansions associated with DM1. Indeed, the identification of these complex DMPK alleles leads to practical consequences in DM1 genetic counseling and testing, because these exams can give false negative results. Moreover, DM1 patients carrying interrupted alleles can manifest either additional atypical neurological symptoms or, conversely, mild, late-onset forms. Therefore, the prognosis of the disease in these patients is difficult to determine because of the great uncertainty about the genotype-phenotype correlations. We will discuss the putative effects of the variant DM1 alleles on the pathogenic disease mechanisms, including mitotic and meiotic repeats instability and splicing alteration typical of DM1 tissues. Interruptions within the DMPK expanded alleles could also interfere with the chromatin structure, the transcriptional activity of the DM1 locus and the interaction with RNA CUG-binding proteins. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. A distinct alleles and genetic recombination of pmrCAB operon in species of Acinetobacter baumannii complex isolates.

    Science.gov (United States)

    Kim, Dae Hun; Ko, Kwan Soo

    2015-07-01

    To investigate pmrCAB sequence divergence in 5 species of Acinetobacter baumannii complex, a total of 80 isolates from a Korean hospital were explored. We evaluated nucleotide and amino acid polymorphisms of pmrCAB operon, and phylogenetic trees were constructed for each gene of prmCAB operon. Colistin and polymyxin B susceptibility was determined for all isolates, and multilocus sequence typing was also performed for A. baumannii isolates. Our results showed that each species of A. baumannii complex has divergent pmrCAB operon sequences. We identified a distinct pmrCAB allele allied with Acinetobacter nosocomialis in gene trees. Different grouping in each gene tree suggests sporadic recombination or emergence of pmrCAB genes among Acinetobacter species. Sequence polymorphisms among Acinetobacter species might not be associated with colistin resistance. We revealed that a distinct pmrCAB allele may be widespread across the continents such as North America and Asia and that sporadic genetic recombination or emergence of pmrCAB genes might occur. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Allele coding in genomic evaluation

    DEFF Research Database (Denmark)

    Standen, Ismo; Christensen, Ole Fredslund

    2011-01-01

    Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker...... effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous...... genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call...

  17. Non-syndromic hearing impairment in India: high allelic heterogeneity among mutations in TMPRSS3, TMC1, USHIC, CDH23 and TMIE.

    Directory of Open Access Journals (Sweden)

    Aparna Ganapathy

    Full Text Available Mutations in the autosomal genes TMPRSS3, TMC1, USHIC, CDH23 and TMIE are known to cause hereditary hearing loss. To study the contribution of these genes to autosomal recessive, non-syndromic hearing loss (ARNSHL in India, we examined 374 families with the disorder to identify potential mutations. We found four mutations in TMPRSS3, eight in TMC1, ten in USHIC, eight in CDH23 and three in TMIE. Of the 33 potentially pathogenic variants identified in these genes, 23 were new and the remaining have been previously reported. Collectively, mutations in these five genes contribute to about one-tenth of ARNSHL among the families examined. New mutations detected in this study extend the allelic heterogeneity of the genes and provide several additional variants for structure-function correlation studies. These findings have implications for early DNA-based detection of deafness and genetic counseling of affected families in the Indian subcontinent.

  18. MASTR: A Technique for Mosaic Mutant Analysis with Spatial and Temporal Control of Recombination Using Conditional Floxed Alleles in Mice

    Directory of Open Access Journals (Sweden)

    Zhimin Lao

    2012-08-01

    Full Text Available Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination, which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26MASTR was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26MASTR mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.

  19. Induction of Terpene Biosynthesis in Berries of Microvine Transformed with VvDXS1 Alleles

    Directory of Open Access Journals (Sweden)

    Lorenza Dalla Costa

    2018-01-01

    Full Text Available Terpenoids, especially monoterpenes, are major aroma-impact compounds in grape and wine. Previous studies highlighted a key regulatory role for grapevine 1-deoxy-D-xylulose 5-phosphate synthase 1 (VvDXS1, the first enzyme of the methylerythritol phosphate pathway for isoprenoid precursor biosynthesis. Here, the parallel analysis of VvDXS1 genotype and terpene concentration in a germplasm collection demonstrated that VvDXS1 sequence has a very high predictive value for the accumulation of monoterpenes and also has an influence on sesquiterpene levels. A metabolic engineering approach was applied by expressing distinct VvDXS1 alleles in the grapevine model system “microvine” and assessing the effects on downstream pathways at transcriptional and metabolic level in different organs and fruit developmental stages. The underlying goal was to investigate two potential perturbation mechanisms, the former based on a significant over-expression of the wild-type (neutral VvDXS1 allele and the latter on the ex-novo expression of an enzyme with increased catalytic efficiency from the mutated (muscat VvDXS1 allele. The integration of the two VvDXS1 alleles in distinct microvine lines was found to alter the expression of several terpenoid biosynthetic genes, as assayed through an ad hoc developed TaqMan array based on cDNA libraries of four aromatic cultivars. In particular, enhanced transcription of monoterpene, sesquiterpene and carotenoid pathway genes was observed. The accumulation of monoterpenes in ripe berries was higher in the transformed microvines compared to control plants. This effect is predominantly attributed to the improved activity of the VvDXS1 enzyme coded by the muscat allele, whereas the up-regulation of VvDXS1 plays a secondary role in the increase of monoterpenes.

  20. Analysis of essential Arabidopsis nuclear genes encoding plastid-targeted proteins.

    Science.gov (United States)

    Savage, Linda J; Imre, Kathleen M; Hall, David A; Last, Robert L

    2013-01-01

    The Chloroplast 2010 Project (http://www.plastid.msu.edu/) identified and phenotypically characterized homozygous mutants in over three thousand genes, the majority of which encode plastid-targeted proteins. Despite extensive screening by the community, no homozygous mutant alleles were available for several hundred genes, suggesting that these might be enriched for genes of essential function. Attempts were made to generate homozygotes in ~1200 of these lines and 521 of the homozygous viable lines obtained were deposited in the Arabidopsis Biological Resource Center (http://abrc.osu.edu/). Lines that did not yield a homozygote in soil were tested as potentially homozygous lethal due to defects either in seed or seedling development. Mutants were characterized at four stages of development: developing seed, mature seed, at germination, and developing seedlings. To distinguish seed development or seed pigment-defective mutants from seedling development mutants, development of seeds was assayed in siliques from heterozygous plants. Segregating seeds from heterozygous parents were sown on supplemented media in an attempt to rescue homozygous seedlings that could not germinate or survive in soil. Growth of segregating seeds in air and air enriched to 0.3% carbon dioxide was compared to discover mutants potentially impaired in photorespiration or otherwise responsive to CO2 supplementation. Chlorophyll fluorescence measurements identified CO2-responsive mutants with altered photosynthetic parameters. Examples of genes with a viable mutant allele and one or more putative homozygous-lethal alleles were documented. RT-PCR of homozygotes for potentially weak alleles revealed that essential genes may remain undiscovered because of the lack of a true null mutant allele. This work revealed 33 genes with two or more lethal alleles and 73 genes whose essentiality was not confirmed with an independent lethal mutation, although in some cases second leaky alleles were identified.

  1. Analysis of essential Arabidopsis nuclear genes encoding plastid-targeted proteins.

    Directory of Open Access Journals (Sweden)

    Linda J Savage

    Full Text Available The Chloroplast 2010 Project (http://www.plastid.msu.edu/ identified and phenotypically characterized homozygous mutants in over three thousand genes, the majority of which encode plastid-targeted proteins. Despite extensive screening by the community, no homozygous mutant alleles were available for several hundred genes, suggesting that these might be enriched for genes of essential function. Attempts were made to generate homozygotes in ~1200 of these lines and 521 of the homozygous viable lines obtained were deposited in the Arabidopsis Biological Resource Center (http://abrc.osu.edu/. Lines that did not yield a homozygote in soil were tested as potentially homozygous lethal due to defects either in seed or seedling development. Mutants were characterized at four stages of development: developing seed, mature seed, at germination, and developing seedlings. To distinguish seed development or seed pigment-defective mutants from seedling development mutants, development of seeds was assayed in siliques from heterozygous plants. Segregating seeds from heterozygous parents were sown on supplemented media in an attempt to rescue homozygous seedlings that could not germinate or survive in soil. Growth of segregating seeds in air and air enriched to 0.3% carbon dioxide was compared to discover mutants potentially impaired in photorespiration or otherwise responsive to CO2 supplementation. Chlorophyll fluorescence measurements identified CO2-responsive mutants with altered photosynthetic parameters. Examples of genes with a viable mutant allele and one or more putative homozygous-lethal alleles were documented. RT-PCR of homozygotes for potentially weak alleles revealed that essential genes may remain undiscovered because of the lack of a true null mutant allele. This work revealed 33 genes with two or more lethal alleles and 73 genes whose essentiality was not confirmed with an independent lethal mutation, although in some cases second leaky alleles

  2. Nomenclature for alleles of the human carboxylesterase 1 gene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik B.; Madsen, Majbritt B.; Bjerre, Ditte

    2017-01-01

    The carboxylesterase 1 gene (CES1) in humans encodes a hydrolase, which is implicated in the metabolism of several commonly used drugs 1. This gene is located on chromosome 16 with a highly homologous pseudogene, CES1P1, in its proximity. A duplicated segment of CES1 replaces most of CES1P1 in some...... appears to be low 8,13. The formation of hybrids consisting of a gene and a related pseudogene has been reported for other genes than CES1. This includes the hybrids of the gene encoding cytochrome P450 2D6 (CYP2D6) and pseudogene CYP2D7, that is, the so-called CYP2D7/D6 hybrids 14......,15. These are categorized as CYP2D6 variants and not as variants of pseudogene CYP2D716....

  3. Estimating the probability of allelic drop-out of STR alleles in forensic genetics

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt

    2009-01-01

    In crime cases with available DNA evidence, the amount of DNA is often sparse due to the setting of the crime. In such cases, allelic drop-out of one or more true alleles in STR typing is possible. We present a statistical model for estimating the per locus and overall probability of allelic drop......-out using the results of all STR loci in the case sample as reference. The methodology of logistic regression is appropriate for this analysis, and we demonstrate how to incorporate this in a forensic genetic framework....

  4. Sorted gene genealogies and species-specific nonsynonymous substitutions point to putative postmating prezygotic isolation genes in Allonemobius crickets

    Directory of Open Access Journals (Sweden)

    Suegene Noh

    2016-02-01

    Full Text Available In the Allonemobius socius complex of crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes. Our recently diverged species generally lacked sequence variation. As a result, ω-based tests were only mildly successful. Some of our genes showed evidence of elevated ω values on the internal branches of gene trees. In a couple of genes, these internal branches coincided with both species branching events of the species tree, between A. fasciatus and the other two species, and between A. socius and A. sp. nov. Tex. In comparison, more successful approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses was arginine kinase (AK and apolipoprotein A-1 binding protein (APBP. These genes represent two of the first examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among our species, namely conspecific sperm precedence and the superior ability of

  5. Analysis of FBN1 allele expression by dermal fibroblasts from Marfan syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Putman, E.A.; Cao, S.N.; Milewicz, D.M. [Univ. of Texas Medical School, Houston, TX (United States)

    1994-09-01

    Screening for mutations in the FBN1 cDNA from Marfan patient cell strains has detected mutations in only 10-15% of patients. In an attempt to explain this poor detection rate, we examined FBN1 allele expression and fibrillin synthesis by 26 cell strains from Marfan patients. DNA from the patients and 10 controls was assessed for the presence of a polymorphic Rsa I restriction site in the 3{prime} untranslated region of the FBN1 gene. Twelve of 26 patient and 5 of 10 control DNAs were heterozygous. Fibroblast RNA from the heterozygous cell strains was reverse-transcribed and subsequently PCR amplified using a [{sup 32}P]-labelled primer, digested with Rsa I and analyzed. Although 3 samples showed no transcript from one allele by ethidium bromide staining, a Betagen scanner detected low levels (10-15%) of that allele. In addition, there was unequal expression of the two alleles in three other patients; for example, only 30% expression from one allele. The remaining patients and the controls had equal expression of each allele. Fibrillin protein synthesis by fibroblasts from these heterozygous patients was also examined. After a 30 minute pulse with [{sup 35}S]-cysteine, cell lysates were collected and proteins analyzed by SDS-PAGE. The amount of fibrillin produced relative to a reference protein was determined using a Betagen scanner. Fibrillin protein synthesis was reduced in 2 of the 3 patients with very low RNA production from one of the FBN1 alleles. All other Marfan and control cell strains showed normal amounts of fibrillin synthesized. The low expression levels from one allele may contribute to, but not fully account for, the low detection rate of FBN1 mutations. Interestingly, protein synthesis levels were not affected in 4 of 6 cell strains demonstrating low levels of RNA expression.

  6. A putative autonomous 20.5 kb-CACTA transposon insertion in an F3'H allele identifies a new CACTA transposon subfamily in Glycine max

    Directory of Open Access Journals (Sweden)

    Vodkin Lila

    2008-12-01

    Full Text Available Abstract Background The molecular organization of very few genetically defined CACTA transposon systems have been characterized thoroughly as those of Spm/En in maize, Tam1 of Antirrhinum majus Candystripe1 (Cs1 from Sorghum bicolor and CAC1 from Arabidopsis thaliana, for example. To date, only defective deletion derivatives of CACTA elements have been described for soybean, an economically important plant species whose genome sequence will be completed in 2008. Results We identified a 20.5 kb insertion in a soybean flavonoid 3'-hydroxylase (F3'H gene representing the t* allele (stable gray trichome color whose origin traces to a single mutable chimeric plant displaying both tawny and gray trichomes. This 20.5 kb insertion has the molecular structure of a putative autonomous transposon of the CACTA family, designated Tgmt*. It encodes a large gene that was expressed in two sister isolines (T* and tm of the stable gray line (t* from which Tgmt* was isolated. RT-PCR derived cDNAs uncovered the structure of a large precursor mRNA as well as alternatively spliced transcripts reminiscent of the TNPA-mRNA generated by the En-1 element of maize but without sequence similarity to the maize TNPA. The larger mRNA encodes a transposase with a tnp2 and TNP1-transposase family domains. Because the two soybean lines expressing Tgmt* were derived from the same mutable chimeric plant that created the stable gray trichome t* allele line from which the element was isolated, Tgmt* has the potential to be an autonomous element that was rapidly inactivated in the stable gray trichome t* line. Comparison of Tgmt* to previously described Tgm elements demonstrated that two subtypes of CACTA transposon families exist in soybean based on divergence of their characteristic subterminal repeated motifs and their transposases. In addition, we report the sequence and annotation of a BAC clone containing the F3'H gene (T locus which was interrupted by the novel Tgmt* element

  7. CYP1A1, CYP1A2, SULT1A1 AND SULT1E1 ALLELIC POLYMORPHISM IN CASE OF GENITAL ENDOMETRIOSIS

    Directory of Open Access Journals (Sweden)

    Konstantin Sergeevich Kublinskiy

    2016-02-01

    Up-to-date molecular and genetic analyses reveal that women predisposed to genital endometriosis possess Allele G and Genotypes AG and GG of the polymorphic option A-4889G of the CYP1A1 gene and Allele A and Genotypes CA and AA of the polymorphic option C-734A of the CYP1A2 gene. The polymorphism of the promoter regions of the SULT1A1 (G-638A and SULT1E1 (C-174T genes is not associated with genital endometriosis in women.

  8. TRPV6 alleles do not influence prostate cancer progression

    OpenAIRE

    Kessler, Thorsten; Wissenbach, Ulrich; Grobholz, Rainer; Flockerzi, Veit

    2009-01-01

    Abstract Background The transient receptor potential, subfamily V, member 6 (TRPV6) is a Ca2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV...

  9. Allele-specific characterization of alanine: glyoxylate aminotransferase variants associated with primary hyperoxaluria.

    Directory of Open Access Journals (Sweden)

    Melissa D Lage

    Full Text Available Primary Hyperoxaluria Type 1 (PH1 is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT, which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele.

  10. Ultraviolet-induced reversion of cyc1 alleles in radiation-sensitive strains of yeast. III. rev 3 mutant strains

    International Nuclear Information System (INIS)

    Lawrence, C.W.; Crhistensen, R.B.

    1979-01-01

    The role of rev3 gene function in uv-induced mutagenesis in the yeast Saccharomyces cerevisiae has been examined by determining the reversion of 12 well-defined cyc1 mutations in diploid strains homozygous for the rev3-1 or rev3-3 allale. The 12 cyc1 alleles include one ochre, one amber, four initiation, two proline missense, and four frameshift mutations. We find that the rev3 mutations reduce the frequency of UV-induced reversion of all of the cyc1 alleles, though different classes of alleles respond to a different extent. These results imply that the rev3 gene function is required for the production of a wide variety of mutational events, though probably not all, and show that each of the three rev loci have different mutational phenotypes. Such diverse phenotypes are not predicted by the unitary model for bacterial mutagenes, suggesting that this is at best an incomplete description of eukaryotic mutagenesis

  11. A and MdMYB1 allele-specific markers controlling apple (Malus x domestica Borkh.) skin color and suitability for marker-assisted selection.

    Science.gov (United States)

    Zhang, X J; Wang, L X; Chen, X X; Liu, Y L; Meng, R; Wang, Y J; Zhao, Z Y

    2014-10-31

    Pre-selection for fruit skin color at the seedling stage would be highly advantageous, with marker-assisted selection offering a potential method for apple pre-selection. A and MdMYB1 alleles are allele-specific DNA markers that are potentially associated with apple skin color, and co-segregate with the Rf and Rni loci, respectively. Here, we assessed the potential application of these 2 alleles for marker-assisted breeding across 30 diverse cultivars and 2 apple seedling progenies. The red skin color phenotype was usually associated with the MdMYB1-1 allele and A(1) allele, respectively, while the 2 molecular markers provided approximately 91% predictability in the 'Fuji' x 'Cripps Pink' and 'Fuji' x 'Gala' progenies. The results obtained from the 30 cultivars and 2 progenies were consistent for the 2 molecular markers. Hence, the results supported that Rf and Rni could be located in a gene cluster, or even correspond to alleles of the same gene. Our results are consistent with the hypothesis that red/yellow dimorphism is controlled by a monogenic system, with the presence of the red anthocyanin pigmentation being dominant. In addition, our results supported that the practical utilization of the 2 function markers to efficiently and accurately select red-skinned apple cultivars in apple scion breeding programs.

  12. Association of the C47T Polymorphism in SOD2 with Amnestic Mild Cognitive Impairment and Alzheimer’s Disease in Carriers of the APOEε4 Allele

    Directory of Open Access Journals (Sweden)

    David Gamarra

    2015-01-01

    Full Text Available Oxidative stress plays an important part in amnestic mild cognitive impairment (aMCI, the prodromal phase of Alzheimer’s disease (AD. Recent evidence shows that polymorphisms in the SOD2 gene affect the elimination of the reactive oxygen species (ROS generated in mitochondria. The aim of this study was to determine whether the functional rs4880 SNP in the SOD2 gene is a risk factor associated with aMCI and sporadic AD. 216 subjects with aMCI, 355 with AD, and 245 controls have been studied. The SNP rs4880 of the SOD2 gene was genotyped by RT-PCR and the APOE genotype was determined by PCR and RFLPs. Different multinomial logistic regression models were used to determine the risk levels for aMCI and AD. Although the T allele of the SOD2 rs4880 SNP gene (rs4880-T is not an independent risk for aMCI or AD, this allele increases the risk to aMCI patients carrying at least one APOEε4 allele. Moreover, rs4880-T allele and APOEε4 allele combination has been found to produce an increased risk for AD compared to aMCI reference patients. These results suggest that APOEε4 and rs4880-T genotype may be a risk for aMCI and a predictor of progression from aMCI to AD.

  13. Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations.

    Science.gov (United States)

    Lesser, M R; Parchman, T L; Jackson, S T

    2013-05-01

    Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range-margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range-margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500-year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within-population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (F(ST) and Jost's D(est)) and diversity within populations (F(IS)) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century. © 2013 Blackwell Publishing Ltd.

  14. Rapid detection of the CYP2A6*12 hybrid allele by Pyrosequencing® technology

    Directory of Open Access Journals (Sweden)

    Gallagher Margaret L

    2009-08-01

    Full Text Available Abstract Background Identification of CYP2A6 alleles associated with reduced enzyme activity is important in the study of inter-individual differences in drug metabolism. CYP2A6*12 is a hybrid allele that results from unequal crossover between CYP2A6 and CYP2A7 genes. The 5' regulatory region and exons 1–2 are derived from CYP2A7, and exons 3–9 are derived from CYP2A6. Conventional methods for detection of CYP2A6*12 consist of two-step PCR protocols that are laborious and unsuitable for high-throughput genotyping. We developed a rapid and accurate method to detect the CYP2A6*12 allele by Pyrosequencing technology. Methods A single set of PCR primers was designed to specifically amplify both the CYP2A6*1 wild-type allele and the CYP2A6*12 hybrid allele. An internal Pyrosequencing primer was used to generate allele-specific sequence information, which detected homozygous wild-type, heterozygous hybrid, and homozygous hybrid alleles. We first validated the assay on 104 DNA samples that were also genotyped by conventional two-step PCR and by cycle sequencing. CYP2A6*12 allele frequencies were then determined using the Pyrosequencing assay on 181 multi-ethnic DNA samples from subjects of African American, European Caucasian, Pacific Rim, and Hispanic descent. Finally, we streamlined the Pyrosequencing assay by integrating liquid handling robotics into the workflow. Results Pyrosequencing results demonstrated 100% concordance with conventional two-step PCR and cycle sequencing methods. Allele frequency data showed slightly higher prevalence of the CYP2A6*12 allele in European Caucasians and Hispanics. Conclusion This Pyrosequencing assay proved to be a simple, rapid, and accurate alternative to conventional methods, which can be easily adapted to the needs of higher-throughput studies.

  15. Suspension Array for Multiplex Detection of Eight Fungicide-Resistance Related Alleles in Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2016-09-01

    Full Text Available A simple and high-throughput assay to detect fungicide resistance is required for large-scale monitoring of the emergence of resistant strains of Botrytis cinerea. Using suspension array technology performed on a Bio-Plex 200 System, we developed a single-tube allele-specific primer extension (ASPE assay that can simultaneously detect eight alleles in one reaction. These eight alleles include E198 and 198A of the β-Tubulin gene (BenA, H272 and 272Y of the Succinate dehydrogenase iron–sulfur subunit gene (SdhB, I365 and 365S of the putative osmosensor histidine kinase gene (BcOS1, and F412 and 412S of the 3-ketoreductase gene (erg27. This assay was first established and optimized with eight plasmid templates containing the DNA sequence variants BenA-E198, BenA-198A, SdhB-H272, SdhB-272Y, BcOS1-I365, BcOS1-365S, erg27-F412, and erg27-412S. Results indicated that none of the probes showed cross-reactivity with one another. The minimum limit of detection for these genotypes was one copy per test. Four mutant plasmids were mixed with 10 ng/μL wild-type genomic DNA in different ratios. Detection sensitivity of mutant loci was 0.45% for BenA-E198A, BcOS1-I365S, and erg27-F412S, and was 4.5% for SdhB-H272Y. A minimum quantity of 0.1 ng of genomic DNA was necessary to obtain reliable results. This is the first reported assay that can simultaneously detect mutations in BenA, SdhB, BcOS1, and erg27.

