WorldWideScience

Sample records for alkylidene metathesis catalysts

  1. Exploring new generations of ruthenium olefin metathesis catalysts: The reactivity of a bis-ylidene ruthenium complex by DFT

    KAUST Repository

    Poater, Albert; Credendino, Raffaele; Slugovc, Christian; Cavallo, Luigi

    2013-01-01

    Density functional theory calculations were used to predict the behaviour of a potential novel architecture of olefin metathesis catalysts, in which one of the neutral ligands of classical Ru-based catalysts, e.g. a phosphine or an N-heterocyclic carbene, is replaced by an alkylidene group. Introduction of a second alkylidene ligand favors dissociation of the remaining phosphine and the overall energy profile for the metathesis using ethylene as the probe substrate reveals that the proposed bis-alkylidene complexes might match the requirements of a good performing olefin metathesis catalyst. © 2013 The Royal Society of Chemistry.

  2. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jakkrit Suriboot

    2016-04-01

    Full Text Available Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed.

  3. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions

    Directory of Open Access Journals (Sweden)

    Shawna L. Balof

    2015-10-01

    Full Text Available Three new ruthenium alkylidene complexes (PCy3Cl2(H2ITapRu=CHSPh (9, (DMAP2Cl2(H2ITapRu=CHPh (11 and (DMAP2Cl2(H2ITapRu=CHSPh (12 have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2’,6’-dimethyl-4’-dimethylaminophenyl-4,5-dihydroimidazol-2-ylidene. Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP and ring closing metathesis (RCM reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA, however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD and mixtures of DCPD with cyclooctene (COE in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes.

  4. Hydro-Metathesis of Long-Chain Olefin (1-decene) using Well-Defined Silica-Supported Tungsten (VI), Molybdenum (VI) and Tantalum (V) Catalysts

    KAUST Repository

    Saidi, Aya

    2016-11-01

    Nowadays, catalysis lies at the heart of economy growth mainly in the petroleum industry. Catalysis can offer real and potential solutions to the current challenges for a long-term sustainable energy, green chemistry, and environmental protection. In this context, one of the most important and future prosperity promising catalytic applications in the petrochemical field is hydrocarbons metathesis; it consists on the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels. Olefin metathesis has become one of the standard methodologies for constructing C-C bonds in many organic transformation reactions. This owed to the numerous types of metathesis reactions that have been developed, for example, enyne, ring-opening and closing, self and cross metathesis, etc. But the one step conversion of olefin to alkanes has not been studied much. Recently, only one such a work has been published for the hydro-metathesis of propylene by tantalum hydride supported on KCC-1 in dynamic reactor. With this knowledge, we thought to study the hydro-metathesis using liquid olefin (1-decene). Another aspect of using 1-decene comes from our previous experience on metathesis of n-decane where the first step is the conversion of decane to 1-decene and subsequently to different chain length alkanes with W-alkyl/alkylidene catalyst. In this way, it would be easy for us to use different catalysts and compare them with parent catalyst concerning TON. We found 100% conversion with TON of 1010 using supported WMe6 onto SiO2-700 [(≡Si-O-)WMe5] against the previous results for n-decane showing 20% conversion and TON of 153. In this work, we disclose the hydro-metathesis reaction of 1-decene using well-defined silica supported W(VI), Mo(VI) and Ta(V) alkyl catalysts in batch reactor condition. This work is divided into three major sections; first chapter contains an introduction to the field of catalysis and surface organometallic chemistry. In second chapter

  5. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert; Pump, Eva; Vummaleti, Sai V. C.; Cavallo, Luigi

    2014-01-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  6. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  7. Design and synthesis of fused polycycles via Diels–Alder reaction and ring-rearrangement metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-07-01

    Full Text Available Atom efficient processes such as the Diels–Alder reaction (DA and the ring-rearrangement metathesis (RRM have been used to design new polycycles. In this regard, ruthenium alkylidene catalysts are effective in realizing the RRM of bis-norbornene derivatives prepared by DA reaction and Grignard addition. Here, fused polycycles are assembled which are difficult to produce by conventional synthetic routes.

  8. Design and synthesis of fused polycycles via Diels-Alder reaction and ring-rearrangement metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Ravikumar, Ongolu

    2015-01-01

    Atom efficient processes such as the Diels-Alder reaction (DA) and the ring-rearrangement metathesis (RRM) have been used to design new polycycles. In this regard, ruthenium alkylidene catalysts are effective in realizing the RRM of bis-norbornene derivatives prepared by DA reaction and Grignard addition. Here, fused polycycles are assembled which are difficult to produce by conventional synthetic routes.

  9. Striking difference between alkane and olefin metathesis using the well-defined precursor [≡Si-O-WMe5]: Indirect evidence in favour of a bifunctional catalyst W alkylidene-hydride

    KAUST Repository

    Riache, Nassima; Callens, Emmanuel; Espinas, Jeff; Dé ry, Alexandre; Samantaray, Manoja; Dey, Raju; Basset, Jean-Marie

    2015-01-01

    Metathesis of linear alkanes catalyzed by the well-defined precursor (≡Si-O-WMe5) affords a wide distribution of linear alkanes from methane up to triacontane. Olefin metathesis using the same catalyst and under the same reaction conditions gives a very striking different distribution of linear α-olefins and internal olefins. This shows that olefin and alkane metathesis processes occur via very different pathways.

  10. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    KAUST Repository

    Poater, Albert; Cavallo, Luigi

    2015-01-01

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  11. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    KAUST Repository

    Poater, Albert

    2015-09-29

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  12. Acyclic Diene Metathesis (ADMET Polymerization for Precise Synthesis of Defect-Free Conjugated Polymers with Well-Defined Chain Ends

    Directory of Open Access Journals (Sweden)

    Tahmina Haque

    2015-03-01

    Full Text Available This accounts introduces unique characteristics by adopting the acyclic diene metathesis (ADMET polymerization for synthesis of conjugated polymers, poly(arylene vinylenes, known as promising molecular electronics. The method is more suitable than the other methods in terms of atom efficiency affording defect-free, stereo-regular (exclusive trans polymers with well-defined chain ends; the resultant polymers possess better property than those prepared by the conventional methods. The chain ends (vinyl group in the resultant polymer prepared by ruthenium-carbene catalyst(s can be modified by treating with molybdenum-alkylidene complex (olefin metathesis followed by addition of various aldehyde (Wittig type cleavage, affording the end-functionalized polymers exclusively. An introduction of initiating fragment, the other conjugated segment, and one-pot synthesis of end-functionalized block copolymers, star shape polymers can be achieved by adopting this methodology.

  13. A latent ruthenium based olefin metathesis catalyst with a sterically demanding NHC ligand

    KAUST Repository

    Leitgeb, Anita; Abbas, Mudassar E.; Fischer, Roland C.; Poater, Albert; Cavallo, Luigi; Slugovc, Christian

    2012-01-01

    An olefin metathesis catalyst featuring a SIPr NHC and an ester chelating carbene ligand is introduced. In contrast to its previously published SIMes analogue, only the trans dichloro configurated isomer was obtained. The two counterparts are tested in various olefin metathesis reactions, revealing a striking superiority of the new complex in the cross metathesis of olefins with methyl vinyl ketone allowing for full conversion with only 500 ppm catalyst loading. © 2012 The Royal Society of Chemistry.

  14. The asymmetric Schrock olefin metathesis catalysts. A computational study

    NARCIS (Netherlands)

    Goumans, T.P.M.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    The mechanism of the transition metal catalyzed olefin metathesis reaction with the Schrock catalyst is investigated with pure (BP86) and hybrid (B3LYP) density functional theory. On the free-energy surface there is no adduct between ethylene and model catalyst (MeO)

  15. Evaluation of an olefin metathesis pre-catalyst with a bulky and electron-rich N-heterocyclic carbene

    KAUST Repository

    Manzini, Simone

    2015-03-01

    The commercially-available metathesis pre-catalyst M23 has been evaluated alongside new complex [RuCl2((3-phenyl)indenylidene)(PPh3)(SIPrOMe)] (1), which bears a para-methoxy-substituted N-heterocyclic carbene ligand. Several model metathesis reactions could be conducted using only parts-per-million levels of ruthenium catalyst. The effects of the different NHC ligands on reactivity have been explored.

  16. Evaluation of an olefin metathesis pre-catalyst with a bulky and electron-rich N-heterocyclic carbene

    KAUST Repository

    Manzini, Simone; Urbina Blanco, Cé sar A.; Nelson, David J.; Poater, Albert; Lebl, Tomas; Meiries, Sé bastien; Slawin, Alexandra M.Z.; Falivene, Laura; Cavallo, Luigi; Nolan, Steven P.

    2015-01-01

    The commercially-available metathesis pre-catalyst M23 has been evaluated alongside new complex [RuCl2((3-phenyl)indenylidene)(PPh3)(SIPrOMe)] (1), which bears a para-methoxy-substituted N-heterocyclic carbene ligand. Several model metathesis reactions could be conducted using only parts-per-million levels of ruthenium catalyst. The effects of the different NHC ligands on reactivity have been explored.

  17. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

    Directory of Open Access Journals (Sweden)

    Andrzej Tracz

    2015-10-01

    Full Text Available Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM and cross metathesis (CM reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  18. Well-Defined Silica Grafted Molybdenum Bis(imido) Catalysts for Imine Metathesis Reactions

    KAUST Repository

    Barman, Samir

    2017-04-06

    Novel site-isolated tetracoordinated molybdenum complexes possessing bis(imido) ligands, [(≡Si–O)2Mo(═NR)2] (R = t-Bu, 2,6-C6H3-i-Pr2), were immobilized on partially dehydroxylated silica (SiO2-200) by a rigorous surface organometallic chemistry protocol. The newly developed materials adorned with bis(imido) functional units, which were previously exploited mainly as spectator ligands on silica-supported olefin metathesis molybdenum catalysts, are found to be efficient heterogeneous catalytic systems for imine cross metathesis under mild conditions.

  19. Well-Defined Silica Grafted Molybdenum Bis(imido) Catalysts for Imine Metathesis Reactions

    KAUST Repository

    Barman, Samir; Merle, Nicolas; Minenkov, Yury; De Mallmann, Aimery; Samantaray, Manoja; Le Qué mé ner, Fré dé ric; Szeto, Kai C.; Abou-Hamad, Edy; Cavallo, Luigi; Taoufik, Mostafa; Basset, Jean-Marie

    2017-01-01

    Novel site-isolated tetracoordinated molybdenum complexes possessing bis(imido) ligands, [(≡Si–O)2Mo(═NR)2] (R = t-Bu, 2,6-C6H3-i-Pr2), were immobilized on partially dehydroxylated silica (SiO2-200) by a rigorous surface organometallic chemistry protocol. The newly developed materials adorned with bis(imido) functional units, which were previously exploited mainly as spectator ligands on silica-supported olefin metathesis molybdenum catalysts, are found to be efficient heterogeneous catalytic systems for imine cross metathesis under mild conditions.

  20. Mesoporous molecular sieves as advanced supports for olefin metathesis catalysts

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Čejka, Jiří

    2013-01-01

    Roč. 257, 21-22 (2013), s. 3107-3124 ISSN 0010-8545 R&D Projects: GA AV ČR IAA400400805; GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : Olefin metathesis * mesoporous molecular sieves * Heterogeneous catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.098, year: 2013

  1. Alkane Metathesis

    KAUST Repository

    Basset, Jean-Marie

    2015-03-29

    Catalytic activation of alkanes which directly transforms light alkanes into higher homologs is a major area in organometallic chemistry and petrochemical chemistry. This transformation is a chemical challenge considering the inertness of the sp3 carbon-hydrogen bond. It is generally accepted that this catalytic process involves the formation of olefins. This reaction is defined as alkane metathesis. To date, two catalytic systems of alkane metathesis exist: (i) a single catalytic system prepared by surface organometallic chemistry, acting as multifunctional-supported catalyst which transforms any alkanes into a mixture of their lower and higher homologs and (ii) the other catalytic systems employing a tandem strategy with two different metals, one metal for alkane (de)hydrogenation and another for olefin metathesis in which the activity of these catalysts is essentially driven by the performance of the (de)hydrogenation steps. In this book chapter, we would focus on the evolution of these two classes of catalysts by looking at their specific reactivity of the catalysts towards alkanes, comparing their performances and studying the mechanism.

  2. Ring Opening Metathesis Polymerization of Cyclopentene Using a Ruthenium Catalyst Confined by a Branched Polymer Architecture

    KAUST Repository

    Mugemana, Clement; Bukhriakov, Konstantin; Bertrand, Olivier; Vu, Khanh B.; Gohy, Jean-Francois; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2016-01-01

    Multi-arm polystyrene stars functionalized with Grubbs-type catalysts in their cores were synthesized and used for the ring-opening metathesis polymerization (ROMP) of cyclopentene. The spatial confinement of the catalytic sites and the nanoscale phase separation between polystyrene and the growing polypentenamer chains lead to a dramatic inhibition of the ROMP termination and chain transfer steps. Consequently, cyclopentene polymerizations proceeded fast and with a high degree of conversion even in air. The Grubbs second generation catalyst was oxidatively inactivated under the same conditions. In contrast to conventional small-molecule catalysts, the ultimate degree of conversion of cyclopentene monomer and the polydispersity of the product polypentenamer are not affected by the temperature. This indicates that spatial confinement of the catalyst resulted in a significant change in the activation parameters for the alkene metathesis ring-opening.

  3. Ring Opening Metathesis Polymerization of Cyclopentene Using a Ruthenium Catalyst Confined by a Branched Polymer Architecture

    KAUST Repository

    Mugemana, Clement

    2016-03-22

    Multi-arm polystyrene stars functionalized with Grubbs-type catalysts in their cores were synthesized and used for the ring-opening metathesis polymerization (ROMP) of cyclopentene. The spatial confinement of the catalytic sites and the nanoscale phase separation between polystyrene and the growing polypentenamer chains lead to a dramatic inhibition of the ROMP termination and chain transfer steps. Consequently, cyclopentene polymerizations proceeded fast and with a high degree of conversion even in air. The Grubbs second generation catalyst was oxidatively inactivated under the same conditions. In contrast to conventional small-molecule catalysts, the ultimate degree of conversion of cyclopentene monomer and the polydispersity of the product polypentenamer are not affected by the temperature. This indicates that spatial confinement of the catalyst resulted in a significant change in the activation parameters for the alkene metathesis ring-opening.

  4. Metathesis of cardanol over Ru catalysts supported on mesoporousmolecular sieve SBA-15

    Czech Academy of Sciences Publication Activity Database

    Shinde, Tushar; Varga, Vojtěch; Polášek, Miroslav; Horáček, Michal; Žilková, Naděžda; Balcar, Hynek

    2014-01-01

    Roč. 478, MAY 2014 (2014), s. 138-145 ISSN 0926-860X R&D Projects: GA ČR(CZ) GAP106/12/0189 Institutional support: RVO:61388955 Keywords : cardanol * metathesis * supported catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.942, year: 2014

  5. Surface-initiated ring-opening metathesis polymerization (SI-ROMP) to attach a tethered organic corona onto CdSe/ZnS core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Vatansever, Fatma, E-mail: vatansever.fatma@mgh.harvard.edu; Hamblin, Michael R., E-mail: hamblin@helix.mgh.harvard.edu [Massachusetts General Hospital, Wellman Center for Photomedicine (United States)

    2016-10-15

    Core–shell CdSe/ZnS quantum dots (QDs) are useful as tunable photostable fluorophores for multiple applications in industry, biology, and medicine. However, to achieve the optimum optical properties, the surface of the QDs must be passivated to remove charged sites that might bind extraneous substances and allow aggregation. Here we describe a method of growing an organic polymer corona onto the QD surface using the bottom-up approach of surface-initiated ring-opening metathesis polymerization (SI-ROMP) with Grubbs catalyst. CdSe/ZnS QDs were first coated with mercaptopropionic acid by displacing the original tri-octylphosphine oxide layer, and then reacted with 7-octenyl dimethyl chlorosilane. The resulting octenyl double bonds allowed the attachment of ruthenium alkylidene groups as a catalyst. A subsequent metathesis reaction with strained bicyclic monomers (norbornene-dicarbonyl chloride (NDC), and a mixture of NDC and norbornenylethylisobutyl-polyhedral oligomeric silsesquioxane (norbornoPOSS)) allowed the construction of tethered organic homo-polymer or co-polymer layers onto the QD. Compounds were characterized by FT-IR, 1H-NMR, X-ray photoelectron spectroscopy, differential scanning calorimetry, and transmission electron microscopy. Atomic force microscopy showed that the coated QDs were separate and non-aggregated with a range of diameter of 48–53 nm.

  6. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  7. The driving force role of ruthenacyclobutanes

    KAUST Repository

    Vummaleti, Sai V. C.; Cavallo, Luigi; Poater, Albert

    2015-01-01

    DFT calculations have been used to determine the thermodynamic and kinetic preference for ruthenacyclobutanes resulting from the experimentally proposed interconversion pathways (olefin and alkylidene rotations) through the investigation of cross-metathesis reaction mechanism for neutral Grubbs catalyst, RuCl2(=CHEt)NHC (A), with ethylene and 1-butene as the substrates. Our results show that although the proposed interconversions are feasible due to the predicted low energy barriers (2-6 kcal/mol), the formation of ruthenacyclobutane is kinetically favored over the competitive reactions involving alkylidene rotations. In comparison with catalyst A, the reaction energy profile for cationic Piers catalyst [RuCl2(=CHPCy3)NHC+] (B) is more endothermic in nature with both ethylene and 1-butene substrates.

  8. The driving force role of ruthenacyclobutanes

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-02-07

    DFT calculations have been used to determine the thermodynamic and kinetic preference for ruthenacyclobutanes resulting from the experimentally proposed interconversion pathways (olefin and alkylidene rotations) through the investigation of cross-metathesis reaction mechanism for neutral Grubbs catalyst, RuCl2(=CHEt)NHC (A), with ethylene and 1-butene as the substrates. Our results show that although the proposed interconversions are feasible due to the predicted low energy barriers (2-6 kcal/mol), the formation of ruthenacyclobutane is kinetically favored over the competitive reactions involving alkylidene rotations. In comparison with catalyst A, the reaction energy profile for cationic Piers catalyst [RuCl2(=CHPCy3)NHC+] (B) is more endothermic in nature with both ethylene and 1-butene substrates.

  9. Olefin metathesis in air

    Directory of Open Access Journals (Sweden)

    Lorenzo Piola

    2015-10-01

    Full Text Available Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  10. Synergy between Two Metal Catalysts: A Highly Active Silica Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane

    KAUST Repository

    Samantaray, Manoja

    2016-06-01

    A well-defined, silica supported, bimetallic precatalyst [≡Si-O-W(Me)5 ≡Si-O-Zr(Np)3](4) has been synthesized for the first time via successively grafting two organometallic complexes [W(CH3)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of Zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON: 1436) than the monometallic W hydride (TON: 650) in metathesis of n-decane at 150 0C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation which occurs on Zr. The produced olefin resulting from a ß–H elimination undergoes easy metathesis on W.

  11. Olefin metathesis in nano-sized systems

    Directory of Open Access Journals (Sweden)

    Denise Méry

    2011-01-01

    Full Text Available The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM, cross metathesis (CM, enyne metathesis reactions (EYM – for reactions in water without a co-solvent and (ii construction and functionalization of dendrimers by CM reactions.

  12. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  13. Probing Stereoselectivity in Ring-Opening Metathesis Polymerization Mediated by Cyclometalated Ruthenium-Based Catalysts: A Combined Experimental and Computational Study

    OpenAIRE

    Rosebrugh, L. E.; Ahmed, T. S.; Marx, V. M.; Hartung, J.; Liu, P.; López, J. G.; Houk, K. N.; Grubbs, R. H.

    2016-01-01

    The microstructures of polymers produced by ring-opening metathesis polymerization (ROMP) with cyclometalated Ru-carbene metathesis catalysts were investigated. A strong bias for a cis,syndiotactic microstructure with minimal head-to-tail bias was observed. In instances where trans errors were introduced, it was determined that these regions were also syndiotactic. Furthermore, hypothetical reaction intermediates and transition structures were analyzed computationally. Combined experimental a...

  14. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Science.gov (United States)

    Schrodi, Yann [Agoura Hills, CA

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  15. Ru-Based Complexes with Quaternary Ammonium Tags Immobilized on Mesoporous Silica as Olefin Metathesis Catalysts

    Czech Academy of Sciences Publication Activity Database

    Pastva, Jakub; Skowerski, K.; Czarnocki, S. J.; Žilková, Naděžda; Čejka, Jiří; Bastl, Zdeněk; Balcar, Hynek

    2014-01-01

    Roč. 4, č. 9 (2014), s. 3227-3236 ISSN 2155-5435 R&D Projects: GA ČR(CZ) GAP106/12/0189 Institutional support: RVO:61388955 Keywords : olefin metathesis * heterogeneous catalysts * mesoporous molecular sieves Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.312, year: 2014

  16. Comparing Ru and Fe-catalyzed olefin metathesis

    KAUST Repository

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-01-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol -1) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. This journal is © the Partner Organisations 2014.

  17. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60Fullerenes

    KAUST Repository

    Martínez, Juan Pablo

    2016-04-10

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60Fullerenes

    KAUST Repository

    Martí nez, Juan Pablo; Vummaleti, Sai V. C.; Falivene, Laura; Nolan, Steven P.; Cavallo, Luigi; Solà , Miquel; Poater, Albert

    2016-01-01

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Alkane Metathesis

    KAUST Repository

    Basset, Jean-Marie; Callens, Emmanuel; Riache, Nassima

    2015-01-01

    metal for alkane (de)hydrogenation and another for olefin metathesis in which the activity of these catalysts is essentially driven by the performance of the (de)hydrogenation steps. In this book chapter, we would focus on the evolution of these two

  20. Metathesis of alkanes and related reactions

    KAUST Repository

    Basset, Jean-Marie

    2010-02-16

    (Figure Presented) The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, (=SiO)2TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of aluminasupported tungsten hydride, W(H)3/Al 2O3, which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis of

  1. Metathesis of alkanes and related reactions.

    Science.gov (United States)

    Basset, Jean-Marie; Copéret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Cazat, Jean Thivolle

    2010-02-16

    The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, ([triple bond]SiO)(2)TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of alumina-supported tungsten hydride, W(H)(3)/Al(2)O(3), which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis

  2. Hoveyda-Grubbs type metathesis catalyst immobilized on mesoporous molecular sieves MCM-41 and SBA-15

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Shinde, Tushar; Žilková, Naděžda; Bastl, Zdeněk

    2011-01-01

    Roč. 7, January (2011), s. 22-28 ISSN 1860-5397 R&D Projects: GA AV ČR IAA400400805; GA AV ČR KAN100400701 Institutional research plan: CEZ:AV0Z40400503 Keywords : alkene metathesis * catalyst immobilization * hybrid catalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.517, year: 2011

  3. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    KAUST Repository

    Falivene, Laura; Poater, Albert; Cazin, Catherine S J; Slugovc, Christian; Cavallo, Luigi

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  4. Synthesis of interlocked molecules by olefin metathesis

    Science.gov (United States)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic

  5. Methods for treating a metathesis feedstock with metal alkoxides

    Science.gov (United States)

    Cohen, Steven A.; Anderson, Donde R.; Wang, Zhe; Champagne, Timothy M.; Ung, Thay A.

    2018-04-17

    Various methods are provided for treating and reacting a metathesis feedstock. In one embodiment, the method includes providing a feedstock comprising a natural oil, chemically treating the feedstock with a metal alkoxide under conditions sufficient to diminish catalyst poisons in the feedstock, and, following the treating, combining a metathesis catalyst with the feedstock under conditions sufficient to metathesize the feedstock.

  6. Metal alkyls programmed to generate metal alkylidenes by α-H abstraction: prognosis from NMR chemical shift† †Electronic supplementary information (ESI) available: Experimental and computational details, NMR spectra, results of NMR calculations and NCS analysis, graphical representation of shielding tensors, molecular orbital diagrams of selected compounds, optimized structures for all calculated species. See DOI: 10.1039/c7sc05039a

    Science.gov (United States)

    Gordon, Christopher P.; Yamamoto, Keishi; Searles, Keith; Shirase, Satoru

    2018-01-01

    Metal alkylidenes, which are key organometallic intermediates in reactions such as olefination or alkene and alkane metathesis, are typically generated from metal dialkyl compounds [M](CH2R)2 that show distinctively deshielded chemical shifts for their α-carbons. Experimental solid-state NMR measurements combined with DFT/ZORA calculations and a chemical shift tensor analysis reveal that this remarkable deshielding originates from an empty metal d-orbital oriented in the M–Cα–Cα′ plane, interacting with the Cα p-orbital lying in the same plane. This π-type interaction inscribes some alkylidene character into Cα that favors alkylidene generation via α-H abstraction. The extent of the deshielding and the anisotropy of the alkyl chemical shift tensors distinguishes [M](CH2R)2 compounds that form alkylidenes from those that do not, relating the reactivity to molecular orbitals of the respective molecules. The α-carbon chemical shifts and tensor orientations thus predict the reactivity of metal alkyl compounds towards alkylidene generation. PMID:29675237

  7. From ruthenium olefin metathesis catalyst to (η5-3- phenylindenyl)hydrido complex via alcoholysis

    KAUST Repository

    Manzini, Simone; Nelson, David J.; Lé bl, Tomá š; Poater, Albert; Cavallo, Luigi; Slawin, Alexandra M. Z.; Nolan, Steven P.

    2014-01-01

    The synthesis and characterisation of [Ru(H)(η5-3- phenylindenyl)(iBu-Phoban)2] 4 is reported ( iBu-Phoban = 9-isobutyl-9-phosphabicyclo-[3.3.1]-nonane). 4 is obtained via alcoholysis of metathesis pre-catalyst M11, in a process that was previously thought to be limited to analogous complex [RuCl 2(PPh3)2(3-phenylindenylidene)] (M 10). This journal is © The Royal Society of Chemistry.

  8. Understanding the Hydro-metathesis Reaction of 1-decene by Using Well-defined Silica Supported W, Mo, Ta Carbene/Carbyne Complexes

    KAUST Repository

    Saidi, Aya

    2017-12-21

    Direct conversion of 1-decene to petroleum range alkanes was obtained using hydro-metathesis reaction. To understand this reaction we employed three different well-defined single site catalysts precursors; [(≡Si-O-)W(CH3)5] 1, [(≡Si-O-)Mo(≡CtBu)(CH2tBu)2] 2 and [(≡Si-O)Ta(=CHtBu)(CH2tBu)2] 3. We witnessed that in our conditions olefin metathesis/isomerization of 1-decene occurs much faster followed by reduction of the newly formed olefins rather than reduction of the 1-decene to decane, followed by metathesis of decane. We found that Mo-based catalyst favors 2+2 cycloaddition of 1-decene forming metallocarbene, followed by reduction of the newly formed olefins to alkanes. However, in the case of W and Ta-based catalysts, a rapid isomerization (migration) of the double bond followed by olefin metathesis and reduction of the newly formed olefins were observed. We witnessed that silica supported W catalyst precursor 1 and Mo catalyst precursor 2 are better catalysts for hydro-metathesis reaction with TONs of 818 and 808 than Ta-based catalyst 3 (TON of 334). This comparison of the catalysts provides us a better understanding that, if a catalyst is efficient in olefin metathesis reaction it would be a better catalyst for hydro-metathesis reaction.

  9. A tandem cross-metathesis/semipinacol rearrangement reaction.

    Science.gov (United States)

    Plummer, Christopher W; Soheili, Arash; Leighton, James L

    2012-05-18

    An efficient and (E)-selective synthesis of a 6-alkylidenebicyclo[3.2.1]octan-8-one has been developed. The key step is a tandem cross-metathesis/semipinacol rearrangement reaction, wherein the Hoveyda-Grubbs II catalyst, or more likely a derivative thereof, serves as the Lewis acid for the rearrangement. Despite the fact that both the starting alkene and the cross-metathesis product are viable rearrangement substrates, only the latter rearranges, suggesting that the Lewis acidic species is generated only after the cross-metathesis reaction is complete.

  10. Ultrasound-assisted self-metathesis reactions of monounsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Elmkaddem Mohammed Kamal

    2016-09-01

    Full Text Available An efficient protocol for the self-metathesis of oleic acid, using ruthenium catalysts is described. The self-metathesis reaction under ultrasonic activation allows the conversion of monoenic fatty acids such as oleic acid, elaidic acid and erucic acid into diacids and olefins with very short reaction times in the presence of Grubbs ruthenium catalysts. These yields and selectivity towards the desired products are influenced by the nature of solvents. This study demonstrated that metathesis reaction carried out in DCM or 1-butanol showed promising results, since it produced a variety of products, like n-alkenes and diacids with good yields (45–75% and high selectivities (75–95%.

  11. Moving from Classical Ru-NHC to Neutral or Charged Rh-NHC Based Catalysts in Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Albert Poater

    2016-01-01

    Full Text Available Considering the versatility of oxidation states of rhodium together with the successful background of ruthenium-N-heterocyclic carbene based catalysts in olefin metathesis, it is envisaged the exchange of the ruthenium of the latter catalysts by rhodium, bearing an open-shell neutral rhodium center, or a +1 charged one. In the framework of in silico experiments, density functional theory (DFT calculations have been used to plot the first catalytic cycle that as a first step includes the release of the phosphine. DFT is, in this case, the tool that allows the discovery of the less endergonic reaction profile from the precatalytic species for the neutral catalyst with respect to the corresponding ruthenium one; increasing the endergonic character when dealing with the charged system.

  12. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima; Callens, Emmanuel; Talbi, Karima; Basset, Jean-Marie

    2015-01-01

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate

  13. About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations

    Directory of Open Access Journals (Sweden)

    Hatice Mutlu

    2010-12-01

    Full Text Available We report on the catalytic activity of commercially available Ru-indenylidene and “boomerang” complexes C1, C2 and C3 in acyclic diene metathesis (ADMET polymerization of a fully renewable α,ω-diene. A high activity of these catalysts was observed for the synthesis of the desired renewable polyesters with molecular weights of up to 17000 Da, which is considerably higher than molecular weights obtained using the same monomer with previously studied catalysts. Moreover, olefin isomerization side reactions that occur during the ADMET polymerizations were studied in detail. The isomerization reactions were investigated by degradation of the prepared polyesters via transesterification with methanol, yielding diesters. These diesters, representing the repeat units of the polyesters, were then quantified by GC-MS.

  14. Well-defined silica supported bipodal molybdenum oxo alkyl complexes: a model of the active sites of industrial olefin metathesis catalysts

    KAUST Repository

    Merle, Nicolas

    2017-09-25

    A well-defined, silica-supported molybdenum oxo alkyl species, ([triple bond, length as m-dash]SiO-)2Mo([double bond, length as m-dash]O)(CH2tBu)2, was prepared by the selective grafting of Mo([double bond, length as m-dash]O)(CH2tBu)3Cl onto a silica partially dehydroxylated at 200 °C using a rigorous surface organometallic chemistry approach. The immobilized bipodal surface species, partly resembling the active species of industrial MoO3/SiO2 olefin metathesis catalysts, exhibited excellent functional group tolerance in conjunction with its high activity in homocoupling, self and ring closing olefin metathesis.

  15. Well-defined silica supported bipodal molybdenum oxo alkyl complexes: a model of the active sites of industrial olefin metathesis catalysts

    KAUST Repository

    Merle, Nicolas; Le Qué mé ner, Fré dé ric; Barman, Samir; Samantaray, Manoja; Szeto, Kai C.; De Mallmann, Aimery; Taoufik, Mostafa; Basset, Jean-Marie

    2017-01-01

    A well-defined, silica-supported molybdenum oxo alkyl species, ([triple bond, length as m-dash]SiO-)2Mo([double bond, length as m-dash]O)(CH2tBu)2, was prepared by the selective grafting of Mo([double bond, length as m-dash]O)(CH2tBu)3Cl onto a silica partially dehydroxylated at 200 °C using a rigorous surface organometallic chemistry approach. The immobilized bipodal surface species, partly resembling the active species of industrial MoO3/SiO2 olefin metathesis catalysts, exhibited excellent functional group tolerance in conjunction with its high activity in homocoupling, self and ring closing olefin metathesis.

  16. Olefin metathesis and metathesis polymerization

    CERN Document Server

    Ivin, K J

    1997-01-01

    This book is a follow-up to Ivins Olefin Metathesis, (Academic Press, 1983). Bringing the standard text in the field up to date, this Second Edition is a result of rapid growth in the field, sparked by the discovery of numerous well-defined metal carbene complexes that can act as very efficient initiators of all types of olefin metathesis reaction, including ring-closing metathesis of acyclic dienes, enynes, and dienynes; ring-opening metathesis polymerizationof cycloalkenes, acyclic diene metathesis polymerization; and polymerization of alkynes, as well as simple olefin metathesis. Olefin Metathesis and Metathesis Polymerization provides a broad, up-to-date account of the subject from its beginnings in 1957 to the latest applications in organic synthesis. The book follows the same format as the original, making it useful toteachers and to researchers, and will be of particular interest to those working in the fields of organic chemistry, polymer chemistry, organometallic chemistry, catalysis, materials scien...

  17. Well-defined silica-supported zirconium–imido complexes mediated heterogeneous imine metathesis

    KAUST Repository

    Hamzaoui, Bilel

    2016-02-15

    Upon prolonged thermal exposure under vacuum, a well-defined single-site surface species [(≡Si-O-)Zr(NEt2)3] (1) evolves into an ethylimido complex [(≡Si-O-)Zr(=NEt)NEt2] (2). Reactions of 2 with an imine substrate result in imido/imine (=NRi, R: Et, Ph) exchange (metathesis) with the formation of [(≡Si-O-)Zr(=NPh)NEt2] (3). Compounds 2 and 3 effectively catalyze imine/imine cross-metathesis and are thus considered as the first heterogeneous catalysts active for imine metathesis. © The Royal Society of Chemistry 2016.

  18. Well-defined silica-supported zirconium–imido complexes mediated heterogeneous imine metathesis

    KAUST Repository

    Hamzaoui, Bilel; Pelletier, Jeremie; Abou-Hamad, Edy; Basset, Jean-Marie

    2016-01-01

    Upon prolonged thermal exposure under vacuum, a well-defined single-site surface species [(≡Si-O-)Zr(NEt2)3] (1) evolves into an ethylimido complex [(≡Si-O-)Zr(=NEt)NEt2] (2). Reactions of 2 with an imine substrate result in imido/imine (=NRi, R: Et, Ph) exchange (metathesis) with the formation of [(≡Si-O-)Zr(=NPh)NEt2] (3). Compounds 2 and 3 effectively catalyze imine/imine cross-metathesis and are thus considered as the first heterogeneous catalysts active for imine metathesis. © The Royal Society of Chemistry 2016.

  19. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia

    2016-01-28

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  20. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia; Fischer, Roland C; Cavallo, Luigi; Slugovc, Christian; Poater, Albert

    2016-01-01

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  1. Olefin Metathesis with Ru-Based Catalysts Exchanging the Typical N-Heterocyclic Carbenes by a Phosphine–Phosphonium Ylide

    Directory of Open Access Journals (Sweden)

    Laia Arnedo

    2017-03-01

    Full Text Available Density functional theory (DFT calculations have been used to describe the first turnover of an olefin metathesis reaction calling for a new in silico family of homogenous Ru-based catalysts bearing a phosphine–phosphonium ylide ligand, with ethylene as a substrate. Equal to conventional Ru-based catalysts bearing an N-heterocyclic carbene (NHC ligand, the activation of these congeners occurs through a dissociative mechanism, with a more exothermic first phosphine dissociation step. In spite of a stronger electron-donating ability of a phosphonium ylide C-ligand with respect to a diaminocarbene analogue, upper energy barriers were calculated to be on average ca. 5 kcal/mol higher than those of Ru–NHC standards. Overall, the study also highlights advantages of bidentate ligands over classical monodentate NHC and phosphine ligands, with a particular preference for the cis attack of the olefin. The new generation of catalysts is constituted by cationic complexes potentially soluble in water, to be compared with the typical neutral Ru–NHC ones.

  2. Cross-conjugated Trienamine Catalysis with α'-Alkylidene 2-Cyclohexenones: Application in β,γ-Regioselective Aza-Diels-Alder Reaction.

    Science.gov (United States)

    Zhou, Zhi; Wang, Zhou-Xiang; Ouyang, Qin; Xiao, Wei; Du, Wei; Chen, Ying-Chun

    2017-02-24

    Endo-type cross-conjugated trienamines between highly congested α'-alkylidene 2-cyclohexenones and a chiral primary amine catalyst serve as HOMO-raised dienophiles in inverse-electron-demand aza-Diels-Alder cycloadditions with a number of 1-azadiene substrates. The reactions exhibit exclusive β,γ-regioselectivity, and multifunctional products with high molecular complexity are efficiently constructed in excellent diastereo- and enantioselectivity (>19:1 d.r., up to 99 % ee). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A theoretical view on the thermodynamic cis-trans equilibrium of dihalo ruthenium olefin metathesis (pre-)catalysts

    KAUST Repository

    Pump, Eva

    2015-02-24

    Abstract: This work was conducted to provide an overview on the position of the thermodynamic cis–trans equilibrium of 85 conventional and X-chelated alkylidene-ruthenium complexes (X=O, S, Se, N, P, Cl, I, Br). The reported energies (ΔE) were obtained through single-point calculations with M06 functional and TZVP basis set from BP86/SVP-optimized cis- and trans-dichloro geometries and using the polarizable continuum model to simulate the influence of the solvent. Dichloromethane and toluene were selected as examples for solvents with high and low dielectric constants. The obtained relative stabilities of the cis- and trans-dihalo derivatives of the respective alkylidene complexes will serve for a better explanation of their catalytic activity as has been disclosed herein with selected examples.Graphical abstract: [Figure not available: see fulltext.