  16. Suspension Array for Multiplex Detection of Eight Fungicide-Resistance Related Alleles in Botrytis cinerea.

    Science.gov (United States)

    Zhang, Xin; Xie, Fei; Lv, Baobei; Zhao, Pengxiang; Ma, Xuemei

    2016-01-01

    A simple and high-throughput assay to detect fungicide resistance is required for large-scale monitoring of the emergence of resistant strains of Botrytis cinerea . Using suspension array technology performed on a Bio-Plex 200 System, we developed a single-tube allele-specific primer extension assay that can simultaneously detect eight alleles in one reaction. These eight alleles include E198 and 198A of the β-Tubulin gene ( BenA ), H272 and 272Y of the Succinate dehydrogenase iron-sulfur subunit gene ( SdhB) , I365 and 365S of the putative osmosensor histidine kinase gene ( BcOS1 ), and F412 and 412S of the 3-ketoreductase gene ( erg27 ). This assay was first established and optimized with eight plasmid templates containing the DNA sequence variants BenA- E198, BenA- 198A, SdhB- H272, SdhB- 272Y, BcOS1- I365, BcOS1- 365S, erg27 -F412, and erg27 -412S. Results indicated that none of the probes showed cross-reactivity with one another. The minimum limit of detection for these genotypes was one copy per test. Four mutant plasmids were mixed with 10 ng/μL wild-type genomic DNA in different ratios. Detection sensitivity of mutant loci was 0.45% for BenA- E198A, BcOS1- I365S, and erg27 -F412S, and was 4.5% for SdhB- H272Y. A minimum quantity of 0.1 ng of genomic DNA was necessary to obtain reliable results. This is the first reported assay that can simultaneously detect mutations in BenA , SdhB , BcOS1 , and erg27 .

  17. [ALLELES C282Y AND H63D HFE GENE, INSULIN RESISTANCE AND SUSCEPTIBILITY TO DISTURBANCE OF PORPHYRIN METABOLISM IN NON-ALCOHOLIC FATTY LIVER DISEASE].

    Science.gov (United States)

    Krivosheev, A B; Maximov, V N; Voevoda, M I; Kuimov, A D; Kondratova, M A; Tuguleva, T A; Koval, O N; Bezrukova, A A; Bogorianova, P A; Rybina, O V

    2015-01-01

    The aim of the present work was to study the frequency of genotypes and alleles of C282Y and H63D HFE gene that may be associated with impaired porphyrin metabolism, as well as possible reasons for the formation of dysmetabolism porphyrins with NAFLD. The study involved 65 patients (52 men and 13 women) aged 21 to 69 years (mean age 48.5±1.5 years). Excretion uroporphyrin, coproporphyrin, 6-aminolevulinic acid of porphobilinogen in urine was determined by chromatography and spectrophotometry calculated total excretion of porphyrins. Allele frequencies C282Y and H63D were determined during the molecular genetic analysis of DNA using the polymerase chain reaction followed by analysis of length polymorphism restraktsionnyh fragments. Condition of carbohydrate metabolism was evaluated by the level of fasting blood glucose and standard glucose tolerance test. Diagnosis of insulin resistance was performed according to the criteria proposed by the European Group for the Study of insulin resistance (EGIR). Skill test for the C282Y mutation carriage and H63D in the HFE gene in 65 patients with non-alcoholic fatty liver disease. Disturbances in the metabolism of porphyrins were recorded in 43 (66.2%) patients. H63D and C282Y mutations were found in 18 (27.7%) patients, of whom 13 (72.2%) people with different options dismetabolism porphyrins and signs of insulin resistance. In 47 (72.3%) patients without mutations studied porphyrin metabolism disorders were detected in 30 (63.8 %), of which insulin resistance is registered only in 16 (34.0 %). Detection of mutations C282Y and H63D in the HFE gene in combination with disorders of porphyrin metabolism on the background of insulin resistance is likely to allow such patients considered as candidates for inclusion in the higher risk of formation of diabetes.

  18. Comparison of identical and functional Igh alleles reveals a nonessential role for Eμ in somatic hypermutation and class-switch recombination.

    Science.gov (United States)

    Li, Fubin; Yan, Yi; Pieretti, Joyce; Feldman, Danielle A; Eckhardt, Laurel A

    2010-11-15

    Somatic hypermutation (SHM), coupled with Ag selection, provides a mechanism for generating Abs with high affinity for invading pathogens. Class-switch recombination (CSR) ensures that these Abs attain pathogen-appropriate effector functions. Although the enzyme critical to both processes, activation-induced cytidine deaminase, has been identified, it remains unclear which cis-elements within the Ig loci are responsible for recruiting activation-induced cytidine deaminase and promoting its activity. Studies showed that Ig gene-transcription levels are positively correlated with the frequency of SHM and CSR, making the intronic, transcriptional enhancer Eμ a likely contributor to both processes. Tests of this hypothesis yielded mixed results arising, in part, from the difficulty in studying B cell function in mice devoid of Eμ. In Eμ's absence, V(H) gene assembly is dramatically impaired, arresting B cell development. The current study circumvented this problem by modifying the murine Igh locus through simultaneous insertion of a fully assembled V(H) gene and deletion of Eμ. The behavior of this allele was compared with that of a matched allele carrying the same V(H) gene but with Eμ intact. Although IgH transcription was as great or greater on the Eμ-deficient allele, CSR and SHM were consistently, but modestly, reduced relative to the allele in which Eμ remained intact. We conclude that Eμ contributes to, but is not essential for, these complex processes and that its contribution is not as a transcriptional enhancer but, rather, is at the level of recruitment and/or activation of the SHM/CSR machinery.

  19. Dependence of the expression of the radiation-induced gene conversion to arginine independence in diploid yeast on the amino acid concentration: effect on allelic mapping

    International Nuclear Information System (INIS)

    Murthy, M.S.S.; Rao, B.S.; Deorukhakar, V.V.

    1976-01-01

    The yield of radiation-induced gene conversion to arginine independence in diploid yeast depended on the concentration of the amino acid both in the plating medium and in the intracellular pool. By depletion of the level of arginine in the intracellular pool of amino acid or by provision of arginine at 0.4 mg/l of the plating medium, the yield was varied by a factor as high as 20. This may be important in studies of the genetic mapping of alleles based on the slope of conversion frequency versus dose line

  20. E2 allele of the apolipoprotein E gene polymorphism is predictive for obesity status in Roma minority population of Croatia.

    Science.gov (United States)

    Zeljko, Hrvojka Marija; Škarić-Jurić, Tatjana; Narančić, Nina Smolej; Tomas, Željka; Barešić, Ana; Salihović, Marijana Peričić; Starčević, Boris; Janićijević, Branka

    2011-01-18

    The Roma (Gypsies) are a transnational minority, founder population characterized by unique genetic background modeled by culturally determined endogamy. The present study explores whether the widely found cardiovascular diseases (CVD) risk effects of ACE I/D, APOE (ε2, ε3, ε4), eNOS-VNTR and LEP G2548A polymorphisms can be replicated in this specific population. The community-based study was carried on 208 adult Bayash Roma living in rural settlements of eastern and northern Croatia. Risk effect of four CVD candidate polymorphisms are related to the most prominent classical CVD risk phenotypes: obesity indicators (body mass index and waist circumference), hypertension and hyperlipidemia (triglycerides, HDL and LDL cholesterol). For all of them the standard risk cut-offs were applied. The extent to which the phenotypic status is related to genotype was assessed by logistic regression analysis. The strongest associations were found for ε2 allele of the APOE as a predictor of waist circumference (OR 3.301; 95%CI 1.254-8.688; p = 0.016) as well as for BMI (OR 3.547; 95%CI 1.471-8.557; p = 0.005). It is notable that ε3 allele of APOE gene turned out to be a protective genetic factor determining low lipid levels. The strength of the relation and the similarity of the results obtained for both tested indicators of obesity provide firm evidence that APOE plays an important role in obesity development in the Roma population.

  1. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field.

    Science.gov (United States)

    Koller, Teresa; Brunner, Susanne; Herren, Gerhard; Hurni, Severine; Keller, Beat

    2018-04-01

    The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.

  2. Genetic association between the phospholipase A2 gene and unipolar affective disorder: a multicentre case-control study.

    Science.gov (United States)

    Papadimitriou, George N; Dikeos, Dimitris G; Souery, Daniel; Del-Favero, Jurgen; Massat, Isabelle; Avramopoulos, Dimitrios; Blairy, Sylvie; Cichon, Sven; Ivezic, Sladjana; Kaneva, Radka; Karadima, Georgia; Lilli, Roberta; Milanova, Vihra; Nöthen, Markus; Oruc, Lilijana; Rietschel, Marcella; Serretti, Alessandro; Van Broeckhoven, Christine; Stefanis, Costas N; Mendlewicz, Julien

    2003-12-01

    The co-segregation in one pedigree of bipolar affective disorder with Darier's disease whose gene is on chromosome 12q23-q24.1, and findings from linkage and association studies with the neighbouring gene of phospholipase A2 (PLA2) indicate that PLA2 may be considered as a candidate gene for affective disorders. All relevant genetic association studies, however, were conducted on bipolar patients. In the present study, the possible association between the PLA2 gene and unipolar affective disorder was examined on 321 unipolar patients and 604 controls (all personally interviewed), recruited from six countries (Belgium, Bulgaria, Croatia, Germany, Greece, and Italy) participating in the European Collaborative Project on Affective Disorders. After controlling for population group and gender, one of the eight alleles of the investigated marker (allele 7) was found to be more frequent among unipolar patients with more than three major depressive episodes than among controls (P<0.01); genotypic association was also observed, under the dominant model of genetic transmission (P<0.02). In addition, presence of allele 7 was correlated with a higher frequency of depressive episodes (P<0.02). These findings suggest that structural variations at the PLA2 gene or the chromosomal region around it may confer susceptibility for unipolar affective disorder.

  3. The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Yan Guiyun

    2008-10-01

    Full Text Available Abstract Background Host-parasite coevolution can result in balancing selection, which maintains genetic variation in the susceptibility of hosts to parasites. It has been suggested that variation in a thioester-containing protein called TEP1 (AGAP010815 may alter the ability of Anopheles mosquitoes to transmit Plasmodium parasites, and high divergence between alleles of this gene suggests the possible action of long-term balancing selection. We studied whether TEP1 is a case of an ancient balanced polymorphism in an animal immune system. Results We found evidence that the high divergence between TEP1 alleles is the product of genetic exchange between TEP1 and other TEP loci, i.e. gene conversion. Additionally, some TEP1 alleles showed unexpectedly low variability. Conclusion The TEP1 gene appears to be a chimera produced from at least two other TEP loci, and the divergence between TEP1 alleles is probably not caused by long-term balancing selection, but is instead due to two independent gene conversion events from one of these other genes. Nevertheless, TEP1 still shows evidence of natural selection, in particular there appears to have been recent changes in the frequency of alleles that has diminished polymorphism within each allelic class. Although the selective force driving this dynamic was not identified, given that susceptibility to Plasmodium parasites is known to be associated with allelic variation in TEP1, these changes in allele frequencies could alter the vectoring capacity of populations.

  4. Using multi-locus allelic sequence data to estimate genetic divergence among four Lilium (Liliaceae) cultivars

    NARCIS (Netherlands)

    Shahin, A.; Smulders, M.J.M.; Tuyl, van J.M.; Arens, P.F.P.; Bakker, F.T.

    2014-01-01

    Next Generation Sequencing (NGS) may enable estimating relationships among genotypes using allelic variation of multiple nuclear genes simultaneously. We explored the potential and caveats of this strategy in four genetically distant Lilium cultivars to estimate their genetic divergence from

  5. Study on the association of BoLA-DRB3.2 alleles with clinical ...

    African Journals Online (AJOL)

    USER

    2010-04-12

    Apr 12, 2010 ... analysis (HA) in a non-denaturing gel, successfully detected the resistant genotype to ... PHS, polish heath sheep; PLS polish lowland sheep; SCC, ... of the MHC genes and their possible role in disease ... alleles with clinical mastitis in Sarabi and Iranian Holstein cattle, ..... Nomenclature for factors of the.

  6. Correlation between carboxylesterase alleles and insecticide resistance in Culex pipiens complex from China

    Directory of Open Access Journals (Sweden)

    Liu Yangyang

    2011-12-01

    Full Text Available Abstract Background In China, large amounts of chemical insecticides are applied in fields or indoors every year, directly or indirectly bringing selection pressure on vector mosquitoes. Culex pipiens complex has evolved to be resistant to all types of chemical insecticides, especially organophosphates, through carboxylesterases. Six resistant carboxylesterase alleles (Ester were recorded previously and sometimes co-existed in one field population, representing a complex situation for the evolution of Ester genes. Results In order to explore the evolutionary scenario, we analyzed the data from an historical record in 2003 and a recent investigation on five Culex pipiens pallens populations sampled from north China in 2010. Insecticide bioassays showed that these five populations had high resistance to pyrethroids, medium resistance to organophosphates, and low resistance to carbamates. Six types of Ester alleles, EsterB1, Ester2, Ester8, Ester9, EsterB10, and Ester11 were identified, and the overall pattern of their frequencies in geographic distribution was consistent with the report seven years prior to this study. Statistical correlation analysis indicated that Ester8 and Ester9 positively correlated with resistance to four insecticides, and EsterB10 to one insecticide. The occurrences of these three alleles were positively correlated, while the occurrence of EsterB1 was negatively correlated with Ester8, indicating an allelic competition. Conclusion Our analysis suggests that one insecticide can select multiple Ester alleles and one Ester allele can work on multiple insecticides. The evolutionary scenario of carboxylesterases under insecticide selection is possibly "one to many".

  7. Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity

    Science.gov (United States)

    Hellgren, Olof; Atkinson, Carter T.; Bensch, Staffan; Albayrak, Tamer; Dimitrov, Dimitar; Ewen, John G.; Kim, Kyeong Soon; Lima, Marcos R.; Martin, Lynn; Palinauskas, Vaidas; Ricklefs, Robert; Sehgal, Ravinder N. M.; Gediminas, Valkiunas; Tsuda, Yoshio; Marzal, Alfonso

    2015-01-01

    Knowing the genetic variation that occurs in pathogen populations and how it is distributed across geographical areas is essential to understand parasite epidemiology, local patterns of virulence, and evolution of host-resistance. In addition, it is important to identify populations of pathogens that are evolutionarily independent and thus ‘free’ to adapt to hosts and environments. Here, we investigated genetic variation in the globally distributed, highly invasive avian malaria parasite Plasmodium relictum, which has several distinctive mitochondrial haplotyps (cyt b lineages, SGS1, GRW11 and GRW4). The phylogeography of P. relictum was accessed using the highly variable nuclear gene merozoite surface protein 1 (MSP1), a gene linked to the invasion biology of the parasite. We show that the lineage GRW4 is evolutionarily independent of GRW11 and SGS1 whereas GRW11 and SGS1 share MSP1 alleles and thus suggesting the presence of two distinct species (GRW4 versus SGS1 and GRW11). Further, there were significant differences in the global distribution of MSP1 alleles with differences between GRW4 alleles in the New and the Old World. For SGS1, a lineage formerly believed to have both tropical and temperate transmission, there were clear differences in MSP1 alleles transmitted in tropical Africa compared to the temperate regions of Europe and Asia. Further, we highlight the occurrence of multiple MSP1 alleles in GRW4 isolates from the Hawaiian Islands, where the parasite has contributed to declines and extinctions of endemic forest birds since it was introduced. This study stresses the importance of multiple independent loci for understanding patterns of transmission and evolutionary independence across avian malaria parasites.

  8. Next-generation sequencing of 100 candidate genes in young victims of suspected sudden cardiac death with structural abnormalities of the heart

    DEFF Research Database (Denmark)

    Hertz, C L; Christiansen, S L; Ferrero-Miliani, Laura

    2016-01-01

    with non-diagnostic structural abnormalities of the heart. METHODS AND RESULTS: We screened 72 suspected SCD cases (HaloPlex Target Enrichment System (Agilent) and NGS (Illumina MiSeq) for 100 genes previously associated with inherited cardiomyopathies and channelopathies. Fifty......-two cases had non-diagnostic structural cardiac abnormalities and 20 cases, diagnosed with a cardiomyopathy post-mortem (ARVC = 14, HCM = 6), served as comparators. Fifteen (29 %) of the deceased individuals with non-diagnostic findings had variants with likely functional effects based on conservation......, computational prediction, allele-frequency and supportive literature. The corresponding frequency in deceased individuals with cardiomyopathies was 35 % (p = 0.8). CONCLUSION: The broad genetic screening revealed variants with likely functional effects at similar high rates, i.e. in 29 and 35 % of the suspected...

  9. Genetic variation among the Mapuche Indians from the Patagonian region of Argentina: mitochondrial DNA sequence variation and allele frequencies of several nuclear genes.

    Science.gov (United States)

    Ginther, C; Corach, D; Penacino, G A; Rey, J A; Carnese, F R; Hutz, M H; Anderson, A; Just, J; Salzano, F M; King, M C

    1993-01-01

    DNA samples from 60 Mapuche Indians, representing 39 maternal lineages, were genetically characterized for (1) nucleotide sequences of the mtDNA control region; (2) presence or absence of a nine base duplication in mtDNA region V; (3) HLA loci DRB1 and DQA1; (4) variation at three nuclear genes with short tandem repeats; and (5) variation at the polymorphic marker D2S44. The genetic profile of the Mapuche population was compared to other Amerinds and to worldwide populations. Two highly polymorphic portions of the mtDNA control region, comprising 650 nucleotides, were amplified by the polymerase chain reaction (PCR) and directly sequenced. The 39 maternal lineages were defined by two or three generation families identified by the Mapuches. These 39 lineages included 19 different mtDNA sequences that could be grouped into four classes. The same classes of sequences appear in other Amerinds from North, Central, and South American populations separated by thousands of miles, suggesting that the origin of the mtDNA patterns predates the migration to the Americas. The mtDNA sequence similarity between Amerind populations suggests that the migration throughout the Americas occurred rapidly relative to the mtDNA mutation rate. HLA DRB1 alleles 1602 and 1402 were frequent among the Mapuches. These alleles also occur at high frequency among other Amerinds in North and South America, but not among Spanish, Chinese or African-American populations. The high frequency of these alleles throughout the Americas, and their specificity to the Americas, supports the hypothesis that Mapuches and other Amerind groups are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Genes, stress, and depression.

    Science.gov (United States)

    Wurtman, Richard J

    2005-05-01

    A relationship between genetic makeup and susceptibility to major depressive disorder (MDD) has long been suspected on the basis of family and twin studies. A metaanalysis of reports on the basis of twin studies has estimated MDD's degree of heritability to be 0.33 (confidence interval, 0.26-0.39). Among families exhibiting an increased prevalence of MDD, risk of developing the illness was enhanced in members exposed to a highly stressful environment. Aberrant genes can predispose to depression in a number of ways, for example, by diminishing production of growth factors that act during brain development. An aberrant gene could also increase or decrease a neurotransmitter's release into synapses, its actions, or its duration of activity. The gene products of greatest interest at present are those involved in the synthesis and actions of serotonin; among them, the serotonin-uptake protein localized within the terminals and dendrites of serotonin-releasing neurons. It has been found that the Vmax of platelet serotonin uptake is low in some patients with MDD; also, Vmax is highly correlated in twins. Antidepressant drugs such as the selective serotonin reuptake inhibitors act on this uptake protein. The specific genetic locus causing serotonin uptake to be lower in some patients with major depression involves a polymorphic region (5-HTTLPR) in the promoter region of the gene for the uptake protein. The gene itself exists as several alleles, the short "S" allele and the long "L" allele. The S variant is associated with less, and the L variant with more, of the uptake protein. The effect of stressful life events on depressive symptoms in young adults was found to be significantly stronger among SS or SL subjects than among LL subjects. Neuroimaging studies showed that people with the SS or SL alleles exhibited a greater activation of the amygdala in response to fearful stimuli than those with LL. It has been reported recently that mutations in the gene that controls

  11. Modeling Glaucoma: Retinal Ganglion Cells Generated from Induced Pluripotent Stem Cells of Patients with SIX6 Risk Allele Show Developmental Abnormalities.

    Science.gov (United States)

    Teotia, Pooja; Van Hook, Matthew J; Wichman, Christopher S; Allingham, R Rand; Hauser, Michael A; Ahmad, Iqbal

    2017-11-01

    Glaucoma represents a group of multifactorial diseases with a unifying pathology of progressive retinal ganglion cell (RGC) degeneration, causing irreversible vision loss. To test the hypothesis that RGCs are intrinsically vulnerable in glaucoma, we have developed an in vitro model using the SIX6 risk allele carrying glaucoma patient-specific induced pluripotent stem cells (iPSCs) for generating functional RGCs. Here, we demonstrate that the efficiency of RGC generation by SIX6 risk allele iPSCs is significantly lower than iPSCs-derived from healthy, age- and sex-matched controls. The decrease in the number of RGC generation is accompanied by repressed developmental expression of RGC regulatory genes. The SIX6 risk allele RGCs display short and simple neurites, reduced expression of guidance molecules, and immature electrophysiological signature. In addition, these cells have higher expression of glaucoma-associated genes, CDKN2A and CDKN2B, suggesting an early onset of the disease phenotype. Consistent with the developmental abnormalities, the SIX6 risk allele RGCs display global dysregulation of genes which map on developmentally relevant biological processes for RGC differentiation and signaling pathways such as mammalian target of rapamycin that integrate diverse functions for differentiation, metabolism, and survival. The results suggest that SIX6 influences different stages of RGC differentiation and their survival; therefore, alteration in SIX6 function due to the risk allele may lead to cellular and molecular abnormalities. These abnormalities, if carried into adulthood, may make RGCs vulnerable in glaucoma. Stem Cells 2017;35:2239-2252. © 2017 AlphaMed Press.

  12. Evaluation of ACE gene I/D polymorphism in Iranian elite athletes.

    Science.gov (United States)

    Shahmoradi, Somayeh; Ahmadalipour, Ali; Salehi, Mansoor

    2014-01-01

    Angiotensin converting enzyme (ACE) is an important gene, which is associated with the successful physical activity. The ACE gene has a major polymorphism (I/D) in intron 16 that determines its plasma and tissue levels. In this study, we aimed to determine whether there is an association between this polymorphism and sports performance in our studied population including elite athletes of different sports disciplines. We investigated allele frequency and genotype distribution of the ACE gene in 156 Iranian elite athletes compared to 163 healthy individuals. We also investigated this allele frequency between elite athletes in three functional groups of endurance, power, and mixed sports performances. DNA was extracted from peripheral blood, and polymerase chain reaction (PCR) method was performed on intron 16 of the ACE gene. The ACE genotype was determined for each subject. Statistical analysis was performed by SPSS 15, and results were analyzed by Chi-Square test. There was a significant difference in genotype distribution and allele frequency of the ACE gene in athletes and control group (P = 0.05, P = 0.03, respectively). There was also a significant difference in allele frequency of the ACE gene in 3 groups of athletes with different sports disciplines (P = 0.045). Proportion of the ACE gene D allele was greater in elite endurance athletes (37 high-distance cyclists) than two other groups. Findings of the present study demonstrated that there is an association between the ACE gene I/D polymorphism and sports performance in Iranian elite athletes.

  13. The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones

    Directory of Open Access Journals (Sweden)

    Satoshi Watanabe

    2018-04-01

    Full Text Available Recent advances in genome editing systems such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9 have facilitated genomic modification in mammalian cells. However, most systems employ transient treatment with selective drugs such as puromycin to obtain the desired genome-edited cells, which often allows some untransfected cells to survive and decreases the efficiency of generating genome-edited cells. Here, we developed a novel targeted toxin-based drug-free selection system for the enrichment of genome-edited cells. Cells were transfected with three expression vectors, each of which carries a guide RNA (gRNA, humanized Cas9 (hCas9 gene, or Clostridium perfringens-derived endo-β-galactosidase C (EndoGalC gene. Once EndoGalC is expressed in a cell, it digests the cell-surface α-Gal epitope, which is specifically recognized by BS-I-B4 lectin (IB4. Three days after transfection, these cells were treated with cytotoxin saporin-conjugated IB4 (IB4SAP for 30 min at 37 °C prior to cultivation in a normal medium. Untransfected cells and those weakly expressing EndoGalC will die due to the internalization of saporin. Cells transiently expressing EndoGalC strongly survive, and some of these surviving clones are expected to be genome-edited bi-allelic knockout (KO clones due to their strong co-expression of gRNA and hCas9. When porcine α-1,3-galactosyltransferase gene, which can synthesize the α-Gal epitope, was attempted to be knocked out, 16.7% and 36.7% of the surviving clones were bi-allelic and mono-allelic knockout (KO cells, respectively, which was in contrast to the isolation of clones in the absence of IB4SAP treatment. Namely, 0% and 13.3% of the resulting clones were bi-allelic and mono-allelic KO cells, respectively. A similar tendency was seen when other target genes such as DiGeorge syndrome critical region gene 2 and transforming growth factor-β receptor type 1 gene were

  14. Structural organization of the human short-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Corydon, M J; Andresen, B S; Bross, P

    1997-01-01

    Short-chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric mitochondrial flavoenzyme that catalyzes the initial reaction in short-chain fatty acid beta-oxidation. Defects in the SCAD enzyme are associated with failure to thrive, often with neuromuscular dysfunction and elevated urinary excretion...... shown to be associated with ethylmalonic aciduria. From analysis of 18 unrelated Danish families, we show that the four SCAD gene polymorphisms constitute five allelic variants of the SCAD gene, and that the 625A variant together with the less frequent variant form of the three other polymorphisms (321C....... The evolutionary relationship between SCAD and five other members of the acyl-CoA dehydrogenase family was investigated by two independent approaches that gave similar phylogenetic trees....

  15. The characterization and geographical distribution of the genes responsible for vernalization requirement in Chinese bread wheat.

    Science.gov (United States)

    Sun, Qing-Ming; Zhou, Rong-Hua; Gao, Li-Feng; Zhao, Guang-Yao; Jia, Ji-Zeng

    2009-04-01

    The frequency and distribution of the major vernalization requirement genes and their effects on growth habits were studied. Of the 551 bread wheat genotypes tested, seven allelic combinations of the three Vrn-1 genes were found to be responsible for the spring habit, three for the facultative habit and one for the winter habit. The three Vrn-1 genes behaved additively with the dominant allele of Vrn-A1 exerting the strongest effect. The allele combinations of the facultative genotypes and the discovery of spring genotypes with "winter" allele of Vrn-1 implied the presence of as yet unidentified alleles/genes for vernalization response. The dominant alleles of the three Vrn-1 genes were found in all ten ecological regions where wheat is cultivated in China, with Vrn-D1 as the most common allele in nine and Vrn-A1 in one. The combination of vrn-A1vrn-B1Vrn-D1 was the predominant genotype in seven of the regions. Compared with landraces, improved varieties contain a higher proportion of the spring type. This was attributed by a higher frequency of the dominant Vrn-A1 and Vrn-B1 alleles in the latter. Correlations between Vrn-1 allelic constitutions and heading date, spike length, plant type as well as cold tolerance were established.

  16. The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking.

    Science.gov (United States)

    Warner, T S; Sinclair, D A; Fitzpatrick, K A; Singh, M; Devlin, R H; Honda, B M

    1998-04-01

    Mutations in a number of genes affect eye colour in Drosophila melanogaster; some of these "eye-colour" genes have been shown to be involved in various aspects of cellular transport processes. In addition, combinations of viable mutant alleles of some of these genes, such as carnation (car) combined with either light (lt) or deep-orange (dor) mutants, show lethal interactions. Recently, dor was shown to be homologous to the yeast gene PEP3 (VPS18), which is known to be involved in intracellular trafficking. We have undertaken to extend our earlier work on the lt gene, in order to examine in more detail its expression pattern and to characterize its gene product via sequencing of a cloned cDNA. The gene appears to be expressed at relatively high levels in all stages and tissues examined, and shows strong homology to VPS41, a gene involved in cellular-protein trafficking in yeast and higher eukaryotes. Further genetic experiments also point to a role for lt in transport processes: we describe lethal interactions between viable alleles of lt and dor, as well as phenotypic interactions (reductions in eye pigment) between allels of lt and another eye-colour gene, garnet (g), whose gene product has close homology to a subunit of the human adaptor complex, AP-3.

  17. Differential structural status of the RNA counterpart of an undecamer quasi-palindromic DNA sequence present in LCR of human β-globin gene cluster.

    Science.gov (United States)

    Kaushik, Mahima; Kukreti, Shrikant

    2015-01-01

    Our previous work on structural polymorphism shown at a single nucleotide polymorphism (SNP) (A → G) site located on HS4 region of locus control region (LCR) of β-globin gene has established a hairpin → duplex equilibrium corresponding to A → B like DNA transition (Kaushik M, Kukreti, R., Grover, D., Brahmachari, S.K. and Kukreti S. Nucleic Acids Res. 2003; Kaushik M, Kukreti S. Nucleic Acids Res. 2006). The G-allele of A → G SNP has been shown to be significantly associated with the occurrence of β-thalassemia. Considering the significance of this 11-nt long quasi-palindromic sequence [5'-TGGGG(G/A)CCCCA; HP(G/A)11] of β-globin gene LCR, we further explored the differential behavior of the same DNA sequence with its RNA counterpart, using various biophysical and biochemical techniques. In contrast to its DNA counterpart exhibiting a A → B structural transition and an equilibrium between duplex and hairpin forms, the studied RNA oligonucleotide sequence [5'-UGGGG(G/A)CCCCA; RHP(G/A)11] existed only in duplex form (A-conformation) and did not form hairpin. The single residue difference from A to G led to the unusual thermal stability of the RNA structure formed by the studied sequence. Since, naturally occurring mutations and various SNP sites may stabilize or destabilize the local DNA/RNA secondary structures, these structural transitions may affect the gene expression by a change in the protein-DNA recognition patterns.

  18. Response to imazapyr and dominance relationships of two imidazolinone-tolerant alleles at the Ahasl1 locus of sunflower.

    Science.gov (United States)

    Sala, Carlos A; Bulos, Mariano; Altieri, Emiliano; Weston, Brigitte

    2012-02-01

    Imisun and CLPlus are two imidazolinone (IMI) tolerance traits in sunflower (Helianthus annuus L.) determined by the expression of different alleles at the same locus, Ahasl1-1 and Ahasl1-3, respectively. This paper reports the level of tolerance expressed by plants containing both alleles in a homozygous, heterozygous and in a heterozygous stacked state to increasing doses of IMI at the enzyme and whole plant levels. Six genotypes of the Ahasl1 gene were compared with each other in three different genetic backgrounds. These materials were treated at the V2-V4 stage with increasing doses of imazapyr (from 0 to 480 g a.i. ha(-1)) followed by an assessment of the aboveground biomass and herbicide phytotoxicity. The estimated dose of imazapyr required to reduce biomass accumulation by 50% (GR(50)) differed statistically for the six genotypes of the Ahasl1 gene. Homozygous CLPlus (Ahasl1-3/Ahasl1-3) genotypes and materials containing a combination of both tolerant alleles (Imisun/CLPlus heterozygous stack, Ahasl1-1/Ahasl1-3) showed the highest values of GR(50), 300 times higher than the susceptible genotypes and more than 2.5 times higher than homozygous Imisun materials (Ahasl1-1/Ahasl1-1). In vitro AHAS enzyme activity assays using increasing doses of herbicide (from 0 to 100 μM) showed similar trends, where homozygous CLPlus materials and those containing heterozygous stacks of Imisun/CLPlus were statistically similar and showed the least level of inhibition of enzyme activity to increasing doses of herbicide. The degree of dominance for the accumulation of biomass after herbicide application calculated for the Ahasl1-1 allele indicated that it is co-dominant to recessive depending on the imazapyr dose used. By the contrary, the Ahasl1-3 allele showed dominance to semi dominance according to the applied dose. This last allele is dominant over Ahasl1-1 over the entire range of herbicide rates tested. At the level of enzymatic activity, however, both alleles showed

  19. Frequency of CCR5Δ32 allele in healthy Bosniak population.

    Directory of Open Access Journals (Sweden)

    Grażyna Adler

    2014-08-01

    Full Text Available Recent evidence has demonstrated the role of CCR5Δ32 in a variety of human diseases: from infectious and inflammatory diseases to cancer. Several studies have confirmed that genetic variants in chemokine receptor CCR5 gene are correlated with susceptibility and resistance to HIV infection. A 32-nucleotide deletion within the CCR5 reading frame is associated with decreased susceptibility to HIV acquisition and a slower progression to AIDS. Mean frequency of CCR5Δ32 allele in Europe is approximately 10%. The highest allele frequency is observed among Nordic populations (about 12% and lower in the regions of Southeast Mediterranean (about 5%. Although the frequency of CCR5Δ32 was determined in numerous European populations, there is a lack of studies on this variant in the Bosnia and Hercegovina population. Therefore, the aim of our study was to assess the frequency of CCR5Δ32 allele in the cohort of Bosniaks and compare the results with European reports. CCR5Δ32 was detected by sequence-specific PCR in a sample of 100 healthy subjects from Bosnia and Herzegovina (DNA collected 2011-2013.  Mean age of the cohort being 58.8 (±10.7 years, with 82% of women. We identified 17 heterozygotes and one mutant homozygote in study group, with mean ∆32 allele frequency of 9.5%. CCR5∆32 allele frequency among Bosniaks is comparable to that found in Caucasian populations and follows the pattern of the north-southern gradient observed for Europe. Further studies on larger cohorts with adequate female-to-male ratio are necessary. 

  20. Absence of the HLA-G*0113N allele in Amerindian populations from the Brazilian Amazon region.

    Science.gov (United States)

    Mendes-Junior, Celso T; Castelli, Erick C; Moreau, Philippe; Simões, Aguinaldo L; Donadi, Eduardo A

    2010-04-01

    The HLA-G gene is predominantly expressed at the maternal-fetal interface and has been associated with maternal-fetal tolerance. The HLA-G*0113N is a null allele defined by the insertion of a premature stop codon at exon 2, observed in a single Ghanaian individual. Likewise the G*0105N allele, the occurrence of the HLA-G*0113N in a population from an area with high pathogen load suggests that the reduced HLA-G expression in G*0113N heterozygous placentas could improve the intrauterine defense against infections. The presence of the G*0113N allele here was investigated in 150 Amerindians from five isolated tribes that inhabit the Central Amazon and in 295 admixed individuals from the State of São Paulo, Southeastern Brazil, previously genotyped for HLA-G. No copy of the G*0113N null allele was found in both population samples by exon 2 sequence-based analysis, reinforcing its restricted occurrence in Africa.

  1. Abnormal segregation of alleles in CEPH pedigree DNAs arising from allele loss in lymphoblastoid DNA.

    Science.gov (United States)

    Royle, N J; Armour, J A; Crosier, M; Jeffreys, A J

    1993-01-01

    Somatic events that result in the reduction to hemi- or homozygosity at all loci affected by the event have been identified in lymphoblastoid DNA from mothers of two CEPH families. Using suitably informative probes, the allele deficiencies were detected by the abnormal transmission of alleles from grandparents to grandchildren, with the apparent absence of the alleles from the parent. Undetected somatic deficiencies in family DNAs could result in misscoring of recombination events and consequently introduce errors into linkage analysis.

  2. Allelism of Genes in the Ml-a locus

    DEFF Research Database (Denmark)

    Giese, Nanna Henriette; Jensen, Hans Peter; Jørgensen, Jørgen Helms

    1980-01-01

    Seven barley lines or varieties, each with a different gene at the Ml-a locus for resistance to Erysiphe graminis were intercrossed. Progeny testing of the F2s using two different fungal isolates per cross provided evidence that there are two or more loci in the Ml-a region. Apparent recombinants...... were also screened for recombination between the Hor1 and Hor2 loci which are situated either side of the Ml-a locus. The cross between Ricardo and Iso42R (Rupee) yielded one possible recombinant, with Ml-a3 and Ml-a(Rul) in the coupling phase; other recombinants had wild-type genes in the coupling...... phase. Iso20R, derived from Hordeum spontaneum 'H204', carrying Ml-a6, had an additional gene, in close coupling with Ml-a6, tentatively named Ml-aSp2 or Reglv, causing an intermediate infection type with isolate EmA30. It is suggested that Ml-a(Ar) in Emir and Ml-a(Rul), shown to differ from other Ml...

  3. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    Science.gov (United States)

    Fisher, Cynthia L; Marks, Hendrik; Cho, Lily Ting-Yin; Andrews, Robert; Wormald, Sam; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G; Fisher, Amanda G; Skarnes, William C

    2017-12-01

    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Frequency of the GPR7 Tyr135Phe allelic variant in lean and obese subjects.

    Science.gov (United States)

    Pelosini, C; Maffei, M; Ceccarini, G; Marchi, M; Marsili, A; Galli, G; Scartabelli, G; Tamberi, A; Latrofa, F; Fierabracci, P; Vitti, P; Pinchera, A; Santini, F

    2013-10-01

    GPR7, the endogenous coupled receptor for neuropeptide B and neuropeptide W, is expressed in several regions of the central nervous system, which are involved in the regulation of feeding behavior. GPR7 affects the regulation of energy balance through a mechanism independent of leptin and melanocortin pathways. Aim of this study was to investigate whether GPR7 gene mutations can be detected in human subjects and, in that event, if they are differently distributed among lean and obese subjects. The coding region of GPR7 were sequenced in 150 obese patients and 100 normal-weight unrelated controls. Functional studies of the allelic variants were performed. One genetic GPR7 variant was found (Tyr135Phe - rs33977775) in obese subjects (13.3%) and lean control (25%). Functional studies did not reveal significant differences between the wild type and the Tyr135Phe allelic variants in their NPW-mediated capacity to inhibit forskolin-induced cAMP production. Screening of GPR7 gene mutations among lean and obese subjects revealed a Tyr135Phe allelic variant that was fairly common in the study population. As indicated by in vitro and in silico studies, this variant is unlikely to cause a functional derangement of the receptor.

  5. Sex-specific allelic transmission bias suggests sexual conflict at MC1R.

    Science.gov (United States)

    Ducret, Valérie; Gaigher, Arnaud; Simon, Céline; Goudet, Jérôme; Roulin, Alexandre

    2016-09-01

    Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages. © 2016 John Wiley & Sons Ltd.

  6. Fluorinated Nucleotide Modifications Modulate Allele Selectivity of SNP-Targeting Antisense Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Michael E. Østergaard

    2017-06-01

    Full Text Available Antisense oligonucleotides (ASOs have the potential to discriminate between subtle RNA mismatches such as SNPs. Certain mismatches, however, allow ASOs to bind at physiological conditions and result in RNA cleavage mediated by RNase H. We showed that replacing DNA nucleotides in the gap region of an ASO with other chemical modification can improve allele selectivity. Herein, we systematically substitute every position in the gap region of an ASO targeting huntingtin gene (HTT with fluorinated nucleotides. Potency is determined in cell culture against mutant HTT (mtHTT and wild-type HTT (wtHTT mRNA and RNase H cleavage intensities, and patterns are investigated. This study profiled five different fluorinated nucleotides and showed them to have predictable, site-specific effects on RNase H cleavage, and the cleavage patterns were rationalized from a published X-ray structure of human RNase H1. The results herein can be used as a guide for future projects where ASO discrimination of SNPs is important.

  7. CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds.

    Science.gov (United States)

    Yan, Fan; Di, Shaokang; Takahashi, Ryoji

    2015-08-01

    The R gene of soybean, presumably encoding a MYB transcription factor, controls seed coat color. The gene consists of multiple alleles, R (black), r-m (black spots and (or) concentric streaks on brown seed), and r (brown seed). This study was conducted to determine the structure of the MYB transcription factor gene in a near-isogenic line (NIL) having r-m allele. PCR amplification of a fragment of the candidate gene Glyma.09G235100 generated a fragment of about 1 kb in the soybean cultivar Clark, whereas a fragment of about 14 kb in addition to fragments of 1 and 1.4 kb were produced in L72-2040, a Clark 63 NIL with the r-m allele. Clark 63 is a NIL of Clark with the rxp and Rps1 alleles. A DNA fragment of 13 060 bp was inserted in the intron of Glyma.09G235100 in L72-2040. The fragment had the CACTA motif at both ends, imperfect terminal inverted repeats (TIR), inverse repetition of short sequence motifs close to the 5' and 3' ends, and a duplication of three nucleotides at the site of integration, indicating that it belongs to a CACTA-superfamily transposable element. We designated the element as Tgm11. Overall nucleotide sequence, motifs of TIR, and subterminal repeats were similar to those of Tgm1 and Tgs1, suggesting that these elements comprise a family.

  8. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

    Science.gov (United States)

    Paliwal, Anupam; Temkin, Alexis M; Kerkel, Kristi; Yale, Alexander; Yotova, Iveta; Drost, Natalia; Lax, Simon; Nhan-Chang, Chia-Ling; Powell, Charles; Borczuk, Alain; Aviv, Abraham; Wapner, Ronald; Chen, Xiaowei; Nagy, Peter L; Schork, Nicholas; Do, Catherine; Torkamani, Ali; Tycko, Benjamin

    2013-08-01

    Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM.

  9. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

    Directory of Open Access Journals (Sweden)

    Anupam Paliwal

    2013-08-01

    Full Text Available Allele-specific DNA methylation (ASM is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons, one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs, each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS peaks near CTCF binding sites with ASM.

  10. GENE-dosage effects on fitness in recent adaptive duplications: ace-1 in the mosquito Culex pipiens.

    Science.gov (United States)

    Labbé, Pierrick; Milesi, Pascal; Yébakima, André; Pasteur, Nicole; Weill, Mylène; Lenormand, Thomas

    2014-07-01

    Gene duplications have long been advocated to contribute to the evolution of new functions. The role of selection in their early spread is more controversial. Unless duplications are favored for a direct benefit of increased expression, they are likely detrimental. In this article, we investigated the case of duplications favored because they combine already functionally divergent alleles. Their gene-dosage/fitness relations are poorly known because selection may operate on both overall expression and duplicates relative dosage. Using the well-documented case of Culex pipiens resistance to insecticides, we compared strains with various ace-1 allele combinations, including two duplicated alleles carrying both susceptible and resistant copies. The overall protein activity was nearly additive, but, surprisingly, fitness correlated better with the relative proportion of susceptible and resistant copies rather than any absolute measure of activity. Gene dosage is thus crucial, duplications stabilizing a "heterozygote" phenotype. It corroborates the view that these were favored because they fix a permanent heterosis, thereby solving the irreducible trade-off between resistance and synaptic transmission. Moreover, we showed that the contrasted successes of the two duplicated alleles in natural populations depend on genetic changes unrelated to ace-1, confirming the probable implication of recessive sublethal mutations linked to structural rearrangements in some duplications. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  11. Allelic sequence variations in the hypervariable region of a T-cell receptor β chain: Correlation with restriction fragment length polymorphism in human families and populations

    International Nuclear Information System (INIS)

    Robinson, M.A.

    1989-01-01

    Direct sequence analysis of the human T-cell antigen receptor (TCR) V β1 variable gene identified a single base-pair allelic variation (C/G) located within the coding region. This change results in substitution of a histidine (CAC) for a glutamine (CAG) at position 48 of the TCR β chain, a position predicted to be in the TCR antigen binding site. The V β1 polymorphism was found by DNA sequence analysis of V β1 genes from seven unrelated individuals; V β1 genes were amplified by the polymerase chain reaction, the amplified fragments were cloned into M13 phage vectors, and sequences were determined. To determined the inheritance patterns of the V β1 substitution and to test correlation with V β1 restriction fragment length polymorphism detected with Pvu II and Taq I, allele-specific oligonucleotides were constructed and used to characterize amplified DNA samples. Seventy unrelated individuals and six families were tested for both restriction fragment length polymorphism and for the V β1 substitution. The correlation was also tested using amplified, size-selected, Pvu II- and Taq I-digested DNA samples from heterozygotes. Pvu II allele 1 (61/70) and Taq I allele 1 (66/70) were found to be correlated with the substitution giving rise to a histidine at position 48. Because there are exceptions to the correlation, the use of specific probes to characterize allelic forms of TCR variable genes will provide important tools for studies of basic TCR genetics and disease associations

  12. Association of autoimmune Addison's disease with alleles of STAT4 and GATA3 in European cohorts.

    Directory of Open Access Journals (Sweden)

    Anna L Mitchell

    Full Text Available Gene variants known to contribute to Autoimmune Addison's disease (AAD susceptibility include those at the MHC, MICA, CIITA, CTLA4, PTPN22, CYP27B1, NLRP-1 and CD274 loci. The majority of the genetic component to disease susceptibility has yet to be accounted for.To investigate the role of 19 candidate genes in AAD susceptibility in six European case-control cohorts.A sequential association study design was employed with genotyping using Sequenom iPlex technology. In phase one, 85 SNPs in 19 genes were genotyped in UK and Norwegian AAD cohorts (691 AAD, 715 controls. In phase two, 21 SNPs in 11 genes were genotyped in German, Swedish, Italian and Polish cohorts (1264 AAD, 1221 controls. In phase three, to explore association of GATA3 polymorphisms with AAD and to determine if this association extended to other autoimmune conditions, 15 SNPs in GATA3 were studied in UK and Norwegian AAD cohorts, 1195 type 1 diabetes patients from Norway, 650 rheumatoid arthritis patients from New Zealand and in 283 UK Graves' disease patients. Meta-analysis was used to compare genotype frequencies between the participating centres, allowing for heterogeneity.We report significant association with alleles of two STAT4 markers in AAD cohorts (rs4274624: P = 0.00016; rs10931481: P = 0.0007. In addition, nominal association of AAD with alleles at GATA3 was found in 3 patient cohorts and supported by meta-analysis. Association of AAD with CYP27B1 alleles was also confirmed, which replicates previous published data. Finally, nominal association was found at SNPs in both the NF-κB1 and IL23A genes in the UK and Italian cohorts respectively.Variants in the STAT4 gene, previously associated with other autoimmune conditions, confer susceptibility to AAD. Additionally, we report association of GATA3 variants with AAD: this adds to the recent report of association of GATA3 variants with rheumatoid arthritis.

  13. Allelic imbalance modulates surface expression of the tolerance-inducing HLA-G molecule on primary trophoblast cells.

    Science.gov (United States)

    Djurisic, S; Teiblum, S; Tolstrup, C K; Christiansen, O B; Hviid, T V F

    2015-03-01

    The HLA-G molecule is expressed on trophoblast cells at the feto-maternal interface, where it interacts with local immune cells, and upholds tolerance against the semi-allogeneic fetus. Aberrant HLA-G expression in the placenta and reduced soluble HLA-G levels are observed in pregnancy complications, partly explained by HLA-G polymorphisms which are associated with differences in the alternative splicing pattern and of the stability of HLA-G mRNA. Of special importance is a 14 bp insertion/deletion polymorphism located in the 3'-untranslated region of the HLA-G gene. In the current study, we present novel evidence for allelic imbalance of the 14 bp insertion/deletion polymorphism, using a very accurate and sensitive Digital droplet PCR technique. Allelic imbalance in heterozygous samples was observed as differential expression levels of 14 bp insertion/deletion allele-specific mRNA transcripts, which was further associated with low levels of HLA-G surface expression on primary trophoblast cells. Full gene sequencing of HLA-G allowed us to study correlations between HLA-G extended haplotypes and single-nucleotide polymorphisms and HLA-G surface expression. We found that a 1:1 expression (allelic balance) of the 14 bp insertion/deletion mRNA alleles was associated with high surface expression of HLA-G and with a specific HLA-G extended haplotype. The 14 bp del/del genotype was associated with a significantly lower abundance of the G1 mRNA isoform, and a higher abundance of the G3 mRNA isoform. Overall, the present study provides original evidence for allelic imbalance of the 14 bp insertion/deletion polymorphism, which influences HLA-G surface expression on primary trophoblast cells, considered to be important in the pathogenesis of pre-eclampsia and other pregnancy complications. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1 show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1, nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogeneous expression of NAL1 in fission yeast (Schizosaccharomyces pombe further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division.