  4. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  5. Effect of support on hydro-metathesis of propene: A comparative study of W(CH 3 ) 6 anchored to silica vs. silica-alumina

    KAUST Repository

    Tretiakov, Mykyta

    2018-03-27

    Hydro-metathesis of propene was carried out by using well-defined W(CH3)6 supported on silica and silica-alumina. It was observed that W(CH3)6 supported silica-alumina catalyst is much better (TON 4577) than the silica supported catalyst (TON 2104). We demonstrated that the present catalysts are much better than the previously reported (tantalum hydride/KCC-1, TON 786) catalyst. For the first time, we observed the formation of n-decane from propene, which enables us to think of using cheaper raw materials and converting them to petroleum range alkanes using hydro-metathesis reaction.

  6. Recent advances in the development of alkyne metathesis catalysts

    Directory of Open Access Journals (Sweden)

    Matthias Tamm

    2011-01-01

    Full Text Available The number of well-defined molybdenum and tungsten alkylidyne complexes that are able to catalyze alkyne metathesis reactions efficiently has been significantly expanded in recent years.The latest developments in this field featuring highly active imidazolin-2-iminato- and silanolate–alkylidyne complexes are outlined in this review.

  7. Development of the first well-defined tungsten oxo alkyl derivatives supported on silica by SOMC: towards a model of WO3/SiO2 olefin metathesis catalyst

    KAUST Repository

    Mazoyer, Etienne; Merle, Nicolas; Mallmann, Aimery De; Basset, Jean-Marie; Berrier, Elise; Delevoye, Laurent; Paul, Jean Franois; Nicholas, Christopher P.; Gauvin, Ré gis M.; Taoufik, Mostafa

    2010-01-01

    A well-defined, silica-supported tungsten oxo alkyl species prepared by the surface organometallic chemistry approach displays high and sustained activity in propene metathesis. Remarkably, its catalytic performances outpace those of the parent imido derivative, underlining the importance of the oxo ligand in the design of robust catalysts. © 2010 The Royal Society of Chemistry.

  8. Metallacyclobutane substitution and its effect on alkene metathesis for propylene production over W-H/Al2O3: Case of isobutene/2-butene cross-metathesis

    KAUST Repository

    Szeto, Kaï Chung; Mazoyer, Etienne; Merle, Nicolas; Norsic, Sé bastien; Basset, Jean-Marie; Nicholas, Christopher P.; Taoufik, Mostafa

    2013-01-01

    Cross metathesis between 2-butenes and isobutene yielding the valuable products propylene and 2-methyl-2-butene has been investigated at low pressure and temperature using WH3/Al2O3, a highly active and selective catalyst. Two parallel catalytic cycles for this reaction have been proposed where the cycle involving the less sterically hindered tungstacyclobutane intermediates is most likely favored. Moreover, it has been found that the arrangement of substituents on the least thermodynamically favored tungstacyclobutane governs the conversion rate of the cross metathesis reaction for propylene production from butenes and/or ethylene. © 2013 American Chemical Society.

  9. Metallacyclobutane substitution and its effect on alkene metathesis for propylene production over W-H/Al2O3: Case of isobutene/2-butene cross-metathesis

    KAUST Repository

    Szeto, Kaï Chung

    2013-09-06

    Cross metathesis between 2-butenes and isobutene yielding the valuable products propylene and 2-methyl-2-butene has been investigated at low pressure and temperature using WH3/Al2O3, a highly active and selective catalyst. Two parallel catalytic cycles for this reaction have been proposed where the cycle involving the less sterically hindered tungstacyclobutane intermediates is most likely favored. Moreover, it has been found that the arrangement of substituents on the least thermodynamically favored tungstacyclobutane governs the conversion rate of the cross metathesis reaction for propylene production from butenes and/or ethylene. © 2013 American Chemical Society.

  10. ADMET Polymerization Activities of Electrochemically Reduced W-Based Active Species for Ge- and Sn-Containing Dienes

    Science.gov (United States)

    Imamoglu, Yavuz; Aydogdu, Cemil; Karabulut, Solmaz; Düz, Bülent

    In the last 20 years metal atom-containing polymers have become important classes of polymers [1]. Properties like high thermic stability, electric, and photo conductometry make them very interesting for producing films, fibers, and coating [2]. Many of these compounds can be synthesized by conventional methods [3]. For producing metal-containing polymers anionic, cationic, and radicalic polymerizations were used [4-6]. Metal-containing polymers were also synthesized via acyclic diene metathesis (ADMET) polymerization that is facilitated by Schrock’s molybdenum alkylidene, or Grubbs’ ruthenium carbene catalyst [7-9]. In 1979, Gilet and coworkers succeeded in synthesizing metathetically active species from electrochemical reduction of WCl6 and MoCl5 [10,11]. In the light of these works, we have showed that electrochemically generated tungsten-based active species (WCl6-e--Al-CH2Cl2) catalyzes various metathesis-related reactions [12-16].

  11. Exceptionally Stable and Efficient Solid Supported Hoveyda-Type Catalyst

    Czech Academy of Sciences Publication Activity Database

    Skowerski, K.; Pastva, J.; Czarnocki, S. J.; Janošcová, Jana

    2015-01-01

    Roč. 19, č. 7 (2015), s. 872-877 ISSN 1083-6160 Institutional support: RVO:61388955 Keywords : OLEFIN-METATHESIS CATALYSTS * RING-CLOSING METATHESIS * N-HETEROCYCLIC CARBENES Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.922, year: 2015

  12. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, Cé sar A.; Poater, Albert; Lé bl, Tomá š; Manzini, Simone; Slawin, Alexandra M. Z.; Cavallo, Luigi; Nolan, Steven P.

    2013-01-01

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  13. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, César A.

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  14. The metathesis of alkynes

    Directory of Open Access Journals (Sweden)

    H. C. M. Vosloo

    1991-07-01

    Full Text Available The alkyne metathesis reaction is a direct result of the known and intensively studied alkene or olefin metathesis reaction. Unfortunately this reaction was never studied as intensively as the alkene metathesis reaction, mainly because of a lack of active catalytic systems. In the alkyn metathesis reaction the carbon-carbon triple bonds are broken and rearranged to give a redistribution of alkylidyne groups.

  15. Dynamic behaviour of tantalum hydride supported on silica or MCM-41 in the metathesis of alkanes

    KAUST Repository

    Soignier, Sophie

    2014-01-01

    The metathesis of ethane and propane catalysed by tantalum hydride supported on silica or MCM-41 was studied under static and dynamic conditions. During the reaction, the rate decreased over time, indicating deactivation of the catalyst. The evolution of the catalytic system and surface species over time was monitored by various physico-chemical methods: FTIR, 13C NMR spectroscopy, elemental analysis and chemical reactivity. A carbonaceous deposit composed of unsaturated hydrocarbyl species was observed by 13C NMR. This deposit was responsible for poisoning of the catalyst. The deactivation of the catalyst proved more severe at higher temperatures and under static rather than dynamic conditions. A partial regeneration of the catalyst could be achieved during a series of repeated runs. Mechanistically, the deconvolution of the products\\' distribution over time indicated the occurrence of hydrogenolysis in the early stages of the reaction, while pure metathesis dominated later on. The hydrogen was supplied by the dehydrogenation of hydrocarbyl surface species involved in the deactivation process. © 2014 The Royal Society of Chemistry.

  16. Dynamic behaviour of tantalum hydride supported on silica or MCM-41 in the metathesis of alkanes

    KAUST Repository

    Soignier, Sophie; Saggio, Guillaume; Taoufik, Mostafa; Basset, Jean-Marie; Thivolle-Cazat, Jean

    2014-01-01

    The metathesis of ethane and propane catalysed by tantalum hydride supported on silica or MCM-41 was studied under static and dynamic conditions. During the reaction, the rate decreased over time, indicating deactivation of the catalyst. The evolution of the catalytic system and surface species over time was monitored by various physico-chemical methods: FTIR, 13C NMR spectroscopy, elemental analysis and chemical reactivity. A carbonaceous deposit composed of unsaturated hydrocarbyl species was observed by 13C NMR. This deposit was responsible for poisoning of the catalyst. The deactivation of the catalyst proved more severe at higher temperatures and under static rather than dynamic conditions. A partial regeneration of the catalyst could be achieved during a series of repeated runs. Mechanistically, the deconvolution of the products' distribution over time indicated the occurrence of hydrogenolysis in the early stages of the reaction, while pure metathesis dominated later on. The hydrogen was supplied by the dehydrogenation of hydrocarbyl surface species involved in the deactivation process. © 2014 The Royal Society of Chemistry.

  17. Extrudate versus Powder Silica Alumina as Support for Re2O7 Catalyst in the Metathesis of Seed Oil-Derivatives – A Comparison

    Directory of Open Access Journals (Sweden)

    Bassie B. Marvey

    2009-01-01

    Full Text Available Self- and cross-metathesis of fatty acid methyl esters (FAMEs was investigated using a silica alumina supported Re2O7 catalyst. Although a 3 wt% Re2O7/SiO2-Al2O3/SnBu4 is already active for the metathesis of unsaturated FAMEs, the results have shown that particle size of silica alumina support has a profound influence on its activity and selectivity. Consequently, high substrate conversions coupled with improved product yields (for mono- and diesters and reaction rates were obtained upon using powder, as opposed to extrudate silica alumina as the support material. Diesters are platform compounds for the synthesis of polymers and fragrances. In this paper a comparative outline of the influence of particle size of silica alumina (extrudate versus powder on catalytic performance of a 3 wt% Re2O7/SiO2-Al2O3/SnBu4 for self- and cross-metathesis of FAMEs is made. Low surface area and diffusion constraints associated with extrudates were identified as some of the factors leading to low catalytic activity and selectivity.

  18. Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts

    KAUST Repository

    Szeto, Kaï Chung; Hardou, Lucie; Merle, Nicolas; Basset, Jean-Marie; Thivolle-Cazat, Jean; Papaioannou, Charalambos; Taoufik, Mostafa

    2012-01-01

    We report a selective direct conversion of n-butane into higher molecular weight alkanes (C 5+) by alkane metathesis reaction catalysed by silica-alumina supported tungsten or tantalum hydrides at moderate temperature and pressure. The product

  19. Olefins metathesis, synthesis and properties of homogeneous models of the Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3} catalyst; Methathese des olefines, synthese et proprietes des modeles homogenes du catalyseur Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Doledec, G.

    1999-10-05

    The aim of this work was to synthesize and to study homogeneous models of the rhenium oxide on alumina catalyst in order to better understand the influence of the alumina environment over the activity in olefin metathesis. A series of aluminium complexes (ArO){sub 2}Al-Y have been synthesised, where ArO is a 4-substituted-2,6-di-tert-butyl-phenoxy, or (ArO){sub 2} is a CH{sub 2{sup -}} or S-ortho bridged-4,4'-di-tert-butyl-di-phenoxy, and Y is an alkyl or chlorine ligand. The reaction of (ArO){sub 2}Al-Cl with AgReO{sub 4} led to new complexes (ArO){sub 2}Al-OReO{sub 3} (A). These complexes exhibit a low to moderate activity in metathesis of 2-pentene (TOF = 0,5 min{sup -1} at 25 deg. C in a toluene solution). Complexes (ArO){sub 2}Al-R (R = iBu, Et) react with Re{sub 2}O{sub 7} in THF or dioxane giving type B complexes including oligomeric linkages like O{sub 3}Re-[Al(OAr)-O){sub 2}-ReO{sub 3}. They show a fairly high activity in the metathesis of 2-pentene, with TOF values as high as 100 min{sup -1}. As far as we know, these are the most active rhenium-based homogeneous metathesis catalysts. Complexes type A may be converted into type B complexes upon reaction with (ArO){sub 2}Al-R in an ether solvent. The high activity of B complexes is tentatively related to the Al-O-Al linkages that are molecular in the homogeneous models or present at the surface of the alumina in the heterogeneous catalyst. These results bear out again the role of the Lewis acidity in these catalysts. We used (ArO){sub 2}Al-R complexes to modify the heterogenous catalyst. It appears that it is an excellent way to reduce the rhenium loading without any loss of activity. (author)

  20. Ene-yne Cross-Metathesis for the Preparation of 2,3-Diaryl-1,3-dienes

    Directory of Open Access Journals (Sweden)

    Meriem K. Abderrezak

    2017-11-01

    Full Text Available Ene-yne cross-metathesis from alkynes and ethylene is a useful method to produce substituted conjugated butadiene derivatives. If this method has been used with aliphatic alkynes, it has however never been used starting from diarylacetylenes as internal alkynes. We show that the ene-yne cross-metathesis catalyzed by the second generation Hoveyda ruthenium catalyst provides the 2,3-diarylbuta-1,3-dienes under 3 atm of ethylene at 100 °C. The scope and limitations of the reaction have been evaluated starting from unsymmetrical functionalized diarylacetylene derivatives hence leading to unsymmetrical 2,3-diarylbuta-1,3-dienes in a straightforward and environmentally acceptable manner.

  1. Effect of support on hydro-metathesis of propene: A comparative study of W(CH 3 ) 6 anchored to silica vs. silica-alumina

    KAUST Repository

    Tretiakov, Mykyta; Samantaray, Manoja; Saidi, Aya; Basset, Jean-Marie

    2018-01-01

    Hydro-metathesis of propene was carried out by using well-defined W(CH3)6 supported on silica and silica-alumina. It was observed that W(CH3)6 supported silica-alumina catalyst is much better (TON 4577) than the silica supported catalyst (TON 2104

  2. The right computational recipe for olefin metathesis with ru-based catalysts: The whole mechanism of ring-closing olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  3. The right computational recipe for olefin metathesis with ru-based catalysts: The whole mechanism of ring-closing olefin metathesis

    KAUST Repository

    Poater, Albert; Pump, Eva; Vummaleti, Sai V. C.; Cavallo, Luigi

    2014-01-01

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  4. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie

    2017-01-19

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  5. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie; Samantaray, Manoja K.; Dey, Raju; Abou-Hamad, Edy; Kavitake, Santosh

    2017-01-01

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  6. Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts

    KAUST Repository

    Szeto, Kaï Chung

    2012-01-01

    We report a selective direct conversion of n-butane into higher molecular weight alkanes (C 5+) by alkane metathesis reaction catalysed by silica-alumina supported tungsten or tantalum hydrides at moderate temperature and pressure. The product is unprecedented, asymmetrically distributed towards heavier alkanes. This journal is © 2012 The Royal Society of Chemistry.

  7. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    Science.gov (United States)

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  8. New Concept of C–H and C–C Bond Activation via Surface Organometallic Chemistry

    KAUST Repository

    Samantaray, Manoja

    2015-08-18

    In this chapter we describe the recent applications of well-defined oxidesupported metal alkyls/alkylidenes/alkylidynes and hydrides of group IV, V, and VI transition metals in the field of C–H and C–C bond activation. The activation of ubiquitous C–H and C–C bonds of paraffin is a long-standing challenge because of intrinsic low reactivity. There are many concepts derived from surface organometallic chemistry (SOMC): surface organometallic fragments are always intermediates in heterogeneous catalysis. The study of their synthesis and reactivity is a way to rationalize mechanism of heterogeneous catalysis and to achieve structure activity relationship. By surface organometallic chemistry one can enter any catalytic center by a reaction intermediate leading in fine to single site catalysts. With surface organometallic chemistry one can coordinate to the metal which can play a role in different elementary steps leading for example to C–H activation and Olefin metathesis. Because of the development of SOMC there is a lot of space for the improvement of homogeneous catalysis. After the 1997 discovery of alkane metathesis using silica-supported tantalum hydride by Basset et al. at low temperature (150ºC) the focus in this area was shifted to the discovery of more and more challenging surface complexes active in the application of C–H and C–C bond activation. Here we describe the evolution of well-defined metathesis catalyst with time as well as the effect of support on catalysis. We also describe here which metal–ligand combinations are responsible for a variety of C–H and C–C bond activation.

  9. Ruthenium-catalyzed intramolecular metathesis of dienes and its application in the synthesis of bridged and spiro azabicycles

    Science.gov (United States)

    Kuznetsov, N. Yu; Bubnov, Yu N.

    2015-07-01

    The review presents a historical excursion into catalytic alkene metathesis, covering the problems of history of the discovery of this process, as well as investigations on the properties, structure and reactivity of the most popular ruthenium catalysts for metathesis, mechanism of their action and decomposition. The main part covers studies devoted to the syntheses of bridged azabicyclic and 1-azaspirocyclic compounds comprising the intramolecular metathesis of dienes as the key step. The formation of a bicyclic skeleton of a series of natural bridged (cocaine, ferruginine, calystegines, and anatoxin-a) and spiro (pinnaic acids, halichlorine, hystrionicotoxin, and cephalotaxine) azabicycles, as well as their analogues and compounds with larger rings is demonstrated. The methods for the synthesis of diene precursors and the conditions for final assembling of the bicyclic compounds are considered in detail. The generalization of the literature data allows one to efficiently carry out the mentioned process taking into account the most important features. The bibliography includes 129 references.

  10. Ruthenium-catalyzed intramolecular metathesis of dienes and its application in the synthesis of bridged and spiro azabicycles

    International Nuclear Information System (INIS)

    Kuznetsov, N Yu; Bubnov, Yu N

    2015-01-01

    The review presents a historical excursion into catalytic alkene metathesis, covering the problems of history of the discovery of this process, as well as investigations on the properties, structure and reactivity of the most popular ruthenium catalysts for metathesis, mechanism of their action and decomposition. The main part covers studies devoted to the syntheses of bridged azabicyclic and 1-azaspirocyclic compounds comprising the intramolecular metathesis of dienes as the key step. The formation of a bicyclic skeleton of a series of natural bridged (cocaine, ferruginine, calystegines, and anatoxin-a) and spiro (pinnaic acids, halichlorine, hystrionicotoxin, and cephalotaxine) azabicycles, as well as their analogues and compounds with larger rings is demonstrated. The methods for the synthesis of diene precursors and the conditions for final assembling of the bicyclic compounds are considered in detail. The generalization of the literature data allows one to efficiently carry out the mentioned process taking into account the most important features. The bibliography includes 129 references

  11. In Situ Generated Ruthenium-Arene Catalyst for Photoactivated Ring-Opening Metathesis Polymerization through Photolatent N-Heterocyclic Carbene Ligand.

    Science.gov (United States)

    Pinaud, Julien; Trinh, Thi Kim Hoang; Sauvanier, David; Placet, Emeline; Songsee, Sriprapai; Lacroix-Desmazes, Patrick; Becht, Jean-Michel; Tarablsi, Bassam; Lalevée, Jacques; Pichavant, Loïc; Héroguez, Valérie; Chemtob, Abraham

    2018-01-09

    1,3-Bis(mesityl)imidazolium tetraphenylborate (IMesH + BPh 4 - ) can be synthesized in one step by anion metathesis between the corresponding imidazolium chloride and sodium tetraphenylborate. In the presence of 2-isopropylthioxanthone (sensitizer), an IMes N-heterocyclic carbene (NHC) ligand can be photogenerated under irradiation at 365 nm through coupled electron/proton transfer reactions. By combining this tandem NHC photogenerator system with metathesis inactive [RuCl 2 (p-cymene)] 2 precatalyst, the highly active RuCl 2 (p-cymene)(IMes) complex can be formed in situ, enabling a complete ring-opening metathesis polymerization (ROMP) of norbornene in the matter of minutes at room temperature. To the best of our knowledge, this is the first example of a photogenerated NHC. Its exploitation in photoROMP has resulted in a simplified process compared to current photocatalysts, because only stable commercial or easily synthesized reagents are required. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The olefin metathesis reaction: reorganization and cyclization of organic compounds

    International Nuclear Information System (INIS)

    Frederico, Daniel; Brocksom, Ursula; Brocksom, Timothy John

    2005-01-01

    The olefin metathesis reaction allows the exchange of complex alkyl units between two olefins, with the formation of a new olefinic link and a sub-product olefin usually ethylene. This reaction has found extensive application in the last ten years with the development of the Grubbs and Schrock catalysts, in total synthesis of complex organic molecules, as opposed to the very important use in the petrochemical industry with relatively simple molecules. This review intends to trace a historical and mechanistic pathway from industry to academy, before illustrating the more recent advances. (author)

  13. Latent ruthenium–indenylidene catalysts bearing a N-heterocyclic carbene and a bidentate picolinate ligand

    Directory of Open Access Journals (Sweden)

    Thibault E. Schmid

    2015-09-01

    Full Text Available A silver-free methodology was developed for the synthesis of unprecedented N-heterocyclic carbene ruthenium indenylidene complexes bearing a bidentate picolinate ligand. The highly stable (SIPr(picolinateRuCl(indenylidene complex 4a (SIPr = 1,3-bis(2-6-diisopropylphenylimidazolidin-2-ylidene demonstrated excellent latent behaviour in ring closing metathesis (RCM reaction and could be activated in the presence of a Brønsted acid. The versatility of the catalyst 4a was subsequently demonstrated in RCM, cross-metathesis (CM and enyne metathesis reactions.

  14. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst

    KAUST Repository

    Merle, Nicolas; Le Qué mé ner, Fré dé ric; Bouhoute, Yassine; Szeto, Kai C.; De Mallmann, Aimery; Barman, Samir; Samantaray, Manoja; Delevoye, Laurent; Gauvin, Ré gis M.; Taoufik, Mostafa; Basset, Jean-Marie

    2016-01-01

    The well-defined silica-supported molybdenum oxo alkyl species (SiO−)MoO(CH Bu) was selectively prepared by grafting of MoO(CH Bu)Cl onto partially dehydroxylated silica (silica) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO/SiO olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.

  15. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst

    KAUST Repository

    Merle, Nicolas

    2016-12-05

    The well-defined silica-supported molybdenum oxo alkyl species (SiO−)MoO(CH Bu) was selectively prepared by grafting of MoO(CH Bu)Cl onto partially dehydroxylated silica (silica) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO/SiO olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.

  16. Study of ethylene/2-butene cross-metathesis over W-H/Al2O 3 for propylene production: Effect of the temperature and reactant ratios on the productivity and deactivation

    KAUST Repository

    Mazoyer, Etienne

    2013-05-01

    A highly active and selective catalyst based on supported tungsten hydride for the cross-metathesis between ethylene and 2-butenes yielding propylene has been investigated at low pressure with various temperatures and feed ratios. At low temperature (120 °C), the catalyst deactivates notably with time on stream. This phenomenon was extensively examined by DRIFTS, TGA, DSC, and solid-state NMR techniques. It was found that a large amount of carbonaceous species were formed due to a side-reaction such as olefin polymerization which took place simultaneously with the metathesis reaction. However, at 150 °C, the catalyst was stable with time and thereby gave a high productivity in propylene. Importantly, the slight increase in temperature clearly disfavored the side reaction. The ratio of ethylene to trans-2-butene was also studied, and surprisingly, the W-H/Al2O3 catalyst is stable and highly selective to propylene even at substoichiometric ethylene ratios. © 2013 Elsevier Inc. All rights reserved.

  17. Understanding the Hydro-metathesis Reaction of 1-decene by Using Well-defined Silica Supported W, Mo, Ta Carbene/Carbyne Complexes

    KAUST Repository

    Saidi, Aya; Samantaray, Manoja; Tretiakov, Mykyta; Kavitake, Santosh Giridhar; Basset, Jean-Marie

    2017-01-01

    Direct conversion of 1-decene to petroleum range alkanes was obtained using hydro-metathesis reaction. To understand this reaction we employed three different well-defined single site catalysts precursors; [(≡Si-O-)W(CH3)5] 1, [(≡Si-O-)Mo(≡CtBu)(CH2

  18. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    Science.gov (United States)

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-05

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Influence of the acid and basic properties of rhenium oxide supported on alumina catalyst on the catalytic performance in olefin metathesis; Influence des proprietes acido-basiques de l`oxyde de rhenium supporte sur les performances catalytiques en metathese des olefines

    Energy Technology Data Exchange (ETDEWEB)

    Nahama, F.

    1996-11-30

    The aim of this work is to study the influence of the acid-basic properties of rhenium oxide supported on alumina catalyst on the catalytic performance in olefin metathesis. The literature data indicate that the environment of the active site does possess acid properties. However, the nature of the acid sites is still matter of debate. Concerning the Re O{sub x} - Al{sub 2}O{sub 3} interactions, we have shown that perrhenate ions are electrostatically absorbed on alumina. The uptake of rhenium is favoured at acidic pH (below 4), and the absorbed rhenium is in equilibrium with rhenium in solution. The results of rhenium extraction by water strongly suggest that the surface compounds of the calcined Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3} materials is aluminium perrhenate. Characterization of surface acidity of the catalyst by infrared spectroscopy reveals that the initiation of the metathesis reaction is governed essentially by Lewis acidity. This strongly supports the role of Lewis acidity, which is exalted by the increase of the rhenium content and the calcination temperature. Finally, we point out by ammonia adsorption-thermodesorption a band at 1320 cm{sup -1} characteristic of the Lewis acidity of aluminium perrhenate. This result is a second indication of the presence of aluminium perrhenate on the Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3} catalyst surface. (author)

  20. Recent applications of ring-rearrangement metathesis in organic synthesis

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-10-01

    Full Text Available Ring-rearrangement metathesis (RRM involves multiple metathesis processes such as ring-opening metathesis (ROM/ring-closing metathesis (RCM in a one-pot operation to generate complex targets. RRM delivers complex frameworks that are difficult to assemble by conventional methods. The noteworthy point about this type of protocol is multi-bond formation and it is an atom economic process. In this review, we have covered literature that appeared during the last seven years (2008–2014.

  1. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert; Correa, Andrea; Pump, Eva; Cavallo, Luigi

    2014-01-01

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  2. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert

    2014-05-25

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  3. Immobilization of molecular catalysts in supported ionic liquid phases.

    Science.gov (United States)

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  4. Synthesis of Heavy Fluorous Ruthenium Metathesis Catalysts Using the Stereoselective Addition of Polyfluoroalkyllithium to Sterically Hindered Diimines

    Czech Academy of Sciences Publication Activity Database

    Hošek, J.; Rybáčková, M.; Čejka, J.; Cvačka, Josef; Kvíčala, J.

    2015-01-01

    Roč. 34, č. 13 (2015), s. 3327 -3334 ISSN 0276-7333 Institutional support: RVO:61388963 Keywords : ring-closing metathesis * form tetrasubstituted olefins * N-heterocyclic carbene Subject RIV: CC - Organic Chemistry Impact factor: 4.186, year: 2015

  5. A Silica-Supported Monoalkylated Tungsten Dioxo Complex Catalyst for Olefin Metathesis

    KAUST Repository

    Maity, Niladri

    2018-02-15

    A well-defined silica-supported monoalkylated tungsten dioxo complex [(Si-O-)W(=O)(CH-Bu)] was prepared by treatment of highly dehydroxylated silica (SiO: silica treated at 700 °C under high vacuum) with an ionic precursor complex [NEt][W(=O)(CH-Bu)]. The identity of the resulting neutral monoalkylated tungsten dioxo surface complex was established by means of elemental microanalysis and spectroscopic studies (IR, solid-state NMR, Raman, and X-ray absorption spectroscopies). The supported tungsten complex was found to act as a precatalyst for the self-metathesis of 1-octene in a batch reactor. The mechanistic implications of this reaction are discussed with the support of DFT calculations highlighting the potential occurrence of thus-far unexplored mechanistic pathways.

  6. A Silica-Supported Monoalkylated Tungsten Dioxo Complex Catalyst for Olefin Metathesis

    KAUST Repository

    Maity, Niladri; Barman, Samir; Minenkov, Yury; Ould-Chikh, Samy; Abou-Hamad, Edy; Ma, Tao; Qureshi, Ziyauddin; Cavallo, Luigi; D'Elia, Valerio; Gates, Bruce C.; Basset, Jean-Marie

    2018-01-01

    A well-defined silica-supported monoalkylated tungsten dioxo complex [(Si-O-)W(=O)(CH-Bu)] was prepared by treatment of highly dehydroxylated silica (SiO: silica treated at 700 °C under high vacuum) with an ionic precursor complex [NEt][W(=O)(CH-Bu)]. The identity of the resulting neutral monoalkylated tungsten dioxo surface complex was established by means of elemental microanalysis and spectroscopic studies (IR, solid-state NMR, Raman, and X-ray absorption spectroscopies). The supported tungsten complex was found to act as a precatalyst for the self-metathesis of 1-octene in a batch reactor. The mechanistic implications of this reaction are discussed with the support of DFT calculations highlighting the potential occurrence of thus-far unexplored mechanistic pathways.

  7. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  8. Study of ethylene/2-butene cross-metathesis over W-H/Al2O 3 for propylene production: Effect of the temperature and reactant ratios on the productivity and deactivation

    KAUST Repository

    Mazoyer, Etienne; Szeto, Kaï Chung; Merle, Nicolas; Norsic, Sé bastien; Boyron, Olivier; Basset, Jean-Marie; Taoufik, Mostafa; Nicholas, Christopher P.

    2013-01-01

    A highly active and selective catalyst based on supported tungsten hydride for the cross-metathesis between ethylene and 2-butenes yielding propylene has been investigated at low pressure with various temperatures and feed ratios. At low temperature

  9. Tuning of tantalum alkylidene reactivity with a terdentate arylamine ligand : synthesis, structure and reactivity of [TaCl2{C6H3(CH2NMe2)2-2,6}(CHBu-tert)

    NARCIS (Netherlands)

    Abbenhuis, H.C.L.; Grove, D.M.; Koten, van G.; Sluijs, van der P.; Spek, A.L.

    1990-01-01

    The terdentate aryldiamine ligand in the aryltantalum(V) alkylidene complex [TaCl2{C6H3(CH2NMe2)2-2,6}(CHBut)] (1) controls alkylidene reactivity in a range of metal-mediated Wittig reactions. An X-ray diffraction study of (1) shows that the hexacoordinate tantalum centre has a very irregular ligand

  10. Rhenium Nanochemistry for Catalyst Preparation

    Directory of Open Access Journals (Sweden)

    Vadim G. Kessler

    2012-08-01

    Full Text Available The review presents synthetic approaches to modern rhenium-based catalysts. Creation of an active center is considered as a process of obtaining a nanoparticle or a molecule, immobilized within a matrix of the substrate. Selective chemical routes to preparation of particles of rhenium alloys, rhenium oxides and the molecules of alkyltrioxorhenium, and their insertion into porous structure of zeolites, ordered mesoporous MCM matrices, anodic mesoporous alumina, and porous transition metal oxides are considered. Structure-property relationships are traced for these catalysts in relation to such processes as alkylation and isomerization, olefin metathesis, selective oxidation of olefins, methanol to formaldehyde conversion, etc.

  11. Selective Metathesis of α-Olefins from Bio-Sourced Fischer–Tropsch Feeds

    KAUST Repository

    Rouen, Mathieu; Queval, Pierre; Borre, Etienne; Falivene, Laura; Poater, Albert; Berthod, Mikael; Hugues, Francois; Cavallo, Luigi; Basle, Olivier; Olivier-Bourbigou, Helene; Mauduit, Marc

    2016-01-01

    The search for a low-cost process for the valorization of linear alpha-olefins combining high productivity and high selectivity is a longstanding goal for chemists. Herein, we report a soluble ruthenium olefin metathesis catalyst that performs the conversion of linear alpha-olefins to longer internal linear olefins with high selectivity (>99%) under neat conditions at low loadings (50 ppm) and without the need of expensive additives. This robust catalytic process allowed us to efficiently and selectively re-equilibrate the naphtha fraction (C-5-C-8) of a Fischer-Tropsch feed derived from non petroleum resources to a higher-value product range (C-9-C-14), useful as detergent and plasticizer precursors.

  12. Selective Metathesis of α-Olefins from Bio-Sourced Fischer–Tropsch Feeds

    KAUST Repository

    Rouen, Mathieu

    2016-10-14

    The search for a low-cost process for the valorization of linear alpha-olefins combining high productivity and high selectivity is a longstanding goal for chemists. Herein, we report a soluble ruthenium olefin metathesis catalyst that performs the conversion of linear alpha-olefins to longer internal linear olefins with high selectivity (>99%) under neat conditions at low loadings (50 ppm) and without the need of expensive additives. This robust catalytic process allowed us to efficiently and selectively re-equilibrate the naphtha fraction (C-5-C-8) of a Fischer-Tropsch feed derived from non petroleum resources to a higher-value product range (C-9-C-14), useful as detergent and plasticizer precursors.

  13. Hoveyda–Grubbs first generation type catalyst immobilized on mesoporous molecular sieves

    Czech Academy of Sciences Publication Activity Database

    Pastva, Jakub; Čejka, Jiří; Žilková, Naděžda; Mestek, O.; Rangus, M.; Balcar, Hynek

    2013-01-01

    Roč. 378, NOV 2013 (2013), s. 184-192 ISSN 1381-1169 R&D Projects: GA AV ČR IAA400400805 Institutional support: RVO:61388955 Keywords : Hoveyda–Grubbs type catalysts * Olefin metathesis * Mesoporous molecular sieves Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2013

  14. Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane

    KAUST Repository

    Samantaray, Manoja; Kavitake, Santosh Giridhar; Morlanes, Natalia Sanchez; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Dey, Raju; Basset, Jean-Marie

    2017-01-01

    Two compatible organometallic complexes, W(Me)(6) (1) and TiNp4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO2-700) to synthesize the well-defined bimetallic precatalyst [(equivalent to Si-O-)W(Me)(5)(equivalent to Si-O-)Ti(Np)(3)] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in H-1-H-1 multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(equivalent to Si-O-)W(Me)(5)] (3), with a TON of 98, for propane metathesis at 150 degrees C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by beta-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 degrees C) using a well-defined bimetallic system prepared via the SOMC approach.

  15. Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane

    KAUST Repository

    Samantaray, Manoja

    2017-02-10

    Two compatible organometallic complexes, W(Me)(6) (1) and TiNp4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO2-700) to synthesize the well-defined bimetallic precatalyst [(equivalent to Si-O-)W(Me)(5)(equivalent to Si-O-)Ti(Np)(3)] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in H-1-H-1 multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(equivalent to Si-O-)W(Me)(5)] (3), with a TON of 98, for propane metathesis at 150 degrees C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by beta-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 degrees C) using a well-defined bimetallic system prepared via the SOMC approach.

  16. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.

    Science.gov (United States)

    Easter, Quinn T; Blum, Suzanne A

    2017-10-23

    Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Sociolinguistic Analysis of Metathesis in Azeri Language

    Directory of Open Access Journals (Sweden)

    Biook Behnam

    2012-07-01

    Full Text Available This study tries to investigate the correlation between sociolinguistic parameters such as sex, age, and social class and the use of metathesis in Azeri. There have been few studies from a sociolinguistic perspective on the use of metathesis. Through studying the stigmatized forms of speech in Azeri, the present study indicates that a significant relationship exists between extralinguistic variables and metathesis as a phonological process. The subjects of the study were Azeri speakers living in different districts of Tabriz categorized by three socioeconomically different groups. The statistical analyses of data indicate that there is an intimate and reciprocal relationship between linguistic behavior and social structure.

  18. Tandem ring-closing metathesis/isomerization reactions for the total synthesis of violacein

    DEFF Research Database (Denmark)

    Petersen, Mette Terp; Nielsen, Thomas Eiland

    2013-01-01

    A series of 5-substituted 2-pyrrolidinones was synthesized through a one-pot ruthenium alkylidene-catalyzed tandem RCM/isomerization/nucleophilic addition sequence. The intermediates resulting from RCM/isomerization showed reactivity toward electrophiles in aldol condensation reactions which...

  19. Cycloalkyl-based unsymmetrical unsaturated (U2)-NHC ligands: Flexibility and dissymmetry in ruthenium-catalysed olefin metathesis

    KAUST Repository

    Rouen, Mathieu

    2014-01-01

    Air-stable Ru-indenylidene and Hoveyda-type complexes bearing new unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands combining a mesityl unit and a flexible cycloalkyl moiety as N-substituents were synthesised. Structural features, chemical stabilities and catalytic profiles in olefin metathesis of this new library of cycloalkyl-based U2-NHC Ru complexes were studied and compared with their unsymmetrical saturated NHC-Ru homologues as well as a set of commercially available Ru-catalysts bearing either symmetrical SIMes or IMes NHC ligands. © 2014 the Partner Organisations.

  20. Efficient synthesis of enantiopure conduritols by ring-closing metathesis

    DEFF Research Database (Denmark)

    Jørgensen, Morten; Iversen, Erik Høgh; Paulsen, Andreas Lundtang

    2001-01-01

    Two short synthetic approaches to enantiopure conduritols are described starting from the chiral pool. In both cases, the cyclohexene ring is assembled via ring-closing olefin metathesis. The terminal diene precursers for the metathesis reaction are prepared either from octitols or from tartaric...

  1. Evidence for Dynamic Chemical Kinetics at Individual Molecular Ruthenium Catalysts.

    Science.gov (United States)

    Easter, Quinn T; Blum, Suzanne A

    2018-02-05

    Catalytic cycles are typically depicted as possessing time-invariant steps with fixed rates. Yet the true behavior of individual catalysts with respect to time is unknown, hidden by the ensemble averaging inherent to bulk measurements. Evidence is presented for variable chemical kinetics at individual catalysts, with a focus on ring-opening metathesis polymerization catalyzed by the second-generation Grubbs' ruthenium catalyst. Fluorescence microscopy is used to probe the chemical kinetics of the reaction because the technique possesses sufficient sensitivity for the detection of single chemical reactions. Insertion reactions in submicron regions likely occur at groups of many (not single) catalysts, yet not so many that their unique kinetic behavior is ensemble averaged. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dithioacetals as an Entry to Titanium-Alkylidene Chemistry: A New and Efficient Carbonyl Olefination.

    Science.gov (United States)

    Breit, Bernhard

    1998-03-02

    Wittig, Horner-Wadsworth-Emmons, Julia-Lythgoe, Tebbe, Grubbs, and Petasis-when it comes to carbonyl olefinations, these names are familiar to all chemistry students. In the future, the name Takeda will probably have to be added to this list. His recent work on the formation of titanium-alkylidene species from dithioacetals has provided organic chemists with a remarkable method for carbonyl olefination that is generally applicable under neutral to Lewis acidic conditions. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  3. Investigation of Surface Alkylation Strategy in SOMC: In Situ Generation of a Silica-Supported Tungsten Methyl Catalyst for Cyclooctane Metathesis

    KAUST Repository

    Hamieh, Ali Imad Ali

    2016-07-28

    An efficient and potentially scalable method is described for the synthesis of the silica-supported complexes [(≡Si-O-)WMe5] and [(≡Si-O-)WMe2(≡CH)] obtained by in situ alkylation of the surface-grafted tungsten chloride [(≡Si-O-)WCl5] (1). [(≡Si-O-)WCl5] can be readily prepared by the reaction of commercially available and stable tungsten hexachloride WCl6 with partially dehydroxylated silica at 700 °C (SiO2-700). Further reaction with ZnMe2 at room temperature rapidly forms a mixture of surface-alkylated tungsten complexes. They were fully characterized by microanalysis, FTIR, mass balance, and solid-state NMR (1H, 13C, 1H-13C HETCOR, 1H-1H double quantum and triple quantum) and identified as [(≡Si-O-)WMe5] and another product, [(≡Si-O-)WMe2(≡CH)]. The latter might have been generated by partial decomposition of the tungsten methyl chloride compound, which is formed during the stepwise alkylation of [(≡Si-O-)WCl5]. DFT calculations were carried out to check the relative stability of the tungsten methyl chloride intermediates and the feasibility of the reaction and corroborate the experimental results. This tungsten complex and its derivative were found to be active catalysts for the metathesis of cyclooctane. © 2016 American Chemical Society.

  4. Investigation of Surface Alkylation Strategy in SOMC: In Situ Generation of a Silica-Supported Tungsten Methyl Catalyst for Cyclooctane Metathesis

    KAUST Repository

    Hamieh, Ali Imad Ali; Dey, Raju; Samantaray, Manoja; Abdel-Azeim, Safwat; Abou-Hamad, Edy; Chen, Yin; Pelletier, Jeremie; Cavallo, Luigi; Basset, Jean-Marie

    2016-01-01

    An efficient and potentially scalable method is described for the synthesis of the silica-supported complexes [(≡Si-O-)WMe5] and [(≡Si-O-)WMe2(≡CH)] obtained by in situ alkylation of the surface-grafted tungsten chloride [(≡Si-O-)WCl5] (1). [(≡Si-O-)WCl5] can be readily prepared by the reaction of commercially available and stable tungsten hexachloride WCl6 with partially dehydroxylated silica at 700 °C (SiO2-700). Further reaction with ZnMe2 at room temperature rapidly forms a mixture of surface-alkylated tungsten complexes. They were fully characterized by microanalysis, FTIR, mass balance, and solid-state NMR (1H, 13C, 1H-13C HETCOR, 1H-1H double quantum and triple quantum) and identified as [(≡Si-O-)WMe5] and another product, [(≡Si-O-)WMe2(≡CH)]. The latter might have been generated by partial decomposition of the tungsten methyl chloride compound, which is formed during the stepwise alkylation of [(≡Si-O-)WCl5]. DFT calculations were carried out to check the relative stability of the tungsten methyl chloride intermediates and the feasibility of the reaction and corroborate the experimental results. This tungsten complex and its derivative were found to be active catalysts for the metathesis of cyclooctane. © 2016 American Chemical Society.

  5. Efficient Nazarov cyclization/Wagner-Meerwein rearrangement terminated by a Cu(II)-promoted oxidation: synthesis of 4-alkylidene cyclopentenones.

    Science.gov (United States)

    Lebœuf, David; Theiste, Eric; Gandon, Vincent; Daifuku, Stephanie L; Neidig, Michael L; Frontier, Alison J

    2013-04-08

    The discovery and elucidation of a new Nazarov cyclization/Wagner-Meerwein rearrangement/oxidation sequence is described that constitutes an efficient strategy for the synthesis of 4-alkylidene cyclopentenones. DFT computations and EPR experiments were conducted to gain further mechanistic insight into the reaction pathways. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Exploiting the interactions between the ruthenium Hoveyda–Grubbs catalyst and Al-modified mesoporous silica: the case of SBA15 vs. KCC-1

    KAUST Repository

    Werghi, Baraa; Pump, Eva; Tretiakov, Mykyta; Abou-Hamad, Edy; Gurinov, Andrei; Doggali, Pradeep; Anjum, Dalaver H.; Cavallo, Luigi; Bendjeriou-Sedjerari, Anissa; Basset, Jean-Marie

    2018-01-01

    Immobilization of the 2 generation Hoveyda-Grubbs catalyst HG-II onto well-ordered 2D hexagonal (SBA15) and 3D fibrous (KCC-1) mesostructured silica, which contained tetra-coordinated Al, has been investigated through the Surface Organometallic Chemistry (SOMC) methodology. The main interest of this study lies in the peculiarity of the silica supports, which display a well-defined tetrahedral aluminum hydride site displaying a strong Lewis acid character, [(Si-O-Si)(Si-O-)Al-H]. The resulting supported Hoveyda-Grubbs catalysts have been fully characterized by advanced solid state characterization techniques (FT-IR, H and C solid state NMR, DNP-SENS, EF-TEM...). Together with DFT calculations, the immobilization of HG-II does not occur through the formation of a covalent bond between the complex and the Al-modified mesoporous silica as expected, but through an Al⋯Cl-[Ru]-coordination. It is not surprising that in functionalized olefin metathesis of diethyldiallyl malonate, DEDAM (liquid phase), leaching of the catalyst is observed which is not the case in non-functionalized olefin metathesis of propene (gas phase). Besides, the results obtained in propene metathesis with HG-II immobilized either on SBA15 (d = 6 nm) or KCC-1 (d = 4 or 8 nm) highlight the importance of the accessibility of the catalytic site. Therefore, we demonstrate that KCC-1 is a promising and suitable 3D mesoporous support to overcome the diffusion of reactants into the porous network of heterogeneous catalysts.

  7. Exploiting the interactions between the ruthenium Hoveyda–Grubbs catalyst and Al-modified mesoporous silica: the case of SBA15 vs. KCC-1

    KAUST Repository

    Werghi, Baraa

    2018-03-05

    Immobilization of the 2 generation Hoveyda-Grubbs catalyst HG-II onto well-ordered 2D hexagonal (SBA15) and 3D fibrous (KCC-1) mesostructured silica, which contained tetra-coordinated Al, has been investigated through the Surface Organometallic Chemistry (SOMC) methodology. The main interest of this study lies in the peculiarity of the silica supports, which display a well-defined tetrahedral aluminum hydride site displaying a strong Lewis acid character, [(Si-O-Si)(Si-O-)Al-H]. The resulting supported Hoveyda-Grubbs catalysts have been fully characterized by advanced solid state characterization techniques (FT-IR, H and C solid state NMR, DNP-SENS, EF-TEM...). Together with DFT calculations, the immobilization of HG-II does not occur through the formation of a covalent bond between the complex and the Al-modified mesoporous silica as expected, but through an Al⋯Cl-[Ru]-coordination. It is not surprising that in functionalized olefin metathesis of diethyldiallyl malonate, DEDAM (liquid phase), leaching of the catalyst is observed which is not the case in non-functionalized olefin metathesis of propene (gas phase). Besides, the results obtained in propene metathesis with HG-II immobilized either on SBA15 (d = 6 nm) or KCC-1 (d = 4 or 8 nm) highlight the importance of the accessibility of the catalytic site. Therefore, we demonstrate that KCC-1 is a promising and suitable 3D mesoporous support to overcome the diffusion of reactants into the porous network of heterogeneous catalysts.

  8. Development of neutron shielding material using metathesis-polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Yoshinori E-mail: ysakurai@rri.kyoto-u.ac.jp; Sasaki, Akira; Kobayashi, Tooru

    2004-04-21

    A neutron shielding material using a metathesis-polymer matrix, which is a thermosetting resin, was developed. This shielding material has characteristics that can be controlled for different mixing ratios of neutron absorbers and for formation in the laboratory. Additionally, the elastic modulus can be changed at the hardening process, from a flexible elastoma to a mechanically tough solid. Experiments were performed at the Kyoto University Research Reactor in order to determine the important characteristics of this metathesis-polymer shielding material, such as neutron shielding performance, secondary gamma-ray generation and activation. The metathesis-polymer shielding material was shown to be practical and as effective as the other available shielding materials, which mainly consist of thermoplastic resin.

  9. Alkene Metathesis Catalysis: A Key for Transformations of Unsaturated Plant Oils and Renewable Derivatives

    Directory of Open Access Journals (Sweden)

    Dixneuf Pierre H.

    2016-03-01

    Full Text Available This account presents the importance of ruthenium-catalysed alkene cross-metathesis for the catalytic transformations of biomass derivatives into useful intermediates, especially those developed by the authors in the Rennes (France catalysis team in cooperation with chemical industry. The cross-metathesis of a variety of functional alkenes arising from plant oils, with acrylonitrile and fumaronitrile and followed by catalytic tandem hydrogenation, will be shown to afford linear amino acid derivatives, the precursors of polyamides. The exploration of cross-metathesis of bio-sourced unsaturated nitriles with acrylate with further catalytic hydrogenation has led to offer an excellent route to α,ω-amino acid derivatives. That of fatty aldehydes has led to bifunctional long chain aldehydes and saturated diols. Two ways of access to functional dienes by ruthenium-catalyzed ene-yne cross-metathesis of plant oil alkene derivatives with alkynes and by cross-metathesis of bio-sourced alkenes with allylic chloride followed by catalytic dehydrohalogenation, are reported. Ricinoleate derivatives offer a direct access to chiral dihydropyrans and tetrahydropyrans via ring closing metathesis. Cross-metathesis giving value to terpenes and eugenol for the straightforward synthesis of artificial terpenes and functional eugenol derivatives without C=C bond isomerization are described.

  10. Grubbs Catalysts Immobilized on Mesoporous Molecular Sieves via Phosphine and Pyridine Linkers

    Czech Academy of Sciences Publication Activity Database

    Bek, David; Balcar, Hynek; Žilková, Naděžda; Zukal, Arnošt; Horáček, Michal; Čejka, Jiří

    2011-01-01

    Roč. 1, č. 7 (2011), s. 709-718 ISSN 2155-5435 R&D Projects: GA AV ČR IAA400400805; GA AV ČR KAN100400701; GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40400503 Keywords : Grubbs catalyst * mesoporous molecular sieves * olefin metathesis Subject RIV: CF - Physical ; Theoretical Chemistry

  11. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: Structure and application as latent catalyst in olefin metathesis

    KAUST Repository

    Rouen, Mathieu

    2014-09-11

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions.

  12. by a solid-state metathesis approach

    Indian Academy of Sciences (India)

    Wintec

    Department of Mechanical Engineering,. † ... A solid-state metathesis approach initiated by microwave energy has been successfully applied for ... and chemical properties of synthesized powders are determined by powder X-ray diffraction, ...

  13. Metathesis: A "Change-Your-Partners" Dance

    Indian Academy of Sciences (India)

    Organic chemistry, the chemistry of carbon compounds, is a fascinating subject. ... In general, a chemical reaction is referred to as 'metathesis' or exchange reaction, if it is of .... pounds (alcohols, ketones, aldehydes, etc.), but is stable for long.

  14. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    KAUST Repository

    Żukowska, Karolina; Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi; Slugovc, Christian

    2015-01-01

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  15. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    KAUST Repository

    Żukowska, Karolina

    2015-08-20

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  16. Silica-supported tungsten carbynes (≡SiO)xW(≡CH)(Me)y (x = 1, y = 2; X = 2, y = 1): New efficient catalysts for alkyne cyclotrimerization

    KAUST Repository

    Riache, Nassima; Dé ry, Alexandre; Callens, Emmanuel; Poater, Albert; Samantaray, Manoja; Dey, Raju; Hong, Jinhua; Li, Kun; Cavallo, Luigi; Basset, Jean-Marie

    2015-01-01

    demonstrate that this catalyst species is active for alkyne cyclotrimerization without the formation of significant alkyne metathesis products. Additional DFT calculations highlight the importance of the W coordination sphere in supporting this experimental

  17. Polymerization of aliphatic alkynes with heterogeneous Mo catalysts supported on mesoporous molecular sieves

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Topka, Pavel; Sedláček, J.; Zedník, J.; Čejka, Jiří

    2008-01-01

    Roč. 46, č. 7 (2008), s. 2593-2599 ISSN 0887-624X R&D Projects: GA ČR GA203/05/2194; GA AV ČR IAA4040411; GA AV ČR KAN100400701 Institutional research plan: CEZ:AV0Z40400503 Keywords : alkyne polymerization * conjugated polymers * metathesis * Mo heterogeneous catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.821, year: 2008

  18. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin (UC)

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  19. Homogeneous and Supported Niobium Catalysts as Lewis Acid and Radical Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Tikkanen

    2006-12-31

    The synthesis of tetrachlorotetraphenylcyclopentadienyl group 5 metal complexes has been accomplished through two routes, one a salt metathesis with lithiumtetraphenylcyclopentadiende and the other, reaction with trimethyltintetraphenylcyclopentadiene. The reactants and products have been characterized by {sup 1}H and {sup 13}C({sup 1}H) NMR spectroscopy. The niobium complex promotes the silylcyanation of butyraldehyde. The grafting of metal complexes to silica gel surfaces has been accomplished using tetrakisdimethylamidozirconium as the metal precursor. The most homogeneous binding as determined by CP-MAS {sup 13}C NMR and infrared spectroscopy was obtained with drying at 500 C at 3 mtorr vacuum. The remaining amido groups can be replaced by reaction with alcohols to generate surface bound metal alkoxides. These bound catalysts promote silylcyanation of aryl aldehydes and can be reused three times with no loss of activity.

  20. Metathesis of cardanol over ammonium tagged Hoveyda-Grubbs type catalyst supported on SBA-15

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Polášek, Miroslav; Zedník, J.

    2018-01-01

    Roč. 304, APR 2018 (2018), s. 127-134 ISSN 0920-5861 R&D Projects: GA ČR GA17-01440S Institutional support: RVO:61388955 Keywords : Cardanol * Flow chemistry * Hoveyda-Grubbs type catalyst * Immobilized catalyst Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.636, year: 2016

  1. Build/Couple/Pair Strategy Combining the Petasis 3-Component Reaction with Ru-Catalyzed Ring-Closing Metathesis and Isomerization

    DEFF Research Database (Denmark)

    Ascic, Erhad; Le Quement, Sebastian Thordal; Ishøy, Mette

    2012-01-01

    A “build/couple/pair” pathway for the systematic synthesis of structurally diverse small molecules is presented. The Petasis 3-component reaction was used to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene...

  2. Bidirectional cross metathesis and ring-closing metathesis/ring opening of a C2-symmetric building block: a strategy for the synthesis of decanolide natural products

    Directory of Open Access Journals (Sweden)

    Bernd Schmidt

    2013-11-01

    Full Text Available Starting from the conveniently available ex-chiral pool building block (R,R-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i a site-selective cross metathesis, (ii a highly diastereoselective extended tethered RCM to furnish a (Z,E-configured dienyl carboxylic acid and (iii a Ru–lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation.

  3. Bidirectional cross metathesis and ring-closing metathesis/ring opening of a C 2-symmetric building block: a strategy for the synthesis of decanolide natural products.

    Science.gov (United States)

    Schmidt, Bernd; Kunz, Oliver

    2013-01-01

    Starting from the conveniently available ex-chiral pool building block (R,R)-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i) a site-selective cross metathesis, (ii) a highly diastereoselective extended tethered RCM to furnish a (Z,E)-configured dienyl carboxylic acid and (iii) a Ru-lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation.

  4. Revisiting the metathesis of 13C-monolabeled ethane

    KAUST Repository

    Maury, Olivier; Lefort, Laurent; Vidal, Vé ronique; Thivolle-Cazat, Jean; Basset, Jean-Marie

    2010-01-01

    The metathesis of 13C-monolabeled ethane leads to the parallel occurrence of degenerate and productive reactions, affording the statistical distribution of the various product isotopomers, which can be rationalized in terms of a mechanistic reaction

  5. Mo-catalyzed cross-metathesis reaction of propynylferrocene

    Czech Academy of Sciences Publication Activity Database

    Bobula, T.; Hudlický, J.; Novák, P.; Gyepes, R.; Císařová, I.; Štěpnička, P.; Kotora, Martin

    -, č. 25 (2008), s. 3911-3920 ISSN 1434-1948 Grant - others:GA MŠk(CZ) LC06070 Program:LC Institutional research plan: CEZ:AV0Z40550506 Keywords : alkynes * metallocenes * metathesis * electrochemistry * X-ray diffraction Subject RIV: CC - Organic Chemistry Impact factor: 2.694, year: 2008

  6. Thermal solid-state Z/E isomerization of 2-alkylidene-4-oxothiazolidines: effects of non-covalent interactions

    Directory of Open Access Journals (Sweden)

    ZDRAVKO DŽAMBASKI

    2011-03-01

    Full Text Available Configurational isomerization of stereo-defined 5-substituted and unsubstituted 2-alkylidene-4-oxothiazolidines (1 in the solid state, giving the Z/E mixtures in various ratios, was investigated by 1H-NMR spectroscopy, X-ray powder crystallography and differential scanning calorimetry (DSC. The Z/E composition can be rationalized in terms of non-covalent interactions, involving intermolecular and intramolecular hydrogen bonding and directional non-bonded 1,5-type S×××O interactions. X-Ray powder crystallography, using selected crystalline (Z-4-oxothiazolidine substrates, revealed transformation to the amorphous state during the irreversible Z®E process. A correlation between previous results on the Z/E isomerization in solution and now in the solid state was established.

  7. Controlled Synthesis of Polyenes by Catalytic Methods. Progress Report, December 1, 1989 -- November 30, 1992

    Science.gov (United States)

    Schrock, R. R.

    1992-01-01

    A more direct approach to polyenes by the direct polymerization of acetylenes has been achieved. We were able to show that polymerization of acetylene itself can be controlled with a well- characterized alkylidene catalyst, but only if a base such as quinuclidine is present in order to slow down the rate of propagation relative to initiation. (Quinuclidine may also stabilize vinylalkylidene intermediates formed in the reaction). Unfortunately, living polyenes were no more stable than isolated polyenes, and so this approach had its limitations. Direct polymerization of acetylene by Mo(CH-t-Bu)(NAr)(O-t-Bu){sub 2} was more successful, but inherent polyene instability was still a problem. The most important result of the past grant period is the finding that dipropargyl derivatives (HC=CCH{sub 2}XCH{sub 2}C=CH; X = CH{sub 2}, C(CO{sub 2}R){sub 2}, SiR{sub 2}, etc.), which have been reported to be cyclopolymerized by various classical catalysts by as yet unknown mechanisms, are polymerized by Mo(CH-t-Bu)(NAr)[OCMe(CF{sub 3}){sub 2}]{sub 2} in dimethoxyethane. We speculate that intramolecular formation of a five-membered ring in the product of {alpha} addition is fast enough to yield another terminal alkylidene on the time scale of the polymerization reaction, while a six-membered ring is formed in a reaction involving a more reaction terminal alkylidene. Either intermediate alkylidene, but most likely the terminal alkylidene, could react with additional monomer to lead to growth of a chain having dangling triple bonds that eventually could be employed to form crosslinks.

  8. Ab initio CASSCF study of the electronic structure of the transition-metal alkylidene-like complexes Mo-M[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, A.; Sanz, J.F. (Universidad de Sevilla (Spain))

    1992-12-02

    Experimental and theoretical research on the electronic and geometric structure of transition-metal-carbenes and -alkylidenes is an active area in chemistry nowadays due to their potential activity in catalysis and in organic and organometallic synthesis. A theoretical investigation of the electronic structure of the high-valent, transition-metal, alkylidene-like complexes MoM[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn) is reported. Based on ab initio calculations carried out at the complete active space multiconfiguration self-consistent field (CASSCF) level, the molecular structure of the ground state and some low-lying excited states have been determined. For M[prime] = C, Si, and Ge, the ground state has C[sub 2v] symmetry (state [sup 5]B[sub 1]) and corresponds to pairing each electron of the M[prime]H[sub 2] triplet [sup 3]B[sub 1] with an electron of Mo ([sup 7]S). In the case of MoSnH[sub 2], the lowest state is bent (C[sub s] symmetry, state [sup 7]A[prime]), the out-of-plane angle being 68[degrees], and dissociates into SnH[sub 2] ([sup 1]A[sub 1]) + Mo ([sup 7]S). Dissociation energies, potential energy profiles for the dissociation, harmonic force constants in terms of internal symmetry coordinates, and vibrational frequencies are reported. The comparison of these properties with those of their pentacarbonylated homologous (CO)[sub 5]M[double bond]M[prime]H[sub 2] shows that the carbene-like (Fischer) type of complexation is stronger than the alkylidene-like one (Schrock). 28 refs., 4 figs., 6 tabs.

  9. Metathesis synthesis and characterization of complex metal fluoride ...

    Indian Academy of Sciences (India)

    Administrator

    V MANIVANNAN*, P PARHI and JONATHAN W KRAMER. Department of Mechanical Engineering, Campus Delivery 1374, Colorado State University, Fort Collins,. CO 80523, USA. MS received 30 April 2008. Abstract. Metathesis synthesis of complex metal fluorides using mechanochemical activation has been reported.

  10. Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis

    Science.gov (United States)

    Nguyen, Thach T.; Koh, Ming Joo; Mann, Tyler J.; Schrock, Richard R.; Hoveyda, Amir H.

    2017-12-01

    Catalytic cross-metathesis is a central transformation in chemistry, yet corresponding methods for the stereoselective generation of acyclic trisubstituted alkenes in either the E or the Z isomeric forms are not known. The key problems are a lack of chemoselectivity—namely, the preponderance of side reactions involving only the less hindered starting alkene, resulting in homo-metathesis by-products—and the formation of short-lived methylidene complexes. By contrast, in catalytic cross-coupling, substrates are more distinct and homocoupling is less of a problem. Here we show that through cross-metathesis reactions involving E- or Z-trisubstituted alkenes, which are easily prepared from commercially available starting materials by cross-coupling reactions, many desirable and otherwise difficult-to-access linear E- or Z-trisubstituted alkenes can be synthesized efficiently and in exceptional stereoisomeric purity (up to 98 per cent E or 95 per cent Z). The utility of the strategy is demonstrated by the concise stereoselective syntheses of biologically active compounds, such as the antifungal indiacen B and the anti-inflammatory coibacin D.

  11. Synthetic studies on taxanes: A domino-enyne metathesis/Diels ...

    Indian Academy of Sciences (India)

    Abstract. A domino enyne cross-metathesis/intramolecular Diels-Alder reaction has been successfully used to synthesize a bicyclo[5.3.1] undecene, corresponding to AB-ring of taxol without the gem dimethyl group.

  12. Synthesis of Mono(perfluoroalkyl) Cyclodextrins via Cross Metathesis

    Czech Academy of Sciences Publication Activity Database

    Řezanka, M.; Eignerová, Barbara; Jindřich, J.; Kotora, M.

    -, č. 32 (2010), s. 6256-6262 ISSN 1434-193X R&D Projects: GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z40550506 Keywords : metathesis * cyclodextrins * fluorine * alkylation * amphiphiles Subject RIV: CC - Organic Chemistry Impact factor: 3.206, year: 2010

  13. Revisiting the metathesis of 13C-monolabeled ethane

    KAUST Repository

    Maury, Olivier

    2010-12-13

    The metathesis of 13C-monolabeled ethane leads to the parallel occurrence of degenerate and productive reactions, affording the statistical distribution of the various product isotopomers, which can be rationalized in terms of a mechanistic reaction scheme combining both processes. © 2010 American Chemical Society.

  14. The Effect of Nitrogen Surface Ligands on Propane Metathesis: Design and Characterizations of N-modified SBA15-Supported Schrock-type Tungsten Alkylidyne

    KAUST Repository

    Eid, Ahmed A.

    2014-04-01

    Catalysis, which is primarily a molecular phenomenon, is an important field of chemistry because it requires the chemical conversion of molecules into other molecules. It also has an effect on many fields, including, but not limited to, industry, environment and life Science[1]. Surface Organometallic Chemistry is an effective methodology for Catalysis as it imports the concept and mechanism of organometallic chemistry, to surface science and heterogeneous catalysis. So, it bridges the gap between homogenous and heterogeneous catalysis[1]. The aim of the present research work is to study the effect of Nitrogen surface ligands on the activity of Alkane, Propane in particular, metathesis. Our approach is based on the preparation of selectively well-defined group (VI) transition metal complexes supported onto mesoporous materials, SBA15 and bearing amido and/or imido ligands. We choose nitrogen ligands because, according to the literature, they showed in some cases better catalytic properties in homogenous catalysis in comparison with their oxygen counterparts[2]. The first section covers the modification of a highly dehydroxylated SBA15 surface using a controlled ammonia treatment. These will result in the preparation of two kind of Nitrogen surface ligands: -\\tOne with vicinal silylamine/silanol, (≡SiNH2)(≡SiOH), noted [N,O]SBA15 and, -\\tAnother\\tone\\twith\\tvicinal\\tbis-silylamine moieties (≡SiNH2)2, noted [N,N]SBA15[3]. The second section covers the reaction of Schrock type Tungsten Carbyne [W(≡C- tBu)(CH2-tBu)3] with those N-surface ligands and their characterizations by FT-IR, multiple quantum solid state NMR (1H, 13C), elemental analysis and gas phase analysis. The third section covers the generation of the active site, tungsten hydride species. Their performance toward propane metathesis reaction using the dynamic reactor technique PID compared toward previous well-known catalysts supported on silica oxide or mesoporous materials[4]. A fairly good

  15. Rare-earth-metal nitridophosphates through high-pressure metathesis

    International Nuclear Information System (INIS)

    Kloss, Simon David; Schnick, Wolfgang

    2015-01-01

    Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare-earth-metal nitridophosphate LiNdP_4N_8 is reported. High-pressure solid-state metathesis between LiPN_2 and NdF_3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single-crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd"3"+ ions were measured by SQUID magnetometry. LiNdP_4N_8 serves as a model system for the exploration of rare-earth-metal nitridophosphates that may even be expanded to transition metals. High-pressure metathesis enables the systematic study of these uncharted regions of nitride-based materials with unprecedented properties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting

    National Research Council Canada - National Science Library

    Low, Tammy K

    2006-01-01

    .... Our research goals consisted of employing olefin metathesis in the synthesis of peptidomimetics, and studying the feasibility of this method in dynamic combinatorial chemistry and molecular imprinting of nerve agents...

  17. Metathesis synthesis and characterization of complex metal fluoride ...

    Indian Academy of Sciences (India)

    Administrator

    Sivakumar et al 2004; Mandal and Gopalakrishnan 2005). Although metathesis reactions may initiate spontane- ously .... cal lithography are needed (Sahnoun et al 2005). KMF3 materials with perovskite structures are ... (Knox 1961; Machin et al 1963; Pari et al 1994) and shown in figure 5. The KMF3 compounds are anti-.

  18. Exploiting Confinement Effects to Tune Selectivity in Cyclooctane Metathesis

    KAUST Repository

    Pump, Eva

    2017-08-24

    The mechanism of cyclooctane metathesis using confinement effect strategies in mesoporous silica nanoparticles (MSNs) is discussed by catalytic experiments and density functional theory (DFT) calculations. WMe6 was immobilized inside the pores of a series of MSNs having the same structure but different pore diameters (60, 30 and 25 Å). Experiments in cyclooctane metathesis suggest that confinement effects observed in smaller pores (30 and 25 Å) improve selectivity towards the dimeric cyclohexadecane. In contrast, in larger pores (60 Å) a broad product distribution dominated by ring contracted cycloalkanes was found. The catalytic cycle and potential side reactions occurring at [(≡SiO-)WMe5] were examined with DFT calculations. Analysis of the geometries for the key reaction intermediates allowed to rationalize the impact of a confined environment on the enhanced selectivity towards the dimeric product in smaller pores, while in large pores the ring contracted products are favored.

  19. Structural and Pharmacological Effects of Ring-Closing Metathesis in Peptides

    Directory of Open Access Journals (Sweden)

    Pål Rongved

    2010-09-01

    Full Text Available Applications of ring-closing alkene metathesis (RCM in acyclic α- and β-peptides and closely related systems are reviewed, with a special emphasis on the structural and pharmacological effects of cyclization by RCM.

  20. Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by N-Donor SBA15 Surface Ligands: A Solid-State NMR and DFT Study

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2016-08-11

    Designing supported well-defined bis(carbene) complexes remains a key challenge in heterogeneous catalysis. The reaction of W(CtBu)(CH(2)tBu)(3) with amine-modified mesoporous SBA15 silica, which has vicinal silanol/silylamine pairs [(SiOH)(SiNH2)], leads to [(SiNH2-)(SiO-)W(CHtBu)(CH(2)tBu)(2)] and [(SiNH2-)(SiO-)W(=CHtBu)(2)(CH(2)tBu). Variable temperature, H-1-H-1 2D double-quantum, H-1-C-13 HETCOR, and HETCOR with spin diffusion solid-state NMR spectroscopy demonstrate tautomerization between the alkyl alkylidyne and the bis(alkylidene) on the SBA15 surface. Such equilibrium is possible through the coordination of W to the surface [(Si-OH)(Si-NH2)] groups, which act as a [N,O] pincer ligand. DFT calculations provide a rationalization for the surface-complex tautomerization and support the experimental results. This direct observation of such a process shows the strong similarity between molecular mechanisms in homogeneous and heterogeneous catalysis. In propane metathesis (at 150 degrees C), the tungsten bis(carbene) tautomer is favorable, with a turnover number (TON) of 262. It is the highest TON among all the tungsten alkyl-supported catalysts.

  1. Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by N-Donor SBA15 Surface Ligands: A Solid-State NMR and DFT Study

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa; Sofack-Kreutzer, Julien; Minenkov, Yury; Abou-Hamad, Edy; Hamzaoui, Bilel; Werghi, Baraa; Anjum, Dalaver H.; Cavallo, Luigi; Huang, Kuo-Wei; Basset, Jean-Marie

    2016-01-01

    Designing supported well-defined bis(carbene) complexes remains a key challenge in heterogeneous catalysis. The reaction of W(CtBu)(CH(2)tBu)(3) with amine-modified mesoporous SBA15 silica, which has vicinal silanol/silylamine pairs [(SiOH)(SiNH2)], leads to [(SiNH2-)(SiO-)W(CHtBu)(CH(2)tBu)(2)] and [(SiNH2-)(SiO-)W(=CHtBu)(2)(CH(2)tBu). Variable temperature, H-1-H-1 2D double-quantum, H-1-C-13 HETCOR, and HETCOR with spin diffusion solid-state NMR spectroscopy demonstrate tautomerization between the alkyl alkylidyne and the bis(alkylidene) on the SBA15 surface. Such equilibrium is possible through the coordination of W to the surface [(Si-OH)(Si-NH2)] groups, which act as a [N,O] pincer ligand. DFT calculations provide a rationalization for the surface-complex tautomerization and support the experimental results. This direct observation of such a process shows the strong similarity between molecular mechanisms in homogeneous and heterogeneous catalysis. In propane metathesis (at 150 degrees C), the tungsten bis(carbene) tautomer is favorable, with a turnover number (TON) of 262. It is the highest TON among all the tungsten alkyl-supported catalysts.

  2. Methods of refining natural oils, and methods of producing fuel compositions

    Science.gov (United States)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  3. Impact of electronic modification of the chelating benzylidene ligand in cis-dichloro-configured second-generation olefin metathesis catalysts on their activity

    KAUST Repository

    Pump, Eva; Poater, Albert; Zirngast, Michaela; Torvisco, Ana; Fischer, Roland C.; Cavallo, Luigi; Slugovc, Christian

    2014-01-01

    A series of electronically modified second-generation cis-dichloro ruthenium ester chelating benzylidene complexes was prepared, characterized, and benchmarked in a typical ring-opening metathesis polymerization (ROMP) experiment. The electronic tuning of the parent chelating benzylidene ligand (2-ethyl ester benzylidene) was achieved by substitution at the 4- and 5-positions with electron-withdrawing nitro or electron-donating methoxy groups. The effect of the electronic tuning on the cis-trans isomerization process was studied experimentally and theoretically. Density functional theory calculations clearly revealed the influence of electronic modification on the relative stability between the cis and trans isomers, which is decisive for the activity of the studied compounds as initiators in ROMP. © 2014 American Chemical Society.

  4. Impact of electronic modification of the chelating benzylidene ligand in cis-dichloro-configured second-generation olefin metathesis catalysts on their activity

    KAUST Repository

    Pump, Eva

    2014-06-09

    A series of electronically modified second-generation cis-dichloro ruthenium ester chelating benzylidene complexes was prepared, characterized, and benchmarked in a typical ring-opening metathesis polymerization (ROMP) experiment. The electronic tuning of the parent chelating benzylidene ligand (2-ethyl ester benzylidene) was achieved by substitution at the 4- and 5-positions with electron-withdrawing nitro or electron-donating methoxy groups. The effect of the electronic tuning on the cis-trans isomerization process was studied experimentally and theoretically. Density functional theory calculations clearly revealed the influence of electronic modification on the relative stability between the cis and trans isomers, which is decisive for the activity of the studied compounds as initiators in ROMP. © 2014 American Chemical Society.

  5. Omega-functionalized fatty acids, alcohols, and ethers via olefin metathesis

    Science.gov (United States)

    Methyl 17-hydroxy stearate was converted to methyl octadec-16-enoate using copper sulfate adsorbed on silica gel. This compound, possessing unsaturation at the opposite end of the chain from the carboxylate, served as a useful substrate for the olefin metathesis reaction. As a result, several fatt...

  6. Ruthenium Grubbs’ catalyst nanostructures grown by UV-excimer-laser ablation for self-healing applications

    International Nuclear Information System (INIS)

    Aïssa, B.; Nechache, R.; Haddad, E.; Jamroz, W.; Merle, P.G.; Rosei, F.

    2012-01-01

    Highlights: ► Successful preparation of 5-Ethylidene-2-Norbornene (5E2N) monomer reacted with Ruthenium Grubbs’ Catalyst (RGC) composite. ► The kinetics of the 5E2N ring opening metathesis polymerization (ROMP) is effective in a large temperature range (−20 to 45 °C). ► The kinetics of the 5E2N ROMP is occurring at very short time scales ( −4 Vol.%, occurring at very short time reaction. This approach opens new prospects for using healing agent nanocomposite materials for self-repair functionality, thereby obtaining a higher catalytic efficiency per unit mass.

  7. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts

    KAUST Repository

    Pelletier, Jeremie

    2016-03-09

    support taken as a X, L ligands in the Green formalism, the catalyst can be designed and generated by grafting the organometallic precursor containing the functional group(s) suitable to target a given transformation (surface organometallic fragments (SOMF)). The choice of these SOMF is based on the elementary steps known in molecular chemistry applied to the desired reaction. The coordination sphere necessary for any catalytic reaction involving paraffins, olefins, and alkynes also can thus be predicted. Only their most complete understanding can allow development of catalytic reactions with the highest possible selectivity, activity, and lifetime. This Account will examine the results of SOMC for hydrocarbon transformations on oxide surfaces bearing metals of group 4-6. The silica-supported catalysts are exhibiting remarkable performances for Ziegler-Natta polymerization and depolymerization, low temperature hydrogenolysis of alkanes and waxes, metathesis of alkanes and cycloalkanes, olefins metathesis, and related reactions. In the case of reactions involving molecules that do not contain carbon (water-gas shift, NH3 synthesis, etc.) this single site approach is also valid but will be considered in a later review. © 2016 American Chemical Society.