  15. Telomere structure and maintenance gene variants and risk of five cancer types

    Science.gov (United States)

    Karami, Sara; Han, Younghun; Pande, Mala; Cheng, Iona; Rudd, James; Pierce, Brandon L.; Nutter, Ellen L.; Schumacher, Fredrick R.; Kote-Jarai, Zsofia; Lindstrom, Sara; Witte, John S.; Fang, Shenying; Han, Jiali; Kraft, Peter; Hunter, David; Song, Fengju; Hung, Rayjean J.; McKay, James; Gruber, Stephen B.; Chanock, Stephen J.; Risch, Angela; Shen, Hongbing; Haiman, Christopher A.; Boardman, Lisa; Ulrich, Cornelia M.; Casey, Graham; Peters, Ulrike; Al Olama, Ali Amin; Berchuck, Andrew; Berndt, Sonja I.; Bezieau, Stephane; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Caporaso, Neil; Chan, Andrew T.; Chang-Claude, Jenny; Christiani, David C.; Cunningham, Julie M.; Easton, Douglas; Eeles, Rosalind A.; Eisen, Timothy; Gala, Manish; Gallinger, Steven J.; Gayther, Simon A.; Goode, Ellen L.; Grönberg, Henrik; Henderson, Brian E.; Houlston, Richard; Joshi, Amit D.; Küry, Sébastien; Landi, Mari T.; Le Marchand, Loic; Muir, Kenneth; Newcomb, Polly A.; Permuth-Wey, Jenny; Pharoah, Paul; Phelan, Catherine; Potter, John D.; Ramus, Susan J.; Risch, Harvey; Schildkraut, Joellen; Slattery, Martha L.; Song, Honglin; Wentzensen, Nicolas; White, Emily; Wiklund, Fredrik; Zanke, Brent W.; Sellers, Thomas A.; Zheng, Wei; Chatterjee, Nilanjan; Amos, Christopher I.; Doherty, Jennifer A.

    2016-01-01

    Telomeres cap chromosome ends, protecting them from degradation, double-strand breaks, and end-to-end fusions. Telomeres are maintained by telomerase, a reverse transcriptase encoded by TERT, and an RNA template encoded by TERC. Loci in the TERT and adjoining CLPTM1L region are associated with risk of multiple cancers. We therefore investigated associations between variants in 22 telomere structure and maintenance gene regions and colorectal, breast, prostate, ovarian, and lung cancer risk. We performed subset-based meta-analyses of 204,993 directly-measured and imputed SNPs among 61,851 cancer cases and 74,457 controls of European descent. Independent associations for SNP minor alleles were identified using sequential conditional analysis (with gene-level P-value cutoffs ≤3.08×10−5). Of the thirteen independent SNPs observed to be associated with cancer risk, novel findings were observed for seven loci. Across the TERT-CLPTML1 region, rs12655062 was associated positively with prostate cancer, and inversely with colorectal and ovarian cancers, and rs115960372 was associated positively with prostate cancer. Across the TERC region, rs75316749 was positively associated with colorectal, breast, ovarian, and lung cancers. Across the DCLRE1B region, rs974404 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and ovarian cancers, respectively. Near POT1, rs116895242 was inversely associated with colorectal, ovarian, and lung cancers, and RTEL1 rs34978822 was inversely associated with prostate and lung cancers. The complex association patterns in telomere-related genes across cancer types may provide insight into mechanisms through which telomere dysfunction in different tissues influences cancer risk. PMID:27459707

  16. Telomere structure and maintenance gene variants and risk of five cancer types.

    Science.gov (United States)

    Karami, Sara; Han, Younghun; Pande, Mala; Cheng, Iona; Rudd, James; Pierce, Brandon L; Nutter, Ellen L; Schumacher, Fredrick R; Kote-Jarai, Zsofia; Lindstrom, Sara; Witte, John S; Fang, Shenying; Han, Jiali; Kraft, Peter; Hunter, David J; Song, Fengju; Hung, Rayjean J; McKay, James; Gruber, Stephen B; Chanock, Stephen J; Risch, Angela; Shen, Hongbing; Haiman, Christopher A; Boardman, Lisa; Ulrich, Cornelia M; Casey, Graham; Peters, Ulrike; Amin Al Olama, Ali; Berchuck, Andrew; Berndt, Sonja I; Bezieau, Stephane; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Caporaso, Neil; Chan, Andrew T; Chang-Claude, Jenny; Christiani, David C; Cunningham, Julie M; Easton, Douglas; Eeles, Rosalind A; Eisen, Timothy; Gala, Manish; Gallinger, Steven J; Gayther, Simon A; Goode, Ellen L; Grönberg, Henrik; Henderson, Brian E; Houlston, Richard; Joshi, Amit D; Küry, Sébastien; Landi, Mari T; Le Marchand, Loic; Muir, Kenneth; Newcomb, Polly A; Permuth-Wey, Jenny; Pharoah, Paul; Phelan, Catherine; Potter, John D; Ramus, Susan J; Risch, Harvey; Schildkraut, Joellen; Slattery, Martha L; Song, Honglin; Wentzensen, Nicolas; White, Emily; Wiklund, Fredrik; Zanke, Brent W; Sellers, Thomas A; Zheng, Wei; Chatterjee, Nilanjan; Amos, Christopher I; Doherty, Jennifer A

    2016-12-15

    Telomeres cap chromosome ends, protecting them from degradation, double-strand breaks, and end-to-end fusions. Telomeres are maintained by telomerase, a reverse transcriptase encoded by TERT, and an RNA template encoded by TERC. Loci in the TERT and adjoining CLPTM1L region are associated with risk of multiple cancers. We therefore investigated associations between variants in 22 telomere structure and maintenance gene regions and colorectal, breast, prostate, ovarian, and lung cancer risk. We performed subset-based meta-analyses of 204,993 directly-measured and imputed SNPs among 61,851 cancer cases and 74,457 controls of European descent. Independent associations for SNP minor alleles were identified using sequential conditional analysis (with gene-level p value cutoffs ≤3.08 × 10 -5 ). Of the thirteen independent SNPs observed to be associated with cancer risk, novel findings were observed for seven loci. Across the DCLRE1B region, rs974494 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Across the TERC region, rs75316749 was positively associated with colorectal, breast, ovarian, and lung cancers. Across the DCLRE1B region, rs974404 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Near POT1, rs116895242 was inversely associated with colorectal, ovarian, and lung cancers, and RTEL1 rs34978822 was inversely associated with prostate and lung cancers. The complex association patterns in telomere-related genes across cancer types may provide insight into mechanisms through which telomere dysfunction in different tissues influences cancer risk. © 2016 UICC.

  17. Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico.

    Science.gov (United States)

    Galindo-Cardona, Alberto; Acevedo-Gonzalez, Jenny P; Rivera-Marchand, Bert; Giray, Tugrul

    2013-08-06

    The Africanized honey bee is one of the most spectacular invasions in the Americas. African bees escaped from apiaries in Brazil in 1956, spread over Americas and by 1994 they were reported in Puerto Rico. In contrast to other places, the oceanic island conditions in Puerto Rico may mean a single introduction and different dynamics of the resident European and new-coming Africanized bees.To examine the genetic variation of honey bee feral populations and colonies from different locations in Puerto Rico, we used eight known polymorphic microsatellite loci. In Puerto Rico, gAHB population does not show any genetic structure (Fst = 0.0783), and is best described as one honey bee population, product of hybridization of AHB and EHB. The genetic variability in this Africanized population was similar to that reported in studies from Texas. We observed that European private allele frequencies are high in all but one locus. This contrasts with mainland Africanized populations, where European allele frequencies are diminished. Two loci with European private alleles, one on Linkage Group 7, known to carry two known defensiveness Quantitative Trait Loci (QTLs), and the other on Linkage Group 1, known to carry three functionally studied genes and 11 candidate genes associated with Varroa resistance mechanisms were respectively, significantly greater or lower in European allele frequency than the other loci with European private alleles. Genetic structure of Puerto Rico gAHB differs from mainland AHB populations, probably representing evolutionary processes on the island.

  18. De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus).

    Science.gov (United States)

    Migalska, M; Sebastian, A; Konczal, M; Kotlík, P; Radwan, J

    2017-04-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune response and is the most polymorphic gene family in vertebrates. Although high-throughput sequencing has increasingly been used for genotyping families of co-amplifying MHC genes, its potential to facilitate early steps in the characterisation of MHC variation in nonmodel organism has not been fully explored. In this study we evaluated the usefulness of de novo transcriptome assembly in characterisation of MHC sequence diversity. We found that although de novo transcriptome assembly of MHC I genes does not reconstruct sequences of individual alleles, it does allow the identification of conserved regions for PCR primer design. Using the newly designed primers, we characterised MHC I sequences in the bank vole. Phylogenetic analysis of the partial MHC I coding sequence (2-4 exons) of the bank vole revealed a lack of orthology to MHC I of other Cricetidae, consistent with the high gene turnover of this region. The diversity of expressed alleles was characterised using ultra-deep sequencing of the third exon that codes for the peptide-binding region of the MHC molecule. High allelic diversity was demonstrated, with 72 alleles found in 29 individuals. Interindividual variation in the number of expressed loci was found, with the number of alleles per individual ranging from 5 to 14. Strong signatures of positive selection were found for 8 amino acid sites, most of which are inferred to bind antigens in human MHC, indicating conservation of structure despite rapid sequence evolution.

  19. E2 allele of the Apolipoprotein E gene polymorphism is predictive for obesity status in Roma minority population of Croatia

    Directory of Open Access Journals (Sweden)

    Salihović Marijana

    2011-01-01

    Full Text Available Abstract Background and Aims The Roma (Gypsies are a transnational minority, founder population characterized by unique genetic background modeled by culturally determined endogamy. The present study explores whether the widely found cardiovascular diseases (CVD risk effects of ACE I/D, APOE (ε2, ε3, ε4, eNOS-VNTR and LEP G2548A polymorphisms can be replicated in this specific population. Methods and Results The community-based study was carried on 208 adult Bayash Roma living in rural settlements of eastern and northern Croatia. Risk effect of four CVD candidate polymorphisms are related to the most prominent classical CVD risk phenotypes: obesity indicators (body mass index and waist circumference, hypertension and hyperlipidemia (triglycerides, HDL and LDL cholesterol. For all of them the standard risk cut-offs were applied. The extent to which the phenotypic status is related to genotype was assessed by logistic regression analysis. The strongest associations were found for ε2 allele of the APOE as a predictor of waist circumference (OR 3.301; 95%CI 1.254-8.688; p = 0.016 as well as for BMI (OR 3.547; 95%CI 1.471-8.557; p = 0.005. It is notable that ε3 allele of APOE gene turned out to be a protective genetic factor determining low lipid levels. Conclusion The strength of the relation and the similarity of the results obtained for both tested indicators of obesity provide firm evidence that APOE plays an important role in obesity development in the Roma population.

  20. Repeated adaptive introgression at a gene under multiallelic balancing selection.

    Directory of Open Access Journals (Sweden)

    Vincent Castric

    2008-08-01

    Full Text Available Recently diverged species typically have incomplete reproductive barriers, allowing introgression of genetic material from one species into the genomic background of the other. The role of natural selection in preventing or promoting introgression remains contentious. Because of genomic co-adaptation, some chromosomal fragments are expected to be selected against in the new background and resist introgression. In contrast, natural selection should favor introgression for alleles at genes evolving under multi-allelic balancing selection, such as the MHC in vertebrates, disease resistance, or self-incompatibility genes in plants. Here, we test the prediction that negative, frequency-dependent selection on alleles at the multi-allelic gene controlling pistil self-incompatibility specificity in two closely related species, Arabidopsis halleri and A. lyrata, caused introgression at this locus at a higher rate than the genomic background. Polymorphism at this gene is largely shared, and we have identified 18 pairs of S-alleles that are only slightly divergent between the two species. For these pairs of S-alleles, divergence at four-fold degenerate sites (K = 0.0193 is about four times lower than the genomic background (K = 0.0743. We demonstrate that this difference cannot be explained by differences in effective population size between the two types of loci. Rather, our data are most consistent with a five-fold increase of introgression rates for S-alleles as compared to the genomic background, making this study the first documented example of adaptive introgression facilitated by balancing selection. We suggest that this process plays an important role in the maintenance of high allelic diversity and divergence at the S-locus in flowering plant families. Because genes under balancing selection are expected to be among the last to stop introgressing, their comparison in closely related species provides a lower-bound estimate of the time since the

  1. Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations.

    Science.gov (United States)

    Jeselsohn, Rinath; Bergholz, Johann S; Pun, Matthew; Cornwell, MacIntosh; Liu, Weihan; Nardone, Agostina; Xiao, Tengfei; Li, Wei; Qiu, Xintao; Buchwalter, Gilles; Feiglin, Ariel; Abell-Hart, Kayley; Fei, Teng; Rao, Prakash; Long, Henry; Kwiatkowski, Nicholas; Zhang, Tinghu; Gray, Nathanael; Melchers, Diane; Houtman, Rene; Liu, X Shirley; Cohen, Ofir; Wagle, Nikhil; Winer, Eric P; Zhao, Jean; Brown, Myles

    2018-02-12

    Estrogen receptor α (ER) ligand-binding domain (LBD) mutations are found in a substantial number of endocrine treatment-resistant metastatic ER-positive (ER + ) breast cancers. We investigated the chromatin recruitment, transcriptional network, and genetic vulnerabilities in breast cancer models harboring the clinically relevant ER mutations. These mutants exhibit both ligand-independent functions that mimic estradiol-bound wild-type ER as well as allele-specific neomorphic properties that promote a pro-metastatic phenotype. Analysis of the genome-wide ER binding sites identified mutant ER unique recruitment mediating the allele-specific transcriptional program. Genetic screens identified genes that are essential for the ligand-independent growth driven by the mutants. These studies provide insights into the mechanism of endocrine therapy resistance engendered by ER mutations and potential therapeutic targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Prion protein genotype survey confirms low frequency of scrapie-resistant K222 allele in British goat herds.

    Science.gov (United States)

    Goldmann, W; Marier, E; Stewart, P; Konold, T; Street, S; Langeveld, J; Windl, O; Ortiz-Pelaez, A

    2016-02-13

    Scrapie in goats is a transmissible, fatal prion disease, which is endemic in the British goat population. The recent success in defining caprine PRNP gene variants that provide resistance to experimental and natural classical scrapie has prompted the authors to conduct a survey of PRNP genotypes in 10 goat breeds and 52 herds to find goats with the resistant K222 allele. They report here the frequencies in 1236 tested animals of the resistance-associated K222 and several other alleles by breed and herd. Eight animals were found to be heterozygous QK222 goats (0.64 per cent genotype frequency, 95 per cent CI 0.28 to 1.27 per cent) but no homozygous KK222 goats were detected. The K222 allele was found in Saanen, Toggenburg and Anglo-Nubian goats. The fact that only a few goats with the K222 allele have been identified does not preclude the possibility to design and implement successful breeding programmes at national level. British Veterinary Association.

  3. AllelicImbalance: An R/ bioconductor package for detecting, managing, and visualizing allele expression imbalance data from RNA sequencing

    DEFF Research Database (Denmark)

    Gådin, Jesper R.; van't Hooft, Ferdinand M.; Eriksson, Per

    2015-01-01

    the possible biases. Results: We present AllelicImblance, a software program that is designed to detect, manage, and visualize allelic imbalances comprehensively. The purpose of this software is to allow users to pose genetic questions in any RNA sequencing experiment quickly, enhancing the general utility...... of RNA sequencing. The visualization features can reveal notable, non-trivial allelic imbalance behavior over specific regions, such as exons. Conclusions: The software provides a complete framework to perform allelic imbalance analyses of aligned RNA sequencing data, from detection to visualization...

  4. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes

    Science.gov (United States)

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-01-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l−1 and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1R allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1R and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1V or the duplicated ace-1D allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects. PMID:26463842

  5. Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers

    NARCIS (Netherlands)

    Bovy, A.G.; Angenent, G.C.; Dons, H.J.M.; Altvorst, van A.

    1999-01-01

    The Arabidopsis thaliana etr1-1 allele, capable of conferring ethylene insensitivity in a heterologous host, was introduced into transgenic carnation plants. This gene was expressed under control of either its own promoter, the constitutive CaMV 35S promoter or the flower-specific petunia FBP1

  6. Gene Frequency and Heritability of Rh Blood Group Gene in 44 Human Populations

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2010-09-01

    Full Text Available The frequency of RhD and Rhd alleles of Rh blood group gene was estimated in 44 human populations distributed all over the world from the RhD phenotypic data. The average frequency of RhD and Rhd allele over these populations was 0.70 and 0.30, respectively. Higher frequency of RhD allele than the expected estimate (0.50 in all the populations, under Hardy-Weinberg equilibrium condition assuming equal frequency of both alleles in the initial population, indicated inbreeding at RhD/d locus as well as natural selection for RhD allele. Very high heritability estimate (84.04% of Rh allele frequency revealed that this trait was under weak selection pressure and resulted in greater genetic variation in existing populations. It is consistent with Fishers fundamental theorem of natural selection. The results from the present study suggest that inbreeding at RhD/d locus and some other factors (possibly mutation, migration and genetic drift other than natural selection alone played major roles in changing the Rh allele frequency in these populations.

  7. Estimated allele substitution effects underlying genomic evaluation models depend on the scaling of allele counts

    NARCIS (Netherlands)

    Bouwman, Aniek C.; Hayes, Ben J.; Calus, Mario P.L.

    2017-01-01

    Background: Genomic evaluation is used to predict direct genomic values (DGV) for selection candidates in breeding programs, but also to estimate allele substitution effects (ASE) of single nucleotide polymorphisms (SNPs). Scaling of allele counts influences the estimated ASE, because scaling of

  8. ANALYSIS OF SEQUENCE POLYMORPHISM OF SCR CLASS I AND II ALLELES AND STUDY REGULATION OF THEIR EXPRESSION

    Directory of Open Access Journals (Sweden)

    Jana ŽALUDOVÁ

    2012-06-01

    Full Text Available Self-incompatibility (AI is a widespread mechanism used by flowering plants to prevent inbreeding depression and helps create and maintain genetic diversity within a species. Oilseed rape (Brassica napus L. and especially its modern varieties are characterized by high level of self-fertility. In an effort to increase the production current breeding is focused on the production of inbred lines for making the F1 hybrids and the self-incompatibility can be an interesting tool for production self- sterile lines. In Brassica napus, we found two recessive alleles of a gene SCR II. Different expression of both alleles does not correspond to phenotypic manifestation of self-incompatibility and we can assume that it is prevailed by repressor gene that does not lie on the S-locus. This is also reason, why the SCR gene cannot serve as a molecular marker of self-incompatibility in Brassica napus, although many authors believe that this gene is essential in AI reaction. Brassica napus belong to plants with complex genetic constitution, is composed by two genomes, A and C, which give the possibility of different interactions and makes it difficult to study compared with diploid B. rapa and B. oleracea. In further study it is therefore important to focus on the interactions between genes SCR, SRK and SLG, and their influence on others, such as supressor gene systems.

  9. ANALYSIS OF ANGIOTENSIN CONVERTING ENZYME (ACE GENE INSERTION/DELETION(I/DPOLYMORPHISM IN MIGRAINE

    Directory of Open Access Journals (Sweden)

    Saime Sezer

    2013-03-01

    In patient groups DD genotype frequency was 35.0%, ID genotype frequency was 45.5% and II genotype frequency 19.5% (0.322. Allelic frequencies was detected 57.75% for D allele, 42.25% for I allele in patients. There were no significant differences in genotype/allele frequencies of angiotensin converting enzyme gene polymorphism between patients with migraine and controls (p=0.474. Our results show that I/D polymorphism of angiotensin converting enzyme gene is not a risk factor for migraine. [J Contemp Med 2013; 3(1.000: 7-11

  10. Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Renato Polimanti

    2017-02-01

    Full Text Available The human brain is the outcome of innumerable evolutionary processes; the systems genetics of psychiatric disorders could bear their signatures. On this basis, we analyzed five psychiatric disorders, attention deficit hyperactivity disorder, autism spectrum disorder (ASD, bipolar disorder, major depressive disorder, and schizophrenia (SCZ, using GWAS summary statistics from the Psychiatric Genomics Consortium. Machine learning-derived scores were used to investigate two natural-selection scenarios: complete selection (loci where a selected allele reached fixation and incomplete selection (loci where a selected allele has not yet reached fixation. ASD GWAS results positively correlated with incomplete-selection (p = 3.53*10-4. Variants with ASD GWAS p<0.1 were shown to have a 19%-increased probability to be in the top-5% for incomplete-selection score (OR = 1.19, 95%CI = 1.11-1.8, p = 9.56*10-7. Investigating the effect directions of minor alleles, we observed an enrichment for positive associations in SNPs with ASD GWAS p<0.1 and top-5% incomplete-selection score (permutation p<10-4. Considering the set of these ASD-positive-associated variants, we observed gene-expression enrichments for brain and pituitary tissues (p = 2.3*10-5 and p = 3*10-5, respectively and 53 gene ontology (GO enrichments, such as nervous system development (GO:0007399, p = 7.57*10-12, synapse organization (GO:0050808, p = 8.29*10-7, and axon guidance (GO:0007411, p = 1.81*10-7. Previous genetic studies demonstrated that ASD positively correlates with childhood intelligence, college completion, and years of schooling. Accordingly, we hypothesize that certain ASD risk alleles were under positive selection during human evolution due to their involvement in neurogenesis and cognitive ability.

  11. Identification and distribution of three serologically undetected alleles of HLA-DR by oligonucleotide x DNA typing analysis

    International Nuclear Information System (INIS)

    Tiercy, J.M.; Gorski, J.; Jeannet, M.; Mach, B.

    1988-01-01

    Recent progress in the molecular biology of human major histocompatibility complex class II genes (HLA-DP, -DQ, -DR) have shown that the genetic complexity and allelic polymorphism are greater than expected. In the case of HLA-DR, three DR β-chain loci have been identified and linked, two of which (DR βI and DR βIII, now assigned names HLA-DR1B and HLA-DR3B) are functional. The authors have shown that the HLA micropolymorphism detected at the DNA sequence level can easily be analyzed by hybridization with allele-specific oligonucleotides (HLA oligotyping). In the case of the HLA DRw52 supertypic specificity, which includes the DR3, DR5, DRw6, and DRw8 haplotypes, three alleles, referred to as DRw52a, DRw52b, and DRw52c, have recently been identified at the HLA-DR3B locus by DNA sequencing. Hybridization with locus- and allele-specific oligonucleotide probes (designated 52a, 52b, and 52c) has been performed on DNA from normal individuals forming a panel of 82 haplotypes to establish the distribution of these three alleles. Individuals of the DR3 haplotype had either the DRw52a or DRw52b allele, and individuals of extended haplotype HLA-A1,B8,DR3 had only the DRw52a allele. DR5 individuals all had the DRw52b allele, while individuals of DRw6 haplotype had the DRw52a, -52b, or -52c allele. None of these three alleles are found in DRw8 individuals. Analysis of this micropolymorphism, undetectable by common typing procedures, is therefore now operational for more accurate HLA matching for transplantation and for improving correlations between HLA and disease susceptibility

  12. Influence of Human Leukocyte Antigen (HLA) Alleles and Killer Cell Immunoglobulin-Like Receptors (KIR) Types on Heparin-Induced Thrombocytopenia (HIT).

    Science.gov (United States)

    Karnes, Jason H; Shaffer, Christian M; Cronin, Robert; Bastarache, Lisa; Gaudieri, Silvana; James, Ian; Pavlos, Rebecca; Steiner, Heidi E; Mosley, Jonathan D; Mallal, Simon; Denny, Joshua C; Phillips, Elizabeth J; Roden, Dan M

    2017-09-01

    Heparin-induced thrombocytopenia (HIT) is an unpredictable, life-threatening, immune-mediated reaction to heparin. Variation in human leukocyte antigen (HLA) genes is now used to prevent immune-mediated adverse drug reactions. Combinations of HLA alleles and killer cell immunoglobulin-like receptors (KIR) are associated with multiple autoimmune diseases and infections. The objective of this study is to evaluate the association of HLA alleles and KIR types, alone or in the presence of different HLA ligands, with HIT. HIT cases and heparin-exposed controls were identified in BioVU, an electronic health record coupled to a DNA biobank. HLA sequencing and KIR type imputation using Illumina OMNI-Quad data were performed. Odds ratios for HLA alleles and KIR types and HLA*KIR interactions using conditional logistic regressions were determined in the overall population and by race/ethnicity. Analysis was restricted to KIR types and HLA alleles with a frequency greater than 0.01. The p values for HLA and KIR association were corrected by using a false discovery rate qHIT cases and 350 matched controls were identified. No statistical differences in baseline characteristics were observed between cases and controls. The HLA-DRB3*01:01 allele was significantly associated with HIT in the overall population (odds ratio 2.81 [1.57-5.02], p=2.1×10 -4 , q=0.02) and in individuals with European ancestry, independent of other alleles. No KIR types were associated with HIT, although a significant interaction was observed between KIR2DS5 and the HLA-C1 KIR binding group (p=0.03). The HLA-DRB3*01:01 allele was identified as a potential risk factor for HIT. This class II HLA gene and allele represent biologically plausible candidates for influencing HIT pathogenesis. We found limited evidence of the role of KIR types in HIT pathogenesis. Replication and further study of the HLA-DRB3*01:01 association is necessary. © 2017 Pharmacotherapy Publications, Inc.