  8. Cationic Tungsten(VI) Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    KAUST Repository

    Dey, Raju; Samantaray, Manoja; Callens, Emmanuel; Hamieh, Ali Imad Ali; Emwas, Abdul-Hamid M.; Abou-Hamad, Edy; Kavitake, Santosh Giridhar; Basset, Jean-Marie

    2016-01-01

    Tungsten-hexa-methyl readily reacts with B(C6F5)3 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  9. Cationic Tungsten(VI) Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    KAUST Repository

    Dey, Raju

    2016-04-13

    Tungsten-hexa-methyl readily reacts with B(C6F5)3 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  10. Metathesis in the generation of low-temperature gas in marine shales

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2010-01-01

    Full Text Available Abstract The recent report of low-temperature catalytic gas from marine shales took on additional significance with the subsequent disclosure of natural gas and low-temperature gas at or near thermodynamic equilibrium in methane, ethane, and propane. It is important because thermal cracking, the presumed source of natural gas, cannot generate these hydrocarbons at equilibrium nor can it bring them to equilibrium over geologic time. The source of equilibrium and the source of natural gas are either the same (generation under equilibrium control or closely associated. Here we report the catalytic interconversion of hydrocarbons (metathesis as the source of equilibrium in experiments with Cretaceous Mowry shale at 100°C. Focus was on two metathetic equilibria: methane, ethane, and propane, reported earlier, Q (K = [(C1*(C3]/[(C22], and between these hydrocarbons and n-butane, Q* (K = [(C1*(n-C4]/[(C2*(C3], reported here for the first time. Two observations stand out. Initial hydrocarbon products are near equilibrium and have maximum average molecular weights (AMW. Over time, products fall from equilibrium and AMW in concert. It is consistent with metathesis splitting olefin intermediates [Cn] to smaller intermediates (fission as gas generation creates open catalytic sites ([ ]: [Cn] + [ ] → [Cn-m] + [Cm]. Fission rates increasing exponentially with olefin molecular weight could contribute to these effects. AMW would fall over time, and selective fission of [C3] and [n-C4] would draw Q and Q* from equilibrium. The results support metathesis as the source of thermodynamic equilibrium in natural gas.

  11. Synthesis and Ring-Opening Metathesis Polymerization of Second-Generation Dendronized Poly(ether Monomers Initiated by Ruthenium Carbenes

    Directory of Open Access Journals (Sweden)

    Guzmán Pablo E.

    2016-03-01

    Full Text Available The Ring-Opening Metathesis Polymerization (ROMP of second-generation dendronized monomers is described. Using the highly active and fast-initiating third-generation ruthenium complex [(H2IMes(pyr2Cl2RuCHPh], moderate to high molecular weight polymers (430-2230 kDa are efficiently synthesized with low dispersities (Ð = 1.01-1.17. This study highlights the power of the metathesis approach toward polymer synthesis in a context where monomer structure can significantly impede polymerization.

  12. Design, Synthesis, and Crystal Structures of 6-Alkylidene-2 -Substituted Penicillanic Acid Sulfones as Potent Inhibitors of Acinetobacter baumannii OXA-24 Carbapenemase

    Energy Technology Data Exchange (ETDEWEB)

    Bou, G.; Santillana, E; Sheri, A; Beceiro, A; Sampson, J; Kalp, M; Bethel, C; Distler, A; Drawz, S; et. al.

    2010-01-01

    Class D {beta}-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial {beta}-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel {beta}-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2{prime}-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important {beta}-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 {beta}-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influences inhibitor recognition. IC{sub 50} values against OXA-24 and two OXA-24 {beta}-lactamase variants ranged from 10 {+-} 1 (4 vs WT) to 338 {+-} 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest K{sub i} (500 {+-} 80 nM vs WT), and 1 possessed the highest inactivation efficiency (k{sub inact}/K{sub i} = 0.21 {+-} 0.02 {micro}M{sup -1}s{sup -1}). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 {angstrom}) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2{prime}-substituted penicillin sulfones are effective mechanism-based inactivators of class D {beta}-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D {beta}-lactamases is proposed.

  13. New ROMP Synthesis of Ferrocenyl Dendronized Polymers.

    Science.gov (United States)

    Liu, Xiong; Ling, Qiangjun; Zhao, Li; Qiu, Guirong; Wang, Yinghong; Song, Lianxiang; Zhang, Ying; Ruiz, Jaime; Astruc, Didier; Gu, Haibin

    2017-10-01

    First- and second-generation Percec-type dendronized ferrocenyl norbornene macromonomers containing, respectively, three and nine ferrocenyl termini are synthesized and polymerized by ring-opening metathesis polymerization using Grubbs' third-generation olefin metathesis catalyst with several monomer/catalyst feed ratios between 10 and 50. The rate of polymerization is highly dependent on the generation of the dendronized macromonomers, but all these ring-opening metathesis polymerization reactions are controlled, and near-quantitative monomer conversions are achieved. The numbers of ferrocenyl groups obtained are in agreement with the theoretical ones according to the cyclic voltammetry studies as determined using the Bard-Anson method. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of 7-Deoxypancratistatin from Carbohydrates by the Use of Olefin Metathesis

    DEFF Research Database (Denmark)

    Håkansson, Anders Eckart; Palmelund, Anders; Holm, H.

    2006-01-01

    from D-xylose and piperonal. The former is converted into ribofuranoside 28, which is coupled with bromide 7 in the presence of zinc, and this is followed by ring-closing olefin metathesis. Subsequent Overman rearrangement, dihydroxylation, and deprotection then affords the natural product....

  15. Synthesis of the carbocyclic core of the cornexistins by ring-closing metathesis.

    Science.gov (United States)

    Clark, J Stephen; Marlin, Frederic; Nay, Bastien; Wilson, Claire

    2003-01-09

    An advanced intermediate in the synthesis of the phytotoxins cornexistin and hydroxycornexistin has been synthesized. Sequential palladium-mediated sp(2)-sp(3) fragment coupling and ring-closing diene metathesis have been used to construct the nine-membered carbocyclic core found in the natural products. [reaction--see text

  16. Synthesis, characterization and dielectric properties of polynorbornadiene–clay nanocomposites by ROMP using intercalated Ruthenium catalyst

    International Nuclear Information System (INIS)

    Yalçınkaya, Esra Evrim; Balcan, Mehmet; Güler, Çetin

    2013-01-01

    Polynorbornadiene clay nanocomposites were prepared for the first time by the ring opening metathesis polymerization (ROMP) using modified montmorillonite and polynorbornadiene the latter of which is used commonly in electric–electronic industry. The Na–MMT clay was modified by a quaternary ammonium salt containing Ruthenium complex as a suitable catalyst and intercalant as well. The norbornadiene monomers were polymerized within the modified montmorillonite layers by in-situ polymerization method in different clay loading degrees. Intercalation ability of the Ru catalyst and partially exfoliated nanocomposite structure were proved by powder X-ray Diffraction (XRD) Spectroscopy and Transmission Electron Microscopy (TEM) methods. The nanocomposite materials with high thermal degradation temperature and low dielectric constant compared to the pure polynorbornadiene were obtained. The dielectric constants decreased with the increase of the clay content. - Highlights: • Polynorbornadiene–clay nanocomposites were prepared for the first time. • Ruthenium complex was assigned as both suitable catalyst and intercalant. • The norbornadiene was polymerized by in-situ polymerization method. • Exfoliation/intercalation structures were found to be related with loading degree. • PNBD–MMT nanocomposites had a higher thermal degradation temperature and lower dielectric constant

  17. Metathesis Polymerization Reactions Induced by the Bimetallic Complex (Ph4P2[W2(μ-Br3Br6

    Directory of Open Access Journals (Sweden)

    Despoina Chriti

    2015-12-01

    Full Text Available The reactivity of the bimetallic complex (Ph4P2[W2(μ-Br3Br6] ({W 2.5 W}7+, a′2e3 towards ring opening metathesis polymerization (ROMP of norbornene (NBE and some of its derivatives, as well as the mechanistically related metathesis polymerization of phenylacetylene (PA, is presented. Our results show that addition of a silver salt (AgBF4 is necessary for the activation of the ditungsten complex. Polymerization of PA proceeds smoothly in tetrahydrofuran (THF producing polyphenylacetylene (PPA in high yields. On the other hand, the ROMP of NBE and its derivatives is more efficient in CH2Cl2, providing high yields of polymers. 13C Cross Polarization Magic Angle Spinning (CPMAS spectra of insoluble polynorbornadiene (PNBD and polydicyclopentadiene (PDCPD revealed the operation of two mechanisms (metathetic and radical for cross-linking, with the metathesis pathway prevailing.

  18. Silica-supported tungsten carbynes (≡SiO)xW(≡CH)(Me)y (x = 1, y = 2; X = 2, y = 1): New efficient catalysts for alkyne cyclotrimerization

    KAUST Repository

    Riache, Nassima

    2015-02-23

    The activity of silica-supported tungsten carbyne complexes (≡SiO)xW(≡CH)(Me)y (x = 1, y = 2; x = 2, y = 1) toward alkynes is reported. We found that they are efficient precatalysts for terminal alkyne cyclotrimerization with high TONs. We also demonstrate that this catalyst species is active for alkyne cyclotrimerization without the formation of significant alkyne metathesis products. Additional DFT calculations highlight the importance of the W coordination sphere in supporting this experimental behavior.

  19. A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal

    Science.gov (United States)

    Solowey, Douglas P.; Mane, Manoj V.; Kurogi, Takashi; Carroll, Patrick J.; Manor, Brian C.; Baik, Mu-Hyun; Mindiola, Daniel J.

    2017-11-01

    Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CHtBu(CH3) (PNP=N[2-P(CHMe2)2-4-methylphenyl]2-), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C4 to C8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.

  20. Synthetic Strategies for Converting Carbohydrates into Carbocycles by the Use of Olefin Metathesis

    DEFF Research Database (Denmark)

    Madsen, Robert

    2007-01-01

    This microreview covers recent advances in the use of ring-closing metathesis for the synthesis of carbocycles from carbohydrates. Various strategies for the synthesis of a,w-dienes from carbohydrates are presented, which give rise to a large variety of dienes with different stereochemistry, prot...

  1. Efforts toward rapid construction of the cortistatin A carbocyclic core via enyne-ene metathesis

    KAUST Repository

    Baumgartner, Corinne; Ma, Sandy; Liu, Qi; Stoltz, Brian M.

    2010-01-01

    Our efforts toward the construction of the carbocylic core of cortistatin A via an enyne-ene metathesis are disclosed. Interestingly, an attempted S N2 inversion of a secondary mesylate in our five-membered D-ring piece gave a product with retention

  2. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    KAUST Repository

    Mazoyer, Etienne

    2011-12-02

    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi-functional catalyst" through 1-butene isomerization on W-hydride and 1-butene/2-butenes cross-metathesis on W-carbene. This active moiety is generated in situ at the initiation steps by insertion of 1-butene on tungsten hydrides precursor W-H/Al2O3, 1 followed by α-H and β-H abstraction. © 2011 American Chemical Society.

  3. Metathesis reactions for the synthesis of ring-fused carbazoles

    CSIR Research Space (South Africa)

    Pelly, SC

    2005-12-09

    Full Text Available stream_source_info pelly_2005.pdf.txt stream_content_type text/plain stream_size 48007 Content-Encoding ISO-8859-1 stream_name pelly_2005.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Metathesis Reactions... (99). N,Nminute-Di-tert-butyldicarboxylate-2,2minute-biindolyl-3,3minute-divi- nyl 12. Into a 50-mL two-necked oven-dried flask, fitted with a dropping funnel, was placed MePPh3Br (533 mg, 1.49 mmol), and the contents of the flask were blanketed...

  4. A cross-metathesis approach to the stereocontrolled synthesis of the AB ring segment of ciguatoxin

    OpenAIRE

    Kadota, Isao; Abe, Takashi; Uni, Miyuki; Takamura, Hiroyoshi; Yamamoto, Yoshinori

    2008-01-01

    Synthesis of the AB ring segments of ciguatoxin is described. The present synthesis includes a Lewis acid mediated cyclization of allylstannane with aldehyde, cross-metathesis reaction introducing the side chain, and Grieco-Nishizawa dehydration on the A ring.

  5. A stereoselective synthesis of (+)-physoperuvine using a tandem aza-Claisen rearrangement and ring closing metathesis reaction.

    Science.gov (United States)

    Zaed, Ahmed M; Swift, Michael D; Sutherland, Andrew

    2009-07-07

    A stereoselective synthesis of (+)-physoperuvine, a tropane alkaloid from Physalis peruviana Linne has been developed using a one-pot tandem aza-Claisen rearrangement and ring closing metathesis reaction to form the key amino-substituted cycloheptene ring.

  6. Tandem radical reactions and ring-closing metathesis. Application in the synthesis of cyclooctenes.

    Science.gov (United States)

    Sibi, Mukund P; Aasmul, Mona; Hasegawa, Hikaru; Subramanian, Thangaiah

    2003-08-07

    [reaction: see text] Fumarate- and acrylate-substituted oxazolidinones undergo tandem radical reaction to form dienes in moderate to good yields. The resulting dienes provide cyclooctenes in moderate to good yields after ring-closing metathesis (RCM). The role of the carbon backbone substituents and other variables in the efficiency of the eight-membered ring formation is discussed.

  7. Efforts toward rapid construction of the cortistatin A carbocyclic core via enyne-ene metathesis

    KAUST Repository

    Baumgartner, Corinne

    2010-01-01

    Our efforts toward the construction of the carbocylic core of cortistatin A via an enyne-ene metathesis are disclosed. Interestingly, an attempted S N2 inversion of a secondary mesylate in our five-membered D-ring piece gave a product with retention of stereochemistry. © 2010 The Royal Society of Chemistry.

  8. Catalytic Enantioselective Synthesis of Naturally Occurring Butenolides via Hetero-Allylic Alkylation and Ring Closing Metathesis

    NARCIS (Netherlands)

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; Zijl, Anthoni W. van; Fletcher, Stephen P.; Minnaard, Adriaan J.; Feringa, Bernard

    2011-01-01

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey

  9. Synthesis of novel aryl brassinosteroids through alkene cross-metathesis and preliminary biological study

    Czech Academy of Sciences Publication Activity Database

    Kořínková, Petra; Bazgier, V.; Oklešťková, Jana; Rárová, L.; Strnad, Miroslav; Kvasnica, Miroslav

    2017-01-01

    Roč. 127, NOV (2017), s. 46-55 ISSN 0039-128X R&D Projects: GA ČR GJ15-08202Y; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Brassinosteroids * BRI1 receptor kinase * Cross-metathesis * Molecular docking * Organic synthesis * Plant bioassays Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.282, year: 2016

  10. Synthesis of Gabosine A and N from Ribose by the Use of Ring-Closing Metathesis

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Fanefjord, Mette; Hansen, Flemming Gundorph

    2009-01-01

    -methylallyl bromide. The functionalized octa-1,7-diene, thus obtained, is converted into the six-membered gabosine skeleton by ring-closing olefin metathesis. Subsequent protective group manipulations and oxidation gives rise to gabosine N in a total of 8 steps from ribose while the synthesis of gabosine...

  11. Effect of Support on Metathesis of n-Decane: Drastic Improvement in Alkane Metathesis with WMe5 Linked to Silica-Alumina

    KAUST Repository

    Samantaray, Manoja

    2015-03-11

    [WMe6] (1) supported on the surface of SiO2-Al2O3(500) (2) has been extensively characterized by solid-state NMR spectroscopy, elemental analysis, and gas quantification, which clearly reveal the formation of a mixture of monopodal and bipodal species with the migration of methyl from W to Al. The supported species SiO2-Al2O3(500) (2) transformed at 120°C into two types of carbynic centers, one of which is cationic and the other neutral. These species are very efficient for the metathesis of n-decane. Comparison with already-synthesized neutral bipodal tungsten indicates that the high increase in activity is due to the cationic character of the grafted tungsten.

  12. Effect of Support on Metathesis of n-Decane: Drastic Improvement in Alkane Metathesis with WMe5 Linked to Silica-Alumina

    KAUST Repository

    Samantaray, Manoja; Dey, Raju; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Basset, Jean-Marie

    2015-01-01

    [WMe6] (1) supported on the surface of SiO2-Al2O3(500) (2) has been extensively characterized by solid-state NMR spectroscopy, elemental analysis, and gas quantification, which clearly reveal the formation of a mixture of monopodal and bipodal species with the migration of methyl from W to Al. The supported species SiO2-Al2O3(500) (2) transformed at 120°C into two types of carbynic centers, one of which is cationic and the other neutral. These species are very efficient for the metathesis of n-decane. Comparison with already-synthesized neutral bipodal tungsten indicates that the high increase in activity is due to the cationic character of the grafted tungsten.

  13. Well-defined polyethylene molecular brushes by polyhomologation and ring opening metathesis polymerization

    KAUST Repository

    Zhang, Hefeng; Gnanou, Yves; Hadjichristidis, Nikolaos

    2014-01-01

    A novel strategy using polyhomologation and ring opening metathesis polymerization (ROMP) has been developed for the synthesis of well-defined polyethylene (PE) molecular brushes. Polyhomologation was used to afford an OH-terminated PE, which after transformation to the norbornyl PE macromonomer was subjected to ROMP. Kinetics of ROMP of the PE macromonomer was studied by in situ1H NMR monitoring. The brush structure was proved from HT-GPC, 1H NMR and DSC results.

  14. Design and synthesis of novel bis-annulated caged polycycles via ring-closing metathesis: pushpakenediol

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2014-11-01

    Full Text Available Intricate caged molecular frameworks are assembled by an atom economical process via a Diels–Alder (DA reaction, a Claisen rearrangement, a ring-closing metathesis (RCM and an alkenyl Grignard addition. The introduction of olefinic moieties in the pentacycloundecane (PCUD framework at appropriate positions followed by RCM led to the formation of novel heptacyclic cage systems.

  15. C-84 Selective Porphyrin Macrocycle with an Adaptable Cavity Constructed Through Alkyne Metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. X.; Long, H.; Zhang, W.

    2012-06-21

    A bisporphyrin macrocycle was constructed from a porphyrin-based diyne monomer in one step through alkyne metathesis. The fullerene binding studies (C{sub 60}, C{sub 70} and C{sub 84}) showed the highest binding affinity of the macrocycle for C{sub 84}, which is in great contrast to its bisporphyrin four-armed cage analogue that showed the strongest binding with C{sub 70}.

  16. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  17. Synthesis of porphyryl boronates with (un)saturated side-chains

    OpenAIRE

    SENGE, MATHIAS; SERGEEVA, NATALIA

    2008-01-01

    PUBLISHED Porphyrins with (un)saturated side?chains containing boron residues were developed as synthons for porphyrin functionalization. Porphyrins with mono and bis-substituted unsaturated boronyl residues were prepared in good yields (52?66 %) using a cross?metathesis approach in the presence of Grubbs I-generation catalysts. In all cases complete E?stereoselectivity (100 %) was observed. Furthermore, formal cross?metathesis products with ?,??unsaturated chains smoothly underwent additi...

  18. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    KAUST Repository

    Morandi, Bill

    2013-07-26

    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone.

  19. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    KAUST Repository

    Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2013-01-01

    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone.

  20. SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions

    KAUST Repository

    Qureshi, Ziyauddin

    2017-01-05

    Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4) (ImDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [ImDippNW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-ImDippN] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.

  1. SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions

    KAUST Repository

    Qureshi, Ziyauddin; Hamieh, Ali Imad Ali; Barman, Samir; Maity, Niladri; Samantaray, Manoja; Ould-Chikh, Samy; Abou-Hamad, Edy; Falivene, Laura; D’ Elia, Valerio; Rothenberger, Alexander; Llorens, Isabelle; Hazemann, Jean-Louis; Basset, Jean-Marie

    2017-01-01

    Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4) (ImDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [ImDippNW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-ImDippN] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.

  2. Poisoning Experiments Aimed at Discriminating Active and Less-Active Sites of Silica-Supported Tantalum Hydride for Alkane Metathesis

    KAUST Repository

    Saggio, Guillaume; Taoufik, Mostafa; Basset, Jean-Marie; Thivolle-Cazat, Jean

    2010-01-01

    Only 50% of the silica-supported tantalum hydride sites are active in the metathesis of propane. Indeed, more than 45% of the tantalum hydride can be eliminated by a selective oxygen poisoning of inactive sites with no significant decrease

  3. Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts.

    Science.gov (United States)

    Debecker, Damien P; Le Bras, Solène; Boissière, Cédric; Chaumonnot, Alexandra; Sanchez, Clément

    2018-04-16

    various relevant chemical reactions like isomerisation, hydrogenation, olefin metathesis, pollutant total oxidation, selective oxidation, CO2 methanation, etc. A short survey of patents and industrial applications is also presented. Our objective is to demonstrate the tremendous possibilities offered by the coupling between bottom up synthesis routes and these aerosol processing technologies which will most probably represent a major route of innovation in the mushrooming field of catalyst preparation research.

  4. Synthesis of a natural product-inspired eight-membered ring lactam library via ring-closing metathesis.

    Science.gov (United States)

    Brown, Neil; Xie, Baohan; Markina, Nataliya; Vandervelde, David; Perchellet, Jean-Pierre H; Perchellet, Elisabeth M; Crow, Kyle R; Buszek, Keith R

    2008-09-01

    We have prepared a novel speculative eight-membered lactam demonstration library based on the skeletal structure of the potent antitumor marine natural product octalactin A. The basic scaffold was readily constructed in a convergent fashion via ring-closing metathesis chemistry from the corresponding diene amides. A cursory examination of the biological properties of the library validates the relevance and significance of these structures.

  5. Investigation of the ROMP catalysis mechanism of norbornene using methods of density functional; Investigacao do mecanismo de catalise ROMP do norborneno utilizando metodos de funcional de densidade

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carlos Pereira da, E-mail: carlosps1985@gmail.co [Institutor Federal de Educacao, Ciencia e Tecnologia do Piaui, Teresina, PI (Brazil); Lima, Francisco das Chagas Alves [Universidade Estadual do Piaui, Teresina, PI (Brazil). Coordenacao de Quimica; Leal, Regis Casimiro; Moita Neto, Jose Machado [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil)

    2010-07-01

    This work presents a density functional theory study of the norbornene ROMP metathesis reactions. The energies have been calculated in a Grubbs catalyst model Cl{sub 2}(PH{sub 3}){sub 2}Ru=CH{sub 2}. The geometries and energy profile are similar to the Grubbs methylidene (Cl{sub 2}(PCy{sub 3}){sub 2}Ru=CH{sub 2} real model. It was found that the metathesis reaction proceeds via associative mechanism (catalyst-norbornene) followed by dissociative substitution of a phosphine ligand with norbornene, giving a monophosphine complex. The results are in reasonable agreement with the available experimental data. The dissociation energy of the phosphines is predicted to be 23.2 kcal mol{sup -1}. (author)

  6. Synthesis of Heterocycles through a Ruthenium‐Catalyzed Tandem Ring‐Closing Metathesis/Isomerization/N‐Acyliminium Cyclization Sequence

    DEFF Research Database (Denmark)

    Ascic, Erhad; Jensen, Jakob Feldthusen; Nielsen, Thomas Eiland

    2011-01-01

    Tandem bicycle: In the title reaction double bonds created during ring-closing metathesis isomerize to generate reactive iminium intermediates that undergo intramolecular cyclization reactions with tethered heteroatom and carbon nucleophiles. In this way, a series of biologically interesting hete...... heterocyclic compounds can be made, including a known precursor for the total synthesis of the antiparasitic natural product harmicine....

  7. Metathesis of 2-pentene over Mo and W supported mesoporous molecular sieves MCM-41 and SBA-15

    Czech Academy of Sciences Publication Activity Database

    Ibrahim, M. A.; Akhtar, M. N.; Čejka, Jiří; Montanari, E.; Balcar, Hynek; Kubů, Martin; Al-Khattaf, S. S.

    2017-01-01

    Roč. 53, SEP 2017 (2017), s. 119-126 ISSN 1226-086X R&D Projects: GA ČR(CZ) GAP106/12/0189 Institutional support: RVO:61388955 Keywords : metathesis * MCM-41 * SBA-15 Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.421, year: 2016

  8. Highly recoverable pyridinium-tagged Hoveyda-Grubbs pre-catalyst for olefin metathesis. Design of the boomerang ligand toward the optimal compromise between activity and reusability.

    Science.gov (United States)

    Rix, Diane; Caïjo, Fréderic; Laurent, Isabelle; Gulajski, Lukasz; Grela, Karol; Mauduit, Marc

    2007-09-28

    Whereas the boomerang ligand of Hoveyda-Grubbs pre-catalysts can be modified by attachment of a pyridinium tag to its benzylidene moiety, a precise adjustment of the length of the spacer allows the optimum balance to be reached between the activity of the catalyst and its recoverability, exceeding 98% after 6 catalytic runs in the best case.

  9. Simple addition of silica to an alkane solution of Wilkinson WMe6 or Schrock W alkylidyne complex give active complex for saturated and unsaturated hydrocarbons metathesis

    KAUST Repository

    Callens, Emmanuel

    2015-08-24

    Addition of PDA silica to a solution of the Wilkinson WMe6 as well as the Schrock W neopentilidyne tris neopentyl complex catalyzes linear or cyclic alkanes to produce respectively a distribution of linear alkanes from methane up to triacontane or a mixture of cyclic and macrocyclic hydrocarbons. This single catalytic system transforms also linear α-olefins into higher and lower homologues via isomerization/metathesis mechanism (ISOMET). This complex is also efficient towards functionalized olefins. Unsaturated fatty acid esters (FAEs) are converted into diesters corresponding to self-metathesis products.

  10. Cyclic phosphopeptides for interference with Grb2 SH2 domain signal transduction prepared by ring-closing metathesis and phosphorylation

    NARCIS (Netherlands)

    Dekker, Frank J; de Mol, Nico J; Fischer, Marcel J E; Kemmink, Johan; Liskamp, Rob M J; Dekker, Frank

    2003-01-01

    Cyclic phosphopeptides were prepared using ring-closing metathesis followed by phosphorylation. These cyclic phosphopeptides were designed to interact with the SH2 domain of Grb2, which is a signal transduction protein of importance as a target for antiproliferative drug development. Binding of

  11. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    Science.gov (United States)

    Lupinetti, Anthony J [Los Alamos, NM; Garcia, Eduardo [Los Alamos, NM; Abney, Kent D [Los Alamos, NM

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  12. Olefin cross metathesis based de novo synthesis of a partially protected L-amicetose and a fully protected L-cinerulose derivative

    Directory of Open Access Journals (Sweden)

    Bernd Schmidt

    2014-05-01

    Full Text Available Cross metathesis of a lactate derived allylic alcohol and acrolein is the entry point to a de novo synthesis of 4-benzoate protected L-amicetose and a cinerulose derivative protected at C5 and C1.

  13. Process for compound transformation

    KAUST Repository

    Basset, Jean-Marie

    2016-12-29

    Embodiments of the present disclosure provide for methods of using a catalytic system to chemically transform a compound (e.g., a hydrocarbon). In an embodiment, the method does not employ grafting the catalyst prior to catalysis. In particular, embodiments of the present disclosure provide for a process of hydrocarbon (e.g., C1 to C20 hydrocarbon) metathesis (e.g., alkane, olefin, or alkyne metathesis) transformation, where the process can be conducted without employing grafting prior to catalysis.

  14. Developing new methods for the mono-end functionalization of living ring opening metathesis polymers.

    Science.gov (United States)

    Kilbinger, Andreas F M

    2012-01-01

    In this article we present a review of our recent results in one area of research we are involved in. All research efforts in our group focus on functional polymers and new ways of gaining higher levels of control with regard to the placement of functional groups within these polymers. Here, the living ring opening metathesis polymerization (ROMP) will be reviewed for which end-functionalization methods had been rare until very recently. Polymers carrying particular functional groups only at the chain-ends are, however, very interesting for a variety of industrial and academic applications. Polymeric surfactants and polymer-protein conjugates are two examples for the former and polymer-β-sheet-peptide conjugates one example for the latter. The functionalization of macroscopic or nanoscopic surfaces often relies on mono-end functional polymers. Complex macromolecular architectures are often constructed from macromolecules carrying exactly one functional group at their chain- end. The ring opening metathesis polymerization is particularly interesting in this context as it is one of the most functional group tolerant polymerization methods known. Additionally, high molecular weight polymers are readily accessible with this technique, a feature that living radical polymerizations often struggle to achieve. Finding new ways of functionalizing the polymer chain-end of ROMP polymers has therefore been a task long overdue. Here, we present our contribution to this area of research.

  15. Non-aqueous metathesis as a general approach to prepare nanodispersed materials: Case study of scheelites

    International Nuclear Information System (INIS)

    Afanasiev, Pavel

    2015-01-01

    A general approach to the preparation of inorganic nanoparticles is proposed, using metathesis of precursor salts in non-aqueous liquids. Nanoparticles of scheelites AMO 4 (A=Ba, Sr, Ca; M=Mo, W), were obtained with a quantitative yield. Precipitations in formamide, N-methylformamide, propylene carbonate, DMSO and polyols often provide narrow particle size distributions. Advantageous morphology was explained by strong ionic association in non-aqueous solvents, leading to slow nucleation and negligible Ostwald ripening. Mean particle size below 10 nm and high specific surface areas were obtained for several Ca(Sr)Mo(W)O 4 materials, making them promising for applications as adsorbents or catalysts. Zeta-potential of scheelites in aqueous suspensions showed negative values in a wide range of pH. Systematic study of optical properties demonstrated variation of optical gap in the sequences W>Mo and Ba>Sr>Ca. The observed trends were reproduced by DFT calculations. No quantum confinement effect was observed for small particles, though the surface states induce low-energy features in the optical spectra. - Graphical abstract: Scheelites AMO 4 (A=Ca, Sr, Ba; M=Mo, W) were prepared in various non-aqueous liquids with high specific surface areas and narrow size distributions. The optical gap of scheelites changes in the series Ca

  16. Spiro annulation of cage polycycles via Grignard reaction and ring-closing metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-08-01

    Full Text Available A simple synthetic strategy to C2-symmetric bis-spiro-pyrano cage compound 7 involving ring-closing metathesis is reported. The hexacyclic dione 10 was prepared from simple and readily available starting materials such as 1,4-naphthoquinone and cyclopentadiene. The synthesis of an unprecedented octacyclic cage compound through intramolecular Diels–Alder (DA reaction as a key step is described. The structures of three new cage compounds 7, 12 and 18 were confirmed by single crystal X-ray diffraction studies.

  17. Construction of Eight-Membered Carbocycles with Trisubstituted Double Bonds Using the Ring Closing Metathesis Reaction

    Directory of Open Access Journals (Sweden)

    Motoo Tori

    2010-06-01

    Full Text Available Medium sized carbocycles are particularly difficult to synthesize. Ring closing metathesis reactions (RCM have recently been applied to construct eight-membered carbocycles, but trisubstituted double bonds in the eight-membered rings are more difficult to produce using RCM reactions. In this review, model examples and our own results are cited and the importance of the preparation of suitably designed precursors is discussed. Examples of RCM reactions used in the total synthesis of natural products are also outlined.

  18. Iron based superconductors and related compounds synthesized by solid state metathesis and high temperature reactions

    International Nuclear Information System (INIS)

    Frankovsky, Rainer

    2013-01-01

    The results of this thesis can be divided into three major topics, which can also be seen as different approaches of solid state chemistry to reveal interesting features of known and unknown compounds and to develop alternative synthesis routes. Firstly, known compounds with related structural motifs to the superconducting iron-arsenides were investigated regarding their structural and physical properties. In case of La 3 Pd 4 Ge 4 the influence of Fe doping on the properties was studied, whereas in the series ZrMAs (M=Ti,V) the physical properties have not yet been reported at all and were investigated for the first time. Secondly, an alternative synthesis route has been developed for the synthesis of superconducting LaFeAsO 1-x F x . This solid state metathesis reaction distinctly increased the quality of the samples compared to conventionally prepared products. Furthermore, the reaction pathway was investigated and clarified, which helps to understand the processes during high temperature solid state metathesis reactions in general. Thirdly, this alternative synthesis route was expanded to other systems and new compounds like co-substituted LaFe 1-x Mn x AsO 1-y F y were prepared and thoroughly investigated. This led to a complex study of the interplay of magnetism, electronic and structural conditions and the occurrence of superconducting properties. The investigation and understanding of such complex coherences will probably be decisive for the further understanding of the superconducting mechanism in iron based superconductors.

  19. Design and synthesis of polycyclic sulfones via Diels-Alder reaction and ring-rearrangement metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Gunta, Rama

    2015-01-01

    Here, we describe a new and simple synthetic strategy to various polycyclic sulfones via Diels-Alder reaction and ring-rearrangement metathesis (RRM) as the key steps. This approach delivers tri- and tetracyclic sulfones with six (n = 1), seven (n = 2) or eight-membered (n = 3) fused-ring systems containing trans-ring junctions unlike the conventional all cis-ring junctions generally obtained during the RRM sequence. Interestingly the starting materials used are simple and commercially available.

  20. Tandem cross enyne metathesis (CEYM)-intramolecular Diels-Alder reaction (IMDAR). An easy entry to linear bicyclic scaffolds.

    Science.gov (United States)

    Miró, Javier; Sánchez-Roselló, María; Sanz, Álvaro; Rabasa, Fernando; Del Pozo, Carlos; Fustero, Santos

    2015-01-01

    A new tandem cross enyne metathesis (CEYM)-intramolecular Diels-Alder reaction (IMDAR) has been carried out. It involves conjugated ketones, esters or amides bearing a remote olefin and aromatic alkynes as the starting materials. The overall process enables the preparation of a small family of linear bicyclic scaffolds in a very simple manner with moderate to good levels of diastereoselectivity. This methodology constitutes one of the few examples that employ olefins differently than ethylene in tandem CEYM-IMDAR protocols.

  1. Tandem cross enyne metathesis (CEYM–intramolecular Diels–Alder reaction (IMDAR. An easy entry to linear bicyclic scaffolds

    Directory of Open Access Journals (Sweden)

    Javier Miró

    2015-08-01

    Full Text Available A new tandem cross enyne metathesis (CEYM–intramolecular Diels–Alder reaction (IMDAR has been carried out. It involves conjugated ketones, esters or amides bearing a remote olefin and aromatic alkynes as the starting materials. The overall process enables the preparation of a small family of linear bicyclic scaffolds in a very simple manner with moderate to good levels of diastereoselectivity. This methodology constitutes one of the few examples that employ olefins differently than ethylene in tandem CEYM–IMDAR protocols.

  2. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  3. Metathesis of alkanes and related reactions

    KAUST Repository

    Basset, Jean-Marie; Copé ret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Thivolle-Cazat, Jean

    2010-01-01

    , the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, (=SiO)2TaH, a multifunctional catalyst with a single site of action. This reaction completes the story

  4. Pharmacophore mapping in the laulimalide series: total synthesis of a vinylogue for a late-stage metathesis diversification strategy.

    Science.gov (United States)

    Wender, Paul A; Hilinski, Michael K; Skaanderup, Philip R; Soldermann, Nicolas G; Mooberry, Susan L

    2006-08-31

    An efficient synthesis of the macrocyclic core of laulimalide with a pendant vinyl group at C20 is described, allowing for late-stage introduction of various side chains through a selective and efficient cross metathesis diversification step. Representative analogues reported herein are the first to contain modifications to only the side chain dihydropyran of laulimalide and des-epoxy laulimalide. This step-economical strategy enables the rapid synthesis of new analogues using alkenes as an inexpensive, abundantly available diversification feedstock.

  5. "Hydro-metathesis" of olefins: A catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres

    KAUST Repository

    Polshettiwar, Vivek

    2011-02-18

    Tantalizing hydrocarbons: Tantalum hydride supported on fibrous silica nanospheres (KCC-1) catalyzes, in the presence of hydrogen, the direct conversion of olefins into alkanes that have higher and lower numbers of carbon atoms (see scheme). This catalyst shows remarkable catalytic activity and stability, with excellent potential of regeneration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. "Hydro-metathesis" of olefins: A catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres

    KAUST Repository

    Polshettiwar, Vivek; Thivolle-Cazat, Jean; Taoufik, Mostafa; Stoffelbach, Franç ois; Norsic, Sé bastien; Basset, Jean-Marie

    2011-01-01

    Tantalizing hydrocarbons: Tantalum hydride supported on fibrous silica nanospheres (KCC-1) catalyzes, in the presence of hydrogen, the direct conversion of olefins into alkanes that have higher and lower numbers of carbon atoms (see scheme). This catalyst shows remarkable catalytic activity and stability, with excellent potential of regeneration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Improved direct production of 2,3-dimethylbutenes and 3,3-dimethylbutene from 2-methylpropene on tungsten hydride based catalysts

    KAUST Repository

    Garron, Anthony; Stoffelbach, Franç ois; Merle, Nicolas; Szeto, Kaï Chung; Thivolle-Cazat, Jean; Basset, Jean-Marie; Norsic, Sé bastien; Taoufik, Mostafa

    2012-01-01

    2-Methylpropene in the presence of W-H/Ni 1%-Al 2O 3-(500) is transformed in high selectivity into a mixture of 2,3-dimethylbutenes (2,3-DMBs = DMB-1 and DMB-2) and neohexene. 2,3-DMBs arise from the unfavoured 2-methylpropene self-metathesis reaction whereas the neohexene originates from a cascade reaction: 2-methylpropene dimerisation followed by cross metathesis. © 2012 The Royal Society of Chemistry.