  13. Study of Cytochrome P450 2E1 and its allele Variants in Liver Injury of Nondiabetic, Nonalcoholic Steatohepatitis Obese Women

    Directory of Open Access Journals (Sweden)

    NELSON M VARELA

    2008-01-01

    Full Text Available CYP2E1 enzyme is related to nonalcoholic steatohepatitis (NASH due to its ability for reactive oxygen species production, which can be influenced by polymorphisms in the gene. The aim of this study was to investigate hepatic levels, activity, and polymorphisms of the CYP2E1 gene to correlate it with clinical and histological features in 48 female obese NASH patients. Subjects were divided into three groups: (i normal; (ii steatosis; and (iii steatohepatitis. CYP2E1 protein level was assayed in microsomes from liver biopsies, and in vivo chlorzoxazone hydroxylation was determined by HPLC. Genomic DNA was isolated for genotype analysis through PCR. The results showed that liver CYP2E1 content was significantly higher in the steatohepatitis (45%; p=0.024 and steatosis (22%; p=0.032 group compared with normal group. Chlorzoxazone hydroxylase activity showed significant enhancement in the steatohepatitis group (15%, p=0.027 compared with the normal group. c2 rare allele of RsallPstl polymorphisms but no C allele of Dral polymorphism was positively associated with CHZ hydroxylation, which in turn is correlated with liver CYP2E1 content (r=0.59; p=0.026. In conclusion, c2 allele is positively associated with liver injury in NASH. This allele may determine a higher transcriptional activity of the gene, with consequent enhancement in pro-oxidant activity of CYP2E1 thus affording liver toxicity

  14. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces

    Science.gov (United States)

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders. PMID:26809053

  15. Copy number of the Adenomatous Polyposis Coli gene is not always neutral in sporadic colorectal cancers with loss of heterozygosity for the gene.

    Science.gov (United States)

    Zauber, Peter; Marotta, Stephen; Sabbath-Solitare, Marlene

    2016-03-12

    Changes in the number of alleles of a chromosome may have an impact upon gene expression. Loss of heterozygosity (LOH) indicates that one allele of a gene has been lost, and knowing the exact copy number of the gene would indicate whether duplication of the remaining allele has occurred. We were interested to determine the copy number of the Adenomatous Polyposis Coli (APC) gene in sporadic colorectal cancers with LOH. We selected 38 carcinomas with LOH for the APC gene region of chromosome 5, as determined by amplification of the CA repeat region within the D5S346 loci. The copy number status of APC was ascertained using the SALSA® MLPA® P043-B1 APC Kit. LOH for the DCC gene, KRAS gene mutation, and microsatellite instability were also evaluated for each tumor, utilizing standard polymerase chain reaction methods. No tumor demonstrated microsatellite instability. LOH of the DCC gene was also present in 33 of 36 (91.7%) informative tumors. A KRAS gene mutation was present in 16 of the 38 (42.1%) tumors. Twenty-four (63.2%) of the tumors were copy number neutral, 10 (26.3%) tumors demonstrated major loss, while two (5.3%) showed partial loss. Two tumors (5.3%) had copy number gain. Results of APC and DCC LOH, KRAS and microsatellite instability indicate our colorectal cancer cases were typical of sporadic cancers following the 'chromosomal instability' pathway. The majority of our colorectal carcinomas with LOH for APC gene are copy number neutral. However, one-third of our cases showed copy number loss, suggesting that duplication of the remaining allele is not required for the development of a colorectal carcinoma.

  16. Copy number of the Adenomatous Polyposis Coli gene is not always neutral in sporadic colorectal cancers with loss of heterozygosity for the gene

    International Nuclear Information System (INIS)

    Zauber, Peter; Marotta, Stephen; Sabbath-Solitare, Marlene

    2016-01-01

    Changes in the number of alleles of a chromosome may have an impact upon gene expression. Loss of heterozygosity (LOH) indicates that one allele of a gene has been lost, and knowing the exact copy number of the gene would indicate whether duplication of the remaining allele has occurred. We were interested to determine the copy number of the Adenomatous Polyposis Coli (APC) gene in sporadic colorectal cancers with LOH. We selected 38 carcinomas with LOH for the APC gene region of chromosome 5, as determined by amplification of the CA repeat region within the D5S346 loci. The copy number status of APC was ascertained using the SALSA® MLPA® P043-B1 APC Kit. LOH for the DCC gene, KRAS gene mutation, and microsatellite instability were also evaluated for each tumor, utilizing standard polymerase chain reaction methods. No tumor demonstrated microsatellite instability. LOH of the DCC gene was also present in 33 of 36 (91.7 %) informative tumors. A KRAS gene mutation was present in 16 of the 38 (42.1 %) tumors. Twenty-four (63.2 %) of the tumors were copy number neutral, 10 (26.3 %) tumors demonstrated major loss, while two (5.3 %) showed partial loss. Two tumors (5.3 %) had copy number gain. Results of APC and DCC LOH, KRAS and microsatellite instability indicate our colorectal cancer cases were typical of sporadic cancers following the ‘chromosomal instability’ pathway. The majority of our colorectal carcinomas with LOH for APC gene are copy number neutral. However, one-third of our cases showed copy number loss, suggesting that duplication of the remaining allele is not required for the development of a colorectal carcinoma

  17. Protective role of the apolipoprotein E2 allele in age-related disease traits and survival: evidence from the Long Life Family Study.

    Science.gov (United States)

    Kulminski, Alexander M; Raghavachari, Nalini; Arbeev, Konstantin G; Culminskaya, Irina; Arbeeva, Liubov; Wu, Deqing; Ukraintseva, Svetlana V; Christensen, Kaare; Yashin, Anatoliy I

    2016-11-01

    The apolipoprotein E (apoE) is a classic example of a gene exhibiting pleiotropism. We examine potential pleiotropic associations of the apoE2 allele in three biodemographic cohorts of long-living individuals, offspring, and spouses from the Long Life Family Study, and intermediate mechanisms, which can link this allele with age-related phenotypes. We focused on age-related macular degeneration, bronchitis, asthma, pneumonia, stroke, creatinine, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, diseases of heart (HD), cancer, and survival. Our analysis detected favorable associations of the ε2 allele with lower LDL-C levels, lower risks of HD, and better survival. The ε2 allele was associated with LDL-C in each gender and biodemographic cohort, including long-living individuals, offspring, and spouses, resulting in highly significant association in the entire sample (β = -7.1, p = 6.6 × 10 -44 ). This allele was significantly associated with HD in long-living individuals and offspring (relative risk [RR] = 0.60, p = 3.1 × 10 -6 ) but this association was not mediated by LDL-C. The protective effect on survival was specific for long-living women but it was not explained by LDL-C and HD in the adjusted model (RR = 0.70, p = 2.1 × 10 -2 ). These results show that ε2 allele may favorably influence LDL-C, HD, and survival through three mechanisms. Two of them (HD- and survival-related) are pronounced in the long-living parents and their offspring; the survival-related mechanism is also sensitive to gender. The LDL-C-related mechanism appears to be independent of these factors. Insights into mechanisms linking ε2 allele with age-related phenotypes given biodemographic structure of the population studied may benefit translation of genetic discoveries to health care and personalized medicine.

  18. Analysis of Polymorphism of Angiotensin System Genes (ACE, AGTR1, and AGT) and Gene ITGB3 in Patients with Arterial Hypertension in Combination with Metabolic Syndrome.

    Science.gov (United States)

    Zotova, T Yu; Kubanova, A P; Azova, M M; Aissa, A Ait; Gigani, O O; Frolov, V A

    2016-07-01

    Changes in the frequencies of genotypes and mutant alleles of ACE, AGTR1, AGT, and ITGB3 genes were analyzed in patients with arterial hypertension coupled with metabolic syndrome (N=15) and compared with population data and corresponding parameters in patients with isolated hypertension (N=15). Increased frequency of genotype ID of ACE gene (hypertension predictor) was confirmed for both groups. In case of isolated hypertension, M235M genotype (gene AGT) was more frequent, in case of hypertension combined with metabolic syndrome, the frequency of genotypes A1166C and C1166C of the gene AGTR1 was higher in comparison with population data. Comparison of mutant allele frequencies in the two groups showed that at the 90% significance level allele T of the AGT gene was more frequent in hypertension coupled with metabolic syndrome (OR=1.26) and genotype A1166A of the AGTR1 gene was more frequent in the group with isolated hypertension.

  19. Genomic analysis of a heterogeneous Mendelian phenotype: multiple novel alleles for inherited hearing loss in the Palestinian population

    Directory of Open Access Journals (Sweden)

    Walsh Tom

    2006-01-01

    Full Text Available Abstract Recessively inherited phenotypes are frequent in the Palestinian population, as the result of a historical tradition of marriages within extended kindreds, particularly in isolated villages. In order to characterise the genetics of inherited hearing loss in this population, we worked with West Bank schools for the deaf to identify children with prelingual, bilateral, severe to profound hearing loss not attributable to infection, trauma or other known environmental exposure. Of 156 families enrolled, hearing loss in 17 families (11 per cent was due to mutations in GJB2 (connexin 26, a smaller fraction of GJB2-associated deafness than in other populations. In order to estimate how many different genes might be responsible for hearing loss in this population, we evaluated ten families for linkage to all 36 known human autosomal deafness-related genes, fully sequencing hearing-related genes at any linked sites in informative relatives. Four families harboured four novel alleles of TMPRSS3 (988ΔA = 352stop, otoancorin (1067A >T = D356V and pendrin (716T > A = V239D and 1001G > T = 346stop. In each family, all affected individuals were homozygous for the critical mutation. Each allele was specific to one or a few families in the cohort; none were widespread. Since epidemiological tests of association of mutations with deafness were not feasible for such rare alleles, we used functional and bioinformatics approaches to evaluate their consequences. In six other families, hearing loss was not linked to any known gene, suggesting that these families harbour novel genes responsible for this phenotype. We conclude that inherited hearing loss is highly heterogeneous in this population, with most extended families acting as genetic isolates in this context. We also conclude that the same genes are responsible for hearing loss in this population as elsewhere, so that gene discovery in these families informs the genetics of hearing loss worldwide.

  20. Pitfalls in genetic testing: a case of a SNP in primer-annealing region leading to allele dropout in BRCA1.

    Science.gov (United States)

    Silva, Felipe Carneiro; Torrezan, Giovana Tardin; Brianese, Rafael Canfield; Stabellini, Raquel; Carraro, Dirce Maria

    2017-07-01

    Hereditary breast and ovarian cancer is characterized by mutations in BRCA1 or BRCA2 genes and PCR-based screening techniques, such as capillary sequencing and next-generation sequencing (NGS), are considered gold standard methods for detection of pathogenic mutations in these genes. Single-nucleotide polymorphisms (SNPs) constitute a vast source of variation in the human genome and represent a risk for misdiagnosis in genetic testing, since the presence of a SNP in primer-annealing sites may cause false negative results due to allele dropout. However, few reports are available and the frequency of this phenomenon in diagnostic assays remains unknown. In this article, we investigated the causes of a false negative capillary sequencing result in BRCA1 involving a mother-daughter dyad. Using several molecular strategies, including different DNA polymerases, primer redesign, allele-specific PCR and NGS, we established that the initial misdiagnosis was caused by a SNP located in the primer-annealing region, leading to allele dropout of the mutated allele. Assuming that this problem can also occur in any PCR-based method that are widely used in diagnostic settings, the clinical report presented here draws attention for one of the limitations of genetic testing in general, for which medical and laboratory communities need to be aware.

  1. Divergent Hd1, Ghd7, and DTH7 Alleles Control Heading Date and Yield Potential of Japonica Rice in Northeast China.

    Science.gov (United States)

    Ye, Jing; Niu, Xiaojun; Yang, Yaolong; Wang, Shan; Xu, Qun; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wang, Shu; Feng, Yue; Wei, Xinghua

    2018-01-01

    The heading date is a vital factor in achieving a full rice yield. Cultivars with particular flowering behaviors have been artificially selected to survive in the long-day and low-temperature conditions of Northeast China. To dissect the genetic mechanism responsible for heading date in rice populations from Northeast China, association mapping was performed to identify major controlling loci. A genome-wide association study (GWAS) identified three genetic loci, Hd1 , Ghd7 , and DTH7 , using general and mixed linear models. The three genes were sequenced to analyze natural variations and identify their functions. Loss-of-function alleles of these genes contributed to early rice heading dates in the northern regions of Northeast China, while functional alleles promoted late rice heading dates in the southern regions of Northeast China. Selecting environmentally appropriate allele combinations in new varieties is recommended during breeding. Introducing the early indica rice's genetic background into Northeast japonica rice is a reasonable strategy for improving genetic diversity.

  2. Nucleotide diversity analysis of three major bacterial blight resistance genes in rice.

    Directory of Open Access Journals (Sweden)

    Waikhom Bimolata

    Full Text Available Nucleotide sequence polymorphisms among R gene alleles influence the process of co-evolutionary interaction between host and pathogen by shaping the response of host plants towards invading pathogens. Here, we present the DNA sequence polymorphisms and diversities present among natural alleles of three rice bacterial blight resistance genes, Xa21, Xa26 and xa5. The diversity was examined across different wild relatives and cultivars of Oryza species. Functional significance of selected alleles was evaluated through semi-quantitative reverse transcription polymerase chain reaction and real time PCR. The greatest nucleotide diversity and singleton variable sites (SVS were present in Xa26 (π = 0.01958; SVS = 182 followed by xa5 and Xa21 alleles. The highest frequency of single nucleotide polymorphisms were observed in Xa21 alleles and least in xa5. Transition bias was observed in all the genes and 'G' to 'A' transitions were more favored than other form of transitions. Neutrality tests failed to show the presence of selection at these loci, though negative Tajima's D values indicate the presence of a rare form of polymorphisms. At the interspecies level, O. nivara exhibited more diversity than O. sativa. We have also identified two nearly identical resistant alleles of xa5 and two sequentially identical alleles of Xa21. The alleles of xa5 showed basal levels of expression while Xa21 alleles were functionally not expressed.

  3. Ongoing Horizontal and Vertical Transmission of Virulence Genes and papA Alleles among Escherichia coli Blood Isolates from Patients with Diverse-Source Bacteremia

    Science.gov (United States)

    Johnson, James R.; O'Bryan, Timothy T.; Kuskowski, Michael; Maslow, Joel N.

    2001-01-01

    The phylogenetic distributions of multiple putative virulence factors (VFs) and papA (P fimbrial structural subunit) alleles among 182 Escherichia coli blood isolates from patients with diverse-source bacteremia were defined. Phylogenetic correspondence among these strains, the E. coli Reference (ECOR) collection, and other collections of extraintestinal pathogenic E. coli (ExPEC) was assessed. Although among the 182 bacteremia isolates phylogenetic group B2 predominated, exhibited the greatest concentration of individual VFs, and contained the largest number of familiar virulent clones, other phylogenetic groups exhibited greater concentrations of certain VFs than did group B2 and included several additional virulent clones. Certain of the newly detected VF genes, e.g., fyuA (yersiniabactin; 76%) and focG (F1C fimbriae; 25%), were as prevalent or more prevalent than their more familiar traditional counterparts, e.g., iut (aerobactin; 57%) and sfaS (S fimbriae; 14%), thus possibly offering additional useful targets for preventive interventions. Considerable diversity of VF profiles was observed at every level within the phylogenetic tree, including even within individual lineages. This suggested that many different pathways can lead to extraintestinal virulence in E. coli and that the evolution of ExPEC, which involves extensive horizontal transmission of VFs and continuous remodeling of pathogenicity-associated islands, is a highly active, ongoing process. PMID:11500406

  4. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides.

    Science.gov (United States)

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.

  5. Distribution of Human Leukocyte Antigen alleles in Systemic Lupus Erythematosus patients with Angiotensin Converting Enzyme Insertion/Deletion Polymorphism

    Directory of Open Access Journals (Sweden)

    Nageen Hussain

    2013-02-01

    Full Text Available Systemic Lupus Erythematosus is one of the classic examples of autoimmune diseases among human beings and is a rare disease in Pakistani population. Clinically it is a quite diverse and complicated autoimmune disease in a sense that it involves multiple organs of the body and mimics with other diseases as well. This study focused on the distribution of HLA alleles in SLE patients with ACE I/D Polymorphism. A total of 122 individuals were enrolled in this study, 61 were the SLE patients who fulfilled revised ACR criteria and 61 were the healthy controls. Mean age of SLE patients at diagnosis was 30.35 ± 1.687 years (12-68 years. ACE gene I/D polymorphism was performed by nested PCR and DNA based HLA typing technique was used. ACE gene I/D polymorphism of Intron16 was studied and found to be involved in the activity of SLE. There is high frequency of HLA-A*01, HLA-B*40, HLA-DRB1*01 alleles in SLE patients with ACE DD genotype. The distribution of HLA-A, -B, -DRB1 alleles was analyzed in SLE patients with various disease phenotypes. HLA-A*01 and HLA-B*40 was the most common allele found in SLE patients with the involvement of skin. HLA-A*01, -A*03, HLA-B*13 and -B*46 were common in SLE patients with arthritis while HLA-A*26 and -A*69 were commonly found in Lupus nephritis cases. SLE patients involving both skin and kidney had an allele HLA-DRB1*01 common in them.

  6. [High frequency of ancestral allele of the TJP1 polymorphism rs2291166 in Mexican population, conformational effect and applications in surgery and medicine].

    Science.gov (United States)

    Ramirez-Garcia, Sergio Alberto; Flores-Alvarado, Luis Javier; Topete-González, Luz Rosalba; Charles-Niño, Claudia; Mazariegos-Rubi, Manuel; Dávalos-Rodríguez, Nory Omayra

    2016-01-01

    TJP1 gene encodes a ZO-1 protein that is required for the recruitment of occludins and claudins in tight junction, and is involved in cell polarisation. It has different variations, the frequency of which has been studied in different populations. In Mexico there are no studies of this gene. These are required because their polymorphisms can be used in studies associated with medicine and surgery. Therefore, the aim of this study was to estimate the frequency of alleles and genotypes of rs2291166 gene polymorphism TJP1 in Mexico Mestizos population, and to estimate the conformational effect of an amino acid change. A total of 473 individuals were included. The rs2291166 polymorphism was identified PASA PCR-7% PAGE, and stained with silver nitrate. The conformational effect of amino acid change was performed in silico, and was carried out with servers ProtPraram Tool and Search Database with Fasta. The most frequent allele in the two populations is the ancestral allele (T). A genotype distribution similar to other populations was found. The polymorphism is in Hardy-Weinberg, p>0.05. Changing aspartate to alanine produced a conformational change. The study reveals a high frequency of the ancestral allele at rs2291166 polymorphism in the Mexican population. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  7. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation

    KAUST Repository

    Monies, Dorota; Maddirevula, Sateesh; Kurdi, Wesam; Alanazy, Mohammed H.; Alkhalidi, Hisham; Al-Owain, Mohammed; Sulaiman, Raashda A.; Faqeih, Eissa; Goljan, Ewa; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Abouelhoda, Mohamed; Shaheen, Ranad; Arold, Stefan T.; Alkuraya, Fowzan S.

    2017-01-01

    The purpose of this study is to describe recessive alleles in strictly dominant genes. Identifying recessive mutations in genes for which only dominant disease or risk alleles have been reported can expand our understanding of the medical relevance

  8. Use of allele-specific FAIRE to determine functional regulatory polymorphism using large-scale genotyping arrays.

    Directory of Open Access Journals (Sweden)

    Andrew J P Smith

    Full Text Available Following the widespread use of genome-wide association studies (GWAS, focus is turning towards identification of causal variants rather than simply genetic markers of diseases and traits. As a step towards a high-throughput method to identify genome-wide, non-coding, functional regulatory variants, we describe the technique of allele-specific FAIRE, utilising large-scale genotyping technology (FAIRE-gen to determine allelic effects on chromatin accessibility and regulatory potential. FAIRE-gen was explored using lymphoblastoid cells and the 50,000 SNP Illumina CVD BeadChip. The technique identified an allele-specific regulatory polymorphism within NR1H3 (coding for LXR-α, rs7120118, coinciding with a previously GWAS-identified SNP for HDL-C levels. This finding was confirmed using FAIRE-gen with the 200,000 SNP Illumina Metabochip and verified with the established method of TaqMan allelic discrimination. Examination of this SNP in two prospective Caucasian cohorts comprising 15,000 individuals confirmed the association with HDL-C levels (combined beta = 0.016; p = 0.0006, and analysis of gene expression identified an allelic association with LXR-α expression in heart tissue. Using increasingly comprehensive genotyping chips and distinct tissues for examination, FAIRE-gen has the potential to aid the identification of many causal SNPs associated with disease from GWAS.

  9. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation

    KAUST Repository

    Monies, Dorota

    2017-04-06

    The purpose of this study is to describe recessive alleles in strictly dominant genes. Identifying recessive mutations in genes for which only dominant disease or risk alleles have been reported can expand our understanding of the medical relevance of these genes both phenotypically and mechanistically. The Saudi population is enriched for autozygosity, which enhances the homozygous occurrence of alleles, including pathogenic alleles in genes that have been associated only with a dominant inheritance pattern.Exome sequencing of patients from consanguineous families with likely recessive phenotypes was performed. In one family, the genotype of the deceased children was inferred from their parents due to lack of available samples.We describe the identification of 11 recessive variants (5 of which are reported here for the first time) in 11 genes for which only dominant disease or risk alleles have been reported. The observed phenotypes for these recessive variants were novel (e.g., FBN2-related myopathy and CSF1R-related brain malformation and osteopetrosis), typical (e.g., ACTG2-related visceral myopathy), or an apparently healthy state (e.g., PDE11A), consistent with the corresponding mouse knockout phenotypes.Our results show that, in the era of genomic sequencing and

  10. Segregation of Tay-Sachs and Sandhoff alleles in a non-Jewish family.

    OpenAIRE

    Lane, A B; Young, E; Jenkins, T

    1980-01-01

    A non-Jewish family is presented in which the genes for Tay-Sachs disease and Sandhoff disease are segregating. Individuals heterozygous for both alleles have low serum and white cell total hexosaminidase levels together with a proportion of heat-labile hexosaminidase A (HEX A) which falls in the normal range. The individuals would not be detected as carriers of Tay-Sachs disease or Sandhoff disease in a population screening program.

  11. Overdispersion in allelic counts and θ-correction in forensic genetics

    DEFF Research Database (Denmark)

    Tvedebrink, Torben

    2009-01-01

    A statistical model for incorporating the extra variability in allelic counts due to subpopulation structures is presented. In forensic genetics, this effect is modelled by the identical-by-decent-parameter, θ . It is shown, that θ may be defined as an overdispersion parameter capturing the extra...