  8. Synthesis of the EF-ring of ciguatoxin 3C based on the [2,3]-Wittig rearrangement and ring-closing olefin metathesis.

    Science.gov (United States)

    Goto, Akiyoshi; Fujiwara, Kenshu; Kawai, Ayako; Kawai, Hidetoshi; Suzuki, Takanori

    2007-12-20

    The EF-ring segment of ciguatoxin 3C, a causative toxin of ciguatera fish poisoning, was synthesized in three major steps: 1,4-addition for the C20O-C27 bond connection, chirality transferring anti selective [2,3]-Wittig rearrangement for the construction of the anti-2-hydroxyalkyl ether part, and ring-closing olefin metathesis for the F-ring formation.

  9. Cyclooctane metathesis catalyzed by silica-supported tungsten pentamethyl [(ΞSiO)W(Me)5]: Distribution of macrocyclic alkanes

    KAUST Repository

    Riache, Nassima

    2014-10-03

    Metathesis of cyclic alkanes catalyzed by the new surface complex [(ΞSiO)W(Me)5] affords a wide distribution of cyclic and macrocyclic alkanes. The major products with the formula CnH2n are the result of either a ring contraction or ring expansion of cyclooctane leading to lower unsubstituted cyclic alkanes (5≤n≤7) and to an unprecedented distribution of unsubstituted macrocyclic alkanes (12≤n≤40), respectively, identified by GC/MS and by NMR spectroscopies.

  10. Truncated borrelidin analogues: synthesis by sequential cross metathesis/olefination for the southern fragment and biological evaluation.

    Science.gov (United States)

    Gündemir-Durmaz, Tülay; Schmid, Fabian; El Baz, Yana; Häusser, Annette; Schneider, Carmen; Bilitewski, Ursula; Rauhut, Guntram; Garnier, Delphine; Baro, Angelika; Laschat, Sabine

    2016-09-21

    The construction of novel borrelidin analogues is reported in which the northern fragment is truncated to a simple hydroxyundecanecarboxylate and the original cyclopentanecarboxylic acid in the southern fragment is replaced with different six-membered rings. The required precursors were prepared by cross metathesis of the appropriate carbocycle-based homoallylic alcohol with crotonaldehyde followed by HWE olefination of the resulting enal with bromocyanophosphonate. The key aldehyde for intramolecular cross coupling was accessible by oxidation of the hydroxy group of the linked undecanecarboxylate unit. Grignard mediated macrocyclization finally yielded the borrelidin related products. The investigation is complemented by SAR studies and quantum-chemical calculations.

  11. MAu2GeS4-Chalcogel (M = Co, Ni): Heterogeneous Intra- and Intermolecular Hydroamination Catalysts

    KAUST Repository

    Davaasuren, Bambar

    2017-08-08

    High surface area macroporous chalcogenide aerogels (chalcogels) MAu2GeS4 (M = Co, Ni) were prepared from K2Au2GeS4 precursor and Co(OAc)2 or NiCl2 by one-pot sol-gel metathesis reactions in aqueous media. The MAu2GeS4-chalcogels were screened for catalytic intramolecular hydroamination of 4-pentyn-1-amine substrate at different temperatures. 87% and 58% conversion was achieved at 100 °C, using CoAu2GeS4- and NiAu2GeS4-chalcogels respectively, and the reaction kinetics follows the first order. It was established that the catalytic performance of the aerogels is associated with the M(2+) centers present in the structure. Intermolecular hydroamination of aniline with 1-R-4-ethynylbenzene (R = -H, -OCH3, -Br, -F) was carried out at 100 °C using CoAu2GeS4-chalcogel catalyst, due to its promising catalytic performance. The CoAu2GeS4-chalcogel regioselectively converted the pair of substrates to respective Markovnikov products, (E)-1-(4-R-phenyl)-N-phenylethan-1-imine, with 38% to 60% conversion.

  12. MAu2GeS4-Chalcogel (M = Co, Ni): Heterogeneous Intra- and Intermolecular Hydroamination Catalysts

    KAUST Repository

    Davaasuren, Bambar; Emwas, Abdul-Hamid M.; Rothenberger, Alexander

    2017-01-01

    High surface area macroporous chalcogenide aerogels (chalcogels) MAu2GeS4 (M = Co, Ni) were prepared from K2Au2GeS4 precursor and Co(OAc)2 or NiCl2 by one-pot sol-gel metathesis reactions in aqueous media. The MAu2GeS4-chalcogels were screened for catalytic intramolecular hydroamination of 4-pentyn-1-amine substrate at different temperatures. 87% and 58% conversion was achieved at 100 °C, using CoAu2GeS4- and NiAu2GeS4-chalcogels respectively, and the reaction kinetics follows the first order. It was established that the catalytic performance of the aerogels is associated with the M(2+) centers present in the structure. Intermolecular hydroamination of aniline with 1-R-4-ethynylbenzene (R = -H, -OCH3, -Br, -F) was carried out at 100 °C using CoAu2GeS4-chalcogel catalyst, due to its promising catalytic performance. The CoAu2GeS4-chalcogel regioselectively converted the pair of substrates to respective Markovnikov products, (E)-1-(4-R-phenyl)-N-phenylethan-1-imine, with 38% to 60% conversion.

  13. Stereoselective synthesis of functionalized cyclic amino acid derivatives via a [2,3]-Stevens rearrangement and ring-closing metathesis.

    Science.gov (United States)

    Nash, Aaron; Soheili, Arash; Tambar, Uttam K

    2013-09-20

    Unnatural cyclic amino acids are valuable tools in biomedical research and drug discovery. A two-step stereoselective strategy for converting simple glycine-derived aminoesters into unnatural cyclic amino acid derivatives has been developed. The process includes a palladium-catalyzed tandem allylic amination/[2,3]-Stevens rearrangement followed by a ruthenium-catalyzed ring-closing metathesis. The [2,3]-rearrangement proceeds with high diastereoselectivity through an exo transition state. Oppolzer's chiral auxiliary was utilized to access an enantiopure cyclic amino acid by this approach, which will enable future biological applications.

  14. Synthesis of LaO1-xFxFeAs (x=0-0.15) via solid state metathesis reaction

    Science.gov (United States)

    Frankovsky, Rainer; Marchuk, Alexey; Pobel, Roman; Johrendt, Dirk

    2012-04-01

    LaOFeAs and superconducting LaO1-xFxFeAs have been synthesized via salt metathesis reactions and characterized by X-ray powder diffraction and magnetic susceptibility measurements. The process uses LaOCl and NaFeAs as precursors and yielded very pure samples. Superconductivity was confirmed in samples with x=0.05, 0.10 and 0.15 at critical temperatures of 11 K, 26 K and 9 K, respectively. According to temperature-dependent X-ray diffraction data, the reaction pathway is not topotactic in contrast to earlier suggestions.

  15. Hybrid macrocycle formation and spiro annulation on cis-syn-cis-tricyclo[6.3.0.02,6]undeca-3,11-dione and its congeners via ring-closing metathesis

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-07-01

    Full Text Available We have developed a simple methodology to transform cis-syn-cis-triquinane derivative 2 into the diindole based macrocycle 6 involving Fischer indolization and ring-closing metathesis (RCM. Various spiro-polyquinane derivatives have been assembled via RCM as a key step.

  16. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  17. Transforming n=1 members of the Ruddlesden-Popper phases to a n=3 member through metathesis: synthesis of a new layered perovskite, Ca2La2CuTi2O10

    International Nuclear Information System (INIS)

    Sivakumar, T.; Lofland, S.E.; Ramanujachary, K.V.; Ramesha, K.; Subbanna, G.N.; Gopalakrishnan, J.

    2004-01-01

    We report the formation of a new n=3 Ruddlesden-Popper (R-P) layered perovskite oxide, Ca 2 La 2 CuTi 2 O 10 (I), in the metathesis reaction between NaLaTiO 4 and Ca 2 CuO 2 Cl 2 (n=1 R-P phases) at 700 deg. C in air. Rietveld refinement of powder XRD data shows that I is isostructural with Sr 4 Ti 3 O 10 (space group I4/mmm; a=3.8837(5), c=27.727(6) A), consisting of triple perovskite CuTi 2 O 10 sheets wherein Cu and Ti are ordered at the central and terminal octahedral sites, respectively. Magnetization data provide support for the presence of strong antiferromagnetically coupled CuO 2 sheets in the structure. I is metastable decomposing at higher temperatures (∼950 deg. C) to a mixture of perovskite-like CaLa 2 CuTi 2 O 9 and CaO. Interestingly, the reaction between NaLaTiO 4 and Sr 2 CuO 2 Cl 2 follows a different metathesis route, 2NaLaTiO 4 +Sr 2 CuO 2 Cl 2 →La 2 CuO 4 +2SrTiO 3 +2NaCl, revealing multiplicity of reaction pathways for solid-state metathesis reactions

  18. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia; El Eter, Mohamad; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  19. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  20. Antiperovskite nitridophosphate oxide Ho{sub 3}[PN{sub 4}]O by high-pressure metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Kloss, Simon D.; Weidmann, Niels; Schnick, Wolfgang [Department of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, 81377, Munich (Germany)

    2017-04-03

    Rare-earth nitridophosphates are a recently discovered class of materials, which are accessible by high-pressure metathesis. Antiperovskite-type Ho{sub 3}[PN{sub 4}]O was synthesized from HoF{sub 3}, LiPN{sub 2}, Li{sub 3}N, and Li{sub 2}O at 5 GPa and ca. 1025 C by this method and the multianvil technique. Ho{sub 3}[PN{sub 4}]O contains rarely observed isolated PN{sub 4} tetrahedra and can be derived by the hierarchical substitution of the ABX{sub 3} perovskite, in which Ho occupies the X positions, O occupies the B position, and the PN{sub 4} tetrahedra occupy the A position. The structure was refined on the basis of powder diffraction data [I4/mcm, a = 6.36112(3), c = 10.5571(1) Aa, Z = 4, R{sub wp} = 0.04, R{sub Bragg} = 0.01, χ{sup 2} = 2.275] starting from the structural model of isotypic Gd{sub 3}[SiN{sub 3}O]O. To characterize Ho{sub 3}[PN{sub 4}]O, elemental analyses were performed through energy-dispersive X-ray spectroscopy (EDX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Ho{sub 3}[PN{sub 4}]O is paramagnetic down to low temperatures with μ{sub eff} = 10.43(1) μ{sub B} and a Curie temperature (Θ) of 0.11(4) K. It shows the optical characteristics of Ho{sup 3+} ions and vibrations corresponding to isolated PN{sub 4} tetrahedra. On the basis of DFT calculations [generalized gradient approximation (GGA)], Ho{sub 3}[PN{sub 4}]O has an indirect band gap of 1.87 eV. We demonstrate the versatility of high-pressure metathesis by attaining the low end of the P/N atomic ratio κ = 1/4. This confirms the previous assumption that rare-earth nitridophosphates with κ = 1/2 to 1/4 are feasible by this method. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  2. Mechanism of the Ru–Allenylidene to Ru–Indenylidene Rearrangement in Ruthenium Precatalysts for Olefin Metathesis

    KAUST Repository

    Pump, Eva

    2015-06-30

    The intramolecular allenylidene RuCl2(PR3)2(C═C═CPh2) to indenylidene RuCl2(PR3)2(Ind) rearrangement that occurs during the synthesis of Ru-based precatalysts for olefin metathesis is presented. In the absence of acid, the ring closure via C–H activation was shown to be unfavored for energy barriers up to 70 kcal/mol. Thus, it turned out to be HCl (or other acid) that plays a crucial role during formation of the indenylidene, as the upper energy barrier decreases to a reasonable 35 kcal/mol. Moreover, we proved computationally that depending on the nature of the phosphine the intramolecular rearrangement is either facilitated (PPh3) or slightly hampered (PCy3), which is in line with experimental results.

  3. Mechanism of the Ru–Allenylidene to Ru–Indenylidene Rearrangement in Ruthenium Precatalysts for Olefin Metathesis

    KAUST Repository

    Pump, Eva; Slugovc, Christian; Cavallo, Luigi; Poater, Albert

    2015-01-01

    The intramolecular allenylidene RuCl2(PR3)2(C═C═CPh2) to indenylidene RuCl2(PR3)2(Ind) rearrangement that occurs during the synthesis of Ru-based precatalysts for olefin metathesis is presented. In the absence of acid, the ring closure via C–H activation was shown to be unfavored for energy barriers up to 70 kcal/mol. Thus, it turned out to be HCl (or other acid) that plays a crucial role during formation of the indenylidene, as the upper energy barrier decreases to a reasonable 35 kcal/mol. Moreover, we proved computationally that depending on the nature of the phosphine the intramolecular rearrangement is either facilitated (PPh3) or slightly hampered (PCy3), which is in line with experimental results.

  4. Insights into the deactivation mechanism of supported tungsten hydride on alumina (W-H/Al2O3) catalyst for the direct conversion of ethylene to propylene

    KAUST Repository

    Mazoyer, Etienne

    2014-04-01

    Tungsten hydride supported on alumina prepared by the surface organometallic chemistry method is an active precursor for the direct conversion of ethylene to propylene at low temperature and pressure. An extensive contact time study revealed that the dimerization of ethylene to 1-butene is the primary and also the rate limiting step. The catalytic cycle further involves isomerization of 1-butene to 2-butene, followed by cross-metathesis of ethylene and 2-butene to yield propylene with high selectivity. The deactivation mechanism of this reaction has been investigated. The used catalyst was extensively examined by DRIFTS, solid-state NMR, EPR, UV-Vis, TGA and DSC techniques. It was found that a large amount of carbonaceous species, which were due to side reaction like olefin polymerization took place with time on stream, significantly hindering the dimerization of ethylene to 1-butene and therefore the production of propylene. Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

  5. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines.

    Science.gov (United States)

    Pfister, Kai F; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J

    2017-06-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering.

  6. Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(=CH2)Me2]/[(≡SiO)2Ta(=CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)TaVMe4

    KAUST Repository

    Chen, Yin; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Hamzaoui, Bilel; Emsley, Lyndon; Basset, Jean-Marie

    2015-01-01

    By grafting TaMe5 on Aerosil700, a stable, well-defined, silica-supported tetramethyl tantalum(V) complex, [(≡SiO)TaMe4], is obtained on the silica surface. After thermal treatment at 150 °C, the complex is transformed into two surface tantalum methylidenes, [(≡SiO)2Ta(=CH2)Me] and [(≡SiO)Ta(=CH2)Me2], which are active in alkane metathesis and comparable to the previously reported [(≡SiO)2TaHx]. Here we present the first experimental study to isolate and identify a surface tantalum carbene as the intermediate in alkane metathesis. A systematic experimental study reveals a new reasonable pathway for this reaction.

  7. Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(=CH2)Me2]/[(≡SiO)2Ta(=CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)TaVMe4

    KAUST Repository

    Chen, Yin

    2015-01-21

    By grafting TaMe5 on Aerosil700, a stable, well-defined, silica-supported tetramethyl tantalum(V) complex, [(≡SiO)TaMe4], is obtained on the silica surface. After thermal treatment at 150 °C, the complex is transformed into two surface tantalum methylidenes, [(≡SiO)2Ta(=CH2)Me] and [(≡SiO)Ta(=CH2)Me2], which are active in alkane metathesis and comparable to the previously reported [(≡SiO)2TaHx]. Here we present the first experimental study to isolate and identify a surface tantalum carbene as the intermediate in alkane metathesis. A systematic experimental study reveals a new reasonable pathway for this reaction.

  8. Catalyst Deactivation Reactions : The Role of Tertiary Amines Revisited

    NARCIS (Netherlands)

    Novarino, Elena; Rios, Itzel Guerrero; van der Veer, Siebe; Meetsma, Auke; Hessen, Bart; Bouwkamp, Marco W.

    2011-01-01

    Decamethylzirconocene cation [Cp*2ZrMe](+) (2) decomposes in bromobenzene-d(5) solution to generate sigma-aryl species [Cp*Zr-2(2-C6H4Br-kappa Br,C)][B(C6F5)(4)] (3). This a-bond metathesis reaction is catalyzed by tertiary amines via a two-step mechanism, in which the amine acts as a proton relay.

  9. Catalysts and methods for ring opening metathesis polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, Richard Royce; Autenrieth, Benjamin

    2018-04-03

    The present invention, among other things, provides highly syndiotactic poly(dicyclopentadiene) and/or hydrogenated poly(dicyclopentadiene), compositions thereof, and compounds and methods for preparing the same. In some embodiments, a provided compound is a compound of formula I, II or III. In some embodiments, a provided method comprises providing a compound of formula I, II or III.

  10. Development of Improved Chemicals and Plastics from Oilseeds

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, Patricia A.; Lysenko, Zenon

    2006-11-09

    The overall objective of this program was to develop technology that can be applied to the production of various chemicals and plastics from seed oils. This research and development program included activities in all four key barrier areas identified in the US DOE Technology Roadmap for Plant/Crop-Based Renewable Resources, namely Plant Science, Production, Processing, and Utilization. Participants in the project included The Dow Chemical Company, Castor Oil, Inc., and the USDA Western Regional Research Center (WRRC). The objective of this production task was to evaluate and develop metathesis catalyst technology as a means of utilizing seed oils as feedstocks for the chemical industry. Specifically, ethenolysis of fatty acid methyl esters, FAME’s, leads to functionalized derivatives. These serve as valuable starting points for materials which cascade into a variety of applications, many of which have a current market presence. The relatively recent discovery and commercial availability of a family of metathesis catalysts which are tolerant of polar functional groups and the acquisition and implementation of high throughput synthesis and screening infrastructure led to a prime opportunity to investigate this project area.

  11. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  12. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  13. Poisoning Experiments Aimed at Discriminating Active and Less-Active Sites of Silica-Supported Tantalum Hydride for Alkane Metathesis

    KAUST Repository

    Saggio, Guillaume

    2010-10-04

    Only 50% of the silica-supported tantalum hydride sites are active in the metathesis of propane. Indeed, more than 45% of the tantalum hydride can be eliminated by a selective oxygen poisoning of inactive sites with no significant decrease in the global turnover. Conversely, cyclopentane induces no such selective poisoning. Hence, the active tantalum hydride sites that show greater resistance to oxygen poisoning correspond to the νTa-H bands of higher wavenumbers, particularly that at 1860cm-1. These active tantalum hydride sites should correspond to tris- or monohydride species relatively far from silica surface oxygen atoms. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recent Applications of Polymer Supported Organometallic Catalysts in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Nina Kann

    2010-09-01

    Full Text Available Recent developments concerning the application of polymer supported organometallic reagents in solid phase synthesis are reviewed, with a special focus on methodology for carbon-carbon formation. Examples of reactions that are covered include the classical Suzuki, Sonogashira and Heck coupings, but also aryl amination, epoxide opening, rearrangements, metathesis and cyclopropanation. Applications in the field of asymmetric synthesis are also discussed.

  15. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  16. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  17. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  18. Effect of coke and catalyst structure on oxidative regeneration of hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1991-04-01

    Two industrial hydroprocessing catalysts used for upgrading an atmospheric residue and a gas oil, respectively were regenerated in a fixed bed using air and 2 vol.% O{sub 2}+N{sub 2} balance mixture. The regeneration in air resulted in a significant sintering of the catalyst's material. The surface area of catalysts regenerated in 2 vol.% O{sub 2} mixture was similar to that of fresh catalysts, whereas a significant loss of surface area was observed after regeneration in air. The X-ray diffraction pattern of catalysts regenerated in 2 vol.% O{sub 2}+N{sub 2} balance mixture was also similar to that of fresh catalysts. 22 refs., 9 figs., 7 tabs.

  19. Hydroprocessing catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  20. A Modular Approach to Aryl-C-ribonucleosides via the Allylic Substitution and Ring-Closing Metathesis Sequence. A Stereocontrolled Synthesis of All Four alpha-/beta- and D-/L-C-Nucleoside Stereoisomers

    Czech Academy of Sciences Publication Activity Database

    Štambaský, J.; Kapras, V.; Štefko, Martin; Kysilka, O.; Hocek, Michal; Malkov, A. V.; Kočovský, P.

    2011-01-01

    Roč. 76, č. 19 (2011), s. 7781-7803 ISSN 0022-3263 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : C-nucleosides * allylic substitution * metathesis * dihydroxylation Subject RIV: CC - Organic Chemistry Impact factor: 4.450, year: 2011

  1. Supported catalyst systems and method of making biodiesel products using such catalysts

    Science.gov (United States)

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  2. Magnetically recoverable nanocatalysts

    KAUST Repository

    Polshettiwar, Vivek

    2011-05-11

    A broad overview on magnetically recoverable nanocatalysts is presented and the use of magnetic nanomaterials as catalysts is discussed. Magnetic materials are used as organocatalysts and their applications range to challenging reactions, such as hydroformylation and olefin metathesis. Magnetic nanomaterials are also being used in environmental applications, such as for photo- and biocatalysis and for the adsorption and removal of pollutants from air and water. These materials show great promise as enantioselective catalysts, which are used extensively for the synthesis of medicines, drugs, and other bioactive molecules. By functionalizing these materials using chiral ligands, a series of chiral nanocatalysts can be designed, offering great potential to reuse these otherwise expensive catalyst systems. Characterization of magnetic catalysts is often a challenging task, and NMR characterization of these catalysts is difficult because the magnetic nature of the materials interferes with the magnetic field of the spectrometer.

  3. Magnetically recoverable nanocatalysts

    KAUST Repository

    Polshettiwar, Vivek; Luque, Rafael L.; Fihri, Aziz; Zhu, Haibo; Bouhrara, Mohamed; Basset, Jean-Marie

    2011-01-01

    A broad overview on magnetically recoverable nanocatalysts is presented and the use of magnetic nanomaterials as catalysts is discussed. Magnetic materials are used as organocatalysts and their applications range to challenging reactions, such as hydroformylation and olefin metathesis. Magnetic nanomaterials are also being used in environmental applications, such as for photo- and biocatalysis and for the adsorption and removal of pollutants from air and water. These materials show great promise as enantioselective catalysts, which are used extensively for the synthesis of medicines, drugs, and other bioactive molecules. By functionalizing these materials using chiral ligands, a series of chiral nanocatalysts can be designed, offering great potential to reuse these otherwise expensive catalyst systems. Characterization of magnetic catalysts is often a challenging task, and NMR characterization of these catalysts is difficult because the magnetic nature of the materials interferes with the magnetic field of the spectrometer.

  4. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  5. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    Science.gov (United States)

    Ye, Rong

    Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to

  6. Communicating catalysts

    Science.gov (United States)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  7. Synthesis of densely functionalized enantiopure indolizidines by ring-closing metathesis (RCM of hydroxylamines from carbohydrate-derived nitrones

    Directory of Open Access Journals (Sweden)

    Goti Andrea

    2007-12-01

    Full Text Available Abstract Background Indolizidine alkaloids widely occur in nature and display interesting biological activity. This is the reason for which their total synthesis as well as the synthesis of non-natural analogues still attracts the attention of many research groups. To establish new straightforward accesses to these molecules is therefore highly desirable. Results The ring closing metathesis (RCM of enantiopure hydroxylamines bearing suitable unsaturated groups cleanly afforded piperidine derivatives in good yields. Further cyclization and deprotection of the hydroxy groups gave novel highly functionalized indolizidines. The synthesis of a pyrroloazepine analogue is also described. Conclusion We have developed a new straightforward methodology for the synthesis of densely functionalized indolizidines and pyrroloazepine analogues in 6 steps and 30–60% overall yields from enantiopure hydroxylamines obtained straightforwardly from carbohydrate-derived nitrones.

  8. Methods of making textured catalysts

    Science.gov (United States)

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  9. Rapid synthesis of graphitic carbon nitride powders by metathesis reaction between CaCN2 and C2Cl6

    International Nuclear Information System (INIS)

    Pang Linlin; Bi Jianqiang; Bai Yujun; Qi Yongxin; Zhu Huiling; Wang Chengguo; Wu Jiwei; Lu Chengwei

    2008-01-01

    Carbon nitride powders were rapidly synthesized at low temperature via the chemical metathesis reaction between CaCN 2 and C 2 Cl 6 . X-ray diffraction results confirm the formation of crystalline graphitic carbon nitride. Besides the dominant morphology of nanoparticles, flakes, nanorods, hollow and solid spheres can be observed by transmission electron microscopy. The absorption peaks of C-N, C=N and s-triazine rings, as well as the absence of C≡N peak in the infrared spectra, further verify the formation of graphite-like sp 2 -bonded structure with planar networks. Elemental analysis gives an atomic ratio of N/C around 0.3. X-ray photoelectron spectra exhibit the existence of chemical bonding between C and N

  10. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance

    DEFF Research Database (Denmark)

    Wang, Ze; Zeng, Ying; Lin, Weigang

    2017-01-01

    In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst...... performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major...... products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol....

  11. Non-PGM cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Consulting, Aiken, SC (United States); Ganesan, P. [Savannah River Consulting, Aiken, SC (United States)

    2017-09-27

    A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.

  12. Synthesis and Characterisation of Tris(1-carboxyl-2-phenyl-1,2-ethyl eno dithiol enic-S,S') Tungsten Complex as Photo catalyst for Photolysis of H2O Molecules

    International Nuclear Information System (INIS)

    Fadhli Hadana Rahman; Rusli Daik; Mohammad Kassim; Khuzaimah; Wan Ramli Wan Daud

    2008-01-01

    Tris(1-carboxyl-2-phenyl-1,2-ethylenodithiolenic-S,S ' ) tungsten complex is one of the most promising photo catalyst to be used in photolysis of water to produce hydrogen. The first step of the synthesis involves a metathesis reaction of tetrapropylammonium bromide [((C 3 H 7 ) 4 N)Br] and ammonium tetrathiotungstate [(NH 4 ) 2 WS 4 ] to form a tetrapropylammonium tetrathiotungstate [((C 3 H 7 ) 4 N) 2 WS 4 ] (precursor). Then, the precursor was reacted with phenyl acetylenecarboxylic acid (C 9 H 6 O 2 ) to form tris(1-carboxyl-2-phenyl-1,2-ethylenodithiolenic-S,S ' ) tungsten complex (C 27 H 18 O 2 S 6 W). The infra-red, ultra violet/ visible (UV/ Vis) spectrum, nuclear magnetic resonance (NMR) and elemental micro-analysis of C, H, N and S agreed with the characteristic of the tris(1-carboxyl-2-phenyl-1,2-ethylenodithiolenic-S,S ' ) tungsten complex. The (W-S), (C-S) and (C=O) stretching frequencies were detected at 511, (1470 and 1035) and 1655 cm -1 , respectively. The 1 H NMR spectrum showed six protons in the complex. The 13 C NMR showed only 7 signals for carbon atom in the benzene ring, ethylene groups and carboxylic acid pendant group due to the symmetry of the molecules. The reaction yield was about 50 percent. Photolysis of acetone spiked H 2 O showed that the catalyst was able to produced 1.8 μmol/ h hydrogen. (author)

  13. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  14. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  15. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  16. Combining the [2,3] Sigmatropic Rearrangement and Ring-Closing Metathesis Strategies for the Synthesis of Spirocyclic Alkaloids. A Short and Efficient Route to (+/-)-Perhydrohistrionicotoxin

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Hagberg, Lars; Poulsen, Anders

    1999-01-01

    This paper describes the use of selenium-based [2,3] sigmatropic rearrangement in combination with ruthenium-catalyzed ring-closing metathesis (RCM) for the synthesis of azaspiro ring systems, as exemplified by the reactions of model substrates 5 and 6. The methodology has been applied to a short...... is potentially enantioselective, and key steps were the [2,3] sigmatropic rearrangement of 11 to 12 via the corresponding allylic selenide (86% yield) and ruthenium-catalyzed RCM of 13 to 14 (80%). (C) 1999 Elsevier Science Ltd. All rights reserved....

  17. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  18. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  19. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Science.gov (United States)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  20. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    International Nuclear Information System (INIS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al_2O_3 model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al_2O_3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al_2O_3 model catalyst and core–shell pellet were only

  1. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amende, Max, E-mail: max.amende@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Kaftan, Andre, E-mail: andre.kaftan@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Bachmann, Philipp, E-mail: philipp.bachmann@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Brehmer, Richard, E-mail: richard.brehmer@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Preuster, Patrick, E-mail: patrick.preuster@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Koch, Marcus, E-mail: marcus.koch@crt.cbi.uni-erlangen.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); and others

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al{sub 2}O{sub 3} model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al{sub 2}O{sub 3} catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al{sub 2}O{sub 3} model catalyst and

  2. Synthesis and characterization of a homogeneous and silica supported homoleptic cationic tungsten(vi) methyl complex: application in olefin metathesis

    KAUST Repository

    Dey, Raju

    2016-08-19

    A method for the synthesis of a homogeneous cationic tungsten(VI)penta-methyl complex [(WMe5)(+)(C6F5)(3)BMe-] from neutral tungstenhexamethyl (WMe6) and a silica supported cationic tungstentetramethyl complex [( Si-O-)WMe4+ (C6F5)(3)BMe-] from a neutral silica supported tungstenpentamethyl complex [( Si-O-)WMe5] is described. In both cases a direct demethylation using the B(C6F5)(3) reagent was used. The aforesaid complexes were characterized by liquid or solid state NMR spectroscopy. Interestingly, the homogeneous cationic complex [(WMe5)(+)(C6F5)(3)BMe-] shows moderate activity whereas the supported cationic complex [( Si-O-)WMe4+(C6F5)(3)BMe-] exhibits good activity in olefin metathesis reactions.

  3. Synthesis and characterization of a homogeneous and silica supported homoleptic cationic tungsten(vi) methyl complex: application in olefin metathesis

    KAUST Repository

    Dey, Raju; Samantaray, Manoja; Poater, Albert; Hamieh, Ali Imad Ali; Kavitake, Santosh Giridhar; Abou-Hamad, Edy; Callens, Emmanuel; Emwas, Abdul-Hamid M.; Cavallo, Luigi; Basset, Jean-Marie

    2016-01-01

    A method for the synthesis of a homogeneous cationic tungsten(VI)penta-methyl complex [(WMe5)(+)(C6F5)(3)BMe-] from neutral tungstenhexamethyl (WMe6) and a silica supported cationic tungstentetramethyl complex [( Si-O-)WMe4+ (C6F5)(3)BMe-] from a neutral silica supported tungstenpentamethyl complex [( Si-O-)WMe5] is described. In both cases a direct demethylation using the B(C6F5)(3) reagent was used. The aforesaid complexes were characterized by liquid or solid state NMR spectroscopy. Interestingly, the homogeneous cationic complex [(WMe5)(+)(C6F5)(3)BMe-] shows moderate activity whereas the supported cationic complex [( Si-O-)WMe4+(C6F5)(3)BMe-] exhibits good activity in olefin metathesis reactions.

  4. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Roč. 11, NOV 2015 (2015), s. 2087-2096 ISSN 1860-5397 Institutional support: RVO:61388955 Keywords : Hoveyda-Grubbs type catalyst * hybrid catalysts * lamellar zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.697, year: 2015

  5. Phosphate Tether-Mediated Ring-Closing Metathesis for the Generation of P-Stereogenic, Z-Configured Bicyclo[7.3.1]- and Bicyclo[8.3.1]phosphates.

    Science.gov (United States)

    Markley, Jana L; Maitra, Soma; Hanson, Paul R

    2016-02-05

    A phosphate tether-mediated ring-closing metathesis (RCM) study to the synthesis of Z-configured, P-stereogenic bicyclo[7.3.1]- and bicyclo[8.3.1]phosphates is reported. Investigations suggest that C3-substitution, olefin substitution, and proximity of the forming olefin to the bridgehead carbon of the bicyclic affect the efficiency and stereochemical outcome of the RCM event. This study demonstrates the utility of phosphate tether-mediated desymmetrization of C2-symmetric, 1,3-anti-diol-containing dienes in the generation of macrocyclic phosphates with potential synthetic and biological utility.

  6. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  7. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  8. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  9. Hydroprocessing catalysts utilization and regeneration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  10. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  11. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  12. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  13. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  14. Function-oriented synthesis: biological evaluation of laulimalide analogues derived from a last step cross metathesis diversification strategy.

    Science.gov (United States)

    Mooberry, Susan L; Hilinski, Michael K; Clark, Erin A; Wender, Paul A

    2008-01-01

    Laulimalide is a potent microtubule stabilizing agent and a promising anticancer therapeutic lead. The identification of stable, efficacious and accessible analogues is critical to clinically exploiting this novel lead. To determine which structural features of laulimalide are required for beneficial function and thus for accessing superior clinical candidates, a series of side chain analogues were prepared through a last step cross metathesis diversification strategy and their biological activities were evaluated. Five analogues, differing in potency from 233 nM to 7.9 muM, effectively inhibit cancer cell proliferation. Like laulimalide, they retain activity against multidrug resistant cells, stabilize microtubules and cause the formation of aberrant mitotic spindles, mitotic accumulation, Bcl-2 phosphorylation and initiation of apoptosis. Structural modifications in the C 23-C 27 dihydropyran side chain can be made without changing the overall mechanism of action, but it is clear that this subunit has more than a bystander role.

  15. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  16. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  17. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  18. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  19. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts. Investigation of catalyst lifetime and reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, G J; Themistocleous, T; Copperthwaite, R G

    1988-10-17

    A study of the deactivation and reactivation of modified clinoptilolite catalysts for methanol conversion to hydrocarbons is reported. Clinoptilolite catalysts, modified by either ammonium ion exchange or hydrochloric acid treatment, exhibit a short useful catalyst lifetime for this reaction (ca. 2-3 h) due to a high rate of coke deposition (3-5.10/sup -3/ g carbon/g catalyst/h). A comparative study of reactivation using oxygen, nitrous oxide and ozone/oxygen as oxidants indicated that nitrous oxide reactivation gives improved catalytic performance when compared to the activity and lifetime of the fresh catalyst. Both oxygen and ozone/oxygen were found to be ineffective for the reactivation of clinoptilolite. Initial studies of in situ on-line reactivation are also described. 3 figs., 15 refs., 4 tabs.

  20. Accuracy of a new ring-opening metathesis elastomeric dental impression material with spray and immersion disinfection.

    Science.gov (United States)

    Kronström, Mats H; Johnson, Glen H; Hompesch, Richard W

    2010-01-01

    A new elastomeric impression material has been formulated with a ring-opening metathesis chemistry. In addition to other properties of clinical significance, the impression accuracy must be confirmed. The purpose of this study was to compare the accuracy of the new elastomeric impression material with vinyl polysiloxane and polyether following both spray and immersion disinfection. Impressions of a modified dentoform with a stainless steel crown preparation in the lower right quadrant were made, and type IV gypsum working casts and dies were formed. Anteroposterior (AP), cross-arch (CA), buccolingual (BL), mesiodistal (MD), occlusogingivobuccal (OGB), and occlusogingivolingual (OGL) dimensions were measured using a microscope. Working cast and die dimensions were compared to those of the master model. The impression materials were a newly formulated, ring-opening metathesis-polymerization impression material (ROMP Cartridge Tray and ROMP Volume Wash), vinyl polysiloxane (VPS, Aquasil Ultra Monophase/LV), and a polyether (PE, Impregum Penta Soft/Permadyne Garant L). Fifteen impressions with each material were made, of which 5 were disinfected by spray for 10 minutes (CaviCide), 5 were disinfected by immersion for 90 minutes (ProCide D), and 5 were not disinfected. There were significant cross-product interactions with a 2-way ANOVA, so a 1-way ANOVA and Dunnett's T3 multiple comparison test were used to compare the dimensional changes of the 3 impression materials, by disinfection status and for each location (alpha=.05). For ROMP, there were no significant differences from the master, for any dimension, when comparing the control and 2 disinfectant conditions. No significant differences were detected among the 3 impression materials for CA, BL, and MD. The working die dimensions of OGB and OGL for VPS with immersion disinfection were significantly shorter than with PE and ROMP (P<.05). Overall, the AP dimension was more accurate than CA, and the BL of working dies

  1. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    1999-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the

  2. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  3. Fischer-Tropsch Synthesis over Iron Manganese Catalysts: Effect of Preparation and Operating Conditions on Catalyst Performance

    Directory of Open Access Journals (Sweden)

    Ali A. Mirzaei

    2009-01-01

    molar basis which is the most active catalyst for the conversion of synthesis gas to light olefins. The effects of different promoters and supports with loading of optimum support on the catalytic performance of catalysts are also studied. It was found that the catalyst containing 50%Fe/50%Mn/5 wt.%Al2O3 is an optimum-modified catalyst. The catalytic performance of optimal catalyst has been studied in operation conditions such as a range of reaction temperatures, H2/CO molar feed ratios and a range of total pressures. Characterization of both precursors and calcined catalysts is carried out by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, BET specific surface area and thermal analysis methods such as TGA and DSC.