  12. Efficient computation of the joint probability of multiple inherited risk alleles from pedigree data.

    Science.gov (United States)

    Madsen, Thomas; Braun, Danielle; Peng, Gang; Parmigiani, Giovanni; Trippa, Lorenzo

    2018-06-25

    The Elston-Stewart peeling algorithm enables estimation of an individual's probability of harboring germline risk alleles based on pedigree data, and serves as the computational backbone of important genetic counseling tools. However, it remains limited to the analysis of risk alleles at a small number of genetic loci because its computing time grows exponentially with the number of loci considered. We propose a novel, approximate version of this algorithm, dubbed the peeling and paring algorithm, which scales polynomially in the number of loci. This allows extending peeling-based models to include many genetic loci. The algorithm creates a trade-off between accuracy and speed, and allows the user to control this trade-off. We provide exact bounds on the approximation error and evaluate it in realistic simulations. Results show that the loss of accuracy due to the approximation is negligible in important applications. This algorithm will improve genetic counseling tools by increasing the number of pathogenic risk alleles that can be addressed. To illustrate we create an extended five genes version of BRCAPRO, a widely used model for estimating the carrier probabilities of BRCA1 and BRCA2 risk alleles and assess its computational properties. © 2018 WILEY PERIODICALS, INC.

  13. HLA-class II alleles in patients with drug-resistant pulmonary tuberculosis in Kazakhstan.

    Science.gov (United States)

    Kuranov, A B; Kozhamkulov, U A; Vavilov, M N; Belova, E S; Bismilda, V L; Alenova, A H; Ismailov, S S; Momynaliev, K T

    2014-02-01

    The human leukocyte antigen (HLA) system has a major role in the regulation of the immune response as it is involved in the defense against pathogens. Some studies have reported that HLA class II genes play a strong role in severe cases of pulmonary tuberculosis (PTB) in several populations. Thus the aim of the study was to compare the HLA-class II alleles of patients with drug resistant tuberculosis with those of healthy controls from the same ethnic group in Kazakhstan. The aim of the present study was to evaluate the correlation of HLA-class II alleles by patients with drug resistant tuberculosis and the healthy controls of the same ethnic group in Kazakhstan. The HLA-class II alleles of 76 patients with tuberculosis (TB) and 157 healthy volunteers were investigated using sequence-based typing (SBT)-method. HLA-DQA1*03:02 HLA-DRB1*08:01 and DRB1*08:03 occurred more frequently (P = 0.05) in patients with drug resistant tuberculosis than in controls. We observed a possible association between certain HLA alleles and TB that are specific for the Kazakh population. Further studies are needed to confirm our findings using a larger number of patients with drug resistant tuberculosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The IL23R A/Gln381 allele promotes IL-23 unresponsiveness in human memory T-helper 17 cells and impairs Th17 responses in psoriasis patients.

    Science.gov (United States)

    Di Meglio, Paola; Villanova, Federica; Napolitano, Luca; Tosi, Isabella; Terranova Barberio, Manuela; Mak, Rose K; Nutland, Sarah; Smith, Catherine H; Barker, Jonathan N W N; Todd, John A; Nestle, Frank O

    2013-10-01

    We and others have shown that the minor, nonconserved allele Gln381 of the Arg381Gln single-nucleotide polymorphism (rs11209026G>A) of the IL-23 receptor gene (IL23R) protects against psoriasis. Moreover, we have recently shown impaired IL-23-induced IL-17A production and STAT-3 phosphorylation in Th17 cells generated in vitro from healthy individuals heterozygous for the protective A allele (GA). However, the biological effect of this variant has not been determined in homozygous carriers of the protective A allele (AA), nor in psoriatic patients. Here we expand our functional investigation of the IL23R Arg381Gln gene variant to include AA homozygous individuals. By using isolated memory CD4+ T cells, we found attenuated IL-23-induced Th17 response in heterozygous individuals. Moreover, we found that AA homozygous individuals were strikingly unresponsive to IL-23, with minimal or no IL-17A and IL-17F production and failure of human memory Th17 cell survival/expansion. Finally, IL-23-induced Th17 response was also attenuated in age- and sex-matched GA versus GG psoriatic patients undergoing systemic treatment. Taken together, our data provide evidence for an allele-dosage effect for IL-23R Gln381 and indicate that common gene alleles associated with complex diseases might have biological effects of considerable magnitude in homozygous carriers.

  15. Isolation and genetic characterization of mother-of-snow-white, a maternal effect allele affecting laterality and lateralized behaviors in zebrafish.

    Directory of Open Access Journals (Sweden)

    Alice Domenichini

    Full Text Available In the present work we report evidence compatible with a maternal effect allele affecting left-right development and functional lateralization in vertebrates. Our study demonstrates that the increased frequency of reversed brain asymmetries in a zebrafish line isolated through a behavioral assay is due to selection of mother-of-snow-white (msw, a maternal effect allele involved in early stages of left-right development in zebrafish. msw homozygous females could be identified by screening of their progeny for the position of the parapineal organ because in about 50% of their offspring we found an altered, either bilateral or right-sided, expression of lefty1 and spaw. Deeper investigations at earlier stages of development revealed that msw is involved in the specification and differentiation of precursors of the Kupffer's vesicle, a structure homologous to the mammalian node. To test the hypothesis that msw, by controlling Kupffer's vesicle morphogenesis, controls lateralized behaviors related to diencephalic asymmetries, we analyzed left- and right-parapineal offspring in a "viewing test". As a result, left- and right-parapineal individuals showed opposite and complementary eye preference when scrutinizing a model predator, and a different degree of lateralization when scrutinizing a virtual companion. As maternal effect genes are expected to evolve more rapidly when compared to zygotic ones, our results highlight the driving force of maternal effect alleles in the evolution of vertebrates behaviors.

  16. Molecular survey of Tamyb10-1 genes and their association with ...

    Indian Academy of Sciences (India)

    To investigate allelic variation of Myb10-1 genes in Chinese wheat and to examine its association with germination level in wheat, a total of 582 Chinese bread wheat cultivars and 110 Aegilops tauschii accessions were used to identify allelic variations of three Myb10-1 genes. Identification results indicated that there is a ...

  17. VNTR internal structure mapping at the {alpha}-globin 3{prime}HVR locus reveals a hierachy of related lineages in oceania

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, J.J.; Clegg, J.B.; Boyce, A.J. [Univ. of Oxford (United Kingdom)

    1994-09-01

    Analysis of the {alpha}-globin gene complex in Oceania has revealed many different rearrangements which remove one of the adult globin genes. Frequencies of these deletion chromosomes are elevated by malarial resistance conferred by the resulting {alpha}-thalassaemia. One particular deletion chromosome, designated -{alpha}{sup 3.7}III, is found at high levels in Melanesia and Polynesia: RFLP haplotype analysis shows that this deletion is always found on chromosomes bearing the IIIa haplotype and is likely to be the product of one single rearrangement event. A subset of the -{alpha}{sup 3.7}III chromosomes carries a more recent mutation which generates the haemoglobin variant HbJ{sup Tongariki}. We have characterized the allelic variation at the 3{prime}HVR VNTR locus located 6 kb from the globin genes in each of these groups of chromosomes. We have determined the internal structure of these alleles by RFLP mapping of PCR-amplified DNA: within each group, the allelic diversity results from the insertion and/or deletion of small {open_quotes}motifs{close_quotes} of up to 6 adjacent repeats. Mapping of 3{prime}HVR alleles associated with other haplotypes reveals that these are composed of repeat arrays that are substantially different to those derived from IIIa chromosomes, indicating that interchromosomal recombination between heterologous haplotypes does not account for any of the diversity seen to date. We have recently shown that allelic size variation at the two VNTR loci flanking the {alpha}-globin complex is very closely linked to the haplotypes known to be present at this locus. Here we show that, within a haplotype, VNTR alleles are very closely related to each other on the basis of internal structure and demonstrate that intrachromosomal mutation processes involving small numbers of tandem repeats are the main cause of variation at this locus.

  18. EOMES-positive CD4+ T cells are increased in PTPN22 (1858T) risk allele carriers.

    Science.gov (United States)

    Chemin, Karine; Ramsköld, Daniel; Diaz-Gallo, Lina-Marcela; Herrath, Jessica; Houtman, Miranda; Tandre, Karolina; Rönnblom, Lars; Catrina, Anca; Malmström, Vivianne

    2018-04-01

    The presence of the PTPN22 risk allele (1858T) is associated with several autoimmune diseases including rheumatoid arthritis (RA). Despite a number of studies exploring the function of PTPN22 in T cells, the exact impact of the PTPN22 risk allele on T-cell function in humans is still unclear. In this study, using RNA sequencing, we show that, upon TCR-activation, naïve human CD4 + T cells homozygous for the PTPN22 risk allele overexpress a set of genes including CFLAR and 4-1BB, which are important for cytotoxic T-cell differentiation. Moreover, the protein expression of the T-box transcription factor Eomesodermin (EOMES) was increased in T cells from healthy donors homozygous for the PTPN22 risk allele and correlated with a decreased number of naïve CD4 + T cells. There was no difference in the frequency of other CD4 + T-cell subsets (Th1, Th17, Tfh, Treg). Finally, an accumulation of EOMES + CD4 + T cells was observed in synovial fluid of RA patients with a more pronounced production of Perforin-1 in PTPN22 risk allele carriers. Altogether, we propose a novel mechanism of action of PTPN22 risk allele through the generation of cytotoxic CD4 + T cells and identify EOMES + CD4 + T cells as a relevant T-cell subset in RA pathogenesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew.

    Science.gov (United States)

    Sun, Suli; Deng, Dong; Wang, Zhongyi; Duan, Canxing; Wu, Xiaofei; Wang, Xiaoming; Zong, Xuxiao; Zhu, Zhendong

    2016-05-01

    A novel er1 allele, er1 -7, conferring pea powdery mildew resistance was characterized by a 10-bp deletion in PsMLO1 cDNA, and its functional marker was developed and validated in pea germplasms. Pea powdery mildew caused by Erysiphe pisi DC is a major disease worldwide. Pea cultivar 'DDR-11' is an elite germplasm resistant to E. pisi. To identify the gene conferring resistance in DDR-11, the susceptible Bawan 6 and resistant DDR-11 cultivars were crossed to produce F1, F2, and F(2:3) populations. The phenotypic segregation patterns in the F2 and F(2:3) populations fit the 3:1 (susceptible:resistant) and 1:2:1 (susceptible homozygotes:heterozygotes:resistant homozygotes) ratios, respectively, indicating that resistance was controlled by a single recessive gene. Analysis of er1-linked markers in the F2 population suggested that the recessive resistance gene in DDR-11 was an er1 allele, which was mapped between markers ScOPE16-1600 and c5DNAmet. To further characterize er1 allele, the cDNA sequences of PsMLO1 from the parents were obtained and a novel er1 allele in DDR-11 was identified and designated as er1-7, which has a 10-bp deletion in position 111-120. The er1-7 allele caused a frame-shift mutation, resulting in a premature termination of translation of PsMLO1 protein. A co-dominant functional marker specific for er1-7 was developed, InDel111-120, which co-segregated with E. pisi resistance in the mapping population. The marker was able to distinguish between pea germplasms with and without the er1-7. Of 161 pea germplasms tested by InDel111-120, seven were detected containing resistance allele er1-7, which was verified by sequencing their PsMLO1 cDNA. Here, a novel er1 allele was characterized and its an ideal functional marker was validated, providing valuable genetic information and a powerful tool for breeding pea resistance to powdery mildew.

  20. Structure, function, and phylogeny of the mating locus in the Rhizopus oryzae complex.

    Directory of Open Access Journals (Sweden)

    Andrii P Gryganskyi

    2010-12-01

    Full Text Available The Rhizopus oryzae species complex is a group of zygomycete fungi that are common, cosmopolitan saprotrophs. Some strains are used beneficially for production of Asian fermented foods but they can also act as opportunistic human pathogens. Although R. oryzae reportedly has a heterothallic (+/- mating system, most strains have not been observed to undergo sexual reproduction and the genetic structure of its mating locus has not been characterized. Here we report on the mating behavior and genetic structure of the mating locus for 54 isolates of the R. oryzae complex. All 54 strains have a mating locus similar in overall organization to Phycomyces blakesleeanus and Mucor circinelloides (Mucoromycotina, Zygomycota. In all of these fungi, the minus (- allele features the SexM high mobility group (HMG gene flanked by an RNA helicase gene and a TP transporter gene (TPT. Within the R. oryzae complex, the plus (+ mating allele includes an inserted region that codes for a BTB/POZ domain gene and the SexP HMG gene. Phylogenetic analyses of multiple genes, including the mating loci (HMG, TPT, RNA helicase, ITS1-5.8S-ITS2 rDNA, RPB2, and LDH genes, identified two distinct groups of strains. These correspond to previously described sibling species R. oryzae sensu stricto and R. delemar. Within each species, discordant gene phylogenies among multiple loci suggest an outcrossing population structure. The hypothesis of random-mating is also supported by a 50:50 ratio of plus and minus mating types in both cryptic species. When crossed with tester strains of the opposite mating type, most isolates of R. delemar failed to produce zygospores, while isolates of R. oryzae produced sterile zygospores. In spite of the reluctance of most strains to mate in vitro, the conserved sex locus structure and evidence for outcrossing suggest that a normal sexual cycle occurs in both species.

  1. Polymorphism in the interferon-{alpha} gene family

    Energy Technology Data Exchange (ETDEWEB)

    Golovleva, I.; Lundgren, E.; Beckman, L. [Univ. of Umea (Sweden); Kandefer-Szerszen, M. [Maria Curie-Sklodowska Univ., Lublin (Poland)

    1996-09-01

    A pronounced genetic polymorphism of the interferon type I gene family has been assumed on the basis of RFLP analysis of the genomic region as well as the large number of sequences published compared to the number of loci. However, IFNA2 is the only locus that has been carefully analyzed concerning gene frequency, and only naturally occurring rare alleles have been found. We have extended the studies on a variation of expressed sequences by studying the IFNA1, IFNA2, IFNA10, IFNA13, IFNA14, and IFNA17 genes. Genomic white-blood-cell DNA from a population sample of blood donors and from a family material were screened by single-nucleotide primer extension (allele-specific primer extension) of PCR fragments. Because of sequence similarities, in some cases {open_quotes}nested{close_quotes} PCR was used, and, when applicable, restriction analysis or control sequencing was performed. All individuals carried the interferon-{alpha} 1 and interferon-{alpha} 13 variants but not the LeIF D variant. At the IFNA2 and IFNA14 loci only one sequence variant was found, while in the IFNA10 and IFNA17 groups two alleles were detected in each group. The IFNA10 and IFNA17 alleles segregated in families and showed a close fit to the Hardy-Weinberg equilibrium. There was a significant linkage disequilibrium between IFNA10 and IFNA17 alleles. The fact that the extent of genetic polymorphism was lower than expected suggests that a majority of the previously described gene sequences represent nonpolymorphic rare mutants that may have arisen in tumor cell lines. 44 refs., 4 figs., 4 tabs.

  2. The dominant allele Aft induces a shift from flavonol to anthocyanin production in response to UV-B radiation in tomato fruit.

    Science.gov (United States)

    Catola, Stefano; Castagna, Antonella; Santin, Marco; Calvenzani, Valentina; Petroni, Katia; Mazzucato, Andrea; Ranieri, Annamaria

    2017-08-01

    The introgression of the A ft allele into domesticated tomato induced a shift from flavonol to anthocyanin production in response to UV-B radiation, while the hp - 1 allele negatively influenced the response of flavonoid biosynthesis to UV-B. Introgression of the dominant allele Anthocyanin fruit (Aft) from Solanum chilense induces anthocyanin accumulation in the peel of tomato (Solanum lycopersicum L.) fruit. UV-B radiation can influence plant secondary metabolism regulating the expression of several genes, among which those involved in flavonoid biosynthesis. Here, we investigated whether post-harvest UV-B treatment could up-regulate flavonoid production in tomato fruits and whether the Aft allele could affect flavonoid biosynthesis under UV-B radiation. Mature green fruits of an anthocyanin-rich tomato mutant line (SA206) and of its wild-type reference, cv. Roma, were daily subjected to post-harvest UV-B treatment until full ripening. Up-regulation of CHS and CHI transcription by UV-B treatment induced flavonoid accumulation in the peel of cv. Roma. Conversely, UV-B decreased the total flavonoid content and CHS transcript levels in the SA206 peel. SA206 being a double mutant containing also hp-1 allele, we investigated also the behavior of hp-1 fruit. The decreased peel flavonoid accumulation and gene transcription in response to UV-B suggest that hp-1 allele is involved in the marked down-regulation of the flavonoid biosynthesis observed in SA206 fruit. Interestingly, in SA206, UV-B radiation promoted the synthesis of delphinidin, petunidin, and malvidin by increasing F3'5'H and DFR transcription, but it decreased rutin production, suggesting a switch from flavonols to anthocyanins. Finally, although UV-B radiation does not reach the inner fruit tissues, it down-regulated flavonoid biosynthesis in the flesh of both genotypes. This study provides, for the first time, evidence that the presence of the functional Aft allele, under UV-B radiation, redirects

  3. Microsatellite polymorphism within pfcrt provides evidence of continuing evolution of chloroquine-resistant alleles in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Sharma Yagya D

    2007-03-01

    Full Text Available Abstract Background Polymorphism in the pfcrt gene underlies Plasmodium falciparum chloroquine resistance (CQR, as sensitive strains consistently carry lysine (K, while CQR strains carry threonine (T at the codon 76. Previous studies have shown that microsatellite (MS haplotype variation can be used to study the evolution of CQR polymorphism and to characterize intra- and inter-population dispersal of CQR in Papua New Guinea (PNG. Methods Here, following identification of new polymorphic MS in introns 2 and 3 within the pfcrt gene (msint2 and msint3, respectively, locus-by-locus and haplotype heterozygosity (H analyses were performed to determine the distribution of this intronic polymorphism among pfcrt chloroquine-sensitive and CQR alleles. Results For MS flanking the pfcrt CQR allele, H ranged from 0.07 (B5M77, -18 kb to 0.094 (9B12, +2 kb suggesting that CQ selection pressure was responsible for strong homogenisation of this gene locus. In a survey of 206 pfcrt-SVMNT allele-containing field samples from malaria-endemic regions of PNG, H for msint2 was 0.201. This observation suggests that pfcrt msint2 exhibits a higher level of diversity than what is expected from the analyses of pfcrt flanking MS. Further analyses showed that one of the three haplotypes present in the early 1980's samples has become the predominant haplotype (frequency = 0.901 in CQR parasite populations collected after 1995 from three PNG sites, when CQR had spread throughout malaria-endemic regions of PNG. Apparent localized diversification of pfcrt haplotypes at each site was also observed among samples collected after 1995, where minor CQR-associated haplotypes were found to be unique to each site. Conclusion In this study, a higher level of diversity at MS loci within the pfcrt gene was observed when compared with the level of diversity at pfcrt flanking MS. While pfcrt (K76T and its immediate flanking region indicate homogenisation in PNG CQR parasite populations

  4. Structural organization of the genes for rat von Ebner's gland proteins 1 and 2 reveals their close relationship to lipocalins.

    Science.gov (United States)

    Kock, K; Ahlers, C; Schmale, H

    1994-05-01

    The rat von Ebner's gland protein 1 (VEGP 1) is a secretory protein, which is abundantly expressed in the small acinar von Ebner's salivary glands of the tongue. Based on the primary structure of this protein we have previously suggested that it is a member of the lipocalin superfamily of lipophilic-ligand carrier proteins. Although the physiological role of VEGP 1 is not clear, it might be involved in sensory or protective functions in the taste epithelium. Here, we report the purification of VEGP 1 and of a closely related secretory polypeptide, VEGP 2, the isolation of a cDNA clone encoding VEGP 2, and the isolation and structural characterization of the genes for both proteins. Protein purification by gel-filtration and anion-exchange chromatography using Mono Q revealed the presence of two different immunoreactive VEGP species. N-terminal sequence determination of peptide fragments isolated after protease Asp-N digestion allowed the identification of a new VEGP, named VEGP 2, in addition to the previously characterized VEGP 1. The complete VEGP 2 sequence was deduced from a cDNA clone isolated from a von Ebner's gland cDNA library. The VEGP 2 cDNA encodes a protein of 177 amino acids and is 94% identical to VEGP 1. DNA sequence analysis of the rat VEGP 1 and 2 genes isolated from rat genomic libraries revealed that both span about 4.5 kb and contain seven exons. The VEGP 1 and 2 genes are non-allelic distinct genes in the rat genome and probably arose by gene duplication. The high degree of nucleotide sequence identity in introns A-C (94-100%) points to a recent gene conversion event that included the 5' part of the genes. The genomic organization of the rat VEGP genes closely resembles that found in other lipocalins such as beta-lactoglobulin, mouse urinary proteins (MUPs) and prostaglandin D synthase, and therefore provides clear evidence that VEGPs belong to this superfamily of proteins.

  5. The Rh allele frequencies in Gaza city in Palestine

    Directory of Open Access Journals (Sweden)

    Skaik Younis

    2011-01-01

    Full Text Available Background: The Rh blood group system is the second most clinically significant blood group system. It includes 49 antigens, but only five (D, C, E, c and e are the most routinely identified due to their unique relation to hemolytic disease of the newborn (HDN and transfusion reactions. Frequency of the Rh alleles showed variation, with regard to race and ethnic. Objectives: The purpose of the study was to document the Rh alleles′ frequencies amongst males (M and females (F in Gaza city in Palestine. Materials and Methods: Two hundred and thirty-two blood samples (110 M and 122 F were tested against monoclonal IgM anti-C,anti-c, anti-E, anti-e and a blend of monoclonal/polyclonal IgM/IgG anti-D. The expected Rh phenotypes were calculated using gene counting method. Results: The most frequent Rh antigen in the total sample was e, while the least frequent was E.The order of the combined Rh allele frequencies in both M and F was CDe > cDe > cde > CdE > cDE > Cde > CDE. A significant difference was reported between M and F regarding the phenotypic frequencies (P < 0.05. However, no significance (P > 0.05 was reported with reference to the observed and expected Rh phenotypic frequencies in either M or F students. Conclusion: It was concluded that the Rh antigens, alleles and phenotypes in Gaza city have unique frequencies, which may be of importance to the Blood Transfusion Center in Gaza city and anthropology.

  6. HLA-DQBl*0402 alleles polymorphisms detected in Javanese HIV patients with positive anti-Toxoplasma gondii IgM

    Science.gov (United States)

    Sari, Yulia; Haryati, Sri; Prasetyo, Afiono Agung; Hartono, Adnan, Zainal Arifin

    2017-02-01

    The human leukocyte antigen (HLA)-DQB1 gene polymorphisms may associated with the infection risk of Toxoplasma gondii in HIV patients. The HLA-DQB1*0402 in HIV-1-positive patients could be considered risk factors for developing neurological opportunistic infections, mainly Toxoplasma encephalitis. However, the HLA-DQB1*0402 gene polymorphisms status in the Javanese HIV patients is unknown. This study evaluated the prevalence of HLA-DQB*0402 alleles polymorphisms in Javanese HIV patients with positive anti-Toxoplasma gondii IgM status. Since 2009 our research group performing a molecular epidemiology of blood borne viruses in Central Java Indonesia, by collecting the epidemiological and clinical data from the high risk communities. All blood samples were screened for blood borne pathogens by serological and molecular assays including for HIV and Toxoplasma gondii. The genomic DNA was isolated from the whole blood samples. Genetic polymorphisms of HLA-DQB1*0402 alleles were detected with polymerase chain reaction-sequence-specific primers (PCR-SSPs) technique. The genotypes were defined according to generated fragment patterns in the agarose gel electrophoresis analysis of PCR products. All of the samples were tested at least in duplicate. HLA-DQB1*0402 alleles were detected in 20.8% (16/77) patients and not detected in all HIV positive samples with negative anti-Toxoplasma gondii IgM status (n= 200). The HLA-DQB1*0402 alleles polymorphisms were detected in Javanese HIV patients with positive anti-Toxoplasma gondii IgM. The polymorphisms found may have association with the infection risk of Toxoplasma gondii in HIV patients.

  7. ACTN3 allele frequency in humans covaries with global latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Scott M Friedlander

    Full Text Available A premature stop codon in ACTN3 resulting in α-actinin-3 deficiency (the ACTN3 577XX genotype is common in humans and reduces strength, muscle mass, and fast-twitch fiber diameter, but increases the metabolic efficiency of skeletal muscle. Linkage disequilibrium data suggest that the ACTN3 R577X allele has undergone positive selection during human evolution. The allele has been hypothesized to be adaptive in environments with scarce resources where efficient muscle metabolism would be selected. Here we test this hypothesis by using recently developed comparative methods that account for evolutionary relatedness and gene flow among populations. We find evidence that the ACTN3 577XX genotype evolved in association with the global latitudinal gradient. Our results suggest that environmental variables related to latitudinal variation, such as species richness and mean annual temperature, may have influenced the adaptive evolution of ACTN3 577XX during recent human history.

  8. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21

    NARCIS (Netherlands)

    Y. Hamdi (Yosr); Soucy, P. (Penny); Adoue, V. (Véronique); K. Michailidou (Kyriaki); S. Canisius (Sander); Lemaçon, A. (Audrey); A. Droit (Arnaud); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); Arndt, V. (Volker); Baynes, C. (Caroline); C. Blomqvist (Carl); N.V. Bogdanova (Natalia); S.E. Bojesen (Stig); M.K. Bolla (Manjeet K.); B. Bonnani (Bernardo); A.-L. Borresen-Dale (Anne-Lise); J.S. Brand (Judith S.); H. Brauch (Hiltrud); Brenner, H. (Hermann); A. Broeks (Annegien); B. Burwinkel (Barbara); J. Chang-Claude (Jenny); Couch, F.J. (Fergus J.); A. Cox (Angela); S.S. Cross (Simon); K. Czene (Kamila); H. Darabi (Hatef); J. Dennis (Joe); P. Devilee (Peter); T. Dörk (Thilo); I. dos Santos Silva (Isabel); M. Eriksson (Mats); P.A. Fasching (Peter); J.D. Figueroa (Jonine); H. Flyger (Henrik); M. García-Closas (Montserrat); Giles, G.G. (Graham G.); M.S. Goldberg (Mark); A. González-Neira (Anna); G. Grenaker Alnæs (Grethe); P. Guénel (Pascal); L. Haeberle (Lothar); C.A. Haiman (Christopher); U. Hamann (Ute); Hallberg, E. (Emily); M.J. Hooning (Maartje); J.L. Hopper (John); A. Jakubowska (Anna); M. Jones (Michael); M. Kabisch (Maria); V. Kataja (Vesa); Lambrechts, D. (Diether); L. Le Marchand (Loic); A. Lindblom (Annika); J. Lubinski (Jan); A. Mannermaa (Arto); M. Maranian (Melanie); S. Margolin (Sara); Marme, F. (Frederik); R.L. Milne (Roger); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); P. Neven (Patrick); C. Olswold (Curtis); J. Peto (Julian); Plaseska-Karanfilska, D. (Dijana); K. Pykäs (Katri); P. Radice (Paolo); A. Rudolph (Anja); E.J. Sawyer (Elinor); M.K. Schmidt (Marjanka); X.-O. Shu (Xiao-Ou); M.C. Southey (Melissa); A.J. Swerdlow (Anthony ); R.A.E.M. Tollenaar (Rob); I.P. Tomlinson (Ian); D. Torres (Diana); T. Truong (Thérèse); C. Vachon (Celine); A.M.W. van den Ouweland (Ans); Q. Wang (Qin); R. Winqvist (Robert); W. Zheng (Wei); J. Benítez (Javier); G. Chenevix-Trench (Georgia); A.M. Dunning (Alison); P.D.P. Pharoah (Paul); Kristensen, V. (Vessela); P. Hall (Per); D.F. Easton (Douglas); T. Pastinen (Tomi); S. Nord (Silje); J. Simard (Jacques)

    2016-01-01

    textabstractThere are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are

  9. Characterization of the Pseudomonas aeruginosa recA analog and its protein product: rec-102 is a mutant allele of the P. aeruginosa PAO recA gene

    Energy Technology Data Exchange (ETDEWEB)

    Kokjohn, T.A.; Miller, R.V.

    1987-04-01

    We cloned a 2.3-kilobase-pair fragment of the Pseudomonas aeruginosa PAO chromosome which is capable of complementing recA mutations of Escherichia coli. The recA-complementing activity was further localized to a 1.5-kilobase-pair PvuII-HindIII fragment. Southern blot analysis under conditions of high stringency indicated that DNA sequence homology is shared by the E. coli recA gene and the P. aeruginosa recA analog. The cloned recA analog was shown to restore resistance to methyl methanesulfonate, nitrofurantoin, and UV irradiation to E. coli recA mutants. Upon introduction of the cloned P. aeruginosa gene, these mutants regained recombination proficiency in HfrH-mediated conjugation and the ability to induce lambda prophages and SOS functions (din gene transcription) after exposure to DNA-damaging agents. Lambda prophage carrying a cI ind mutation was not inducible, suggesting that the mechanism of induction of these SOS functions by the P. aeruginosa RecA analog is similar to that by the activated E. coli RecA protein. The product of the recA analog was identified in minicells as a protein of approximately 47,000 daltons. Western blot analysis using anti-E. coli RecA antibody demonstrated that this protein is antigenically cross-reactive with the E. coli recA protein. The recA-containing fragment was cloned into the broad-host-range vector pCP13 and introduced into Rec- strains of P. aeruginosa containing the rec-102 allele. The plasmid was shown to restore recombination proficiency in FP5-mediated conjugations and to restore resistance to UV irradiation and methyl methanesulfonate to these Rec- mutants. It was shown that a wild-type allele of rec-102 is necessary for UV-mediated induction of D3 and F116 prophages. The cloned recA analog restored the UV inducibility of these prophages in rec-102 mutants.

  10. Characterization of the Pseudomonas aeruginosa recA analog and its protein product: rec-102 is a mutant allele of the P. aeruginosa PAO recA gene

    International Nuclear Information System (INIS)

    Kokjohn, T.A.; Miller, R.V.

    1987-01-01

    We cloned a 2.3-kilobase-pair fragment of the Pseudomonas aeruginosa PAO chromosome which is capable of complementing recA mutations of Escherichia coli. The recA-complementing activity was further localized to a 1.5-kilobase-pair PvuII-HindIII fragment. Southern blot analysis under conditions of high stringency indicated that DNA sequence homology is shared by the E. coli recA gene and the P. aeruginosa recA analog. The cloned recA analog was shown to restore resistance to methyl methanesulfonate, nitrofurantoin, and UV irradiation to E. coli recA mutants. Upon introduction of the cloned P. aeruginosa gene, these mutants regained recombination proficiency in HfrH-mediated conjugation and the ability to induce lambda prophages and SOS functions (din gene transcription) after exposure to DNA-damaging agents. Lambda prophage carrying a cI ind mutation was not inducible, suggesting that the mechanism of induction of these SOS functions by the P. aeruginosa RecA analog is similar to that by the activated E. coli RecA protein. The product of the recA analog was identified in minicells as a protein of approximately 47,000 daltons. Western blot analysis using anti-E. coli RecA antibody demonstrated that this protein is antigenically cross-reactive with the E. coli recA protein. The recA-containing fragment was cloned into the broad-host-range vector pCP13 and introduced into Rec- strains of P. aeruginosa containing the rec-102 allele. The plasmid was shown to restore recombination proficiency in FP5-mediated conjugations and to restore resistance to UV irradiation and methyl methanesulfonate to these Rec- mutants. It was shown that a wild-type allele of rec-102 is necessary for UV-mediated induction of D3 and F116 prophages. The cloned recA analog restored the UV inducibility of these prophages in rec-102 mutants

  11. Identification of a new defective SERPINA1 allele (PI*Zla palma) encoding an alpha-1-antitrypsin with altered glycosylation pattern.

    Science.gov (United States)

    Hernández-Pérez, José M; Ramos-Díaz, Ruth; Pérez, José A

    2017-10-01

    Alpha-1-antitrypsin (AAT) deficiency is a genetic condition that arises from mutations in the SERPINA1 gene and predisposes to develop pulmonary emphysema and, less frequently, liver disease. Occasionally, new defective SERPINA1 alleles are detected as an outcome of targeted-screening programs or case-findings. This study began with a female patient showing bronchial hyperreactivity. Serum level and phenotype for AAT was analysed by immunonephelometry and isoelectric focusing electrophoresis. The SERPINA1 gene of the proband was genotyped by PCR amplification and DNA sequencing. Analysis of AAT deficiency was extended to the proband's family. An abnormal AAT variant that migrated to a more cathodal position than PiZ AAT was detected in the proband's serum. Genetic analysis demonstrated that proband is heterozygous for a new defective SERPINA1 allele (PI*Z la palma ) characterized by the c.321C > A (p.Asn83Lys) mutation in the M1Val213 background. This mutation abolishes the N-glycosylation site in position 83 of the mature AAT. Eight relatives of the proband are carriers of the PI*Z la palma allele and four of them have shown symptoms of bronchial asthma or bronchial hyperreactivity. The mean α1AT level in the serum of PI*MZ la palma individuals was 87.1 mg/dl. The reduction in circulating AAT levels associated to the PI*Z la palma allele was similar to that of PI*Z allele, representing a risk of impairment in lung function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Death and resurrection of the human IRGM gene.

    Directory of Open Access Journals (Sweden)

    Cemalettin Bekpen

    2009-03-01

    Full Text Available Immunity-related GTPases (IRG play an important role in defense against intracellular pathogens. One member of this gene family in humans, IRGM, has been recently implicated as a risk factor for Crohn's disease. We analyzed the detailed structure of this gene family among primates and showed that most of the IRG gene cluster was deleted early in primate evolution, after the divergence of the anthropoids from prosimians ( about 50 million years ago. Comparative sequence analysis of New World and Old World monkey species shows that the single-copy IRGM gene became pseudogenized as a result of an Alu retrotransposition event in the anthropoid common ancestor that disrupted the open reading frame (ORF. We find that the ORF was reestablished as a part of a polymorphic stop codon in the common ancestor of humans and great apes. Expression analysis suggests that this change occurred in conjunction with the insertion of an endogenous retrovirus, which altered the transcription initiation, splicing, and expression profile of IRGM. These data argue that the gene became pseudogenized and was then resurrected through a series of complex structural events and suggest remarkable functional plasticity where alleles experience diverse evolutionary pressures over time. Such dynamism in structure and evolution may be critical for a gene family locked in an arms race with an ever-changing repertoire of intracellular parasites.

  13. Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris.

    Directory of Open Access Journals (Sweden)

    Helena Storchova

    Full Text Available Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1. We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.

  14. Mouse survival motor neuron alleles that mimic SMN2 splicing and are inducible rescue embryonic lethality early in development but not late.

    Directory of Open Access Journals (Sweden)

    Suzan M Hammond

    Full Text Available Spinal muscular atrophy (SMA is caused by low survival motor neuron (SMN levels and patients represent a clinical spectrum due primarily to varying copies of the survival motor neuron-2 (SMN2 gene. Patient and animals studies show that disease severity is abrogated as SMN levels increase. Since therapies currently being pursued target the induction of SMN, it will be important to understand the dosage, timing and cellular requirements of SMN for disease etiology and potential therapeutic intervention. This requires new mouse models that can induce SMN temporally and/or spatially. Here we describe the generation of two hypomorphic Smn alleles, Smn(C-T-Neo and Smn(2B-Neo. These alleles mimic SMN2 exon 7 splicing, titre Smn levels and are inducible. They were specifically designed so that up to three independent lines of mice could be generated, herein we describe two. In a homozygous state each allele results in embryonic lethality. Analysis of these mutants indicates that greater than 5% of Smn protein is required for normal development. The severe hypomorphic nature of these alleles is caused by inclusion of a loxP-flanked neomycin gene selection cassette in Smn intron 7, which can be removed with Cre recombinase. In vitro and in vivo experiments demonstrate these as inducible Smn alleles. When combined with an inducible Cre mouse, embryonic lethality caused by low Smn levels can be rescued early in gestation but not late. This provides direct genetic evidence that a therapeutic window for SMN inductive therapies may exist. Importantly, these lines fill a void for inducible Smn alleles. They also provide a base from which to generate a large repertoire of SMA models of varying disease severities when combined with other Smn alleles or SMN2-containing mice.

  15. Segregation of Tay-Sachs and Sandhoff alleles in a non-Jewish family.

    Science.gov (United States)

    Lane, A B; Young, E; Jenkins, T

    1980-01-01

    A non-Jewish family is presented in which the genes for Tay-Sachs disease and Sandhoff disease are segregating. Individuals heterozygous for both alleles have low serum and white cell total hexosaminidase levels together with a proportion of heat-labile hexosaminidase A (HEX A) which falls in the normal range. The individuals would not be detected as carriers of Tay-Sachs disease or Sandhoff disease in a population screening program. PMID:7446530

  16. [Relationship between interleukin-17A gene polymorphisms and the susceptibility to childhood asthma].

    Science.gov (United States)

    Zhong, Fang-Fang; Zou, Yan; Liu, Chun-Yan; Liu, Wen-Jun

    2016-12-01

    To explore the relationship between polymorphisms of interleukin-17A (IL-17A) gene promoter (-197G/A and -692C/T) and the susceptibility to childhood asthma, to further identify the candidate genes for asthma, and to provide a basis for early prevention of asthma in high-risk children. Sixty-five outpatients or inpatients with childhood asthma between August 2013 and August 2015 were assigned to asthma group. Seventy healthy children within the same period were assigned to control group. Using peripheral venous blood from the two groups, PCR with sequence-specific primers was carried out to determine single nucleotide polymorphisms at positions -197G/A and -692C/T in IL-17A gene promoter. A statistical analysis was used to evaluate differences in genotype and allele frequencies between the two groups. Compared with the control group, the asthma group had significantly higher frequencies of TT genotype (29% vs 16%; P=0.012) and T allele (52% vs 42%; P=0.039) at position -692C/T of IL-17A gene. Children with T allele had 1.413-fold higher risk of childhood asthma than those with C allele (OR=1.413, 95%CI: 1.015-1.917). There were no significant differences in genotype and allele frequencies at position -197G/A in IL-17A gene between the two groups (p>0.05). Polymorphisms at position -692C/T in IL-17A gene promoter is associated with the susceptibility to childhood asthma. Children with -692T allele are more susceptible to childhood asthma. There is no significant relationship between polymorphisms at position -197G/A in IL-17A gene promoter and the susceptibility to childhood asthma.

  17. The immunogenetics of multiple sclerosis. The frequency of HLA-alleles class 1 and 2 is lower in Southern Brazil than in the European population.

    Science.gov (United States)

    Werneck, Lineu Cesar; Lorenzoni, Paulo José; Arndt, Raquel Cristina; Kay, Cláudia Suemi Kamoi; Scola, Rosana Herminia

    2016-08-01

    To study the HLA of class 1and 2 in a multiple sclerosis (MS) population to verify the susceptibility for the disease in the Southern Brazil. We analyzed patients with MS and controls, by direct sequencing of the genes related to HLA DRB1, DQB1, DPB1, A, B and C alleles with high resolution techniques. We found a lower frequency of all HLA alleles class 1 and 2 in MS and controls comparing to the European population. Several alleles had statistical correlation, but after Bonferroni correction, the only allele with significance was the HLA-DQB1*02:03, which has a positive association with MS. Our data have different frequency of HLA-alleles than the previous published papers in the Southeast Brazil and European population, possible due to several ethnic backgrounds.

  18. Inferred vs realized patterns of gene flow: an analysis of population structure in the Andros Island Rock Iguana.

    Science.gov (United States)

    Colosimo, Giuliano; Knapp, Charles R; Wallace, Lisa E; Welch, Mark E

    2014-01-01

    Ecological data, the primary source of information on patterns and rates of migration, can be integrated with genetic data to more accurately describe the realized connectivity between geographically isolated demes. In this paper we implement this approach and discuss its implications for managing populations of the endangered Andros Island Rock Iguana, Cyclura cychlura cychlura. This iguana is endemic to Andros, a highly fragmented landmass of large islands and smaller cays. Field observations suggest that geographically isolated demes were panmictic due to high, inferred rates of gene flow. We expand on these observations using 16 polymorphic microsatellites to investigate the genetic structure and rates of gene flow from 188 Andros Iguanas collected across 23 island sites. Bayesian clustering of specimens assigned individuals to three distinct genotypic clusters. An analysis of molecular variance (AMOVA) indicates that allele frequency differences are responsible for a significant portion of the genetic variance across the three defined clusters (Fst =  0.117, p<0.01). These clusters are associated with larger islands and satellite cays isolated by broad water channels with strong currents. These findings imply that broad water channels present greater obstacles to gene flow than was inferred from field observation alone. Additionally, rates of gene flow were indirectly estimated using BAYESASS 3.0. The proportion of individuals originating from within each identified cluster varied from 94.5 to 98.7%, providing further support for local isolation. Our assessment reveals a major disparity between inferred and realized gene flow. We discuss our results in a conservation perspective for species inhabiting highly fragmented landscapes.

  19. Inferred vs Realized Patterns of Gene Flow: An Analysis of Population Structure in the Andros Island Rock Iguana

    Science.gov (United States)

    Colosimo, Giuliano; Knapp, Charles R.; Wallace, Lisa E.; Welch, Mark E.

    2014-01-01

    Ecological data, the primary source of information on patterns and rates of migration, can be integrated with genetic data to more accurately describe the realized connectivity between geographically isolated demes. In this paper we implement this approach and discuss its implications for managing populations of the endangered Andros Island Rock Iguana, Cyclura cychlura cychlura. This iguana is endemic to Andros, a highly fragmented landmass of large islands and smaller cays. Field observations suggest that geographically isolated demes were panmictic due to high, inferred rates of gene flow. We expand on these observations using 16 polymorphic microsatellites to investigate the genetic structure and rates of gene flow from 188 Andros Iguanas collected across 23 island sites. Bayesian clustering of specimens assigned individuals to three distinct genotypic clusters. An analysis of molecular variance (AMOVA) indicates that allele frequency differences are responsible for a significant portion of the genetic variance across the three defined clusters (Fst =  0.117, p0.01). These clusters are associated with larger islands and satellite cays isolated by broad water channels with strong currents. These findings imply that broad water channels present greater obstacles to gene flow than was inferred from field observation alone. Additionally, rates of gene flow were indirectly estimated using BAYESASS 3.0. The proportion of individuals originating from within each identified cluster varied from 94.5 to 98.7%, providing further support for local isolation. Our assessment reveals a major disparity between inferred and realized gene flow. We discuss our results in a conservation perspective for species inhabiting highly fragmented landscapes. PMID:25229344

  20. Inferred vs realized patterns of gene flow: an analysis of population structure in the Andros Island Rock Iguana.

    Directory of Open Access Journals (Sweden)

    Giuliano Colosimo

    Full Text Available Ecological data, the primary source of information on patterns and rates of migration, can be integrated with genetic data to more accurately describe the realized connectivity between geographically isolated demes. In this paper we implement this approach and discuss its implications for managing populations of the endangered Andros Island Rock Iguana, Cyclura cychlura cychlura. This iguana is endemic to Andros, a highly fragmented landmass of large islands and smaller cays. Field observations suggest that geographically isolated demes were panmictic due to high, inferred rates of gene flow. We expand on these observations using 16 polymorphic microsatellites to investigate the genetic structure and rates of gene flow from 188 Andros Iguanas collected across 23 island sites. Bayesian clustering of specimens assigned individuals to three distinct genotypic clusters. An analysis of molecular variance (AMOVA indicates that allele frequency differences are responsible for a significant portion of the genetic variance across the three defined clusters (Fst =  0.117, p<<0.01. These clusters are associated with larger islands and satellite cays isolated by broad water channels with strong currents. These findings imply that broad water channels present greater obstacles to gene flow than was inferred from field observation alone. Additionally, rates of gene flow were indirectly estimated using BAYESASS 3.0. The proportion of individuals originating from within each identified cluster varied from 94.5 to 98.7%, providing further support for local isolation. Our assessment reveals a major disparity between inferred and realized gene flow. We discuss our results in a conservation perspective for species inhabiting highly fragmented landscapes.

  1. The murine Cd48 gene: allelic polymorphism in the IgV-like region.

    Science.gov (United States)

    Cabrero, J G; Freeman, G J; Reiser, H

    1998-12-01

    The murine CD48 molecule is a member of the immunoglobulin superfamily which regulates the activation of T lymphocytes. prior cloning experiments using mRNA from two different mouse strains had yielded discrepant sequences within the IgV-like domain of murine CD48. To resolve this issue, we have directly sequenced genomic DNA of 10 laboratory strains and two inbred strains of wild origin. The results of our analysis reveal an allelic polymorphism within the IgV-like domain of murine CD48.

  2. Evaluating bacterial gene-finding HMM structures as probabilistic logic programs

    DEFF Research Database (Denmark)

    Mørk, Søren; Holmes, Ian

    2012-01-01

    , a probabilistic dialect of Prolog. Results: We evaluate Hidden Markov Model structures for bacterial protein-coding gene potential, including a simple null model structure, three structures based on existing bacterial gene finders and two novel model structures. We test standard versions as well as ADPH length...

  3. Frequency of null allele of Human Leukocyte Antigen-G (HLA-G locus in subjects to recurrent miscarriage

    Directory of Open Access Journals (Sweden)

    Nazila Alizadeh

    2016-07-01

    Full Text Available Background: Human leukocyte antigen-G (HLA-G is a non-classical class I molecule highly expressed by extravillous cytotrophoblast cells. Due to a single base pair deletion, its function can be compensated by other isoforms. Investigating the frequency of null allele in Recurrent Miscarriage (RM subjects could be useful in understanding the relationship between frequency of this allele and RM in a given population. Objective: This study aimed to determine the frequency of HLA-G*0105N null allele and its potential association with down-regulation of HLA-G in subjects with RM. Materials and Methods: Western blotting was used to assess the level of HLA-G protein expression. For investigating the frequency of HLA-G*0105N null allele in RM subjects, PCR-RFLP method was used. Exon 3 of HLA-G gene was amplified by polymerase chain reaction (PCR. Subsequently, PpuM-1 enzyme was employed to digest the PCR products and fragments were analyzed using gel electrophoresis. Results: Digestion using restriction enzyme showed the presence of heterozygous HLA-G*0105N null allele in 10% of the test population. Western blotting results confirmed the decrease in expression of HLA-G in the placental tissue of subjects with RM compared to subjects who could give normal birth. Conclusion: The frequency of heterozygous HLA-G*0105N null allele was high to some extent in subjects with RM. The mutation rate in subjects suggested that there is a significant association between RM and frequency of mutations in this allele.

  4. Frequency of null allele of Human Leukocyte Antigen-G (HLA-G) locus in subjects to recurrent miscarriage

    Science.gov (United States)

    Alizadeh, Nazila; Mosaferi, Elnaz; Farzadi, Laya; Majidi, Jafar; Monfaredan, Amir; Yousefi, Bahman; Baradaran, Behzad

    2016-01-01

    Background: Human leukocyte antigen-G (HLA-G) is a non-classical class I molecule highly expressed by extravillous cytotrophoblast cells. Due to a single base pair deletion, its function can be compensated by other isoforms. Investigating the frequency of null allele in Recurrent Miscarriage (RM) subjects could be useful in understanding the relationship between frequency of this allele and RM in a given population. Objective: This study aimed to determine the frequency of HLA-G*0105N null allele and its potential association with down-regulation of HLA-G in subjects with RM. Materials and Methods: Western blotting was used to assess the level of HLA-G protein expression. For investigating the frequency of HLA-G*0105N null allele in RM subjects, PCR-RFLP method was used. Exon 3 of HLA-G gene was amplified by polymerase chain reaction (PCR). Subsequently, PpuM-1 enzyme was employed to digest the PCR products and fragments were analyzed using gel electrophoresis. Results: Digestion using restriction enzyme showed the presence of heterozygous HLA-G*0105N null allele in 10% of the test population. Western blotting results confirmed the decrease in expression of HLA-G in the placental tissue of subjects with RM compared to subjects who could give normal birth. Conclusion: The frequency of heterozygous HLA-G*0105N null allele was high to some extent in subjects with RM. The mutation rate in subjects suggested that there is a significant association between RM and frequency of mutations in this allele. PMID:27525330

  5. Allelism analysis of BrRfp locus in different restorer lines and map-based cloning of a fertility restorer gene, BrRfp1, for pol CMS in Chinese cabbage (Brassica rapa L.).