  4. Deactivation and regeneration of refinery catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1979-08-01

    A discussion covers the mechanisms of catalyst aging, poisoning, coke deposition, and metals deposition; feedstock pretreatment to extend catalyst life; the effects of operating conditions; the effects of catalyst composition and structure on its stability; nonchemical deactivation processes; and methods of catalyst regeneration, including coke burn-off and solvent extraction.

  5. Oxidative desulfurization of synthetic diesel using supported catalysts. Part 3. Support effect on vanadium-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno-Caero, Luis; Gomez-Bernal, Hilda; Fraustro-Cuevas, Adriana; Guerra-Gomez, Hector D.; Cuevas-Garcia, Rogelio [UNICAT, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria 04510, Mexico D.F. (Mexico)

    2008-04-15

    Oxidesulfurization (ODS) of benzothiophenic compounds prevailing in diesel was conducted with hydrogen peroxide in presence of various catalysts, using a model diesel and actual diesel fuel. ODS activities of dibenzothiophenes (DBTs) in hexadecane for a series of V{sub 2}O{sub 5} catalysts supported on alumina, titania, ceria, niobia and silica, were evaluated. Results show that the oxidation activity of DBTs depends on the support used. It was observed that the sulfone yield is not proportional to textural properties or V content. For all catalysts, ODS of benzothiophene (BT), dibenzothiophene (DBT), 4-methyl dibenzothiophene (4-MDBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) decreased in the following order: DBT > 4-MDBT > 4,6-DMDBT > BT. This trend does not depend on the catalyst used or the textural properties of the catalysts and supports. In presence of indole ODS activities diminish, except with catalysts supported on alumina-titania mixed oxide, whereas with V{sub 2}O{sub 5}/TiO{sub 2} catalyst the performance is the highest. ODS of Mexican diesel fuel was carried out in presence of this catalyst and S level was diminished in about 99%. (author)

  6. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  7. Isotope exchange in oxide-containing catalyst

    Science.gov (United States)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  8. Catalysis by Design Using Surface Organometallic Nitrogen-Containing Fragments

    KAUST Repository

    Hamzaoui, Bilel

    2016-06-14

    The aim of this thesis is to explore the chemistry of well-defined silica-supported group 4 and group 5 complexes that contain one or more multiply-bonded nitrogen atoms. Such species have been recognized as crucial intermediates in many catalytic reactions (e.g. hydroaminoalkylation, olefin hydrogenation, imine metathesis…). The first chapter provided a bibliographic overview of the preparation and the reactivity of group 4 and 5 complexes towards hydroaminoalkylation and imine metathesis catalysis. The second chapter deals with the isolation and the characterization of a series of well-defined group 4 ƞ2-imine complexes surfaces species. 2D solid-state NMR (1H–13C HETCOR, Multiple Quantum) experiments have revealed consistently a unique structural rearrangement, viz azametallacycle occurring on the immobilized metal-amido ligands. Hydrogenolysis of the sole Zr-C bond in such species gives selectively a silica-supported zirconium monohydride that can perform the catalytic hydrogenation of olefins. The third chapter examines the mechanistic studies of the intermolecular hydroaminoalkylation using SOMC to identify the key metallacyclic surface intermediates (silica-supported three-membred and five-membered). The catalyst was regenerated by protonolysis and afforded pure amine. Catalytic testing of a selection of amine compounds with variable electronic properties was carried out. The fourth chapter deals with the generation and the characterization of well-defined silica-supported zirconium-imido complexes. The resulting species effectively catalyzes imine/imine cross-metathesis and thus considered as the first heterogeneous catalysts active for imine metathesis reaction. The fifth chapter studies the reaction of SBA15.1100 ºC with dry aniline and derivatives leading to opening strained siloxane bridges into acid-base paired functionalities (formation of N-phenylsilanamine-silanol pairs). This approach was successfully applied to the design of a series of

  9. Well-Defined Surface Species [(≡Si - O -)W(=O)Me3] Prepared by Direct Methylation of [(≡Si - O -)W(=O)Cl3], a Catalyst for Cycloalkane Metathesis and Transformation of Ethylene to Propylene

    KAUST Repository

    Hamieh, Ali Imad Ali

    2015-04-03

    The silica-supported tungsten oxo-trimethyl complex [(≡Si - O -)W(=O)Me3] was synthesized using a novel SOMC synthetic approach. By grafting the inexpensive stable compound WOCl4 on the surface of silica, partially dehydroxylated at 700 °C (SiO2-700), a well-defined monopodal surface complex [(≡Si - O -)W(=O)Cl3] was produced. The supported complex directly methylated with ZnMe2 and transformed into [(≡Si - O -)W(=O)Me3], which we fully characterized by microanalysis, IR, mass balance and SS NMR (1H, 13C, 1H-13C HETCOR, 1H-1H DQ and TQ). [(≡Si - O)W(=O)Me3] has two conformational isomers on the surface at room temperature. The conversion of one to the other was observed at 318 K by variable-temperature 13C CP/MAS and 1H spin echo MAS solid-state NMR; this was also confirmed by NMR and DFT calculations. [(≡Si - O)W(=O)Me3] was found to be active in cyclooctane metathesis and to have a wide distribution range in ring-contracted and ring-expanded products. In addition, [(≡Si - O)W(=O)Me3] proved to be highly active for selective transformation of ethylene to propylene compared to other silica-supported organometallic complexes. (Chemical Equation Presented). © 2015 American Chemical Society.

  10. Well-Defined Surface Species [(≡Si - O -)W(=O)Me3] Prepared by Direct Methylation of [(≡Si - O -)W(=O)Cl3], a Catalyst for Cycloalkane Metathesis and Transformation of Ethylene to Propylene

    KAUST Repository

    Hamieh, Ali Imad Ali; Chen, Yin; Abdel-Azeim, Safwat; Abou-Hamad, Edy; Goh, Li Min Serena; Samantaray, Manoja; Dey, Raju; Cavallo, Luigi; Basset, Jean-Marie

    2015-01-01

    The silica-supported tungsten oxo-trimethyl complex [(≡Si - O -)W(=O)Me3] was synthesized using a novel SOMC synthetic approach. By grafting the inexpensive stable compound WOCl4 on the surface of silica, partially dehydroxylated at 700 °C (SiO2-700), a well-defined monopodal surface complex [(≡Si - O -)W(=O)Cl3] was produced. The supported complex directly methylated with ZnMe2 and transformed into [(≡Si - O -)W(=O)Me3], which we fully characterized by microanalysis, IR, mass balance and SS NMR (1H, 13C, 1H-13C HETCOR, 1H-1H DQ and TQ). [(≡Si - O)W(=O)Me3] has two conformational isomers on the surface at room temperature. The conversion of one to the other was observed at 318 K by variable-temperature 13C CP/MAS and 1H spin echo MAS solid-state NMR; this was also confirmed by NMR and DFT calculations. [(≡Si - O)W(=O)Me3] was found to be active in cyclooctane metathesis and to have a wide distribution range in ring-contracted and ring-expanded products. In addition, [(≡Si - O)W(=O)Me3] proved to be highly active for selective transformation of ethylene to propylene compared to other silica-supported organometallic complexes. (Chemical Equation Presented). © 2015 American Chemical Society.

  11. Bifunctional cobalt F-T catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.G.; Coughlin, P.K.; Yang, C.L.; Rabo, J.A.

    1986-03-01

    Results on the catalytic screening of Fischer-Tropsch catalysts containing shape selective components are reported. Catalysts consist of promoted cobalt intimately contacted with Union Carbide molecular sieves and were tested using a Berty type internally recycled reactor. Methods of preparation, promoters and shape selective components were varied and aimed at improving catalyst performance. Catalysts were developed demonstrating high C/sub 5/ + yields with high olefin content and low methane production while maintaining stability under both low and high H/sub 2/:CO ratio conditions.

  12. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which...... the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  13. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  14. Research and development of a technology to create original high-function materials in fiscal 1998 (development of precision structure controlling materials by improving petroleum refining). Report on achievements in research and development of precision catalytic polymerization; 1998 nendo dokusoteki kokino zairyo sosei gijutsu no kenkyu kaihatsu seika hokokusho. Sekiyu seisei kodoka seimitsu kozo seigyo zairyo kaihatsu (seimitsu shokubai jugo no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research and development on precision catalytic polymerization aims at developing polymerizing catalysts that can control arbitrarily the molecular weight and three-dimensional regularity by which rapid enhancement can be expected in performance of additional polymerization type polymers, and the primary structure of terminal groups. Works are being done on two sub-themes of ultimate additional polymerization and orientation catalyst polymerization. The research and development of the ultimate additional polymerization included structural control in polymerization reaction in vinyl chloride, vinylester and acrylic monomers, radical polymerization with precision orientation control, anionic polymerization with precision structural control, and precision polymerization utilizing asymmetric metal porphyrin complexes. In the research and development of the orientation catalyst polymerization, the orientation catalyst polymerization was researched and developed, elementary reaction of metallocene was elucidated, high-performance carrier catalysts were developed, advanced function polymers were synthesized at high precision based on metathesis, and improvement of functions of polyolefin was researched and developed. Surveys and studies were carried out on fundamental technologies common to the above two themes re-commissioned to five universities. (NEDO)

  15. How does the addition of steric hindrance to a typical N-heterocyclic carbene ligand affect catalytic activity in olefin metathesis?

    KAUST Repository

    Poater, Albert; Falivene, Laura; Urbina-Blanco, Cé sar A.; Manzini, Simone; Nolan, Steven P.; Cavallo, Luigi

    2013-01-01

    Density functional theory (DFT) calculations were used to predict and rationalize the effect of the modification of the structure of the prototype 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) N-heterocyclic carbene (NHC) ligand. The modification consists in the substitution of the methyl groups of ortho isopropyl substituent with phenyl groups, and here we plan to describe how such significant changes affect the metal environment and therefore the related catalytic behaviour. Bearing in mind that there is a significant structural difference between both ligands in different olefin metathesis reactions, here by means of DFT we characterize where the NHC ligand plays a more active role and where it is a simple spectator, or at least its modification does not significantly change its catalytic role/performance. © 2013 The Royal Society of Chemistry.

  16. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    Energy Technology Data Exchange (ETDEWEB)

    T. Brent Gunnoe

    2011-02-17

    , which has provided a comprehensive understanding of the impact of steric and electronic parameters of 'L' on the catalytic hydroarylation of olefins. (3) We have completed and published a detailed mechanistic study of stoichiometric aromatic C-H activation by TpRu(L)(NCMe)Ph (L = CO or PMe{sub 3}). These efforts have probed the impact of functionality para to the site of C-H activation for benzene substrates and have allowed us to develop a detailed model of the transition state for the C-H activation process. These results have led us to conclude that the C-H bond cleavage occurs by a {sigma}-bond metathesis process in which the C-H transfer is best viewed as an intramolecular proton transfer. (4) We have completed studies of Ru complexes possessing the N-heterocyclic carbene IMes (IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene). One of these systems is a unique four-coordinate Ru(II) complex that catalyzes the oxidative hydrophenylation of ethylene (in low yields) to produce styrene and ethane (utilizing ethylene as the hydrogen acceptor) as well as the hydrogenation of olefins, aldehydes and ketones. These results provide a map for the preparation of catalysts that are selective for oxidative olefin hydroarylation. (5) The ability of TpRu(PMe{sub 3})(NCMe)R systems to activate sp{sup 3} C-H bonds has been demonstrated including extension to subsequent C-C bond forming steps. These results open the door to the development of catalysts for the functionalization of more inert C-H bonds. (6) We have discovered that Pt(II) complexes supported by simple nitrogen-based ligands serve as catalysts for the hydroarylation of olefins. Given the extensive studies of Pt-based catalytic C-H activation, we believe these results will provide an entry point into an array of possible catalysts for hydrocarbon functionalization.

  17. Metal catalysts fight back

    OpenAIRE

    George Marsh

    1998-01-01

    In recent years organometallic catalysts, especially metallocenes, have been a major focus of attention in terms of polymerisation chemistry. But the news earlier this year of a family of iron-based catalysts able to rival the effectiveness of both conventional and metallocene catalysts in the polymerisation of ethylene has excited the plastics industry. Because of the impact of this discovery and its potential as a route to lower-priced commodity plastics in the future, it may be useful at t...

  18. Rejuvenation of the SCR catalyst at Mehrum

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Y.; Inatsume, Y.; Morita, I.; Kato, Y.; Yokoyama, K.; Ito, K. [Babcock Hitachi K.K., Kure-shi, Hiroshima-ken (Japan)

    2004-07-01

    Babcock Hitachi K.K. (BHK) received the contract of the rejuvenation of the SCR catalyst at the 750 MW coal-fired Mehrum Power Station (in Hohenhameln, Germany) in March 2003. The contractual coverage was 160 m{sup 3} of the entire catalyst layer. The catalyst, which had been in operation for 16 years since 1987, was originally supplied by BHK. The rejuvenation process developed for the Mehrum project consisted of two major steps: the first is to dust off the catalyst and remove the catalyst poison, and the second step is to add active material to enhance the catalyst activity. The catalyst must be dried after each washing. In order to minimize transportation cost and time, the rejuvenation work was done at the Mehrum station site. The scope of the rejuvenation work was shared between the owner and BHK. It took about one and a half months to complete the (total) on-site rejuvenation worked. The performance of the rejuvenated catalyst was superior to show the same level of activity as the unused catalyst and maintain the same SO{sub 2} conversion rate as the spent catalyst. This paper gives the details of the spent coal-fired SCR catalyst rejuvenation work. 13 figs., 1 tab.

  19. Productions of palm oil bio diesel whit heterogeneous basic catalysts compared to conventional homogeneous catalysts

    International Nuclear Information System (INIS)

    Rios, Luis A; Franco C, Alexander; Zuleta S, Ernesto

    2009-01-01

    The conventional process to produce biodiesel involves the presence of homogeneous basic catalysts. However, these catalysts have disadvantages associated to the need of purification steps, which increase the cost of the final product and generate pollution problems caused by the effluents. This paper compares different homogeneous and heterogeneous catalysts for the biodiesel production from palm oil. For this, heterogeneous catalysts supported on alumina were prepared and characterized by nitrogen adsorption, scanning electron microscopy, energy dispersive X ray spectroscopy and X ray diffraction. Transesterification of palm oil with methanol was accomplished at 60 celsius degrade and one hour, varying methanol/oil ratio, the type of catalyst and its concentration. Yields of the reaction and purity of the so obtained biodiesel were evaluated. Comparing the catalysts performance, based on the amount, was found that sodium methoxide (CH 3 ONa) and potassium carbonate supported on alumina (K 2 CO 3 /Al 2 O 3 ) were the catalysts that give the higher purity of biodiesel (96.8 and 95.85% respectively). When was determined the active site quality, by dividing the performance by each mole of active sites, it was found that calcined Na 2 SO 4 /Al 2 O 3 has the most active sites.

  20. Novel metalloporphyrin catalysts for the oxidation of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

    1996-11-01

    Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

  1. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...

  2. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  3. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low...... metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration......DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here...

  4. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  5. Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst

    Science.gov (United States)

    Li, Xiang; Luo, Lanping; Peng, Feng; Wang, Hongjuan; Yu, Hao

    2018-03-01

    The direct methanol fuel cell is a promising energy conversion device because of the utilization of the state-of-the-art platinum (Pt) anode catalyst. In this work, novel Pt/Ni2P/CNTs catalysts were prepared by the H2 reduction method. It was found that the activity and stability of Pt for methanol oxidation reaction (MOR) could be significantly enhanced while using nickel phosphide (Ni2P) nanoparticles as co-catalyst. X-ray photoelectron spectroscopy revealed that the existence of Ni2P affected the particle size and electronic distribution of Pt obviously. Pt/CNTs catalyst, Pt/Ni2P/CNTs catalysts with different Ni2P amount were synthesized, among which Pt/6%Ni2P/CNTs catalyst exhibited the best MOR activity of 1400 mAmg-1Pt, which was almost 2.5 times of the commercial Pt/C-JM catalyst. Moreover, compared to other Pt-based catalysts, this novel Pt/Ni2P/CNTs catalyst also exhibited higher onset current density and better steady current density. The result of this work may provide positive guidance to the research on high efficiency and stability of Pt-based catalyst for direct methanol fuel cells.

  6. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  7. Alkaline Ionic Liquid Modified Pd/C Catalyst as an Efficient Catalyst for Oxidation of 5-Hydroxymethylfurfural

    Directory of Open Access Journals (Sweden)

    Zou Bin

    2018-01-01

    Full Text Available Conversion of HMF into FDCA was carried out by a simple and green process based on alkaline ionic liquid (IL modified Pd/C catalyst (Pd/C-OH−. Alkaline ionic liquids were chosen to optimize Pd/C catalyst for special hydrophilicity and hydrophobicity, redox stability, and unique dissolving abilities for polar compounds. The Pd/C-OH− catalyst was successfully prepared and characterized by SEM, XRD, TG, FT-IR, and CO2-TPD technologies. Loading of alkaline ionic liquid on the surface of Pd/C was 2.54 mmol·g−1. The catalyst showed excellent catalytic activity in the HMF oxidation after optimization of reaction temperature, reaction time, catalyst amount, and solvent. Supported alkaline ionic liquid (IL could be a substitute and promotion for homogeneous base (NaOH. Under optimal reaction conditions, high HMF conversion of 100% and FDCA yield of 82.39% were achieved over Pd/C-OH− catalyst in water at 373 K for 24 h.

  8. Carbonaceous deposits on naptha reforming catalysts

    International Nuclear Information System (INIS)

    Redwan, D.S.

    1999-01-01

    Carbonaceous deposits on naphtha reforming catalysts play a decisive role in limiting process performance. The deposits negatively after catalyst activity, selectivity and the production cycle of a semi regenerative reformer. The magnitude of negative effect of those deposits is directly proportional to their amounts and complexity. Investigations on used reforming catalysts samples reveal that the amount and type (complexity of the chemical nature) of carbonaceous deposits are directly proportional to the catalysts life on stream and the severity of operating conditions. In addition, the combustibility behavior of carbonaceous deposits on the catalyst samples taken from different reformers are found to be different. Optimal carbon removal, for in situ catalyst regeneration, requires the specific conditions be developed, based on the results of well designed and properly performed investigations of the amount and type of carbonaceous deposits. (author)

  9. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  10. Increasing the lifetime of fuel cell catalysts

    NARCIS (Netherlands)

    Latsuzbaia, R.

    2015-01-01

    In this thesis, I discuss a novel idea of fuel cell catalyst regeneration to increase lifetime of the PEM fuel cell electrode/catalyst operation and, therefore, reduce the catalyst costs. As many of the catalyst degradation mechanisms are difficult to avoid, the regeneration is alternative option to

  11. Rapid synthesis of graphitic carbon nitride powders by metathesis reaction between CaCN{sub 2} and C{sub 2}Cl{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Pang Linlin [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China); Carbon Fiber Engineering Research Center of Shandong Province, Shandong University, Jinan 250061 (China); Bi Jianqiang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China); Bai Yujun [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China) and Carbon Fiber Engineering Research Center of Shandong Province, Shandong University, Jinan 250061 (China)], E-mail: byj97@126.com; Qi Yongxin [Carbon Fiber Engineering Research Center of Shandong Province, Shandong University, Jinan 250061 (China); Zhu Huiling [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China); Carbon Fiber Engineering Research Center of Shandong Province, Shandong University, Jinan 250061 (China); Wang Chengguo; Wu Jiwei [Carbon Fiber Engineering Research Center of Shandong Province, Shandong University, Jinan 250061 (China); Lu Chengwei [Department of Equipment, Shandong University of Science and Technology, Jinan 250031 (China)

    2008-12-20

    Carbon nitride powders were rapidly synthesized at low temperature via the chemical metathesis reaction between CaCN{sub 2} and C{sub 2}Cl{sub 6}. X-ray diffraction results confirm the formation of crystalline graphitic carbon nitride. Besides the dominant morphology of nanoparticles, flakes, nanorods, hollow and solid spheres can be observed by transmission electron microscopy. The absorption peaks of C-N, C=N and s-triazine rings, as well as the absence of C{identical_to}N peak in the infrared spectra, further verify the formation of graphite-like sp{sup 2}-bonded structure with planar networks. Elemental analysis gives an atomic ratio of N/C around 0.3. X-ray photoelectron spectra exhibit the existence of chemical bonding between C and N.

  12. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    International Nuclear Information System (INIS)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  13. Extended Catalyst Longevity Via Supercritical Isobutane Regeneration of a Partially Deactivated USY Alkylation Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch; David J. Zalewski

    2005-05-01

    Off-line, in situ activity recovery of a partially deactivated USY zeolite catalyst used for isobutane/butene alkylation was examined in a continuous-flow reaction system employing supercritical isobutane. Catalyst samples were deactivated in a controlled manner by running them to either to a fixed butene conversion level of 95% or a fixed time on stream of three hours, and then exposing the catalyst to supercritical isobutane to restore activity. Activity recovery was determined by comparing alkylation activity before and after the regeneration step. Both single and multiple regenerations were performed. Use of a 95% butene conversion level criterion to terminate the reaction step afforded 86% activity recovery for a single regeneration and provided nine sequential reaction steps for the multiple regeneration studies. Employing a fixed 3 h time on stream criterion resulted in nearly complete activity recovery for a single regeneration, and 24 reaction steps were demonstrated in sequence for the multiple regeneration process, producing only minor product yield declines per step. This resulted in a 12-fold increase in catalyst longevity versus unregenerated catalyst.

  14. Supported Single-Site Ti(IV) on a Metal–Organic Framework for the Hydroboration of Carbonyl Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhiyuan [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Liu, Dong [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Camacho-Bunquin, Jeffrey [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Zhang, Guanghui [Department; Yang, Dali [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; López-Encarnación, Juan M. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Department; Xu, Yunjie [Department; Ferrandon, Magali S. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Niklas, Jens [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Poluektov, Oleg G. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Jellinek, Julius [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Lei, Aiwen [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Bunel, Emilio E. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Delferro, Massimiliano [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States

    2017-10-10

    ABSTRACT: A stable and structurally well-defined titanium alkoxide catalyst supported on a metal-organic-framework (MOF) of UiO-67 topology (ANL1-Ti(OiPr)2) was synthesized and fully characterized by a variety of analytical and spectroscopic techniques, including BET, TGA, PXRD, XAS, DRIFT, SEM, and DFT computations. The Ti-functionalized MOF was demonstrated active for the catalytic hydroboration of a wide range of aldehydes and ketones with HBpin as the boron source. Compared to traditional homogeneous and supported hydroboration catalysts, ANL1-Ti(OiPr)2 is completely recyclable and reusable, making it a promising hydroboration catalyst alternative for green and sustainable chemical synthesis. DFT calculations suggest that the catalytic hydroboration proceeds via a (1) hydride transfer between the active Ti-hydride species and a carbonyl moiety (rate determining step), and (2) alkoxide transfer (intramolecular σ-bond metathesis) to generate the boronate ester product.

  15. The Stability of Supported Gold Catalysts

    NARCIS (Netherlands)

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  16. Nitrogen oxides storage catalysts containing cobalt

    Science.gov (United States)

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  17. FCC catalyst technologies expand limits of process capability

    International Nuclear Information System (INIS)

    Leiby, S.

    1992-01-01

    This paper reports that over the past 30 or so years, many improvements in fluid catalytic cracking (FCC) operation have been achieved as the result of innovations in catalyst formulation. During the 1990s, new environmental regulations on issues such as reformulated gasoline will place new demands on both the refining industry and catalyst suppliers. An overview of cracking catalyst technology therefore seems in order. Today, high-technology innovations by catalyst manufacturers are rapid, but profit margins are slim. Catalyst formulations are shrouded in secrecy and probably depend almost as much on art as on science. Special formulations for specific cracking applications get the greatest emphasis today. To illustrate this point, OGJ's Worldwide Catalyst Report lists over 200 FCC catalyst designations. Catalysts containing components to enhance gasoline octane now account for about 70% of total U.S. FCC catalyst usage

  18. Catalyst Deactivation and Regeneration in Low Temperature Ethanol Steam Reforming with Rh/CeO2-ZrO2 Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hyun-Seog; Platon, Alex; Wang, Yong; King, David L.

    2006-08-01

    Rh/CeO2-ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.

  19. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  20. Petroleum residue upgrading with dispersed catalysts. Part 1. Catalysts activity and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, N.; Del Bianco, A.; Del Piero, G. [ENITECNOLOGIE S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy); Marchionna, M. [SNAMPROGETTI S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy)

    2000-12-04

    The results of a study aimed at the identification of the relevant chemical aspects involved in the process of upgrading heavy feedstocks in the presence of dispersed catalysts are discussed. The catalytic activity of different compounds was compared in terms of products yields and quality. Moreover, a detailed and systematic characterization of the catalysts recovered at the end of the reactions was achieved. The experimental work provided quite a large set of data, allowing to investigate the factors that may affect catalyst activity (precursor solubility, rate of activation, degree of dispersion, presence of promoters, etc.). The results of this study demonstrate that the best performances are obtained by the microcrystalline molybdenite generated in situ by oil-soluble precursors. The nature of the organic ligand does not play a very relevant role in influencing the hydrogenation activity. The presence of phosphorus, however, significantly enhances hydrodemetallation, at least in terms of vanadium removal. Bimetallic precursors show a slight synergistic effect towards the hydrodesulfurization reaction. Microsized powdered catalyst precursors have a much lower catalytic activity compared to the oil-soluble ones.

  1. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Bukur, Dragomir B.; Lang, X.; Chokkaram, S.; Nowicki, L.; Wei, G.; Ding, Y.; Reddy, B.; Xiao, S.

    1999-01-01

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration plant

  2. Catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  3. Highly Stable and Active Catalyst for Sabatier Reactions

    Science.gov (United States)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  4. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  5. Reactivation of a tin oxide-containing catalyst

    Science.gov (United States)

    Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, Kenneth G. (Inventor); Hess, Robert V. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Paulin, Patricia A. (Inventor)

    1989-01-01

    A method for the reactivation of a tin oxide-containing catalyst of a CO.sub.2 laser is provided. First, the catalyst is pretreated by a standard procedure. When the catalyst experiences diminished activity during usage, the heated zone surrounding the catalyst is raised to a temperature which is the operating temperature of the laser and 400.degree. C. for approximately one hour. The catalyst is exposed to the same laser gas mixture during this period. The temperature of the heated zone is then lowered to the operating temperature of the CO.sub.2 laser.

  6. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...... along with our recent in situ TEM studies on the sintering of Ni/MgAl2O4 catalysts. These results suggest that the rapid loss of catalyst activity in the earliest stages of catalyst sintering could result from Ostwald ripening rather than through particle migration and coalescence. The smallest...

  7. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  8. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  9. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  10. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  11. All-Polymer Photovoltaic Devices of Poly(3-(4- n -octyl)-phenylthiophene) from Grignard Metathesis (GRIM) Polymerization

    KAUST Repository

    Holcombe, Thomas W.

    2009-10-14

    (Graph Presented) The synthesis of poly[3-(4-n-octyl)-phenylthiophene] (POPT) from Grignard Metathesis (GRIM) is reported. GRIM POPT is found to have favorable electronic, optical, and processing properties for organic photovoltaics (OPVs). Space-charge limited current and field effect transistor measurements for POPT yielded hole mobilities of 1 × 10-4 cm2/(V s) and 0.05 cm2/(V s), respectively. Spincasting GRIM POPT from chlorobenzene yields a thin film with a 1.8 eV band gap, and PC61BM:POPT bulk heterojection devices provide a peak performance of 3.1%. Additionally, an efficiency of 2.0% is achieved in an all-polymer, bilayer OPV using poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-(1-cyanovinylene) phenylene] (CNPPV) as an acceptor. This state-of-the-art all-polymer device is analyzed in comparison to the analogous poly(3-hexylthiophene) (P3HT)/CNPPV device. Counter to expectations based on more favorable energy level alignment, greater active layer light absorption, and similar hole mobility, P3HT/CNPPV devices perform less well than POPT/CNPPV devices with a peak efficiency of 0.93%. © 2009 American Chemical Society.

  12. All-Polymer Photovoltaic Devices of Poly(3-(4- n -octyl)-phenylthiophene) from Grignard Metathesis (GRIM) Polymerization

    KAUST Repository

    Holcombe, Thomas W.; Woo, Claire H.; Kavulak, David F.J.; Thompson, Barry C.; Fréchet, Jean M. J.

    2009-01-01

    (Graph Presented) The synthesis of poly[3-(4-n-octyl)-phenylthiophene] (POPT) from Grignard Metathesis (GRIM) is reported. GRIM POPT is found to have favorable electronic, optical, and processing properties for organic photovoltaics (OPVs). Space-charge limited current and field effect transistor measurements for POPT yielded hole mobilities of 1 × 10-4 cm2/(V s) and 0.05 cm2/(V s), respectively. Spincasting GRIM POPT from chlorobenzene yields a thin film with a 1.8 eV band gap, and PC61BM:POPT bulk heterojection devices provide a peak performance of 3.1%. Additionally, an efficiency of 2.0% is achieved in an all-polymer, bilayer OPV using poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-(1-cyanovinylene) phenylene] (CNPPV) as an acceptor. This state-of-the-art all-polymer device is analyzed in comparison to the analogous poly(3-hexylthiophene) (P3HT)/CNPPV device. Counter to expectations based on more favorable energy level alignment, greater active layer light absorption, and similar hole mobility, P3HT/CNPPV devices perform less well than POPT/CNPPV devices with a peak efficiency of 0.93%. © 2009 American Chemical Society.

  13. Chemical reaction on solid surface observed through isotope tracer technique

    International Nuclear Information System (INIS)

    Tanaka, Ken-ichi

    1983-01-01

    In order to know the role of atoms and ions on solid surfaces as the partners participating in elementary processes, the literatures related to the isomerization and hydrogen exchanging reaction of olefines, the hydrogenation of olefines, the metathesis reaction and homologation of olefines based on solid catalysts were reviewed. Various olefines, of which the hydrogen atoms were substituted with deuterium at desired positions, were reacted using various solid catalysts such as ZnO, K 2 CO 3 on C, MoS 2 (single crystal and powder) and molybdenum oxide (with various carriers), and the infra-red spectra of adsorbed olefines on catalysts, the isotope composition of reaction products and the production rate of the reaction products were measured. From the results, the bonding mode of reactant with the atoms and ions on solid surfaces, and the mechanism of the elementary process were considered. The author emphasized that the mechanism of the chemical reaction on solid surfaces and the role of active points or catalysts can be made clear to the considerable extent by combining isotopes suitably. (Yoshitake, I.)

  14. exchanged Mg-Al hydrotalcite catalyst

    Indian Academy of Sciences (India)

    ) catalysts, ... The catalyst can be easily separated by simple filtration ... surface area by the single-point N2 adsorption method ... concentration of carbonate anions (by treating the cat- .... hydrotalcite phase along with copper hydroxide and.

  15. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  16. Polyfunctional catalyst for processiing benzene fractions

    Energy Technology Data Exchange (ETDEWEB)

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

    2009-05-15

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  17. Calcium and lanthanum solid base catalysts for transesterification

    Science.gov (United States)

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  18. Novel anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.

  19. Carbons and carbon supported catalysts in hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, Edward

    2009-07-01

    This book is a comprehensive summary of recent research in the field and covers all areas of carbons and carbon materials. The potential application of carbon supports, particularly those of carbon black (CB) and activated carbon (AC) in hydroprocessing catalysis are covered. Novel carbon materials such as carbon fibers and carbon nano tubes (CNT) are also covered, including the more recent developments in the use of fullerenes in hydroprocessing applications. Although the primary focus of this book is on carbons and carbon supported catalysts, it also identifies the difference in the effect of carbon supports compared with the oxidic supports, particularly that of the Al{sub 2}O{sub 3}. The difference in catalyst activity and stability was estimated using both model compounds and real feeds under variable conditions. The conditions applied during the preparation of carbon supported catalysts are also comprehensively covered and include various methods of pretreatment of carbon supports to enhance catalyst performance. The model compounds results consistently show higher hydrodesulfurization and hydrodeoxygenation activities of carbon supported catalysts than that of the Al{sub 2}O{sub 3} supported catalysts. Also, the deactivation of the former catalysts by coke deposition was much less evident. Chapter 6.3.1.3 is on carbon-supported catalysts: coal-derived liquids.

  20. Optimization of catalyst system reaps economic benefits

    International Nuclear Information System (INIS)

    Le Roy, C.F.; Hanshaw, M.J.; Fischer, S.M.; Malik, T.; Kooiman, R.R.

    1991-01-01

    Champlin Refining and Chemicals Inc. is learning to optimize its catalyst systems for hydrotreating Venezuelan gas oils through a program of research, pilot plant testing, and commercial unit operation. The economic results of this project have been evaluated, and the benefits are most evident in improvements in product yields and qualities. The project has involved six commercial test runs, to date (Runs 10-15), with a seventh run planned. A summary of the different types of catalyst systems used in the test runs, and the catalyst philosophy that developed is given. Runs 10 and 11 used standard CoMo and NiMo catalysts for heavy gas oils hydrotreating. These catalysts had small pore sizes and suffered high deactivation rates because of metals contamination. When it was discovered that metals contamination was a problem, catalyst options were reviewed

  1. Catalyseurs et procédés catalytiques utilisés dans la production des grands intermédiaires pétrochimiques. Situation actuelle et futur Catalysts and Catalytic Processes Used for the Production of the Major Petrochemical Building Blocks. Present Situation and the Future

    Directory of Open Access Journals (Sweden)

    Boitiaux J. P.

    2006-11-01

    Full Text Available La pétrochimie représente une part modeste du marché des catalyseurs, mais les dix dernières années ont vu des améliorations substantielles des catalyseurs et des procédés utilisés. Ces améliorations ont permis de mieux répondre à la demande en grands intermédiaires pétrochimiques. Cette évolution est bien illustrée par les hydrogénations, autour du vapocraquage destiné à produire des oléfines, par le reformage catalytique et les procédés satellites destinés à produire des aromatiques et par les nouveaux procédés de déshydrogénation, métathèse, oligomérisation. . . qui permettent de mieux équilibrer le marché des oléfines. Petrochemicals account for a modest share of the market for catalysts, but there have been substantial improvements in the catalysts and processes used in the last ten years. These improvements have brought about a better response to the demand for major petrochemical building blocks. This trend is clearly illustrated by hydrogenations in the field of steam cracking to produce olefins, by catalytic reforming and satellite processes to produce aromatics, and by new processes such as dehydrogenation, metathesis and oligomerization which provide better balance to the market for olefins.

  2. Method of performing sugar dehydration and catalyst treatment

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  3. Catalysts for oxidation of mercury in flue gas

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  4. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  5. Palladium catalysts deposited on silica materials: Comparison of catalysts based on mesoporous and amorphous supports in Heck reaction

    Czech Academy of Sciences Publication Activity Database

    Demel, J.; Čejka, Jiří; Štěpnička, P.

    2010-01-01

    Roč. 329, 1-2 (2010), s. 13-20 ISSN 1381-1169 R&D Projects: GA ČR GA104/09/0561 Institutional research plan: CEZ:AV0Z40400503 Keywords : heterogeneous catalysts * immobolized catalysts * supported catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.872, year: 2010

  6. Structure and catalytic activity of regenerated spent hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Massoth, F.E.; Furimsky, E. (Utah University, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1992-11-01

    Two spent catalysts, obtained from different hydrodemetallation operations, were regenerated by two different treatments, viz. 2% (V/V) O[sub 2]/N[sub 2] and air. One spent catalyst (B), contained 3 wt% V and 15 wt% C, while the other (H) contained 10 wt% V, 14 wt% C and 8 wt% Fe. After regeneration in the O[sub 2]/N[sub 2] stream, catalyst B showed essentially complete recovery of its original surface area, whereas catalyst H showed only 70% recovery. Both catalysts showed substantial losses in surface area by the air treatment. Catalytic activity tests on the regenerated catalysts for hydrodesulfurization of thiophene and for hydrogenation of 1-hexene showed low recovery of activities, even for the regenerated catalyst in which the surface area had been completely recovered. X-ray diffraction analyses of the spent-regenerated catalysts revealed substantial changes in catalyst structure. Surface area and catalytic activity results were qualitatively explained by these catalyst structural changes. 17 refs., 1 fig., 3 tabs.

  7. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Science.gov (United States)

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  8. Development of industrial hydrogenating catalyst on rhenium base

    International Nuclear Information System (INIS)

    Chistyakova, G.A.; Bat', I.I.; Rebrova, V.V.