    Science.gov (United States)

    Zhang, Huamin; Wu, Junqing; Dai, Zihui; Qin, Meiling; Hao, Lingyu; Ren, Yanjing; Li, Qingfei; Zhang, Lugang

    2017-03-01

    In Chinese cabbage, there are two Rf loci for pol CMS and one of them was mapped to a 12.6-kb region containing a potential candidate gene encoding PPR protein. In Chinese cabbage (Brassica rapa), polima cytoplasmic male sterility (pol CMS) is an important CMS type and is widely used for hybrid breeding. By extensive test crossing in Chinese cabbage, four restorer lines (92s105, 01s325, 00s109, and 88s148) for pol CMS were screened. By analyzing the allelism of the four restorer lines, it was found that 92s105, 01s325, and 00s109 had the same "restorers of fertility" (Rf) locus (designated as BrRfp1), but 88s148 had a different Rf locus (designated as BrRfp2). For fine mapping the BrRfp1 locus of 92s105, a BC 1 F 1 population with 487 individuals and a BC 1 F 2 population with 2485 individuals were successively constructed. Using simple sequence repeat (SSR) markers developed from Brassica rapa reference genome and InDel markers derived from whole-genome resequencing data of 94c9 and 92s105, BrRfp1 was mapped to a 12.6-kb region containing a potential candidate gene encoding pentatricopeptide repeat-containing protein. Based on the nucleotide polymorphisms of the candidate gene sequence between the restoring and nonrestoring alleles, a co-segregating marker SC718 was developed, which would be helpful for hybrid breeding by marker-assisted screening and for detecting new restorer lines.

  6. Interactions of early adversity with stress-related gene polymorphisms impact regional brain structure in females.

    Science.gov (United States)

    Gupta, Arpana; Labus, Jennifer; Kilpatrick, Lisa A; Bonyadi, Mariam; Ashe-McNalley, Cody; Heendeniya, Nuwanthi; Bradesi, Sylvie; Chang, Lin; Mayer, Emeran A

    2016-04-01

    Early adverse life events (EALs) have been associated with regional thinning of the subgenual cingulate cortex (sgACC), a brain region implicated in the development of disorders of mood and affect, and often comorbid functional pain disorders, such as irritable bowel syndrome (IBS). Regional neuroinflammation related to chronic stress system activation has been suggested as a possible mechanism underlying these neuroplastic changes. However, the interaction of genetic and environmental factors in these changes is poorly understood. The current study aimed to evaluate the interactions of EALs and candidate gene polymorphisms in influencing thickness of the sgACC. 210 female subjects (137 healthy controls; 73 IBS) were genotyped for stress and inflammation-related gene polymorphisms. Genetic variation with EALs, and diagnosis on sgACC thickness was examined, while controlling for race, age, and total brain volume. Compared to HCs, IBS had significantly reduced sgACC thickness (p = 0.03). Regardless of disease group (IBS vs. HC), thinning of the left sgACC was associated with a significant gene-gene environment interaction between the IL-1β genotype, the NR3C1 haplotype, and a history of EALs (p = 0.05). Reduced sgACC thickness in women with the minor IL-1β allele, was associated with EAL total scores regardless of NR3C1 haplotype status (p = 0.02). In subjects homozygous for the major IL-1β allele, reduced sgACC with increasing levels of EALs was seen only with the less common NR3C1 haplotype (p = 0.02). These findings support an interaction between polymorphisms related to stress and inflammation and early adverse life events in modulating a key region of the emotion arousal circuit.

  7. A new Xist allele driven by a constitutively active promoter is dominated by Xist locus environment and exhibits the parent-of-origin effects.

    Science.gov (United States)

    Amakawa, Yuko; Sakata, Yuka; Hoki, Yuko; Arata, Satoru; Shioda, Seiji; Fukagawa, Tatsuo; Sasaki, Hiroyuki; Sado, Takashi

    2015-12-15

    The dosage difference of X-linked genes between the sexes in mammals is compensated for by genetic inactivation of one of the X chromosomes in XX females. A noncoding RNA transcribed from the Xist gene at the onset of X chromosome inactivation coats the X chromosome in cis and induces chromosome-wide heterochromatinization. Here, we report a new Xist allele (Xist(CAG)) driven by a CAG promoter, which is known to be constitutively active in many types of cells. The paternal transmission of Xist(CAG) resulted in the preferential inactivation of the targeted paternal X (Xp) not only in the extra-embryonic but also the embryonic lineage, whereas maternal transmission ended with embryonic lethality at the early postimplantation stage with a phenotype that resembled mutant embryos carrying a maternal deficiency in Tsix, an antisense negative regulator of Xist, in both sexes. Interestingly, we found that the upregulation of Xist(CAG) in preimplantation embryos temporally differed depending on its parental origin: its expression started at the 4- to 8-cell stages when paternally inherited, and Xist(CAG) was upregulated at the blastocyst stage when maternally inherited. This might indicate that the Xist locus on Xp is permissive to transcription, but the Xist locus on the maternal X (Xm) is not. We extrapolated from these findings that the maternal Xist allele might manifest a chromatin structure inaccessible by transcription factors relative to the paternal allele. This might underlie the mechanism for the maternal repression of Xist at the early cleavage stage when Tsix expression has not yet occurred on Xm. © 2015. Published by The Company of Biologists Ltd.

  8. Lack of evidence for intermolecular epistatic interactions between adiponectin and resistin gene polymorphisms in Malaysian male subjects

    Directory of Open Access Journals (Sweden)

    Cia-Hin Lau

    2012-01-01

    Full Text Available Epistasis (gene-gene interaction is a ubiquitous component of the genetic architecture of complex traits such as susceptibility to common human diseases. Given the strong negative correlation between circulating adiponectin and resistin levels, the potential intermolecular epistatic interactions between ADIPOQ (SNP+45T > G, SNP+276G > T, SNP+639T > C and SNP+1212A > G and RETN (SNP-420C > G and SNP+299G > A gene polymorphisms in the genetic risk underlying type 2 diabetes (T2DM and metabolic syndrome (MS were assessed. The potential mutual influence of the ADIPOQ and RETN genes on their adipokine levels was also examined. The rare homozygous genotype (risk alleles of SNP-420C > G at the RETN locus tended to be co-inherited together with the common homozygous genotypes (protective alleles of SNP+639T > C and SNP+1212A > G at the ADIPOQ locus. Despite the close structural relationship between the ADIPOQ and RETN genes, there was no evidence of an intermolecular epistatic interaction between these genes. There was also no reciprocal effect of the ADIPOQ and RETN genes on their adipokine levels, i.e., ADIPOQ did not affect resistin levels nor did RETN affect adiponectin levels. The possible influence of the ADIPOQ gene on RETN expression warrants further investigation.

  9. A Complex Structural Variation on Chromosome 27 Leads to the Ectopic Expression of HOXB8 and the Muffs and Beard Phenotype in Chickens

    Science.gov (United States)

    Wang, Yanqiang; Luo, Chenglong; Liu, Ranran; Qu, Hao; Shu, Dingming; Wen, Jie; Crooijmans, Richard P. M. A.; Zhao, Yiqiang; Hu, Xiaoxiang; Li, Ning

    2016-01-01

    Muffs and beard (Mb) is a phenotype in chickens where groups of elongated feathers gather from both sides of the face (muffs) and below the beak (beard). It is an autosomal, incomplete dominant phenotype encoded by the Muffs and beard (Mb) locus. Here we use genome-wide association (GWA) analysis, linkage analysis, Identity-by-Descent (IBD) mapping, array-CGH, genome re-sequencing and expression analysis to show that the Mb allele causing the Mb phenotype is a derived allele where a complex structural variation (SV) on GGA27 leads to an altered expression of the gene HOXB8. This Mb allele was shown to be completely associated with the Mb phenotype in nine other independent Mb chicken breeds. The Mb allele differs from the wild-type mb allele by three duplications, one in tandem and two that are translocated to that of the tandem repeat around 1.70 Mb on GGA27. The duplications contain total seven annotated genes and their expression was tested during distinct stages of Mb morphogenesis. A continuous high ectopic expression of HOXB8 was found in the facial skin of Mb chickens, strongly suggesting that HOXB8 directs this regional feather-development. In conclusion, our results provide an interesting example of how genomic structural rearrangements alter the regulation of genes leading to novel phenotypes. Further, it again illustrates the value of utilizing derived phenotypes in domestic animals to dissect the genetic basis of developmental traits, herein providing novel insights into the likely role of HOXB8 in feather development and differentiation. PMID:27253709

  10. Diminished levels of allelic losses by homologous recombination in radiation-hypersensitive cells

    International Nuclear Information System (INIS)

    Tatsumi, K.; Abe, M.; Hoki, Y.; Kubo, E.; Muto, M.; Araki, R.; Sato, K.

    2003-01-01

    Mitotic recombination (MR) due to somatic crossing-over is a predominant mechanism for allelic losses in mammalian cells either spontaneous or radiation-induced. A selectable mutation assay accompanying real-time detection PCR was developed to analyze the second step in loss-of-function mutations employing a human lympho-blastoid cell line derived from an obligate heterozygote of 2,8-dihydroxyadenine urolithiasis, adenine phosphoribosyltransferase (APRT) deficiency with a nonsense mutation at exon 3 of the gene. 68 % of spontaneously arising 2,6-diaminopurine resistance (DAP r ) mutant clones were associated with loss of heterozygosity (LOH), while 92 % of 2 Gy gamma-ray induced mutant clones were so associated. Investigation of gene dosage revealed that about one half of the spontaneously arising mutant clones and two-thirds of those induced by gamma-rays showed reduction to homozygosity of the constitutionally inactivated APRT allele. In an ataxia telangiectasia (AT) cell subline in which a new inactivation mutation had been introduced into one APRT allele by ICR-191, MR rarely occurred and exclusively deletions predominated in both spontaneous and X-ray induced DAP r mutants with LOH. A similar assay system was also developed with C3H mouse FM3A mammary tumor cells, SR-1, carrying a C .T transition at exon 5 of an APRT allele. In an XRCC7 (DNA-PKcs) deficient subline of SR-1, SX9 , spontaneous mutation frequencies for the Aprt locus (8AA r ) was 10 -3 , which was about 10 times higher than that in parental SR-1 cells. Mutation frequencies induced by X-rays comparably increased in a dose-dependent manner for the Aprt locus in both cell lines. Against our expectation, the lack of an NHEJ pathway of DNA double strand break repair resulted in a lower proportion (11.1 %) of MR with deletions (77.8 %) as the molecular cause for 8AA r mutations following X-irradiation, while virtually all of X-ray induced 8AA r mutant clones were MR in the control SR-1 cells. Factors

  11. Natural variation in rosette size under salt stress conditions corresponds to developmental differences between Arabidopsis accessions and allelic variation in the LRR-KISS gene

    KAUST Repository

    Julkowska, Magdalena

    2016-02-11

    Natural variation among Arabidopsis accessions is an important genetic resource to identify mechanisms underlying plant development and stress tolerance. To evaluate the natural variation in salinity stress tolerance, two large-scale experiments were performed on two populations consisting of 160 Arabidopsis accessions each. Multiple traits, including projected rosette area, and fresh and dry weight were collected as an estimate for salinity tolerance. Our results reveal a correlation between rosette size under salt stress conditions and developmental differences between the accessions grown in control conditions, suggesting that in general larger plants were more salt tolerant. This correlation was less pronounced when plants were grown under severe salt stress conditions. Subsequent genome wide association study (GWAS) revealed associations with novel candidate genes for salinity tolerance such as LRR-KISS (At4g08850), flowering locus KH-domain containing protein and a DUF1639-containing protein. Accessions with high LRR-KISS expression developed larger rosettes under salt stress conditions. Further characterization of allelic variation in candidate genes identified in this study will provide more insight into mechanisms of salt stress tolerance due to enhanced shoot growth.

  12. Genetic Diversity and Elite Allele Mining for Grain Traits in Rice (Oryza sativa L.) by Association Mapping.

    Science.gov (United States)

    Edzesi, Wisdom M; Dang, Xiaojing; Liang, Lijun; Liu, Erbao; Zaid, Imdad U; Hong, Delin

    2016-01-01

    Mining elite alleles for grain size and weight is of importance for the improvement of cultivated rice and selection for market demand. In this study, association mapping for grain traits was performed on a selected sample of 628 rice cultivars using 262 SSRs. Grain traits were evaluated by grain length (GL), grain width (GW), grain thickness (GT), grain length to width ratio (GL/GW), and 1000-grain weight (TGW) in 2013 and 2014. Our result showed abundant phenotypic and genetic diversities found in the studied population. In total, 2953 alleles were detected with an average of 11.3 alleles per locus. The population was divided into seven subpopulations and the levels of linkage disequilibrium (LD) ranged from 34 to 84 cM. Genome-wide association mapping detected 10 marker trait association (MTAs) loci for GL, 1MTAs locus for GW, 7 MTAs loci for GT, 3 MTAs loci for GL/GW, and 1 MTAs locus for TGW. Twenty-nine, 2, 10, 5, and 3 elite alleles were found for the GL, GW, GT, GL/GW, and TGW, respectively. Optimal cross designs were predicted for improving the target traits. The accessions containing elite alleles for grain traits mined in this study could be used for breeding rice cultivars and cloning the candidate genes.

  13. Efficient Identification of Causal Mutations through Sequencing of Bulked F2 from Two Allelic Bloomless Mutants of Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Yinping Jiao

    2018-01-01

    Full Text Available Sorghum (Sorghum bicolor Moench, L. plant accumulates copious layers of epi-cuticular wax (EW on its aerial surfaces, to a greater extent than most other crops. EW provides a vapor barrier that reduces water loss, and is therefore considered to be a major determinant of sorghum's drought tolerance. However, little is known about the genes responsible for wax accumulation in sorghum. We isolated two allelic mutants, bloomless40-1 (bm40-1 and bm40-2, from a mutant library constructed from ethyl methane sulfonate (EMS treated seeds of an inbred, BTx623. Both mutants were nearly devoid of the EW layer. Each bm mutant was crossed to the un-mutated BTx623 to generated F2 populations that segregated for the bm phenotype. Genomic DNA from 20 bm F2 plants from each population was bulked for whole genome sequencing. A single gene, Sobic.001G228100, encoding a GDSL-like lipase/acylhydrolase, had unique homozygous mutations in each bulked F2 population. Mutant bm40-1 harbored a missense mutation in the gene, whereas bm40-2 had a splice donor site mutation. Our findings thus provide strong evidence that mutation in this GDSL-like lipase gene causes the bm phenotype, and further demonstrate that this approach of sequencing two independent allelic mutant populations is an efficient method for identifying causal mutations. Combined with allelic mutants, MutMap provides powerful method to identify all causal genes for the large collection of bm mutants in sorghum, which will provide insight into how sorghum plants accumulate such abundant EW on their aerial surface. This knowledge may facilitate the development of tools for engineering drought-tolerant crops with reduced water loss.

  14. ADHD and DAT1: Further evidence of paternal over-transmission of risk alleles and haplotype

    NARCIS (Netherlands)

    Hawi, Z.; Kent, L.; Hill, M.; Anney, R.J.; Brookes, K. J.; Barry, E.; Franke, B.; Banaschewski, T.; Buitelaar, J.; Ebstein, R.; Miranda, A.; Oades, R.D.; Roeyers, H.; Rothenberger, A.; Sergeant, J.A.; Sonuga-Barke, E.; Steinhausen, H.C.; Faraone, S.V.; Asherson, P.; Gill, M.

    2009-01-01

    We [Hawi et al. (2005); Am J Hum Genet 77:958-965] reported paternal over-transmission of risk alleles in some ADHD-associated genes. This was particularly clear in the case of the DAT1 30-UTR VNTR. In the current investigation, we analyzed three new sample comprising of 1,248 ADHD nuclear families

  15. ADHD and DAT1: further evidence of paternal over-transmission of risk alleles and haplotype.

    NARCIS (Netherlands)

    Hawi, Z.; Kent, L.; Hill, M.; Anney, R.J.; Brookes, K.J.; Barry, E.; Franke, B.; Banaschewski, T.; Buitelaar, J.K.; Ebstein, R.; Miranda, A.; Oades, R.D.; Roeyers, H.; Rothenberger, A.; Sergeant, J.A.; Sonuga-Barke, E.J.S.; Steinhausen, H.C.; Faraone, S.V.; Asherson, P.; Gill, M.

    2010-01-01

    We [Hawi et al. (2005); Am J Hum Genet 77:958-965] reported paternal over-transmission of risk alleles in some ADHD-associated genes. This was particularly clear in the case of the DAT1 3'-UTR VNTR. In the current investigation, we analyzed three new sample comprising of 1,248 ADHD nuclear families

  16. Allelic Variation at the Rht8 Locus in a 19th Century Wheat Collection

    Directory of Open Access Journals (Sweden)

    Linnéa Asplund

    2012-01-01

    Full Text Available Wheat breeding during the 20th century has put large efforts into reducing straw length and increasing harvest index. In the 1920s an allele of Rht8 with dwarfing effects, found in the Japanese cultivar “Akakomugi,” was bred into European cultivars and subsequently spread over the world. Rht8 has not been cloned, but the microsatellite marker WMS261 has been shown to be closely linked to it and is commonly used for genotyping Rht8. The “Akakomugi” allele is strongly associated with WMS261-192bp. Numerous screens of wheat cultivars with different geographical origin have been performed to study the spread and influence of the WMS261-192bp during 20th century plant breeding. However, the allelic diversity of WMS261 in wheat cultivars before modern plant breeding and introduction of the Japanese dwarfing genes is largely unknown. Here, we report a study of WMS261 allelic diversity in a historical wheat collection from 1865 representing worldwide major wheats at the time. The majority carried the previously reported 164 bp or 174 bp allele, but with little geographical correlation. In a few lines, a rare 182 bp fragment was found. Although straw length was recognized as an important character already in the 19th century, Rht8 probably played a minor role for height variation. The use of WMS261 and other functional markers for analyses of historical specimens and characterization of historic crop traits is discussed.

  17. The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes.

    Science.gov (United States)

    Fabry, S; Müller, K; Lindauer, A; Park, P B; Cornelius, T; Schmitt, R

    1995-09-01

    The genome of the green alga Chlamydomonas reinhardtii contains approximately 15 gene clusters of the nucleosomal (or core) histone H2A, H2B, H3 and H4 genes and at least one histone H1 gene. Seven non-allelic histone gene loci were isolated from a genomic library, physically mapped, and the nucleotide sequences of three isotypes of each core histone gene species and one linked H1 gene determined. The core histone genes are organized in clusters of H2A-H2B and H3-H4 pairs, in which each gene pair shows outwardly divergent transcription from a short (< 300 bp) intercistronic region. These intercistronic regions contain typically conserved promoter elements, namely a TATA-box and the three motifs TGGCCAG-G(G/C)-CGAG, CGTTGACC and CGGTTG. Different from the genes of higher plants, but like those of animals and the related alga Volvox, the 3' untranslated regions contain no poly A signal, but a palindromic sequence (3' palindrome) essential for mRNA processing is present. One single H1 gene was found in close linkage to a H2A-H2B pair. The H1 upstream region contains the octameric promoter element GGTTGACC (also found upstream of the core histone genes) and two specific sequence motifs that are shared only with the Volvox H1 promoters. This suggests differential transcription of the H1 and the core histone genes. The H1 gene is interrupted by two introns. Unlike Volvox H3 genes, the three sequenced H3 isoforms are intron-free. Primer-directed PCR of genomic DNA demonstrated, however, that at least 8 of the about 15 H3 genes do contain one intron at a conserved position. In synchronized C. reinhardtii cells, H4 mRNA levels (representative of all core histone mRNAs) peak during cell division, suggesting strict replication-dependent gene control. The derived peptide sequences place C. reinhardtii core histones closer to plants than to animals, except that the H2A histones are more animal-like. The peptide sequence of histone H1 is closely related to the V. carteri VH1-II

  18. Comparative analysis of conditional reporter alleles in the developing embryo and embryonic nervous system.

    Science.gov (United States)

    Ellisor, Debra; Koveal, Dorothy; Hagan, Nellwyn; Brown, Ashly; Zervas, Mark

    2009-10-01

    A long-standing problem in development is understanding how progenitor cells transiently expressing genes contribute to complex anatomical and functional structures. In the developing nervous system an additional level of complexity arises when considering how cells of distinct lineages relate to newly established neural circuits. To address these problems, we used both cumulative marking with Cre/loxP and Genetic Inducible Fate Mapping (GIFM), which permanently and heritably marks small populations of progenitors and their descendants with fine temporal control using CreER/loxP. A key component used in both approaches is a conditional phenotyping allele that has the potential to be expressed in all cell types, but is quiescent because of a loxP flanked Stop sequence, which precedes a reporter allele. Upon recombination, the resulting phenotyping allele is 'turned on' and then constitutively expressed. Thus, the reporter functions as a high fidelity genetic lineage tracer in vivo. Currently there is an array of reporter alleles that can be used in marking strategies, but their recombination efficiency and applicability to a wide array of tissues has not been thoroughly described. To assess the recombination/marking potential of the reporters, we utilized CreER(T) under the control of a Wnt1 transgene (Wnt1-CreER(T)) as well as a cumulative, non-inducible En1(Cre) knock-in line in combination with three different reporters: R26R (LacZ reporter), Z/EG (EGFP reporter), and Tau-Lox-STOP-Lox-mGFP-IRES-NLS-LacZ (membrane-targeted GFP/nuclear LacZ reporter). We marked the Wnt1 lineage using each of the three reporters at embryonic day (E) 8.5 followed by analysis at E10.0, E12.5, and in the adult. We also compared cumulative marking of cells with a history of En1 expression at the same stages. We evaluated the reporters by whole-mount and section analysis and ascertained the strengths and weaknesses of each of the reporters. Comparative analysis with the reporters

  19. Interactions Between SNP Alleles at Multiple Loci and Variation in Skin Pigmentation in 122 Caucasians

    Directory of Open Access Journals (Sweden)

    Sumiko Anno

    2007-01-01

    Full Text Available This study was undertaken to clarify the molecular basis for human skin color variation and the environmental adaptability to ultraviolet irradiation, with the ultimate goal of predicting the impact of changes in future environments on human health risk. One hundred twenty-two Caucasians living in Toledo, Ohio participated. Back and cheek skin were assayed for melanin as a quantitative trait marker. Buccal cell samples were collected and used for DNA extraction. DNA was used for SNP genotyping using the Masscode™ system, which entails two-step PCR amplification and a platform chemistry which allows cleavable mass spectrometry tags. The results show gene-gene interaction between SNP alleles at multiple loci (not necessarily on the same chromosome contributes to inter-individual skin color variation while suggesting a high probability of linkage disequilibrium. Confirmation of these findings requires further study with other ethic groups to analyze the associations between SNP alleles at multiple loci and human skin color variation. Our overarching goal is to use remote sensing data to clarify the interaction between atmospheric environments and SNP allelic frequency and investigate human adaptability to ultraviolet irradiation. Such information should greatly assist in the prediction of the health effects of future environmental changes such as ozone depletion and increased ultraviolet exposure. If such health effects are to some extent predictable, it might be possible to prepare for such changes in advance and thus reduce the extent of their impact.

  20. ABO alleles are linked with haplotypes of an erythroid cell-specific regulatory element in intron 1 with a few exceptions attributable to genetic recombination.

    Science.gov (United States)

    Nakajima, T; Sano, R; Takahashi, Y; Watanabe, K; Kubo, R; Kobayashi, M; Takahashi, K; Takeshita, H; Kominato, Y

    2016-01-01

    Recent investigation of transcriptional regulation of the ABO genes has identified a candidate erythroid cell-specific regulatory element, named the +5·8-kb site, in the first intron of ABO. Six haplotypes of the site have been reported previously. The present genetic population study demonstrated that each haplotype was mostly linked with specific ABO alleles with a few exceptions, possibly as a result of hybrid formation between common ABO alleles. Thus, investigation of these haplotypes could provide a clue to further elucidation of ABO alleles. © 2015 International Society of Blood Transfusion.