    1975-01-01

    Processes for forming rhenium catalysts on carbon carrier and their catalytic properties in nitrobenzene (NB) reduction were studied. Application of an ammonia preparation to the carbon surface produced impregnated carbon saturated at room temperature with a water solution of the ammonia preparation, taken in a volume equal to the volumetric capacity of the carbon. With one impregnation, 2% rhenium was taken up. Catalysts containing more than 5% rhenium were obtained by impregnating the carbon with heating and use of more concentrated solutions. Catalysts made in this way and dried at 100 0 C had the composition Re 2 OH/carbon/. The most active catalysts were those reduced at 200-250 0 C; higher temperatures, up to 300-500 0 C, decreased the activity. Study of the catalytic properties of the rhenium catalysts in a liquid phase reduction of NB showed that the specific activity of rhenium depends only slightly on the content of the active component in the catalyst and is close to the specific activity of palladium and considerably exceeds that of nickel. Study of the effect of the NB concentration and hydrogen pressure on the activity and stability of the 5% rhenium catalyst indicated that with NB concentrations from 50 to 10% the process takes place at an essentially constant rate; the order of the reaction was close to zero with an apparent activation energy of about 7000 cal/mole. At pressures of 15-200 atm the yield with the 5% catalyst was proportional to the hydrogen pressure. A big advantage of the rhenium catalysts in the reduction of NB is their high selectivity. With a higher activity than palladium and nickel catalysts, 5% rhenium catalyst produces a high operating capacity in a wide range of contact charges, which has considerable significance for industrial use in contact apparatus of the column type. Comparison of the costs of rhenium catalysts and granular carbon carrier with those of nickel, platinum, and palladium showed that 5% rhenium catalyst can

  9. Reactivation of a Tin-Oxide-Containing Catalyst

    Science.gov (United States)

    Hess, Robert; Sidney, Barry; Schryer, David; Miller, Irvin; Miller, George; Upchurch, Bill; Davis, Patricia; Brown, Kenneth

    2010-01-01

    The electrons in electric-discharge CO2 lasers cause dissociation of some CO2 into O2 and CO, and attach themselves to electronegative molecules such as O2, forming negative O2 ions, as well as larger negative ion clusters by collisions with CO or other molecules. The decrease in CO2 concentration due to dissociation into CO and O2 will reduce the average repetitively pulsed or continuous wave laser power, even if no disruptive negative ion instabilities occur. Accordingly, it is the primary object of this invention to extend the lifetime of a catalyst used to combine the CO and O2 products formed in a laser discharge. A promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide (Pt/SnO2). First, the catalyst is pretreated by a standard procedure. The pretreatment is considered complete when no measurable quantity of CO2 is given off by the catalyst. After this standard pretreatment, the catalyst is ready for its low-temperature use in the sealed, high-energy, pulsed CO2 laser. However, after about 3,000 minutes of operation, the activity of the catalyst begins to slowly diminish. When the catalyst experiences diminished activity during exposure to the circulating gas stream inside or external to the laser, the heated zone surrounding the catalyst is raised to a temperature between 100 and 400 C. A temperature of 225 C was experimentally found to provide an adequate temperature for reactivation. During this period, the catalyst is still exposed to the circulating gas inside or external to the laser. This constant heating and exposing the catalyst to the laser gas mixture is maintained for an hour. After heating and exposing for an appropriate amount of time, the heated zone around the catalyst is allowed to return to the nominal operating temperature of the CO2 laser. This temperature normally resides in the range of 23 to 100 C. Catalyst activity can be measured as the percentage conversion of CO to CO2. In the specific embodiment

  10. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  11. Polymer-bound rhodium hydroformylation catalysts

    NARCIS (Netherlands)

    Jongsma, Tjeerd

    1992-01-01

    Homogeneous catalysts are superior in activity, selectivity as well as specificity, but heterogeneous catalyst are often preferred in industrial processes, because of their good recoverability and their applicability in continuous flow reactors. It would be of great environmental, commercial and

  12. Catalyst design for carbon nanotube growth using atomistic modeling

    International Nuclear Information System (INIS)

    Pint, Cary L; Bozzolo, Guillermo; Hauge, Robert

    2008-01-01

    The formation and stability of bimetallic catalyst particles, in the framework of carbon nanotube growth, is studied using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Monte Carlo-Metropolis simulations with the BFS method are utilized in order to predict and study equilibrium configurations for nanoscale catalyst particles which are directly relevant to the catalyst state prior to growth of carbon nanotubes. At the forefront of possible catalyst combinations is the popular Fe-Mo bimetallic catalyst, which we have recently studied experimentally. We explain our experimental results, which indicate that the growth observed is dependent on the order of co-catalyst deposition, in the straightforward interpretation of BFS strain and chemical energy contributions toward the formation of Fe-Mo catalyst prior to growth. We find that the competition between the formation of metastable inner Mo cores and clusters of surface-segregated Mo atoms in Fe-Mo catalyst particles influences catalyst formation, and we investigate the role of Mo concentration and catalyst particle size in this process. Finally, we apply the same modeling approach to other prominent bimetallic catalysts and suggest that this technique can be a powerful tool to understand and manipulate catalyst design for highly efficient carbon nanotube growth

  13. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  14. Novel Anode Catalyst for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    S. Basri

    2014-01-01

    Full Text Available PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni and iron (Fe. Multiwalled carbon nanotubes (MWCNTs are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS, are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR. The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst.

  15. π-face donation from the aromatic N-substituent of N-heterocyclic carbene ligands to metal and its role in catalysis

    KAUST Repository

    Credendino, Raffaele

    2012-05-16

    In this work, we calculate the redox potential in a series of Ir and Ru complexes bearing a N-heterocyclic carbene (NHC) ligand presenting different Y groups in the para position of the aromatic N-substituent. The calculated redox potentials excellently correlate with the experimental ΔE 1/2 potentials, offering a handle to rationalize the experimental findings. Analysis of the HOMO of the complexes before oxidation suggests that electron-donating Y groups destabilize the metal centered HOMO. Energy decomposition of the metal-NHC interaction indicates that electron-donating Y groups reinforce this interaction in the oxidized complexes. Analysis of the electron density in the reduced and oxidized states of representative complexes indicates a clear donation from the C ipso of the N-substituents to an empty d orbital on the metal. In case of the Ru complexes, this mechanism involves the Ru-alkylidene moiety. All of these results suggest that electron-donating Y groups render the aromatic N-substituent able to donate more density to electron-deficient metals through the C ipso atom. This conclusion suggests that electron-donating Y groups could stabilize higher oxidation states during catalysis. To test this hypothesis, we investigated the effect of differently donating Y groups in model reactions of Ru-catalyzed olefin metathesis and Pd-catalyzed C-C cross-coupling. Consistent with the experimental results, calculations indicate an easier reaction pathway if the N-substituent of the NHC ligand presents an electron-donating Y group. © 2012 American Chemical Society.

  16. Technology development for iron Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.J.; Raje, A.; Keogh, R.A. [and others

    1995-12-31

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  17. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    Science.gov (United States)

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  19. Efficient epoxidation of propene using molecular catalysts

    DEFF Research Database (Denmark)

    Markovits, Iulius I. E.; Anthofer, Michael H.; Kolding, Helene

    2014-01-01

    The epoxidation of propene is performed in homogeneous phase using various molecular catalysts and H2O2 or tert-butyl hydroperoxide as oxidants. A comparison between some molybdenum catalysts and methyltrioxorhenium (MTO) shows that the well known Re catalyst is the best among the examined...

  20. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  1. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.

    Science.gov (United States)

    Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen

    2018-02-28

    Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.

  2. Activating catalysts with mechanical force

    NARCIS (Netherlands)

    Piermattei, A.; Karthikeyan, S.; Sijbesma, R.P.

    2009-01-01

    Homogeneously catalysed reactions can be ‘switched on’ by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to

  3. Dearomatization of jet fuel on irradiated platinum-supported catalyst

    International Nuclear Information System (INIS)

    Mucka, V.; Ostrihonova, A.; Kopernicky, I.; Mikula, O.

    1983-01-01

    The effect of ionizing radiation ( 60 Co #betta#-rays) on Pt-supported catalyst used for the dearomatization of jet fuel with distillation in the range 395 to 534 K has been studied. Pre-irradiation of the catalyst with doses in the range 10 2 to 5 x 10 4 Gy leads to the partial catalyst activation. Irradiation of the catalyst enhances its resistance to catalyst poisons, particularly to sulphur-compounds, and this is probably the reason for its catalytic activity being approx. 60 to 100% greater than that of un-irradiated catalyst. Optimum conditions for dearomatization on the irradiated catalyst were found and, by means of a rotary three-factorial experiment, it was shown that these lie at lower temperatures and lower pressures than those for un-irradiated catalyst. (author)

  4. Multi-stage catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2009-02-10

    Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).

  5. Process of activation of a palladium catalyst system

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  6. Characterization of catalysts by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Targos, W.M.; Bradley, S.A.

    1989-01-01

    The dedicated scanning transmission electron microscope (STEM) is an integral tool for characterizing catalysts because of its unique ability to image and analyze nanosized volumes. This information is valuable in optimizing catalyst formulations and determining causes for reduced catalyst performance. For many commercial catalysts direct correlations between structural features of metal crystallites and catalytic performance are not attainable. When these instances occur, determination of elemental distribution may be the only information available. In this paper the authors discuss some of the techniques employed and limitations associated with characterizing commercial catalysts

  7. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Adeyinka A. Adeyiga

    2001-01-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H 2 ) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H 2 /CO ratios. However, a serious problem with use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. Recently, fundamental understanding of physical attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried Fe-based catalyst having aps of 70 mm with high attrition resistance. This Fe-based attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H 2 /CO=0.67 and 2.0 NL/g-cat/h with C 5 + selectivity of >78% and methane selectivity of <5%. However, further development of the catalyst is needed to address the chemical attrition due to phase changes that any Fe-catalyst goes through potentially causing internal stresses within the particle and resulting in weakening, spalling or cracking. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (i) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron

  8. Catalysts and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-02-14

    The present invention provides a catalyst including a mesoporous silica nanoparticle and a catalytic material comprising iron. In various embodiments, the present invention provides methods of using and making the catalyst. In some examples, the catalyst can be used to hydrotreat fatty acids or to selectively remove fatty acids from feedstocks.

  9. Low platinum catalyst and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Chong, Lina

    2017-11-21

    A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.

  10. Chemical engineering design of CO oxidation catalysts

    Science.gov (United States)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  11. Roles of K2O on the CaO-ZnO Catalyst and Its Influence on Catalyst Basicity for Biodiesel Production

    Science.gov (United States)

    Buchori, Luqman; Istadi, I.; Purwanto; Marpaung, Louis Claudia; Safitri, Rahmatika Luthfiani

    2018-02-01

    This research aimed to study the effect of K2O impregnation on the basicity of the CaO-ZnO catalyst and its effect on biodiesel production. The effect of mole ratio of CaO to ZnO catalyst and %wt K2O were also studied. The mole ratio of CaO to ZnO catalyst was varied at 1:1, 1:1.5, 1:2, 1:3, and 3:1, while the %wt K2O was varied at 1, 3, and 5 %. The catalyst basicity was determined by titration method. The basicity of the catalyst increased after the CaO-ZnO catalyst was impregnated with K2O in all mole ratios of CaO-ZnO catalyst. The addition of K2O as a promoter also increase the basicity. The highest basicity was obtained at the CaO-ZnO mole ratio of 3:1 and 5%wt K2O. The tranesterification process was carried out in a batch reactor at a methanol to oil mole ratio of 15:1, a reaction temperature of 60°C, a reaction time of 4 h, and a catalyst loading of 5%wt oil. The FAME yields obtained were 41.33%. These results proved that K2O plays a role in enhancing the catalyst basicity. In addition, K2O also serves as a binding agent to improve the mechanical properties of the catalyst.

  12. WMe6 tamed by silica: Si-O-WMe5 as an efficient, well-defined species for alkane metathesis, leading to the observation of a supported W-methyl/methylidyne species

    KAUST Repository

    Samantaray, Manoja

    2014-01-22

    The synthesis and full characterization of a well-defined silica-supported ≡Si-O-W(Me)5 species is reported. Under an inert atmosphere, it is a stable material at moderate temperature, whereas the homoleptic parent complex decomposes above -20 °C, demonstrating the stabilizing effect of immobilization of the molecular complex. Above 70 °C the grafted complex converts into the two methylidyne surface complexes [(≡SiO-)W(≡CH) Me2] and [(≡SiO-)2W(≡CH)Me]. All of these silica-supported complexes are active precursors for propane metathesis reactions. © 2013 American Chemical Society.

  13. WMe6 tamed by silica: Si-O-WMe5 as an efficient, well-defined species for alkane metathesis, leading to the observation of a supported W-methyl/methylidyne species

    KAUST Repository

    Samantaray, Manoja; Callens, Emmanuel; Abou-Hamad, Edy; Rossini, Aaron J.; Widdifield, Cory M.; Dey, Raju; Emsley, Lyndon; Basset, Jean-Marie

    2014-01-01

    The synthesis and full characterization of a well-defined silica-supported ≡Si-O-W(Me)5 species is reported. Under an inert atmosphere, it is a stable material at moderate temperature, whereas the homoleptic parent complex decomposes above -20 °C, demonstrating the stabilizing effect of immobilization of the molecular complex. Above 70 °C the grafted complex converts into the two methylidyne surface complexes [(≡SiO-)W(≡CH) Me2] and [(≡SiO-)2W(≡CH)Me]. All of these silica-supported complexes are active precursors for propane metathesis reactions. © 2013 American Chemical Society.

  14. Diblock Polyelectrolytic Copolymers Containing Cationic Iron and Cobalt Sandwich Complexes: Living ROMP Synthesis and Redox Properties.

    Science.gov (United States)

    Gu, Haibin; Ciganda, Roberto; Hernandez, Ricardo; Castel, Patricia; Zhao, Pengxiang; Ruiz, Jaime; Astruc, Didier

    2016-04-01

    Diblock metallopolymer polyelectrolytes containing the two redox-robust cationic sandwich units [CoCp'Cp](+) and [FeCp'(η(6)-C6 Me6)](+) (Cp = η(5)-C5 H5; Cp' = η(5)-C5H4-) as hexafluorophosphate ([PF6](-)) salts are synthesized by ring-opening metathesis polymerization using Grubbs' third generation catalyst. Their electrochemical properties show full chemical and electrochemical reversibilities allowing fine determination of the copolymer molecular weight using Bard-Anson's electrochemical method by cyclic voltammetry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  16. Method of Heating a Foam-Based Catalyst Bed

    Science.gov (United States)

    Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.

    2009-01-01

    A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.

  17. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Science.gov (United States)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  18. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Albayati, Talib M., E-mail: talib-albyati@yahoo.com [University of Technology, Department of Chemical Engineering (Iraq); Doyle, Aidan M., E-mail: a.m.doyle@mmu.ac.uk [Manchester Metropolitan University, Division of Chemistry and Environmental Science (United Kingdom)

    2015-02-15

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  19. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    International Nuclear Information System (INIS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-01-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction

  20. Catalyst study for the plasma exhaust purification process

    International Nuclear Information System (INIS)

    Chabot, J.; Sannier, J.

    1990-01-01

    Several catalysts available from commercial sources have been screened to find out specific catalysts which allow complete methane oxidation and ammonia decomposition at temperature as low as possible in order to minimize tritium loss by permeation through processing equipment walls. Afterwards, an extended kinetic investigation has been performed on the best catalysts to achieve the data necessary to unit calculations. For methane oxidation, a palladium on alumina catalyst shows a very satisfactory low-temperature efficiency while a non-precious metal catalyst made of nickel oxide and alumina was found to be the more efficient for ammonia decomposition

  1. Attrition resistant Fischer-Tropsch catalyst and support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  2. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Lab., TN (United States); LaBarge, W. [Delphi Automotive Systems, Flint, MI (United States)] [and others

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.

  3. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope......–energy dispersive X-ray spectroscopy (SEM–EDX) and NH3-temperature programmed desorption (NH3-TPD). 95% deactivation was observed for the V2O5–WO3–TiO2 catalyst, while the Cu–HZSM5 and Cu–HMOR catalysts deactivated only 58% and 48%, respectively, after 1200 h KCl exposure. SEM analysis of the KCl aerosol exposed...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  4. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    Energy Technology Data Exchange (ETDEWEB)

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  5. Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption

    Science.gov (United States)

    We synthesized hydrothermally stable metal catalysts with controlled particle size and distribution, with the goal of determining which catalyst(s) can selectively catalyze the production of aromatics from bio-oil (from pyrolysis of biomass). Both precious and base transition metal catalysts (Ru, Pt...

  6. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  7. Novel Fischer-Tropsch catalysts. [DOE patent

    Science.gov (United States)

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  8. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  9. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  10. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    Science.gov (United States)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  11. Tritium transfer process using the CRNL wetproof catalyst

    International Nuclear Information System (INIS)

    Chuang, K.T.; Holtslander, W.J.

    1980-01-01

    The recovery of tritium from heavy water in CANDU reactor systems requires the transfer of the tritium atoms from water to hydrogen molecules prior to tritium concentration by cryogenic distillation. Isotopic exchange between liquid water and hydrogen using the CRNL-developed wetproof catalyst provides an effective method for the tritium transfer process. The development of this process has required the translation of the technology from a laboratory demonstration of catalyst activity for the exchange reaction to proving and demonstration that the process will meet the practical restraints in a full-scale tritium recovery plant. This has led to a program to demonstrate acceptable performance of the catalyst at operating conditions that will provide data for design of large plants. Laboratory and pilot plant work has shown adequate catalyst lifetimes, demonstrated catalyst regeneration techniques and defined and required feedwater purification systems to ensure optimum catalyst performance. The ability of the catalyst to promote the exchange of hydrogen isotopes between water and hydrogen has been shown to be technically feasible for the tritium transfer process

  12. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2012-12-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20. [Keywords:  catalyst; ethanol conversion; dehydration process; yield of diethyl ether; natural zeolite].

  13. Micelle-derived catalysts for extended Schulz-Flory

    Energy Technology Data Exchange (ETDEWEB)

    Abrevaya, H.

    1986-01-01

    The objective of this program is to develop a synthesis gas conversion catalyst with higher selectivity to liquid fuels, while maintaining catalytic activity and stability at least equivalent relative to state-of-the-art precipitated iron catalysts. During this quarter, the emphasis in the program has been the investigation of the hydrocarbon cutoff hypothesis with supported ruthenium catalysts. An alumina-supported catalyst with smaller than 20[Angstrom] ruthenium particles was tested under conditions of maximal water gas shift activity. During this test more than 90% of the water made in the Fischer-Tropsch synthesis reaction was converted to H[sub 2]. However, the extent of ruthenium metal agglomeration was not reduced. Accordingly, it was not possible to conclude whether hydrocarbon cutoff occurs with smaller than 20[Angstrom] ruthenium particles on [gamma]-alumina. A ruthenium catalyst prepared on Y-type zeolite had 20[Angstrom] or smaller ruthenium particles according to STEM examination and a 15[Angstrom] average ruthenium metal particle size according to EXAFS examination. The ruthenium metal particle size was stable during the test with this catalyst. The hydrocarbon product distribution was Anderson-Schulz-Flory with no cutoff up to a carbon number of 160. A well-dispersed titania-supported ruthenium catalyst is going to be evaluated during the next quarter in order to determine whether hydrocarbon cutoff occurs.

  14. Reclaim/recycle of Pt/C catalysts for PEMFC

    International Nuclear Information System (INIS)

    Zhao, Jishi; He, Xiangming; Tian, Jianhua; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Platinum was reclaimed from Pt/C catalysts of the PEMFC by drying the degraded Pt/C catalysts at 80 o C for 3 h, followed by sintering at 600 o C for 6 h, dissolution by aqua fortis, purification with hydrochloric acid, reduction and filtration, successively. Pt/C catalysts were prepared again from the reclaimed Pt by two proposed processes, e.g., pH value control process and mass control process. The fuel cell with recycled catalysts presented a power density of over 0.18 W cm -2 . The reclaiming of Pt/C catalysts is a potential way for recycling Pt for PEMFC, reducing the cost of PEMFC

  15. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: effect of calcination temperature of catalysts.

    Science.gov (United States)

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-02-29

    Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO(x)/ZrO2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WOx/ZrO2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO2) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO3 and monoclinic ZrO2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WOx/ZrO2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Dissolved oxygen removal in a column packed with catalyst

    International Nuclear Information System (INIS)

    Lee, Han Soo; Chung, Hong Suk; Cho, Young Hyun; Ahn, Do Hee; Kim, Eun Kee

    1996-01-01

    The dissolved oxygen removed by H 2 -O 2 reaction in column packed with various catalysts was examined. The catalysts employed were the prepared polymeric catalyst, platinum on activated carbon, and Lewatit OC-1045 which is available commercially. The column experiments with the prepared polymeric catalyst showed the dissolved oxygen reduced to 35 ppb which is below the limit in feel water of power plants. This implies the likely application of the prepared catalyst for practical use. The activated carbon required the pre-treatment for the removed of dissolved oxygen, since the surface of activated carbon contains much oxygen adsorbed initially. The Lewatit catalyst exposed the best performance, however, the aged one showed the gradual loss of catalytic activity due to degradation of resin catalyst. 14 refs., 6 figs., 2 tabs. (author)

  17. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst by...

  18. Tethered catalysts for the hydration of carbon dioxide

    Science.gov (United States)

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  19. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    International Nuclear Information System (INIS)

    Ginosar, Daniel M.

    2009-01-01

    Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400 C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts

  20. Mordenite - Type Zeolite SCR Catalysts with Iron or Copper

    DEFF Research Database (Denmark)

    2012-01-01

    Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also reveale...... to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment....

  1. NOVEL RU-NI-S ELECTRODE CATALYST FOR PEMFC

    Science.gov (United States)

    The expected results from this project include: a new formula and preparation procedures for Ru-Ni-S catalyst; demonstration of CO and S tolerance of the new catalyst; a small size PEMFC with Ru-Ni-S catalyst and good performance; an...

  2. Steam dealkylation catalyst and a method for its activation

    International Nuclear Information System (INIS)

    Dorawala, T.; Reinhard, R.

    1980-01-01

    The method of activating a supported catalyst containing oxides of a group viii metal and of a group 1 a metal which comprises heating said catalyst at a rate of 10 0 to 500 0 F/hr to a temperature of 650 0 to 1400 0 F in a hydrogen atmosphere; maintaining said heated catalyst in a hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 30 hours thereby forming a hydrogen-treated catalyst; and maintaining the hydrogen-treated catalyst in a steam-hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 20 hours thereby forming a steamed hydrogen-treated catalyst

  3. Ship-in-a-bottle catalysts

    Science.gov (United States)

    Haw, James F.; Song, Weiguo

    2006-07-18

    In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.

  4. Niobium, catalyst repair kit

    International Nuclear Information System (INIS)

    Tanabe, K.

    1991-01-01

    This paper reports that niobium oxides, when small amounts are added to known catalysts, enhance catalytic activity and selectivity and prolong catalyst life. Moreover, niobium oxides exhibit a pronounced effect as supports of metal or metal oxide catalysts. Recently we found that the surface acidity of hydrated niobium pentoxide, niobic acid (Nb 2 O 5 · nH 2 O), corresponds to the acidity of 70% sulfuric acid and exhibits high catalytic activity, selectivity, and stability for acid-catalyzed reactions in which water molecules participate. Although there are few differences in electronegativity and ionic radius between niobium and its neighbors in the periodic table, it is interesting that the promoter effect, support effect, and acidic nature of niobium compounds are quite different from those of compounds of the surrounding elements. Here we review what's known of niobium compounds from the viewpoint of their pronounced catalytic behavior

  5. Supported chromium-molybdenum and tungsten sulfide catalysts

    International Nuclear Information System (INIS)

    Chianelli, R.R.; Jacobson, A.J.; Young, A.R.

    1988-01-01

    This patent describes the process for preparing a supported hydroprocessing catalyst. The process comprising compositing a quantity of a particulate, porous catalyst support material comprising one or more refactory oxides with one or more catalyst precursor salts and heating the composite at elevated temperature of at least about 200/sup 0/C up to about 600/sup 0/, in the presence of a sulfur-bearing compound in an amount whereby sulfur in the form of the sulfur-bearing compound in an amount whereby sulfur in the form of the sulfur bearing compound is present in excess of that contained in the catalyst precursor and under oxygen-free conditions for a time sufficient to form the catalyst. The catalyst precursor salt contains a tetrathiometallate anion of Mo, W or mixture therof and a cation comprising trivalent chromium or a mixture of trivalent chromium with one or more divalent promoter metals selected from the group consisting of Fe, Ni, Co, Mn, Cu and a mixture thereof wherein the trivalent chromium and divalent promoter metals are chelated by at least one neutral, nitrogen-containing polydentate ligand, L

  6. Catalyst for Decomposition of Nitrogen Oxides

    Science.gov (United States)

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  7. A novel magnetically recyclable heterogeneous catalyst

    Indian Academy of Sciences (India)

    propanesultone. 1. Introduction ... O. Scheme 2. The reaction of benzaldehyde with 1-phenyl-3- ... (2 mmol), catalyst (2 mol%, except for entries 7 and 9), room temperature. bCatalyst = 1 .... The electronic supporting information can be seen in.

  8. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M [Kemira Metalkat Oy, Oulu (Finland)

    1997-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  9. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  10. Electron microscopic studies of natural gas oxidation catalyst – Effects of thermally accelerated aging on catalyst microstructure

    DEFF Research Database (Denmark)

    Honkanen, Mari; Hansen, Thomas Willum; Jiang, Hua

    2017-01-01

    Structural changes of PtPd nanoparticles in a natural gas oxidation catalyst were studied at elevated temperatures in air and low-oxygen conditions and in situ using environmental transmission electron microscopy (ETEM). The fresh catalyst shows

  11. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.

    Science.gov (United States)

    Radzinski, Scott C; Foster, Jeffrey C; Matson, John B

    2016-04-01

    Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Boron-containing catalysts for dry reforming of methane to synthesis gas

    KAUST Repository

    Takanabe, Kazuhiro

    2018-01-04

    The present invention uses a cobalt catalyst for carbon dioxide reforming of lower alkanes to synthesis gas having a cobalt catalyst on an oxide support where the supported cobalt catalyst has been modified with a boron precursor. The boron-treated cobalt catalyst systems as described herein show significant increases in the conversion of CH4 and CO2 during the dry reforming of methane (DRM) reaction as compared to traditional catalysts. Described herein are supported catalysts and methods of using the catalysts for the dry reforming of methane to synthesis gas, with the supported catalysts in the present invention include a boron-treated cobalt catalyst disposed on an oxide support. Also described herein are processes for preparing the supported catalysts.

  13. Effect of catalyst on melamine-formaldehyde organic aerogel

    International Nuclear Information System (INIS)

    Sun Zhipeng; Yang Xi; Fu Zhibing; Zhong Minglong; Wang Chaoyang; Ma Kangfu; Huang Xiaoli; Chang Lijuan

    2013-01-01

    A series of melamine-formaldehyde(MF) organic aerogel templates were prepared with different categories and concentration of catalyst. Their molecular structure, thermal stability and pore structure were tested by Fourier transform infrared spectroscopy, thermogravimetric analysis and nitrogen adsorption. It is indicated that the type and concentration of catalyst do not affect molecular structure and thermal stability of the MF organic aerogel template. The specific surface area and pore volume of the MF organic aerogel template using Na 2 CO 3 as catalyst are higher than those using NaOH, NaHCO 3 as catalyst. When the ratio of the concentration of melamine to that of catalyst is 500, the specific surface area is maximized. (authors)

  14. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  15. Catalyst for hydrogen-amine D exchange

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Johnson, R.E.

    1976-01-01

    A process is claimed for deuterium isotopic enrichment (suitable for use in heavy water production) by amine-hydrogen exchange in which the exchange catalyst comprises a mixture of alkyl amides of two metals selected from the group consisting of the alkali metals. Catalyst mixtures comprising at least one of the alkali amides of lithium and potassium are preferred. At least one of the following benefits are obtained: decreased hydride formation, decreased thermal decomposition of alkyl amide, increased catalyst solubility in the amine phase, and increased exchange efficiency. 11 claims

  16. Enhanced gasification of wood in the presence of mixed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. L.; Mudge, L. K.; Sealock, Jr., L. J.; Robertus, R. J.; Mitchell, D. E.

    Experimental results obtained in laboratory investigations of steam gasification of wood in the presence of mixed catalysts are presented. These studies are designed to test the technical feasibility of producing specific gaseous products from wood by enhancing its reactivity and product specificity through the use of combined catalysts. The desired products include substitute natural gas, hydrocarbon synthesis gas and ammonia synthesis gas. The gasification reactions are controlled through the use of specific catalyst combinations and operating parameters. A primary alkali carbonate gasification catalyst impregnated into the wood combined with specific commercially available secondary catalysts produced the desired products. A yield of 50 vol % methane was obtained with a randomly mixed combination of a commercial nickel methanation catalyst and silica-alumina cracking catalyst at a weight ratio of 3:1 respectively. Steam gasification of wood in the presence of a commercial Si-Al cracking catalyst produced the desired hydrocarbon synthesis gas. Hydrogen-to-carbon monoxide ratios needed for Fischer-Tropsch synthesis of hydrocarbons were obtained with this catalyst system. A hydrogen-to-nitrogen ratio of 3:1 for ammonia synthesis gas was achieved with steam-air gasification of wood in the presence of catalysts. The most effective secondary catalyst system employed to produce the ammonia synthesis gas included two commercially prepared catalysts formulated to promote the water-gas shift reaction.

  17. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  18. Basic study of catalyst aging in the H-coal process

    Energy Technology Data Exchange (ETDEWEB)

    Cable, T.L.; Massoth, F.E.; Thomas, M.G.

    1985-04-01

    Samples of CoMo/Al/sub 2/O/sub 3/ catalysts used in an H-coal process demonstration run were studied to determine causes of catalyst deactivation. Physical and surface properties of the aged and regenerated catalysts were examined. Model compounds were used to assess four catalyst activity functions, viz., hydrodesulfurization (HDS), hydrogenation, cracking and hydrodeoxygenation (HDO). Other tests were performed to study the effects of coke and metals separately on the four catalyst activity functions. Catalyst coke content and metal deposits first increased rapidly, then more gradually with exposure time in the process run. Surface area and pore volume markedly decreased with exposure time. Catalyst activities of aged catalysts showed a rapid decline with exposure time. One-day exposure to coal resulted in significant losses in HDS and hydrogenation activities and nearly complete loss in cracking and HDO activities. Although metal deposits caused some permanent catalyst deactivation, coke had a much greater effect. Regenerated catalysts showed less recovery of catalytic activity as processing time increased. These results agreed well with product inspections from the process run. Oxygen chemisorption on aged-regenerated catalysts decreased with catalyst exposure time, indicating a significant loss of active sites. However, ESCA results showed no evidence of extensive sintering of the active MoS/sub 2/ phase. Permanent deactivation of the longer-time exposed catalysts can be ascribed, at least partly, to lateral growth of the active molybdenum sulfide phase. In addition, some loss in cobalt promotion occurred early in the process, which may account for the rapid loss in HDS and HDO activity in regenerated catalysts. 24 references.

  19. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    Science.gov (United States)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  20. Homogeneous deuterium exchange using rhenium and platinum chloride catalysts

    International Nuclear Information System (INIS)

    Fawdry, R.M.

    1979-01-01

    Previous studies of homogeneous hydrogen isotope exchange are mostly confined to one catalyst, the tetrachloroplatinite salt. Recent reports have indicated that chloride salts of iridium and rhodium may also be homogeneous exchange catalysts similar to the tetrachloroplatinite, but with much lower activities. Exchange by these homogeneous catalysts is frequently accompanied by metal precipitation with the termination of homogeneous exchange, particularly in the case of alkane exchange. The studies presented in this thesis describe two different approaches to overcome this limitation of homogeneous hydrogen isotope exchange catalysts. The first approach was to improve the stability of an existing homogeneous catalyst and the second was to develop a new homogeneous exchange catalyst which is free of the instability limitation

  1. Alkali promotion effect in Fischer-Tropsch cobalt-alumina catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Tsapkina, M.V.; Davydov, P.E.; Kazantsev, R.V. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry; Belousova, O.S.; Lapidus, A.L. [Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Promoting Co-alumina Fischer-Tropsch synthesis catalysts with alkali and alkaline-earth metals was studied. XRD, oxygen titration and CO chemisorption were used for the characterization of the catalysts. The best results in terms of catalyst selectivity and long-chain alkanes content in synthesized products were obtained with K-promoted catalyst. Catalytic performance strongly depends on K:Co atomic ratio as well as preparation procedure. Effect of K loading on selectivities is non-linear with extreme point at K:Co=0.01. Significant increase in C{sub 5+} selectivity of K-promoted catalyst may be explained as a result of strong CO adsorption on the catalyst surface, as was confirmed in CO chemisorption experiments. (orig.)

  2. Cerium-containing catalysts for obtaining ethylene from ethanol

    Directory of Open Access Journals (Sweden)

    Kusman Dossumov

    2014-10-01

    Full Text Available The catalysts Се/γ-Al2O3 и Се-La/γ-Al2O3 were studied by methods of electron microscopy (EM and temperature-programmed desorption (TPD of ammonia. Their activity was studied in reaction of ethanol dehydration with formation of ethylene. Modification of Се/γ-Al2O3 catalyst by Lanthanum promotes dispersion of the catalyst and increases the amount of acidic sites. This modification positively affects the catalyst activity.

  3. Study of Pd-Au/MWCNTs formic acid electrooxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk, Anna; Borodzinski, Andrzej; Kedzierzawski, Piotr; Lesiak, Beata [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Stobinski, Leszek [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland); Koever, Laszlo; Toth, Jozsef [Institute of Nuclear Research, Hungarian Academy of Sciences (ATOMKI), P. O. Box 51, 4001 Debrecen (Hungary); Lin, Hong-Ming [Department of Materials Engineering, Tatung University, 40, Chungshan N. Rd., 3rd Sec, 104, Taipei (China)

    2010-12-15

    The Pd-Au multiwall carbon nanotubes (MWCNTs) supported catalyst exhibits higher power density in direct formic acid fuel cell (DFAFC) than similar Pd/MWCNTs catalyst. The Pd-Au/MWCNTs catalyst also exhibits higher activity and is more stable in electrooxidation reaction of formic acid during cyclic voltammetry (CV) measurements. After preparation by polyol method, the catalyst was subjected to two type of treatments: (I) annealing at 250 C in 100% of Ar, (II) reducing in 5% of H{sub 2} in Ar atmosphere at 200 C. It was observed that the catalyst after treatment I was completely inactive, whereas after treatment II exhibited high activity. In order to explain this effect the catalysts were characterized by electron spectroscopy methods. The higher initial catalytic activity of Pd-Au/MWCNTs catalyst than Pd/MWCNTs catalyst in reaction of formic acid electrooxidation was attributed to electronic effect of gold in Pd-Au solution, and larger content of small Au nanoparticles of 1 nm size. The catalytic inactivity of Pd-Au/MWCNTs catalysts annealed in argon is attributed to carbon amorphous overlayer covering of Pd oxide shell on the metallic nanoparticles. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Endurance testing of a WDS catalyst

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Brad, Sebastian; Vijulie, Mihai; Vasut, Felicia; Constantin, Marin

    2007-01-01

    Full text: The Water Detritiation System (WDS) of ITER is a safety related component since it is the final barrier against tritium discharge into the environment. Therefore, its subcomponents have to be qualified and predictions on the time evolution of performances have to be made. During the activities devoted to JET WDS, test at lower concentrations of tritium and at small scale have been performed. The goal of this work is to extend the endurance testings and to check early results by tests under relevant conditions. The degradation of the WDS catalyst can strongly affect its separation performances and consequently it will entail a raise of the tritium releases into the environment. If a catalyst based on Teflon material is used for the LPCE column of WDS, the fluoride that may be formed and released due to the tritium presence causes the corrosion of the LPCE column with unpredictable effects. Therefore the quantification of catalyst degradation and the amount of fluoride released is needed for planning the maintenance activities and to predict the operation life time of the WDS components. The manufacturing of hydrophobic catalysts with activity that is not lowered by liquid water determined the rise of interest for the isotopes separation techniques in the hydrogen - water system. The active component of these catalysts is Pt (the only material to be further discussed) that enhances the exchange between the hydrogen and water vapors. The hydrophobic support does not allow the wetting and blocking by water of the active surface. Hydrophobic catalysts were manufactured by two methods: - direct deposition of Pt into the pores of a hydrophobic support (Teflon, carbon monofluoride, poly styrene, styrene di-vinyl benzene, etc.); - deposition on a hydrophilic support, most common charcoal, followed by hydrophobization by silicon oil or by homogenizing with hydrophobic polymer (Teflon, silicon resins). This type of catalysts is one of the most studied groups due to

  5. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    International Nuclear Information System (INIS)

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2005-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: (1) to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes, (2) to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation (3) to asses and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follow: (1) the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; (2) the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; (3) the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subjected to testing. (author)

  6. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    International Nuclear Information System (INIS)

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2004-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: - to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; - to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation; - to assess and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follows: - the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; - the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; - the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subject to testing. (authors)

  7. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    Directory of Open Access Journals (Sweden)

    Subbarao Duvvuri

    2011-11-01

    Full Text Available Abstract This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR, temperature-programmed oxidation (TPO, CO-chemisorption, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM-EDX and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions. H2-TPR analysis of cobalt catalyst indicated three temperature regions at 506°C (low, 650°C (medium and 731°C (high. The incorporation of iron up to 30% into cobalt catalysts increased the reduction, CO chemisorption and number of cobalt active sites of the catalyst while an opposite trend was observed for the iron-riched bimetallic catalysts. The CO conversion was 6.3% and 4.6%, over the monometallic cobalt and iron catalysts, respectively. Bimetallic catalysts enhanced the CO conversion. Amongst the catalysts studied, bimetallic catalyst with the composition of 70Co30Fe showed the highest CO conversion (8.1% while exhibiting the same product selectivity as that of monometallic Co catalyst. Monometallic iron catalyst showed the lowest selectivity for C5+ hydrocarbons (1.6%.

  8. Thermal decomposition of supported lithium nitrate catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Maria Lucia [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Lick, Ileana Daniela [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina); Ponzi, Marta Isabel [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Castellon, Enrique Rodriguez; Jimenez-Lopez, Antonio [Departamento de Quimica Inorganica, Cristalografia y Mineralogia. Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Ponzi, Esther Natalia, E-mail: eponzi@quimica.unlp.edu.ar [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina)

    2010-02-20

    New catalysts for soot combustion were prepared by impregnation of different supports (SiO{sub 2}, ZrO{sub 2} and ZrO{sub 2}.nH{sub 2}O) with a LiNO{sub 3} solution and then characterized by means of FTIR, XPS, TGA and UV-vis spectroscopy, whereby the presence of lithium nitrate in the prepared catalysts was identified and quantified. The soot combustion rate using this series of catalysts (LiNO{sub 3}/support) was compared with the activity of a series of impregnated catalysts prepared using LiOH (Li{sub 2}O/supports). Catalysts prepared using LiNO{sub 3} are found to be more active than those prepared using LiOH. The catalytic performance was also studied with a NO/O{sub 2} mixture in the feed, demonstrating that NO increases the combustion rate of soot, probably as a consequence of lithium oxide forming an 'in situ' nitrate ion.

  9. Hydrodeoxygenation of Guaiacol over Ceria-Zirconia Catalysts.

    Science.gov (United States)

    Schimming, Sarah M; LaMont, Onaje D; König, Michael; Rogers, Allyson K; D'Amico, Andrew D; Yung, Matthew M; Sievers, Carsten

    2015-06-22

    The hydrodeoxygenation of guaiacol is investigated over bulk ceria and ceria-zirconia catalysts with different elemental compositions. The reactions are performed in a flow reactor at 1 atm and 275-400 °C. The primary products are phenol and catechol, whereas cresol and benzene are formed as secondary products. No products with hydrogenated rings are formed. The highest conversion of guaiacol is achieved over a catalyst containing 60 mol % CeO2 and 40 mol % ZrO2 . Pseudo-first-order activation energies of 97-114 kJ mol(-1) are observed over the mixed metal oxide catalysts. None of the catalysts show significant deactivation during 72 h on stream. The important physicochemical properties of the catalysts are characterized by X-ray diffraction (XRD), temperature-programmed reduction, titration of oxygen vacancies, and temperature-programmed desorption of ammonia. On the basis of these experimental results, the reasons for the observed reactivity trends are identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst.

    Science.gov (United States)

    Wang, Jindong; Li, Wenzhi; Wang, Huizhen; Ma, Qiaozhi; Li, Song; Chang, Hou-Min; Jameel, Hasan

    2017-11-01

    In this study, a novel catalyst, S 2 O 8 2- -KNO 3 /TiO 2 , which has active acidic and basic sites, was prepared and used in lignin hydrocracking with a co-catalyst, Ru/C. Ru/C is an efficient hydrogenation catalyst and S 2 O 8 2- -KNO 3 /TiO 2 is a dual catalyst, which could efficiently degrade lignin. This catalytic hydrogenation system can reduce solid products to less than 1%, while giving a high liquid product yield of 93%. Catalytic hydrocracking of kraft lignin at 320°C for 6h gave 93% liquid product with 0.5% solid product. Most of this liquid product was soluble in petroleum ether (60% of 93%), which is a clear liquid and comprises mainly of monomeric and dimeric degradation products. These results demonstrated that the combination of the two catalysts is an efficient catalyst for liquefaction of lignin, with little char formation (∼1%). This concept has the potential to produce valuable chemicals and fuels from lignin under moderate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Catalysts for conversion of syngas to liquid motor fuels

    Science.gov (United States)

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  12. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-11-01

    Full Text Available Major problem in CO2 reforming of methane (CORM process is coke formation which is a carbonaceous residue that can physically cover active sites of a catalyst surface and leads to catalyst deactivation. A key to develop a more coke-resistant catalyst lies in a better understanding of the methane reforming mechanism at a molecular level. Therefore, this paper is aimed to simulate a micro-kinetic approach in order to calculate coking rate in CORM reaction. Rates of encapsulating and filamentous carbon formation are also included. The simulation results show that the studied catalyst has a high activity, and the rate of carbon formation is relatively low. This micro-kinetic modeling approach can be used as a tool to better understand the catalyst deactivation phenomena in reaction via carbon deposition. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 10th May 2011; Revised: 16th August 2011; Accepted: 27th August 2011[How to Cite: I. Istadi, D.D. Anggoro, N.A.S. Amin, and D.H.W. Ling. (2011. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 129-136. doi:10.9767/bcrec.6.2.1213.129-136][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.1213.129-136 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/1213 ] | View in  |  

  13. Cerium promoted Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Fiato, R.A.; Bar-Gadda, R.; Miseo, S.

    1987-01-01

    This patent describes a hydrocarbon synthesis catalyst composition comprising sintered combination metal oxides having the following components in the stated weight percentage of the catalyst composition: (a) about 5 to about 80 weight percent Fe oxide; (b) about 4 to about 20 weight percent Zn oxide; (c) about 10 to about 40 weight percent Ti and/or Mn oxide; (d) about 1 to about 5 weight percent K, Rb, and/or Cs oxide; and (e) about 1 to about 10 weight percent Ce oxide, such that where the catalyst contains Fe, the sintered combination comprises a series of Fe, Zn, and/or Ti and/or Mn spinels and oxides of K, Rb and/or Cs, dispersed in a Ce oxide matrix

  14. Catalysts Efficiency Evaluation by using CC Analysis Test

    Directory of Open Access Journals (Sweden)

    Arina Negoitescu

    2011-10-01

    Full Text Available The study emphasizes the necessity of the catalysts efficiency testing. Diagnosis systems using lambda probes are based on the capacity of the catalyst oxygen storage. Comparing the lambda probe signals upstream and downstream of catalyst provides an indication on catalyst activity, although the correlation between oxygen storage capacity and catalyst efficiency is still difficult. Diagnosis for the 1.4 Renault Clio Symbol was accomplished in the Road Vehicles Lab at the Politehnica University of Timisoara using AVL Dicom 4000. The tests showed that the engine worked with lean mixture being necessary a fuel mixture correction calculated by the control unit ECU. A compensation of 0.14 % vol is required for the engine correct operation and emissions integration within permissible limits

  15. Heterogeneous Metal Catalysts for Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  16. Designing Pd-based supported bimetallic catalysts for environmental applications

    OpenAIRE

    Nowicka, Ewa; Meenakshisundaram, Sankar

    2018-01-01

    Supported bimetallic nanoparticulate catalysts are an important class of heterogeneous catalysts for many reactions including selective oxidation, hydrogenation/hydrogenolysis, reforming, biomass conversion reactions, and many more. The activity, selectivity, and stability of these catalysts depend on their structural features including particle size, composition, and morphology. In this review, we present important structural features relevant to supported bimetallic catalysts focusing on Pd...

  17. Recycling of platinum group metals from the automotive catalysts

    International Nuclear Information System (INIS)

    Benevit, Mariana; Petter, Patricia Melo Halmenschlager; Veit, Hugo Marcelo

    2014-01-01

    Currently it is very important to use alternative sources of raw material for obtaining metals, avoiding the traditional mining. This work aims to characterize and evaluate the recoverability of platinum group metals present in automotive catalysts. Thus, the catalysts were divided into two groups: the first was catalysts used in 1.0 cars and the second was catalyst used in 2.0 cars. DRX and FRX techniques and chemical analysis performed by ICP/OES was used to characterized these materials. The results showed that there is a significant amount of platinum group elements in catalyst waste, which can be separated and reused. In the next step, hydro and pyrometallurgical routes, for metals extraction from catalyst waste, will be studied. (author)

  18. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: Effect of calcination temperature of catalysts

    International Nuclear Information System (INIS)

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-01-01

    Highlights: ► Oxidative desulfurization was studied with WO x /ZrO 2 calcined at different temp. ► The importance of the phases of zirconia and tungsten oxide was suggested. ► The catalyst was analyzed thoroughly with Raman and XRD techniques. ► The importance of electron density on S was confirmed with the kinetics of oxidation. - Abstract: Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO x /ZrO 2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WO x /ZrO 2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO 2 ) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO 3 and monoclinic ZrO 2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WO x /ZrO 2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS.

  19. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  20. Use of hydrophobic Pt-catalysts in tritium removal from effluents

    International Nuclear Information System (INIS)

    Gheorghe, Ionita; Popescu, Irina; Stefanescu, Ioan; Steflea, Dumitru; Varlam, Carmen

    2002-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the application of the hydrophobic catalysts in tritium removal from nuclear effluents. Tritium removal from the heavy water reactor and nuclear reprocessing plant, the cleanup of atmosphere and gaseous effluents by hydrogen-oxygen recombination, removal of oxygen dissolved in water are presented and discussed. Unlike the conventional hydrophilic catalysts, the hydrophobic catalysts keep a high catalytic activity and stability, even under the direct contact to liquid water or in presence of saturated humidity. A large diversity of catalyst types (over 100 catalysts) was prepared and tested in order to make them feasible for such processes. The objectives of the review are: - to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; - the designing and operation of reactor packed with hydrophobic catalysts; - to evaluate the potentiality of hydrophobic Pt-catalysts in the present and future applications. The most important results are the following: - the hydrophobic Pt-catalysts packed in the trickle bed or separated bed reactors, showed a high catalytic activity and long stability; - the utilization of the hydrophobic Pt-catalysts for the hydrogen isotopes (tritium and deuterium) separation and for hydrogen-oxygen recombination in nuclear field was entirely confirmed on industrial scale; - the improvement of the inner geometry of the reactors and of the composition of mixed catalytic packing as well as the evaluation of performances of separation processes constitute a major contribution of the authors; - the extension of the utilization of the hydrophobic Pt-catalysts in the oxidation of volatile organic compounds from wastewater; - the removal of dissolved oxygen, and deuterium

  1. Transmission electron microscopy on live catalysts

    NARCIS (Netherlands)

    Bremmer, G.M.

    2017-01-01

    The dissertation describes TEM experiments on heterogeneous catalysts. Starting with characterization of (Ni/Co)MoS2 on Alumina and the effect of oxidation, and sequential resulfidation. After that, Co-based catalysts are used for high-resolution (S)TEM/EDX caracterization studies, and in situ

  2. Catalytic hydrotreatment of coal-derived naphtha using commercial catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, S.-J.; Keogh, R.A.; Thomas, G.A.; Davis, B.H. (University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research)

    Naphtha samples derived from the liquefaction of a bituminous Illinois No. 6 and a subbituminous Black Thunder coal were hydrotreated using commercial Co-Mo/Al[sub 2]O[sub 3], Ni-Mo/Al[sub 2]O[sub 3], and Ni-W/Al[sub 2]O[sub 3] catalysts. It was easier to remove the N, O and S heteroatoms from Illinois No. 6 naphtha than from the Black Thunder naphtha. Nitrogen and oxygen were more difficult to remove than sulfur in the temperature range 200-400[degree]C. Considerable differences in catalyst activity for the hydrodenitrogenation (HDN), hydrodeoxygenation (HDO), and hydrodesulfurization (HDS) reactions were observed. The Ni-Mo catalyst was found to be the most active catalyst for the HDN and HDO reactions and the least active catalyst for the HDS. The Co-Mo catalyst was the most active catalyst for the sulfur removal. For the Illinois No. 6 naphtha, a first-order reaction applies for the HDN and HDO reactions for all three catalysts. However, for the Black Thunder naphtha, the first-order reaction applies only at the lower space velocities; a large deviation is observed at higher space velocities. 11 refs., 15 figs., 4 tabs.

  3. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Laboratory, TN (United States); LaBarge, W. [General Motors-AC Delco Systems, Flint, MI (United States)] [and others

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  4. Grafting heterogeneous catalyst with gamma radiation

    International Nuclear Information System (INIS)

    Garnett, J.L.; Long, M.A.; Levot, R.G.

    1984-01-01

    A process for the production of a heterogeneous catalyst comprises the steps of: irradiating an organic macromolecular substrate or a metal substrate with ionising or ultra violet radiation in the presence of a monomer selected from the group consisting of o-, m-, or p- styryl diphenyl phosphine and o-, m- or p- phenyl acrylyl diphenyl phosphine, to graft the monomer to the substrate; and reacting the graft copolymer with a homogeneous catalyst selected from the group consisting of catalytic metal salts and catalytic organometallic complexes such that the graft copolymer conjugate becomes a ligand of the catalyst

  5. Alumina/silica aerogel with zinc chloride as an alkylation catalyst

    Directory of Open Access Journals (Sweden)

    DEJAN U. SKALA

    2001-10-01

    Full Text Available The alumina/silica with zinc chloride aerogel alkylation catalyst was obtained using a one step sol-gel synthesis, and subsequent drying with supercritical carbon dioxide. The aerogel catalyst activity was found to be higher compared to the corresponding xerogel catalyst, as a result of the higher aerogel surface area, total pore volume and favourable pore size distribution. Mixed Al–O–Si bonds were present in both gel catalyst types. Activation by thermal treatment in air was needed prior to catalytic alkylation, due to the presence of residual organic groups on the aerogel surface. The optimal activation temperature was found to be in the range 185–225°C, while higher temperatures resulted in the removal of zinc chloride from the surface of the aerogel catalyst with a consequential decrease in the catalytic activity. On varying the zinc chloride content, the catalytic activity of the aerogel catalyst exhibited a maximum. High zinc chloride contents decreased the catalytic activity of the aerogel catalyst as the result of the pores of the catalyst being plugged with this compound, and the separation of the alumina/silica support into Al-rich and Si-rich phases. The surface area, total pore volume, pore size distribution and zinc chloride content had a similar influence on the activity of the aerogel catalyst as was the case of xerogel catalyst and supported zinc chloride catalysts.

  6. Rare behaviour of a catalyst pellet catalyst dynamics

    NARCIS (Netherlands)

    Westerterp, K.R.; Loonen, R.A.; Martens, A.

    1986-01-01

    Temperature overshoots and undershoots were found for a Pd on alumina catalyst pellet in its course towards a new steady state after a change in concentration of one of the reactants ethylene or hydrogen. When cooling the pellet, after heat-up by reaction, with pure hydrogen a sudden temperature

  7. Product Distribution from Precursor Bite Angle Variation in Multitopic Alkyne Metathesis: Evidence for a Putative Kinetic Bottleneck.

    Science.gov (United States)

    Moneypenny, Timothy P; Yang, Anna; Walter, Nathan P; Woods, Toby J; Gray, Danielle L; Zhang, Yang; Moore, Jeffrey S

    2018-05-02

    In the dynamic synthesis of covalent organic frameworks and molecular cages, the typical synthetic approach involves heuristic methods of discovery. While this approach has yielded many remarkable products, the ability to predict the structural outcome of subjecting a multitopic precursor to dynamic covalent chemistry (DCC) remains a challenge in the field. The synthesis of covalent organic cages is a prime example of this phenomenon, where precursors designed with the intention of affording a specific product may deviate dramatically when the DCC synthesis is attempted. As such, rational design principles are needed to accelerate discovery in cage synthesis using DCC. Herein, we test the hypothesis that precursor bite angle contributes significantly to the energy landscape and product distribution in multitopic alkyne metathesis (AM). By subjecting a series of precursors with varying bite angles to AM, we experimentally demonstrate that the product distribution, and convergence toward product formation, is strongly dependent on this geometric attribute. Surprisingly, we discovered that precursors with the ideal bite angle (60°) do not afford the most efficient pathway to the product. The systematic study reported here illustrates how seemingly minor adjustments in precursor geometry greatly affect the outcome of DCC systems. This research illustrates the importance of fine-tuning precursor geometric parameters in order to successfully realize desirable targets.

  8. Impact of catalyst reduction mode on selective hydrogenation of cinnamaldehyde over Ru-Sn sol-gel catalysts

    Czech Academy of Sciences Publication Activity Database

    Hájek, J.; Kumar, N.; Salmi, T.; Murzin, DY.; Karhu, H.; Väyrynen, J.; Červený, L.; Paseka, Ivo

    2003-01-01

    Roč. 42, č. 2 (2003), s. 295-305 ISSN 0888-5885 R&D Projects: GA ČR GA104/00/1009 Institutional research plan: CEZ:AV0Z4032918 Keywords : Supported ruthenium catalysts * Ru-Sn-Al2O3 catalysts * benzene Subject RIV: CA - Inorganic Chemistry Impact factor: 1.317, year: 2003

  9. Preparative characteristics of hydrophobic polymer catalyst for the tritium removal

    International Nuclear Information System (INIS)

    Kang, Hee Suk; Choi, H. J.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Paek, S. W.; Paek, S. W.; Kim, J. G.; Chung, H. S.

    2001-05-01

    The optimum method for the fabrication of hydrophobic catalyst was selected and the apparatuses for the preparation of catalyst support with high yield was developed for the large scale production. Also, we summarized the method of improving the physical property of the catalyst support, the loading characteristics of Pt metal as a catalyst, and the characteristics of the apparatus for the fabrication of the catalysts on a large scale

  10. Preparative characteristics of hydrophobic polymer catalyst for the tritium removal

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee Suk; Choi, H. J.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Paek, S. W.; Kim, J. G.; Chung, H. S

    2001-05-01

    The optimum method for the fabrication of hydrophobic catalyst was selected and the apparatuses for the preparation of catalyst support with high yield was developed for the large scale production. Also, we summarized the method of improving the physical property of the catalyst support, the loading characteristics of Pt metal as a catalyst, and the characteristics of the apparatus for the fabrication of the catalysts on a large scale.

  11. Magnetic properties of carbon nanotubes with and without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lipert, Kamil; Ritschel, Manfred; Leonhardt, Albrecht; Krupskaya, Yulia; Buechner, Bernd; Klingeler, Ruediger, E-mail: k.lipert@ifw-dresden.d [Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany)

    2010-01-01

    In this paper we report on the magnetic properties of single- and multiwalled carbon nanotubes synthesized using different chemical vapour deposition methods and with variety of catalyst materials (ferromagnetic Fe, FeCo and diamagnetic Re). Different methods yield carbon nanotubes with different morphologies and different quantity of residual catalyst material. Catalyst particles are usually encapsulated in the nanotubes and influence the magnetic respond of the samples. Varying ferromagnetic properties depending on the shape, size and type of catalyst are discussed in detail. The data are compared with M(H) characteristics of carbon nanotubes without catalysts and with nonmagnetic rhenium, as a reference.

  12. Sabatier Catalyst Poisoning Investigation

    Science.gov (United States)

    Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel

    2013-01-01

    The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.

  13. Ligand iron catalysts for selective hydrogenation

    Science.gov (United States)

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  14. Sputtered catalysts

    International Nuclear Information System (INIS)

    Tyerman, W.J.R.

    1978-01-01

    A method is described for preparing a supported catalyst by a sputtering process. A material that is catalytic, or which is a component of a catalytic system, is sputtered on to the surface of refractory oxide particles that are compatible with the sputtered material and the sputtered particles are consolidated into aggregate form. The oxide particles before sputtering should have a diameter in the range 1000A to 50μ and a porosity less than 0.4 ml/g, and may comprise MgO, Al 2 O 3 or SiO 2 or mixtures of these oxides, including hydraulic cement. The particles may possess catalytic activity by themselves or in combination with the catalytic material deposited on them. Sputtering may be effected epitaxially and consolidation may be effected by compaction pelleting, extrusion or spray drying of a slurry. Examples of the use of such catalysts are given. (U.K.)

  15. Ni Catalysts Supported on Modified Alumina for Diesel Steam Reforming

    Directory of Open Access Journals (Sweden)

    Antonios Tribalis

    2016-01-01

    Full Text Available Nickel catalysts are the most popular for steam reforming, however, they have a number of drawbacks, such as high propensity toward coke formation and intolerance to sulfur. In an effort to improve their behavior, a series of Ni-catalysts supported on pure and La-, Ba-, (La+Ba- and Ce-doped γ-alumina has been prepared. The doped supports and the catalysts have been extensively characterized. The catalysts performance was evaluated for steam reforming of n-hexadecane pure or doped with dibenzothiophene as surrogate for sulphur-free or commercial diesel, respectively. The undoped catalyst lost its activity after 1.5 h on stream. Doping of the support with La improved the initial catalyst activity. However, this catalyst was completely deactivated after 2 h on stream. Doping with Ba or La+Ba improved the stability of the catalysts. This improvement is attributed to the increase of the dispersion of the nickel phase, the decrease of the support acidity and the increase of Ni-phase reducibility. The best catalyst of the series doped with La+Ba proved to be sulphur tolerant and stable for more than 160 h on stream. Doping of the support with Ce also improved the catalytic performance of the corresponding catalyst, but more work is needed to explain this behavior.

  16. Selection of catalysts and reactors for hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [Imaf Group, Ottawa, ON (Canada)

    1998-07-13

    The performance of hydroprocessing units can be influenced by the selection of the catalysts and the type of reactor to suit a particular feed. The catalysts and reactors selected for light feeds differ markedly from those selected for heavy feeds. Fixed-bed reactors have been traditionally used for light feeds. High asphaltene and high metal content feeds are successfully processed using moving-bed and/or ebullated bed reactors. Multi-reactor systems consisting of moving-bed and/or ebullated bed reactors in series with fixed-bed reactors can be used to process difficult feeds. For heavy feeds, the physical properties (e.g. porosity), shape and size of the catalyst particles become crucial parameters. Pretreatment of catalysts by presulfiding improves the performance of the units.

  17. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat

    2013-01-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20.

  18. Catalyst for Carbon Monoxide Oxidation

    Science.gov (United States)

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the

  19. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  20. Pd and S binding energies and Auger parameters on a model silica-supported Suzuki–Miyaura catalyst: Insights into catalyst activation

    International Nuclear Information System (INIS)

    Hanif, Mohammad A.; Ebralidze, Iraklii I.; Horton, J. Hugh

    2013-01-01

    Model Suzuki–Miyaura reaction catalysts have been developed by immobilizing palladium on a mercaptopropyltrimethoxysilane (MPTMS) functionalized Si substrate. Two types of Pd species were found on the fresh catalysts that may be attributed to a S-bound Pd (II) species and Pd nanoparticles. The binding energy of the nanoparticles is strongly size dependent, and is higher than that of metallic Pd. A sulfur species that has not been previously reported on this class of catalysts has also been observed. A systematic investigation of various palladium/sulfur complexes using XPS was carried out to identify this species, which may be assigned to high oxidation state sulfur formed by oxidation of thiol during the reduction of the Pd(OAc) 2 used to load the catalyst with Pd. Shifts in binding energy observed for both Pd and S spectra of the used catalysts were examined in order to probe the change of electronic environment of reactive palladium center and the thiol ligand during the reaction. Electron and atomic force microscopic imaging of the surfaces demonstrates the formation of Pd nanoparticles on fresh catalysts and subsequent size reduction of the Pd nano-particles following reaction.

  1. Surface science of single-site heterogeneous olefin polymerization catalysts

    OpenAIRE

    Kim, Seong H.; Somorjai, Gabor A.

    2006-01-01

    This article reviews the surface science of the heterogeneous olefin polymerization catalysts. The specific focus is on how to prepare and characterize stereochemically specific heterogeneous model catalysts for the Ziegler–Natta polymerization. Under clean, ultra-high vacuum conditions, low-energy electron irradiation during the chemical vapor deposition of model Ziegler–Natta catalysts can be used to create a “single-site” catalyst film with a surface structure that produces only isotactic ...

  2. Finding Furfural Hydrogenation Catalysts via Predictive Modelling.

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-09-10

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (k(H):k(D)=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R(2)=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model's predictions, demonstrating the validity and value of predictive modelling in catalyst optimization.

  3. 40 CFR 90.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for thermally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000 ±10...

  4. 40 CFR 91.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000 ±10 °C. (b) Evaluation...

  5. Investigation and development of heavy oil upgrading catalysts. 3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.K.; Lee, I.C.; Yoon, W.L.; Lee, H.T.; Chung, H.; Hwang, Y.J.; Park, S.H. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    This study aimed at the domestic development of HDS catalysts which are most fundamental and wide-used in the petroleum refinery. In this year, some experimental works were conducted for developing the effective utilization technology of the novel dispersed-catalysts in the hydro-desulfurization of heavy oils, and improving the reaction performance of alumina-supported Mo-based hydro-treating catalysts conventionally used in most of refineries. First, it was experimentally proved that the dispersed catalysts of Co-Mo could be employed for the hydro-desulfurization of a heavy atmospheric residual oil excluding the catalyst deactivation. The utilization of a carbon-expanded reactor in combination with this dispersed catalyst system exhibited an enhanced reaction performance and provided an efficient way for the separation and recovery of the dispersed catalytic component from oils. Second, the tungsten-incorporated WCoMo/{gamma}-Al{sub 2}O{sub 3} catalyst revealed the improved catalytic performance in the various hydro-treating reactions and in the initial deactivation rates for the high pressure hydro-treatment of a heavy oil as compared with the commercial CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst. This new experimental finding for the promoting role of the monomeric WO{sub 3} species in CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst may be generally applicable to the Mo-based alumina-sulfide phase, higher catalytic activity, and more extended service life. (author). 101 refs., 33 figs., 18 tabs.

  6. Effect of Catalyst Pellet-Diameter and Basicity on Transesterification of Soybean Oil into Biodiesel using K2O/CaO-ZnO Catalyst over Hybrid Catalytic-Plasma Reactor

    Directory of Open Access Journals (Sweden)

    Istadi I.

    2018-01-01

    Full Text Available This research is aimed to study the effect of catalyst pellet-diameter and catalyst basicity on the transesterification process of soybean oil into biodiesel over a hybrid catalytic-plasma reactor. Various catalyst diameters (3, 5, and 7 mm were tested in this reaction system. Catalyst basicity was also examined by comparing fresh and used catalyst as well as with and without K2O promoter. All catalysts testing were performed in a hybrid plasma-catalytic reactor (dielectric barrier discharge – DBD type. From the results, the synergistic effects roles of the catalyst and the plasma in the transesterification process are important, in which the energetic electrons within plasma assist the reaction on the catalyst surface by an exciting bonded electron. The catalyst basicity was influenced by the composition of CaO on the catalyst as well as roles of the alkaline K2O promoter. Catalyst basicity is important in producing biodiesel with high performance. Yield of fatty acid alkyl ester (FAAE or biodiesel is slightly influenced by the catalyst diameter within the range of diameter studied.

  7. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation.

    Science.gov (United States)

    Meijide, Jessica; Pazos, Marta; Sanromán, Maria Ángeles

    2017-10-15

    The application of the electro-Fenton process for organic compound mineralisation has been widely reported over the past years. However, operational problems related to the use of soluble iron salt as a homogeneous catalyst involve the development of novel catalysts that are able to operate in a wide pH range. For this purpose, polyvinyl alcohol-alginate beads, containing goethite as iron, were synthesised and evaluated as heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride mineralisation. The influence of catalyst dosage and pH solution on ionic liquid degradation was analysed, achieving almost total oxidation after 60 min under optimal conditions (2 g/L catalyst concentration and pH 3). The results showed good catalyst stability and reusability, although its effectiveness decreases slightly after three successive cycles. Furthermore, a plausible mineralisation pathway was proposed based on the oxidation byproducts determined by chromatographic techniques. Finally, the Microtox® test revealed notable detoxification after treatment which demonstrates high catalyst ability for pyridinium-based ionic liquid degradation by the electro-Fenton process.

  8. Hydrogenation of citral into its derivatives using heterogeneous catalyst

    Science.gov (United States)

    Sudiyarmanto, Hidayati, Luthfiana Nurul; Kristiani, Anis; Aulia, Fauzan

    2017-11-01

    Citral as known as a monoterpene can be found in plants and citrus fruits. The hydrogenation of citral into its derivatives become interesting area for scientist. This compound and its derivatives can be used for many application in pharmaceuticals and food areas. The development of heterogeneous catalysts become an important aspect in catalytic hydrogenation citral process. Nickel supported catalysts are well known as hydrogenation catalyst. These heterogeneous catalysts were tested their catalytic activity in hydrogenation of citral. The effect of various operation conditions, in term of feed concentration, catalyst loading, temperature, and reaction time were also studied. The liquid products produced were analyzed by using Gas Chromatography-Mass Spectroscopy (GC-MS). The result of catalytic activity tests showed nickel skeletal catalyst exhibits best catalytic activity in hydrogenation of citral. The optimum of operation condition was achieved in citral concentration 0.1 M with nickel skeletal catalyst loading of 10% (w/w) at 80 °C and 20 bar for 2 hours produced the highest conversion as of 64.20% and the dominant product resulted was citronellal as of 56.48%.

  9. New antipollution processing of a used refining catalyst and complete recovery of the catalyst metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Trinh Dinh Chan; Llido, E.

    1992-05-15

    The used refining catalyst, containing metals such as vanadium, nickel and iron, is first processed by stripping; it is then calcined in critical conditions and heat processed in the presence of a melted alkaline base; the resulting solid matter is then water processed. The antipollution process can be applied to oil fraction hydroconversion or hydroprocessing catalysts.

  10. Preparation of biodiesel from soybean oil by using heterogeneous catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, Kaniz; Rakib Uddin, M.; Islam, M.A. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Khan, Maksudur R. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, 26300 Gambang, Kuantan, Pahang (Malaysia)

    2013-07-01

    The predicted shortage of fossil fuels and related environmental concerns has recently attracted significant attention to search alternative fuel. Biodiesel is one of the alternatives to fossil fuel. Now-a-days, most biodiesel is produced by the transesterification of oils using methanol and a homogeneous base catalyst. The use of homogeneous catalysts is normally limited to batch mode processing followed by a catalyst separation step. The immiscible glycerol phase, which accumulates during the course of the reaction, solubilizes the homogeneous base catalyst and therefore, withdraws from the reaction medium. Moreover, other difficulties of using homogeneous base catalysts relate to their sensitivity to free fatty acid (FFA) and water and resulting saponification phenomenon. High energy consumption and costly separation of the catalyst from the reaction mixture have inspired the use of heterogeneous catalyst. The use of heterogeneous catalysts does not lead to the formation of soaps through neutralization of FFA and saponification of oil. In the present paper, biodiesel was prepared from crude (soybean) oil by transesterification reaction using heterogeneous base catalyst name calcium oxide (CaO). Various reaction parameters were optimized and the biodiesel properties were evaluated.

  11. Shining X-rays on catalysts at work

    Energy Technology Data Exchange (ETDEWEB)

    Grunwaldt, J-D, E-mail: jdg@kt.dtu.d [Technical University of Denmark, Department of Chemical and Biochemical Engineering, Building 229, DK-2800 Kgs. Lyngby (Denmark)

    2009-11-15

    Structure-performance relationships gained by studying catalysts at work are considered the key to further development of catalysts underlined here by a brief overview on our research in this area. The partial oxidation of methane to hydrogen and carbon monoxide over Pt- and Rh-based catalysts and the total combustion of hydrocarbons demonstrate the importance of structural identification of catalysts in its working state and the measurement of the catalytic performance at the same time. Moreover, proper cell design is a key both here and in liquid phase reactions including preparation or high pressure reactions. In several cases structural changes during preparation, activation and reaction occur on a subminute scale or the catalyst structure varies inside a reactor as a result of temperature or concentration gradients. This, additionally, requires time and spatial resolution. Examples from time-resolved QEXAFS studies during the partial oxidation of methane over Pt- and Rh-based catalysts demonstrate some of the recent developments of the technique (use not only of Si(111) but also Si(311) crystals, angular encoder, full EXAFS spectra at subsecond recording time, and modulation excitation spectroscopy). In order to obtain spectroscopic information on the oxidation state inside a microreactor, scanning and full field X-ray microscopy with X-ray absorption spectroscopic contrast were achieved under reaction conditions. If a microbeam is applied, fast scanning techniques like QEXAFS are required. In this way, even X-ray absorption spectroscopic tomographic images of a slice of a microreactor were obtained. The studies were recently extended to spatiotemporal studies that give important insight into the dynamics of the catalyst structure in a spatial manner with subsecond time-resolution.

  12. SiC nanocrystals as Pt catalyst supports for fuel cell applications

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per; Skou, E.M.

    2013-01-01

    A robust catalyst support is pivotal to Proton Exchange Membrane Fuel Cells (PEMFCs) to overcome challenges such as catalyst support corrosion, low catalyst utilization and overall capital cost. SiC is a promising candidate material which could be applied as a catalyst support in PEMFCs. Si...... on the nanocrystals of SiC-SPR and SiC-NS by the polyol method. The SiC substrates are subjected to an acid treatment to introduce the surface groups, which help to anchor the Pt nano-catalysts. These SiC based catalysts have been found to have a higher electrochemical activity than commercially available Vulcan...... based catalysts (BASF & HISPEC). These promising results signal a new era of SiC based catalysts for fuel cell applications....

  13. Highly sensitive silicon microreactor for catalyst testing

    DEFF Research Database (Denmark)

    Henriksen, Toke Riishøj; Olsen, Jakob Lind; Vesborg, Peter Christian Kjærgaard

    2009-01-01

    by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model...... catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally......, it is found that platinum catalysts with areas as small as 15 mu m(2) are conveniently characterized with the device. (C) 2009 American Institute of Physics. [doi:10.1063/1.3270191]...

  14. Novel catalysts for isotopic exchange between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Butler, J.P.; Rolston, J.H.; Stevens, W.H.

    1978-01-01

    Catalytic isotopic exchange between hydrogen and liquid water offers many inherent potential advantages for the separation of hydrogen isotopes which is of great importance in the Canadian nuclear program. Active catalysts for isotopic exchange between hydrogen and water vapor have long been available, but these catalysts are essentially inactive in the presence of liquid water. New, water-repellent platinum catalysts have been prepared by: (1) treating supported catalysts with silicone, (2) depositing platinum on inherently hydrophobic polymeric supports, and (3) treating platinized carbon with Teflon and bonding to a carrier. The activity of these catalysts for isotopic exchange between countercurrent streams of liquid water and hydrogen saturated with water vapor has been measured in a packed trickle bed integral reactor. The performance of these hydrophobic catalysts is compared with nonwetproofed catalysts. The mechanism of the overall exchange reaction is briefly discussed. 6 figures

  15. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  17. Coke formation on hydrodesulphurization catalysts. [Including effects of different promoters

    Energy Technology Data Exchange (ETDEWEB)

    Ternan, M.; Furimsky, E.; Parsons, B.I.

    1979-02-01

    The extent of coke formation was measured on a number of different hydrodesulfurization catalysts, primarily as a function of the catalyst chemical composition. Variations in the concentration of MoO/sub 3/ on the alumina, the type of catalyst promoter, the promoter/MoO/sub 3/ ratio, the presulfiding material and the reaction temperature were made. Increases in the reaction rate caused by either changes in the catalyst composition or by moderate changes in the reaction temperature were compared to the catalyst coke content. It was suggested that two types of coke were present on the catalyst, a reactive coke which is subsequently converted to reaction products and an unreactive coke which blocks catalytic sites.

  18. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  19. Electroreduction of oxygen on carbon-supported gold catalysts

    International Nuclear Information System (INIS)

    Erikson, Heiki; Juermann, Gea; Sarapuu, Ave; Potter, Robert J.; Tammeveski, Kaido

    2009-01-01

    The electrochemical reduction of oxygen was studied on Au/C catalysts (20 and 30 wt%) in 0.5 M H 2 SO 4 and 0.1 M KOH solutions using the rotating disk electrode (RDE) method. The thickness of the Au/C-Nafion layers was varied between 1.5 and 10 μm. The specific activity of Au was independent of catalyst loading in both solutions, indicating that the transport of reactants through the catalyst layer does not limit the process of oxygen reduction under these conditions. The mass activity of 20 wt% Au/C catalysts was higher due to smaller particle size. The number of electrons involved in the reaction and the Tafel slopes were found; the values of these parameters are similar to that of bulk polycrystalline gold and indicate that the mechanism of O 2 reduction is not affected by carbon support or the catalyst configuration.

  20. Atomic Layer Deposited Catalysts for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta

    catalyst toward the methanol oxidation reaction (MOR). In the work described in this PhD dissertation, two series of Pt-Ru ALD catalysts supported on nitrogen-doped multi-walled carbon nanotubes (N-CNTs) have been evaluated toward the CO oxidation and MOR at room temperature in a three......The micro direct methanol fuel cell (µDMFC) has been proposed as a candidate to power portable applications. The device can operate at room temperature on inexpensive, energy-dense methanol fuel, and it can be easily "recharged" by fuel refilling. Microfabrication techniques could be one route......-electrode electrochemical cell. The first series was comprised of Pt-Ru ALD catalysts of various Ru compositions, between 0 and 100 at.%. For the compositions investigated, the best catalyst had a Ru composition of 29 at.%. In the second series Ru-decorated Pt catalysts of various Ru loadings, i.e., various Ru ALD cycles...